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ABSTRACT OF THESIS 

A BRAIN-COMPUTER INTERFACE FOR CLOSED-LOOP SENSORY 
STIMULATION DURING MOTOR TRAINING IN PATIENTS WITH 

TETRAPLEGIA 

Normal movement execution requires proper coupling of motor and sensory activation. An 
increasing body of literature supports the idea that incorporation of sensory stimulation 
into motor rehabilitation practices increases its effectiveness. Paired associative 
stimulation (PAS) studies, in which afferent and efferent pathways are activated in tandem, 
have brought attention to the importance of well-timed stimulation rather than non-
associative (i.e., open-loop) activation. In patients with tetraplegia resulting from spinal 
cord injury (SCI), varying degrees of upper limb function may remain and could be 
harnessed for rehabilitation. Incorporating associative sensory stimulation coupled with 
self-paced motor training would be a means for supplementing sensory deficits and 
improving functional outcomes. In a motor rehabilitation setting, it seems plausible that 
sensory feedback stimulation in response to volitional movement execution (to the extent 
possible), which is not utilized in most PAS protocols, would produce greater benefits. 
This capability is developed and tested in the present study by implementing a brain-
computer interface (BCI) to apply sensory stimulation synchronized with movement 
execution through the detection of movement intent in real time from 
electroencephalography (EEG). The results demonstrate that accurate sensory stimulation 
application in response to movement intent is feasible in SCI patients with chronic motor 
deficit and often precedes the onset of movement, which is deemed optimal by PAS 
investigations that do not involve a volitional movement task.  

KEYWORDS: Brain-Computer Interface, Spinal Cord Injury, Sensory Stimulation, Mu 
rhythm, Neuromodulation 
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CHAPTER 1.  INTRODUCTION 

1.1 Motivation 

Spinal cord injury (SCI) is a debilitating condition that affects approximately 

288,000 people in the U.S. alone (NSCISC 2018). In SCI, motor impairment is caused by 

the disruption of nerve pathways that conduct motor (efferent) and sensory (afferent) 

signals between the brain and the rest of the body. Motor impairment describes a variable 

loss in function (weakness, lack of control, or poor stamina) of a body part. Depending on 

the type and level of SCI injury, some muscles may have residual motor function with the 

possibility of rehabilitation (Raineteau et al 2001, Burns et al 2012). Tetraplegic patients, 

for whom upper extremity function may be impaired and not completely lost, prioritize 

hand function rehabilitation due to its importance in daily life activities (Anderson et al 

2004, Snoek et al 2004, Collinger et al 2013). Research directed towards increasing the 

efficacy of motor rehabilitation techniques is crucial for helping SCI patients regain highly 

desired functions, and subsequent independence, sooner in life.  

1.2 Sensory Feedback in Motor Training 

Motor impairment in SCI is primarily caused by disruption of corticospinal tracts. 

In order for the nervous system to compensate for injury, the connections within the 

nervous system reorganize, a phenomenon known as neuroplasticity. This neuroplastic 

reorganization can occur passively through daily living or actively through therapeutic 

interventions. In some cases, reorganization can be detrimental and result in additional 

losses in motor function (Topka 1991, Green et al 1998, Curt, Alkadhi, et al 2002, Curt, 

Bruehlmeier, et al 2002). Interventions that harness use-dependent plasticity (UDP) 
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(Classen et al 1998) can strengthen spared pathways through repetitive exercise. However, 

while motor activation is required for functional recovery, sensory feedback has proven to 

be nearly as important. It is widely acknowledged that sensory feedback plays a vital role 

in normal motor learning and function (Rothwell et al 1982, Hamdy et al 1998, Rossi et al 

1998). Previous work suggests that transcutaneous afferent peripheral nerve stimulation 

(commonly referred to as PNS) increases corticospinal excitability in healthy participants 

(Hamdy 1998 et al, Ridding 2001). In a motor-impaired cohort, PNS increased motor 

cortical excitability and muscle function when applied for a two-hour period prior to motor 

training (Conforto 2002, Sawaki 2006). Overall, these studies support the idea that sensory 

input can enhance the effects of motor training. However, these studies utilized repetitive 

sensory pathway activation not specifically and tightly coupled with motor execution.  

It is now increasingly understood that the timing of sensory feedback is important 

in harnessing the full effects of motor training. Paired associative stimulation (PAS) studies 

have shown that PNS applied synchronously with transcranial magnetic stimulation (TMS) 

of the contralateral cortex creates increased, sustained cortical excitability (Stefan et al 

2000). This emphasizes the role of timing-dependent plasticity (TDP) in determining 

synaptic strength: i.e., afferent PNS applied in synchrony with cortical stimulation 

enhances cortical excitability. While this concept has been demonstrated using TMS-

evoked measurements, the rehabilitative potential of TDP induced by afferent PNS paired 

with motor volition have not been previously explored in patients with chronic, incomplete 

tetraplegia.  

In PAS, motor pathways are activated using TMS, which does not require the 

subject’s active participation. This does not accurately mirror what happens in motor 
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training, where the participant is consciously activating motor pathways. Therefore, it 

would be beneficial to explore the effects of TDP on motor rehabilitation when participants 

are actively performing motor tasks with or without assistance. Previous studies have 

shown that sensory stimulation applied in conjunction with motor training in patients with 

tetraplegia enhanced various aspects of motor training (Hoffman et al 2007, Beekhuizen et 

al 2008). However, the PNS timing was not tightly coupled with motor execution in these 

studies.  

1.3  Overview of Approach 

In order to time PNS in a way that would synchronize the activation of sensory and 

motor pathways, PNS application must occur prior to and closely correlated with 

movement execution, i.e., the activation of relevant skeletal muscle groups. Therefore, a 

brain-computer interface (BCI) was developed that utilizes EEG features to detect 

“movement intention”, preceding the physical movement of the user in response to a visual 

cue, and subsequently trigger PNS. This work will describe the BCI system developed for 

PNS application during a hand grip task in patients with tetraplegia, and discuss its 

evaluation. The most updated version of the BCI developed for this study (BCI-PNS) will 

be described and compared to the old system (BCI*-PNS) as well as PNS not controlled 

by the BCI, applied at random, (Sham BCI-PNS). Participant specific functional outcomes 

will not be discussed in this work.
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CHAPTER 2. BACKGROUND 

2.1 Spinal Cord Injury 

Spinal cord injury (SCI) is a debilitating condition that disrupts proper 

communication between the central nervous system (CNS) and peripheral nervous system 

(PNS). Spinal cord injuries are classified mainly by their neurologic level and the severity 

of subsequent motor and sensory impairment. The spinal cord exits the skull through the 

foramen magnum into the vertebral canal and extends to the lumbar vertebral level (L1/L2). 

Damage at any point along the spinal cord can result in a spinal cord injury. Injuries that 

affect the cervical segments of the spinal cord are known as cervical SCIs. Cervical SCI 

can result in functional impairment of all four limbs (tetraplegia).  

Loss of motor and sensory function varies between injuries. Injury severity is 

clinically assessed using the American Spinal Injury Association Impairment Scale (AIS) 

which is the International Standard for Neurological Classification of SCI. An injury is 

classified as complete (AIS A) if there is complete loss of sensory and motor function in 

the patient’s sacral segments (American Spinal Injury Association 2003). If an injury is not 

considered complete, it can be then classified as sensory incomplete or motor complete 

(B), motor incomplete (C), motor incomplete but with relatively low impairment (D), or 

normal (E) (American Spinal Injury Association 2003). With rehabilitation, patients with 

SCI have proven to be capable of substantial functional recovery following their injury 

(Raineteau et al 2001, Burns et al 2012) 
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2.2 Peripheral Nerve Stimulation & Timing-Dependent Plasticity 

Stimulation of functionally associated cortical and peripheral neurons, first done by 

Mariorenzi et al in 1991, involves a peripheral or “conditioning” stimulation which 

precedes a cortical or “test” stimulation by a certain inter-stimulus interval (ISI). The effect 

of the associative stimulation is evaluated based on subsequent corticospinal output. Trans-

cranial magnetic stimulation (TMS) is most commonly used to stimulate the motor cortex. 

Observing the amplitude of TMS induced motor evoked potentials (MEPs), recorded from 

electromyography (EMG), is a means of evaluating corticospinal excitability.  

Different effects have been observed based on the ISI used during the associative 

stimulation. The paired associative stimulation technique (PAS), described by Stefan and 

colleagues in 2000, has become a widely used neuromodulation technique in the context 

of motor rehabilitation. During a PAS session, PNS of afferent nerve fibers associated with 

a target muscle group is repetitively paired with a single, non-invasive TMS pulse delivered 

to the contralateral motor cortex to activate that muscle group. The PNS precedes the TMS 

pulse at an ISI of 25 ms (Stefan et al 2002, Rossini et al 2015). In healthy subjects, 

increased topographically-specific cortical excitability is subsequently observed in the 

form of long lasting, increased amplitudes of TMS-induced MEPs. This paradigm was 

developed based on experiments in animal models of associative long-term potentiation 

(LTP), a mechanism which is widely thought to contribute to learning and memory (Stefan 

et al 2002; Wolters et al 2003).  In other words, PAS is thought to take advantage of TDP 

at the cortical level (Stefan et al 2002), which would imply that the proper sequence of 

pathway activation is more advantageous to strengthening connections than the rate of 
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activation alone. Figure 2.1 demonstrates the differences between traditional PAS and BCI-

PAS.  

The dependence of connection strengthening on the stimulation timing of related 

pathways is further supported by the phenomena of short afferent inhibition (SAI) and long 

afferent inhibition (LAI) (Tokimura et al 2000; Chen et al 1999). In SAI and LAI, rather 

than increasing corticospinal excitability, the ISI used between the “conditioning” sensory 

stimulation and the “test” TMS stimulation inhibits corticospinal output. In healthy 

participants, these ISI values are ~20-25ms (SAI) and ~200ms (LAI) (Rossini et al 2015). 

However, this afferent inhibition is not always present in individuals with SCI (Bailey et 

al 2015).  

2.3 Brain-Computer Interfaces 

PNS coupling with movement execution was accomplished through a brain-

computer interface (BCI). A BCI, also known as a brain-machine interface (BMI), is a 

system that utilizes the brain’s electrical signals as controls for a desired output (Wolpaw 

2012). This technology is most often used as a way to control an assistive technology by 

bypassing the peripheral nervous system. BCIs can be invasive or non-invasive; however, 

non-invasive brain signal monitoring, known as scalp electroencephalography (EEG), is 

most commonly used in BCI research due to its low cost and clinical practicality. Non-

invasive EEG-based BCIs utilize electrodes affixed to the scalp and a biosignal amplifier 

to record electrical activity associated with field post-synaptic potential changes in the 

cortex.  
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Certain EEG rhythms observed over the sensorimotor cortex, collectively known 

as the sensorimotor rhythms (SMRs), undergo characteristic changes during motor 

intention, motor execution, or motor imagery tasks. These changes are characterized by 

signal attenuation, or event-related de-synchronization (ERD), of the ongoing rhythm in 

the 8-13 Hz (mu) and 14-26 Hz (beta) bands, with an increase in power, or event-related 

synchronization (ERS), in frequencies above 30 Hz (gamma) (Pfurtscheller et al 1999, 

Pfurtscheller et al 2012). BCIs that utilize SMR features have been considered extensively 

as means of communication and control for motor-impaired individuals, but only more 

recently as a valuable adjunct to motor rehabilitation therapy (Pfurtscheller et al 2012, 

Yuan et al 2014). The mu rhythm (8-13 Hz) was the EEG feature used in the BCI system 

described in this work. The goal in developing the described BCI system is to provide 

PNS, to patients with tetraplegia, with EEG-determined motor intent and assess its effect 

on hand grip rehabilitation in patients with chronic cervical spinal cord injury.  

2.3.1 BCI-Driven Paired Associative Stimulation 

Similar BCI-PAS paradigms to the one in the present study, have been utilized in 

healthy controls (Niazi et al 2012) and stroke patients (Mrachacz-Kersting et al 2016). 

However, these BCI systems utilize an EEG feature different from the mu rhythm, a feature 

known as the movement-related cortical potential (MRCP). Additionally, these systems 

utilize offline EEG analysis of the MRCPs to predetermine PNS timing (Niazi et al 2012, 

Mrachacz-Kersting et al 2016). BCI-PAS applied in this manner has been shown to elicit 

positive changes in cortical excitability for the tibialis anterior muscle of the leg. However, 

these studies did not involve real-time detection of the MRCP, only an estimate of its 

average timing relative to a cue in a training session to drive open-loop PNS feedback in 
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treatment sessions. To our knowledge, the BCI system described in this work is the first to 

use a BCI for real-time sensory feedback in tetraplegic patients with hand impairment.  

 
 
 

 
Figure 2.1 Traditional PAS vs. BCI-PAS. This figure compares the traditional PAS 
technique with the described BCI. Both utilize synchronicity of efferent and afferent 

activation. However, in the BCI system, motor activation is controlled by the participant 
(volitional movement) which is in contrast to the TMS-induced motor activation, which 

is unnatural and does not require participant volition or attention. 
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CHAPTER 3. METHODS 

3.1 Participant Inclusion Criteria 

With IRB approval at the University of Kentucky, thirteen (12 male, 1 female, mean 

age 45±12y, mean time since injury 115±131mo) of sixteen screened patients took part in 

a four-week visual cue-driven motor intervention with one participant dropping out after 

completing seven of the twelve planned sessions. Subjects took part in interventions that 

either applied BCI-driven PNS (closed-loop) or interventions in which PNS was applied 

at random relative to the motor task (Sham BCI or open-loop). The results presented in 

this thesis focus on the accuracy of detection of movement intent from the EEG and not 

on the outcomes of the intervention, which will be reported separately. Nine of twelve 

patients returned to take part in a second course of open-loop (or closed-loop) intervention 

that was at least 8 weeks removed from the first closed-loop (or open-loop) one. All 

patients gave informed consent and underwent a clinical screening session prior to 

enrollment. Inclusion criteria were: injury level from C4-C7, over six months post injury, 

presence of detectable hand grip force or muscle activation, no neurological disorders, and 

distinguishable EEG signals. Participant and intervention information are displayed in 

Table 3.1.  

3.2 The Motor Task 

Participants completed approximately 60 runs (1200 cues) per hand over eight 

(Tuesday/Thursday) or twelve (Monday/Wednesday/Friday) sessions over a 4-6 week 

intervention period based on participant availability. Each run consisted of 23 visual cues 

that prompted motor execution, with no PNS applied for the first three cues. Prior to the 
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start of the first cue, a baseline recording was collected in order to establish average EEG 

mu band power values at rest. Participants were instructed to execute a self-paced, 

unrestricted isometric power grip force on a hand-held dynamometer (HD-BTA, Vernier 

Software & Technology) in response to the cue, during which PNS was applied. 

 

3.3 BCI System 

3.3.1 Overview & Data Acquisition 

Custom BCI software was developed using the LabVIEW platform (National 

Instruments). EEG and electromyogram (EMG) signals were collected using g.ladybird 

active electrodes (Guger Technologies). A g.USBamp biosignal amplifier (Guger 

Technologies) was used for all biosignal amplification, acquisition (512 Hz sampling 

frequency), notch filtering (60 Hz) and anti-aliasing (pass band 0.1-100 Hz). It was 

necessary to update the BCI system (previously described by Schildt, 2015) after the first 

five (including drop-out participant) interventions in order to improve PNS correlation 

with movement execution. In the update, the visual cue for motor execution was changed 

(from concentric circles to a hand animation), and the cue length was increased from 3 

seconds to 4 seconds. The criteria for detection of motor intent from the EEG was also 

modified. The updated BCI system is the focus of this work. 

 
3.3.2 Visual Cue 

A screen positioned approximately two feet away from the participant displayed 

the visual cue. During the “cue off” state, the screen displayed a crosshair at the middle of 

the screen. During the “cue on” state, an open hand was displayed. Changes in force cause 
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the hand to close in order to give the participant visual confirmation of movement 

execution. The cue was randomly displayed at 3±2 second intervals in order to prevent 

participants from predicting the cue. The cue was displayed for 4 seconds (3 seconds before 

system update). The length of the cue was increased in order to allow time for deliberate, 

self-paced movements.  

3.3.3 Movement Intent Detection 

The BCI system utilized non-invasive surface EEG. Active electrodes were placed 

in a medium-sized standardized cap that allowed for 10/10 electrode system positioning 

(Guger Technologies). The EEG electrodes used were CP1, CP2, CP5, CP6, Cz, C3, C4, 

P3, and P4. The electrooculogram (EOG) was recorded by placing an active electrode over 

the left eye on the forehead (for SID-008 and SID-009, FC5 & FC6 were used instead of 

CZ and EOG). At the beginning of each intervention, for both BCI and Sham BCI 

interventions, the EEG cap containing the active electrodes was placed snugly on the 

participant’s head and conductive gel was injected into each electrode cavity. The EEG 

signal-to-noise ratio was observed during setup and electrodes were adjusted until 

impedance was low and noise levels were acceptable.  

The BCI software used an EEG feature commonly utilized in movement-related 

BCIs, the mu rhythm, to detect movement intent. The mu rhythm is an 8-13 Hz frequency 

band known to attenuate during movement execution and imagination. Changes in mu band 

power were tracked in real time. As the data was acquired (sampling rate of 512 Hz; 

analysis frame length = 64 samples), EEG data was filtered using a 4th order Butterworth 

bandpass filter (8-13 Hz) and the mean mu power was calculated. If collected during the 

“cue off” state, the mean was incorporated into a running average of baseline mu power. If 
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collected during the “cue on” state, the mean is compared to the baseline mu power average 

via the mu power ratio (MPR):  

𝑀𝑀𝑀𝑀𝑀𝑀 =  
𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2

𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2  

An MPR value under 1 was considered as mu rhythm suppression (i.e., ERD). This 

calculation was performed separately for each EEG channel. If over 50% of the EEG 

channels demonstrated suppression, PNS was triggered. This 50% threshold was adjusted 

slightly as needed based on the observed accuracy during sessions.  

 
3.3.4 Afferent Peripheral Nerve Stimulation 

Afferent Peripheral Nerve Stimulation (PNS) refers to electrical stimulation of the median 

nerve below the motor threshold (i.e., the intensity above which a motor response is 

induced). This was accomplished by delivering square, monophasic pulse trains (10 Hz, 

500ms duration, 1 ms pulse width) (Ridding et al 2000, Kaelin-Lang et al 2002, Sawaki 

2006) using an external electrical stimulator (Grass S8800; Astro-Med, Inc.), 6 mm gold 

cup electrodes (Grass; Astro-Med Inc.), and conductive paste (Ten20, Weaver and Co.). 

The stimulation parameters used are designed to preferentially activate primary afferent 

nerve fibers (Panizza et al 1992, Maugniére et al 1999). Electrodes were placed over the 

median nerve at the wrist location with the cathode 3cm proximal to the anode (Figure 

3.1). Prior to the start of each session, stimulation intensity was adjusted so that observable 

compound muscle action potentials (CMAPs) were between 50-100uV (Kaelin-Lang et al 

2002, Sawaki 2006). The PNS perceptual threshold was determined as the lowest 
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stimulation setting perceived by the participant. A computer containing the BCI software 

was connected to the stimulator in order to trigger stimulation. 

3.4 BCI Evaluation  

The goal of the described BCI system was to detect movement intent in order to 

trigger PNS. Therefore, the BCI’s output, PNS, was used to evaluate the system’s ability 

to detect movement intention. PNS timing was characterized in relation to participant 

movement execution. The timing of movement onset was determined manually from force 

and EMG signals and was compared to the timing of PNS onset. PNS timing was 

characterized for each type of intervention (BCI, BCI*, Sham BCI) and compared. 

Additionally, PNS and movement onsets were correlated to further test whether or not the 

BCI was detecting movement intent. 

3.4.1 Determination of Movement Onset 

Movement onset was determined using the force and EMG traces (except for SID-

001 & SID-007). Onset was manually determined for each cue as the time point at which 

the force signal or EMG power deviated in the positive direction from its baseline. The 

EMG signal was bandpass filtered (50-100 Hz, 4th order Butterworth zero-phase filter) and 

rectified prior to movement onset scoring.  

The EMG signals were collected from either the abductor pollicis brevis (APB) 

muscle or flexor carpi radialis (FCR) muscle, depending on the EMG signal quality in each 

participant. Both the APB and FCR are innervated by the median nerve which has 

contributions from most nerve roots in the brachial plexus (C6-T1). The FCR muscle is an 

extrinsic muscle of the hand that contributes majorly to the force produced during a power 
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grip. The APB muscle is an intrinsic muscle of the hand that is utilized in all grip types 

(Dutton 2004, Magee 2014). The reliability of the force signal in determining movement 

onset depended on the participant’s ability to produce force with their hand grip. The 

reliability of the EMG signal in determining movement onset depended on numerous 

factors including muscle weakness, atrophy, rigidity, and/or spasticity.  PNS timing metrics 

were produced using the most reliable signal type. The force signal was more reliable than 

EMG in determining movement onset in all participants except for SID3. All offline 

analysis was completed in MATLAB (MathWorks, Inc.).  

3.4.2 Movement-PNS Latency 

A PNS latency relative to movement onset was calculated by subtracting the time of PNS 

onset from movement onset. Movement-PNS latency distributions were summarized for 

each intervention by calculating the minimum latency value, 10th, 25th, 50th, 75th, 90th 

percentiles, and the maximum latency value. These metrics were compared between 

intervention types.  

3.4.3 Positive Predictive Value  

The presence and timing of PNS application were used to characterize each 

stimulation opportunity as a true positive (TP), false positive (FP), true negative (TN), or 

false negative (FN). A TP was defined as a PNS that was triggered at least 31.25ms (16 

samples) after cue start and before movement onset. In general, an FP was defined as a 

PNS triggered without movement execution (FP1) or a PNS trigger that was evoked by 

anything other than movement intention (FP2 & FP3). Detection frames – i.e., sequential 

chunks of EEG at the end of which a prediction of the subject’s movement intent were 
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made in real time – were 125ms (64 samples) in size. A detection frame that could trigger 

PNS prior to 31.25ms after cue start would only be overlapping with the cue by less than 

16 samples (25% of frame). Therefore, a PNS trigger occurring less than 31.25ms after 

cue start is most likely evoked by the cue state change and not movement intent (FP2). A 

PNS trigger occurring after movement onset is not evoked by movement intent because 

movement intention precedes movement execution (FP3). A TN was defined as a cue in 

which no movement execution occurred and no PNS was triggered (e.g., a lapse in 

concentration). A FN was defined as a cue in response to which movement execution 

occurred, but no PNS was triggered. Figure 3.2 demonstrates the classification of 

stimulations and cue without stimulations.  

After all stimulations applied over an intervention were categorized, the total 

number of TP, FP, and FN stimulations across an intervention were used to calculate the 

positive predictive value (PPV) and sensitivity of each intervention; these are sometimes 

referred to as precision and recall respectively. A one-way ANOVA was performed to test 

for statistically significant differences in PPV and sensitivity values between intervention 

groups Post-hoc, one-tailed, two-sample t-tests were performed to test whether PPV and 

sensitivity values were greater for interventions in which the described BCI system was 

used to trigger PNS compared to the old system and PNS applied at random. 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝐹𝐹𝐹𝐹 =  𝐹𝐹𝐹𝐹1 + 𝐹𝐹𝐹𝐹2 + 𝐹𝐹𝐹𝐹3 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
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3.4.4 Movement Onset & PNS Correlation 

Although the timing of PNS application prior to movement onset is important, the 

PNS timing requirements discussed could be satisfied by timing PNS delivery to occur a 

preset time after the cue state. Therefore, it must be determined whether BCI-driven PNS 

is actually correlated with movement rather than the cue state. This was accomplished by 

conducting both a Pearson’s correlation and Spearman’s rank correlation of PNS-Cue 

latencies and Movement-Cue latencies. The PNS-Cue latency (ΔtPNS) was calculated by 

subtracting the time of PNS onset from the time of cue onset. The Movement-Cue latency 

(ΔtMovement) was calculated by subtracting the time of cue onset from movement onset. Only 

stimulations characterized as TPs were included in this analysis. Latency variables were 

expressed in milliseconds and then log transformed to reduce skewness prior to correlation.   
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Table 3.1 Participant Demographics. This table displays the subject ID (SID), gender, 
ASIA grade, neurologic level of injury, age, time since injury, and intervention type 
completed. Age and time from injury were given based on their value at intervention 
start. 

* Intervention performed before BCI system update 
- Dropped out after 7 sessions 

+ Repeat Participant  
ASIA: American Spinal Injury Association (A: Complete, B: Sensory Incomplete, C: 

Motor Incomplete, D: Motor Incomplete, E: Normal) 
BCI: PNS controlled by brain-computer interface 

BCI*: PNS controlled by brain-computer interface (old system) 
Sham BCI: PNS delivered at random during motor task 

 
 

SID Gender ASIA 
Grade 

Neurologic 
Level 

Age 
(y) 

Time 
from 
Injury 
(mo) 

Intervention 
Type 

1+ M C C6 30 159 BCI* 
34 204 BCI 

3+ F B C6 37 70 BCI* 
38 83 BCI 

4- M C C4 55 61 BCI* 

6+ M B C6 58 245 BCI* 
60 263 Sham BCI 

7+ M A C5 48 30 BCI* 
49 42 BCI 

8+ M C C5 50 10 BCI 
51 24 Sham BCI 

10 M C C5 54 468 BCI 

12+ M A C7 40 96 BCI 
41 104 Sham BCI 

14+ M C C6 46 14 BCI 
47 24 Sham BCI 

15+ M B C6 45 224 BCI 
46 230 Sham BCI 

16 M C C4 35 59 BCI 

17+ M D C6 68 16 BCI 
69 33 Sham BCI 

18 M A C4 25 46 Sham BCI 
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Figure 3.1 Experimental set-up. A schematic that highlights the main components of the 

BCI system. (b) A photograph of a participant with the BCI set-up. The participant is 
wearing an EEG cap containing active electrodes that are gelled prior to the start of each 
session. (c) A photograph of the participant’s forearm with FCR/APB EMG electrodes, 

and PNS electrodes in place. The participant is also holding the dynamometer used 
during interventions. 
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Figure 3.2 Classification diagram of movement intent detection. A decision to apply PNS 
was made by the BCI for every cue. That decision can be classified as a true positive 
(TP), true negative (TN), false positive (FP), or false negative (FN) based on whether 

there was (1) motor execution present during the cue and (2) the decision was made at the 
appropriate time. Since motor intention necessarily precedes movement onset, the 

appropriate time for PNS to be applied is before movement onset. 

PNS applied before 
movement onset? 

PNS applied at least 
31.25ms after cue 

start?

PNS applied?

Did movement 
execution occur?

Participant sees visual 
cue to squeeze 
dynamometer

Cue

Movement

PNS

Yes

Yes (TP) No 
(FP3)

No 
(FP2)

No PNS 
(FN)

No 
Movement

PNS 
(FP1)

No PNS 
(TN)
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CHAPTER 4. RESULTS 

4.1 Movement-PNS Latency Distributions 

Bowley’s seven-figure summary was used to describe the distribution of stimulations for 

each intervention. The minimum value, 10th, 25th, 50th, 75th, 90th percentiles, and maximum 

value of the Movement-PNS latencies for each intervention type are displayed in Table 

4.1, Table 4.2, and Table 4.3 and displayed in Figures 4.1 and 4.2. For the described BCI 

system, the average quartile values across left hand interventions are: 133±90ms (Q1), 

275±91ms (Q2), and 396±137ms (Q3). Average quartile values across right hand 

interventions are: 108±84ms (Q1), 253±76ms (Q2), and 364±111ms (Q3). For the old BCI 

system, the average quartile values across left hand interventions are: -426±408ms (Q1), -

116±355ms (Q2), and 102±391ms (Q3). Average quartile values across right hand 

interventions are: -516±448ms (Q1), -98±334ms (Q2), and 182±347ms (Q3). For the Sham 

BCI PNS, the average quartile values across left hand interventions are: -1211±185ms 

(Q1), 515±188ms (Q2), and 2445±64ms (Q3). Average quartile values across right hand 

interventions are: -1239±186ms (Q1), 497±159ms (Q2), and 2445±95ms (Q3).  

4.2 Positive Prediction Value & Sensitivity Metrics 

The mean PPV of interventions with BCI--PNS (n=10) were 69±8% for both left 

hand and right hand runs. The mean PPVs of interventions with BCI*-PNS (n = 5) were 

41±30 % (left hand runs) and 44±28 % (right hand runs). The mean PPVs of interventions 

Sham BCI-PNS (n=7) were 8±3% (left hand runs) and 7±3 % (right hand runs). The mean 

sensitivity values of interventions with BCI-PNS (n=10) were 100±1% for both left hand 
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and right hand runs. The mean PPV of interventions with BCI*-PNS (n = 5) were 88±17% 

(left hand runs) and 83±21% (right hand runs). The mean PPVs of interventions with 

Sham BCI-PNS (n=7) were 75±10% (left hand runs) and 73±13 % (right hand 

runs). Average PPV and sensitivity values are displayed by intervention type in Figure 

4.3. The stimulation classifications used to calculate the PPV and sensitivity values are 

displayed in Tables 4.4, 4.5, and 4.6.  

There was a statistically significant difference between group PPV means, ANOVA 

(F(2,19) = 34.52, p <0.001), and group sensitivity means, ANOVA (F(2,19) = 10.69, p 

<0.001. Post-hoc analysis showed that interventions in which PNS was driven by the 

described BCI system, had significantly higher PPV values compared to interventions 

with PNS driven by the old BCI system (p = 0.010 (LH), p = 0.014 (RH)), and 

PNS applied at random (p<0.001 (LH & RH)). Post-hoc analysis showed that 

interventions in which PNS was driven by the described BCI system, had 

significantly higher sensitivity values compared to interventions with PNS driven by 

the old BCI system (p = 0.021 (LH), p = 0.010 (RH)), and PNS applied at random 

(p<0.001 (LH & RH)). 

4.3 Time Correlation between PNS & Movement 

One-tailed Pearson’s and Spearman’s rank correlations were performed on movement 

and PNS onset times relative to the cue to test for the presence of a significant 

positive relationship. The correlation values and corresponding p-values are displayed in 

Table 4.7. All BCI-driven PNS and Movement onset correlations, except SID 14 (LH), 

SID 8 (RH), and SID 16 (RH), demonstrated significant monotonic relationships 

between the two variables. 
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Table 4.1 Movement Onset-PNS latency distributions of BCI-PNS. In the first three 
columns, this table displays the subject ID (SID), intervention type, and the total number 
of stimulations that occurred with movement during the intervention (n). The remaining 
columns display the minimum latency value, 10th, 25th, 50th, 75th, 90th percentiles, and 
maximum latency value of each latency distribution. All latency values are given in 
milliseconds. 

- Dropped out after 7 sessions
+ Repeat Participant

BCI: PNS controlled by brain-computer interface 

Left Hand 

SID Intervention 
Type n Min 10th 25th 50th 75th 90th Max 

1+ BCI 1198 -1299 -228 119 248 377 525 2129 
3+ BCI 1178 -1605 -421 76 277 406 574 1764 
7+ BCI 1200 -2604 -467 -86 135 217 326 727 
8+ BCI 1072 -2926 -119 252 463 648 887 3482 
10 BCI 1180 -1621 3 180 244 309 388 732 
12+ BCI 1179 -947 -86 109 146 181 229 797 
14+ BCI 1144 -1650 19 176 271 396 579 3217 
15+ BCI 1185 -1834 -139 119 342 585 892 2848 
16 BCI 1198 -1816 64 230 342 451 600 2111 
17+ BCI 1200 -1188 -94 156 285 385 488 1668 

Right Hand 

SID Intervention 
Type n Min 10th 25th 50th 75th 90th Max 

1+ BCI 1196 -1061 -295 64 193 285 377 2377 
3+ BCI 1199 -1453 -462 37 260 391 547 1459 
7+ BCI 1198 -2533 -428 -70 139 213 314 2451 
8+ BCI 1127 -1854 -266 119 330 490 755 3285 
10 BCI 1180 -1328 37 162 207 260 314 668 
12+ BCI 1180 -1209 -104 98 146 211 287 727 
14+ BCI 1147 -986 27 182 305 414 580 2953 
15+ BCI 1190 -1189 -248 82 305 508 748 3145 
16 BCI 1200 -838 94 250 377 508 647 1484 
17+ BCI 1199 -1281 -82 156 271 359 462 1133 
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Table 4.2 Movement Onset-PNS latency distributions of BCI*-PNS. In the first three 
columns, this table displays the subject ID (SID), intervention type, and the total number 
of stimulations that occurred with movement during the intervention (n). The remaining 
columns display the minimum latency value, 10th, 25th, 50th, 75th, 90th percentiles, and 
maximum latency value of each latency distribution. All latency values are given in 
milliseconds. 

- Dropped out after 7 sessions
+ Repeat Participant

BCI*: PNS controlled by brain-computer interface (old system) 

Left Hand 

SID Intervention 
Type n Min 10th 25th 50th 75th 90th Max 

1+ BCI* 883 -1617 -663 -586 -494 -314 168 635 
3+ BCI* 1074 -5584 -1551 -846 -55 293 400 4740 
4- BCI* 500 -2662 -1271 -500 -2 380 731 2365 
6+ BCI* 1187 -693 277 354 461 564 688 2619 
7+ BCI* 870 -818 -604 -553 -488 -412 125 717 

Right Hand 

SID Intervention 
Type n Min 10th 25th 50th 75th 90th Max 

1+ BCI* 858 -3195 -1047 -570 -277 189 412 1963 
3+ BCI* 992 -3223 -1563 -946 16 314 439 2881 
4- BCI* 488 -2707 -1687 -781 -112 317 626 2012 
6+ BCI* 1185 -928 256 342 445 559 689 2588 
7+ BCI* 839 -3248 -699 -623 -564 -469 60 482 
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Table 4.3 Movement Onset-PNS latency distributions of Sham-BCI PNS. In the first 
three columns, this table displays the subject ID (SID), intervention type, and the total 
number of stimulations that occurred with movement during the intervention (n). The 
remaining columns display the minimum latency value, 10th, 25th, 50th, 75th, 90th 
percentiles, and maximum latency value of each latency distribution. All latency values 
are given in milliseconds.  

+ Repeat Participant
Sham BCI: PNS delivered at random 

Left Hand 

SID Intervention 
Type n Min 10th 25th 50th 75th 90th Max 

6+ Sham BCI 1217 -4236 -2376 -1183 557 2452 3722 5771 
8+ Sham BCI 1074 -4342 -2176 -1072 779 2533 3927 5783 
12+ Sham BCI 1186 -4482 -2430 -1271 444 2441 3527 5111 
14+ Sham BCI 1163 -4963 -2475 -1218 580 2478 3741 7430 
15+ Sham BCI 1180 -4434 -2148 -950 530 2378 3874 6938 
17+ Sham BCI 1187 -4604 -2466 -1186 600 2500 3691 5055 
18 Sham BCI 1268 -6119 -2943 -1594 116 2333 3543 5650 

Right Hand 

SID Intervention 
Type n Min 10th 25th 50th 75th 90th Max 

6+ Sham BCI 1208 -4453 -2371 -1217 638 2537 3692 5412 
8+ Sham BCI 1103 -4682 -2204 -1116 393 2513 3835 6912 
12+ Sham BCI 1181 -4508 -2500 -1286 689 2458 3589 5148 
14+ Sham BCI 1172 -5377 -2336 -1150 626 2556 3779 6594 
15+ Sham BCI 1170 -4365 -2311 -1023 452 2375 3766 6049 
17+ Sham BCI 1185 -4615 -2447 -1231 486 2411 3549 5350 
18 Sham BCI 1279 -5215 -2920 -1651 195 2268 3575 5449 
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Table 4.4 Stimulation classifications of BCI-PNS. This table displays the subject ID 
(SID), intervention type, total number of stimulations delivered over the intervention, and 
the number of stimulations characterized as true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN), respectively.   

+ Repeat Participant 
BCI: PNS controlled by brain-computer interface 

TP: # of stimulations applied at least 31.25ms after cue start and prior to movement onset 
FP1: # of stimulations applied during cues in which there was no movement 

FP2: # of stimulations applied within 31.25ms of cue start 
FP3: # of stimulations applied after movement onset 

TN: # cues in which there was no movement and no stimulation  
FN: # of cues in which there was a movement attempt and no stimulation 

  

Left Hand 

SID Intervention 
Type Total TN FN FP1 FP2 FP3 TP 

1+ BCI 1200 0 0 2 177 217 804 
3+ BCI 1179 0 1 1 148 261 769 
7+ BCI 1200 0 0 0 196 387 617 
8+ BCI 1147 0 20 75 228 145 699 
10 BCI 1180 0 0 0 141 118 921 
12+ BCI 1179 0 1 0 151 180 848 
14+ BCI 1159 0 1 15 141 122 881 
15+ BCI 1198 0 2 13 140 238 807 
16 BCI 1199 0 1 1 154 79 965 
17+ BCI 1200 0 0 0 154 157 889 

Right Hand 

SID Intervention 
Type Total TN FN FP1 FP2 FP3 TP 

1+ BCI 1197 0 3 1 175 256 765 
3+ BCI 1199 0 1 0 134 282 783 
7+ BCI 1198 0 2 0 177 362 659 
8+ BCI 1149 1 19 22 174 227 726 
10 BCI 1180 0 0 0 147 98 935 
12+ BCI 1180 0 0 0 151 237 792 
14+ BCI 1160 0 0 13 169 103 875 
15+ BCI 1200 0 0 10 138 206 846 
16 BCI 1200 0 0 0 167 74 959 
17+ BCI 1199 0 1 0 159 162 878 
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Table 4.5 Stimulation classifications of BCI*- PNS. This table displays the subject ID 
(SID), intervention type, total number of stimulations delivered over the intervention, and 
the number of stimulations characterized as true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN), respectively.   

- Dropped out after 7 sessions
+ Repeat Participant

BCI*: PNS controlled by brain-computer interface (old system) 
TP: # of stimulations applied at least 31.25ms after cue start and prior to movement onset 

FP1: # of stimulations applied during cues in which there was no movement 
FP2: # of stimulations applied within 31.25ms of cue start 

FP3: # of stimulations applied after movement onset 
TN: # cues in which there was no movement and no stimulation  

FN: # of cues in which there was a movement attempt and no stimulation 

Left Hand 
SID Type Total TN FN FP1 FP2 FP3 TP 
1+ BCI* 885 0 0 2 10 777 96 
3+ BCI* 1086 0 150 12 25 587 462 
4- BCI* 531 3 148 31 2 249 249 
6+ BCI* 1200 0 0 13 78 7 1102 
7+ BCI* 870 0 0 0 0 759 111 

Right Hand 
SID Type Total TN FN FP1 FP2 FP3 TP 
1+ BCI* 858 0 25 0 46 554 258 
3+ BCI* 992 1 208 0 6 511 475 
4- BCI* 515 1 185 27 1 279 208 
6+ BCI* 1200 0 0 15 46 18 1121 
7+ BCI* 840 0 0 1 1 754 84 
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Table 4.6 Stimulation classifications of Sham BCI-PNS. This table displays the subject 
ID (SID), intervention type, total number of stimulations delivered over the intervention, 
and the number of stimulations characterized as true positives (TP), false positives (FP), 
true negatives (TN), and false negatives (FN), respectively.   

+ Repeat Participant
Sham BCI: PNS delivered at random  

TP: # of stimulations applied at least 31.25ms after cue start and prior to movement onset 
FP1: # of stimulations applied during cues in which there was no movement 

FP2: # of stimulations applied within 31.25ms of cue start 
FP3: # of stimulations applied after movement onset 

TN: # cues in which there was no movement and no stimulation  
FN: # of cues in which there was a movement attempt and no stimulation 

Left Hand 
SID Type Total TN FN FP1 FP2 FP3 TP 
6+ Sham BCI 1225 1 17 8 634 487 96 
8+ Sham BCI 1186 2 27 112 565 403 106 
12+ Sham BCI 1186 0 20 0 618 519 49 
14+ Sham BCI 1182 0 24 19 603 484 76 
15+ Sham BCI 1184 0 28 4 571 444 165 
17+ Sham BCI 1188 0 25 1 637 478 72 
18 Sham BCI 1268 0 58 0 608 584 76 

Right Hand 
SID Type Total TN FN FP1 FP2 FP3 TP 
6+ Sham BCI 1226 0 21 18 634 501 73 
8+ Sham BCI 1178 3 25 75 568 459 76 
12+ Sham BCI 1181 0 27 0 655 486 40 
14+ Sham BCI 1188 0 16 16 600 482 90 
15+ Sham BCI 1184 0 25 14 549 458 163 
17+ Sham BCI 1186 0 20 1 614 513 58 
18 Sham BCI 1282 0 51 3 637 585 57 
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Table 4.7 PNS-Cue latency and Movement Onset-Cue latency correlation values. This 
table displays the values from one-tailed Pearson’s (ρ) and Spearman’s rank (ρs) 
correlations and their corresponding p-values. 

Left Hand 

SID Intervention 
Type N 

Pearson 
correlation  
ρ  (p-value) 

Spearman’s 
correlation  

  ρs (p-value) 
1+ BCI 804 0.19 (<0.001) 0.15 (<0.001) 
3+ BCI 769 0.13 (<0.001) 0.12 (<0.001) 
7+ BCI 617 0.43 (<0.001) 0.46 (<0.001) 
8+ BCI 699 0.17 (<0.001) 0.16 (<0.001) 
10 BCI 921 0.52 (<0.001) 0.53 (<0.001) 
12+ BCI 848 0.74 (<0.001) 0.73 (<0.001) 
14+ BCI 881 0.06 (0.045) 0.05 (0.070) 
15+ BCI 807 0.26 (<0.001) 0.21 (<0.001) 
16 BCI 965 0.15 (<0.001) 0.14 (<0.001) 
17+ BCI 889 0.25 (<0.001) 0.24 (<0.001) 

Right Hand 

SID Intervention 
Type N 

Pearson 
correlation  
ρ  (p-value) 

Spearman’s 
correlation  

  ρs (p-value) 
1+ BCI 765 0.13 (<0.001) 0.12 (<0.001) 
3+ BCI 783 0.23 (<0.001) 0.19 (<0.001) 
7+ BCI 659 0.27 (<0.001) 0.26 (<0.001) 
8+ BCI 726 0.09 (0.006) 0.06 (0.052) 
10 BCI 935 0.65 (<0.001) 0.64 (<0.001) 
12+ BCI 792 0.15 (<0.001) 0.14 (<0.001) 
14+ BCI 875 0.14 (<0.001) 0.1 (0.001) 
15+ BCI 846 0.29 (<0.001) 0.25 (<0.001) 
16 BCI 959 0.09 (0.003) 0.05 (0.060) 
17+ BCI 878 0.19 (<0.001) 0.16 (<0.001) 
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Figure 4.1 Movement-PNS Latency Distributions of Interventions with BCI-PNS. 
Positive latencies correspond with PNS that occurred prior to movement onset. (a) The 
distributions of the Movement-PNS latencies for each intervention are plotted using 
traditional boxplots (top: left hand). (b) Histograms of the latencies from SID12’s BCI-
driven intervention. For the left hand (blue), n = 1179, Q1= 109ms, Q2 = 181ms, Q3 = 
229ms. For the right hand (green), n = 1180, Q1 = 98ms, Q2 = 146ms, Q3 = 211ms. 
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Figure 4.2 Movement-PNS Latency Distributions of Interventions with BCI*-PNS. 
Positive latencies correspond with PNS that occurred prior to movement onset. (a) The 
distributions of the Movement-PNS latencies for each intervention are plotted using 
traditional boxplots (top: left hand). (b) Histograms of the latencies from SID7’s BCI-
driven intervention prior to the update. For the left hand (blue), n = 870, Q1= -553ms, Q2 
= -488ms, Q3 = -412ms. For the right hand (green), n = 839, Q1 = -623ms, Q2 = -564ms, 
Q3 = -469ms. 
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Figure 4.3 Average PPV & Sensitivity Values by Intervention Type. This figure shows 
the average PPV (top) and sensitivity values (bottom) for interventions with PNS applied 

using the described system (BCI-PNS), the old system (BCI*-PNS), and at random 
(Sham BCI-PNS). These values were calculated by classifying stimulations as either TP 
or FP based on their timing relative to movement onset and by classifying cues where 

movement executions occurred and PNS did not as FNs.  
*p = 0.01

**p < 0.001 
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Figure 4.4 Example of movement responses (Ia) a left hand movement (hand grip) 
response to a cue and (IIa) a right hand movement response to a cue. This data is from 

SID-010’s intervention in which PNS was applied using the BCI described in this work. 
These examples help to demonstrate the PNS-Cue latency (ΔtPNS,ms) and Movement-Cue 

latency (ΔtMovement,ms). The log transformed PNS-Cue latencies and Movement-Cue 
latencies from SID-010’s entire intervention have been plotted for the (Ib) left and (IIb) 

right hand. 
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CHAPTER 5. DISCUSSION 

5.1 Overview 

This work has demonstrated the feasibility of online movement intention detection 

in a motor-impaired cohort. The described BCI system had significantly better performance 

than both the old BCI system (BCI*-PNS) and the Sham BCI-PNS. Additionally, BCI-PNS 

showed significant correlation with movement onset in the majority of interventions. This 

suggests that the system was triggering PNS based on task-related dynamical changes in 

brain activity and not at random. 

5.2 BCI System Evaluation 

In this setting, the PPV indicates the likelihood that PNS was triggered by the 

detection of movement intent. The sensitivity metric indicates the likelihood that PNS was 

applied when movement execution occurred. The interventions in which PNS was 

controlled by the described BCI system had significantly higher PPV and sensitivity values 

compared to interventions with BCI*-PNS and Sham BCI-PNS. This supports the idea that 

BCI-PNS was more likely to be applied based on movement intent than the other PNS 

types.  

Since BCI-driven PNS could only be applied during the cue, the correlation of PNS 

onset with movement onset times was important in showing that PNS was not being 

triggered simply by the change in cue state. All BCI-driven PNS and movement onset 

correlations, except SID14 (LH), SID 8 (RH), and SID16 (RH), demonstrated significant 

monotonic relationships between the two variables. This strongly suggests that the 
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described BCI system applied PNS prior to movement onset due to the detection of 

a movement intention.   

5.3 Challenges 

There were a number of challenges in developing a BCI system for motor 

rehabilitation of patients with incomplete tetraplegia. A major hurdle was recruitment, due 

to the time commitment required by the intervention sessions and the need for reliable 

transportation to the sessions. Another challenge was determining the time of movement 

onset in participants that had limited hand grip ability and little to no discernable EMG 

activation. For these participants, it’s likely that movement onset determination was not as 

accurate as the other participants, which could affect BCI evaluation. For example, SID10 

demonstrated relatively high correlation values between PNS-cue latencies and 

Movement-cue latencies for left (ρs=0.53, p<0.001) and right hand (ρs=0.64, p<0.001) 

intervention data. The contrast in SID10’s force signal between rest and movement made 

determining movement onsets easy and, most likely, fairly accurate. In contrast, SID16 

demonstrated low correlation values between PNS-cue latencies and Movement-cue 

latencies for left (ρs=0.14, p<0.001) and right hand (ρs=0.05, p = 0.060) intervention data. 

While the force signal was more reliable than EMG in determining movement onset, there 

was still very little contrast in SID16’s force signal between movement states making 

movement onset determination difficult and most likely inaccurate. A way to address this 

in the future could be through the use of motor-related cortical potentials (MRCPs) in 

determining movement onset. MRCPs are slow, cortical EEG deflections associated with 

motor planning that reach peak negativity at the start of movement onset.  
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5.4 BCI-PNS Timing vs. Paired Associated Stimulation 

The timing of PNS applied by the described BCI was variably related to movement onset. 

The quartile values of the Movement-PNS latency distributions for BCI-PNS demonstrated 

that most instances of BCI-PNS occurred prior to movement onset. If a stimulation window 

is created based on the ISI values used in PAS and LAI trials with healthy controls (25ms-

200ms), this will give a window for comparison with the Movement-PNS latency 

distributions of BCI-PNS. In our case, PNS timing is being compared to movement onset 

rather than motor cortex stimulation. Therefore, 25ms (Devanne et al 1997) can be added 

to the comparison window to account for conduction time. Based on the first and third 

quartile values in Table 4.1, on average, there was a high likelihood of PNS occurring from 

133±90ms to 396±137m (LH) and 108±84ms to 364±111ms (RH) during BCI-driven 

interventions. There is overlap between these average intervals and the 50ms-225ms 

window. This suggests that, on average, subjects that receive PNS controlled by the 

described BCI system would likely receive positively conditioning PNS prior to 

movement. The 50ms-225ms window was not used to determine BCI performance because 

of the potential variability of that window in the individual case.  

5.5 Future Directions 

This work was aimed at describing and evaluating the BCI system used to deliver 

synchronous sensory stimulation with movement execution. The next step is to summarize 

participant outcome data and correlate the outcomes with BCI accuracy in terms of PNS 

timing relative to attempted movement.  
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