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ABSTRACT OF THESIS 

 

 

EVALUATION OF CREATED WETLANDS AS AMPHIBIAN HABITAT ON 

A REFORESTED SURFACE MINE 

 

Reclaimed mines often lack pre-mining habitat due to soil compaction and lack of natural 

features. If soils are de-compacted and natural features restored, new habitats can be 

created, such as wetlands for amphibians. It is important to understand which factors affect 

amphibian use of wetlands to estimate the efficacy of created wetlands as habitat. I sampled 

40 wetlands among 4 ages (2, 4, 6, and 8 years) on a reforested surface mine to: 1) 

characterize differences in wetland habitat across age classes, 2) estimate amphibian 

occupancy, 3) investigate estimated abundance of 4 amphibian species (Lithobates 

sylvaticus, L. clamitans, Notophthalmus viridescens, and Ambystoma maculatum) and 

4) identify wetland characteristics most important for amphibian utilization of wetlands. 

Over 2,200 amphibian captures were recorded. There were 8 species found in 8 year-old 

wetlands, 5 in the 4 and 6 year-old wetlands, and 6 in the 2 year-old wetlands. Wetland 

age, specific conductance of water, vegetation cover, and canopy cover were predictors of 

amphibian occupancy and abundance. Water quality was better than described in streams 

affected by mining that exhibited limited amphibian occupancy and abundance. My results 

indicated that created wetlands on reforested surface mines provide suitable breeding 

habitat for pond breeding amphibians. 
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CHAPTER 1. EVALUATION OF CREATED WETLANDS AS AMPHIBIAN 

HABITAT ON A REFORESTED SURFACE MINE 

INTRODUCTION 

Natural wetlands comprise just 6% of the earth’s surface but are disproportionate 

in their function and biodiversity (Calhoun 2014, Gopal et al. 2000). Costanza et al. 

(1997) estimated the economic values of services provided by the world’s freshwater 

ecosystems and found that, on a per-hectare basis, estuaries and freshwater 

floodplains/swamps were the world’s two most valuable ecosystem types. Freshwater 

wetlands provide an estimated U.S. $4.8 trillion per year in ecological services, compared 

to U.S. $4.7 trillion per year in forests (Costanza et al. 1997). Wetland services include 

water storage, flood regulation, contaminant filtration and absorption, nutrient cycling, 

and critical habitat that supports a diversity of aquatic and terrestrial life (Costanza et al. 

1997, Gopal et al. 2000, Woodward and Wui 2001, Zedler and Kercher 2005). However, 

wetlands worldwide have been drained for human uses including urban and agricultural 

purposes, disease management, and water transport (Batzer and Sharitz 2014, Dahl 2005, 

Dahl 2011). In the continental U.S. it was estimated that by the 1970s almost half of the 

wetlands had been filled or drained (Dahl 2005, Dahl 2011, Tiner 1984). To mitigate 

natural wetland loss, land managers began to construct wetlands (Batzer and Sharitz 

2014, Dahl 2005, Dahl 2011).  Between 1998 and 2004 there was a net gain of 98,014.86 

freshwater wetland hectares (ha) in the United States, much of which can be attributed to 

the creation of over 283,279.95 ha of created open water wetlands, most maintaining 

deep basins, steep slopes, and limited emergent vegetation. Without the contribution of 

open water wetlands, wetland gains would not have exceeded wetlands losses from 1998-

2004 (Dahl 2005, Dahl 2011). More recently, ecologists have questioned the ability of 
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created wetlands, which are often placed in disturbed landscapes, to provide the same 

services as natural wetlands (Calhoun 2014, Kudray and Schemm 2008). Studies have 

shown that created wetlands placed in degraded landscapes with deep basins and 

vegetation inhibited steep slopes, provide open water systems that often function 

differently than natural, vegetated wetlands (Minkin and Ladd 2003, Shulse et al. 2010). 

Because of this, the ability of created wetlands may be limited if adequate natural 

features, such as hydroperiod and vegetation cover, are not mimicked (Calhoun 2014, 

Denton and Richter 2013, Drayer and Richter 2016, Kross and Richter 2016, Porej and 

Hetherington 2005). However, if enough natural features can be mimicked, created 

wetlands may provide similar ecological functions to natural wetlands (Brodman et al 

2006, Brown et al. 2012, Calhoun 2014, Dahl 2005, Drayer and Richter 2016, Kross and 

Richter 2016, Porej and Hetherington 2005, Semlitsch 2008, Shulse et al. 2010). 

Surface mining is a common method of coal extraction in the mountains within 

the Appalachian region of the U.S. (Bernhardt and Palmer 2011). During surface mining, 

the land is stripped of vegetation, the top layers of soil and rock are removed, and the 

underlying coal seams are mined (Bernhardt and Palmer 2011). Mines are reclaimed 

according to the Surface Mining Control and Reclamation Act of 1977 (Public law 95-

87), often as non-native grasslands or forests (Bernhardt and Palmer 2011, Skousen et al. 

2011, Surface Mining Control and Reclamation Act 1977). In this process the land is 

compacted to reduce erosion, restored to its original contour, and re-vegetated with native 

or non-native plants (Anderson et al. 1989, Plass 1982, Skousen et al. 2011, Surface 

Mining Control and Reclamation Act 1977). Ecological succession of plant communities 

on reclaimed mines is often arrested due to soil compaction (Franklin et al. 2012, Sena et 
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al. 2015, Skousen et al. 2011, Zipper et al. 2011). De-compacting the soil and replacing 

non-native vegetation with native plants on these sites generates an opportunity to create 

habitats, such as upland wetlands and forests, for wildlife. 

In an era of global biodiversity loss, amphibians have been recognized as one of 

the vertebrate taxa most threatened with population declines (Grant et al. 2016, Semlitsch 

et. al. 2017). Habitat loss and degradation has been identified as a major cause for 

declines in amphibians (Grant et al. 2016, Semlitsch et. al. 2017). Wetlands are 

particularly important for pond-breeding amphibians (Batzer and Sharitz 2014, Brown 

2012). Wetlands offer a place for amphibians to breed that is usually devoid of large 

predators, such as fish, that can prey on both adults and larvae. In addition, the terrestrial 

habitat surrounding wetlands must also be sufficient to support adult amphibian 

populations and movement (Birx-Raybuck et al. 2010, Hamer et al. 2016, Marsh et al. 

1999, Laan and Verboom 1990, Price et al. 2018, Semlitsch 2008, Shulse et al. 2010). 

Under sufficient conditions, pond-breeding amphibians have the ability to quickly 

recover loss of local populations because they can produce large clutch sizes and can 

disperse to neighboring wetlands (Gibbons et al. 2006, Hanski and Gilpin 1991, 

Semlitsch and Bodie 1998, Sjögren 1991). In areas where anthropogenic disturbance has 

led to pond-breeding amphibian declines, there is an opportunity to establish created 

wetlands with sufficient conditions to allow amphibian populations to rebound.  

Surface mines present an opportunity to create high elevation wetland habitat for 

pond-breeding amphibians and other wildlife; however, previous studies have 

demonstrated reduced amphibian occupancy and abundance in natural streams affected 

by coal mining (Hutton et al. In Press, Muncy et al. 2014, Price et al. 2016).  In one 
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study, stream salamander occupancy and species richness were dramatically lower in 

streams affected by mining than in control streams (Muncy et al. 2014). In this study, 

specific conductance was 30 times greater, sulfate (SO4) levels were 70 times greater, and 

concentrations of dissolved ions (Ca, Mg, K, Na) were greater in the streams affected by 

mining than in unmined forested control streams (Muncy et al. 2014). Price et al. (2016) 

also discovered reduced stream salamander occupancy and conditional abundance in 

streams affected by mining compared to reference reach streams. Another study showed 

that most stream salamander species and life stages exhibited reduced initial occupancy, 

colonization rates, persistence rates, and conditional abundance in mining affected 

streams over a three years monitoring period (Price et al. 2018). Hutton (2018) found that 

stream salamander occupancy and abundance declined consistently among all species and 

age ranges in mining affected streams compared to reference streams, likely due to 

changes in diet. Larval salamanders experienced a 12-fold decrease in diet autochthony, a 

4.2-fold decrease in total prey volume, and a rapid decline in body condition as specific 

conductivity increased (Hutton 2018). Hutton et al. (In Press) also found salamander 

occupancy and abundance to be negatively associated with stream conductivity.  

Most studies looking at amphibian utilization of mining affected lands have been 

in stream systems; however a few have documented amphibian use and reproduction in 

wetlands located on surface mines. Loughman (2005) found that Notophthalmus 

viridescens was able to breed in natural and artificial wetlands on an abandoned mine in 

West Virginia, while Ambystoma maculatum was able to reproduce (lay eggs) but no 

growth or development occurred. Lithobates sylvaticus, although a breeding population 

was documented 2 km from the study site, did not utilize the mine wetlands for 
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reproduction, however several other anuran species did (Loughman 2005). Loughman 

(2005) suggested that with proper wetland planning and creation, minelands could be 

converted to important breeding habitat for amphibians. Lannoo et al. (2009) suggested 

that mine spoil habitats, including the various wetlands found on them, could be critical 

habitat to threatened and endangered species. Similarly, Stiles (2017) documented the 

colonization of 14 amphibian species to a reclaimed strip mine and suggested that 

reclaimed, restored, and properly managed post-disturbance landscapes may provide 

adequate amphibian breeding habitat. 

A large-scale restoration project was initiated on reclaimed mined land in 2009 

within the Monongahela National Forest (MNF), West Virginia to bring back the red 

spruce (Picea rubens) ecosystem that once occupied high elevation areas in the state. 

Prior to disturbance from logging in the early 1900s and surface mining in the 1980s and 

1990s, the red spruce forest covered over 200,000 ha in WV, but less than 20,000 ha 

remain today. On the MNF site, a holistic suite of restoration activities have been 

implemented including soil decompaction, wetland creation, woody debris loading, and 

planting of native trees and shrubs. To date, over 350,000 trees and shrubs have been 

planted on over 300 ha and over 1,200 small vernal wetlands have been constructed on 

the mine impacted land. The suitability of these wetlands as habitat for amphibians, 

however, is not well understood.  

It is important to understand how site and landscape level factors may limit 

amphibian use of created wetland habitats on surface mines. In this study, my objectives 

were to: 1) characterize differences in wetland habitat across age classes, 2) estimate 

amphibian occupancy in the created wetlands, 3) investigate estimated abundance of four 
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common amphibian species (Lithobates sylvaticus, Lithobates clamitans, Notophthalmus 

viridescens, and Ambystoma maculatum), and 4)  identify wetland characteristics most 

important for amphibian utilization of wetlands. Over 1.1 million ha of forest have been 

disturbed by surface mining in central Appalachia (Bernhardt and Palmer 2011). By 

understanding which factors are important to amphibian utilization of created wetlands 

on high elevation surface mines, there is the possibility for successful reforestation and 

wetland creation on other Appalachian surface mines. 

STUDY SITE 

 

The 16,187.43 ha Mower Tract is located on Cheat Mountain in the Monongahela 

National Forest, Randolph and Pocahontas Counties, West Virginia. With an elevation of 

4,000 ft, the area was historically characterized by red spruce birch forests, poor soils, a 

thick layer of peat, and scattered wetlands (Byers et al. 2010). Red spruce forests and 

their associated systems are of high state and global conservation importance and have 

declined throughout their range in North America (Byers et al. 2010, Walter et al. 2017). 

The area was logged in the early 1900s and subsequently burned in unnaturally hot 

wildfires that destroyed the peat and seedstock within it. In the 1980s approximately 809 

ha were surface mined for coal. The mined areas were reclaimed by restoring the area to 

its original contour, compacting the soil, and planting non-native grasses and conifers. 

Native species were unable to colonize the area due to soil compaction and the 

pervasiveness of non-native vegetation. The compacted soils also led to slow tree growth 

and almost nonexistent reproduction. Following reclamation, the land was purchased 
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from the Mower Land Company by the U.S. Forest Service as part of the Monongahela 

National Forest Greenbrier District. 

Native reforestation on the Mower Tract began in 2010 with a partnership 

between the U.S. Forest Service Monongahela National Forest, the U.S. Office of Surface 

Mining Reclamation and Enforcement’s Appalachian Regional Reforestation Initiative, 

and Green Forests Work, a reforestation oriented 501c3 nonprofit. In order to address the 

compaction issues, the area was deep ripped using a bulldozer and a ripping shank in the 

autumn of each year. Wetland creation was done at the time of ripping. Downed trees 

were left in the ripped area to provide organic material and habitat. The first wetlands, 

created in 2010, were designed by Thomas Biebighauser, a wildlife and wetlands 

biologist, and retained some of the non-native conifer cover. Some wetlands created in 

2010 were placed just outside of the ripped area in the adjacent woods. Wetlands created 

in 2012, 2014, and 2016 were created opportunistically where clay or wet soils were 

identified.  Logs, downed trees, and larger rocks were pushed into the wetlands to create 

wildlife habitat. There were 135 wetlands created in 2010, 75 in 2012, 279 in 2014, and 

318 in 2016. Native red spruce and northern hardwoods were planted in the rip trails and 

wetland vegetation seeded around wetland edges in the spring following creation.  Not all 

of these wetlands hold water for all or part of the year. Reforestation and wetland creation 

efforts on the Mower Tract are ongoing.  
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MATERIALS AND METHODS 

 

Prior to sampling I identified 40 wetlands, 10 wetlands from each age class 

(created 2, 4, 6 or 8 years prior to sampling). To determine which factors varied among 

wetland age classes and were important for amphibian occupancy and abundance, site 

level and environmental variables were collected at each wetland. At each wetland, a 50 

mL water sample was taken and placed on ice until it could later be processed in the lab 

for turbidity (FTU), conductivity (μS cm-1), total organic carbon (mg L-1), phosphate 

(PO4 mg L-1), pH (H+), alkalinity (HCO3 mg L-1), chloride (Cl mg L-1), Sulfate (SO4 mg 

L-1), nitrate (NO3 mg L-1), ammonium (NH4 mg L-1), calcium (Ca mg L-1), magnesium 

(Mg mg L-1), potassium (K mg L-1), sodium (NA mg L-1), manganese (Mn mg L-1), and 

iron (Fe mg L-1). Samples were collected at the field sites and transported in a cooler to 

the UK Department of Forestry Hydrology Lab for analysis. Water pH was measured 

with an Orion Benchtop pH meter (Thermo Fisher Scientific, 

www.fishersci.com/us/en/home.html). Alkalinity was measured by titration. EC was 

measured using a YSI conductivity bridge (YSI, Yellow Springs, OH). Total Fe, Mn, Ca, 

K, Mg, and Na were measured using a GBC SDS 270 Atomic Adsorption 

Spectrophotometer (GBC Scientific Equipment, Melbourne, Australia). Ammonium and 

nitrate were analyzed with a Brun Luebbe (Brun+Luebbe Company, Norderstedt, 

Germany) auto analyzer. Sulfate, phosphate and chloride was measured using ion 

chromatography on a Dionex Ion Chromatograph 2000 (Dionex Corp., CA). A Shimadzu 

TOC-Vcsn analyzer (Shimadzu, Kyoto, Japan) was utilized for measuring TOC 

concentration. Turbidity was measured with a Hach turbidimeter (Hach, Loveland, CO). 

http://www.fishersci.com/us/en/home.html
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All sampling, preservation, and analytic protocols followed those outlined in Greenberg 

et al. (1992). The number of rocks with a diameter ≥ 15 cm and logs with a diameter ≥ 4 

cm were counted. To determine wetland hydroperiod, Solinst Troll pressure transducers 

(Solinst Levelogger Edge Model 3001) were set at 6 wetlands in each age class (May 

through October) to measure water level (cm). Loggers were placed in the deepest spot of 

each wetland and measured water level every 6 hours. Two Solinst Barologgers (Solinst 

Barologger Edge Model 3001) were placed at opposite ends of the Mower Tract. These 

recorded barometric pressure (kPa) every 6 hours, so that Levelogger readings could be 

compensated for atmospheric barometric pressure.  Logger data was downloaded and 

water depth was measured manually using a meter stick at all wetlands at the deepest spot 

at the time of sampling. Loggers were removed from the field in October 2018.  After the 

loggers were collected from the field Solinst’s Levelogger 4.0.3 software© was used to 

compensate Levelogger reading with barometric pressure from the Barologgers. During 

the month of July when vegetation growth was at its peak, percent wetland vegetation 

and canopy cover were measured.  Percent wetland vegetation cover (combined emergent 

and submergent) was visually assessed using a PVC square meter quadrat. The percent 

vegetation cover was estimated from quadrats placed on the north and south edges of the 

wetland and in two quadrats from the middle of the wetlands. Overall percent vegetation 

was calculated by averaging the four percentages from the quadrats. Canopy cover was 

measured using a spherical crown densiometer from the center of the wetland (Forestry 

Suppliers, Jackson, MS, USA). GPS Coordinates were taken at all study wetlands and 

wetlands close to study wetlands. National Land Cover Database (NLCD) 2011 3m 

resolution land cover data was used to delineate land cover (forest, grassland) (US 
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Geological Survey) and a stream shapefile supplied by the US Forest Service 

Monongahela National Forest was used to determine stream location. Distance to nearest 

stream, wetland, and forest were measured using the Near tool in the ArcToolBox of 

ArcMap™ 10.5.1 within ESRI’s ArcGIS® (ESRI 2013).  

Amphibian count surveys were conducted five times at each wetland between 

May and July 2018. Wetlands were sampled using 40 by 23-cm D-frame dipnets (Ed 

Cumings, Inc.). The number of net sweeps was determined based on wetland size, with 

one sweep per every two m2 surface area with 5 - 52 sweeps per wetland (14±1.7). Each 

dipnet sweep consisted of placing the dipnet on the bottom of the wetland and dragging it 

approximately 1m. Adult and larval amphibians were counted and identified. In a few 

instances, species identification was confirmed in the lab using a microscope to inspect 

tooth row morphology. All cover types were sampled evenly (emergent vegetation, log 

piles, open water, etc.). Wetland surface area (m2) was determined prior to sampling.  

I used an analysis of variance (ANOVA) to look for differences among age 

classes in all site covariates collected or calculated on a single occasion, including:  

wetland size (surface area m2), change in wetland water depth (cm), the number of logs, 

the number of rocks, percent canopy cover, percent vegetation cover in wetland, and 

distance to nearest stream, wetland, and forest. An additional ANOVA was conducted 

using water quality data from the second sample. This sample was used because it was 

the most complete sample (no dry wetlands). One wetland in the 2010 age class was 

excluded from this analysis because it remained dry throughout the study period. 

Significant differences for ANOVA’s were further analyzed using Tukey’s pairwise 
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comparison (Tukey, 1949). All ANOVA’s were conducted using SPSS 24 (IBM SPSS 

Statistics).  

I used single season single species occupancy models to assess occupancy of 

Ambystoma maculatum, Notophthalmus viridescens, Lithobates clamitans, Lithobates 

sylvaticus, and Pseudacris crucifer in R package unmarked (MacKenzie et al. 2002, 

Fiske and Chandler 2011). This model fits the standard occupancy based on zero inflated 

binomial mixture models. I checked for correlation among site covariates and did not 

include any covariates with correlations > 0.7 (Zuur et al. 2009). All continuous 

covariates were standardized (Schielzeth 2010). I included day of year and day of year2 

for detection covariates and wetland age, percent canopy cover, percent vegetation cover, 

mean conductivity, and mean conductivity2 for occupancy/abundance covariates. I 

calculated goodness-of-fit using these models. All occupancy models passed the 

goodness of fit tests for a Poisson distribution (χ2 p>0.05). I compared all combinations 

of day of year, day of year2, and the null to determine the model with the lowest Akaike’s 

information criterion corrected for small sample sizes (AICc; Hurvich and Tsai, 1989). 

For all initial detection models wetland age, mean conductivity, and mean conductivity2 

were included as site level covariates. I chose the best detection models and ran 10 

models with combinations of age, mean conductivity, mean conductivity2, percent 

canopy cover, percent vegetation cover, and a null model. Quadratic terms were only 

included in models that also contained the lower order term. I used the likelihood of a 

model given the data (exp[-0.5 · ∆AICc]) with a cutoff of ≥ 0.125 to select supported 

models (Burnham and Anderson, 2002). 
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Abundance of Am. maculatum, N. viridescens, L. clamitans, and L. sylvaticus was 

assessed using single season single species N mixture models that fits spatially recurrent 

count data (Royle 2004, Fiske and Chandler 2011). I checked for correlation among site 

covariates and did not include any covariates with correlations > 0.7 (Zuur et al. 2009). 

All continuous covariates were standardized (Schielzeth 2010). I included day of year 

and day of year2 for detection covariates and wetland age, percent canopy cover, percent 

vegetation cover, mean conductivity, and mean conductivity2 for occupancy/abundance 

covariates. I calculated goodness-of-fit using these models. The lowest c-hat was used for 

predictions if c-hat values were between 1-3 for abundance models that did not fit a 

Poisson distribution (χ2 p<0.05). If c-hat values were > 4, a zero inflated Poisson 

distribution or non-binomial distribution were fit and the lowest c-hat value was used for 

all models (Mazerolle 2016). I compared all combinations of day of year, day of year2, 

and the null to determine the model with the lowest Akaike’s information criterion 

corrected for small sample sizes (AICc; Hurvich and Tsai, 1989). For all initial detection 

models, wetland age, mean conductivity, and mean conductivity2 were included as site 

level covariates. I chose the best detection models and ran 10 models with combinations 

of age, mean conductivity, mean conductivity2, percent canopy cover, percent vegetation 

cover, and a null model. Quadratic terms were only included in models that also 

contained the lower order term. I used the likelihood of a model given the data (exp[-0.5 · 

∆AICc]) with a cutoff of ≥ 0.125 to select supported models (Burnham and Anderson, 

2002). 

The detection covariates included day of year and day of year2 due to the 

differences in breeding season timing and duration for each species. For example, the 
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early spring pond-breeding amphibians, such as L. sylvaticus, are more likely to peak in 

abundance in the middle of the study period (late spring and early summer) versus larvae 

from amphibians that breed later in the season, such as H. versicolor. Additionally, some 

larvae, such as L. clamitans, can remain in the breeding wetlands for multiple years, 

further influencing the number of individuals that can be found at different times of year, 

likely being highest when new larvae have hatched and older larvae have not yet 

metamorphosed. In my study, I noticed metamorphosis of L. clamitans around the middle 

and end of the study period (late June to July). Wetland age has been demonstrated to 

influence amphibian use of wetlands due to the number of years that amphibians have 

been colonizing and returning to the wetlands to breed (Birx-Raybuck et al. 2010, Laan 

and Verboom 1990). Previous studies on surface mines, primarily in stream salamanders, 

have identified reduced amphibian occupancy and abundance rates in streams with high 

conductivity (Hutton et al. In Press, Muncy et al. 2014, Price et al. 2016). Consequently, 

it is important to determine if conductivity levels are of concern in the created wetland 

for any of the species. 

RESULTS 

 

I found several differences in habitat parameters among wetland age classes. 

During the sampling period (May - July) none of the wetlands with leveloggers dried and 

two without loggers dried, both in the 2 year-old age class. One wetland in the 8 year-old 

wetland age class was dry for the entire study period.  Wetland sizes ranged from 4.5-

37.7m2 in the 2 year-old wetlands, 11.2-89.4m2 in 4 year-old wetlands, 10.5-66.9m2 in 6 
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year-old wetlands, and 12.0-121.0m2 in the 8 year-old wetlands. Percent canopy cover 

ranged from 0-13% in the 6 year-old wetlands, and 0-99% in the 8 year-old wetlands. 

There was no canopy cover in the 2 year-old and 4 year-old wetlands (Table 1). Percent 

vegetation cover (submergent and emergent combined) averaged 20 ± 0.06% (range 7-

73% ) in the 2 year-old wetlands, 44 ± 0.07% (range 16-73%) in the 4 year-old wetlands, 

19 ± 0.04% (range 2-41%) in the 6 year-old wetlands, and 30 ± 0.08% (range 3-74%) in 

the 2 year-old wetlands. Mean wetland size, percent canopy cover, percent vegetation 

cover, distance to the nearest stream, and distance to the nearest forest varied 

significantly among wetland age classes (p<0.05). Mean wetland change in water level 

depth, number of logs, number of rocks, and distance to the nearest wetland did not vary 

significantly among wetland age classes (p<0.05).  Mean wetland size and canopy cover 

were greater in 8 year-old wetlands compared to the other age classes (p<0.05). Percent 

wetland vegetation cover was significantly greater in 8 year-old and 4 year-old wetlands, 

distance to the nearest stream was significantly greater in the 2 year-old wetlands, and 

distance to the nearest forest was significantly greater for the 4 year-old wetlands and 

lower for the 2 year-old wetlands, as compared to other age classes (p<0.05) (Table 2). 

All water quality parameters except chloride (Cl mg L-1), manganese (Mn mg L-1), and 

iron (Fe mg L-1) varied significantly among age classes (a ≤0.05).  Turbidity (FTU) and 

nitrate (NO3 mg L-1) and ammonia (NO4 mg L-1) were significantly greater in the 2 year-

old wetlands and sulfate (SO4 mg L-1) was significantly higher and pH significantly 

lower in the 8 year-old wetlands than other age classes (Table 3).  

Over 2,200 amphibian captures were recorded during 5 sampling trips to each of 

the 40 wetlands from May to July 2018. There were 651 amphibians caught in 8 year-old 
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wetlands, 598 in 6 year-old wetlands, 519 in 4 year-old wetlands, and 475 in 2 year-old 

wetlands. There were 8 species found in 8 year-old wetlands (Am. maculatum, Anaxyrus 

americanus, Hemidactylium scutatum, Hyla versicolor, L. clamitans, L. sylvaticus, N. 

viridescens, and P. crucifer), 5 in the 4 and 6 year-old wetlands (Am. maculatum, L. 

clamitans, L. sylvaticus, N. viridescens and P. crucifer), and 6 in 2 year-old wetlands 

(Am. maculatum, An. americanus, L. clamitans, L. sylvaticus, N. viridescens, and P. 

crucifer).  

The supported occupancy models for Am. maculatum included the detection 

covariates of day of year and day of year2, and the occupancy covariates of wetland 

percent vegetation cover, age, and conductivity (Table 4). At mean conductivity and 

percent vegetation cover, Am. maculatum predicted occupancy was 0.67 (95% CI = 0.39-

0.87) in the 2 year-old wetlands, 0.57 (95% CI = 0.19-0.89) in 4 year-old wetlands, 0.69 

(95% CI = 0.32-0.92) in 6 year-old wetlands, and 0.65 (95% CI = 0.40-0.84) in 8 year-

old wetlands. Ambystoma maculatum predicted occupancy was highest at higher 

conductivity values, reaching a maximum of 0.74 (95% CI = 0.22-0.98) around a 

conductivity of 74 μS cm-1 (Figure 1), and at lower percent wetland vegetation cover, 

with the highest predicted occupancy of 0.81 (95% CI = 0.42-0.97) at 2% vegetation 

cover (Figure 2). Notophthalmus viridescens supported occupancy models included the 

null for a detection covariate and age and conductivity as occupancy covariates (Table 5). 

Notophthalmus viridescens estimated occupancy rates at mean conductivity  were 0.61 

(95% CI = 0.18-0.92) in 2 year-old wetlands, 0.84 (95% CI = 0.34-1.00) in 4 year-old 

wetlands, 0.76 (95% CI = 0.36-0.95) in 6 year-old wetlands, and 0.83 (95% CI = 0.38-

0.98) in 8 year-old wetlands and the predicted occupancy increased with conductivity, 
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peaking at 0.91 (95% CI = 0.06-1.00) around a conductivity of 74 μS cm-1 (Figure 3). 

Supported models for L. clamitans included the null as a detection covariate and age and 

percent vegetation cover as occupancy covariates (Table 6). At mean percent vegetation 

cover, predicted occupancy was 0.23 (95% CI = 0.042-0.66) in 2 year-old wetlands, 1.00 

(95% CI = 0.00-1) in 4 year-old wetlands, 0.56 (95% CI = 0.188-0.88) in 6 year-old 

wetlands, and 0.26 (95% CI = 0.0657-0.65) in 8 year-old wetlands. Lithobates clamitans 

predicted occupancy was highest at low vegetation cover, peaking at 1.00 (95% CI = 

0.00-0.00) at 2% vegetation cover (Figure 4). The null model was the best fit for L. 

sylcaticus with a predicted occupancy of 0.26 (95% CI = 0.15-0.43) (Table 7). Supported 

occupancy models for P. crucifer included day of year and day of year2 as detection 

covariates and conductivity and conductivity2 as occupancy covariates (Table 8). 

Pseudacris crucifer occupancy was highest at intermediate conductivities, with a 

maximum of 0.59 (95% CI 0.28-0.84) at approximately 43 μS cm-1 (Figure 5). 

The supported model for Am. maculatum abundance included day of year and day 

of year2 as detection covariates and age, conductivity and conductivity2 as abundance 

covariates. This species fit the assumptions for a poisson distribution (Table 9). At mean 

conductivity , Am. maculatum estimated abundance was 4.13 ± 1.05 SE (95% CI = 2.50-

6.81) in 2 year-old  wetlands, 1.52 ± 0.67 (95% CI = 0.64-3.61) in 4 year-old wetlands, 

5.33 ± 1.96 (95% CI = 2.60-10.96) in 6 year-old wetlands, and 75.28 ± 21.74 (95% CI = 

42.75-132.58) in 8  year-old wetlands. Abundance was highest at intermediate 

conductivities, reaching a maximum of 119.46 ± 44.46 (95% CI = 57.60-247.76) at a 

conductivity of 46 μS cm-1 (Figure 5). The supported model for N. viridescens included 

day of year and day of year2 as detection covariates and age and percent canopy cover as 
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abundance covariates (Table 10). A zero inflated Poisson distribution was the best fit for 

this species. Notophthalmus viridescens abundance was 0.91 ± 0.39 (95% CI = 0.39-2.12) 

in 2 year-old wetlands, 2.59 ± 0.62 (95% CI = 1.62-4.13) in 4 year-old wetlands, 1.73 ± 

0.50 (95% 0.98-3.05) in 6 year-old wetlands, and 23.43 ± 4.33 (95% CI = 16.32-33.65) in 

8 year-old wetlands at mean canopy cover. Notophthalmus viridescens abundance was 

higher at lower canopy cover, with an abundance estimate of 30.57 ± 6.18 (95% CI = 

20.57-45.44) at 0% canopy cover (Figure 7). For L. clamitans the best fit model included 

day of year and day of year2 as detection covariates and the null for an abundance 

covariate (Table 11). This species fit a non-binomial distribution. Estimated abundance 

was 19.48 ± 5.96 (95% CI = 10.69-35.50). The best fit models for L. sylvaticus included 

day of year and day of year2 for detection covariates and conductivity and the null for 

abundance covariates (Table 12). Abundance estimates for this species were highest 

(61.98 ± 175.24 95% CI = 0.56-1638.62) at a conductivity of approximately 74 μS cm-1 

(Figure 8). This species also fit a non-binomial distribution. 

DISCUSSION 

 

I found significant differences in habitat and water quality parameters among age 

classes. The oldest wetlands tended to be larger in surface area, have higher percent 

canopy and vegetation cover, shortest distance to nearest forest, higher sulfate, and lower 

pH, alkalinity, nitrate and ammonia. The youngest wetlands had the highest turbidity, 

nitrate, and ammonia. Conductivity varied significantly among age classes but all values 

were relatively low compared to those seen in streams affected by surface mining in 
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Kentucky (Hutton et al. In Press, Hutton 2018, Muncy et al. 2014, Price et al. 2016) and 

comparable to those seen in other wetlands in Wisconsin (Kutka and Bachmann 1990). 

Amphibian occupancy and abundance tended to be highest at the wetlands with higher or 

intermediate conductivities and negatively associated with percent vegetation and canopy 

cover. Age was also important for amphibian occupancy and abundance, although the 

relationship was not always linear. Abundance for the two salamander species was 

highest in the 8 year-old wetlands. 

I found significant differences in both habitat and water quality parameters among 

age classes. None of the wetlands with loggers dried during this study. Two wetlands 

within the 2 year-old age class dried and one wetland within the 8 year-old age class was 

dry for the entire study period. I had expected to see more ephemeral behavior from 

wetlands based on anecdotal evidence from US Forest Service observations. The lack of 

drying was likely due to the above mean precipitation received in the area during the 

study period (Figure 9) and that wetland water supply was primarily precipitation fed.  

Much of the differences seen in the 8 year-old wetlands is likely due to the 

difference in wetland creation methodology as compared to the younger wetlands. The 8 

year-old wetlands were placed outside of the ripped area in the adjacent forest with 

conifer tree cover retained. This resulted in higher percent canopy cover values in 8 year -

wetlands than wetlands created in ripped areas that lacked canopy cover around them. 

The placement of some  wetlands in the 8 year-old age class within the forest rather than 

in the ripped areas also resulted in little to no distance to the nearest forest (6.24±4.05m) 

compared to wetlands in other age classes (Age 2=68.70±9.2m, Age 4= 114.76±13.14m, 

Age 6=63.06±5.39m). This proximity to the forest and subsequent retained vegetation 
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resulted in highest percent canopy cover and high percent vegetation cover in the 8 year-

old wetlands. 

The higher percent canopy cover in the 8 year-old wetlands could have 

contributed to the low pH values (<4.0) measured in the 8 year-old wetlands due to 

conifer needle and other organic material deposition, decomposition, and plant respiration 

(Deano and Robinson 1985, Hughes 2018). Additionally, the Mower Tract wetlands are 

primarily precipitation fed and high elevation red spruce forests are known to be 

impacted by acid rain deposition (Adams and Eagar 1992, Driscoll et al. 2001). The pH 

values found in the wetlands were lower (Age 2=4.89±0.08, Age 4=4.77±0.17, Age 

6=4.82±0.13, Age 8=3.20±0.20) than those found in created vernal pools in other areas, 

5.1-5.9 in Wisconsin (Kutka and Bachmann 1990) and 4.55-6.37 in central Ontario 

(Clark et al. 1986). Acid deposition has been well documented on the MNF (Adams 

1999, Adams et al. 1997, Adams et al. 2000, Mathias and Thomas 2018) and the U.S. 

Forest Service is actively liming large sections of the forest to mitigate the acidity. The 

lower pH values in the older wetlands are likely reflective of acid deposition inputs. Soil 

ripping and digging in the newer wetlands, however, likely exposed unweathered spoil 

that is capable of buffering acid inputs (Sena et al., 2014 and 2018). Over time, with 

continued acid inputs, the buffering capacity of the unweathered material will diminish 

(Sena et al. 2018) and the newer wetlands could become more acidic.  

 As with pH, the higher sulfate levels in the oldest wetlands are potentially a result 

of accumulation and breakdown of organic matter and time since soil was disturbed for 

wetland creation (Hughes 2018). Years of sulfate deposition have accumulated in the 

forest soils on the MNF and leaching into water resources has been documented (Adams 
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et al. 1997; Ryan et al. 1989; Byers et al. 2007). SMCRA allows for the use of topsoil 

substitutes in steep mountainous areas where soil thickness is limited and soil 

productivity is low (Surface Mining Control and Reclamation Act 1977). This practice 

was utilized at Mower and the ripped area was primarily comprised of shale and 

sandstone rock. The compacted nature of the reclaimed area prior to ripping promoted 

surface runoff of precipitation and exhibited poor infiltration. As such, much of the 

buried spoil had not been exposed to atmospheric deposition inputs until the ripping was 

performed and the sulfate loading observed in forest soils on the MNF had not occurred 

to a similar extent. Even though sulfate levels in the 8 year-old wetland were more than 

double the mean of the younger wetlands, sulfate values were far below the reported 

levels (206.37 ± 40.33-853.61 ± 256.42 mg L-1) found in Appalachian streams affected 

by surface mining (Hutton 2018, Muncy et al. 2014, Price et al. 2016). 

The youngest wetlands in the 2 year-old and 4 year-old age classes had the 

highest turbidity, nitrate, and ammonia values. Likewise, the older wetlands in the 6 year-

old and 8 year-old age classes had low turbidity, nitrate, and ammonia values. One of the 

intended functions of the wetlands is to trap sediment and other suspended material 

carried by runoff from the ripped areas as the vegetation community establishes. The 

higher turbidity values in the youngest wetlands is expected due to the recent wetland 

creation and immature vegetation community in comparison to the older wetland age 

classes (White 1998). The higher nitrate and ammonia values in the youngest wetlands 

was likely due to lack of an established microbial and vegetation community to nitrify 

and denitrify excess ammonia and nitrate and vegetation community to assimilate excess 

nitrogen in the water (Hargreaves 1998, Reddy et al. 1989). 
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Although conductivity did vary significantly among wetland age classes, all 

values were comparable to the ranges described by Kutka and Bachmann (1990) which 

ranged from 11.1-49.8 μS cm-1. and averaged 39.9±2.2μS cm-1 and 9.5-84.1μS cm-1 and 

averaged 37.9±2.9 μS cm-1 in Wisconsin vernal pools. All values were lower than values 

seen in streams impacted by surface mines (Hutton et al. In Press, Hutton 2018, Muncy et 

al. 2014, Price et al. 2016). The highest conductivity (374 μS cm-1) was six times lower 

than the highest conductivity (2365±72 μS cm-1) reported by Price et al. (2016) in streams 

affected by surface mining and was at least two times smaller than the lowest reported 

conductivity by Hutton et al. (2018) in sites impacted by mining (737μS cm-1). Although 

previous studies have demonstrated high conductivity in streams associated with mining, 

my mean wetland conductivity was far below the U.S. EPA’s conductivity benchmark of 

300 μS cm-1 for aquatic life in central Appalachia (US EPA 2011) with only one wetland 

exceeding the benchmark on one occasion (374 μS cm-1).  

I captured all but one species that I expected to find, including Am. maculatum, 

An. americanus, Hemidactylium scutatum, Hyla versicolor, L. clamitans, L. sylvaticus, N. 

viridescens, and P. crucifer. Although Scaphiopus holbrookii likely occurs within the 

area, they were likely not seen due to their irregular breeding patterns (Lannoo 2005).  

The best supported models for amphibian occupancy and abundance included 

wetland mean conductivity, mean conductivity2, age, percent vegetation cover, and 

percent canopy cover as occupancy and abundance covariates. I found that amphibian 

occupancy and abundance tended to be highest at higher or intermediate conductivity 

values and lower percent vegetation and canopy cover. Abundance of Am. maculatum 

and N. viridescens was highest in the oldest (8 year-old) wetlands. 
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Because amphibians osmoregulate through their skin, they are sensitive to 

changes in ion (conductivity) levels within their habitats (Ultsch et al. 1999). Karraker et 

al. (2008) found that embryonic and larval survival were reduced when exposed to 

moderate (500 μS cm-1) and high (800 μS cm-1) for Am. Maculatum and high 

conductivities in L. sylvaticus in experimental mesocosms. Chambers (2011) found there 

to be a significant positive effect of increasing conductivity exposure on baseline 

amphibian corticosterone levels in Am. jeffersonianum after 1 week of exposure, but not 

in L. sylvaticus or H. versicolor. Ambystoma jeffersonianum prey consumption was 

negatively associated with increasing conductivity (Chambers 2011). Sanzo and Hecnar 

(2005) found that amphibian survivorship, time to metamorphosis, weight and activity 

decreased and physical abnormalities increased as salt (ion) concentration (0-1030 mg L-

1) increased in a 90 day chronic exposure. Additionally, in mesocosms with retention 

pond sediments with elevated metal levels and chloride concentrations 100% of L. 

sylvaticus embryos died (Snodgrass et al. 2008); however, An. americanus only 

experienced reduced size at metamorphosis due to exposure, indicating differences in 

species response to ion exposure (Snodgrass et al. 2008). Because conductivity values 

found in this study were lower than those referenced in stream studies where reduced 

occupancy and abundance rates were reported (Hutton 2018, Muncy et al. 2014, Price et 

al. 2016), were similar to those found in other wetlands (Kutka and Bachmann 1990), and 

had mean conductivity for all age classes below the U.S. EPA’s conductivity benchmark 

of 300 μS cm-1 for aquatic life in central Appalachia (US EPA 2011), it is unlikely that 

conductivity is limiting to amphibian utilization of the created wetlands. 
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Older wetlands have had a longer period of time for amphibians to colonize them 

compared to younger wetlands, therefore wetland age has the potential to influence 

amphibian utilization of created wetlands (Birx-Raybuck 2010, Laan and Verboom 1990, 

Lehtinen and Galatowitsch 2001).  Laan and Verboom (1990) found the wetland age was 

the best predictor of the number of species in new pools and a strong relationship 

between species abundance and colonization rates. They hypothesized that was likely due 

to the amount of time that the pools have been exposed to colonization, with the older 

pools allowing more time for amphibian colonization and therefore exhibiting higher 

abundances (Laan and Verboom 1990). Birx-Raybuck et al. (2010) found that the 

presence of four anuran species was associated with the age of retention ponds. Spring 

Peepers (P. crucifer) and Bullfrogs (L. catesbeianus) were found more in the older ponds, 

versus the Cope’s Gray Treefrog (H. chrysoscelis) and Fowler’s Toad (An. fowleri), 

which were found more in the newer wetlands (Birx-Raybuck et al. 2010). However, 

multiple studies have shown that amphibian species can colonize new wetlands 

sometimes even within a few months since creation, indicating that species dispersal 

capabilities and habitat connectivity are also likely influential (Lehtinen and Galatowitsch 

2001, Vasconcelos and Calhoun 2006). My results support the idea that wetlands can be 

colonized quickly, with the youngest wetlands having the second highest number of 

species captured (6 species); however, it should be noted that abundances of two 

salamander species, Am. macularum and N. viridescens, were highest in the oldest 

wetlands, supporting the conclusions of Laan and Verboom (1990) that older wetlands 

have higher abundances due to the time allowed for colonization. 
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Many amphibians, including salamanders and hylids, have demonstrated a 

positive relationship with aquatic vegetation cover (Shulse et al. 2010). Wassens et al. 

(2010) found that the occupancy of waterbodies by Growling Grass Frog (Litoria 

raniformis) was strongly linked to vegetation complexity and that vegetation complexity 

may reduce the impacts of higher predator densities (Wassens et al. 2010); however, in 

contradiction to those findings, my observations indicated occupancy rates decreasing 

with increasing percent vegetation cover, perhaps resulting from inadequate amphibian 

sampling protocol in aquatic vegetation. 

My results support the conclusions that pond breeding amphibian utilization is 

negatively associated with canopy cover (Skelly et al. 2002, Skelly et al. 2005, Skelly et 

al. 2014). Skelly et al. (2002) found that canopy development was associated with Spring 

Peeper (P. crucifer) extinction and persistence of Wood Frog (L. sylvaticus) populations. 

Both species grew more slowly in closed versus open canopy wetlands (Skelly et al. 

2002). Skelly et al. (2005) found that amphibian richness was highest in wetlands that 

received more light and field transplants showed that development of canopy cover 

generalists was less affected by wetland light compared to canopy cover specialists. In an 

experiment where trees were felled around wetlands to create more open canopy, 

manipulated wetlands maintained more amphibian species during five years post-

manipulation versus those that were not manipulated (Skelly et al. 2014). The effects of 

canopy cover may also be associated with the proximity to the nearest forest, as the 

wetlands with significantly high canopy cover were those placed outside of the ripped 

area in the adjacent forest. There is a positive relationship between habitat connectivity 

and amphibian occupancy and colonization of wetlands (Hamer et al. 2016). Laan and 
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Verboom (1990) found that distance to nearest woodland and age were important 

predictors of amphibian utilization of created wetlands. Birx-Raybuck et al. (2010) found 

that occupancy of amphibians decreased with increasing distance to riparian area and that 

occupancy varied with wetland age. Therefore, it may be easier for amphibians to 

colonize and utilize the 8 year-old wetlands due to their proximity to forest habitat. 

Abundance for Am. maculatum and N. viridescens was highest in the oldest 

wetlands, potentially due to their larger size. Millikin et al. (2019) found lower water-

borne corticosterone levels, and therefore lower stress levels, in larval Am. maculatum in 

wetlands with a larger diameter from the same study site (Mower Tract, Monongahela 

National Forest). Other possible explanations include wetland age, as the older wetlands 

have had a longer period of time for amphibians to colonize them, and the little to no 

distance to the nearest forest, potentially allowing for easier colonization than younger 

wetlands placed within the ripped areas (Laan and Verboom 1990). 

My results indicate that created wetlands on reforested surface mines could be 

adequate habitat for pond breeding amphibians. Despite low mean pH in the 8 year-old 

wetlands, there was a high number of amphibian captures (651 in 8 year-old wetlands) 

and the oldest wetlands maintained the most species caught and highest abundances of 

Am. maculatum and N. viridescens. The youngest wetlands, which were 2 years-old at the 

time of creation, had the second highest number of species caught and 475 total 

amphibians captures, indicating wetland colonization in a relatively short period of time. 

Conductivity levels, which previous studies suggest as a major limitation to stream 

salamander occupancy and abundance in streams affected by mining, were lower than 

those found in streams affected by mining (Hutton 2018, Muncy et al. 2014, Price et al. 



26 

 

2016) and were similar or lower than those described in Wisconsin vernal pools (Kutka 

and Bachmann 1990). Sulfate levels were also lower than those found in other studies, 

many of which cite high sulfates in mining affected streams with reduced amphibian 

occupancy and abundance (Hutton 2018, Muncy et al. 2014, Price et al. 2016). 

Further research is needed to determine if these wetlands are providing the same 

functions and are within the normal parameters as reference wetlands within the region. 

These questions must be addressed and amphibian recruitment studied over time to 

determine if these wetlands will provide long-term pond breeding amphibian habitat. If 

evidence supports that created wetlands provide similar function over time, there is 

abundant opportunity to create wetland habitat on reforested surface mines throughout 

the Allegheny and Appalachian Mountains, providing habitat not only for pond breeding 

amphibians and other wildlife, but potentially serving other wetland ecosystem functions 

that benefit humans, such as flood mitigation. 
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TABLES 

 

Table 1. Wetland Physical Parameter Ranges 

Range of wetland size (m2), change in depth (cm), number of logs (diameter ≥ 15 cm), 

number of rocks (diameter ≥ 4 cm), canopy cover (%), vegetation cover (%), distance to 

nearest stream (m), distance to nearest wetland (m), and distance to forest (m) for each 

wetland age class. 

 

 Age 2 Age 4 Age 6 Age 8 

Wetland Size (m2) 4.51-37.72 11.15-89.37 10.50-66.89 12-121.00 

Change in Depth (cm) 5.78-17.30 3.58-13.61 0-10.75 7.71-24.26 

Number of Logs 0-4 0-7 0-4 0-11 

Number of Rocks 0-9 0-3 0-6 0-12 

Canopy Cover (%) 0-0 0-0 0-13.30 0-98.70 

Vegetation Cover (%) 7-73 16-73 2-41 3-74 

Distance to Stream (m) 520.98-

1337.06 

377.75-

528.42 

495.45-

522.56 

435.96-

650.93 

Distance to Wetland (m) 5.36-14.51 4.20-30.67 5.40-27.41 6.96-337.06 

Distance to Forest (m) 18.13-115.21 58.43-181.50 29.58-81.40 0-36.62 
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Table 2. Wetland Physical Parameter ANOVA Results 

Mean (±SE) wetland size (m2), change in depth (cm), number of logs (diameter ≥ 15 cm), 

number of rocks (diameter ≥ 4 cm), canopy cover (%), vegetation cover (%), distance to 

nearest stream (m), distance to nearest wetland (m), and distance to forest (m) for each 

wetland age class. Significant differences are denoted with an asterisk. Differences 

among groups are denoted using letters. 

 

 Age 2 Age 4 Age 6 Age 8 

Wetland Size 

(m2)* 16.53±3.12a 37.92±7.84a 34.88±5.46a 48.54±11.38b 

Change in 

Depth (cm) 11.83±1.05a 9.02±1.05a 8.73±0.99a 11.66±1.66a 

Number of 

Logs 1.18±0.38a 1.7±0.83a 2.10±0.46a 2.90±1.23a 

Number of 

Rocks 2.18±0.95a 0.40±0.31a 0.80±0.61a 1.90±1.30a 

Canopy Cover 

(%)* 0±0a 0±0a 2.37±1.59a 49.19±13.61b 

Vegetation 

Cover (%)* 2±0.06a 44±0.07b 19±0.04a 30±0.08ab 

Distance to 

Stream (m)* 1059.13±71.71b 463.55±17.72a 504.61±2.80a 533.29±22.77a 

Distance to 

Wetland (m) 8.69±0.89a 12.15±2.34a 13.64±1.98a 56.27±35.20a 

Distance to 

Forest (m)* 68.70±9.29a 114.76±13.14b 63.06±5.39a 6.24±4.05c 
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Table 3. Wetland Water Chemistry ANOVA Results 

Mean (±SE) turbidity (FTU), conductivity (μS cm-1), total organic carbon (TOC)( mg L-

1), phosphate (PO4) (mg L-1), pH (H+), alkalinity (HCO3) (mg L-1), chloride (Cl) (mg L-

1), sulfate (SO4) (mg L-1), nitrate (NO3) (mg L-1), ammonia (NH4) (mg L-1), calcium 

(Ca) (mg L-1), magnesium (Mg) (mg L-1), potassium (K) (mg L-1), sodium (Na) (mg L-1), 

manganese (Mn) (mg L-1), and iron (Fe) (mg L-1) for each age class. Significant 

differences are denoted with an asterisk. Differences among groups are denoted using 

letters. 

 

 Age 2 Age 4 Age 6 Age 8 
Turbidity 

(FTU)* 

25.51±3.77a 10.79±3.58b 6.12±4.92b 4.16±1.88b 

Conductivity (μS 

cm-1)* 

39.68±2.56ab 31.27±2.83ac 49.47±5.87b 23.22±1.48c 

TOC (mg L-1)* 2.35±0.14a 2.61±0.26ab 3.33±0.17b 3.26±0.34ab 

PO4 (mg L-1)* 0.46±0.17ac 0.19±0.13a 1.06±0.02b 0.87±0.18bc 

pH (H+)* 4.89±0.08a 4.77±0.17a 4.82±0.13a 3.20±0.20b 

Alkalinity  

(mg L-1)* 

21.12±3.72a 14.52±3.85ab 29.52±6.75a 0.00±0.00b 

Cl (mg L-1) 0.36±0.06a 0.29±0.05a 0.46±0.06a 0.29±0.05a 

SO4 (mg L-1)* 0.81±0.22a 0.89±0.06a 0.74±0.07a 2.15±0.43b 

NO3 (mg L-1)* 0.12±0.02a 0.05±0.02b 0.01±0.01b 0.01±0.02b 

NH4 (mg L-1)* 0.23±0.05a 0.10±0.04ab 0.01±0.01b 0.03±0.02b 

Ca (mg L-1)* 0.51±0.08ab 0.50±0.16a 0.93±0.10b 0.33±0.06a 

Mg (mg L-1)* 1.15±0.22ab 0.55±0.13a 2.11±0.41b 0.30±0.12a 

K (mg L-1)* 1.55±0.11a 0.76±0.09bc 1.09±0.12ab 0.59±0.08c 

Na (mg L-1)* 0.11±0.01a 0.12±0.01a 0.16±0.01ab 0.18±0.02b 

Mn (mg L-1) 0.06±0.03a 0.05±0.01a 0.11±0.03a 0.10±0.03a 

Fe (mg L-1) 0.44±0.05a 0.30±0.08a 0.45±0.06a 0.37±0.07a 
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Table 4. Ambystoma maculatum Occupancy Models 

Ambystoma maculatum (AMAC) occupancy models ranked from best to worst. Detection covariates are day of year (DOY), and day 

of year squared (DOY2). Occupancy covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation cover 

(%), and canopy cover (%). 

 

df AIC 

Delta 

AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

5 175.7 0.00 1.00 0.38 1.41 -1.20    -0.93  

5 178.1 2.42 0.30 0.11 1.40 -1.19  0.81    

7 178.3 2.57 0.28 0.10 1.41 -1.20 +     

9 178.4 2.68 0.26 0.10 1.42 -1.22 + 1.62 -1.22   

4 178.6 2.86 0.24 0.09 1.42 -1.21      

8 178.9 3.18 0.20 0.08 1.38 -1.18 + 1.69    

6 179.7 3.98 0.14 0.05 1.41 -1.20  0.90 -0.43   

5 180.5 4.86 0.09 0.03 1.42 -1.21     0.32 

8 180.7 4.97 0.08 0.03 1.41 -1.20 +    0.46 

8 180.9 5.25 0.07 0.03 1.41 -1.20 +   -0.38  
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Table 5. Notophthalmus viridescens Occupancy Models 

Notophthalmus viridescens (NVIR)occupancy models ranked from best to worst. Detection covariates are day of year (DOY), and day 

of year squared (DOY2). Occupancy covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation cover 

(%), and canopy cover (%). 

 

df AIC 

Delta 

AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

6 249.74 0.00 1.00 0.27   + 1.85    

3 250.21 0.46 0.79 0.21    0.71    

2 250.44 0.70 0.70 0.19        

7 252.07 2.33 0.31 0.08   + 2.00 -0.55   

3 252.48 2.74 0.25 0.07      0.23  

4 252.62 2.88 0.24 0.06    0.70 0.08   

3 252.76 3.02 0.22 0.06       0.06 

5 253.42 3.68 0.16 0.04   +     

6 255.92 6.18 0.05 0.01   +   0.32  

6 256.06 6.32 0.04 0.01   +    0.21 
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Table 6. Lithobates clamitans Occupancy Models 

Lithobates clamitans (LCLA) occupancy models ranked from best to worst. Detection covariates are day of year (DOY), and day of 

year squared (DOY2). Occupancy covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation cover (%), 

and canopy cover (%). 

 

df AIC 

Delta 

AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

6 188.48 0.00 1.00 0.64   +   -1.72  

5 190.78 2.30 0.32 0.20   +     

6 192.87 4.39 0.11 0.07   +    0.40 

6 193.46 4.98 0.08 0.05   + 0.16    

7 195.64 7.16 0.03 0.02   + 0.48 -0.33   

2 199.25 10.77 0.00 0.00        

3 200.66 12.18 0.00 0.00       -0.31 

3 200.87 12.39 0.00 0.00    0.29    

3 201.50 13.02 0.00 0.00      0.10  

4 202.50 14.02 0.00 0.00    0.40 -0.23   
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Table 7. Lithobates sylvaticus Occupancy Models 

Lithobates sylvaticus (LSYL) occupancy models ranked from best to worst. Detection covariates are day of year (DOY), and day of 

year squared (DOY2). Occupancy covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation cover (%), 

and canopy cover (%). 

 

df AIC 

Delta 

AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

2 117.69 0.00 1.00 0.43        

4 119.78 2.10 0.35 0.15    0.30 -0.75   

3 120.00 2.31 0.31 0.13       0.06 

3 120.01 2.32 0.31 0.13      0.05  

3 120.03 2.34 0.31 0.13    -0.01    

5 124.59 6.90 0.03 0.01   +     

6 126.86 9.17 0.01 0.00   +    0.40 

6 127.37 9.68 0.01 0.00   + -0.03    

6 127.37 9.68 0.01 0.00   + 0.00    

7 128.03 10.34 0.01 0.00   + 0.38 -0.87   
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Table 8. Pseudacris crucifer Occupancy Models 

Pseudacris crucifer (PCRU) occupancy models ranked from best to worst. Detection covariates are day of year (DOY), and day of 

year squared (DOY2). Occupancy covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation cover (%), 

and canopy cover (%). 

 

df AIC 

Delta 

AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

6 103.05 0.00 1.00 0.70 2.89 -3.15 
 

1.33 -1.35 
  

4 106.70 3.65 0.16 0.11 2.92 -3.17 
     

5 107.24 4.20 0.12 0.09 2.91 -3.17 
    

0.74 

5 108.27 5.23 0.07 0.05 2.90 -3.16 
 

0.37 
   

5 109.06 6.01 0.05 0.03 2.91 -3.17 
   

0.18 
 

9 111.73 8.69 0.01 0.01 2.88 -3.14 + 1.65 -1.80 
  

7 112.92 9.88 0.01 0.00 2.90 -3.16 + 
    

8 114.22 11.17 0.00 0.00 2.90 -3.16 + 
  

0.71 
 

8 115.08 12.03 0.00 0.00 2.91 -3.16 + 
   

-0.66 

8 115.55 12.51 0.00 0.00 2.90 -3.16 + 0.37 
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Table 9. Ambystoma maculatum Abundance Models 

Ambystoma maculatum (AMAC) abundance models ranked from best to worst. Detection covariates are day of year (DOY), and day 

of year squared (DOY2). Abundance covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation cover 

(%), and canopy cover (%). 

 

df AIC 

Delta 

AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

9 496.56 0.00 1.00 1.00 1.58 -1.66 + 1.34 -0.97   

8 549.74 53.18 0.00 0.00 1.63 -1.73 + 0.90    

8 562.25 65.69 0.00 0.00 1.66 -1.77 +   0.36  

7 571.26 74.70 0.00 0.00 1.68 -1.79 +     

8 572.58 76.03 0.00 0.00 1.68 -1.79 +    -0.11 

5 628.34 131.78 0.00 0.00 1.71 -1.85     0.29 

6 629.65 133.09 0.00 0.00 1.73 -1.88  -0.02 -0.40   

4 641.37 144.81 0.00 0.00 1.73 -1.88      

5 641.55 145.00 0.00 0.00 1.73 -1.87    0.14  

5 642.65 146.10 0.00 0.00 1.73 -1.88  -0.11    
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Table 10. Notophthalmus viridescens Abundance Models 

Notophthalmus viridescens (NVIR) abundance models ranked from best to worst. Detection covariates are day of year (DOY), and 

day of year squared (DOY2). Abundance covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation 

cover (%), and canopy cover (%). 

 

df AIC 

Delta 

AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

9 614.05 0.00 1.00 1.00 0.10 -0.26 +    -0.63 

10 625.39 11.34 0.00 0.00 0.09 -0.27 + 0.73 -0.79   

9 650.42 36.37 0.00 0.00 0.10 -0.27 +   0.23  

9 651.96 37.91 0.00 0.00 0.10 -0.27 + 0.49    

8 654.52 40.47 0.00 0.00 0.10 -0.27 +     

7 708.82 94.77 0.00 0.00 0.11 -0.29  -0.42 -0.27   

6 709.33 95.28 0.00 0.00 0.12 -0.29  -0.53    

6 721.46 107.41 0.00 0.00 0.12 -0.29    0.29  

5 731.69 117.64 0.00 0.00 0.11 -0.30      

6 733.28 119.23 0.00 0.00 0.11 -0.30     0.09 
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Table 11. Lithobates clamitans Abundance Models 

Lithobates clamitans (LCLA) abundance models ranked from best to worst. Detection covariates are day of year (DOY), and day of 

year squared (DOY2). Abundance covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation cover (%), 

and canopy cover (%). 

 

df AIC Delta AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

5 750.7 0 1 0.2476 -0.37 0.21      

6 750.8 0.099345 0.951541 0.2356 -0.37 0.21     -0.58 

6 751.4 0.728798 0.694614 0.172 -0.37 0.21    0.34  

8 751.5 0.808162 0.66759 0.1653 -0.37 0.21 +     

6 753.5 2.765956 0.25083 0.0621 -0.37 0.21  -0.04    

9 754.7 4.05513 0.131656 0.0326 -0.37 0.21 +   -0.16  

9 754.8 4.072409 0.130523 0.0323 -0.37 0.21 + -0.11    

9 754.8 4.124012 0.127199 0.0315 -0.37 0.21 +    -0.07 

7 756.3 5.638102 0.059663 0.0148 -0.37 0.21  0.04 -0.08   

10 758 7.356779 0.025264 0.0063 -0.37 0.21 + 0.02 -0.14   
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Table 12. Lithobates sylvaticus Abundance Models 

Lithobates sylvaticus (LSYL) abundance models ranked from best to worst. Detection covariates are day of year (DOY), and day of 

year squared (DOY2). Abundance covariates were wetland age, conductivity (μS cm-1), conductivity2 (μS cm-1), vegetation cover (%), 

and canopy cover (%). 

 

 

 

df AIC 

Delta 

AIC 

Model 

Likelihood 

AIC 

Weight DOY DOY2 Age Conductivity Conductivity2 

Vegetation 

Cover 

Canopy 

Cover 

6 292.81 0.00 1.00 0.27 -0.62 -0.57  1.32    

5 292.86 0.06 0.97 0.26 -0.62 -0.57      

7 293.30 0.49 0.78 0.21 -0.62 -0.57  2.60 -1.97   

6 294.46 1.65 0.44 0.12 -0.62 -0.57     -0.98 

6 295.63 2.82 0.24 0.07 -0.62 -0.57    0.14  

8 296.56 3.75 0.15 0.04 -0.62 -0.57 +     

9 299.84 7.03 0.03 0.01 -0.62 -0.57 +   0.30  

9 299.91 7.11 0.03 0.01 -0.62 -0.57 +    0.03 

9 299.92 7.11 0.03 0.01 -0.62 -0.57 + -0.02    

10 300.40 7.59 0.02 0.01 -0.62 -0.57 + -0.47 -2.51   



39 

 

FIGURES 

 

 

Figure 1. Ambystoma maculatum Occupancy and Mean Conductivity 

Ambystoma maculatum model predicted occupancy and 95% confidence intervals (95% CI) at mean conductivity (μS cm-1) for each 

age class. Confidence intervals are represented with color bands. 
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Figure 2. Ambystoma maculatum Occupancy and Percent Vegetation Cover 

Ambystoma maculatum model predicted occupancy and 95% confidence intervals (95% CI) at percent vegetation cover for each age 

class. Confidence intervals are represented with color bands. 
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Figure 3. Notophthalmus viridescens Occupancy and Mean Conductivity 

Notophthalmus viridescens model predicted occupancy and 95% confidence intervals (95% CI) at mean conductivity (μS cm-1) 

Confidence intervals are represented with color bands. 
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Figure 4. Lithobates clamitans Occupancy and Percent Vegetation Cover 

Lithobates clamitans model predicted occupancy and 95% confidence intervals (95% CI) at percent vegetation cover for each age 

class. Confidence intervals are represented with color bands. 
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Figure 5. Pseudacris crucifer Occupancy and Mean Conductivity 

Pseudacris crucifer model predicted occupancy and 95% confidence interval (95% CI) at mean conductivity (μS cm-1). Confidence 

interval is represented by gray band. 
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Figure 6. Ambystoma maculatum Abundance and Mean Conductivity 

Ambystoma maculatum mean model predicted abundance and standard error (SE) at mean conductivity (μS cm-1) for each age class. 

Standard error is represented with color bands. 
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Figure 7. Notophthalmus viridescens Abundance and Percent Canopy Cover 

Notophthalmus viridescens mean model predicted abundance and standard error (SE) at percent canopy cover for each age class. 

Standard error is represented with color bands. 
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Figure 8. Lithobates sylvaticus Abundance and Mean Conductivity 

Lithobates sylvaticus mean model predicted abundance and standard error (SE) at mean conductivity (μS cm-1). Standard error is 

represented by the gray band. 
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Figure 9. 2018 Vs 20 Year Mean Precipitation 

Monthly 2018 and 20 year mean precipitation (cm) April through November. 
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