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ABSTRACT OF DISSERTATION 
 
 
 

A MULTIDISCIPLINARY CHARACTERIZATION OF THE ENZYMOLOGY AND 

BIOLOGY OF REVERSIBLE GLUCAN PHOSPHORYLATION IN TOXOPLASMA 

GONDII 

 Toxoplasma gondii is an opportunistic, protozoan parasite of all warm-blooded 

animals, infecting roughly one-third of humans worldwide. Humans acquire 

infections by consuming T. gondii tissue cysts in undercooked meat or from 

oocysts shed in cat feces. Encysted parasites convert into rapidly growing 

tachyzoites that disseminate throughout the body, defining the acute phase of 

infection. Under host immune pressure, tachyzoites convert into bradyzoites that 

populate tissue cysts found in CNS or muscle tissue and persist for the lifetime of 

the host, defining the chronic phase of infection. Tissue cysts are responsible for 

transmission via carnivory, but also possess the ability to reactivate into 

tachyzoites within their current host. In the context of immunosuppression, 

reactivation manifests primarily as toxoplasmic encephalitis.  Current therapeutic 

options are poorly tolerated by many and effective only against tachyzoites. Thus, 

there is a need for a better understanding of the chronic infection to develop new 

treatments that eliminate tissue cysts or prevent reactivation. 

 The present work therefore examines the parasite’s utilization of amylopectin 

granules (AGs), a morphological feature found in bradyzoites that distinguishes 

them from tachyzoites. AGs, much like plant starch, are insoluble storage 

molecules composed of branched chains of glucose and believed to fuel 

bradyzoite replication, transmission, and reactivation. In plants, insoluble starch is 

made enzymatically accessible by a cycle of direct, reversible glucan 

phosphorylation. The addition of phosphate by a glucan kinase solubilizes the 

starch surface to facilitate enzymatic glucose release, and the subsequent removal 

of phosphate by a glucan phosphatase prevents hyperphosphorylation that would 

obstruct enzyme access. The T. gondii genome encodes these opposing 

enzymatic activities: the glucan, water dikinase, “TgGWD,” and the glucan 

phosphatase, “TgLaforin.” 

 The work herein, along with recent studies, strongly suggests that the historical 

understanding of AGs is lacking. There is mounting evidence that tachyzoites 



     
 

contain small and rapidly metabolized glucans that are key to T. gondii biology. 

Thus, an understanding of how T. gondii accesses its glucose stores throughout 

the asexual cycle is needed. Perturbations of glucan phosphatase activity in plants 

and animals result in significant defects in metabolism and glucan morphology, 

suggesting the need to investigate reversible phosphorylation of T. gondii AGs. To 

date, little has been done to characterize the enzymology or relevance of reversible 

glucan phosphorylation in T. gondii. 

 Herein, the functions and unique structures of TgLaforin and TgGWD were 

characterized using a wide range of biochemical and biophysical techniques. 

Additionally, a role for TgLaforin in T. gondii was elucidated using protein 

localization and knockout approaches. With these tools, it was demonstrated that 

TgLaforin plays a vital role in both tachyzoites and bradyzoites, linking TgLaforin 

to parasite metabolism, virulence, and development across the asexual cycle. The 

data here suggests that the tachyzoite glucan may play a previously unappreciated 

role in T. gondii. Thus, this work provides a unique window into the role of AGs 

through the first multi-disciplinary characterization of reversible glucan 

phosphorylation in T. gondii and establishes a framework for the development of 

future therapeutic approaches. 

 
KEYWORDS: Toxoplasma gondii, amylopectin granules, glucan phosphatase, 

glucan dikinase, reversible glucan phosphorylation. 
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CHAPTER 1.  THE TURNOVER AND METABOLISM OF AMYLOPECTIN 

GRANULES IN TOXOPLASMA GONDII 
 

1.1 Introduction to T. gondii and its morphology 
 

1.1.1 T. gondii, the model Apicomplexan 
 

 Toxoplasma gondii is an opportunistic, protozoan pathogen of humans and all 

warm-blooded animals. It was first discovered in 1908 in two separate labs, one in 

Tunisia and the other in Brazil, that each found this parasite in either gundis (from 

which the parasite takes its name) or rabbits, respectively (1,2), immediately 

suggesting its global distribution. Its ubiquity is now well recognized, as roughly 

one-third of humans worldwide are estimated to be seropositive for T. gondii (3). 

 T. gondii is a member of the large Apicomplexan phylum, a collection of 

intracellular pathogens with medical and veterinary significance such as 

Plasmodium, Crytosporidium, Eimeria, Neospora, and Sarcocystis. Of these 

pathogens, T. gondii is the most easily studied due to its ability to be propagated 

indefinitely in cell culture, the establishment of animal models used to study both 

parasite virulence in vivo and immune responses to its presence, and the 

availability of a wide variety of cell markers and standard assays by which to 

evaluate parasite fitness (4).  

 The T. gondii haploid genome also allows for ease of genetic manipulation 

using well-established transfection protocols in generating mutants for which a 

variety of selectable markers have been identified (5-7). Several conditional 

knockdown systems have been developed in T. gondii including Cre-LoxP, Tet, 

and, most recently, an auxin-inducible degron (8,9). Exciting new technologies 

have also been adapted to T. gondii enabling a genome wide knockout screen 

using CRISPR/Cas9 technology (10), subcellular localization of the entire T. gondii 

proteome using hyperLOPIT (11), and single-cell transcriptomics that defined gene 

expression profiles across both the cell cycle and asexual developmental stages 

(12).  

 Importantly, the T. gondii research community has assembled these complex 

data sets, alongside entire genome sequences and gene annotations, into 

ToxoDB.org. Genes in T. gondii are easily identified using several strategies 

including a BLAST functionality, common gene name queries, or specific 

accession numbers. Within gene pages, all available genomic, transcriptomic, 

proteomic, and localization data are displayed, along with many more gene 

features and link-outs to common database with more information such as UniProt, 

NCBI, etc. Moreover, the T. gondii community has collaborated on multiple books 

such as Toxoplasma gondii: The Model Apicomplexan – Perspectives and 

Methods that has served as a unified source of current T. gondii knowledge that is 

now in its third edition (13). An invaluable collection of some of the most important 
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methodologies in the field was also recently assembled in Toxoplasma gondii: 

Methods and Protocols (14).  

 This chapter will serve as an introduction to the parasite that has motivated 

such a dedicated community to undertake these herculean efforts to understand 

its biology. As such, the basic biology of T. gondii first presented will then be used 

as the context by which to present key discoveries in glucan composition, turnover, 

and metabolism across life stages in T. gondii. Finally, the motivation for studying 

the regulation of glucan degradation via reversible glucan phosphorylation in T. 

gondii will be presented.  

 

1.1.2 Basic biology and morphology of T. gondii 
 

 The T. gondii life cycle is complex and consists of many stages. Broadly 

speaking, three stages within this cycle are considered transmissible: the 

tachyzoite, the bradyzoite, and the sporozoite. Even though these forms of the 

parasite are found in physically distinct locations (both within and outside of the 

host) and at distinct stages of infection, their overall morphology is strikingly 

similar. These stages are all commonly described as bow, crescent, or banana 

shaped (contributing to the parasite’s name, from Greek: Toxon = arc/bow, plasma 

= shape), and each is approximately 2-3 m wide and 7-9 m in length (15) (Figure 

1.1a). 

 With regards to its ultrastructure, it has been known since the first EM studies 

of T. gondii tachyzoites that it possesses standard eukaryotic organelles including 

a nucleus, a single mitochondrion, a Golgi apparatus, an endoplasmic reticulum, 

and ribosomes, as revealed in the first electron micrograph study of this parasite 

(16). Follow up studies then expounded upon and detailed several unique 

organelles that had been previously unknown (17). These organelles included 

micronemes, rhoptries, and dense granules (18) (each of these unique organelles 

is highlighted in Figure 1.1b). Since their discovery, these three organelles have 

been characterized as possessing secretory functions (19), and the protein cargo 

of each organelle has been extensively dissected and attributed to key stages in 

the lytic cycle.   

 The small, rod-shaped micronemes (micro = tiny, neme = hairs) function 

primarily in host cell egress, gliding motility, and host cell attachment through 

secretion of perforins, adhesins, and proteases (20). The club-shaped rhoptries 

(rhopos = club) secrete proteins that enable early moving junction formation 

between the parasite and host cell, facilitating parasite invasion (21). Many of the 

secreted rhoptry proteins also act as effector proteins that are injected directly into 

the host cell for early manipulation by the parasite, and also decorate the outer 

side of the parasitophorous vacuole membrane (PVM), the replicative niche of the 

parasite (Figure 1.1a) (22). Finally, the dense granules secrete a wide variety of 

proteins found throughout the infected cell: 1) found within the PVM lumen, 2) 

anchored on the host cytosolic side of the PVM, and 3) released within the host 
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cell cytosol and nucleus where they alter host transcription and halt cell cycle 

progression (21,23,24). Perhaps most dramatically, proteins secreted from the 

dense granules have been shown to be involved in recruiting the host cell’s 

mitochondria to the PVM (25) where it makes very extensive contact (26). A role 

for the rhoptry protein ROP2 has also been proposed to mediate PVM-

mitochondrial association (27).  

 The organization of the parasite’s plasma membrane and cytoskeleton are also 

unique. T. gondii is a member of the alveolate superphylum, and thus contains an 

intermembrane complex (IMC) composed of alveoli (flattened vesicles) stitched 

together into a patchwork like network by suture components (28). The IMC 

underlies the parasite’s plasma membrane, and this combination of alveoli + 

plasma membrane is referred to as the “pellicle.” Underlying the pellicle are 22 

microtubules that radiate out from an apical polar ring (APR) extending about 2/3 

of the way down the parasite body, lending the parasite its distinctive shape (29). 

Above the APR is a tubulin-based structure resembling a spring called the “conoid” 

that rapidly extrudes and retracts during extracellular parasite motility and is 

believed to be the gateway for invasion factor secretion (30). The rhoptries and 

micronemes are commonly seen being docked in the conoid (Figure 1.1b), and 

the combination of these organelles and cytoskeletal elements form the “apical 

complex” from which the Apicomplexan phylum gets its name.  

 Other notable organelles in T. gondii have also been described, and include 

the plant like vacuole that appears to act as a lysosomal compartment (31), the 

acidocalcisome where calcium is stored (32), and, most notably, the apicoplast 

(33). This distinctive four-membraned structure was recognized by TEM in both T. 

gondii and Eimeria in 1965 and given the name “große Vakuole mit kräftiger 

Wandung” (German for “large vacuole with thick walls”) long before its evolutionary 

history was untangled (34). Over the course of the next several decades, many 

more names were proposed for this structure, including “hohlzylinder” (German for 

“hollow cylinder”) and “Golgi adjunct” (35). It was eventually recognized that T. 

gondii and other apicomplexans contain a 35 kb segment of extrachromosomal 

DNA outside of its mitochondrial genome (6-7 kb), and that this 35 kb segment 

shared significant similarities with chloroplast genomes (36,37). Two studies 

published in 1996 and 1997 utilized variations on in situ hybridization with portions 

of this 35 kb DNA, one in conjunction with TEM in both T. gondii and Plasmodium 

(33) and the other by fluorescence microscopy in T. gondii only (38). Both studies 

showed localization of this DNA to the four-membraned structure. Thus, the final 

name of this structure recognized its evolutionary past in calling it the 

“apicomplexan plastid” or “apicoplast.”  

 Because the apicoplast is contained by four membranes, secondary 

endosymbiosis of a red or green algal chloroplast was suspected (39). 

Interestingly, the mystery surrounding its origin was unshrouded in studies that 

sought to characterize the nature of starch-like amylopectin granule (AG) 

metabolism in T. gondii (40). Due to the biochemical similarities of AGs in T. gondii 
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to “floridean starch” in red alga (discussed in section 1.5.6), this study suggested 

that T. gondii was of red algal origin. 

 In summary, it is now known that the apicoplast contains a highly reduced 35 

kb genome, is no longer photosynthetic, and was responsible for lateral gene 

transfer of algal/plant-like metabolic enzymes into the T. gondii genome (discussed 

in section 1.5.6) (41,42). The apicoplast houses pathways for short-chain fatty acid 

synthesis (primarily C14:0 and C16:0) via a FASII pathway, isoprenoid synthesis, 

iron-sulfur cluster synthesis, and heme synthesis (43,44). Moreover, the apicoplast 

is an essential organelle, as loss of the apicoplast genome results in parasites that 

are ultimately unable to survive (45). Thus, the apicoplast has received targeted 

focus for drug development, and some drugs such as clindamycin and doxycycline 

specifically target the apicoplast (46,47).  

 Despite the presence of the aforementioned organelles throughout the invasive 

stages of T. gondii, the stages also display key differences from one another. 

Tachyzoites (tachos, from Greek = speed) replicate quickly during the acute phase 

of a new infection (48) and reside within a non-fusogenic vacuole inside of the host 

cell called the parasitophorous vacuole (PV) that is enclosed by the PVM (49). The 

speed of tachyzoite replication enables efficient establishment of a new infection 

and dissemination throughout a new host. Depending on the strain, tachyzoites 

double in number through synchronous replication every 5-9 hours (50). This rapid 

growth rate results in host cell egress roughly 24-48 hours after invasion (51). The 

tachyzoite life stage is the most amenable to study, as it naturally propagates 

under standard cell culture conditions at 37oC and 5% CO2, and is easily 

cryogenically stored in glycerol or 10% DMSO (52). 

 Bradyzoites (brady, from Greek = slow) are the persistent form of T. gondii that 

define the chronic phase of infection and are result from tachyzoite conversion 

under immune pressure from the host (discussed in more detail in section 1.3.2.). 

Bradyzoites reside in tissue cysts that are contained by a modified PVM known as 

the cyst wall. Tissue cysts are typically found in the CNS (Figure 1.1c-d) or muscle 

tissue of the host (most notably cardiac and skeletal muscle). These tissue cysts 

vary in size, ranging from 10-100 m and contain hundreds or even thousands of 

parasites (Figure 1.1e). Bradyzoites replicate more slowly than tachyzoites (53) 

due to slowed progression through the cell cycle (54), but their asynchronous and 

sporadic replication patterns preclude a precise determination of overall replication 

rate (55). Bradyzoites are also morphologically distinct from tachyzoites as they 

are typically slimmer, their nuclei are located at the posterior end of the cell, they 

contain many more micronemes, and they contain numerous starch-like 

polysaccharides known as amylopectin granules (AGs) in their cytoplasm (Figure 

1.1f) (discussed extensively in sections 1.4, and 1.5.4.-1.5.6.). 

 Finally, T. gondii sporozoites, like bradyzoites, are organized in an 

environmental cyst known as the oocyst and also contain AGs. Each oocyst 

contains two sporocysts, each in turn containing four sporozoites (eight total 

sporozoites per oocyst) (56). The oocyst is the product of sexual recombination 
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within felids that is shed in cat feces. Oocysts are notable for their persistence in 

the environment as they can survive for a year or more under suitable conditions 

(57).  

 

1.2 Key discoveries in T. gondii transmission and lifecycle 
 

 The involvement of these infectious stages in the life cycle of T. gondii was 

worked out over the course of the 20th century and is presented in Figure 1.2 (58). 

The first documented clinical case in a human in 1937 was a case of vertical 

transmission of the parasite from mother to fetus, the least common but often most 

devastating mode of transmission that can result in either spontaneous abortion or 

severe ocular and mental defects in the newborn. Because vertical (i.e. congenital) 

transmission results in such devastating consequences, these initial discoveries 

motivated the intense research into T. gondii that has since followed (59). Interest 

in the parasite has never waned due to the HIV/AIDS epidemic in the United States 

that resulted in high rates of toxoplasmic encephalitis in immunocompromised 

individuals (discussed in section 1.3.3.), and the increasing spotlight on areas 

around the world in which infection with so-called “atypical strains” of T. gondii 

results in a much higher disease burden than in the United States (60,61).  

 

1.2.1 The discovery and initial characterization of T. gondii tissue cysts and their 
transmission via carnivory 

 

 The first documented T. gondii tissue cysts were found in the brains of mice 

and rabbits in the late 1920s (62). They were soon suspected as a latent form of 

the parasite after asymptomatic, pregnant mothers gave birth to children infected 

with T. gondii (63), ultimately leading to the hypothesis that mothers, and 

asymptomatic individuals, could be carriers of the parasite. By 1939, several cases 

of T. gondii infections in newborns were compiled and described (63). Notably, all 

the described infants suffered seizures, and several presented with hydrocephaly 

at birth. None of them lived longer than 7 weeks, and evidence of T. gondii 

tachyzoites and encysted bradyzoites was found in necrotic tissue in the brain and 

sometimes in the retina upon autopsy. While it is true that individuals can carry the 

parasite for an indefinite amount of time, we now know that pregnant individuals 

typically only transmit T. gondii to a developing fetus if acutely infected during the 

course of pregnancy (64), not from a latent infection. For this reason, public health 

officials often recommend pregnant individuals refrain from cleaning cat litter boxes 

(CDC.gov).  

 More evidence supporting the theory that humans could asymptomatically 

carry T. gondii accumulated in the 1940s when carriers of T. gondii were 

discovered upon routine autopsies of deaths unrelated to toxoplasmosis. After a 

14 year old boy died from an ailment described as “liver atrophy,” researchers 

examined various tissues from his body during a routine autopsy, and they found 
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what appeared to be a 48x20 m mass in his myocardial tissue that was described 

as a tissue cyst (65). Following this report, another asymptomatic carrier who died 

in a drowning accident was discovered by U.S. Army officials in Panama. Upon his 

autopsy, T. gondii tissue cysts were also found in his myocardium (66). A few years 

later, it was demonstrated that the brains of T. gondii infected rats retained their 

infectivity for the entire length of a two year study, and together with the discovery 

of asymptomatic humans with T. gondii infections, this evidence suggested the 

parasite’s ability to establish asymptomatic infection and its ability to persist 

indefinitely (67). 

 The development of a T. gondii complement-based serological test by Sabin 

and Feldman in 1948 enabled researchers to survey a much wider number of living 

people and animals for evidence of a latent T. gondii infection (68). In a survey of 

1,747 people from around the world in 1956 using the Sabin-Feldman serological 

test, researchers realized how prevalent asymptomatic carriers were with 31% of 

tested individuals found to be seropositive for T. gondii (69). There were wide 

ranges of seropositivity among different groups in this study ranging from 0% in 

one geographic group up to 68% in another.  

 Around the same time, anti-Toxoplasma antibodies were being discovered in 

many of the animals that humans consume including cows, pigs, goats, and sheep, 

leading to the theory that meat might indeed be a major reservoir of T. gondii 

infection (70). This hypothesis was demonstrated to be true in a study that found 

T. gondii could be transmitted from rodent to pig, and from pig to humans through 

carnivory (71,72). All of these discoveries were put into perspective by key 

experiments demonstrating that tissue cyst walls are easily ruptured in artificial 

digestive fluid containing pepsin, liberating the bradyzoites within (73). Importantly, 

bradyzoites were shown to be pepsin resistant, retaining their infectivity after 

pepsin exposure, whereas tachyzoites did not. Tissue cysts have also been 

demonstrated to survive in meat several weeks at 4 oC (74). 

 Thus, with these early observations, the ability of T. gondii to be carried in 

livestock, persist for long periods in the same host, and transmit via carnivory from 

one host to another were established. The chain of transmission was thus far 

demonstrated as (and summarized in the “carnivory”-labeled portions of Figure 

1.2): a rodent infected with bradyzoites could be consumed by a pig, which, in turn, 

would become infected itself and develop T. gondii tissue cysts in its skeletal 

muscle that might persist for the lifetime of the animal. This undercooked muscle 

in which cysts could survive for several weeks, when consumed by humans, could 

then result in their subsequent infection.  

 

1.2.2 The discovery and initial characterization of T. gondii oocysts and their 
transmission through the environment 

 

 At this point, another major mystery remained to be solved related to the life 

cycle—how did herbivores and vegetarians contract the parasite? Either arthropod 
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or fecal transmission was suspected, but not until 1965 was it discovered that cat 

feces contains an infectious form of T. gondii that retains its infectivity for at least 

a year, although the infectious form of the parasite was not visualized upon first 

being discovered (75). Interestingly, it was suggested in this study that T. gondii 

passed into cat feces protected in the eggs of Toxocara cati (a feline roundworm), 

which was not an unreasonable suggestion at the time considering that tissue 

cysts could only survive a matter of days or weeks after death of the host, not an 

entire year as seen in cat feces (73). Over the next several years, the infectious 

material in cat feces was extensively characterized, and finally named the “oocyst” 

once it was finally visualized due to its resemblance to Isospora bigemina oocysts 

(76,77). Importantly to the elucidation of the T. gondii life cycle, oocysts retained 

their infectivity in mice after separation from roundworm eggs by centrifugation 

through a sucrose gradient. Moreover, kittens that had never been infected with T. 

cati (and thus were incapable of containing their eggs) were shown to shed 

infective oocysts after T. gondii infection in the lab, thus dispensing with the 

roundworm co-transmission theory.  

 Continued characterization of oocysts revealed basic facts about their biology: 

excretion begins 3-5 days after a cat consumes a tissue cyst, and they require 2-

3 days at 24 oC to mature into fully sporulated oocysts that could then cause 

infection (78) as mice that consumed oocysts before the sporulation point did not 

contract T. gondii infections. Shortly after these seminal discoveries, the 

developmental stages of the parasite within the cat intestinal epithelia were 

characterized (79). These stages, distinct from the transmissible stages, were 

named “merozoites” (mero, from Greek = partial or intermediate) and display more 

similarity to tachyzoites than any of the other stages. After several days of 

development through multiple morphological steps, merozoites convert into the 

male and female gametocytes that ultimately recombine and produce oocysts shed 

in cat feces, establishing felids as the definitive host of T. gondii (80). Why T. gondii 

only undergoes sexual recombination in felids long remained a mystery in the field 

after this discovery. Recently, however, it was determined that an excess of linoleic 

acid in the felid gut triggers sexual development (81). Felids are the only mammal 

that lack intestinal delta-6-desaturase activity, which is required for linoleic acid 

metabolism, thus explaining why T. gondii restricts its sexual cycle to cats.  

  

1.2.3 A description of T. gondii life cycle 
 

 The key aspects of the T. gondii life cycle are presented in Figure 1.2 and 

summarized here: shortly after cyst-induced infection, cats (the definitive host) 

shed T. gondii oocysts (the product of sexual recombination) in their feces. After 

sporulation, T. gondii oocysts are infectious to all warm-blooded wildlife and 

humans (the intermediate hosts) for up to a year. If humans consume unwashed 

produce or scoop cat litter without washing their hands, oocysts can be consumed 

directly from the environment. Common livestock also consume oocysts, become 
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chronically infected, and then become a source of tissue cysts for human 

consumption in raw or undercooked meat. Humans can also obtain T. gondii 

infections via vertical transmission or organ transplant from an infected donor (82). 

The T. gondii lifecycle is completed when a cat consumes a chronically infected 

rodent and then generates new oocysts.   

 

1.3 The role of the asexual stages in human infection and disease  

 

 Due to the wide variety of transmission options available to T. gondii and its 

ability to infect any warm-blooded animal, it is estimated that one-third of humans 

worldwide harbor this parasite (83). The prevalence of human infection is uneven 

across the globe as was hinted at in early studies, with some countries having a 

seroprevalence of <10%, and others reaching >70% (84). As the early 

transmission studies revealed, horizontal transmission of the parasite occurs most 

frequently through the consumption of raw or undercooked meat (tissue cysts), 

and through the consumption of contaminated fruits, vegetables, and untreated 

water (oocysts) (85). In rare instances, transmission of tachyzoites has been 

suggested as possible through the consumption of raw milk (86). This section will 

describe the asexual life stages after transmission of the parasite that define the 

acute and chronic phases of infection and their role in toxoplasmosis. Of note, T. 

gondii tachyzoites replicate rapidly by a specialized internal budding process 

known as endodyogeny (18,87). 

 

1.3.1 The acute phase of infection  
 

 Of particular concern to humans are the asexual stages of T. gondii that drive 

the disease manifestations of toxoplasmosis in intermediate hosts: the tachyzoite 

that defines the acute phase of infection, and the bradyzoite that defines the 

chronic phase of infection. After ingestion of the parasite, most commonly an 

oocyst (sporozoites) or tissue cyst (bradyzoites), the acidic environment of the 

host’s digestive system rapidly releases the encysted parasite that is then able to 

invade the epithelial cells lining the intestine (88). Once inside the epithelial cells, 

the liberated sporozoite or bradyzoite then differentiates into a tachyzoite, initiating 

the acute phase of infection (89). These early stages of infection in a new host are 

not completely defined, but it is known that tachyzoites begin rapidly replicating 

after conversion and will ultimately cross the intestinal epithelia. This process 

occurs by a combination of three routes: 1) tachyzoites invade epithelial cells and 

then exit into the lamina propria where immune cells are recruited, 2) tachyzoites 

migrate between epithelial cell tight junctions without ever entering a cell, or 3) 

immune cells migrate into the intestinal lumen where they are infected by 

tachyzoites and then transport the parasites into the blood for subsequent 

dissemination (90). Regardless of how the parasite encounters the immune 

system, these immune cells are then used as Trojan horses for dissemination 
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throughout the body of the host (91). In the early stages, the parasite can be 

identified in many organs of the new host and throughout its blood flow (92,93). It 

is also by this Trojan horse mechanism that T. gondii has been shown to cross the 

blood brain barrier (94). 

 Repeated rounds of replication, host-cell egress, motility, and invasion define 

the lytic cycle of the tachyzoite (48,95), and the dissemination of the tachyzoite is 

greatly aided by its ability to invade any nucleated host cell. If a naïve mother is 

infected during pregnancy, vertical transmission at this point of infection is possible 

in which tachyzoites can cross the placenta and infect the fetus (64). Depending 

on the trimester of gestation in which this occurs, the results of congenital infection 

can range from mild/unnoticeable (typically third trimester) to premature 

termination of pregnancy (often first trimester) with symptoms of varying severity 

caused by a second trimester infection (3). Children that are infected congenitally 

display a wide variety of neurological symptoms ranging from asymptomatic to 

hydrocephaly, seizures, and mental deficits. Another major clinical manifestation 

of congenital transmission is retinochoroiditis in which toxoplasmic lesions develop 

within the eyes of children approximately 4-8 years after birth (3). In 

immunocompetent hosts, outside of complications regarding vertical transmission, 

the acute phase of infection typically causes very low to mild disease 

manifestations that are self-limited. 

 

1.3.2 The chronic phase of infection  
 

 As immune pressure mounts against the tachyzoite, it begins the process of 

conversion into the slower-growing, persistent bradyzoite (96). The exact process 

by which this occurs is still being defined, but a wide range of stresses induce 

tachyzoite to bradyzoite conversion in vitro including alkaline or acidic stress, 

interferon- and other cytokines, and nitric oxide (96,97). Additionally, cell type and 

host metabolic state appear to play a role in bradyzoite induction in vivo—even 

though T. gondii tachyzoites invade most cell types, bradyzoites within tissue cysts 

are typically found only in long-lived cells such as muscle cells and neurons (98). 

A study examining T. gondii conversion in muscle cells demonstrated that a host 

cell that is withdrawn from the cell cycle, as is often seen in fully differentiated 

neurons and muscle cells, results in stage conversion, although it is not yet clear 

how parasites sense that they are in a terminally differentiated cell (99). 

 Upon bradyzoite conversion, morphological changes within the parasite occur 

that are highlighted in section 1.1.2, including the accumulation of crystalline 

starch-like amylopectin granules (AGs). In addition to these internal morphological 

changes, the PVM surrounding the dividing tachyzoites develops into the tissue 

cyst wall, becoming heavily glycosylated and studded with glycoproteins (100). 

Within the cyst, bradyzoites are present in random assortments of numbers, 

indicating that they no longer divide synchronously (55). While the view of 

bradyzoites has traditionally been that they are inert and largely quiescent, recent 
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data has indicated that bradyzoites do indeed replicate with evidence for varying 

patterns of synchronous, clustered, and sporadic replication (55,101). 

Occasionally, tissue cysts rupture, and bradyzoites can reinvade surrounding cells 

and establish new tissue cysts. It is this process of tissue cyst rupture that is 

believed to keep the immune system alert and primed to their presence, but also 

presents no danger in an immunocompetent host (102). 

 In addition to morphological changes, significant molecular and metabolic 

changes also occur during the conversion. Classically, conversion has been 

monitored with a set of molecular markers (103). For example, tachyzoites express 

a major GPI-anchored protein on their surface known as “surface antigen 1” 

(SAG1) that is downregulated during tachyzoite to bradyzoite conversion 

concurrent with the upregulation of “SAG1-related sequence 9” (SRS9), and there 

are many more such markers that have been extensively described (104). One of 

the major glycosylation markers on the surface of the tissue cyst wall, N-

acetylgalactosamine, has classically been detected with the lectin Dolichos biflorus 

agglutinin (DBA) (100). Additionally, several glycolytic enzymes are encoded by 

multiple isoforms that are differentially regulated in these two stages: lactate 

dehydrogenase 1 (LDH1) and enolase 2 (ENO2) are highly expressed in 

tachyzoites whereas LDH2 and ENO1 are found in bradyzoites (105). Underlying 

the changes in these classical molecular markers are massive transcriptional and 

metabolic changes that are themselves regulated by Apicomplexan specific, plant-

like ApiAP2 transcription factors (106). More recently, a Myb-like transcription 

factor, bradyzoite formation deficient1 (BFD1), was identified as the master 

regulator of differentiation in T. gondii, being both necessary and sufficient for 

conversion (107). While BFD1 was shown to interact with many stage-specific 

genes, its interaction with the AP2 transcription factors remains to be elucidated 

(108).  

 

1.3.3 Bradyzoite reactivation in acquired toxoplasmosis  
 

 In immunocompromised hosts, T. gondii bradyzoites can reactivate into 

tachyzoites resulting in significant damage to the host’s CNS tissue that often 

manifests as toxoplasmic encephalitis (TE) (109). Such damage is the result of an 

uncontrolled tachyzoite lytic cycle in places where quiescent bradyzoites used to 

reside. Early studies of this process first observed these reactivation events in the 

context of cancer treatments (110). Case studies noted changes in patient 

demeanor, speech, and behavior alongside seizures and symptoms of 

encephalitis that began after chemotherapy and steroid treatment, all consistent 

with significant neurological damage. Upon autopsy of patients that presumably 

died from complications related to toxplasmosis, examination of their brains often 

revealed large areas of total necrosis (in one case, a 4 cm clearing was observed). 

In each of these brains, T. gondii tachyzoites were observed surrounding necrotic 

areas, sometimes alongside tissue cysts that had not yet ruptured. Indeed, imaging 
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of such lesions by either magnetic resonance imaging (MRI) or computer 

tomography (CT) is a key diagnostic of cerebral toxoplasmosis in living patients 

(111). Importantly, a study using retrospective analyses suggested that 

immunosuppression was the driver of reactivation and not the various cancers 

these patients had, as non-cancer patients treated with immunosuppressants also 

developed toxoplasmosis (112).   

 At the beginning of the HIV epidemic in the early 1980s, cases of TE increased 

dramatically in people living with HIV/AIDS (113). In the United States, between 

10-40% of people living with HIV/AIDS were chronically infected with T. gondii. 

Thus, the combination of plummeting immune protection and a latent parasitic 

infection presented a situation akin to carrying ticking time bombs in which cyst 

rupture events were not able to be controlled, allowing for reactivation. Indeed, 

almost 100% of toxoplasmosis in people living with HIV/AIDS was due to tissue 

cyst reactivation, as it was very rarely associated with a new infection (114). 

Overall, it was estimated that about 25-50% of patients with AIDS who were 

seropositive for T. gondii would go on to develop TE. By the end of the first decade 

of the epidemic, T. gondii was recognized as being one of the most common 

opportunistic pathogens with clinical manifestations in people living with HIV/AIDS 

(113). While anti-Toxoplasma therapeutics were available during this time, fatality 

rates were still incredibly high for hospitalized patients that received these drugs 

(113). Therefore, significant declines in TE were seen only after anti-HIV combined 

antiretroviral therapy (cART) became available in the mid-1990s. However, it was 

estimated as recently as 2017 that over 13 million people around the world are 

currently co-infected with HIV and T. gondii (115).  

 

1.3.4 Anti-Toxoplasma therapeutic options 
 

 Treatment of toxoplasmosis has historically relied on targeting parasite folate 

synthesis in cases of both acquired and congenital infection (116). The most well-

known T. gondii anti-folate was recognized as an anti-parasitic almost seventy 

years ago and relies on the synergistic effects of combining pyrimethamine and 

sulfadiazine (P/S) (117). Pyrimethamine inhibits dihydrofolate reductase (DHFR), 

and sulfadiazine inhibits dihydropteroate synthetase (DHPS). The combination of 

these two drugs ultimately blocks DNA synthesis in the parasite, but this 

combination also targets metabolically active host tissue. To circumvent this, P/S 

is commonly given with folate supplementation without any decrease the 

antiparasitic effects of P/S (118). Alternatives to this regimen include cotrimoxazole 

as a monotherapy (another antifolate), pyrimethamine in combination with various 

protein synthesis inhibitors (spiramycin, clindamycin, clarithromycin, and 

azithromycin) or in combination with a T. gondii-specific electron transport chain 

inhibitor (atovaquone) (116). None of these regimens, however, have been 

demonstrated to be more effective than P/S as it is still considered the gold 

standard by which all other anti-Toxoplasma therapeutics are judged (119). 
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 Spiramycin is an incredibly important option in the clinic for pregnant 

individuals. Because pyrimethamine has been demonstrated to be teratogenic, an 

acute infection that is acquired during pregnancy is instead treated with spiramycin 

which uniquely accumulates in the placenta without crossing it, thus providing a 

difficult barrier for T. gondii to overcome (120). If, however, the fetus itself should 

become infected at any time during pregnancy, it is recommended that the 

newborn remain on P/S for the 1-2 years after birth (121).  

 While P/S is currently the first-line option, it also has the potential to result in 

severe toxicity in patients related to its ability to cause bone marrow suppression 

and dermatologic complications. Moreover, sulfonamides occasionally result in 

allergic reactions. In fact, adverse events related to these drugs result in high rates 

of discontinuation (up to 32% in some studies) and the need to switch to drugs that 

have been considered as less effective (113). All of this taken together indicates 

that the current options for treating toxoplasmosis are toxic and old. Moreover, they 

are only effective against tachyzoites. There are currently no approved drugs that 

target bradyzoites or prevent their reactivation (122), although there is an ongoing 

and considerable effort to develop them (123). Clearly, there is a continued need 

for the exploration of drug development against T. gondii as the only drugs 

developed against this parasite are least useful in those who need them the most.  

 

1.4 Amylopectin granules (AGs): a mysterious T. gondii polysaccharide  

 

 Based on the function of polysaccharides elsewhere throughout nature, AGs 

are believed to play a role in energy storage that can be tapped into for bradyzoite 

replication, persistence, transmission, and reactivation into tachyzoites. A 

complete understanding of AGs and their utilization across the asexual cycle still 

awaits a complete characterization. This section will describe the first observations 

of this glucan, and the following sections will describe the modern understanding 

of AGs.   

 

1.4.1 The early years 
 

 The first studies documenting a glucan in T. gondii bradyzoites were actually 

studies characterizing the tissue cyst wall. At this time, there was a debate 

surrounding the nature of the cyst wall, and if T. gondii formed true cysts (i.e., a 

cyst generated wholly by the parasite) or “pseudocysts” (i.e., a cyst derived from 

host cell components). One study, in fact, proposed avoiding this debate altogether 

by naming the cyst a “terminal colony” (124). Thus, the first studies noting the 

glucan within the bradyzoites were focused on demonstrating that the cyst wall is 

a distinct structure by showing that it is argyrophilic (staining with silver) and that it 

stains faintly with periodic acid-Schiff (PAS), and it was also noted that the 

bradyzoites within are PAS+ as well (containing a polysaccharide) (125,126). This 

was the first time a glucan had been described in bradyzoites, and it was termed 
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“glycogen” at the time (126). In 1958, a study used these characteristics to 

definitively distinguish T. gondii tachyzoites in their “pseudocysts” (the term PV 

was not in use yet) from bradyzoites that occupied a true cyst (127).  

 The first electron micrographs of T. gondii tissue cysts allowed visualization of 

the glucan within bradyzoites [seen in studies (128,129)]. It is important to note, 

however, that in these two studies, there was no mention of the glucan within 

bradyzoites. In the context of discussion in the field with regards to pseudocysts 

versus true cysts, these studies were more concerned with highlighting the unique 

nature of the cyst wall. In fact, structures that appear to be a glucan within 

bradyzoites were either not recognized at all (129), or described as “polygonal 

inclusions” and termed either “vacuoles” or “precursor vacuoles” (128). Indeed, 

studies on another Apicomplexan parasite were needed to characterize this glucan 

within the encysted parasites.  

 

1.4.2 Recognition of amylopectin granules in another coccidian parasite 
 

 In parallel with discoveries being made in T. gondii, a detailed characterization 

of Eimeria tenella, a closely related parasite that causes coccidiosis in chickens, 

was also occurring. Of note, E. tenella gametocytes were recognized in the 1940s 

as containing a glucan that was then also described as glycogen by iodine staining 

(130). However, 25 years later the polysaccharide from E. tenella sporozoites and 

merozoites was more thoroughly characterized using biochemical and PAS-

adapted electron microscopy techniques (131). The polysaccharide was isolated 

using the Pflüger method—parasites were boiled in 30% KOH and then the glucan 

was precipitated using ethanol. Acid hydrolysis of the isolated polysaccharide 

revealed that it contained only glucose, and -amylase/debranching enzyme 

treatment demonstrated the presence of -1,6-glycosidic bonds. Using the 

products of these enzymatic digests, it was estimated that the average glucan 

chain length was 12-17 glucose units, slightly longer than glycogen and more 

similar to amylopectin (these enzymes, glucans, and their linkages are described 

in detail in section 1.5).  

 While such a study was not conducted in T. gondii at the time, electron-lucent 

inclusions seen in electron micrographs of T. gondii within both sporozoites 

(132,133) and bradyzoites (134) were beginning to be labeled as polysaccharide 

granules (PGs). Ultimately, by the end of the 20th century, these PGs were labeled 

as amylopectin granules (AGs) even without a proper biochemical characterization 

(15). The first study that verified the polysaccharide nature of these inclusions was 

performed in 2003 using a TEM technique in which ultra-thin sections of resin- 

embedded T. gondii tissue cysts were stained with a PAS-based techniques 

compatible with EM (135). These studies demonstrated that the electron lucent 

structures that had long been visualized in T. gondii were indeed a polysaccharide 

by their dark gray staining.   
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1.5 Structure, synthesis, and degradation of glucose-storage molecules 
 

 More recently, AGs in T. gondii have been described biochemically and much 

of their enzymology is beginning to be dissected. This section will first provide a 

brief overview of two of the major storage glucans found across the plant and 

animal kingdoms: starch and glycogen, respectively. The structure, synthesis, and 

degradation of each will also be described. Finally, the first biochemical studies of 

AGs in T. gondii will be described in the context of these two major storage 

macromolecules alongside a description of the specific enzymology related to AG 

turnover. 

 

1.5.1 Biochemical structure of starch and glycogen 
 

 Starch—Despite its seemingly simple composition as a homopolymer of 

glucose, starch is an incredibly complex energy storage molecule synthesized 

primarily by plants, algae, and some protists. Its complex and highly regulated 

structure results in its characteristic semicrystalline nature [thoroughly reviewed in 

ref. (136)]. Starch is practically unlimited in size, ranging from 500 nm up to 100 

m in some roots (137). In fact, the size of starch granules appears limited only by 

the physical constraints imposed by the organelle in which it resides and the 

number of starch granules surrounding it (138). Fundamentally, glucose units 

within starch are linked through either -1,4 or -1,6 glycosidic bonds to form both 

linear and branched glucose connections, respectively (Figure 1.3a).  

 Starch is composed of two types of glucans: amylose and amylopectin (139). 

Amylose, the simpler molecule of the two, is primarily linear with many fewer 

branchpoints and thought to serve more of a space-filling role within the starch 

granule (140). Amylopectin, on the other hand, is a moderately branched glucan 

that is the primary constituent of starch, making up approximately 70-90% of the 

granule (141). The -1,6 branchpoints within amylopectin make up approximately 

5% of its glycosidic bonds, which are placed non-randomly throughout the 

molecule and tend to be found in clusters (142). This clustered pattern allows for 

long uninterrupted chains, with an average length of 20-25 glucose units, to wind 

around their neighbors, forming helices that exclude water and contribute to the 

crystallinity of starch (140) (Figure 1.3b). The chains themselves also pack with 

each other in parallel, and their arrangements (also known as “allomorphs”) are 

usually one of two types: A-allomorphs that are composed of densely packed 

helices and exclude more water, and B-allomorphs that are arranged in a 

hexagonal lattice, creating space for more water between the neighboring helices 

(143) (Figure 1.3b). Importantly, A-allomorphs are more often associated with 

“storage starch” that is found in non-photosynthetic plant tissue, and B-allomorphs 

are more frequently found in the “transitory starch” of leaves and other 

photosynthetic tissue (144).  
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 Glycogen—Like starch, glycogen found in animals is a branched glucan 

connected through -1,4 and -1,6 glycosidic bonds. Unlike starch, however, 

glycogen contains shorter glucan chains (an average of 13 glucose units per chain) 

and is more frequently branched with -1,6 branchpoints making up approximately 

8% of total glycosidic bonds (145). Moreover, these branches are evenly 

distributed throughout the molecule, preventing extensive glucan helix formation 

as seen in starch (146). Combined, these properties result in the increased water-

solubility of glycogen relative to amylopectin (147). Additionally, the evenly 

distributed branching pattern of glycogen results in a molecule that is organized 

into tiers defined by each new set of branches on each chain (Figure 1.3c) 

[modeled in (148) based on the crystal structure of maltoheptaose, and reviewed 

alongside other competing models in (149)]. This tiered structure imposes a 

physical limit on the size of glycogen of 12 tiers (roughly 55,000 glucose units), or 

about 44 nm in diameter. This limit is due to an exponential increase in glucan 

chains within each tier that would lead to eventual molecular overcrowding and 

subsequent enzyme inaccessibility in a theoretical 13th tier (150,151). These 44 

nm glycogen molecules are referred to as -particles and can aggregate into larger 

units known as -particles that are seen primarily in the liver (152). It has been 

speculated that these differing organizations of glycogen result in either slower (-

particle) or faster (-particle) degradation due to their surface area differences 

(153). A recent study found that glycogen contains covalently bound glucosamine 

as well (154). Strikingly, glucosamine levels varied depending on the source of the 

glycogen, with glycogen from liver, muscle, and brain tissue containing 0.1%, 1%, 

and 25% glucosamine, respectively. The source of glucosamine in glycogen was 

demonstrated to be glycogen synthase itself, as it was demonstrated to be capable 

of incorporating glucosamine, in addition to glucose, into glycogen. 

 

1.5.2 Glucan synthesis 
 

 Starch—In plants and green algae, starch synthesis occurs entirely in the 

chloroplast and begins with the synthesis of ADP-glucose. First, 

phosphoglucomutase (PGM) converts glucose-6-phosphate (G6P) to glucose-1-

phospahte (G1P). G1P is then a combined with ATP by ADP-glucose 

pyrophosphorylase (AGPase) to form the activated sugar nucleotide, ADP-glucose 

(155) (Figure 1.4, right side). This reaction is made effectively irreversible by the 

simultaneous release of pyrophosphate that is rapidly hydrolyzed within the cell, 

preventing the reverse reaction from occurring (156). The formation of ADP-

glucose, therefore, considered the committed step in starch synthesis under 

physiological conditions (157).  

 To synthesize amylopectin, starch synthase (SS) adds the glucose moiety from 

ADP-glucose onto the non-reducing end of an existing glucan chain by forming an 

-1,4 glycosidic bond (157). Branching enzymes (BEs) work along SS, creating 

branch points by removing -1,4 linked chains and reattaching them at C6 
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positions to form -1,6 glycosidic bonds, maintaining the branching pattern 

characteristic of amylopectin (158). Finally, debranching enzymes (DBEs) 

participate in perfecting the amylopectin structure by removing excess branches 

(159). Careful curation of these branchpoint locations results in their clustering 

such that the long, unbranched chains can wind around each other (summarized 

Figure 1.4, right side). The synthesis of linear amylose relies solely on the action 

of granule-bound starch synthase (GBSS) that also utilized ADP-glucose (160). In 

plants, many of these enzyme activities (SS, BE, and DBE) are encoded by 

multiple isoforms such that they each have subtly, and sometimes dramatically, 

different functions.  

 Glycogen—In animals and fungi, glycogen synthesis is initiated in the cytosol 

by the protein glycogenin (161). Glycogenin functions as a dimer and first 

glycosylates itself before extending a glucose chain of about 8 glucoses from this 

initial O-linked glucose (162). Glycogenin uses a different sugar nucleotide, UDP-

glucose that is generated by UDP-glucose pyrophosphorylase (UGPase) for both 

autoglycosylation and glucan chain synthesis (163). This initial protein-linked chain 

acts as a primer for glycogen synthase (GYS), a highly regulated protein with two 

isoforms found either in the muscle/brain (GYS1) or liver (GYS2), that elongates 

glucan chains by forming additional -1,4 glycosidic bonds using UDP-glucose as 

a substrate (164). Much like starch synthesis, a glycogen branching enzyme (GBE) 

is required to curate the structure of the macromolecule by cleaving -1,4 

glycosidic bonds and attaching the cleaved chain (a minimum of six glucose units) 

at the C6 of a nearby chain forming an -1,6 glycosidic bond (165). It is worth 

noting that branching enzymes, through their role in creating distinct branching 

patterns, are believed to be largely responsible for the crystallinity and solubility of 

starch and glycogen, respectively (166).  

 

1.5.3 Glucan degradation 
 

 Starch—insoluble starch degradation is facilitated by a cycle of direct, 

reversible glucan phosphorylation. Phosphate is directly esterified to the C6 and 

C3 hydroxyl groups of glucosyl moieties within glucan chains by the glucan, water 

dikinase (GWD) and the phosphoglucan, water dikinase (PWD), respectively 

(167,168) (Figure 1.4, left side). The addition of phosphate disrupts the crystalline 

helices on the starch surface, allowing further enzyme access (169,170). 

Estimates of starch phosphate content ranges from one phosphate group per 100 

or 1000 glucosyl units in Arabidopsis leaf starch and potato tuber starch, 

respectively (171). After the addition of phosphate, endo- and exo-acting amylases 

(- and -amylases, respectively) are then more easily able to cleave -1,4 

glycosidic bonds, releasing maltose (-amylase) and longer, branched 

oligosaccharides (-amylase) (172). Eventually, the phosphate groups added by 

GWD and PWD becomes a steric hindrance to these amylases, and a glucan 
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phosphatase is required to remove the phosphate to allow for further rounds of 

degradation (173).  

 In plants, these glucan phosphatases are known as starch excess4 (SEX4) 

(174) and like sex four2 (LSF2) (175). Glucan phosphatases employ a wide variety 

of glucan binding platforms that are discussed extensively in section 3.1. As a 

result of their unique binding platforms, SEX4 dephosphorylates both the C6 and 

C3 positions (176), but prefers C6, while LSF2 exclusively dephosphorylates the 

C3 position (177). Branch points in addition to phosphate groups also inhibit the 

actions of amylases, so DBEs are also needed in starch degradation to cleave -

1,6 glycosidic bonds in addition to their role in synthesis (summarized in Figure 

1.4, left side). In starch degradation, these are typically direct debranching 

enzymes, such as isoamylase, that remove an entire branch in one step. Other 

enzymes can also act on starch, such as starch phosphorylase (-glucan 

phosphorylase) that releases G1P, and disproportionating enzyme (D-enzyme) 

that can transfer maltosyl units from one -1,4 glycosidic linkage to another, 

potentially creating better substrates for enzymes in both synthesis and 

degradation (178).  

 Glycogen—Like its synthesis, glycogen degradation can occur in the cytosol, 

but also occurs through autophagy in the lysosome (termed “glycophagy”) (146). 

In the cytosol, degradation occurs by phosphorolysis through the actions of 

glycogen phosphorylase. There are three isoforms of phosphorylase throughout 

the body, wish muscle, liver, and brain isoforms represented highly in their 

namesake tissue (179). Glycogen phosphorylase transfers glucose from glycogen 

to inorganic phosphate, forming G1P. In the reverse pathway to synthesis, G1P 

can then be funneled into glycolysis through the action of PGM that converts G1P 

into the glycolytic intermediate G6P. Glycogen phosphorylase can also catalyze 

the reverse reaction by adding the glucose group from G1P back into glycogen 

when G1P concentrations are high (180). Importantly, glycogen phosphorylase is 

unable to release glucose from glycogen within 4 glucosyl residues of a 

branchpoint, so glycogen debranching enzyme (GDE) is required to transfer a 

glucan chain from a branchpoint onto the reducing end of a linear chain, extending 

the substrate for phosphorylase to act upon (181). GDEs first transfer a chain 

consisting of three glucosyl units using its transferase activity, leaving a single 

glucose attached at the branchpoint. It then releases a free glucose by hydrolyzing 

using amylo--1,6-glucosidase activity, and is thus known as an indirect 

debranching enzyme (182).  

 Like starch, glycogen also contains covalently bound phosphate, ranging from 

one phosphate per 500-5000 glucosyl units depending on the glycogen source 

(183). The function of the phosphate in glycogen is not entirely clear, and its origins 

are also unclear as no glucan kinase has been identified in animals. Regardless, 

animals contain one glucan phosphatase known as laforin, encoded by the EPM2A 

gene (184). Mutations in EPM2A have been extensively classified and result in the 

neurodegenerative childhood dementia and progressive epilepsy, Lafora disease 
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(LD; discussed more below) (185), in which a defining characteristic is 

hyperphosphorylated glycogen containing much longer glucan chains than normal 

glycogen (186). These aberrant glycogen molecules are known as lafora bodies 

(LBs) and are more like amylopectin in size and their insolubility (187). Curiously, 

mutations in another gene, EPM2B that encodes the E3 ubiquitin ligase known as 

malin, also leads to LB formation (188). Malin appears to play a role in glycogen 

metabolism by forming a complex with laforin that targets other enzymes involved 

in glycogen metabolism for ubiquitination (189,190). However, the precise 

functions of laforin and malin, their role in glycogen metabolism, and the 

relationship between phosphate content and chain length all remain open 

questions.  

 It has more recently been suggested that phosphate is occasionally 

incorporated into glycogen through a rare glycogen synthase side reaction (191), 

although this claim has been the subject of debate (183,192). Regardless, 

phosphate may serve as a molecular method by which to date glycogen that has 

been broken down and resynthesized several times, resulting in longer chains 

(193). Thus, a role for glycogen-bound phosphate has been proposed in the 

second major glycogen degradation pathway: glycophagy. Such a mechanism was 

elegantly detailed in a recent review (194) and is briefly summarized here: as an 

older glycogen molecule accumulates more phosphate from repeated rounds of 

synthesis and develops longer glucan branches (which laforin has been shown to 

prefer), laforin recruits malin to those glycogen molecules nearing their point of 

precipitation into LBs, malin ubiquitinates nearby proteins via K63 linkages, this 

attracts autophagy machinery, and glycogen is targeted for the lysosomal 

compartment. Within the lysosome, lysosomal acid -glucosidase (GAA) 

hydrolyzes both -1,4 and -1,6 glycosidic bonds, rapidly releasing free glucose 

(195).  

 

1.5.4 T. gondii glucan structure  
 

 The first biochemical characterizations of the glucan within T. gondii were 

performed by Dr. Stanislas Tomavo’s lab (40,196,197). Importantly, generation of 

the T. gondii glucan in each of these studies utilized acid stress on the RH strain 

of T. gondii by growing it in HepG2 cells that naturally acidify their own cell culture 

media. It was demonstrated by TEM that parasites under acid stress were 

producing polysaccharides in their cytoplasm (197), but revealed by western blot 

analysis that these acid-stress parasites retained their tachyzoite identify, i.e., 

these parasites had not converted to bradyzoites. RH parasites have a low 

bradyzoite conversion rate, so this finding was not surprising. The presence of an 

abundance of crystalline AGs in tachyzoites, however, was not something that had 

been previously demonstrated. At this point, this set of studies diverged in how the 

polysaccharide was purified and subsequently analyzed.  
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 In the first two studies (40,196), the polysaccharide was purified under mild 

conditions by disrupting the tachyzoites with a French press, centrifuging the lysate 

to pellet insoluble material containing the glucan, and then isolating the glucan by 

passing the insoluble material over a 90% Percoll gradient. Only something like 

starch would be able to pellet through such a dense gradient, as water-soluble 

glycogen requires ultra-centrifugation for pelleting even in the absence of Percoll 

(198). Both studies then examined the chain lengths of the uncharacterized 

polysaccharide by first treating the glucan with isoamylase that cleaves -1,6 

glycosidic bonds, only leaving linear chains of glucose. The lengths of these chains 

were then analyzed utilizing high performance anion-exchange chromatography 

coupled with pulsed amperometric detection (HPAEC-PAD) that relies on the 

increasingly negative charge of successively longer glucose chains to separate 

them for detection, or by using capillary electrophoresis (CE), another gel-filtration 

based technique that separates glucan chains on the basis of charge. In both 

cases, the chain length distributions (CLDs) were found to be more similar to plant 

amylopectin than to animal glycogen with the average chain length being 8-12 

glucosyl units but ranging up to 36. X-ray analysis revealed that this glucan was 

also the more hydrated B-type allomorph, a characteristic typical of transitory 

starch found in leaves. Moreover, NMR and size-exclusion analysis of the 

undigested glucan demonstrated that no amylose (unbranched chains of glucose) 

was present in these molecules. Thus, the T. gondii glucan had been characterized 

as true amylopectin, finally warranting the name “amylopectin granules.” 

 In a follow up study from the same lab (197), AGs were purified from T. gondii 

tachyzoites using a harsher method—parasites were lysed in hot water, 

contaminants were removed by repeated phenol and chloroform/methanol 

washes, and AGs were once again analyzed using HPAEC-PAD. Interestingly, the 

CLD shifted toward shorter chain lengths in this study, with the majority of chains 

falling into the shorter (DP7) category. However, there were still a large number 

of long chains (8-16). These differences were attributed to the harsher purification 

technique that might have resulted in a disruption of the longer glucan chains. 

Importantly, there was a very low proportion of -1,6 linkages (<4%) relative to the 

linear -1,4 glycosidic bonds as determined by methylation analysis, thus 

confirming the amylopectin nature of this glucan.  

 

1.5.5 Synthesis and degradation of AGs in T. gondii  
 

 Since the first biochemical characterization of AGs in T. gondii, most enzymes 

related to AG synthesis and degradation have been identified, and are summarized 

in Table 1.1 and visualized in Figure 1.4 (199). Notably, many of these enzymes 

are expressed in tachyzoites, where AGs have not been observed by EM 

(ToxoDB.org). This section will serve to highlight these T. gondii enzymes in the 

context of the enzymes previously introduced in starch/glycogen synthesis and 

degradation. All enzymes involved in AG synthesis and degradation were 
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determined to be “dispensable” by a genome wide CRISPR knockout screen, 

meaning that loss of any one of these genes does not impose an appreciable 

fitness defect on the parasite (10). It should be noted, however, that this screen 

was conducted under ideal, nutrient-replete cell culture conditions in tachyzoites 

only, and following its publication, many of these AG-related genes have been 

demonstrated to be critical virulence and cyst-forming factors in mice.  

 Synthesis—T. gondii encodes the enzymes needed to produce UDP-glucose: 

two PGM isoforms (PGM1/2) and a UGPase (ToxoDB.org). PGM1/2 in T. gondii 

have been characterized for their parafusin-related activity in calcium signaling and 

secretion, and PGM1 was ultimately renamed parafusin-related protein 1 (PRP1) 

(200). It was shown the PGM1/2 were truly dispensable and simultaneous deletion 

of both genes had no effect on parasite virulence in mice. Deletion of PRP1 did, 

however, result in defective microneme secretion in response to the calcium 

ionophore A23187, suggesting a potential link between amylopectin metabolism, 

calcium signaling, and egress-related secretion. The UGPase has not been 

studied, but it has been confirmed that T. gondii primarily incorporates glucose 

from UDP-glucose into AGs (40). Despite synthesizing crystalline amylopectin, T. 

gondii also expresses a glycogenin orthologue that was also characterized outside 

of the glucan synthesis pathway in its role as a glycosyltransferase that acts on 

Skp1 [(201) that was originally published under a different title (202)].  

 The glucan synthase (TgSS) in T. gondii is referred to interchangeably as 

“starch synthase” and “glycogen synthase” in the literature, and its knockout 

resulted in loss of glucan synthesis in T. gondii tachyzoites and bradyzoites, 

verifying its function (203). TgSS parasites also displayed a mild growth defect in 

cell culture tachyzoites, lower tissue cyst numbers in mouse brains, and a 

decreased ability to reactivate from bradyzoites back into tachyzoites in vitro. 

Moreover, SS is only found in other coccidian parasites that synthesize starch-like 

polysaccharides such as Neospora and Eimeria. The role of TgSS and what it 

reveals about the role of AGs in central carbon metabolism will be discussed in 

section 1.6.3. T. gondii also encodes two putative branching enzymes 

(ToxoDB.org), but how they specifically remodel the branchpoints in AGs remains 

to be determined. Finally, as would be expected, T. gondii does not encode a 

granule-bound starch synthase (GBSS), an amylose synthesizing enzyme, which 

is consistent with the observation that it synthesizes a true amylopectin containing 

no amylose. 

 Degradation—T. gondii encodes all the enzymes needed in AG degradation 

alongside the cycle of reversible phosphorylation that facilitates degradation with 

some key differences. As in plants, T. gondii encodes both a glucan phosphatase 

and a glucan, water dikinase. The glucan phosphatase was previously named 

TgLaforin based on its domain orientation (204,205) (Figure 1.5). Mammalian 

laforin contains a carbohydrate binding module (CBM) N-terminal to its dual-

specificity phosphatase (DSP) domain, while the plant glucan phosphatase SEX4 

is arranged in the opposite orientation with a DSP N-terminal to its CBM (Figure 
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1.5). Moreover, the CBMs found in laforin and SEX4 are from different families, 

with laforin possessing a CBM20 and SEX4 possessing a CBM48. Accordingly, T. 

gondii laforin, or TgLaforin, contains a unique CBM20 N-terminal to its DSP domain 

like human laforin (this CBM20 is dissected extensively in section 3.2.3 and 3.2.4). 

Opposing TgLaforin activity is a GWD orthologue, TgGWD, containing at least two 

CBM45 domains and a PPDK domain (discussed in section 4.1 and 4.2). Neither 

of these proteins had been characterized in vivo, or extensively in vitro, until the 

writing of this dissertation. T. gondii does not possess orthologues to the other 

plant-like glucan phosphatase, LSF2, to the C3-specific glucan dikinase PWD, or 

to the E3 ubiquitin ligase, malin, found in humans.  

 In addition to the enzymes involved in reversible phosphorylation, T. gondii also 

encodes the enzymes needed to release glucose from AGs. Debranching enzyme 

was characterized in T. gondii (named “Aa16GL”) in two Aa16GL lines of 

parasites—one in Type I parasites (RH strain) and one in Type II parasites (Pru 

strain). In both cases, parasites displayed significantly slower growth as evidenced 

by plaque assays with tachyzoites but appeared to have no obvious morphological 

defects related to AGs. Moreover, Aa16GL parasites displayed no acute 

virulence defect in mice but did form significantly fewer cysts.  

 T. gondii also contains two classes of enzymes that cleave glycosidic bonds: 

-amylases (endo-acting) and a glycogen phosphorylase ortholog, but T. gondii 

does not contain -amylases (exo-acting). Interestingly, loss of either -amylase 

or glycogen phosphorylase (TgGP) activity resulted in overaccumulation of AGs in 

both tachyzoites and bradyzoites, and, once again, lower cyst formation in mice 

while not affecting the acute phase of infection (206). Interestingly, the post-

translational regulation of TgGP via phosphorylation was determined by mutating 

a phospho-site, S25, to either an alanine (S25A; unable to be phosphorylated) or 

a glutamate (S25E; constitutively “phosphorylated”). The phosphomimetic S25E 

displayed no AG accumulation or cyst formation penalty compared to WT, but the 

S25A mutant resulted in both AG-excess and a significantly lower cyst burden 

mice, demonstrating the importance of this phosphorylation site, possibly by the 

kinase CDPK2 (discussed below), in the regulation of AG metabolism.  

 

1.5.6 The hybrid nature of T. gondii AG metabolism and its red algal lineage 
 

It is worth noting that enzymes involved in T. gondii AG metabolism are either 

plant- or animal-like (Figure 1.6). T. gondii utilizes UDP-glucose (not ADP-

glucose) to synthesize AGs in its cytoplasm (not in its plastid), which are both 

features of animals. The end product, however, is a crystalline AG with low 

branching frequency, which is plant-like. With regards to enzymology, the cycle of 

reversible phosphorylation includes a glucan, water dikinase (plant-like) opposing 

a laforin-like glucan phosphatase (animal-like). T. gondii also encodes a 

glycogenin ortholog (animal-like) whose activity relative to AG metabolism has not 

been established. It does not appear that T. gondii possesses the glycogen-
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degrading lysosomal enzyme GAA (animal-like), which implies that glycophagy 

may not occur in this parasite.  

 This unique combination of characteristics from different kingdoms of life 

provides evidence for its red algal ancestry. A T. gondii ancestor is believed to 

have participated in a secondary endosymbiotic event that resulted in its 

obtainment of the apicoplast. While the cytoplasm of the ancestral red alga was 

lost, its plastid remained in the form of the four-membraned apicoplast, a result of 

the original double-membraned chloroplast obtaining two additional membrane 

leaflets upon its engulfment. Thus, like T. gondii, red algae, such as 

Cyanidioschyzon merolae, also display characteristics of a plant/animal hybrid 

starch machinery as they also synthesize an amylopectin-like molecule in their 

cytoplasm with UDP-glucose, not in their plastids with ADP-glucose (207). In 

addition, C. merolae and T. gondii share the similarity that both of have highly 

simplified mechanisms of starch synthesis and degradation when compared to 

plants or green algae where 30-40 genes have been identified in starch turnover 

(199). C. merolae and T. gondii each contain 15 or fewer genes in synthesis and 

degradation combined. As an example of the simplification of starch synthesis in 

these unicellular organisms, Arabidopsis thaliana (representative of land plants) 

and Chlamydomonas reinhardtii (representative of green algae) contain 5 and 7 

starch synthases, respectively, whereas C. merolae and T. gondii only contain 1 

starch synthase each. Moreover, land plants and green algae also contain GWD 

and PWD along with SEX4, whereas both C. merolae and T. gondii contain only 

GWD opposing a laforin orthologue.  

 

1.6 A new role for AGs in T. gondii tachyzoite metabolism 
 

 Until recently, a role for AGs in tachyzoites had not been considered. 

References to AGs in early literature typically note their abundance in bradyzoites 

by TEM, and typically noted their relative absence/rarity in tachyzoites, despite the 

fact that tachyzoites were observed to stain with the PAS, the glucan stain, as early 

as 1956 (125). This section will serve to highlight the recent recognition that AGs 

play a role in tachyzoite central carbon metabolism. As such, an overview of T. 

gondii metabolic concepts will first be presented, followed by a recent 

understanding of AGs in tachyzoite metabolism.  

 

1.6.1 General metabolic themes in T. gondii  

 

 T. gondii central carbon metabolism is largely intact as it encodes a complete 

set of enzymes needed to fuel glycolysis (208), gluconeogenesis (209-211), the 

pentose phosphate pathway (PPP) (212), the TCA cycle (ToxoDB.org), and 

oxidative phosphorylation (OX-PHOS) (213). Major metabolites and enzymes in 

these pathways discussed in this section are illustrated in Figure 1.7. Several 

enzymes that participate in these pathways are encoded by multiple genes that 
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are regulated in a stage specific manner such as lactate dehydrogenase (214-216) 

and enolase (217,218). Moreover, while tachyzoites utilize glycolysis and the TCA 

cycle, there is evidence that bradyzoites downregulate mitochondrial metabolic 

pathways such as the TCA cycle and OX-PHOS, and therefore depend more on 

glycolysis (105,219). The evidence for this, however, is largely based on in vitro 

bradyzoite conversion that results from treatment with oligomycin, a mitochondrial 

ATP synthase inhibitor (53). Tachyzoites, on the other hand, have been shown to 

be dependent on a functional TCA cycle, as inhibition of aconitase with sodium 

fluroacetate (NaFAc) results in complete inhibition of tachyzoite growth (220).  

 There are key differences, however, in T. gondii central carbon pathways from 

conventional pathways. For example, T. gondii encodes a pyruvate 

dehydrogenase (PDH) complex that resides in its apicoplast, but does not encode 

a mitochondrial PDH isoform for the conversion of pyruvate to acetyl-CoA to enter 

the TCA cycle. Only relatively recently was it discovered that the mitochondrial 

branched chain ketoacid dehydrogenase (BCKDH; Figure 1.7) could perform this 

function, allowing for glucose-derived carbon to flow from glycolysis into the TCA 

cycle (221). T. gondii also encodes a plant-like sedoheptulose bisphosphatase not 

found in mammals that provides an alternative route for incorporation of glycolytic 

carbon into the PPP (222). Finally, T. gondii does not encode a standard OX-

PHOS pathway found in mammals as it lacks a Type I proton-pumping NADH 

dehydrogenase (complex I), instead encoding for two non-proton pumping Type II 

NADH dehydrogenases (223). Such differences between pathways make for 

attractive drug targets (224). 

 

1.6.2 Glucose and glutamine metabolism 
 

 T. gondii is both flexible with its utilization of the carbon backbones of glucose 

and glutamine and also dependent on these two molecules to fuel its central 

carbon pathways. This was first demonstrated by the knockout of the only plasma-

membrane glucose transporter in T. gondii, TgGT1 (Figure 1.7) (225). 

Surprisingly, TgGT1 tachyzoites only demonstrated a moderate growth penalty, 

forming plaques in a host-cell monolayer ~70% the size of WT parasites. This was 

shown to be both the result of a slower replication rate and almost completely 

abolished extracellular motility that was ~10% of the WT level. Importantly, these 

defects could be replicated in WT parasites by starving them of glucose. The 

motility defect could be rescued in TgGT1 parasites with glutamine 

supplementation, suggesting that T. gondii can utilize glutamine to substitute for 

glucose in times of nutrient starvation.  

 These observations were expanded upon in a follow-up study that used stable 

isotope labeling of TgGT1 parasites with both 13C-glucose and 13C-glutamine to 

tease out the precise metabolic contributions of glucose and glutamine (226). In 

TgGT1 parasites, incorporation of exogenous glucose into glycolytic, PPP, and 

TCA pathways was significantly decreased as would be expected. Importantly, 



 
 

24 

incorporation of 13C-glutamine was highly elevated in TgGT1 parasites 

throughout all of the aforementioned pathways, suggesting that T. gondii increases 

flux of glutamine into central carbon metabolism through glutaminolysis and 

gluconeogenesis (Figure 1.7; red arrows) (209,220). Glutaminolysis in T. gondii 

was shown to be unique in that it can utilize a GABA shunt whereby glutamine is 

converted into GABA and ultimately incorporated into the TCA cycle by conversion 

into succinate, providing a two routes including the conventional funneling of 

glutamine into -ketoglutarate (Figure 1.7) (220). Depletion of glutamine from 

TgGT1 tachyzoites resulted in highly attenuated growth, the inability to survive 

extracellularly for any extended period, and an impaired ability to invade host cells. 

A complementary study was performed in which loss of the mitochondrial 

gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (TgPEPCK) that 

converts oxaloacetate into phosphoenolpyruvate, was examined (Figure 1.7)  

(210). Tachyzoites tolerated loss of TgPEPCK with no gross growth defects in cell 

culture, but knockdown of TgPEPCK resulted in a decreased flux of 13C-glutamine 

through gluconeogenesis. Consistent with this, TgGT1 parasites were unable to 

tolerate simultaneous knockdown of TgPEPCK, as this results in a complete loss 

of carbon flow through both glycolysis and gluconeogenesis.  

 Because TgGT1 parasites could theoretically retain the ability to operate 

glycolysis, another study examined “glycolysis deficient” parasites by knocking out 

hexokinase, “Tghk” (Figure 1.7)  (211). Tghk parasites largely recapitulated the 

phenotypes seen in the TgGT1 strain—a moderate growth defect, upregulation 

of gluconeogenesis, and an increased dependence on glutamine. While the 

previous studies did not show how loss of glycolysis might impact virulence in 

mice, this study demonstrated that Tghk mutants remained virulent in mice, but 

only at a high parasite inoculum. Moreover, they were severely compromised in 

their ability to form cysts. Interestingly, this study also demonstrated that inhibition 

of glutaminolysis with a glutamine analogue, azaserine, was detrimental not only 

to Tghk mutants, but also to WT parasites. Thus, glutamine appears to be an 

essential nutrient, even in the presence of glucose.  

 Similar models have been proposed in these studies regarding parasite 

utilization of glucose and glutamine (210,211). Under normal conditions, T. gondii 

utilizes glucose to fuel glycolysis and the first reactions of the TCA cycle, and 

glutamine-derived-carbon to fuel the remainder of the TCA cycle (Figure 1.7; 

glucose fueled reactions: blue; glutamine fueled reactions: red). However, if 

deprived of either nutrient, the parasite demonstrates plasticity in its nutrient 

utilization. Under glutamine deprivation, the parasite funnels glucose-derived 

carbon through glycolysis into the TCA cycle to make up for the loss of glutamine. 

Under glucose deprivation, T. gondii utilizes glutaminolysis to fuel the TCA cycle 

through glutamine conversion to either -ketoglutarate or succinate via the GABA 

shunt to then supply carbon to the glycolytic reactions via gluconeogenesis through 

functional PEPCK, pyruvate carboxylase (TgPyC), and fructose-6-phosphate 
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bisphosphatase (FBPase). Moreover, T. gondii growth is severely impacted in the 

absence of both nutrients, but not completely ablated.  

 Interestingly, it appears that while T. gondii can tolerate absolute glucose 

starvation (as evidenced by TgGT1 parasites), it cannot tolerate total glutamine 

starvation via pharmacological methods (211). This suggests that host cells 

generate glutamine when it is removed from the media in “glutamine starvation 

experiments” that the parasites are ultimately able to scavenge, explaining their 

ability to survive without supplemented glutamine. The reason underlying this is 

unclear, but could be due to nitrogen deprivation in glutamine’s absence or its 

importance in protein synthesis as demonstrated by glutamine-derived carbon’s 

incorporation into protein by 14C-labeling (226). Notably, a glutamine transporter in 

T. gondii has not yet been identified (227).  

 

1.6.3 A new understanding of AGs in T. gondii metabolism 
 

 Outside of applying acid stress, the presence of AGs or functional AG 

metabolism in tachyzoites had not been significantly discussed until recent 

exploration of the role of plant-like calcium-dependent protein kinase2, CDPK2 

(228). CDPKs regulate a wide variety of processes in T. gondii related to calcium 

signaling such as egress (CDPK1 and 3) (229,230), invasion (CDPK1) (231), and 

replication (CDPK7) (232). Each CDPK contains a kinase domain, a calmodulin-

like domain composed of multiple EF-hands for calcium binding, and a variable N-

terminal region (233). In the case of CDPK2, its N-terminus contains a CBM20, 

immediately suggesting its involvement with polysaccharides. Indeed, it was 

demonstrated that CDPK2 targets to multiple, small puncta within the T. gondii 

cytoplasm via its CBM as this localization disappears with the mutation of key 

carbohydrate binding residues in the CBM (228). This CDPK2 study was the first 

modern study to demonstrate small punctate AG staining within tachyzoites by 

PAS. The deletion of any of the three domains in CDPK2 resulted in parasites 

containing large AG accumulations on their basal end and within their residual 

bodies (a remnant from replication), strongly suggesting a link between calcium 

signaling and carbohydrate metabolism, as did the PGM1/2 knockout (section 

1.5.5).  

 In the CDPK2 study, pulse-chase analysis of 13C-glucose into and out of 

amylopectin in tachyzoites indicated that the WT parasites rapidly synthesize and 

degrade AGs, and CDPK2 parasites synthesized AGs at a faster rate and 

degraded them at a slower rate than WT parasites, thus resulting in an AG excess 

phenotype (228). This demonstrated that CDPK2 has roles in regulation of both 

AG synthesis and degradation. The metabolic profile of the parasites was altered 

as well with an upregulation of glucose incorporation into glycolysis, although the 

reasons underlying this are unclear. Moreover, several putative targets of CDPK2’s 

kinase activity related to AG metabolism were demonstrated including TgGWD, 

Aa16GL (debranching enzyme), TgGP, a branching enzyme, and an -amylase. 
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Finally, CDPK2 parasites were less virulent in mice and resulted in the formation 

of no tissue cysts.  

 After this report, a number of studies were subsequently published examining 

some of the putative targets of CDPK2. Thus far, the only two enzyme knock outs 

that resulted in a similar AG-excess phenotype and a decreased cyst burden in 

mice were TgGP (206) and -amylase (234), but neither of these studies examined 

parasite central carbon metabolism. -amylase mutants were much less virulent 

in mice, and further explored as a potential vaccine candidate as infection with 

these mutants protected mice against further challenges with WT parasites. While 

the mechanism is not understood, inducible knockdown of pyruvate kinase (PYK) 

(Figure 1.7) is the only other mutant that has demonstrated an overaccumulation 

of AGs in tachyzoites at the time of writing this dissertation (235). A remarkable 

observation from this study demonstrated that AG excess remained under 

glucose-starved conditions while PYK was knocked down, suggesting that AGs 

can be synthesized from glutamine-derived carbon.  

 Studies of starch synthase (TgSS) in T. gondii demonstrate the role of AGs in 

central carbon metabolism most clearly (203). Loss of TgSS resulted in loss of 

AGs in tachyzoites and bradyzoites by PAS staining, no virulence defect in mice, 

and a slightly lower cyst burden. Curiously, loss of TgSS resulted in higher 

bradyzoite conversion efficiency in vitro, and larger cysts in vivo. This study also 

provided the first direct evidence of AG involvement in bradyzoite reactivation by 

demonstrating that TgSS parasites were impaired in turning off bradyzoite 

markers in an in vitro reactivation assay. Importantly, flux of glucose-derived 

carbon through glycolysis, the TCA cycle, and the PPP in TgSS parasites was 

significantly decreased. While it was not examined here, decreased glucose flux 

through central carbon metabolism implies the simultaneous upregulation of 

glutamine metabolism. This study therefore provided significant evidence that AGs 

play a role in glucose allocation in T. gondii tachyzoites, that the effective removal 

of AGs results in dysregulation of glucose allocation, and that AGs are needed in 

bradyzoite reactivation.  

 

1.7  Regulation of AG metabolism in T. gondii  
 

 As the importance of AGs in tachyzoites is currently being elucidated, the 

regulatory mechanisms underlying their usage is still unknown. The critical 

regulatory role of reversible phosphorylation of both starch and glycogen has been 

recognized over the past 25 years by two distinct fields, plant biologists and 

neurobiologists, whose findings often complemented and informed each other 

during the early days of discovery (236). 

 

1.7.1 The importance of direct, reversible glucan phosphorylation in plants in 
animals 
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 While the presence of covalently bound phosphate has been recognized in both 

glycogen and starch, it was treated as either a contaminant or a curiosity (237) 

until knockdown of GWD (then known as “R1 protein”) in 1998 resulted in a starch-

excess phenotype alongside reduced phosphate content in A. thaliana leaves 

(238). Following this, it was soon recognized that R1 was a glucan, water dikinase 

(GWD) (167), and predicted that direct phosphorylation of starch facilitated its 

breakdown by other enzymes (237). Simultaneous to the discovery of the 

importance of starch-bound phosphate, an A. thaliana mutant that displayed a 

striking starch-excess (SEX) phenotype was characterized, and the gene related 

to this phenotype was named SEX4 (239). Notably, the SEX4 line of plants 

displayed no decrease in enzymatic activity of other starch degrading enzymes 

(239), and it was demonstrated that the SEX phenotype developed progressively 

as plant leaves aged (240). Independent of this study, the protein encoded by this 

gene was identified in an A. thaliana phosphatase screen and classified as a 

protein tyrosine phosphatase (PTP) due to the presence of its catalytic CX5R motif 

in its phosphatase domain (241). This study also classified a domain downstream 

of the PTP domain as a “kinase interaction sequence (KIS).” Several years later, 

a study mapped the SEX4 locus to this protein, identified that the KIS was indeed 

a CBM, and demonstrated that recombinant SEX4 could bind glycogen (242).  

 Prior to these studies in plants, scientists were grappling with the molecular 

underpinnings of Lafora disease (LD) in humans. LD was first described in 1911 

by Dr. Gonzalo Lafora who discovered amyloid-like deposits in the brains of young 

patients with a neurodegenerative epilepsy at autopsy (243). These deposits were 

subsequently shown to be glucose-based polymers that were amylopectin-like in 

nature and termed “Lafora bodies” (LBs) (244,245). In 1998, mutations in one of 

two genes causing LD (EPM2A) was identified and classified as a protein-tyrosine-

phosphatase (the family to which DSPs belong) (184). Subsequently, laforin’s 

CBM was identified, and the CBM was shown to target laforin to glycogen (246), 

making it the only human phosphatase to possess a CBM (236).  

 Notably, the study that demonstrated the ability of SEX4 to bind carbohydrates 

also recognized the similarities between SEX4 and mammalian laforin, speculating 

that their shared functions allowed them to bind carbohydrates and 

dephosphorylate proteins related to carbohydrate metabolism (242). That same 

year, a study was published demonstrating that laforin could instead 

dephosphorylate amylopectin in vitro, possessing a target and function that had 

not yet been predicted—namely, that laforin is a glucan phosphatase (247). 

Studies immediately followed demonstrating that loss of laforin in epm2a-/- mice 

resulted in hyperphosphorylated glycogen, speculating that hyperphosphorylation 

is what lead to the aberrant branching characteristic of LBs (186). It was then 

confirmed that laforin and SEX4 were functional equivalents, as complementation 

of laforin into SEX4 plants resulted in rescue of the SEX phenotype; this was both 

visualized by iodine staining and quantified in total starch content in the leaves 

(204). These complementary fields describing glucan phosphorylation came full 
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circle by demonstrating that SEX4 also behaved as a glucan phosphatase in vitro 

and in vivo, as SEX4 plants accumulated hyperphosphorylated starch breakdown 

intermediates (174). Following these foundational findings in the LD field, it has 

been shown that loss of laforin has an impact beyond the glycogen molecule, 

extending into metabolism (248) and glycosylation defects (154). 

 

1.7.2 Laforin in protists and motivation for the project 
 

 At the same time that glucan phosphatase activity was described and 

established in both plants and animals, laforin orthologues were recognized in 

many Apicomplexan protists of red algal descent including T. gondii, Neospora, 

Sarcosystis, and Eimeria among others (204,205). Indeed, a priori criteria to 

determine if protists contain laforin were developed: the protist must 1) contain an 

insoluble glucan, 2) contain a true mitochondrion, and 3) be of red algal descent. 

Importantly, all the identified protists in these studies also encyst for some portion 

of their life cycle, implying the importance of glucan storage, and thus its regulation 

via reversible phosphorylation, in each protist’s life cycle.  

 Given the importance of direct reversible phosphorylation across kingdoms of 

life in proper glucan degradation and central carbon metabolism, and the clear 

roles of AGs in metabolism and energy storage across asexual (tachyzoite and 

bradyzoite) and sexual (sporozoite) life stages of T. gondii, we sought to further 

characterize the enzymes involved in AG regulation via an understanding of 

reversible glucan phosphorylation in T. gondii.  

 In Chapter 3, to accomplish this task, we first provide a detailed 

characterization of recombinant TgLaforin by 1) elucidating the organization of its 

unique CBM, 2) providing evidence for its DSP-mediated dimerization, 3) 

demonstrating its activity as a glucan phosphatase that dephosphorylates 

amylopectin in vitro with preference for the C3 position, and 4) developing a glucan 

phosphatase inhibitor with specificity to TgLaforin.  

 In Chapter 4, we next characterized TgGWD in vitro as a true glucan, dikinase 

that 1) utilizes the -phosphate from ATP to autophosphorylate itself before, 2) 

phosphorylating amylopectin on the C6 position, and 3) releasing AMP that we 

detected using a novel capillary electrophoresis-based assay to detect.  

 In Chapter 5, we finally demonstrate that TgLaforin does indeed play a critical 

role in AG metabolism in T. gondii tachyzoites and bradyzoites using 

CRISPR/Cas9 to both tag and knockout TgLaforin. We demonstrate that 1) 

TgLaforin localizes to AGs in tachyzoites, 2) that loss of TgLaforin results in a 

dependence on glutamine, decreased virulence in mice, and decreased cyst-

forming ability, and 4) loss of TgLaforin results in the selective over-accumulation 

of AGs in bradyzoites and not tachyzoites.  

 The impact of each of these studies will be discussed in the chapter in which it 

is presented, and a discussion regarding where these studies push our 
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understanding of AGs and their role throughout the T. gondii asexual life stages 

will be presented in Chapter 6.  
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Table 1.1 Enzymes required for AG synthesis and degradation.  
All identified enzymes in AG turnover are listed in this table, alongside ToxoDB.org 

accession numbers. 
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Figure 1.1 Morphology of asexual stages of T. gondii tachyzoites and 
bradyzoites. 
A, Phase image of four T. gondii tachyzoites in human foreskin fibroblasts (HFFs), 

demonstrating their overall arc-like morphology. The parasitophorous vacuole 

membrane (PVM) that contains tachyzoites is highlighted. Scale bar = 10 m.  B, 

TEM of tachyzoite with secretory organelles labeled. Scale bar = 1 m. C, Coronal 

slice of CBA/J infected brain. D, Zoom of blue box from (C), PAS+ tissue cysts 

indicated with arrowheads. E, Phase image of T. gondii tissue cyst isolated from 

the brain of a mouse containing hundreds of individual bradyzoites; cyst wall (CW) 

labeled. Scale bar = 10 m. F, TEM of bradyzoites within tissue cysts from brain 

of infected mouse containing amylopectin granules (AGs) and an increased 

number of micronemes (M). Scale bar = 1 m. Abbreviations: AG = amylopectin 

granule; C = conoid; CW = cyst wall; DG = dense granule; HN = host nucleus; N = 

parasite nucleus; M = micronemes; PAS = periodic acid-Schiff; R = rhoptries.  
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Figure 1.2 The T. gondii life cycle and common sources of human infection. 
Evidence for each mode of transmission is presented in section 1.2.1 and 1.2.2. A 

compact description of the entire lifecycle is presented in section 1.2.3.  
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Figure 1.3 The molecular underpinnings of amylopectin and glycogen 
organization.  

A, Both amylopectin and glycogen are composed of glucose joined by -1,4- and 

-1,6-glycosidic bonds that result in linear bonds and branchpoints, respectively. 

B, The low frequency and clustered arrangement of branchpoints in amylopectin 

allows glucan chains to wind around each other, excluding water. The top-down 

view of chains demonstrates their packing beside one another, resulting in either 

A-type amylopectin (excluding more water) or B-type (incorporating more water). 

C, The increased frequency of branching in combination with evenly distributed 

branchpoints in glycogen results in a tiered structure that exponentially increases 

in glucose content with each tier. This arrangement prevents extensive chain-

winding, resulting in a water-soluble glucan.  
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Figure 1.4 The enzymology of insoluble glucan synthesis/degradation. 
The right side depicts the generation of the substrate for starch synthesis, an 

activated sugar-nucleotide, and its incorporation into growing glucan chains that 

ultimately wind around each other excluding water. The left side depicts starch 

degradation via a cycle of reversible glucan phosphorylation. Red circles 

symbolize phosphate. Abbreviations: AGPase = ADP-glucose pyrophosphorylase; 

BE = branching enzyme; DBE = debranching enzyme; HK = hexokinase; PGM = 

phosphoglucomutase; UGPase = UDP-glucose pyrophosphorylase.  
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Figure 1.5 Domain composition and orientation of glucan phosphatases. 

Ruler below corresponds to the amino acid length of each protein/domain. 

Abbreviations: CBM = carbohydrate binding module; CT = C-terminal domain; cTP 

= chloroplast Targeting Peptide; DSP = dual specificity phosphatase domain. 
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Figure 1.6 T. gondii AG metabolism combines animal glycogen and plant 
starch characteristics. 

Schematic of both animal and plant glucan localization, synthesis, and 

degradation, and the properties of each that are found in T. gondii. Abbreviations: 

ADP = adenosine di-phosphate; GAA = acid--glucosidase; GWD = glucan, water 

dikinase; PWD = phosphoglucan, water dikinase; UDP = uridine di-phosphate.  
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Figure 1.7 Glycolysis, gluconeogenesis, and the TCA cycle in T. gondii. 
Reactions typically filled by glucose are depicted with blue arrows, and those filled 

by glutamine are depicted with red arrows. Similarly, glycolytic enzymes are in blue 

font, and glutaminolytic/gluconeogenic reactions are in red font. Abbreviations: 

BCKDH = branched-chain ketoacid dehydrogenase; Fru-6-P = fructose-6-

phosphate; Fru-1,6-P2 = fructose 1,6-bisphosphate; Glc-6-P = glucose-6-

phosphate; PEPCK = phosphoenolpyruvate carboxykinase; PYK = pyruvate 

kinase; TgFBP2 = fructose-1,6-bisphosphatase; TgGT1 = glucose transporter 1; 

Tghk = hexokinase; TgPyC = pyruvate carboxylase. 

 



 
 

CHAPTER 2.  MATERIALS AND METHODS 
 

2.1 Biochemical, biophysical, and structural studies of TgLaforin and 
TgGWD 

 

2.1.1 Sequence alignments, secondary structure predictions, and 
transcriptomics 

 

 The amino acid sequences of TgLaforin (TGME49_205290) and TgGWD 

(TGME49_214260) were obtained using ToxoDB.org. The sequences of other 

glucan phosphatases and glucan dikinases were obtained from UniProt (249). 

Domain boundaries of proteins were defined using a combination of previously 

published literature (250-254), the “Family and Domains” section in UniProt, and/or 

the NCBI’s Conserved Domain Database (255). UniProt accession numbers and 

amino acid numbering corresponding to each glucan phosphatase domain are 

listed in Table 2.1. UniProt accession numbers of glucan, water dikinases and 

domain boundaries are listed in Table 2.2. Amino acid sequences of the CBM 

domains, DSP domains, and His-domains within each were aligned separately 

from each other using ClustalW with default settings (Gonnet Matrix, Open Gap 

Penalty: 10, Extend Gap Penalty: 0.2, Delay Divergent: 30%) and prepared using 

MacVector 18. Secondary structure predictions of TgLaforin were obtained using 

the Jpred 4 server (256) and compared to HsLaforin secondary structures (253).  

 Transcriptomics datasets were obtained from ToxoDB.org for TgLaforin, 

TgGWD, and SRS9 (TGME49_320190). Log2(RMA) values were plotted in Prism 

9 (GraphPad) along with their reported standard deviations.  

 

2.1.2 AlphaFold2 modeling of TgLaforin 
 

 The three-dimensional models for TgLaforin were obtained by running 

AlphaFold2 via the DeepMind official Colab server using AlphaFold v2.1.0 

(https://colab.research.google.com/github/deepmind/alphafold/blob/main/noteboo

ks/AlphaFold.ipynb) (257,258). For the TgLaforin monomer structure prediction, 

model confidence was assessed by the predicted Local Distance Difference Test 

(pLDDT) score (258), whereas a weighed combination of predicted TM-score 

(pTM) and interface pTM score (ipTM) was used to assess the reliability of the 

TgLaforin dimer model (257). In both cases, top ranked models were used for 

subsequent analysis. Structural models were analyzed, and figures were made 

using PyMOL 2.2.3 (Schrodinger).  

 

2.1.3 Cloning and expression of TgLaforin and TgGWD  
 

 Cloning: The cDNA sequences of TgLaforin (TGME49_205290) and TgGWD 

(TGME49_214260) were obtained from ToxoDB.org. The sequences were then 

codon optimized, synthesized, and cloned into pET28b+ using NdeI/XhoI digest 
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sites by GenScript. The catalytically inactive mutants [TgLaforin-FL C452S  (C/S) 

and the TgGWD-FL H1241A (H/A)] and all CBM constructs were also generated 

by GenScript using site-directed mutagenesis. TgLaforin was further subcloned 

into ppSUMO, a vector containing a small ubiquitin-like modifier (SUMO) that fused 

TgLaforin-FL to an N-terminal His6-SUMO tag, and into pFastBac-HTA (Invitrogen) 

using NdeI/XhoI restriction digest sites (New England Biolabs). All plasmids used 

in this study are listed in Table 2.3. 

 For BL21 E. coli expression: 50 ng each plasmid was transformed into 

chemically competent BL21 (DE3) E. coli cells (New England Biolabs). E. coli was 

next plated on LB agar plates containing kanamycin and chloramphenicol, and 

single colonies were selected for protein expression the next day. Colonies were 

suspended in 7 mL LB containing kanamycin (50 g/mL) and chloramphenicol (25 

g/mL) and rotated at 225 rpm for ~16 hr at 37 oC. Saturated cultures were then 

directly added to 1 L 2xYT media each in a 4 L flask, rotated at 180 rpm at 37 oC, 

and induced to produce protein with 400 M isopropyl -D-1-thiogalactopyranoside 

(IPTG; GoldBio) when the OD600 of the culture reached 0.6. At the point of 

induction, cells were placed on ice for 20 min to slow growth, and then shaken at 

180 rpm overnight at 16 oC. Induced E. coli cells were then pelleted at 5,000g for 

20 min at 4 oC and flash frozen with liquid nitrogen before storing at -20 oC.  

 For co-expression of TgLaforin with chaperone proteins: BL21 E. coli 

containing TgLaforin in pET28b+ expression vector were subsequently transfected 

with pG-KJE8 (Table 2.3, TaKaRa). dnaJ and grPE were expressed under an 

arabinose-inducible promotor, and groES and groEL were expressed a 

tetracycline-inducible promotor. Chaperone expression was induced with 0.5 

mg/mL arabinose and 5 ng/mL tetracycline.  

 For refolding experiments: 6xHis-TgLaforin in pET28b+ was expressed in BL21 

E. coli and purified from inclusion bodies as described in section 2.1.4. 

 For expression in Sf9 insect cells: The bacmid and baculovirus used in 

TgLaforin expression were created using the manufacturer’s product specifications 

(Invitrogen, MAN0000414) with several modifications. Briefly, the TgLaforin 

bacmid was created by transforming pFastBac-HTA (Table 2.3) containing 

TgLaforin into DH10Bac cells (Invitrogen) where transposition of TgLaforin into a 

bacmid occurred over the course of 48 h on LB-agar (50 g/mL kanamycin, 7 

g/mL gentamycin, 10 g/mL tetracycline). Successful transposition was selected 

for by using blue/white colony screening, and only white colonies were chosen for 

bacmid purification. The bacmid was then purified from a transformed colony after 

overnight growth in SOC media using alkaline lysis followed by isopropanol 

precipitation.  

 The baculovirus was subsequently produced by transfecting 2 g of purified 

bacmid into 106 adherent Sf9 insect cells (Invitrogen) in a 6-well plate using 

Cellfectin II reagent (Invitrogen), and the supernatant containing the initial 

baculovirus was harvested 72 h later. Serial passage of the baculovirus through 

insect cells in suspension was used to increase viral titer. This was done by 
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repeatedly infecting Sf9 cells in log phase of growth (1.5-2.5x106 cells/mL) at a 

ratio of 1:10 (viral stock to insect cell volume) and harvesting supernatant 

containing baculovirus 72 h later. Final viral stock infection volume was optimized 

by infecting insect cells in log phase at various concentrations (1:100-1:2000) and 

measuring cell viability and morphology after 72 h using Trypan blue staining. Ideal 

viral concentrations resulted in >80% living cells, the majority of which were 

enlarged as determined on a hemacytometer. An effective infection ratio was 

determined to be 1:1000 (v/v) of the P3 TgLaforin baculovirus into log-phase insect 

cells.  Protein production was then initiated using the optimized volume ratio of 

viral stock to infect log-phase insect cells. After 72 h, insect cells were pelleted at 

500g for 10 min at 4 oC, washed once with PBS to remove media, and then flash 

frozen and stored at -20 oC until purification. Throughout study, insect cells were 

cultured in ESF 921 protein-free media (Expression Systems) at 27 oC rotating at 

135 rpm without antibiotics and maintained between 106 and 107 cells/mL.  

 

2.1.4 Purification of TgLaforin and TgGWD protein constructs 

 

 To generate highly pure and active protein, several purification schemes were 

tested throughout this study. Regardless of protein construct or expression system, 

all protein constructs were first purified using immobilized metal affinity 

chromatography (IMAC). To purify, cells (E. coli or Sf9) were resuspended in lysis 

buffer (50 mM HEPES, 100 mM NaCl, 15 mM imidazole, 2 mM DTT, 0.1% TritonX-

100, pH 8.0). Cells were lysed by sonication, lysate was clarified by centrifugation 

at 14,000g for 30 mins at 4 oC, and supernatant containing protein was harvested. 

Protein was purified from the lysate using IMAC with Ni-agarose beads (Sigma). 

Protein bound to beads was washed three times with purification buffer (lysis buffer 

without TritonX-100) and eluted in elution buffer [purification buffer containing 300 

mM imidazole (Sigma)]. 

 For the further purification of His6-SUMO-TgLaforin construct from E. coli, 

contamination with other E. coli protein following IMAC purification was a 

significant issue. Moreover, the protein contaminants were of a similar molecular 

weight (MW) to TgLaforin, so anion-exchange (AEX) chromatography was used 

instead of size-exclusion chromatography (SEC). Briefly, protein was first bound 

in purification buffer to a 5 mL HiTrap Q HP exchange column (Cytivia) fitted to an 

ÄKTA pure fast protein liquid chromatography (FPLC) system and then washed 

with two column-volumes of purification buffer. Protein was then eluted from the 

AEX column by increasing ionic strength with a gradient of 100 to 500 mM NaCl 

and then collected in 2 mL fractions. TgLaforin eluted at a concentration of 320 

mM NaCl.  

 For the purification of TgLaforin-FL (WT and C452S) from insect cells, TgGWD-

FL (WT and H1241A) from insect cells, and all TgLaforin CBM constructs from E. 

coli, protein was purified to >95% homogeneity via SEC using an ÄKTA pure FPLC 

system fitted with a Superdex 200 16/200 column (GE Healthcare). IMAC elution 



 
 

41 

buffer was exchanged on column with storage buffer (purification buffer containing 

10% glycerol), and 2 mL fractions were collected at a rate of 0.5 mL/min.  

 In all cases, protein was analyzed for purity by SDS-PAGE with 10% Mini-

PROTEAN TGX stain-free precast gels (BioRad) imaged on a GelDoc. Only 

fractions containing pure protein were combined and concentrated to 1-3 mg/mL 

using Amicon centrifugal filters with an appropriate MW cutoff value (10 kDa for 

CBM constructs and 30 kDa for TgLaforin-FL and TgGWD). Final protein 

concentration was calculated using absorbance at 280 nm, the MW of each 

protein, and the extinction coefficient of each protein (; calculated using Expasy 

ProtParam online tool) on a Nanodrop (ThermoFisher). Protein was flash-frozen in 

liquid nitrogen and stored at -80 oC. 

 For purification of His6-TgLaforin from inclusion bodies (IBs), cells were 

resuspended in lysis buffer as described above, lysed by sonication, and IBs were 

collected by centrifugation at 14,000g for 30 mins at 4 oC. Supernatant was 

discarded, and IBs were washed 4x with 2M Urea containing 2% Triton X-100. IBs 

were extracted in 6M guanidine containing 2% Triton X-100. IB extract was then 

rapidly diluted by 20-fold resulting in a final concentration of 0.1 mg/mL as 

described previously (259) in a 96 different buffer conditions contained in 96-well 

deep well plate (Figure 2.1), and then allowed to refold for 36 h at 4 oC. Insoluble 

material was then pelleted in the deep-well plate and supernatant containing 

soluble protein was analyzed by SDS-PAGE and Coomassie blue staining. Wells 

containing soluble protein were then further analyzed by differential scanning 

fluorimetry (section 2.1.5).  

 

2.1.5 Differential scanning fluorimetry 

 

 Thermal stability of refolded TgLaforin, Sf9-genrated TgLaforin and TgGWD, 

and TgCBM constructs in the presence of oligosaccharides was determined as 

previously described (260,261). Briefly, DSF was performed using a CFX96 Real-

Time PCR system (BioRad) with the FRET channel excitation and emission 

wavelength set to 450-470 nm and 560-580 nm, respectively. Melting temperature 

of each protein (2 M final concentration) was measured in 40 L volumes in DSF 

buffer (50 mM HEPES, 100 mM NaCl, 2 mM DTT, pH 7.5) in the presence of 5X 

SYPRO Orange (final concentration; Invitrogen). Thermal denaturation curves 

were obtained by measuring fluorescence intensity in the FRET channel as the 

temperature was increased from 20 to 95 oC at a rate of 1 oC/min. The melting 

temperature (Tm) of each protein with and without carbohydrate was obtained by 

calculating the first derivative of the fluorescence melt curve, fitting the derived 

curve with a Gaussian peak using Prism 9, and determining the mean of the peak 

which corresponded to the Tm (the inflection point of the original melt curve). 
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2.1.6 Size-exclusion chromatography with multi-angle light scattering  
 

 SEC-MALS analysis was performed as previously described (262). Proteins 

were run on an ÄKTA Pure system using a Superdex 75 Increase 100/300 column 

(TgCBM) or a Superdex 200 10/300 column (full-length TgLaforin; GE Healthcare 

Life Sciences), miniDAWN TREOS, and Optilab T-rEX (Wyatt Technologies, Santa 

Barbara, CA) arranged in sequence with one another. The columns were first 

equilibrated with the purification buffer used for each protein (described in section 

2.1.4). Then, 500 L of 2 mg/mL protein was loaded and run at 0.5 mL/min, and 

elution profiles were monitored using UV-Vis absorbance. Light scattering data 

was analyzed on ASTRA software (Wyatt Technologies). The MW of each protein 

was determined by analyzing peaks at half height using the refractive index to 

determine accurate protein concentration. UV and MW data was exported and 

plotted in Prism 9.  

 

2.1.7 Hydrogen Deuterium Exchange Mass Spectrometry 
 

 HDX-MS experiments were performed using a Synapt G2-SX HDMS system 

(Waters). For the partially deuterated samples, 3 μL of TgLaforin (1 mg/mL) was 

diluted with 57 μL of labeling buffer (20 mM Tris, 100 mM NaCl, D2O, pH 7.4), the 

deuteration reactions were incubated at 20 °C for 15 s, 150 s, 1500 s and 15000 s 

in triplicate. To quench, 50 μL of reaction solution was mixed with 50 μL of cold 

quench buffer (100 mM phosphate, H2O, pH 2.5) and incubated at 0 °C. 95 μL of 

the quenched sample were then loaded onto an UPLC system for on-line pepsin 

digestion (Waters Enzymate Beh Pepsin column, 2.1 mm x 30 mm) and MS data 

acquisition. The nondeuterated samples were incubated with equilibration buffer 

(20 mM Tris, 100 mM NaCl, H2O, pH 7.4). To measure the maximum hydrogen-

deuterium exchange rate, a fully deuterated sample was prepared by incubating 

TgLaforin in D2O buffer (1% (v/v) formic acid) for 24 h at room temperature. All the 

other steps were the same as the partially deuterated samples. HDX-MS was 

performed using a robotic autosampler (LEAP), thus the experimental variations 

were minimized. Back exchange was corrected as described previously (263,264). 

Data were processed using ProteinLynx Global Server and DynamX (Waters).  

 

2.1.8 pNPP phosphatase assays 

 

 Hydrolysis of pNPP to 4-nitrophenylphosphate (4NP) was performed in 50 L 

reactions containing phosphatase buffer (0.1 M sodium acetate, 0.05 M bis-Tris, 

0.05 M Tris-HCl, and 2 mM DTT at pH 5.5) at 37 oC. pNPP concentration was 

equivalent to the Km value determined for each phosphatase under these reaction 

conditions containing 50 nM enzyme (unless otherwise indicated). Reactions were 

terminated by the addition of 200 μL of 0.25 N NaOH at indicated timepoints, and 

the production of 4NP was determined by measuring the absorbance at 410 nm 
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using a Synergy HTX Multi-Mode Reader (BioTek). Absorbance was converted to 

nmol phosphate released (1:1-phosphate:4NP ratio) using a 4NP standard curve.  

 Vmax and Km were calculated by varying pNPP concentrations and measuring 

absorbance in the linear range of enzyme activity. Km values are as follows for 

each enzyme: TgLaforin=0.71 mM, PTP1B=0.990 mM, VHR=2.53 mM, calf 

intestinal phosphatase=53.75 M. Parameters were calculated using the 

Michaelis-Menten nonlinear curve-fitting function in Prism 9 software. The optimal 

pH (5.5) for TgLaforin was selected by testing reaction pH from 5.0-9.0 and 

determining the specific activity at each pH.  

 

2.1.9 Malachite green phosphatase assays  
 

 Release of phosphate from potato amylopectin was determined as done 

previously (204,247,260,265) with the following modifications. Briefly, phosphate 

release was monitored using the PiColorLockTM Phosphate Detection Reagent 

(Novus Biologicals), a malachite green based assay. Recombinant TgLaforin (50 

nM) was incubated with 1.125 mg/mL solubilized potato amylopectin (Sigma) in 

phosphatase buffer (pH 6.5) in a final volume of 80 L at 37oC. Potato amylopectin 

was supplied as a powder from the manufacturer and solubilized to make a stock 

concentration of 5 mg/mL using the alcohol/alkaline method (also referred to as 

the “Roach method” in Ref. (265)). Reactions were terminated by the addition of 

20 μL (0.25 initial reaction volume) Gold Mix (PiColorLock Gold solution mixed with 

Accelerator in a 100:1 ratio). After 5-min incubation at room temperature, 8 μL 

stabilizer solution (0.1 initial reaction volume) was added and reaction was allowed 

to develop for 30 mins at room temperature before the absorbance of each reaction 

was measured at 635 nm using a Synergy HTX Multi-Mode Reader (BioTek). 

Absorbance was converted to Pi released using a Pi absorbance standard curve.  

 

2.1.10 Radiolabeled Starch Phosphatase Assay  
 

 Position-dependent phosphate release from 33P-labeled starch was performed 

as previously described (251,252,260,261). The substrate for this assay was 

generated by phosphorylating phosphate-free Arabidopsis sex1-3 starch with 33P 

labeled ATP (Hartmann Analytic, Braunschweig) at the C6 and C3 positions 

sequentially. The starch granules were phosphorylated at the C6 position using 

purified recombinant StGWD enzyme. The granules were next phosphorylated at 

the C3 position using purified recombinant AtPWD enzyme.  

 To determine the site-specificity of TgLaforin, 42 nM enzyme was incubated 

separately with 0.6 mg both C6- and C3-33P-labeled starch in phosphatase buffer 

(pH 6.5) containing 1 mg/mL bovine serum albumin (BSA) in a final volume of 150 

L. Dephosphorylation was allowed to proceed for 15 mins with shaking at room 

temperature. The reaction was terminated with 50 L 10% SDS (2.5% final), and 

starch was pelleted by centrifugation at maximum speed for 5 min. Supernatant 
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was then transferred to 3 mL scintillation fluid. The amount of phosphate released 

from each starch suspension was quantified by measuring counts per minute 

(CPM) of the supernatant on a 1900 TR liquid scintillation counter (Packard). CPM 

measurements were then converted to % phosphate release by dividing CPM in 

the supernatant (released phosphate) by initial CPM on starch (bound phosphate).  

 

2.1.11 Inhibitor Assays 

 

 L319-M21-M49 stock solutions were prepared by resuspending the inhibitor in 

DMSO at a concentration of 20 mM. Various concentrations of inhibitor were 

prepared by serial dilution in DMSO such that stock concentrations were 50X the 

working concentration, and the final concentration of DMSO in each assay was 2% 

(v/v). The efficacy of L319-M21-M49 against various phosphatases was 

determined using the assay conditions described above. Enzymes were pre-

incubated with L319-M21-M49 for 5 min on ice before initiating the assay with the 

addition of substrate. All inhibitor assays were performed within the linear 

time/concentration range of phosphatase activity.  

 

2.1.12 In vitro radiolabel phosphorylation assay  
 

 TgGWD-WT and TgGWD-H/A (5 pmol each) were incubated in freshly 

prepared 3X phosphorylation buffer [10X phosphorylation buffer (500 mM HEPES-

KOH, pH 7.5, 10 mM EDTA, 60 mM MgCl2, and 0.5% TritonX-100), 5 mM ATP, 

0.1 M DTT, and 10 mg/mL BSA] with A. thaliana sex1-3 phosphate free starch 

(final concentration of 5 mg/mL), 0.25 mCi -P33-ATP or -P33-ATP (Hartmann 

Analytic)—in a final volume that adjusted the 3X buffer to 1X. Starch was prepared 

by first washing it twice in 1 mL 0.05% TritonX-100, once in water, and then 

resuspending it in water at a concentration of 20 mg/mL before adding it to the 

reaction. Reactions were agitated slowly by vortexing for the time indicated at room 

temperature. 10% SDS was added to terminate the reaction, with a final 

concentration of 2%. Starch was then pelleted at 5000g for 5 mins, the supernatant 

was removed, and starch was washed 5-7x with wash buffer (2% SDS, 2 mM ATP) 

until radiolabel counts were reduced to a low, unchanging level (60-90 CPM). 

Radiolabeled starch was then resuspended in a final volume of 100 L H20, and 

50 L was then measured (corresponding to 0.25 mg starch) in 3 mL scintillation 

fluid. The CPM of the starch was then determined on a Packard 1900 TR 

scintillation analyzer. Background of the reaction was determined with a no-

enzyme control.  

 

2.1.13 Water dikinase autophosphorylation assay 
 

 TgGWD-WT and TgGWD-H/A were incubated with both -P33-ATP and -P33-

ATP as has been described previously (266) with the following modifications. In 



 
 

45 

this reaction, 5 g enzyme was incubated with 2.2 Ci radiolabeled ATP (either - 

or -P33) in 2X autophosphorylation buffer (50 mM HEPES-KOH, pH 7.5, 1 mM 

EDTA, 6 mM MgCl2, 10% glycerol) at a final concentration of 1X. Reaction was 

terminated after 30 min at room temperature with 4X Laemmli sample buffer and 

incubated for 20 mins at 30 oC. Samples were then separated from radioactive 

ATP by SDS-PAGE on 10% Mini-PROTEAN TGX stain-free precast gels (BioRad) 

and total protein was imaged on a GelDoc (BioRad). Radioactive 

(autophosphorylated) protein was then visualized by exposing gel to a phosphor 

screen (GE Healthcare) for 4 h before imaging it on a Typhoon FLA 9500 Imager. 

For all imaging steps, radioactive gel was wrapped in Saran wrap so as not to 

contaminate lab equipment with radioactive material.  

 

2.1.14 Glucan, water dikinase site specificity assay 
 

 TgGWD-WT and TgGWD-H/A (5 pmol) were separately incubated in freshly 

prepared 3X phosphorylation buffer (section 2.1.12) with A. thaliana sex1-3 

phosphate free starch (final concentration of 5 mg/mL) and -P33-ATP (final 

concentration of 5 Ci/L) for 6 h and then spiked with an additional 5 pmol protein 

before incubating overnight. The sequential addition of protein and long incubation 

time ensured a high level of radiolabel incorporation into starch for downstream 

analysis. To terminate the reaction, 10% SDS was added to a final concentration 

of 2%. Radiolabeled starch was pelleted by centrifugation at 5000g, supernatant 

removed, and starch was washed with wash buffer (2% SDS, 2mM ATP) until 

radioactivity of supernatant dropped below 100 CPM (5-7 washes). This extensive 

washing ensures a low background. Total CPM on starch was then determined by 

adding 0.2 mg of labeled starch to 3 mL scintillation fluid and determining total 

CPM/mg starch.  

 TgGWD-labeled starch (WT or H/A) was then treated with glucan 

phosphatases with known site specificities to determine the position on which 

TgGWD phosphorylated the glucose within the phosphate free starch (Figure 

4.3b). The glucan phosphatases used in this experiment were either AtSEX4 

(C6:C3 specificity=2:1), LSF2 (entirely C3 specific), or their catalytically inactive 

counterparts as controls (SEX4- and LSF2-C/S). Because SEX4 has the capability 

of removing phosphate from both C6 and C3 positions, each aliquot of radiolabeled 

starch was treated with both glucan phosphatases in sequence to ensure 

specificity was accurately determined (e.g., starch was treated with LSF and then 

SEX4, and vice versa). Catalytically inactive C/S controls were used to determine 

background radioactivity levels. Labeled starch (0.6 mg/reaction; 4 mg/mL final 

concentration) was incubated in 5X phosphatase buffer (0.5 M sodium acetate, 

0.25 M bis-Tris, 0.25 M Tris HCl, pH 6.5), 2mM DTT, 1 mg/mL BSA, and 0.0025% 

TritonX-100 (v/v) with a glucan phosphatase (7.5 ng/mL final) at a final 

concentration that diluted the 5X buffer to 1X. Reactions were constantly and 

slowly agitated by vortexing for 15 mins at room temperature, reactions were 
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terminated with 10% SDS (2.5% final concentration), and centrifuged at maximum 

speed for 5 mins. Three-quarters (150 L) of supernatant was removed and added 

to 3 mL scintillation fluid before CPM was determined on a Packard 1900 TR 

scintillation analyzer. Specificity was determined by calculating % phosphate 

removed by comparing CPM in supernatant to total CPM on starch.  

 

2.1.15 CE-based AMP release assay 
 

 CE-based detection of AMP is pictured in Figure 4.5a, and based on a 

previously developed protocol for whole capillary stacking (267). Briefly, starch 

was phosphorylated in the presence of TgGWD as described in section 2.1.14. for 

the times indicated and terminated by the addition of 10% SDS to a final 

concentration of 2%. Starch was pelleted at 14000g for 5 mins at room 

temperature, and supernatant containing reaction mixture, including AMP, was a 

used for further analysis. Protein was then filtered from reaction mixture using 

centrifugal filtration with unit containing a filter with a 30 kDa molecular-weight-cut-

off (Amicon Ultra, Millipore). Filtrate was then analyzed on an Agilent 7100 CE 

system equipped with a UV detector fitted with a fused silica capillary. Capillary 

was first preconditioned with 50 mM carbonate (pH 9.6) before sample injection. 

Sample was injected via vacuum for 10 mins at 1 Pa to completely fill capillary. 

Sample stacking then proceeded by applying a voltage of -18 kV for 15 mins. The 

nucleotides in the sample were then separated at a voltage of +18 kV for 22 mins 

and absorbance at 256 nm was monitored with a UV-Vis detector. Capillary was 

extensively washed with carbonate buffer between runs. Data was exported, 

plotted, and analyzed in Prism 9.  

 

2.1.16 TgLaforin yeast two-hybrid screen 
 

 Yeast two-hybrid screening for putative in vitro TgLaforin interacting partners 

was conducted by Hybrigenics Services (www.hybrigenics-services.com; Paris, 

France) using their patented ULTImate-Y2H Screen. Briefly, codon-optimized 

TgLaforin cDNA used in insect-cell expression (section 2.1.3) was fused to an N-

terminal LexA or N-terminal Gal4 DNA binding domains to generate the TgLaforin-

bait construct. TgLaforin bait was screened against a library of T. gondii (TGRH) 

prey encoded by 800-1000 bp inserts (average size of a protein domain) fused to 

activator domains. Prey fragments from positive interactions were amplified by 

PCR and sequenced to identify the proteins in the GenBank database. Confidence, 

a protein biological score (PBS) ranging from A to E, was assigned to each 

interaction and presented in Table 6.1.  
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2.2 Generation of T. gondii mutants and in vitro characterization of TgLaf 
parasites 

 

2.2.1 Fibroblast and parasite culture and maintenance  
 

 All parasite lines were maintained in human foreskin fibroblasts (HFFs; ATCC) 

in Minimal Essential Media- (MEM-; Gibco) supplemented with 7% heat-

inactivated fetal bovine serum (Gemini Bio), 100 U/mL penicillin, 100-g/mL 

streptomycin, and an additional 2 mM L-glutamine (Gibco; 4 mM total L-glutamine 

in media). Cells and parasites were incubated at 37 oC and 5% CO2 in a humidified 

incubator. Genetically modified parasites were maintained in MEM- containing 

7% dialyzed FBS (Gemini Bio) and either pyrimethamine (1 M), mycophenolic 

acid/xanthine (MPA: 25 g/mL, xanthine: 50 g/mL), or 6-thioxanthine (80 g/mL). 

 Assays analyzing the effects of glutamine deprivation used DMEM. Both 

glutamine replete (Gibco, 11966025) and depleted (Gibco, 11054020) DMEM 

were supplemented with 7% dialyzed FBS. Glutamine replete media from the 

supplier also lacked other key nutrients and was further modified to contain 5 mM 

glucose, 1 mM sodium pyruvate, and 4 mM L-glutamine.  

 

2.2.2 Generation of T. gondii mutant lines 
 

 Type II ME49HXGPRT (“WT”—the parental line utilized to generate all other 

lines in this study, depicted in Figure 5.1): To disrupt the hypoxanthine-xanthine-

guanine phosphoribosyl transferase (HXGPRT) gene in T. gondii Type II ME49 

parasites, a shotgun CRISPR-Cas9 strategy was employed in which multiple 

sgRNA constructs were transfected into T. gondii to disrupt the gene with several 

Cas9 cut sites (known as protospacer-adjacent motifs; PAMs). A single plasmid 

containing both Cas9-GFP and an interchangeable sgRNA scaffold was used for 

this purpose (pSAG1::CAS9-U6::sgUPRT; Table 2.3) (268). Three previously 

identified sgRNAs (10) targeting three separate exons (2,3, and 5) in the HXGPRT 

gene were chosen, and used to replace the sgRNA sequence in the CRISPR-

plasmid to make three separate plasmids (Table 2.4) using a Q5 site-directed 

mutagenesis kit (New England BioLabs). Mutagenesis primers were designed 

using NEBaseChanger (Table 2.5). The three modified sgRNA/Cas9-GPF 

plasmids (8 g each) were transfected into 1.4x107 T. gondii parasites by 

electroporation with a time constant between 0.16 and 0.20 msec (BioRad Gene 

Pulser II). HFFs were then infected with electroporated parasites to allow the 

parasites to recover. After 24 h, surviving parasites were syringe-passaged from 

infected HFFs with a 27G needle to lyse host cells, and gravity filtered through a 

10 m filter to remove host-cell debris. Successful transformants were then 

enriched by use of fluorescence activated cell-sorting (FACS; Sony SY3200, 

installed in a biosafety level II cabinet) to select parasites expressing Cas9-GFP 

from the transfected plasmid by isolating GFP+ parasites only. HFFs were infected 
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with GFP+ parasites, and then placed in 6-thioxanthine media 24 h later to select 

for HXGPRT mutants. After 10 days of culturing parasites in 6-thioxanthine (about 

3 passages), the parasites were cloned by limiting dilution into a 96-well plate 

containing confluent HFFs. Wells containing single plaques were picked 7 days 

later and further expanded. Genomic DNA was extracted using a Proteinase K 

treatment detailed elsewhere (9), and the HXGPRT locus was sequenced to verify 

a successful knockout.   

 TgLaforin-3xHA-HXGPRT (depicted in Figure 5.3): TgLaforin was epitope 

tagged at the C-terminus utilizing a CRISPR-Cas9 strategy by disrupting the 

TgLaforin 3’UTR immediately downstream of the endogenous stop codon. This 

approach promoted homologous recombination (HR) with a co-transfected 

TgLaforin-HA construct as has been done previously (269). Briefly, the sgRNA 

adjacent to a PAM sequence immediately downstream of the TgLaforin stop codon 

was designed using the EuPaGDT design tool (http://grna.ctegd.uga.edu). The top 

hit for this region was selected and used to replace the sgRNA scaffold in 

pSAG1::CAS9-U6::sgUPRT as was done above (Tables 2.4 and 2.5). The 

TgLaforin-HA tagging construct was generated by amplifying the 3’ end of the 

TgLaforin-HA construct generated for complementation (see generation of COMP 

line below and Table 2.3) along with the connected HXGPRT selectable marker. 

Both the PCR-amplicon and the CRISPR-Cas-GFP plasmid containing the sgRNA 

toward TgLaforin were transfected into 1.4x107 T. gondii ME49HXGPRT 

parasites (2:1 insert:plasmid molar ratio; 30 g DNA total) as was done above. 

After 24-hours, parasites were then isolated, sorted by FACs, and GFP+ parasites 

were again allowed to infect HFFs and grow for 24 h before drug selection with 

media containing MPA/xanthine. After 10 days of culturing parasites in 

MPA/xanthine (about 3 passages), the parasites were cloned by limiting dilution 

into a 96-well plate. Wells containing single plaques were picked 7 days later and 

expanded. Successful tagging of TgLaforin was verified using sequencing, 

immunoblot, and immunofluorescence.  

 ME49HXTgLaforin (“TgLaf”; depicted in Figure 5.5): The TgLaforin ORF 

was disrupted using a CRISPR-Cas9 mediated strategy as detailed above, with 

several differences. Briefly, a single sgRNA was designed to target the first exon 

of TgLaforin with the top hit from EuPaGDT (Table 2.4). To disrupt TgLaforin with 

a selectable drug marker, a pyrimethamine-resistant mutant of the dihydrofolate 

reductase (DHFR*) gene containing a 5’-NcGra7 promotor and DHFR 3’UTR was 

amplified from pJET-NcGra7_DHFR (Table 2.3). Amplification utilized primers 

containing 40 nt extensions homologous to the 5’- and 3’-UTR of TgLaforin to 

encourage HR-mediated whole-gene replacement with the drug cassette (Table 

2.5). Both the PCR-amplified DHFR* homology cassette and the CRISPR-Cas-

GFP plasmid were transfected and FACS-sorted as described above. GFP+ 

parasites underwent drug selection in pyrimethamine. Parasites were then cloned 

and expanded as detailed above. Successful integration of the DHFR* cassette 
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into the TgLaforin locus was verified using PCR with inside/out primer pairs to the 

chimeric, interrupted gene (Table 2.5).   

 ME49HXTgLaforin+ChrVI-TgLaforin (“COMP”, depicted in Figure 5.8): 

Complementation of TgLaforin was also executed using a CRISPR-mediated 

strategy. A sgRNA to a neutral locus on Chromosome VI identified previously (270) 

was generated using the same mutagenesis strategy as above. A full length 

TgLaforin cDNA containing its endogenous 5’UTR (2000 bp upstream from gDNA) 

was synthesized by GenScript and inserted into the pHA3x-LIC vector (Table 2.3) 

containing a C-terminal HA tag and a DHFR 3’UTR, linked to the HXGPRT 

selectable marker (named “TgLaforin-HA3x-LIC”; also used above for endogenous 

tagging to create TgLaforin-HA line). The entire construct (5’UTR:TgLaforin-

cDNA:DHFR-3’UTR:HXGPRT) was amplified from the vector and co-transfected 

into TgLaf parasites with the CRISPR-Cas9 plasmid as done above. Successful 

transformants that received the HXGPRT marker were selected with 

MPA/xanthine. Successful insertion of TgLaforin along with its promoter was 

verified using PCR, by immunoblot analysis, and immunofluorescence with an anti-

HA antibody (Abcam).  

 

2.2.3 Western blotting 
 

 Parasites were syringe lysed from host cells, pelleted, and 2x106 parasites 

were resuspended in SDS-PAGE sample buffer and boiled before being run on a 

single lane of a 10% polyacrylamide gel for 30 mins at 225 V. Lysate was then 

transferred from gel to 0.2 m PVDF membrane (BioRad) using a Turbotransfer 

System (BioRad) for 7 min at 25 V. The PVDF membrane was then blocked in 

either 5% (w/v) non-fat milk (for HRP-conjugated secondary antibodies) or 3% 

(w/v) BSA (for fluorophore conjugated antibodies) in PBS for 20 mins before being 

probed with a primary antibody in either non-fat milk or BSA overnight at 4 oC (Cell 

Signaling C29F4). Blot was then washed 3x with TBST (0.1% Tween-20, 5 

min/wash) before probing with one of the following secondary antibodies for 45 

min at room temperature: HRP-conjugated -rabbit/mouse-IgG (Jackson 

Laboratories), DyLight488 (-mouse) or DyLight680 (-rabbit). Blot was washed 

3x in TBST once more, and then developed for 5 min using SuperSignalTM West 

Pico PLUS (Thermo Scientific) for HRP-conjugated antibodies and visualized on a 

GelDoc station (BioRad).  

 

2.2.4 Immunofluorescence (IF)/histology staining 

 

 HFFs were grown on coverslips in a 24-well plate until confluent and 

subsequently infected with 104 parasites/well. At the indicated time post-infection, 

the infected HFFs were fixed with either methanol (MeOH) (100%, -20oC) or 

methanol-free paraformaldehyde (PFA) (4% in PBS; Electron Microscopy 

Sciences) as indicated for each antibody. Infected HFFs fixed with PFA were 
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permeabilized in 0.1% TritonX-100 in PBS++ (PBS containing 0.5 mM CaCl2 and 

0.5 mM MgCl2) for 10 mins at RT. Primary and secondary antibodies were diluted 

in 3% (w/v) bovine serum albumin (BSA; Fisher) in PBS++. Samples were first 

incubated with the primary antibody at RT for 45 mins, washed 3x with PBS++, 

and then incubated with fluorescent secondary antibodies (1:2,000) and DAPI (300 

nM final) for 45 mins. Secondary antibodies (Invitrogen) were conjugated to either 

Oregon Green or Texas Red fluorophores and specific to the species and class of 

primary antibody used. Samples were then washed 3x with PBS++ before 

mounting the coverslip on a glass slide using MOWIOL mounting media.   

 IF staining was visualized using a Zeiss AxioVision upright microscope with a 

100X 1.4 numerical-aperture oil immersion objective, and images were acquired 

using a grayscale Zeiss AxioCam MRM digital camera. Grayscale images were 

pseudo-colored in ImageJ using magenta (red fluorophore), yellow (green 

fluorophore), and cyan (DAPI), and further alterations to brightness and contrast 

were also made in ImageJ when deemed appropriate. For all assays in which 

staining intensity was compared across treatments and parasite lines, 

concentrations of antibodies, exposure times, and alterations to 

brightness/contrast were standardized.  

 Colocalization of fluorescent antibodies/reagents was quantified using 

Pearson’s coefficient calculated with the JACoP plugin on ImageJ (271).  

 

2.2.5 Periodic acid-Schiff staining 
 

 Periodic acid-Schiff (PAS) staining was done on coverslips with infected HFFs 

fixed in 4% PFA. After removing PFA, samples were permeabilized as above. 

Coverslips were then washed 3x in tap water before the addition of 1% periodic 

acid (Sigma-Aldrich) for 5 mins. Coverslips were then washed 3x in tap water, and 

Schiff’s reagent (diluted 1:4 in tap water) was added for 15 mins. Coverslips were 

subsequently washed 10x with tap water to develop stain before being incubated 

with DAPI in tap water for 10 mins. Stained coverslips were then mounted as 

above. All reagents were utilized at room temperature during PAS staining. PAS 

stained samples were visualized using fluorescent microscopy (excitation: 545 nm, 

emission: 605 nm). When PAS was costained with antibodies, primary antibodies 

were incubated with PAS stained slides overnight in BSA at 4 oC before standard 

secondary staining. Specificity of IF staining in the presence of PAS was verified 

using secondary-only controls.  

 Samples treated with amyloglucosidase (GAA) (from Aspergillus niger, >260 

U/mL, Sigma) were incubated with GAA after permeabilization. GAA was diluted 

1:50 in 50 mM sodium phthalate buffer, pH 5.5 and samples were treated for 24 h 

at room temperature. Untreated controls were incubated in phthalate buffer without 

GAA. Samples were then stained with PAS or mAb IV58B6 as described above or 

in section 2.2.4.  
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2.2.6 In vitro bradyzoite conversion assay 
 

 Tachyzoites were converted to bradyzoites in vitro using alkaline stress as has 

been done previously with several modifications (Figure 2.2a) (272). HFFs grown 

on coverslips were infected with tachyzoites in standard cell culture media. 4 h 

later, media was replaced with RPMI 1640 (Gibco 31800022) supplemented with 

50 mM HEPES, no sodium bicarbonate, and adjusted to pH 8.2 with NaOH. 

Parasites were then cultured for 2-6 days at 37 oC, ambient CO2, and wrapped in 

Parafilm. Media was replaced every other day to maintain the basic pH. Parasites 

were fixed in PFA and stained with either fluorescein conjugated Dolichos biflorus 

agglutinin (DBA; 1:1000, Vector Laboratories) and PAS. Images were obtained in 

grayscale on a Zeiss AxioVision upright microscope as described above using 

identical exposure times across sample sets.  

 To determine the degree of labeling with DBA or PAS, the Fiji distribution of 

ImageJ (273) was used to create a binary mask outlining cysts that was applied to 

the original DBA/PAS-stained image to measure the greyscale intensity of each 

ROI (i.e. each individual cyst) (Figure 2.2b). The mask was created with DBA 

staining by adjusting the threshold of each image to include all cysts, creating a 

binary image that outlined each cyst, and then applying the watershed algorithm 

to separate cysts in contact with one another.  

 

2.2.7 Transmission electron microscopy of in vitro tachyzoites and bradyzoites 
 

 Transmission-electron microscopy (TEM) was performed as done previously 

(26). Briefly, HFFs in 10-cm cell culture dishes were infected and harvested at the 

timepoint indicated or converted to bradyzoites for 6 days as described above. To 

harvest, media was removed, and cells were washed with PBS twice and then 

fixed in the 10 cm dish with 3% glutaraldehyde (GA) (Electron Microscopy 

Sciences) in 100 mM sodium cacodylate, pH 7.4, for 1 h at room temperature. After 

1 h, fixative was removed and replaced with 1 mL 1% BSA in 100 mM sodium 

cacodylate. Cells were then scraped from surface of plate, collected into the BSA, 

transferred to 1.5-mL Eppendorf tubes, and then centrifuged at 1000g to pellet. 

Supernatant was carefully removed, and the pellet was transferred to a 10 cm Petri 

dish using a wooden spoon. A razor blade was used to chop the pellet into blocks 

that were each <1mm3, and blocks were transferred into GA/cacodylate fixative 

overnight at 4 oC.  

 The remaining steps were executed in the University of Kentucky’s Imaging 

Center in the College of Arts and Sciences. Blocks were washed with 100 mM 

sodium cacodylate buffer 3x before post-fixation in 2% osmium tetroxide for 1 h on 

ice. Blocks were then washed in water 3x before being washed 3x in 50 mM 

sodium maleate (pH 5.2). Next, blocks were stained in 1% uranyl acetate in 

maleate buffer for 1 h at RT, washed again in water 3x, and then dehydrated in a 

series of washes with increasing ethanol concentrations (70%, 95%, 100%). Pellet 
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was next washed twice with propylene oxide, left in propylene oxide for 20 mins, 

then incubated in a 1:1 mixture of Epon and propylene oxide overnight. Tubes were 

left open for 2 h before Epon was removed, replaced with fresh Epon, and rotated 

4 h on mixing wheel. Finally, blocks were transferred to fresh Epon in molds and 

left at 60 oC overnight before trimming and thin sectioning on an ultramicrotome 

with a diamond knife. Sections were placed on copper grids and then contrast 

stained with lead citrate. Micrographs were collected at the University of 

Kentucky’s Electron Microscopy Center on a Talos F200X TEM (Thermo) operated 

at 200 kV accelerating voltage with a 50 m objective aperture inserted to enhance 

contrast using a 16M pixel 4k x 4k CMOS camera (Ceta, Thermo Scientific).  

 

2.2.8 Plaque assays 
 

 HFFs were grown in 12-well plates until confluent. HFFs were subsequently 

infected with 200 parasites/well in the media indicated. Any indicated media 

changes were done 4 h post-infection to allow for invasion, and residual invasion 

media was washed away with two changes of PBS. Plates remained undisturbed 

for 7-10 days before the infected HFFs were fixed with 100% MeOH for 20 mins, 

stained with 1% crystal violet solution for 20 mins, and then the plaques were de-

stained with repeated washes with tap water. Thus, zones of lysis (white clearings) 

could be visualized against intact cells (purple). Images of plaques were obtained 

by scanning plates on an Epson Perfection V600 photo scanner at a resolution of 

600 dpi. The plaques were measured by pixel area using ImageJ and presented 

in arbitrary units.  

 

2.2.9 Ionophore and zaprinast-mediated egress assays 
 

 HFFs were grown to confluency in 35 mm glass bottom dishes (MatTek, P35G-

0-14-C). Two days before infecting HFFs on glass bottom dishes, both HFFs and 

parasites were independently pre-treated in either glutamine-replete or -depleted 

media (see above for media formulations). After 48 h pre-treatment, 105 parasites 

of each line (WT, TgLaf, and COMP) in each condition (gln+/-) were added to 3 

dishes each and allowed to grow for 48 h so that most vacuoles contained >32 

parasites each. Several hours before egress, media in each infected plate was 

adjusted to 1.5 mL and allowed to equilibrate at 37 oC in 5% CO2. The calcium 

ionophore A23187 (Cayman Chemical Company) was prepared as a 2 mM stock 

in DMSO and diluted in (+/-) gln media to make a 4X concentration of 12 M and 

maintained at 37 oC throughout the assay. Zaprinast was likewise prepared as a 

100 mM stock in DMSO, and diluted into media at a 4X concentration of 2 mM. 

Egress was triggered by the addition of 0.5 mL 4X A23187 to infected HFFs (3.0 

M final concentration) or 0.5 mL 4X-zaprinast (500 M final concentration). 

Egress was monitored on a Nikon Eclipse Ti2 inverted microscope with a 40X 

phase air objective modified with a 1.5X optivar. Five fields containing vacuoles 
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were selected from each plate, and an image was obtained 10 s after triggering 

egress from each field once every 5 s for 5 mins (61 images/field) on a Nikon DS-

Ri2 color camera. Videos of each field were assembled on NIS Elements software. 

Egress was monitored using standard deviation of pixel intensity (Figure 2.3a) and 

determined by inflection point of change in standard deviation of pixel intensity 

(Figure 2.3b-c). Inflection point was calculated by fitting a gaussian curve to the 

first derivative of the standard deviation in pixel intensity and calculating the mean 

of the curve. Technical replicates (fields on each plate) were averaged for each 

biological replicate (average of fields from each plate). Data analysis, preparation, 

and statistics were performed using GraphPad Prism 9. 

 

2.2.10 Replication assay 
 

 HFFs were grown on untreated glass coverslips in a 24-well plate until 

confluent. Two days before infecting HFFs on coverslips, both HFFs and parasites 

were independently pre-treated in either glutamine-replete or -depleted media. 

After pre-treatment, 104 parasites of each line (WT, TgLaf, and COMP) in each 

condition (gln+/-) were added to 3 coverslips each. 24 hours later, infected HFFs 

were fixed in MeOH and stained with Rb--SAG1 (1:10,000) and DAPI for ease of 

visualization as detailed in section 2.2.4. Counting of parasites/vacuole was 

performed blindly for each line/condition such that identifying information was 

removed before counting was not revealed until the completion of counting.   

 

2.2.11 Metabolomics 

 

 Confluent HFFs were infected with parasites at an MOI of 2 to achieve a high 

density of parasites after 48-hours of growth (>80% cells containing >32 parasites 

each).  Plates containing infected HFFs were placed on ice, media removed, and 

monolayer was wash 2X with ice-cold PBS. Cells were scraped from plate surface, 

resuspended in PBS (8 plates cell-equivalents per 50 mL PBS), and centrifuged at 

1000g for 10 mins at 4 oC. PBS was removed, cell pellet was resuspended in 2 mL 

PBS, and syringe passaged successively in 23 G and 27 G needles and then host 

cell lysate was removed by centrifuging filtering by centrifugation. The pellet was 

resuspended in 5 mL PBS and host-cell debris was removed by syringe-filtering 

suspension through a 5 m filter (Whatman). Filtered parasites were then pelleted, 

resuspended in 1 mL PBS, and counted on a hemacytometer. Parasites were 

pelleted a final time at 14,000g for 30 s at 4 oC, supernatant was removed, and 

pelleted parasites were flash frozen in liquid nitrogen and stored at -80 oC until 

metabolite extraction.  

 Polar metabolite extraction: Polar metabolites were extracted in 0.5 mL -20 oC 

50% methanol (MeOH) containing 20 M L-norvaline (procedural control) for 30 

mins on ice. During the 30 min incubation, samples were regularly vortexed. 

Samples were then centrifuged at 14000g for 10 mins to pellet insoluble material 
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(protein, DNA, RNA, and glycans). Supernatant containing polar metabolites and 

pellet were dried separately on a SpeedVac (Thermo) at 10-3 mBar until MeOH 

was completely sublimated and only dried pellet remained.  

 Pellet hydrolysis and extraction: Dried fraction containing protein was 

hydrolyzed by resuspending the pellet in 2 N HCl (final concentration) at 95 oC for 

2 h. Hydrolysis was quenched, and hydrolyzed amino acids were extracted by the 

addition of an equal volume of 100% MeOH with 40 M L-norvaline such that the 

final concentration was 50% and 20 M, respectively. Extraction and drying then 

proceeded as described above.  

 Sample derivatization: Dried samples (both polar and hydrolyzed protein) were 

derivatized in 70 L 20 mg/mL methoxyamine hydrochloride in pyridine for 90 mins 

at 30 oC. Samples were then centrifuged at 14000g for 10 mins to remove any 

particulate, and 50 L of the methoxyamine superantent was mixed with 80 L N-

methyl-N-trimethylsilyl trifluoroacetamide (MSTFA) and incubated for 30 mins at 

37 oC. Samples were then transferred to amber glass chromatography vials and 

analyzed by GCMS.  

 GCMS analysis: Metabolites were analyzed on an Agilent 7800B GC coupled 

to a 5977B MS detector. GCMS protocol was identical to one described previously 

(274). Automated Mass Spectral Deconvolution and Identification System (AMDIS) 

was used to analyze metabolites by matching metabolites to the FiehnLib 

metabolomics library via retention time and fragmentation pattern. Quantification 

of metabolite levels was performed in Mnova. Sample abundance was normalized 

to L-norvaline (procedural control) and protein from protein pellet (experimental 

control).  

 

2.3 Establishing the role of TgLaforin in the acute and chronic infection of 
mice 

 

2.3.1 Mouse infection with T. gondii 
 

 4 to 6 week old male and female CBA/J mice from Jackson Laboratories (Bar 

Harbor, ME) were injected intraperitoneally (IP) with either 100 ME49 tachyzoites 

(parasite lines generated in section 2.2) or 20 tissue-cysts from brain homogenate 

from previously infected mice. In either case, parasites were suspended in 0.2 mL 

serum-free, Opti-MEM media (Gibco). Mice were then monitored and assigned a 

body index score once or twice a day throughout the course of infection (Table 

2.6). When symptomatic, mice were administered gel diet and wet chow on the 

cage floor and given 0.25-0.5 mL saline solution subcutaneously if dehydrated. 

Moribund mice were immediately euthanized. Euthanasia of both moribund mice 

and mice sacrificed at the time of tissue cyst harvest was performed by CO2 

asphyxiation, followed by cervical dislocation. All protocols were carried out under 

the approval of the University of Kentucky’s Institutional Animal Care and Use 

Committee (IACUC). 
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2.3.2 Tissue cyst purification 
 

 Tissue cysts were purified as done previously (55,275). Briefly, mice were 

dissected immediately following euthanasia and brains were harvested. Brains 

were then homogenized in pairs in ice-cold PBS containing 0.3% Tween-80 (final 

concentration) using a mortar and pestle, and then homogenate was sequentially 

passaged through needles ranging from 16 G to 23 G. Homogenate was layered 

onto a discontinuous Percoll gradient (Sigma) (90%:9-mL / 40%:4.5mL / 

20%:4.5mL) in a 50 mL conical tube. Homogenate was then centrifuged at 2200 

rpm for 18 min at 4 oC on a Beckman Allegra tabletop centrifuge with a swinging 

bucket rotor using the high brake setting. Cysts were collected in 1 mL fractions 

from the bottom of the centrifuged Percoll gradient using a peristaltic pump 

adjusted to a flow rate of 2 mL/min. To count cysts, 10-20 L of each fraction was 

placed into 100 L PBS in the well of a 96-well plate. The 96-well plate was 

centrifuged at 1000g for 5 min at 4 oC. Cysts were then counted in each well using 

an inverted microscope at 20x magnification (Nikon), and the number of cysts in 

each well was used to determine the total number of cysts in each fraction. Total 

cysts per mouse were calculated by summing the total number of cysts in each 

fraction and dividing the total by two to adjust for brain homogenization in pairs. 

Each pair of mice was presented as a single averaged data point.  

 To fix tissue cysts onto microscope slides for further analysis, fractions 

containing tissue cysts were combined and diluted between five- and ten-fold using 

PBS. Diluted cysts were then centrifuged at 1000g for 15 mins at 4 oC. Diluted 

Percoll was carefully removed, leaving ~0.1 mL at the bottom of the tube. Pelleted 

cysts were then resuspended in PBS at 300-600 cysts/mL. 0.5 mL cyst suspension 

was spun onto glass slides using a Cytospin (Shandon Cytospin 4) at 750 rpm for 

5 mins with medium acceleration and brake. Slides were then immediately 

submerged in ice-cold 100% MeOH and stored in an explosion-proof freezer until 

time of staining.  

 

2.3.3 Staining and analysis of tissue cysts 
 

 Tissue cysts were stained as described previously (55). Briefly, cysts fixed on 

glass slides were washed 3x in PBS++ in a Coplin jar to remove MeOH. Slides 

were then briefly air-dried before drawing a wax circle around the area containing 

the tissue cysts. This wax circle created a hydrophobic barrier that could then 

contain antibody solutions. PAS or IF staining otherwise proceeded as described 

in section 2.2.4 by adding staining solutions into the area contained by the wax 

circle. If washing damaged the wax circle, it was redrawn before secondary 

antibodies were added. After labeling, coverslips were then mounted onto slide by 

the addition of MOWIOL and a coverslip directly over the cysts.  
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2.3.4 Preparation of tissue cysts for TEM imaging 
 

 To prepare T. gondii tissue cysts generated in vivo for TEM, cysts were isolated 

from the brains of infected mice as detailed in section 2.3.2 through the counting 

step. Fraction containing mouse red blood cells (RBCs) was saved for further use 

in this protocol. After combining Percoll fractions containing tissue cysts and 

diluting with PBS to a volume of 15 mL (maximum of 2 mL combined fractions 

before dilution), cysts were pelleted for 15 mins at 1000g at 4 oC. To maximize cyst 

recovery, 10 mL supernatant was removed, and then the bottom 5 mL was divided 

into 1 mL fractions for the top 4 mL, and the final 1 mL directly above the cysts was 

sub-fractionated into 100 L volumes. Typically, the majority of cysts were 

localized to within 300 L of the pellet. Sub-fractions containing cysts were once 

again combined and diluted (typically 200-300 L diluted with 1-mL PBS) in a 1.5 

mL Eppendorf tube, and then pelleted in a swinging-bucket rotor for 10 min at 

1000g and 4 oC. Leaving the pellet undisturbed, all but 50 L of the supernatant 

was removed. A small volume (~5-10 L) of RBC fraction was added to the 

remaining volume for ease of visualizing the pellet throughout the remaining steps.  

 To ensure the detection of the relatively rare cyst population, a previously 

described protocol (276,277) was adapted to concentrate the cysts into a small 

agarose block. A 1.33X solution of GA in cacodylate buffer was prepared 

containing 4% GA and 133 mM sodium cacodylate. 150 L fixative solution was 

then added to sample, bringing the total volume to 200 L such that the final 

concentration of GA was 3% and sodium cacodylate was 100 mM. Cysts were 

then incubated at room temperature for 1 h in fixative. While cysts were in fixative, 

4% low-melt agarose (BioRad) was prepared in 100 mM sodium cacodylate buffer 

and kept liquid at 70 oC until needed. After fixation, cysts were pelleted again at 

1000g for 10 mins at room temperature in a table-top centrifuge. All but 50 L 

supernatant was once again removed, and 200 L warm low-melt agarose was 

slowly added on top of fixed, pelleted cysts (3.2% agarose, final concentration). 

Suspension was then centrifuged again at 1000g for 10 mins at 30 oC to keep the 

agarose semi-liquid, and then placed on ice for 20 mins to solidify agarose. After 

solidification, entire agarose plug was removed from tube with a small a wooden 

dowel that had been whittled into a thin scoop. Agarose plug was placed in a Petri 

dish, and the pellet was carefully cut out of the plug with a razor blade to create a 

1 mm3 block. The agarose block was then stored in 3% GA/cacodylate buffer 

overnight at 4oC. Processing of the block from post-stain onward was then identical 

to TEM processing described in section 2.2.7. During sectioning, thick sections 

were examined on a light microscope to verify the presence of tissue cysts before 

proceeding with ultra-thin sectioning. 
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2.3.5 Determination of cyst diameter and packing density 
 

 Tissue cysts fixed on slides (described in section 2.3.2.) were co-stained with 

DAPI and DBA to obtain nuclear profiles for bradyzoites and an outline of the cyst 

for diameter measurement. The diameter was determined in Fiji (ImageJ) by 

drawing a circle around the cyst and computing the diameter. Packing density was 

determined as described previously (55). Briefly, DAPI images of cysts were 

opened in BradyCount1.0, and threshold levels were adjusted as needed to 

capture all nuclear profiles. After BradyCount1.0 provided the number of 

bradyzoite nuclei, the packing density was determined by dividing the number of 

bradyzoites by the volume of the section. The formula describing this calculation 

is: PD = N / (r2 x h) where PD=packing density, N = # of bradyzoites, r = radius 

calculated from cyst diameter, and h = height of section (0.22 m throughout this 

study).   
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Table 2.1 Glucan phosphatases used in this study. 
The accession number of each glucan phosphatase used in CBM/DSP alignments 

is listed here, along with its UniProt accession number, and the domain boundaries 

that were assigned to the CBM and DSP within each (if applicable).  

Name 

Accession No. 

(UniProt) CBM DSP 

H. sapiens laforin O95278 1-136 137-331 

A. carolinensis laforin G1KGK2 1-140 141-304 

G. gallus laforin Q5ZL46 1-136 137-319 

D. rerio laforin E9QCC5 2-131 132-294 

X. laevis laforin Q6GPD8 1-124 125-313 

A. thaliana SEX4 Q9SRK5 253-340 84-252 

A. thaliana LSF2 Q9FEB5 N/A 75-232 
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Table 2.2 Glucan, water dikinase sequences used in this study.  
The accession number of each glucan, water dikinase used in this study is listed 

here, along with its UniProt accession number. The domain boundaries that were 

assigned to the CBM and His-domain are also indicated.  

 Including transit peptide 

Name Accession No. 

(UniProt) 

CBM45 His-catalytic site 

Solanum tuberosum 

GWD (StGWD) 
I0DFJ7 

1: 127-203 

2: 458-538 

1059-1080 

Arabidopsis thaliana 

GWD (AtGWD) 
Q0SAC6 

1: 120-196 

2: 394-473 

994-1015 
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Table 2.3 Plasmids used in this study. 

Name Use Source 

pET28b+ 
Expression of TgLaforin CBM 

truncations 
Novagen 

ppSUMO 
Expression of 6xHis-SUMO-TgLaforin in 

E. coli 
Jack Dixon, UCSD 

pG-KJE8 
Co-expression of TgLaforin with 

chaperone proteins 
TaKaRa 

pFastBac-HTA 

Generation of bacmid for expression of 

TgLaforin and TgGWD in Sf9 insect 

cells 

Invitrogen 

pSAG1::CAS9-

U6::sgUPRT 
Genetic modifications in T. gondii 

David Sibley, 

Washington 

University 

pJET-NcGra7_DHFR 
TgLaforin knockout via DHFR-TS* 

knock in 

Peter Bradley, 

UCLA 

pHA3x-LIC 
Tagging and complementation of 

TgLaforin 

Peter Bradley, 

UCLA 

TgLaforin-HA3x-LIC 
Tagging and complementation, derived 

from pHA3x-LIC 
GenScript 
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Table 2.4 sgRNA sequences used in this study. 

Target Use Sequence Strand 

HXGPRT (exon 2) 

HXGPRT knockout 

ATGGTCTCCACCAGTGCTCC + 

HXGPRT (exon 3) GACAAAATCCTCCTCCCTGG - 

HXGPRT (exon 5) CTTCTTCGAGCACTATGTCC + 

TgLaforin 3'UTR TgLaforin epitope tag GCTTAGCGTGTGAACAGCAG + 

TgLaforin (exon 1) TgLaforin KO GAAGTCCCGATAACCTACGC + 

Chromosome VI 

TgLaforin 

complementation GCCGTTCTGTCTCACGATGC 
+ 
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Table 2.5 Primers used in this study.  
Mutagenesis primers are presented in uppercase where the primer binds directly 

to the template, and in lowercase-bold where new sequence is being introduced.  

Name Use Sequence (5’ to 3’) 

HXGPRT_sgRNA_E2_F 

sgRNA 

mutagenesis for 

each construct 

used in HXGPRT 

knockout 

ctcgaagaagGTTTTAGAGCTAGAAATAGC 

HXGPRT_sgRNA_E2_R cactatgtccAACTTGACATCCCCATTTAC 

HXGPRT_sgRNA_E3_F tcctccctggGTTTTAGAGCTAGAAATAGC 

HXGPRT_sgRNA_E3_R ggattttgtcAACTTGACATCCCCATTTAC 

HXGPRT_sgRNA_E5_F tggagaccatGTTTTAGAGCTAGAAATAGC 

HXGPRT_sgRNA_E5_R ccagtgctccAACTTGACATCCCCATTTAC 

TgLaf_3'UTR_sgRNA_F sgRNA 

mutagenesis for 

TgLaf-HA epitope 

tagging 

tgaacagcagGTTTTAGAGCTAGAAATAGC 

TgLaf_3'UTR_sgRNA_R cacgctaagcAACTTGACATCCCCATTTAC 

TgLaf_exon5_homology_F Generation of 

TgLaf-HA tagging 

construct 

AGAGGAGGCGGAGGAGAG 

TgLaf_3'UTR_HX+homology_R 
TCCGTATCGCCCCCTCTCGTCTGACACGCCCTC

TTTCCTCCAGCACGAAACCTTGCATTC 

TgLaforin_sgRNA_E1_F 
sgRNA for TgLaf-KO 

taacctacgcGTTTTAGAGCTAGAAATAGC 

TgLaforin_sgRNA_E1_R tcgggacttcAACTTGACATCCCCATTTAC 

TgME49_ChrVI_sgRNA_F sgRNA for ChrVI 

used in TgLaf 

complementation 

ctcacgatgcGTTTTAGAGCTAGAAATAGC 

TgME49_ChrVI_sgRNA_R acagaacggcAACTTGACATCCCCATTTAC 

TgLAF_WT_F Amplification of 

the first exon of 

TgLaforin, 

uninterrupted 

TCCTACATTCTGGAGCGAAG 

TgLAF_WT_R AAAGCCACTTTCTCCAGGAG 

DHFR*_R 

Binds to drug 

cassette from pJET-

NcGra7_DHFR 

GCATTATGAGGAAAGCCCsAC 

TgChrVI_WT_F Amplification of 

WT Chr VI locus 

CAGGAAATATGCTGCGAGGA 

TgChrVI_WT_R TGTGTCTGCTCTTGAAGGTG 

TgLaf_COMP_F 

Binds to HXGPRT 

cassette within 

complementation 

construct (derived 

from pHA3x_LICs 

TGCAAGCCCTACATTGACAA 
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Table 2.6 T. gondii-infected mouse body index scoring guide. 
 

 

 

 

 

 

 

 

 

Healthy Stage 0           

Progression 

of acute 

illness 

Stage 1           

Stage 2           

Stage 3           

Moribund/ 

deceased 
Stage 4           
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Figure 2.1 Refolding conditions for TgLaforin. 
Refolding screen with minor modifications was adapted from (259). Abbreivations: 

ARG = arginine; DTT = dithiothreitol; EtOHHN2 = ethanoloamine; GSH/GSSG = 

reduced/oxidized glutathione; NaCl = sodium chloride; NDSB = non-detergent 

sulfobetaines; PEG = polyethylene glycol; ZWITT = zwitterionic detergent.  
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Figure 2.2 ImageJ analysis of in vitro bradyzoite conversion. 
A, Tachyzoites were converted to bradyzoites in vitro using alkaline stress for 2-6 

days. During this time, classic bradyzoite markers detected with DBA and PAS are 

upregulated. B, Determination of DBA and PAS intensity using a four-step ImageJ 

workflow.  
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Figure 2.3 Video monitoring and automated analysis of T. gondii induced 
egress. 
A, Vacuoles in each field are identified (left panels) as ROIs in which the standard 

deviation in intensity is monitored (right panel). Representative states of vacuoles 

are pictured, and each state (1-4) is labeled on the tracking graph. State 3 is the 

point of egress, as parasites begin to emerge from vacuole, and this corresponds 

to the inflection point on the standard deviation in intensity tracking graph. B, 

Gaussian fit of the first derivative of the curves from (A). C, Overlay of (A) and (B) 

as validation that analysis generating data in (B) reflects the inflection point from 

(A).  

 



 
 

CHAPTER 3. THE TOXOPLASMA GLUCAN PHOSPHATASE, TGLAFORIN, 
UTILIZES A DISTINCT FUNCTIONAL MECHANISM ENABLING INHIBITOR 

IDENTIFICATION 

 

3.1 Introduction 
 

 Toxoplasma gondii is an obligate, intracellular, protozoan parasite that can 

infect any warm blooded animal and chronically infects one-third of humans 

worldwide (3). Infection with the parasite occurs through several routes, including 

ingestion of environmental oocysts shed through cat feces, consumption of tissue 

cysts in raw or undercooked meat, or through vertical transmission from an acutely 

infected individual to their fetus (77,85). Upon consumption, the cyst-forms 

(oocysts and tissue cysts) of the parasite eventually convert into the rapidly 

dividing tachyzoite that disseminates throughout the body of the host, defining the 

acute stage of infection (278). Under host immune pressure, a small number of 

tachyzoites evade host defenses by converting into bradyzoites that populate 

tissue cysts located in the central nervous system or muscle tissue of the host 

(83,120). If the host becomes immunocompromised during the course of the life-

long chronic infection, spontaneous reactivation of bradyzoites into tachyzoites 

can result in symptomatic toxoplasmosis that primarily manifests as the life-

threatening toxoplasmic encephalitis (114). The current first-line treatment is a 

combination of pyrimethamine and sulfadiazine that targets folate synthesis in 

tachyzoites during the acute phase of infection or after reactivation. However, this 

treatment regime only targets tachyzoites, results in serious side effects, must be 

taken for long periods of time, and cannot be administered to pregnant individuals 

(123). Notably this drug combination does not reduce the overall cyst burden. 

Other drugs, targeting the parasite mitochondrion result in a partial clearance of 

tissue cysts, without achievement of a sterile cure. The potential for AG 

metabolism as a target for drug intervention provides a unique molecular target for 

T. gondii therapeutics that has not been explored. 
 A distinguishing feature of T. gondii bradyzoites is their accumulation of large 

glucose-based polymers known as amylopectin granules (AGs) (101,196,279). 

AGs are believed to function as an insoluble form of glucose storage for use in 

bradyzoite persistence, replication, transmission, and reactivation, analogous to 

starch utilization during the night in plants (55,101,144). Purified AGs were found 

to be similar to plant amylopectin, the major glucose component of starch, with 

respect to glucose chain-length and branching frequency, demonstrating that the 

structure of AGs is more similar to plant starch than to animal and fungal glycogen 

(40,196,197). Unexpectedly, it was demonstrated that AGs are synthesized from 

UDP-glucose, similar to the sugar nucleotide used in fungal and animal glycogen 

synthesis, rather than ADP-glucose, which is used by plants (40). Additionally, T. 

gondii AGs reside in the cytoplasm, which is also characteristic of fungal and 

animal glycogen, and are visible by transmission electron microscopy (TEM) in 
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encysted bradyzoites but not the rapidly dividing tachyzoites (Figure 1.1b and 

1.1f). The presence of AGs in the cytoplasm is noteworthy given that Toxoplasma 

retains a plastid remnant organelle termed the apicoplast that has its origins in red 

alga.  

 These seemingly disparate findings regarding AGs are consistent with the fact 

that the T. gondii proteome contains a hybrid molecular machinery exhibiting 

characteristics of plants, fungi, and animals (280,281). This hybrid machinery is 

exemplified in T. gondii’s putative cycle of reversible glucan phosphorylation 

(Figure 1.4 and 1.6). In plants, the cycle begins with the actions of glucan, water 

dikinase (GWD) and phosphoglucan, water dikinase (PWD) that use ATP to 

phosphorylate glucose at the C6- and C3-hydroxyl positions within the glucan, 

respectively (167,168). The presence of covalently attached phosphate disrupts 

the crystalline organization of starch, thus solubilizing the surface glucose chains 

and enhancing access of multiple amylases that release glucose, maltose, or other 

oligosaccharides (169,170,172). To allow processive hydrolysis, the activity of a 

glucan phosphatase is required to remove the residual phosphate groups and 

reset the cycle (173,174,247). The T. gondii genome contains sequences that 

encode putative enzymes with these activities: a glucan, water-dikinase (TgGWD 

(TgME49_214260); plant-like), multiple amylases and debranching enzymes, and 

the glucan phosphatase T. gondii laforin (TgLaforin (TgME49_205290); animal-

like), along with all of the enzymes needed in glucan synthesis (Figure 1.4, Table 

1.1) (40,204,205,212).  
 The mechanism regulating the utilization of AGs in the T. gondii lifecycle is only 

beginning to be defined. The critical regulatory role of reversible phosphorylation 

of both starch and glycogen has been increasingly recognized, leading to 

potentially unique insights and molecular targets in the T. gondii system (154,282). 

Notably, glucan phosphatases are a family of carbohydrate-specific enzymes that 

play a critical role in controlling polyglucan utilization in both plants and animals. 

Glucan phosphatases are required for efficient starch catabolism as loss of starch 

excess4 (SEX4), the prototypical glucan phosphatase found in plants, leads to 

aberrant starch accumulation and morphology (174,239).  Strikingly, mutations in 

human laforin (HsLaforin), the glucan phosphatase in humans, results in 

hyperphosphorylated and aberrantly branched glycogen that is the driver of Lafora 

disease (LD), a fatal epilepsy and childhood dementia (184,187,283).  
 Glucan phosphatases are an enzyme family that dephosphorylate glucans via 

a dual specificity phosphatase (DSP) domain coupled with either a carbohydrate 

binding module (CBM) domain or carbohydrate surface binding sites (204,247). 

Glucan phosphatases are members of the protein tyrosine phosphatase (PTP) 

superfamily within the DSP clade (284-286). Previous work has demonstrated that 

glucan phosphatases employ a wide variety of platforms that allow them to bind 

and dephosphorylate carbohydrates (261,287-289). In land plants, SEX4 binds 

and dephosphorylates carbohydrates by utilizing an integrated binding pocket 

formed by the CBM/DSP interface (250,252,260). Like Sex Four-2, LSF2, another 
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plant glucan phosphatase, lacks a traditional CBM and instead binds 

carbohydrates through surface binding sites within its DSP domain (251). Human 

laforin is an antiparallel dimer with a spatially separated CBM and DSP that are 

each capable of binding to carbohydrates independently (253). While they are not 

orthologs, SEX4 and laforin are functional equivalents as complementation of 

laforin into sex4 A. thaliana plants rescues the starch excess phenotype (204). 

 In this study, we build on our understanding of glucan phosphatases and 

reversible phosphorylation in T. gondii by defining the biophysical and biochemical 

properties of TgLaforin. We identified an atypical CBM in TgLaforin, defined 

TgLaforin’s oligomerization status, and determined its activity. Moreover, we 

developed and characterized the first reported TgLaforin inhibitor. These findings 

demonstrate the value of a detailed examination of the enzymology related to 

glucan metabolism in T. gondii and open new doors for anti-Toxoplasma 

therapeutics.  

 

3.2 Results 

 

3.2.1 Expression of recombinant, full-length TgLaforin 
 

 To express recombinant TgLaforin in BL21-DE3 E.  coli, an E. coli codon-

optimized cDNA was fused with an N-terminal, 6x-His-tagged small ubiquitin-like 

modifier (SUMO) protein. SUMO protein is believed to act as a protein folding 

initiator that increases protein solubility (290). While a significant portion of the 

protein remained insoluble, a fraction of soluble SUMO-TgLaforin was successfully 

expressed in E. coli and purified using immobilized metal affinity chromatography 

(IMAC) (Figure 3.1a; panel 1, “E”). Moreover, the SUMO-tag was readily 

removed with ubiquitin-like-protease (ULP) treatment. However, recombinant 

TgLaforin was not pure as several other proteins were also co-purified alongside 

it. Because many of these proteins were in a similar molecular weight (MW) range, 

size-exclusion chromatography (SEC) was not utilized for further purification. 

Instead, anion exchange chromatography (AEX) was chosen due to the predicted 

pI of TgLaforin (6.47). To elute TgLaforin, a salt gradient of 100 mM→500 mM 

NaCl was used, and TgLaforin eluted at ~320 mM NaCl (Figure 3.1a; panel 2). 

While some bands of lower MW were successfully eliminated from the purified 

protein, several contaminants still remained. Regardless, protein purified from E. 

coli demonstrated activity against the artificial substrate para-

nitrophenylphosphate (pNPP) (Figure 3.2c), but further purification strategies 

were pursued to generate highly pure protein for use in downstream studies in 

which biophysical properties and conformational dynamics could be determined.  

 Because a significant amount of TgLaforin remains insoluble upon expression 

(Figure 3.1b, panel 1, “+IPTG”), it was reasoned that co-expression of TgLaforin 

with several chaperones might aid in its proper folding without the attachment of a 

large fusion protein such as SUMO. Therefore, TgLaforin was co-expressed in 
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BL21 E. coli with 4 chaperones: DnaK, GroEL, DnaJ, and GrpE (Figure 3.1b). 

Each chaperone or set of chaperones was under the control of differentially 

inducible promoters, so the induction of each chaperone with either arabinose or 

tetracycline, or all three in combination was first verified (Figure 3.1b, panel 1, 

“+arab/+tet”). The solubility of 6xHis-TgLaforin (a 61.5 kDa protein) alongside 

these chaperones was obscured by the expression of GroEL (a 60 kDa protein). 

Further purification with IMAC revealed almost no soluble protein (Figure 3.1b, 

panel 2, “E”). To determine if any of the protein in the IMAC eluate was soluble, 

protein fractions analyzed were western blot analysis with an -His antibody 

(Figure 3.1b, panel 3). Alongside these four chaperones, TgLaforin remained 

insoluble, and no soluble protein was detected by western blot.  

 To take advantage of the high levels of insoluble protein, refolding of TgLaforin 

in E. coli inclusion bodies (IBs) was attempted as IBs have been demonstrated to 

be a relatively pure source of protein (291). IBs were first washed of soluble protein 

with 2M Urea and 2% Triton X-100 before being solubilized in 6M guanidine, 

resulting in relatively pure, soluble protein (Figure 3.1c, “Ex”). Protein was then 

rapidly diluted in a range of buffers at various pHs with or without multiple additives 

and reducing agents. This screen was designed around 96 total conditions 

previously identified by Dechavanne, et al. 2010 (259); (detailed in section 2.1.4) 

(Figure 3.1d and Figure 2.1). Rapid dilution of protein has been demonstrated to 

be effective in protein refolding (292) as opposed to slower refolding by dialysis,  

and was thus selected for the purposes of a large-scale screen. Indeed, several 

conditions resulted in soluble protein (Figure 3.1d). To determine if the soluble 

protein was properly folded, differential scanning fluorimetry (DSF) was used. DSF 

is a technique that monitors protein unfolding in the presence of SYPRO orange. 

Hydrophobic, interior residues of protein bind SYPRO during the unfolding 

process, and a melt-curve with an inflection point, from which the melting 

temperature (Tm) is derived, indicates the presence of folded protein. In general, 

the presence and relative value of the melting temperature can be used as a 

surrogate for protein stability. DSF analysis of soluble TgLaforin revealed that none 

of the soluble protein identified by the refolding screen possessed a fluorescence 

inflection point that allowed for the identification of a Tm (Figure 3.1e; c.f. Figure 

3.3a), indicating that the protein may not have been folded despite its solubility. 

 It was then reasoned that a eukaryotic expression system with more extensive 

protein post-translational modifications might benefit the solubility and purity of 

TgLaforin. Therefore, baculovirus-induced expression in Sf9 insect cells was 

selected to express 6xHis-TgLaforin. After increasing viral titer through three 

passages, various baculovirus:Sf9-cells (v/v) were tested, and an optimal ratio of 

1:1000 was selected (Figure 3.2a). Western blot analysis with an -His antibody 

confirmed the identity of the expressed protein (Figure 3.2b). Isolation of protein 

from Sf9 cells and subsequent IMAC purification yielded pure protein. Moreover, 

SEC or AEX polishing steps resulted in equally pure protein (Figure 3.2a), so SEC 

was selected for its convenience and increased control over final buffer 
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composition, yielding >95% pure protein. When compared to protein produced in 

E. coli (purified by AEX, Figure 3.1a), the specific activity of TgLaforin remained 

the same when adjusted for total TgLaforin across expression systems (Figure 

3.2c), but the purity was greatly increased. The enzymatic activity of TgLaforin will 

be further dissected in section 3.2.6.  

 

3.2.2 Recombinant Sf9-expressed TgLaforin is stably folded 

 

 To determine if the baculovirus-expressed TgLaforin was indeed stably folded 

in solution, DSF was once again utilized (Figure 3.3). DSF analysis of TgLaforin 

expressed in Sf9 insect cells yielded a standard melting curve (Figure 3.3a). By 

taking the first derivative of the melt curve and fitting the first derivative with a 

gaussian curve, a Tm could be determined at maximum of the fitted curve (Figure 

3.3b). Without any ligand, the Tm of full-length TgLaforin was 47.6 oC (Figure 3.3c). 

To define TgLaforin carbohydrate binding, TgLaforin was incubated with various 

carbohydrates and analyzed with DSF. An increase in Tm is associated with 

increased protein stability due to protein-ligand interaction (185,293). When 

incubated with DP4 (four linear glucose units) or DP7 (seven linear glucose units), 

TgLaforin was robustly stabilized (Figure 3.3b-c). Moreover, TgLaforin was also 

stabilized in the presence of complex carbohydrates such as amylopectin and 

glycogen (Figure 3.3b-c). The stabilization of TgLaforin with these carbohydrates 

was demonstrated to be dose dependent (Figure 3.3d-e), demonstrating that Sf9-

expression of TgLaforin yielded both pure and folded protein.  

 

3.2.3 Bioinformatic evidence for a split-CBM20 in TgLaforin 
 

 T. gondii AG metabolism employs reversible glucan phosphorylation where the 

plant-like TgGWD dikinase and animal-like TgLaforin phosphatase are utilized 

(Figure 1.4 and 1.6). In addition to this plant-like versus animal like axis, TgLaforin 

is also unique in its domain organization. We previously predicted that the T. gondii 

genome encodes for a glucan phosphatase that is more similar to human laforin 

than other glucan phosphatases based on its domain orientation  with an N-

terminal CBM family 20 (CBM20) followed by a DSP domain (204,205). However, 

TgLaforin contains 523 amino acids, and the combined length of a typical CBM 

(90-120 amino acids) and DSP (150 amino acids) is only 240-270 amino acids, 

leaving approximately half of the protein uncharacterized. Bioinformatic analyses 

suggested that TgLaforin contains two unusual inserts within its CBM20 domain 

(Figure 3.4a) (294).  
 Rather than pursuing protein crystallography with the Sf9-generated protein, 

the architecture of TgLaforin and its CBM were predicted utilizing AlphaFold2 (258) 

to generate a putative three-dimensional model of TgLaforin. The model generated 

by AlphaFold2 predicted that TgLaforin contains a single CBM20 over the span of 

325 amino acids. With high confidence (predicted Local Distance Difference Test 
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(pLDDT) score >70%), AlphaFold2 modeled a core CBM that consists of -strands 

from the three distally located sub-domains of the CBM region. The model predicts 

that the unusual inserts form large unstructured linker regions connecting the core 

structured CBM regions (Figure 3.4b). The unstructured portions of the CBM20 

modeled with low confidence (pLDDT<50%) (Figure 3.4b). A canonical DSP 

domain (reviewed in (284)) was also modeled in TgLaforin containing the 

characteristic DSP + structure with a central -sheet consisting of five twisted 

-strands (Figure 3.5a). TgLaforin contains the canonical CX5R motif with C452 

serving as the catalytic cysteine (Figure 3.5a-b), and R458 that coordinates the 

three non-bridging oxygens of the incoming phosphoryl substrate. This catalytic 

motif is located between a -strand and -helix as expected. DSP domains also 

contain a critical, upstream aspartate (D421 in TgLaforin) that defines the D-loop 

and functions as an acid-base catalyst, modeled in TgLaforin as participating in 

the active site (Figure 3.5). The presence and location of these residues places 

TgLaforin in the PTP superfamily (295).  

 To validate the AlphaFold2 model of TgLaforin, we utilized full-length TgLaforin 

expressed in Sf9 insect cells and purified by SEC (Figure 3.2a) in hydrogen-

deuterium exchange (HDX) mass-spectrometry (MS) experiments. This technique 

has previously been used to illuminate conformational dynamics of proteins by 

demonstrating areas of high and low solvent accessibility (253,296). We first 

determined deuterium uptake across the entire protein from 15-15,000 s (Figure 

3.6) and mapped the results onto the AlphaFold2 model (Figure 3.4c). Critically, 

the core CBM20 -sandwich exhibited low uptake of deuterium while the CBM 

insert regions that were modeled with low confidence displayed much higher rates 

of deuterium uptake (Figure 3.4c-d). These regions with high deuterium exchange 

are thus more mobile and less structured. Conversely, -sheets within the core 

CBM were among the structural elements with the lowest deuterium uptake. Within 

the DSP domain, core structural elements had low uptake while elements of the 

DSP active site, known to undergo conformational changes required for substrate 

interaction (253,297), displayed higher uptake. These active site regions included 

the recognition domain, variable loop, D-loop, PTP-loop, and R-motif (Figure 3.4d 

and Figure 3.6) that have previously been reported as exhibiting higher solvent 

accessibility in SEX4 and laforin (253,264).  

 

3.2.4 Integrated CBM is required for carbohydrate binding 
 

 To further define the nature of the unique split-CBM domain found in TgLaforin, 

we aligned the TgLaforin CBM with other glucan phosphatases containing a 

CBM20 (Figure 3.7a). The three regions of the TgLaforin CBM20-domain, split 

over 325 amino acids and interrupted by linker regions, each contain a part of the 

key consensus amino acids predicted to be critical to glucan binding. However, 

none of the individual regions contain a complete array of consensus amino acids 

that would allow it to be an individual CBM domain. Moreover, these three 
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subdomains contain the predicted number of -strands that are typically identified 

in a CBM that are predicted to come together to form two anti-parallel -sheets, 

comprising the canonical -sandwich fold that is characteristic of CBM20 domains 

(Figure 3.7b). Each sub-domain contains one of the three conserved amino acids 

involved in either aromatic glucose stacking interactions (W29 and W278) or 

hydrogen bonding with glucose rings (K206) that are each critical to glucan binding 

(298). Conversely, the linker regions do not contain the key conserved glucan-

binding residues. Importantly, the three critical carbohydrate binding residues 

(W29, K206, and W278) are organized into a single three-dimensional binding site 

similar to other CBM20s (Figure 3.7c and Figure 3.8a).  

 To further test if TgLaforin contains a single integrated CBM, we expressed 

each of the three sub-domains (CBM20-1, -2, and -3) separately and in different 

combinatorial arrangements (Figure 3.8b). Each of the constructs encoding 

individual portions of this region were either not expressed, not folded, or 

aggregated (Figure 3.8c-e). However, we were able to express and purify the 

predicted full TgCBM comprising all three subdomains with the two linkers, 

TgCBM123 (referred to simply as “TgCBM”) (Figure 3.8d).  

 We next analyzed TgCBM using size exclusion chromatography coupled with 

multi-angle light scattering (SEC-MALS) to define its oligomerization state. SEC-

MALS analysis demonstrated that TgCBM has a MW of 36.6  6.8 kDa, compared 

to the predicted monomeric mass of 35.6 kDa, indicating that the TgCBM is a 

stable monomer in solution (Figure 3.9a). To define TgCBM carbohydrate binding, 

DSF was utilized as described in section 3.2.1 (185,293). We incubated TgCBM 

with the linear oligosaccharide maltohexaose and observed a robust dose-

dependent stabilization of TgCBM with an Kd,app=20  4 mM (Figure 3.9b).  

 To further probe the glucan binding of TgCBM, we designed alanine mutants 

of the three predicted critical carbohydrate-binding residues. K206A and W278A 

were produced and purified to near homogeneity, while W29A was deleterious to 

protein folding. We then tested the effect of the K206A and W278A mutations on 

carbohydrate binding. Strikingly, neither mutant was able to bind to maltohexaose, 

demonstrating their key function in carbohydrate binding (Figure 3.9b). If 

TgLaforin contained two distinct CBMs, then carbohydrate binding should have 

been only partially reduced by each independent mutant. Taken together, these 

data demonstrate the structure, dynamics, and carbohydrate binding of the split 

CBM20 of TgLaforin. 

 

3.2.5 TgLaforin is an antiparallel dimer 
 

 Previous work demonstrated that glucan phosphatases utilize unique platforms 

to bind and dephosphorylate carbohydrates (287). While the plant glucan 

phosphatases SEX4 and LSF2 are monomeric, dimerization is a critical feature of 

human laforin activity and stability, and dimerization is mediated through the DSP 

domain resulting in an antiparallel dimer (253). To determine the glucan binding 
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platform employed by TgLaforin, we analyzed the oligomerization status of full-

length TgLaforin and found that TgLaforin eluted as a single species from SEC 

(Figure 3.10a). However, like other glucan phosphatases, it was significantly 

shifted in elution volume due to interactions with the carbohydrate-based SEC 

matrix and eluted at a higher volume than would be expected when compared to 

SEC standards (262). We therefore utilized SEC-MALS to determine the 

oligomeric state of TgLaforin. SEC-MALS demonstrated that TgLaforin has a MW 

of 136.6  0.6 kDa, twice the predicted size of the 61.5 kDa monomeric protein, 

signifying it exists in solution as a stable dimer (Figure 3.10a). When considered 

alongside the fact that TgLaforin-CBM is a monomer in solution (Figure 3.9a), this 

is highly suggestive that dimerization of TgLaforin is mediated through the DSP 

domain. To test this, we utilized the multimer modeling functionality of AlphaFold2 

(257). We predicted the structure of a homodimer of TgLaforin, which produced an 

anti-parallel dimer model which was exclusively DSP-driven (Figure 3.10b). The 

core CBM and DSP domains were modeled with high confidence (pLDDT>70%), 

and adopted an orientation very similar to that observed in human laforin (253).  

 

3.2.6 TgLaforin is an active glucan phosphatase 
 

 Phospho-tyrosine specificity is conferred to PTPs through the ~40 amino acid 

recognition domain that forms a deep catalytic pocket. In DSPs, however, the 

recognition region is much shorter, which results in a shallower active site that 

allows DSPs to dephosphorylate phospho-serine/threonine residues as well (284). 

As with other DSP containing proteins, the TgLaforin recognition region is much 

shorter than a typical PTP, confirming its placement in the DSP family. When 

compared with other glucan phosphatases, the TgLaforin DSP domain also shares 

many of the same glucan binding residues with human laforin, but not with plant 

glucan phosphatases [(Figure 3.5b); residues highlighted in blue)].  

 These carbohydrate-binding residues identified in the DSP play a role in both 

specific and selective activity against glucan substrates. To determine optimal 

TgLaforin activity, we first tested its phosphatase activity against pNPP over a pH 

range from 5.0-9.0 (Figure 3.11a). Over the range tested, TgLaforin displayed the 

highest activity at pH 5.0. To determine if TgLaforin activity remains stable under 

these acidic conditions, TgLaforin was pre-incubated in phosphatase buffer at 

various pHs from 5.0-6.5 before the addition of substrate (Figure 3.11b). Strikingly, 

TgLaforin lost activity over time if incubated at a pH of 5.0, but retained most of its 

maximum activity level at higher pH values. Therefore, all the following pNPP 

activity assays were conducted at pH 5.5. At pH 5.5, TgLaforin demonstrated 

robust activity against pNPP that was both dose- and time-dependent (Figure 

3.12a). Moreover, when the catalytic cysteine (C452) was mutated to a serine 

(C452S), the activity was completely ablated, consistent with its role as the 

catalytic nucleophile (Figure 3.11a and 3.12a).  
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 To test its activity against a biologically relevant substrate, we used a malachite 

green-based assay to detect phosphate release from solubilized potato 

amylopectin. We once again tested the optimal pH of TgLaforin activity against 

amylopectin (Figure 3.11c). Generally, the activity of TgLaforin was higher at 

acidic pH values, and activity at pH 6.5 was significantly higher than several other 

basic pH values. Because malachite-green based glucan phosphatase assays are 

typically conducted at pH 6.5, and TgLaforin activity was optimal at this pH, all 

following amylopectin assays were conducted at pH 6.5. TgLaforin readily 

dephosphorylated amylopectin in a time-dependent manner, whereas the 

catalytically inactive C452S control did not (Figure 3.12b). Importantly, VHR, a 

member of the DSP family lacking a CBM, was unable to release phosphate from 

amylopectin (Figure 3.12b). Therefore, in addition to providing evidence for its 

glucan phosphatase activity, these data also demonstrate the ability of TgLaforin 

to bind carbohydrates and confirm the function of its split CBM.  

 Glucose within both starch and glycogen is phosphorylated at both the C3- and 

C6-hydroxyl groups, and glucan phosphatases display varying specificities with 

regards to the site that they dephosphorylate (289). SEX4 displays a preference 

for dephosphorylating the C6-position while human laforin displays a preference 

for the C3-position (252,261). LSF2, however, exclusively dephosphorylates the 

C3-position (251). We tested TgLaforin for C3- or C6-selectivity by incubating it 

with starch differentially radio-labeled at the C3- or C6-position. TgLaforin 

displayed a strong preference for dephosphorylating the C3-position with 78% of 

its activity directed against C3, and only 22% against C6 (Figure 3.12c). Together, 

these data demonstrate that TgLaforin is a glucan phosphatase with a preference 

for C3-phosphate. 

 

3.2.7 Design, synthesis, and testing of a TgLaforin inhibitor  
 

 Because TgLaforin represents a possible therapeutic target as a critical 

regulator of AG metabolism in T. gondii, we sought to exploit its observed unique 

features to identify a specific inhibitor. We utilized the SulfoPhenyl Acetic Amide 

(SPAA) platform for inhibitor development, which is a novel pTyr-mimetic derived 

from the FDA-approved drug cefsulodin (299,300). Based on SPAA, potent and 

specific inhibitors to several PTP enzymes have been developed, including SHP2, 

mPTPA, mPTPB, and LMW-PTP (299-302). These inhibitors were discovered by 

fragment-based combinatorial chemistry approach where a library of compounds 

was prepared by reacting SPAA containing cores with a set of carboxylic acids or 

amines. To increase the potency and selectivity of an inhibitor for TgLaforin, 

molecular diversity was installed in order to capture additional and less conserved 

interactions outside the pTyr binding cleft (i.e., active site), generating inhibitor 

L319-21-M49 (Figure 3.13a). Screening and selection of this compound was 

conducted at Purdue Institute for Drug Discovery under the direction of Dr. Zhong-

Yin Zhang.  
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 To test the specificity and potency of L319-21-M49, we used the pNPP assay 

with TgLaforin and a variety of other phosphatases (Figure 3.13b). To determine 

a linear range of activity with respect to time, 50 nM TgLaforin was incubated with 

pNPP and demonstrated to possess linear activity over the course of 10 min 

(Figure 3.14a). To determine the optimal pNPP concentration for inhibitor analysis, 

TgLaforin was incubated with a wide range of pNPP concentrations (Figure 3.14b) 

to determine its Km (Figure 3.14c). Additionally, the linear time range of all other 

phosphatases used in this study for inhibitor comparison (PTP1B, VHR, and CIP) 

was verified (Figure 3.15a), and the Km for each phosphatase was determined 

(Figure 3.15b). For inhibitor assays, each phosphatase was incubated with a 

concentration of pNPP equivalent to the Km value for each respective enzyme 

alongside a range of inhibitor concentrations.  

 Under these conditions, L319-21-M49 possessed an IC50 of 1.49 M against 

TgLaforin (Figure 13.16a). Moreover, when tested against other phosphatases, 

the inhibitor was remarkably specific to TgLaforin. L319-21-M49 was at least 100-

fold selective towards TgLaforin compared to another DSP (VHR), a general PTP 

(PTP1B), and an alkaline phosphatase (CIP) (Figure 13.16a).  

 Next, L319-21-M49 was tested against the glucan phosphatase activity of 

TgLaforin in the malachite green based assay at its linear activity range (Figure 

3.15b). To do this, we incubated TgLaforin with amylopectin in the presence of the 

inhibitor and detected phosphate release with malachite green. Importantly, the 

inhibitor was also effective at preventing TgLaforin activity against soluble 

amylopectin with an IC50 of 5.10 M (Figure 3.16b). Finally, we tested the 

inhibitor’s ability to inhibit phosphate release using the radiolabel assay within 

TgLaforin’s linear activity range (Figure 3.15c). L319-21-M49 was also effective in 

preventing phosphate release from both the C3 and C6 positions with similar IC50s 

of 6.68 M and 6.47 M, respectively (Figure 3.16c). Thus, in L319-21-M49, we 

have identified a first-in-class lead compound for the inhibition TgLaforin. 

 

3.3 Discussion 
 

 In animals, glycogen breakdown provides substrates for epigenetic 

modifications, central carbon metabolism, and protein post-translational 

modifications (154,303,304). In plants, starch characteristically acts as both a 

transient and long-term storage form of glucose, dictating the level of free sugars 

and allowing for energy maintenance through dark periods (144). Interestingly, T. 

gondii appears to utilize both plant-like and animal-like systems of glucan storage 

and degradation making this system an appealing candidate for therapeutic 

development. Glucan phosphatases are critical regulators of polyglucan 

metabolism in both plants and animals. Here, we characterized the structure, 

dynamics, and activity of the unique T. gondii glucan phosphatase TgLaforin, 

demonstrating it possesses a single CBM20 N-terminal to its DSP, a dimerization 

interface via the DSP domain, and preference for dephosphorylating the C3-



 
 

77 

hydroxyl position on glucose. Finally, we identified a first-in-class lead compound 

that inhibits TgLaforin.  

 To elucidate the split nature of this novel CBM20, we employed the recently 

developed AlphaFold2 neural network for an initial structural prediction. In 

agreement with our sequence predictions and site-directed mutagenesis 

experiments, the computational prediction of AlphaFold2 suggested that 

TgLaforin’s CBM20 folds into a central core -sandwich with large unstructured 

loops outside of this core. This orientation connects the -sheets so that they form 

the canonical immunoglobulin-like fold. The linker regions were modeled with a 

very low level of confidence by AlphaFold2, so we utilized HDX to define both core 

and linker regions of the TgCBM20. Strikingly, HDX demonstrated that regions we 

predicted to form the CBM20 core exhibited much lower solvent exchange. 

Conversely, regions displaying the highest solvent uptake were also the low-

confidence regions of the AlphaFold2 model, potentially revealing intrinsically 

disordered protein-like character of these inserts (305,306). Indeed, low 

complexity inserts have been previously noted as being unusually abundant in the 

proteome of T. gondii and other related parasitic protozoa, often confounding 

protein identification (307-309).  

 We further demonstrated that each homologous region and the aromatic 

residues within them are critical to the ability of TgLaforin to bind carbohydrates, 

consistent with the fact that it indeed contains a single CBM20. This combination 

of protein modeling, mutagenesis, and HDX-MS allowed us to define the first 

reported split-CBM. We attempted to identify other proteomes containing a split-

CBM20 using BLASTp and TgCBM as a query, but we were only able to identify 

putative split-CBM20 orthologues in highly related T. gondii genera that are also 

cyst forming members of the Phylum Apicomplexa such as Neospora, Besnoitia, 

and Eimeria.  

 Therefore, despite its similarities to vertebrate glucan phosphatases, TgLaforin 

employs a unique starch binding domain (SBD) in the form of a split-CBM20. 

Currently, there are 88 CBM families identified in the CAZy database, fifteen of 

which are SBDs (298). The accepted definition of a SBD requires that it must bind 

to complex polysaccharides, and that it be a continuous and discreet domain of 

about 100 amino acids. However, the discovery and characterization of a 

Microbacterium aurum GH13 -amylase (MyAmyA) revealed the first bona fide 

SBD containing 300 amino acid residues (CBM74), demonstrating that SBDs can 

be much longer than the previously expected length (310). In characterizing the 

CBM74, structural and mutagenesis studies were not performed, and 3D modeling 

with the Phyre2 server, a previous modeling software, was unable to generate a 

confident tertiary structure prediction for the domain. Phyre2 predicted 12 -

strands throughout the CBM74 domain, but no continuous sequence between 

strands approached the length of the linkers in the TgCBM. Here, we describe a 

CBM20 that is similar in length to CBM74, but distinct in that its carbohydrate 

binding residues and secondary structures are split over approximately 325 amino 
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acids. This split-CBM20 contains discreet regions of homology to other CBM20s, 

separated by long linker regions with high solvent accessibility.  

 Recent work has demonstrated that glucan metabolism is not restricted to 

bradyzoites in T. gondii, but is critical throughout the asexual lifecycle, playing a 

role in parasite growth, morphology, and infection (203,206,228,235,311). 

Tachyzoites have been recognized as containing a much smaller cytoplasmic 

polyglucan that is not typically visible by electron microscopy but is detectable 

using a carbohydrate-specific stain such as periodic-acid Schiff (PAS) 

(203,228,234,312). This tachyzoite polyglucan is rapidly turned over as observed 

in other protozoan glucans during their trophozoite stages (228,312,313). Of note, 

Ca2+ dependent protein kinase 2, CDPK2, was identified as a regulator of AG 

metabolism in tachyzoites and bradyzoites. The ability of CDPK2 to regulate 

glucan metabolism in tachyzoites was mediated through its CBM20 domain. As 

such, loss of CDPK2 results in parasites with aberrant cell morphology, excess AG 

accumulation, and the inability to form tissue cysts in mice (228). Importantly, 

multiple CDPK2 substrates are involved in glucan turnover including glycogen 

phosphorylase, -amylase, debranching enzyme, and TgGWD. These data 

highlight the critical role reversible phosphorylation might play in T. gondii beyond 

its role in bradyzoites. Additionally, they suggest that enzymes involved in glucan 

metabolism are potential drug targets throughout the parasite’s asexual lifecycle.   

 Historically, phosphatases have been difficult to specifically target (314). 

However, recent breakthroughs have resulted in a number of successful 

compounds being developed (315-321). For TgLaforin, we exploited differences in 

phosphatase tertiary structure outside of the well-conserved PTP-loop to develop 

an inhibitor.  L319-21-M49 was selective for TgLaforin with >100-fold specificity 

compared to VHR, another member of the DSP family. L319-21-M49 not only 

inhibited the generic pNPP activity of TgLaforin, but it also inhibited the ability of 

TgLaforin to dephosphorylate complex carbohydrates. Future studies will define 

specificity and potency within the more closely related glucan phosphatase family. 
 Glucose metabolism plays a critical role in central carbon metabolism and 

cellular signaling from bacteria to humans. Glucose storage and utilization in AGs 

is beginning to be elucidated in T. gondii. Given that a glucose aggregate has now 

been established in both life cycles that replicate in humans (55), the enzymes that 

control AG metabolism are potential therapeutic targets, especially the enzymes 

involved in AG reversible phosphorylation. Importantly, AG metabolism is 

intricately linked to bradyzoite development (54), making AG reversible 

phosphorylation in AGs  an intriguing target. Our studies demonstrate the key 

enzymatic features of TgLaforin as a glucan phosphatase and lay the groundwork 

for targeting TgLaforin as a means to prevent T. gondii bradyzoite reactivation and 

transmission.  

  



 
 

79 

 
Figure 3.1 TgLaforin expression in BL21 E. coli and SDS-PAGE tracking of 
protein throughout purification process.  
A, 6xHis-SUMO-TgLaforin was expressed and SUMO-tag was removed with ULP 

(left panel). Protein was purified using AEX (right panel). Yellow asterisk placed 

above ULP removed by AEX, red asterisk placed adjacent to TgLaforin. B, 6xHis-

TgLaforin was co-expressed with chaperones (left and middle panel). Solubility of 

TgLaforin was interrogated by western blot. Pellet (P) was probed separately due 

to its intense signal (right panel). C, Purification of TgLaforin from inclusion bodies. 

P1-P4 represent pellet washed with 2M Urea, Ex (extract) are inclusion bodies 

solubilized with 6M guanidine. D, Soluble protein from refolding screen (conditions 

correspond to Figure 2.1). E, DSF analysis of soluble protein from refolding 

screen. Abbreviations: E = eluate; FT = flow through; GAM = goat-anti-mouse; In 

= induced; P = pellet; S = supernatant; Un = uninduced; W = wash.   
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Figure 3.2 Expression of TgLaforin in Sf9 insect cells. 
A, Coomassie-stained SDS-PAGE of protein through purification process. B, 

Western blot of expressed protein. C, Comparison of specific phosphatase activity 

of E. coli expressed protein versus Sf9-expressed protein. Abbreviations: AEX = 

anion-exchange; IMAC = immobilized metal affinity chromatography; Inf = infected; 

P = pellet; SEC = size exclusions chromatography; S = supernatant; Un = 

uninfected.  
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Figure 3.3 DSF analysis of Sf9-expressed TgLaforin. 
A, Raw fluorescence melt curves of TgLaforin with or without carbohydrate ligands. 

B, First derivative of melt curves from 3.3a. C, Effect of various carbohydrates on 

TgLaforin Tm. D, Dose-dependent stabilization of TgLaforin with DP7 

(maltoheptaose; linear chain of 7 glucosyl units). E, Dose-dependent stabilization 

of TgLaforin with solubilized potato amylopectin. 
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Figure 3.4 Modeling and HDX data indicate that TgLaforin contains a split-
CBM20. 
A, Schematic of a previously proposed domain arrangement of TgLaforin (294). B, 

TgLaforin modeled by AlphaFold2 with confidence levels mapped onto the 

structure. CBM, DSP, and inserts are indicated. C, Deuterium uptake of TgLaforin 

after 15 s as determined by HDX-MS mapped onto the AlphaFold2 model. D, 

Normalized deuterium uptake by TgLaforin after 15 s deuteration represented in 

2D, highlighting uptake in each domain of the protein. Other time-points from 15 s 

to 15000 s displayed in Figure 3.6. Abbreviations: RD = recognition domain; VL = 

variable loop; D = D-loop; PTP = protein tyrosine phosphatase loop; R = R-motif. 

 

AlphaFold2 models generated, and confidence/HDX data superimposed by 

Tiantian Chen.  
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Figure 3.5 TgLaforin’s DSP domain. 

A, AlphaFold2 models a typical DSP domain in TgLaforin containing a central -

sheet (magenta) surrounded by -helices (cyan). The critical catalytic residues are 

brought into the active site. Side chain colors are as follows: carbon=salmon, 

nitrogen=blue, oxygen=red, sulfur=yellow. B, Alignment of TgLaforin’s DSP 

domain with DSP domains from other glucan phosphatases. Residues critical to 

glucan binding, phosphate removal, and dimerization (for human laforin) are 

compared alongside the motifs that define DSP domains with residue colors 

defined in legend. Dark gray boxes indicate identical residues and light grey boxes 

indicate similar residues. Arrows indicate -sheets and ovals indicate -helices. 

Numbering corresponds to TgLaforin’s amino acid sequence. 
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Figure 3.6 Deuteration level of TgLaforin peptides as a function of time. 
The TgLaforin primary sequence is displayed above colored bars that represent 

individual peptides from pepsin proteolysis. Bar color indicates the percent 

deuteration of a peptide at a given time point, ranging from lowest deuteration 

(purple) to highest deuteration (deep red) as indicated in the inset. Secondary 

structure is displayed above primary sequence with arrows symbolizing -sheets 

and ovals symbolizing -helices. CBM sub-domains and DSP motifs are labeled 

using thick bars to indicate their predicted location, and numbers correspond to 

amino acid positions. 

 

HDX data analysis by Caden R. Pearson.  
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Figure 3.7 TgLaforin’s CBM domain. 
A, Multiple sequence alignment of laforin orthologue CBMs found across multiple 

vertebrate species, overlaid with the predicted domain structure of TgLaforin. Black 

lines connecting CBM20 fragments are predicted to be largely unstructured loops. 

Residues highlighted in blue are involved in carbohydrate binding specificity, and 

residues in orange are consensus residues needed to engage carbohydrates. 

Arrows symbolize -strands, and numbering corresponds to the TgLaforin 

sequence. B, AlphaFold2 model of TgLaforin’s split CBM20 highlighting the core 

CBM predicted with high confidence in cyan and the low confidence insert regions 

in grey. C, TgLaforin’s CBM core structure is predicted to bring together 3 putative, 

canonical residues used in carbohydrate interactions: W29, K206, and W278. 
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Figure 3.8. Expression of protein constructs used in this study. 

A, 3D crystal structure of human laforin (4rkk) crystalized with maltohexaose 

highlighting the concerted carbohydrate binding interactions of CBM20 domain. 

Binding residues are highlighted in orange with N colored in blue, and 

maltohexaose chain colored by element (C=green, O=red). Zoom displays 

stacking interactions between glucose and W32/W99 (W29/W287 in TgLaforin), 

and red dashed lines indicate hydrogen bonding between glucose hydroxyls and 

K87 (K206 in TgLaforin). B, Schematic of constructs generated in this study. 

TgCBM123, the full-length CBM, is referred to as “TgCBM.” C, Expression levels 

of constructs in BL21 whole cell lysate demonstrates success or failure to express 

each construct. D, TgCBM constructs after Ni-IMAC purification demonstrates 

recovery of soluble protein. E, TgCBM3’s presence in the void volume as indicated 

by its presence in early fractions from SEC demonstrates that it aggregates. 

 

TgCBM constructs purified by: Carl D. Vander Kooi, MD.  
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Figure 3.9 TgCBM characterization. 
A, TgCBM SEC profile with MW prediction overlay determines that TgCBM MW is 

36.6  6.8 kDa. B, TgCBM is stabilized in the presence of increasing 

concentrations of maltohexaose, while mutagenesis of carbohydrate binding 

residues no longer exhibit carbohydrate binding. 

  



 
 

88 

 
 

Figure 3.10 TgLaforin is an antiparallel dimer. 
A, SEC elution profile overlayed with MALS-measured mass (red) for two SEC 

standards (grey; MW of standards indicated at elution volume on top) and 

TgLaforin (blue). MALS predicts that TgLaforin is 136.6  0.6 kDa in solution. B, 

AlphaFold2 model of TgLaforin as a dimer, showing high confidence regions 

(pLDDT>70%). Subunits are shown in shades of blue and green. Residues critical 

to glucan phosphatase function are shown highlighted with core CBM residues 

depicted in orange, and the catalytic cysteine shown in red. 

 

AlphaFold2 dimer model generated by Tiantian Chen.  
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Figure 3.11 Initial characterization of TgLaforin phosphatase activity. 
A, pH dependence of TgLaforin activity against pNPP. B, The effect of pH on 

TgLaforin activity against pNPP over time. C, pH dependence of TgLaforin activity 

against potato amylopectin. 
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Figure 3.12 Full-length TgLaforin is an active glucan phosphatase that 
preferentially dephosphorylates starch at the C3 position. 
A, TgLaforin activity against pNPP is both dose and time-dependent and 

abrogated when the catalytic cysteine (C452) is mutated to serine (C/S). B, 

TgLaforin releases phosphate from solubilized potato amylopectin, whereas the 

C/S mutant and VHR cannot. C, TgLaforin preferentially dephosphorylates glucose 

from insoluble, 33P-radiolabeld A. thaliana starch at the C3 position. Statistical 

comparison of site specificity was done using an unpaired two-tailed t-test; 

statistical significance: ****p<0.0001.  
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Figure 3.13 Development of a novel glucan phosphatase inhibitor. 
A, The structure the TgLaforin inhibitor L319-21-M49. B, Classification tree of the 

phosphatases used in this study. Abbreviations: AP = alkaline phosphatase; CIP 

= calf intestinal phosphatase; DSP = dual-specificity phosphatase; PTP = protein 

tyrosine phosphatase; VHR = Vaccinia H1-related phosphatase 

 

L319-21-M49 design, screen, and synthesis by Rongjun He, Ph.D., Jianping Lin, 

Ph.D., and Li Wu under the direction of Zhong-Yin Zhang, Ph.D.  
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Figure 3.14 Determination of TgLaforin kinetic parameters. 
A, TgLaforin (50 nM) activity over the course of 10 min. B, TgLaforin activity over 

time with varying substrate concentration. C, Determination of Km and Vmax of 

TgLaforin by plotting initial velocities from 3.14b against substrate concentration.  
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Figure 3.15 Linear range determination of phosphatases used in inhibitor 
screening. 
A, Phosphatase activity over the course of 10 min. B, Determination of Km and 

Vmax of phosphatases by plotting initial velocities from against substrate 

concentration. C, TgLaforin activity over the course of 10 min in amylopectin assay 

(top panel) and site-specificity assays (bottom two panels). 

  



 
 

94 

 
 

Figure 3.16 Testing of a novel glucan phosphatase inhibitor. 
A, L319-M21-M49 inhibits TgLaforin activity against the model phosphatase 

substrate pNPP with >100-fold specificity over other phosphatases. B, L319-M21-

M49 inhibits TgLaforin activity against soluble amylopectin, and C, activity against 

insoluble starch with similar efficiency. Abbreviations: AP = alkaline phosphatase; 

CIP = calf intestinal phosphatase; DSP = dual-specificity phosphatase; PTP = 

protein tyrosine phosphatase; VHR = Vaccinia H1-related phosphatase. 

 



 
 

CHAPTER 4. BIOCHEMICAL AND BIOPHYSICAL CHARACTERIZATION OF 

THE T. GONDII GLUCAN, WATER DIKINASE USING BOTH 

CONVENTIONAL AND NOVEL METHODS  

 

4.1 Introduction 
 

 The presence of covalently bound phosphate in starch has been recognized 

since the 1970s (322,323), and its importance in facilitating starch breakdown via 

a cycle of reversible glucan phosphorylation is discussed in sections 1.5.3 and 

1.7.1. The introduction here will primarily serve to convey the general mechanistic 

basis by which the glucan, water dikinase (GWD) both phosphorylates 

carbohydrates (section 4.1.2) and binds to them (section 4.1.3).  

 

4.1.1 The discovery of the role of GWD in starch phosphorylation and 
degradation 

 

 The role of GWD in plant starch degradation was first documented in 1991 

before any knowledge of its enzymology. Plants mutagenized by irradiation were 

placed in the dark for 3 days, and those displaying starch-excess (sex) phenotypes 

at the end of the dark stress were subsequently selected and studied (324). Of 

particular interest in this initial study was the line designated “sex1,” in which 

enlarged starch morphology was visualized both by iodine staining (324) and 

electron microscopy (325), but the mechanistic basis underlying this phenotype 

was not then ascribed to a glucan dikinase. The first indication that a glucan 

dikinase played a role in starch phosphorylation and turnover was suggested in a 

1998 study that knocked down a starch-associated kinase that was then named 

“R1” (238). After knockdown of R1, mature leaves stained heavily with iodine 

(indicative of a starch excess, i.e. sex, phenotype), starch granules from these 

leaves had much lower phosphate levels, and degradation of starch during the 

night was demonstrated to be diminished without R1. 

 Several years later, another group determined the DNA sequence of the sex1 

locus and discovered that sex1 encoded an amino acid sequence with significant 

homology to the R1 protein, suggesting that they may be the same protein (326). 

It was also demonstrated that this protein contained a dikinase domain, multiple 

“starch granule association domains,” and a chloroplast transit peptide (326). 

Production of recombinant Solanum tuberosum (potato) GWD (StGWD) confirmed 

these domain predictions in a subsequent study (167).  Incubation of the protein 

with various substrates then lead to the conclusion that GWD utilizes a dikinase 

mechanism that transfers the -phosphate from ATP to starch, and simultaneously 

releases orthophosphate and AMP. As such, this reaction was determined to have 

3 substrates: ATP, H2O, and an -glucan, and to release 3 products: AMP, 

orthophosphate, and a phospho--glucan. 
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4.1.2 The dikinase mechanism of GWD 
 

 The mechanism by which GWD/R1/SEX1 phosphorylates starch was 

determined in a series of studies following its identification (167,266,327), depicted 

in Figure 4.1. First, multiple groups determined that the -phosphate from ATP is 

transferred directly to GWD in an autophosphorylation reaction that results in the 

formation of a phospho-histidine enzyme intermediate. The phosphate is then 

transferred from the catalytic histidine directly to the hydroxyl group of a glucosyl 

reside in starch to form a phosphate-ester at the C6 position. This is accompanied 

by the release of AMP, the -phosphate from ATP (orthophosphate), and the newly 

phosphorylated glucan (167). The contribution of each GWD domain to this 

catalytic activity was directly demonstrated using limited proteolysis and domain 

truncations of StGWD, revealing that autophosphorylation depends on a 

phosphohistidine (His) domain, and that ATP binding depended on a nucleotide 

binding domain (NBD) (327). Importantly, the His+NBD domains constitute a 

phosphoenolpyruvate-dikinase-like (PPDK-like) region of the protein (Figure 

4.1a).  

 Protein dynamics were also determined by use of circular dichroism (CD) that 

demonstrated a significant conformational change in StGWD upon 

autophosphorylation, and this change was shown to be independent of ATP 

binding. This data was consistent with previous studies that proposed a swivel 

mechanism by which a His-domain could interact with both the NBD and its other 

substrate binding domain after autophosphorylation through insights provided by 

the crystal structure of the Cenarchaeum symbiosum PPDK (328,329).  

 With these mechanistic and structural data, the entire catalytic cycle by which 

GWD phosphorylates glucans was proposed (327), and is presented in Figure 

4.1a. Step 1: Apo-GWD binds ATP via Mg2+-dependent electrostatic interactions 

within the NBD. Step 2: The catalytic histidine residue within the His-domain forms 

a phospho-histidine intermediate with the -phosphate from ATP, with 

simultaneous release of AMP and transfer of the -phosphate to H2O, releasing 

orthophosphate. The His-domain also undergoes a long-range movement from the 

NBD toward the CBM domains. Step 3: GWD binds to a glucan substrate via its N-

terminal CBM domains, and the -phosphate is then transferred to the C6 position 

of the glucan substrate. Step 4: The phospho-glucan is released, and the His-

domain moves back toward the NBD.  

 The dynamics of the His-domain movement between the two substrate binding 

domains is not well understood, but the His-domain has been noted to be flanked 

by two flexible polypeptides that display both helical and disorganized 

characteristics (328). Therefore, these linkers may allow for significant 

displacement from either 1) autophosphorylation resulting in repulsion of the His-

domain from the NBD domain, or 2) constant movement of the His-domain 

between its substrate-binding domains.  
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4.1.3 GWD orthologues possess a CBM45 for starch binding 
 

 The N-terminus of GWD was determined to be critical in carbohydrate binding 

as its domains were initially being classified (327), and the novelty of its N-terminal 

CBMs was subsequently recognized in both primary amino acid sequence and 

substrate preference (254). The N-terminal CBMs were shown to confer specificity 

to amylopectin, as truncation constructs lacking the CBMs were able to 

phosphorylate a wider variety of linear glucans such as amylose. No GWD 

constructs, however, were able to efficiently phosphorylate glycogen, 

demonstrating the specificity of this new CBM for crystalline, branched substrates. 

Moreover, several tryptophans were classified as critical to carbohydrate binding, 

as is often the case in CBMs (298). This unique CBM has since been classified as 

a CBM45 (CAZy.org). 

 Thus far, CBM45s have been restricted to GWD orthologues and to plastidial 

-amylase3 enzymes (AMY3) (330). No CBM45 structure has been published, but 

it has been modeled using Phyre2 and is predicted to adopt the immunoglobulin-

like fold that is common in starch binding domains (SBDs) (331). Interestingly, 

CBM45s appear to be restricted to organisms that produce semi-crystalline 

glucans such as starch (330). CBM45s are often present in tandem within the 

same protein and possess a low affinity for starch that is believed to allow for their 

dynamic association with starch granules.  

 

4.1.4 A GWD orthologue in T. gondii  
 

 The presence of a GWD orthologue in T. gondii (TgGWD) has been well 

documented (40,203,206,212,228), and TgGWD has been suggested to be a 

target of CDPK2, a T. gondii plant-like kinase that orchestrates starch turnover in 

T. gondii (228). To further elucidate the biochemical and biophysical underpinnings 

of reversible phosphorylation in T. gondii we expressed recombinant TgGWD and 

demonstrate that it employs the standard glucan, water dikinase mechanism 

utilized by other GWD orthologues. Moreover, we define its site specificity, 

demonstrate that it exists as a monomer in solution, and develop a novel assay by 

which to monitor AMP release by TgGWD. The monitoring of AMP release will be 

of use in dikinase inhibitor screening or as a means by which to more fully 

understand the GWD mechanism. 

 

4.2 Results 
 

4.2.1 T. gondii encodes a putative glucan, water dikinase orthologue 
 

 The amino acid sequence of TgGWD was retrieved from ToxoDB.org 

(TGME49_214260) and was analyzed using the conserved domain database 
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(CDD). The CDD recognized only the PPDK region at its C-terminus, but the 

remainder of the protein was undefined. To determine if TgGWD contains one or 

more CBM45s as other GWD orthologues do (254), the undefined N-terminus was 

aligned with CBM45 domains from StGWD and A. thaliana GWD (AtGWD) (Figure 

4.1b). This alignment revealed that TgGWD indeed contains at least two CBM45s 

at its N-terminus, each containing the consensus carbohydrate-binding tryptophan 

residues characteristic of CBM45s. Moreover, TgGWD contains the required 

catalytic histidine within its His-domain, demonstrating that TgGWD is composed 

of the three domain types that are characteristic of GWD orthologues: two 

CBM45s, a His domain, and an NBD (Figure 4.1b). Despite containing all the 

required domains, TgGWD displays low sequence similarity and identify with other 

GWD orthologues (Figure 4.1b). TgGWD is only ~36% similar and ~21% identical 

to St- and AtGWD, respectively. These values are quite low in comparison to 

StGWD and AtGWD sharing 77.8% and 66.1% similarity and identity, respectively.  

 Interestingly, it appears possible that transcription of TgGWD is upregulated in 

bradyzoites by RT-PCR (40). The upregulation of TgGWD with the simultaneous 

appearance of an insoluble glucan in T. gondii creates temptation to speculate 

about the role of TgGWD in AG formation given its restriction to organisms that 

possess an insoluble polyglucan. However, transcriptomic data made available on 

ToxoDB.org does not support the RT-PCR data, and instead suggests that 

TgGWD transcription remains constant across the asexual life stages (332) 

(Figure 4.1c).  

 

4.2.2 TgGWD utilizes a standard glucan dikinase mechanism 
 

 To determine if TgGWD is an active glucan, dikinase, we expressed full-length 

recombinant 6xHis-TgGWD in Sf9 insect cells and purified it to >95% homogeneity 

using size-exclusion chromatography (Figure 4.2a). To determine if TgGWD 

autophosphorylates itself with the -phosphate from ATP, TgGWD was incubated 

with both 33-ATP and 33-ATP for 30 mins before purified protein was separated 

by SDS-PAGE to remove all excess radio-labeled ATP. The gel containing 

TgGWD then was exposed to a phosphor screen, and then radioactive bands 

corresponding to autophosphorylated protein were imaged. Detection of radio-

labeled protein revealed that TgGWD-WT, like StGWD, autophosphorylates with 

the -phosphate from ATP, and not the -phosphate (Figure 4.2b). Moreover, 

mutation of the catalytic histidine to an alanine, H1241A (H/A), demonstrated that 

TgGWD also utilizes the histidine residue identified via sequence alignment to form 

a phospho-histidine intermediate with the -phosphate (Figure 4.2b). Curiously, it 

was noted that the H/A mutant appeared to incorporate the -phosphate from ATP 

whereas the H/A mutant of StGWD did not. A study noted the incorporation of -

phosphate into both St- and AtGWD previously (333), although it was not seen 

here. GWD orthologues display a wide variety of specific activities (333), and it is 
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possible that TgGWD incorporates -phosphate at a higher rate than StGWD. This 

phenomenon was repeatable, but not explored further in this study.  

 After autophosphorylation, GWD then transfers phosphate from the phospho-

histidine to its glucan substrate. To determine if TgGWD retains this ability, 

TgGWD was incubated with both 33-ATP and 33-ATP in the presence of At-

sex1-3 starch (phosphate-free starch) for 4 hours. Radioactive phosphate 

incorporation into starch was then determined using a scintillation counter after 

extensive washing to remove all other reaction components. As expected, TgGWD 

utilizes the -phosphate from ATP to phosphorylate starch as evidenced by its 

incorporation into starch, and not the -phosphate to any appreciable extent 

(Figure 4.2c), demonstrating that TgGWD employs the same dikinase mechanism 

seen in other GWD orthologues.   

 The incorporation of -phosphate into insoluble starch by TgGWD was then 

monitored over the course of 12 hours by incubating TgGWD with phosphate-free 

starch and 33-ATP (Figure 4.3a). TgGWD displayed time-dependent kinetics in 

starch phosphorylation, and the catalytically inactive mutant, TgGWD-H/A, was 

unable to transfer any phosphate to starch (Figure 4.3a). Plant starch is 

phosphorylated at both the C6 and C3 positions. To determine if TgGWD 

phosphorylates the C6 or C3 position of glucosyl units within starch, a previously 

developed glucan dikinase site specificity assay was used (Figure 4.3b). Briefly, 

TgGWD was incubated with phosphate-free starch and 33-ATP for 16 hours. To 

determine where TgGWD places phosphate on glucosyl-residues, TgGWD-treated 

starch was then incubated with a C3-specific phosphatase (LSF2), and the 

supernatant from this reaction was monitored on a scintillation counter. LSF2 

removed no phosphate from the TgGWD starch (Figure 4.3c), indicating that 

TgGWD does not phosphorylate the C3-position. Starch was then 

dephosphorylated with SEX4, a glucan phosphatase that removes both C6 and C3 

phosphate (with a preference for C6), and the supernatant was measured. SEX4 

released almost 20% of the TgGWD-added phosphate within 15 minutes, 

indicating that TgGWD phosphorylates starch at exclusively the C6 position 

(Figure 4.3c). Interestingly, this is the opposite site-specificity of TgLaforin (Figure 

3.12c). It should be noted, however, that this does not result in the incompatibility 

of these two enzymes, as TgLaforin does not exclusively dephosphorylate the C3 

position and can also remove C6 phosphate.  

 

4.2.3 Biophysical properties of TgGWD  
 

 To determine if TgGWD is stabilized in the presence of its various substrates, 

dual scanning fluorimetry (DSF) was utilized to monitor the melting temperature 

(Tm) of TgGWD with or without carbohydrates and ATP as done previously (185). 

An increase in melting temperature in the presence of various substrates suggests 

protein-ligand interaction. In the presence of linear oligosaccharides, TgGWD 

displayed very little or no increase in stabilization (Figure 4.4a). This is not 
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altogether surprising as linear glucans such as amylose have been demonstrated 

to be a much poorer substrate for StGWD than a branched glucan, such as 

amylopectin (266). However, in the presence of ATP, TgGWD was stabilized by 

almost 4 oC in comparison to the apo-protein (Figure 4.4a). 

 It has been previously reported that StGWD forms a stable homodimer in 

solution that is not dependent on autophosphorylation or substrate binding (266), 

with dimerization most likely mediated through the PPDK domain (254). To 

determine the quaternary structure of TgGWD, size-exclusion chromatography 

coupled to multi-angle light scattering (SEC-MALS) was utilized to determine the 

molecular weight of TgGWD in solution, as has been done previously with other 

glucan binding recombinant proteins (262). As expected, TgGWD eluted as a 

single peak at an earlier volume than the elution standards (Figure 4.4b). The 

elution volume is consistent with its predicted molecular weight of 197.8 kDa that 

exceeds those of the standards used in this study. Interestingly, TgGWD was not 

retained on the column due to its CBM domains, a phenomenon that has been 

previously reported in CBM20-containing laforin orthologues (262) and 

demonstrated in Figure 3.10. Moreover, MALS analysis predicted that TgGWD 

has a MW of 191.4  .5 kDa (Figure 4.4b). Compared with the calculated MW for 

recombinant TgGWD of 197.8 kDa, the MALS prediction indicates that TgGWD is 

a monomer in solution, unlike StGWD. 

 

4.2.4 Development of a CE-based assay to monitor glucan dikinase activity  
 

 The standard for monitoring glucan dikinase activity relies on radioactive ATP 

that is both a costly reagent with many associated laboratory regulations, and one 

that requires extensive washing to remove background. Such issues are 

prohibitive to high throughput inhibitor screens of glucan dikinases for downstream 

use as potential therapeutics against parasitic organisms such as T. gondii.  

 The labeling of starch with the -phosphate from ATP is accompanied the 

release of AMP and the -phosphate. Therefore, it was reasoned that monitoring 

the release of AMP during the course of the dikinase reaction could provide an 

alternative to monitoring 33P incorporation into starch and eliminate the need for 

washing out the reaction. Capillary-electrophoresis (CE) is a technique that has 

been used to analyze nucleotides previously (334). CE takes advantage of UV-

absorbance by nucleotides for detection, and the ability of electrophoretic 

techniques to separate nucleotides based on their migration through a charged 

field (335). An important consideration in dikinase assays are the relatively low 

amounts of AMP released in a reaction, resulting in mid-nM to low-M final 

concentrations. Because the path length of light analyzed by CE is short, low 

sample concentrations present a problem for this technique.  

 To circumvent the problem presented by low AMP concentrations, a method 

known as whole capillary stacking has been developed for CE (267) (illustrated in 

Figure 4.5a). Briefly, Step 1: a capillary is filled with a sample mixture containing 
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a compound of interest using a vacuum to draw sample in. Step 2: a highly 

negative charge is applied to the capillary to move compounds back toward the 

buffer at the negative electrode, both removing positive compounds and 

simultaneously stacking negative compounds at the buffer/capillary interface. This 

step effectively concentrates low-abundance molecules into a small volume. Step 

3: the voltage is reversed to a highly positive charge, and negative components 

are separated over the volume of the capillary, and an absorbance detector is 

utilized to monitor compounds at wavelengths of interest. In the case of monitoring 

nucleotides, the UV-Vis detector is set to 256 nm.  

 To determine if AMP/ATP could be separated with buffer, injection, and voltage 

conditions specified in section 2.1.15, 10 M AMP was mixed with 50 M ATP (the 

amount used in in vitro labeling reactions) and run using the whole stacking 

methodology. Peaks corresponding to AMP and ATP could be resolved from one 

another (Figure 4.5b), as these retention times were confirmed with each 

nucleotide alone. AMP always eluted at about 14 mins under the specified 

conditions. To determine the linear range in which AMP could be detected, a range 

of concentrations of AMP were run on the CE (Figure 4.5c), and the area under 

each peak was determined and plotted against AMP concentration (Figure 4.5d). 

Using this technique, the linear range of AMP detection was determined to be 100 

nM up to 10 M, although concentrations outside of this range were not tested.  

 To determine if AMP release from a glucan dikinase reaction could be 

monitored using this CE-based assay, 50 nM TgGWD was incubated with 

phosphate-free starch and ATP, and the reaction was terminated at various time 

points from 1-12 hours. After terminating reactions, starch was pelleted, and the 

supernatant was saved for AMP analysis. Before analyzing the supernatant on the 

CE, protein was filtered out using centrifugal filtration to provide cleaner UV-Vis 

spectra. The flowthrough from the filtration containing the AMP was then analyzed 

by whole capillary stacking on the CE. AMP release by TgGWD-WT could be 

monitored using this technique in a time dependent manner, whereas TgGWD-H/A 

released no AMP over the course of the reaction, validating that the assay was 

specific to the dikinase mechanism (Figure 4.5e). Interestingly, AMP release 

remained linear over the course of the 12 hour reaction, which contrasted with the 

results obtained from direct incorporation of phosphate into starch that clearly level 

off by 8 hours (Figure 4.3a). This prompted the direct comparison of the two 

methods. Strikingly, release of AMP appears to occur at a much more rapid rate 

than phosphate addition onto starch, even at early timepoints (Figure 4.5e). This 

observation suggests the possibility that AMP production by TgGWD is 

stoichiometrically uncoupled from its transfer of phosphate to starch.  

 

4.3 Discussion 
 

 Herein, we demonstrate that T. gondii encodes an active glucan, water-

dikinase that employs a standard GWD mechanism. TgGWD first utilizes the -
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phosphate from ATP to autophosphorylate itself on a conserved histidine residue 

within its PPDK domain. Next, TgGWD transfers the -phosphate from the 

phospho-histidine intermediate to the C6 position of a glucan substrate while 

simultaneously releasing orthophosphate and AMP. Moreover, we developed a 

CE-based assay for the detection of AMP released as a result of this reaction that 

is specific to the catalytically active protein.  

 Importantly, demonstration of the activity of TgGWD in vitro paves the way for 

the therapeutic targeting of this plant-like protein in the human parasite, T. gondii. 

Such targeting could begin with widely available kinase inhibitor screens coupled 

with the relatively high throughput CE-based assay that requires no radioactive 

ATP, minimal centrifugation, and largely unmonitored analysis of AMP release. 

While this assay cannot monitor the transfer of phosphate to a glucan substrate, it 

monitors the hydrolysis of ATP to AMP+Pi during the autophosphorylation step. 

Thus, identified kinase inhibitors would be specific to the ATP hydrolysis that 

occurs in Steps 1 and 2 depicted in Figure 4.1a.  

 Previous studies have demonstrated that the GWD mechanism is likely more 

complicated than the one that is typically presented (176,333). One study 

demonstrated that levels of autophosphorylated GWD decreases over time after 

separation from 33-ATP in the absence of any glucan, implying that phosphate 

transfer from the catalytic histidine does not necessitate the presence of a glucan 

(176). In fact, a follow up study demonstrated that 20% of ATP utilized by GWD 

does not result in phosphate transfer to a glucan substrate (333), calling into 

question the 1:1:1 stoichiometry that has been proposed for the products of the 

reaction (167). Moreover, it was demonstrated that GWD can continuously 

hydrolyze ATP in the absence of any glucan acceptor (333).  

 The data presented here support the observations that ATP hydrolysis is 

uncoupled from the formation of glucosyl phosphate esters, as release of AMP far 

exceeds the placement of phosphate on starch (Figure 4.5e). Moreover, the linear 

reaction kinetics of AMP release versus the plateau effect seen during phosphate 

transfer implies a potential saturation of the starch surface granule with phosphate. 

Utilization of assays such as CE that monitor reaction products like AMP in 

comparison with the generation of a phosphorylated glucan could help reveal the 

limits of starch granule surface phosphorylation.  

 In addition to demonstrating GWD hydrolyzes ATP faster than it transfers 

phosphate to starch, it was also previously demonstrated that both WT and H/A 

mutants of GWD could autophosphorylate with the -phosphate from ATP (333). 

This observation implies the presence of a histidine outside of the canonical active 

site that can bind this terminal phosphate, possibly as the first step in generating 

orthophosphate. Such a histidine, however, awaits identification. Once again, the 

data presented here support the possibility of a second phospho-histidine 

intermediate as significant labeling of TgGWD-H/A was also seen with 33-ATP.  

 Overall, these observations confirm the presence of a canonical GWD 

orthologue in T. gondii, possessing multiple CBM45 domains and a PPDK domain. 
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We demonstrated that TgGWD behaves as a standard glucan, dikinase, in both 

the well characterized aspects of GWD enzymology and the newly suggested 

peculiarities inherent to the mechanism. These observations also lay the 

groundwork for dissecting the general GWD mechanism further through the use of 

a novel method for the detection of AMP release, and thus provides another 

perspective on GWD activity. Future work in identifying compounds to inhibit 

TgGWD for testing as therapeutics can use the reagents and methods developed 

here.  
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Figure 4.1 TgGWD bioinformatics and expression. 
A, Glucan, water-dikinase swivel mechanism. Steps 1-4 discussed in Section 

4.1.2, figure adapted from Mikkelsen, et al. (2005) (327). B, Alignment of TgGWD 

N-terminus and His-domain with AtGWD and StGWD. Orange residues are 

conserved tryptophans found in CBM45s. % Similarity and % ID presented for full-

length proteins. C, Comparative levels of TgGWD mRNA in tachyzoites and 

bradyzoites alongside levels of the bradyzoite marker, SRS9 for comparison. 

Transcriptomic data was plotted from ToxoDB.org derived that is based on data 

from Fritz, et al (332).  Abbreviations: CBM = carbohydrate binding module; His = 

phosphohistidine domain; NBD = nucleotide binding domain; PPDK = 

phosphoenolpyruvate dikinase.  
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Figure 4.2 TgGWD employs a standard dikinase mechanism. 
A, TgGWD was expressed in Sf9 insect cells and purified by IMAC/SEC. Purity 

was evaluated using Coomassie. B, Autophosphorylation assay with both WT 

TgGWD and H1241A (H/A) mutant with StGWD used as a control. All four proteins 

were incubated with both 33P-ATP and 33P-ATP and then separated by SDS-

PAGE. Autophosphorylated protein is presented above total protein loaded as 

determined by Coomassie staining. C, Total radio-labeled phosphate transferred 

to starch after 4 h from either the  or -phosphate in ATP. 
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Figure 4.3 TgGWD phosphorylates glucose at the C6 position in a time 
dependent manner. 

A, Time course assay monitoring -33P incorporation by TgGWD-WT and -H/A into 

starch. B, Schematic of glucan dikinase site specificity assay as described in 

section 4.2.2. C, C3-bound phosphate was determined by treatment of TgGWD-

labeled starch by LSF2 (C3-specific phosphatase), and C6-bound phosphate was 

determined with follow-up treatment of TgGWD/LSF2-treated starch with SEX4 

(C6/C3 specific). 
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Figure 4.4 Biophysical properties of TgGWD. 
A, DSF analysis of TgGWD stabilization in the presence of DP7 (maltoheptaose; 

7 linear glucosyl units), a mixture of high-MW sugars, and ATP. B, SEC-MALS 

analysis of TgGWD compared elution profiles and predictions for ADH and BSA. 

TgGWD was predicted to have a MW of 191.4  .5 kDa.  
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Figure 4.5 Development of a CE-based assay for monitoring dikinase 
activity. 
A, Schematic of whole capillary stacking utilized for AMP detection, adapted from 

Brown, et al. (1998) (267). Steps 1-3 are explained in section 4.2.4. B, Retention 

times of AMP and ATP after whole capillary stacking, monitored using absorbance 

at 256 nm. C, Representative curves of AMP at various concentrations. D, AMP 

standard curve generated from (C). E, AMP release from TgGWD over the course 

of 12 hours as determined by CE, compared with phosphate incorporation into 

starch by radio-labeled ATP assay.  

 



 
 

CHAPTER 5.  LOSS OF THE GLUCAN PHOSPHATASE, TGLAFORIN, IN T. 
GONDII REVEALS A ROLE FOR AMYLOPECTIN GRANULES ACROSS 

THE ASEXUAL LIFE CYCLE 

 

5.1 Introduction 
 

 Toxoplasma gondii as an opportunistic protozoan parasite of humans, and all 

warm-blooded animals, that infects one-third of humans worldwide (336). Humans 

are primarily infected through the consumption of an encysted form of the parasite: 

either the oocysts shed in cat feces or tissue cysts found in undercooked meat 

from a chronically infected animal (85). The acute phase of infection then begins 

when encysted parasites convert into tachyzoites that rapidly divide and 

disseminate throughout the body of the host (278). The chronic infection begins 

under host immune pressure resulting in the conversion of tachyzoites into slow-

growing bradyzoites that populate tissue cysts and are found predominantly in the 

CNS and muscle tissue (97). Tissue cysts are believed to persist for the lifetime of 

the host and facilitate transmission via carnivory or reactivation into tachyzoites 

within their current host. In the context of immunosuppression, reactivation can 

result in the life-threatening conditions posed by systemic toxoplasmosis with 

toxoplasmic encephalitis being the primary condition (114). Current therapeutic 

options are poorly tolerated with prolonged use and only effective against 

tachyzoites (120,123). Thus, there is a need for the development of new anti-

Toxoplasma treatments that can clear tissue cysts or prevent their reactivation.  

 The current lack of insights into bradyzoite physiology in vivo, however, 

precludes the basic understanding needed for the development of drugs that can 

clear them (96). This is highlighted by the fact that until recently, this form of the 

parasite was viewed as being entirely dormant and largely devoid of metabolic 

activity. Moreover, tissue cysts have been treated as homogenous entities with 

little consideration for the heterogeneity of the bradyzoites within them (101). 

Contrary to these prevailing notions, we demonstrated that individual bradyzoites 

can indeed replicate within a tissue cyst (55), and that bradyzoites are diverse 

regarding their physiological status as viewed through the lens of mitochondrial 

activity, replication status, and amylopectin granule (AG) accumulation (337). Such 

heterogeneity has been speculated to provide bradyzoites the plasticity needed to 

navigate the cell-cycle mediated decisions underpinning their choices to persist as 

bradyzoites, reactivate into tachyzoites, or convert into sexual cycle merozoite 

forms in felids (54).  

 At the core of all bradyzoite developmental choices, and thus their ability to 

remain plastic, must be stored energy and biosynthetic building blocks needed to 

execute such transitions. Although their function has not been confirmed, an 

understanding of the roles of polysaccharides elsewhere (144) has resulted in the 

assumption that amylopectin granules (AG) are such a source of energy and 

biosynthetic potential needed for persistence, replication, reactivation, and 
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transmission. However, these assumptions remain to be tested, and thus much 

like bradyzoites themselves, AGs are poorly understood. What is known, however, 

is that AGs are large glucans found in the cytoplasm of bradyzoites that have 

classically served as a morphological feature distinguishing them from tachyzoites 

(196,338). Early studies characterized AGs as pure amylopectin (40), so AGs are 

much like plant starch in that they are insoluble storage polysaccharides composed 

of branched chains of glucose. Unlike plant starch, however, AGs contain no 

detectable amylose (unbranched chains of glucose) (40,197). More recently, it has 

been demonstrated that tachyzoites also contain a small, punctate glucan in their 

cytoplasm only visible by periodic-acid Schiff (PAS) staining (228,234), and its 

presence is dependent TgStarchSynthase (TgSS) (203). Like animal glycogen, 

this tachyzoite storage polysaccharide is rapidly turned over (228), as has been 

observed in other protozoa (209,312,313), and  has been previously demonstrated 

to provide glucose for glycolysis (203). These recent discoveries highlight how little 

has historically been understood about glucan metabolism in T. gondii.  

 Glucose release from starch in plants utilizes a suite of degradation enzymes 

including amylases, debranching enzymes, and a phosphorylase that collectively 

release glucose in multiple forms: glucose monomers, linear and branched 

oligosaccharides, and glucose phosphates (339). In other systems containing 

insoluble glucans such as plants, access of starch degrading enzymes is 

dependent on solubilization of the starch surface by a cycle of direct, reversible 

glucan phosphorylation (340,341) (Table 1.1 and Figure 1.4). The cycle begins 

with the addition of phosphate directly to glucose by the glucan, water-dikinase 

(GWD) and phospho-glucan, water dikinase (PWD) that results in the unwinding 

of glucose chains within starch, solubilizing the surface (167,168). Glucose-

releasing enzymes (amylases) then degrade starch until the added phosphate 

becomes a steric hindrance, at which point a glucan phosphatase is needed to 

remove the phosphate and reset the cycle (169,170,172,173). T. gondii encodes 

all the activities needed for glucan degradation and reversible glucan 

phosphorylation (212) including the glucan phosphatase, TgLaforin, and T. gondii 

GWD (TgGWD).  

 Glucan access through reversible phosphorylation is critical in plants and 

animals. In Arabidopsis thaliana, loss of a glucan phosphatase, starch-excess 4 

(SEX4), results in excess starch accumulation and aberrant starch morphology 

(174,239). Additionally, loss of the glucan phosphatase in humans (laforin) results 

in hyperphosphorylated glycogen that precipitates in neurons and causes a fatal, 

neurodegenerative childhood dementia and epilepsy (184,187,283,342). In T. 

gondii perturbations of several genes related to glucan metabolism also resulted 

in aberrant glucan accumulation (Ca2+ dependent protein kinase 2 [CDPK2], 

glycogen phosphorylase [TgGP], and -amylase [-AMY]), a rewiring of central 

carbon metabolism (CDPK2 and starch synthase [TgSS]), and decreased cyst 

formation in mice (CDPK2, TgGP, -AMY, and amylo--1,6-glucosidase 

[debranching enzyme; Aa16GL]), highlighting the central metabolic role glucan 
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metabolism might play in T. gondii (highlighted in section 1.6.3) 

(203,206,228,234,311). 

 CDPK2 was shown to have several targets related to glucan metabolism (228). 

Importantly, TgGWD was suggested as a potential CDPK2 target, indirectly 

suggesting a role for reversible phosphorylation in the parasite’s glucan 

metabolism. More recently, it has been extensively demonstrated that glucose 

plays critical, diverse roles in T. gondii metabolism through its incorporation into 

central carbon reactions, amino acids, and RNA (210,211,226). Taken together 

with the findings that loss of the tachyzoite glucan has profound effects in the 

parasite, an understanding of how AGs are accessed in T. gondii is needed.  

 In this study, we build on our understanding of reversible glucan 

phosphorylation and its relevance to parasite metabolism in T. gondii. We have 

recently demonstrated that the glucan phosphatase in T. gondii, TgLaforin, is an 

active, unique, and druggable glucan phosphatase in vitro (Chapter 3) (204,205). 

Here, we investigated TgLaforin’s role throughout the asexual stages by knocking 

out TgLaforin in Type II ME49 parasites. In tachyzoites, we demonstrate that 

dysregulation of glucan breakdown via TgLaforin knockout results in a profound 

impact on central carbon metabolism that renders the parasites completely 

dependent on glutamine. This defect most likely results in their highly attenuated 

virulence and cyst forming ability in CBA/J mice. Moreover, loss of TgLaforin 

resulted in bradyzoites, both in vitro and in vivo, with altered AG morphology, 

packing density in tissue cysts, and tissue cyst diameter. These findings build upon 

previous studies that are increasingly demonstrating a central role for glucan 

metabolism throughout the parasite’s asexual life cycle.  

 

5.2 Results 
 

5.2.1 Background and generation of the T. gondii parental strain used in this 
study 

 

 Considerable effort has been made to characterize the molecular and 

epidemiological structure of T. gondii around the globe. Early studies using 

PCR/RFLP analysis characterized strains primarily obtained from North America 

and Europe into three clonal lineages/haplotypes: Type I, II, and III (343). Several 

years prior to this study, parasites in the Type I lineage were recognized as being 

the most virulent in mice with an LD100=1 tachyzoite (IP injection) (344), but Type 

I parasites are unable to efficiently form tissue cysts in mice. Type II and III 

parasites are also much less virulent in mice, but are much more prevalent in 

humans in the Western Hemisphere. Importantly, Type II parasites are more often 

associated with cyst formation and reactivation in the context of HIV-AIDS (3). 

While it remains true that these three lineages dominate North America and 

Europe, more recent studies analyzing much a wider geographical sampling have 

defined at least 16 haplotypes of T. gondii organized into 6 different clades using 
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a mixture of low-resolution molecular techniques and whole-genome-sequencing 

(345,346).  These haplogroups represent a spectrum of virulence characteristics 

that range from avirulent to those predominantly from South America that can 

cause symptomatic disease in immune competent individuals.  

 In the present study, we sought to select a strain of T. gondii that was relevant 

to human infection and that would allow for studies across the asexual phase of 

infection. We chose to use the ME49 strain from the Type II haplogroup, first 

isolated from sheep muscle in the 1960s (347,348). This strain, obtained from the 

HIV-AIDS resource center, is also used as a reference strain for genome 

annotation. Importantly for this study, ME49 parasites are only mildly virulent 

(although anecdotal evidence indicates selection for increased virulence with serial 

passage in tissue culture), and readily form tissue cysts in mice (349). ME49 

parasites are extensively characterized with genomic, proteomic, and 

transcriptomic data readily available on ToxoDB.org.  

 We modified the wildtype ME49 line to eliminate the hypoxanthine-xanthine-

guanine phosphoribosyltransferase (HXGPRT) gene as has been done in a 

commonly used and widely available Type I line of parasites 

(RHku80HXGPRT). The HXGPRT gene provides a powerful tool for positive 

and negative selection through its participation in the purine salvage pathway in T. 

gondii (350), and we desired such a tool for downstream genetic manipulations, 

including the selection of complementation lines for gene knock-outs using DHFR 

as the selection. The mechanism underlying this tool stems from T. gondii’s purine 

auxotrophy that renders the parasite reliant on purine interconversion using its 

purine salvage pathway (351). HXGPRT plays an critical role in purine 

interconversions (detailed in Figure 5.1a), and its enzymatic activity can be taken 

advantage of using subversive purine analogues such as 6-thioxanthine (6-TX) 

(350). HXGPRT converts 6-TX to the IMP dehydrogenase (IMPDH) inhibitor, 6-

thioXMP, which results in a guanine nucleotide deficiency (Figure 5.1a, bottom) 

(352). Because loss of HXGPRT can be circumvented by other enzymes in the 

salvage pathway, HXGPRT parasites can be selected for using 6-TX with no 

growth penalty imposed on the mutant parasites (6,353). Restoration of HXGPRT 

can be selected for using mycophenolic acid (MPA) with Xanthine 

supplementation.  MPA is also an inhibitor of IMPDH (an enzyme also critical in 

circumventing loss of HXGPRT), which when supplemented with xanthine 

provides HXGPRT+ parasites the substrate needed for XMP synthesis (an 

HXGPRT activity) in the absence of functioning IMPDH (Figure 5.1a, top) (350). 

Deletion of HXPGRT thus allows for genetic manipulations linked to its restoration, 

including gene complementation and  epitope tagging (354).  

 To knockout HXGPRT using a CrispR-CAS9 based strategy, three synthetic 

guide RNAs (sgRNA) were selected from a previous study to target three separate 

exons and transfected alongside CAS9 to introduce double stranded breaks 

throughout the gene (Figure 5.1b) (10). As has been shown previously in T. gondii, 

this is an efficient way to allow nonhomologous end-joining (NHEJ) machinery to 
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create insertions or deletions that ultimately disrupt the gene in the parasite (268). 

As loss of HXGPRT provides its own drug selectable marker, only the 

CRISPR/Cas9 system utilizing the three sgRNAs was transfected in the absence 

of any additional drug resistance genes. HXGPRT parasites were selected with 

6-TX, and disruption of the HXGPRT gene was confirmed using sequencing 

(Figure 5.1c). In the clonal line of HXGPRT parasites that were selected, NHEJ 

joined the double strand breaks introduced in exon 2 and exon 5 resulting in a 

1214 nucleotide deletion in the HXGPRT gene and a fusion of these two exons. 

Moreover, exon fusion resulted in a downstream frameshift that introduced a stop 

codon in exon 5 (Figure 5.1c). For the remainder of this study, ME49HXGPRT 

parasites are used as the parental line and will be designated as wild type “WT.”  

 

5.2.2 T. gondii tachyzoites contain, punctate, cytoplasmic glucan granules 

 

 Previous studies have presented biochemical evidence for rapid glucan 

turnover in T. gondii Type I RH tachyzoites (228). Moreover, small PAS+ granules 

have also been noted in the cytoplasm of tachyzoites as well (203,228). Under 

acid-stress conditions, these tachyzoite glucans have been biochemically 

characterized as pure amylopectin, and resemble AGs seen in bradyzoites (197). 

To further characterize the nature of this glucan found tachyzoites, we utilized 

multiple methods to visualize them under normal media conditions (Figure 5.2a, 

top). Type II ME49 tachyzoites contain small punctate glucan granules distributed 

throughout the cytoplasm with 5-10 granules being noted per parasite. To 

determine if these PAS+ granules were more glycogen- or starch-like in 

unstressed tachyzoites, they were next stained with IV58B6, an anti-glycogen IgM 

monoclonal antibody that has previously been demonstrated to be specific to 

glycogen (355,356) and is has been shown to recognize glycogen branch-points 

(357). Moreover, IV58B6 does not detect other glucans such as amylopectin or 

amylose (the primary constituents of plant starch) (358). Tachyzoites stained with 

a similar pattern to PAS-stained parasites, containing 5-10 small punctate granules 

distributed throughout the cytoplasm (Figure 5.2a, top), suggesting that the glucan 

found in tachyzoites is more glycogen-like than starch like. Finally, as is well-

known, T. gondii tachyzoites contain almost no visible glucan within their 

cytoplasm by TEM (Figure 5.2a, top), suggesting that the glucan detected by both 

PAS staining and IV58B6 is either soluble or too small to be resolved by TEM, 

another suggestion that this glucan may be like glycogen (the distinguishing 

properties of starch and glycogen are presented in section 1.5.1 and Figure 1.3). 

 Bradyzoites have been extensively characterized as containing a starch-like 

glucan known as amylopectin granules (AGs) (40,135,196,197). Upon in vitro 

conversion to bradyzoites, much of the cytoplasm becomes PAS+, precluding the 

ability to count individual AGs (Figure 5.2a, bottom). Interestingly, IV58B6 

staining intensity appeared to correlate negatively with Dolichos lectin (DBA) 

staining intensity that defines the cyst wall, suggesting that IV58B6 does not stain 
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the PAS+ glucan in mature bradyzoites, further reinforcing that structurally distinct 

polysaccharides exist in tachyzoites and bradyzoites (Figure 5.2a, bottom). 

Finally, AGs are easily identified as electron-lucent structures throughout the 

bradyzoite cytoplasm by TEM. Notably, these structures do not appear to stain 

with IV58B6.  

 To verify the specificity of PAS and IV58B6 for glucose polymers, tachyzoites 

and bradyzoites were treated with acid--amyloglucosidase (GAA) before staining. 

GAA cleaves both -1,4- and -1,6-glycosidic bonds and can therefore completely 

digest any glucan. Indeed, GAA treatment resulted in the disappearance of both 

stains (Figure 5.2b), demonstrating their specificity for glucose polymers.  

 

5.2.3 TgLaforin colocalizes with the tachyzoite glucan 
 

 Because T. gondii contains a glucan phosphatase, TgLaforin, that is more 

animal-like than plant-like (204,205), we epitope-tagged TgLaforin to determine if 

it co-localizes with the potentially glycogen/animal-like glucan in tachyzoites. 

TgLaforin was epitope-tagged using a CRISPR/Cas9 mediated strategy as has 

been done previously (269); a sgRNA was transfected into T. gondii Type II 

ME49HXGPRT targeting a PAM immediately downstream of TgLaforin’s stop 

codon, and this construct was introduced alongside a donor patch containing the 

3’-end of TgLaforin fused to a 3xHA tag (Figure 5.3a). The HA-tagged gene was 

linked to the HXGPRT gene, allowing for selection of TgLaforin-HA-tagged 

parasites with MPA/xanthine. Successful HA-tagging was confirmed by the 

presence of an ~60-kDa HA-tagged protein by western-blot (Figure 5.3b). 

Immunofluorescence (IF) analysis of T. gondii tachyzoites indicated that TgLaforin 

is present in small puncta throughout the cytoplasm, similar to the distribution of 

the tachyzoite glucan (Figure 5.3c). Surprisingly, we saw TgLaforin was seemingly 

absent in in vitro bradyzoites by IF analysis. 

 To verify that TgLaforin levels decrease during the tachyzoite to bradyzoite 

transition, we converted T. gondii tachyzoites to bradyzoites using alkaline stress 

for 6 days and compared equal numbers of parasites by western blot. As seen by 

IF staining, TgLaforin-HA expression decreases dramatically over the course of 

bradyzoite differentiation (Figure 5.4a), even though transcriptomic data obtained 

from a previous study (332) indicates that transcript levels of TgLaforin do not 

change (Figure 5.4b). This indicates the possibility that post-translational 

regulation of TgLaforin is responsible for its decline in bradyzoites, and that the 

down regulation of TgLaforin may be related to the growth and appearance of 

crystalline AGs by TEM.  

 To determine if TgLaforin colocalizes with the glucan present in tachyzoites or 

with AGs in bradyzoites, we co-stained TgLaforin-HA-tagged tachyzoites and 

bradyzoites with either PAS or IV58B6 along with an anti-HA antibody. In 

tachyzoites, TgLaforin almost completely colocalized with both PAS (Figure 5.3d) 
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and with IV58B6 (Figure 5.3e), suggesting its involvement in the metabolism of 

the tachyzoite glucan. 

 

5.2.4 Loss of TgLaforin and its impact on T. gondii tachyzoites and bradyzoites 
 

 To further dissect TgLaforin’s role in relation to glucan metabolism in T. gondii, 

TgLaforin was knocked out using a CRISPR/Cas9-GFP approach (268). Cas9 was 

targeted to the first exon of TgLaforin and was transfected alongside a 

pyrimethamine-resistant form of DHFR (DHFR-TS*) under an NcGRA7 (Neospora 

caninum GRA7 promotor) (359) with the goal of gene replacement using the DHFR 

marker (Figure 5.5a). To achieve this, the linear DFHR-TS* construct was flanked 

by 40nt homologous sequence to TgLaforin in Exon 1 and 3’UTR on the 5’ and 3’ 

end, respectively, using PCR (Figure 5.5b). Transfected parasites were allowed 

to recover for 24 hours post-transfection, and then GFP+ parasites expressing 

Cas9 were selected to enrich the pool of successful transformants (Figure 5.5c). 

In agreement with previous reports (10), TgLaforin is a non-essential gene under 

standard cell culture conditions, as a TgLaforin-KO clone was successfully 

recovered (TgLaf). Integration of the DHFR construct into the TgLaforin locus 

was verified using inside/out PCR at the chimeric locus (Figure 5.5d) along with 

verifying the loss of TgLaforin transcription (Figure 5.5e).  

 To evaluate the effects of loss of TgLaforin on T. gondii, we first compared 

glucan levels in WT and TgLaf tachyzoites using our suite of glucan detection 

techniques (Figure 5.6a). Surprisingly, the size and number of PAS+ granules 

were unchanged in TgLaf tachyzoites relative to WT parasites. Levels of IV58B6 

also remained unaltered after the loss of TgLaforin, and no aberrant glucan 

accumulation was observed by TEM as has been observed previously when genes 

related to AG or central carbon metabolism were knocked out (206,228,234,235). 

To determine if loss of TgLaforin resulted in bradyzoite conversion defects or 

aberrant AG accumulation, parasites were converted to bradyzoites in vitro under 

alkaline stress and monitored for defects related to the loss of TgLaforin (Figure 

5.6b-c). During differentiation, the parasitophorous vacuole (PV), the replicative 

niche established by tachyzoites within host cells, converts into the cyst wall that 

surrounds bradyzoites within their host cell (100,360). In general, the cyst wall is 

heavily glycosylated and contains N-acetylgalactosamine (Gal-NAc) that is 

detectible by the lectin Dolichos biflorus agglutinin (DBA) (361). Using DBA 

intensity as a marker for the progress of differentiation, we again saw no penalty 

imposed by the loss of TgLaforin on cyst wall formation over the course of six days, 

indicating that TgLaf parasites are not defective in the initial stages of bradyzoite 

differentiation (Figure 5.6b). Moreover, when we stained bradyzoites with PAS 

over the course of six days, we again saw no difference in accumulated AG levels 

(Figure 5.6c).  

 Because PAS is not specific to glucans and can stain other glucose-containing 

molecules such as glycosylated protein, and provides no resolution on glucan 
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morphology, we utilized TEM to gain higher resolution on bradyzoite differentiation. 

After 6 days of conversion, it was noted that a TgLaf parasites contained irregular 

AGs that were not commonly found in WT parasites (Figure 5.7a). In WT parasites, 

the AGs were largely white in appearance and organized in ovoid or circular 

shapes. However, the TgLaf parasites contained AGs that were often gray, with 

the appearance of being flattened and irregular in shape that seemed to occupy 

more of the cytoplasm than the WT granules occupied. To quantify this, the area 

of AGs was calculated relative to the parasite area in both WT and TgLaf strains 

(Figure 5.7b). Strikingly, AGs occupied approximately 4x more area in KO 

parasites when compared to WT. Additionally, when analyzed on an 8-bit gray 

scale, AGs in TgLaf parasites were significantly grayer than those found in WT 

parasites (Figure 5.7b).  

 To demonstrate aberrant AG accumulation in in vitro bradyzoites was specific 

to the loss of TgLaforin, the TgLaf line was complemented with an HA-tagged 

TgLaforin cDNA under its native promoter containing the HXGPRT selectable drug 

marker (Figure 5.8a). The complementation construct was inserted into a locus 

previously identified in Chromosome VI as having no coding sequences or 

regulatory elements (270). Therefore, true complementation was achieved by 

leaving the TgLaf/DHFR-TS* knockout scar intact. A complemented line was 

successfully identified (COMP) by PCR (Figure 5.8b), and TgLaforin expression 

was verified using Western Blot (Figure 5.8c), and the cytoplasmic, punctate 

staining was restored by IF analysis (Figure 5.8d). Importantly, western blot 

analysis demonstrated that endogenous levels of expression were restored 

(Figure 5.8c).  

 After examination and quantification of AGs in the COMP line, it was noted that 

the COMP line did accumulate a low level of aberrant AGs, but COMP parasites 

did not demonstrate a statistically significant difference in AG levels as was found 

in TgLaf parasites (Figure 5.7a-b), suggesting complementation was successful. 

Moreover, complementation restored AGs that were more similar to those found in 

WT parasites as they were also whiter in appearance. 

 

5.2.5 Loss of TgLaforin results in upregulation of glutaminolysis in tachyzoites 
 

 Despite the fact that loss of TgLaforin had no gross morphological effect on the 

tachyzoite glucan, the observation that its loss did indeed impact AGs in 

bradyzoites implies that TgLaforin does have a role in glucan metabolism in T. 

gondii. Because glucan catabolism is significantly affected by the presence of 

covalently bound phosphate, we speculated that loss of TgLaforin resulted in the 

inability of T. gondii bradyzoites to breakdown their AGs efficiently. To first 

determine if this was having any metabolic effects in tachyzoites, a more tractable 

stage for such studies where TgLaforin expression is higher, we employed GC/MS 

steady-state metabolic analysis of intracellular tachyzoites (Figure 5.9).  
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 While metabolite levels remained unaltered across much of the TCA cycle, 

metabolites immediately downstream of glutamine were much more abundant in 

TgLaf parasites than in their WT counterparts. Previously, it was demonstrated 

that T. gondii tachyzoites primarily utilize glucose and glutamine for synthesis of 

macromolecules and normal progression through the lytic cycle (226). Glucose is 

utilized primarily to fuel glycolysis, and glutamine undergoes glutaminolysis to fuel 

the TCA cycle. In the absence of glucose, T. gondii can upregulate both 

glutaminolysis and gluconeogenesis to make up for the loss of glucose (211,226), 

suggesting that TgLaf parasites are deficient in glucose metabolism. This finding 

further suggests that the turnover of the tachyzoite glucan serves as a potential 

intermediate in overall glucose metabolism.  

 

5.2.6 Loss of TgLaforin renders T. gondii tachyzoites dependent on glutamine 
 

 Without both glucose and glutamine, parasites are significantly hampered in 

their ability to invade and establish plaques (226). To determine if the loss of 

TgLaforin resulted in impaired access to glucan stores in tachyzoites, and thus a 

dependence on glutaminolysis, we performed plaque assays in the presence and 

absence of glutamine (Figure 5.10). In the presence of glutamine, TgLaf 

parasites formed plaques that were slightly larger than both the WT and COMP 

lines. Upon removal of glutamine after the parasites had invaded the HFF 

monolayer, however, TgLaf parasites were completely unable to form plaques, 

whereas the WT and COMP lines were able to form plaques with normal efficiency. 

Importantly, the growth of the COMP line under glutamine depleted conditions 

indicated that glutamine dependence was specific to the loss of TgLaforin, 

suggesting that loss of TgLaforin results in loss of normal glucose metabolism. 

 

5.2.7 Analysis of lytic cycle 

 

 Plaque formation is the result of the cumulative effects of invasion replication 

and egress extended over multiple cycles. To determine how glutamine deprivation 

was impacting the lytic cycle in the TgLaf parasites, we analyzed replication and 

egress (Figure 5.11). In each assay, parasites were pre-starved of glutamine for 

48 hours before the assay. In the replication assay, replication was analyzed 24 

hours after invasion (72 hours of glutamine starvation total). Among the three lines, 

we saw no significant difference in replication under glutamine replete or depleted 

conditions (Figure 5.11a). Thus, glutamine depletion appeared to have no overall 

effect on replication without TgLaforin. The fact that the glutamine starved 

parasites were able to establish the infection argued against a major defect in 

invasion, and invasion efficiency was not explored further here.  

 Finally, we analyzed egress efficiency among the three lines with two different 

small molecules (Figure 5.11b-c). First, we used the calcium ionophore, A23187 

(Figure 5.11b), that results in rapid increases of cytoplasmic calcium, microneme 
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discharge, and subsequent egress. Secondly, we tested zaprinast (Figure 5.11c), 

a phosphodiesterase inhibitor that results in rapid increase of cGMP levels that 

then trigger the signaling pathway that ultimately leads to egress. Surprisingly, no 

induced egress defect was seen when parasites were treated with either 3 M 

A23187 or 500 M zaprinast.  

 We hypothesized that WT parasites were able to survive in the absence of 

glutamine partially due to their ability to access internal glucan stores to which the 

TgLaf parasites may not have efficient access. To determine if glutamine 

starvation resulted in differential utilization of the tachyzoite glucan, parasites were 

starved of glutamine for 72 hours and then evaluated for glucan content using 

IV58B6. Interestingly, it appears that IV58B6 staining is lower in mutant parasites 

after glutamine starvation than their WT counterparts, but more rigorous 

quantification of this phenomenon will need to be performed (Figure 5.12). 

Regardless, we did see a slight decrease in IV58B6 staining in both lines with 

glutamine starvation, implying that the absence of glutamine might result in the 

utilization of AGs.  

 

5.2.8 Loss of TgLaforin results in attenuated virulence and cyst formation in vivo 
 

 While TgLaf parasites grew normally in nutrient replete media, they were 

unable to grow without glutamine. We therefore hypothesized that while loss of 

TgLaforin might not impose a penalty under the ideal conditions of cell culture, it 

may impose a steeper penalty under the stresses and potential nutrient scarcities 

encountered in vivo. To test the importance of TgLaforin in the acute phase of 

infection in mice, we infected equal numbers of male and female CBA/J mice with 

100 tachyzoites IP and monitored the mice daily using previously developed a five-

stage body index score (Table 2.6) to track the severity of symptoms associated 

with a tachyzoite infection over the course of 28 days (Figure 5.13a).  

 The acute phase of infection was highly attenuated by the loss of TgLaforin. 

Mice infected with WT parasites began demonstrating symptoms of infection 10 

days after infection with tachyzoites (Figure 5.13a). However, mice infected with 

TgLaf parasites did not begin to experience symptoms until 15 days after 

infection. Moreover, mice that became symptomatic from WT parasite infections 

often proceeded through all stages of symptomology, and only a minor proportion 

of mice that became sick were able to recover from infection (>50% of mice 

proceeded to stage 4 (moribund)). Infection from TgLAF-KO parasites, however, 

resulted in a majority of mice that only developed mild symptoms (Stage 2 or less) 

with many of these mice recovering (Figure 5.13a). The inability of the TgLaf 

parasites to cause symptoms in mice was reflected in the mortality rates of the 

infected mice: infection with WT parasites resulted in 73% mortality rate after 28 

days whereas TgLaf parasites only caused 17% mortality (Figure 5.13b). 

Complementation of TgLaforin rescued this defect in virulence as COMP parasites 
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resulted in an earlier onset of symptomatic infection at Day 11, and the majority 

(53%) of mice dying after 28 days (Figure 5.13a-b).  

 Because the acute phase of infection was significantly attenuated by the loss 

of TgLaforin, we hypothesized that cyst numbers would be significantly lowered. 

To determine the number of cysts formed after 28 days of acute infection, we used 

a previously established protocol for harvesting and counting tissue cysts from 

infected mice (55,275). Briefly, brain homogenate from infected mice was layered 

on a discontinuous Percoll gradient and centrifuged to separate brain material and 

red blood cells from cysts. Fractions were then collected from the bottom of the 

Percoll gradient proceeding from most dense (bottom of Percoll gradient) to least 

dense (top of Percoll gradient). In all cases, red blood cells (RBCs) traveled the 

furthest through the Percoll gradient and defined the fraction with the highest 

density in which cysts could be found, with brain homogenate on the top defining 

the fraction of least density. Cysts were thus harvested from the fractions between 

the RBCs and brain homogenate.  

 Indeed, after isolating tissue cysts and counting them, it was determined that 

mice infected with TgLaf parasites contained significantly fewer tissue cysts than 

those infected with WT (Figure 5.13c). Most likely, the lower cyst number in the 

TgLaf parasites was a result of failure to establish WT levels of virulence during 

the acute phase of infection, and not in actual bradyzoite conversion, as in vitro 

conversion assays demonstrated no defect in cyst formation (Figure 5.6b). Due to 

the low survival rate of the mice infected with the COMP parasites, only two data 

points could be generated for this parasite line as each data point is the average 

of cyst-counts from 2 mouse brains. Therefore, this low statistical power precluded 

statistical analysis. However, the two data points that were obtained for the COMP 

line almost identically represented the range of cyst burden detected in WT-

infected mice. One of the data points was far outside of the range that the TgLaf 

parasites were able to generate. Therefore, it appears that complementation of 

TgLaforin at least partially restored the defect in cyst formation.  

 

5.2.9 TgLaf tissue cysts can re-establish infections in naïve mice 

 

 To determine if the physiological defects we observed of in vitro cysts 

translated into a lower level of infectivity, brain homogenate containing 20 cysts 

from each line of parasites was injected IP into CBA/J mice, and symptomology 

and death were once again monitored for 28 days. The symptoms related to 

infection resulting from cysts was much milder than that from tachyzoites (Figure 

5.14a), and this held true across all three lines of parasites. Moreover, the death 

rate related to cyst infection was much lower than seen in tachyzoites across all 

three lines. After 28 days, cyst burdens were established from each line. 

Interestingly, the death/illness rate was slightly higher in the WT and COMP lines. 

Again, TgLaf parasites were much less competent at forming cysts in vivo. 

However, the COMP line was unable to rescue this defect in cyst formation (Figure 
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5.14b), suggesting that physiological and metabolic changes associated with the 

loss of TgLaforin manifest differently based in the life cycle stage impacting their 

capacity to be complemented.  

 

5.2.10 Proper AG formation relies on the presence of TgLaforin 
 

 To understand if a loss in cyst infectivity was related to the formation of aberrant 

AGs in TgLaf bradyzoites as seen after 6 days of in vitro conversion, we devised 

an efficient way to utilize TEM to investigate AG morphology in purified in vivo 

derived tissue cysts. Our protocol was developed based on a previously developed 

method for imaging rare cell populations that we coupled with our previously 

developed cyst harvesting protocol (276,277). After isolating tissue cysts from 

CBA/J mice as described above, Percoll was washed out and cysts were fixed and 

then suspended in low-melt agarose before gelling, post-staining, and embedding 

in Epon (see Materials and Methods). TEM imaging revealed that while WT 

parasites formed largely normal/canonical AGs in vivo as seen in vitro [Figure 5.15 

(compare with Figure 5.7a)], TgLaf parasites contained almost exclusively 

aberrant AGs that mirrored the same morphological defects seen in vitro (Figure 

5.15 and Figure 5.16). Namely, AGs were irregularly sharpened with a flat, multi-

lobed appearance. Importantly, COMP parasites did not over-accumulate or form 

aberrant AGs, demonstrating that this defect is specific to loss of TgLaforin.  

 In addition to containing aberrant AGs, the internal morphology of TgLaf 

parasites appeared to be altered by the presence of the AGs. Significant organelle 

displacement was noted. Moreover, many of the TgLaf parasites appeared hollow 

or “ghost-like” in appearance as a result of their unstained cytoplasm. We 

interpreted this to mean that a significant number of the TgLaf bradyzoites were 

dead within the cyst (additional images of ghost-like parasites depicted in Figure 

5.16b).  

 Because TgLaf contained high levels of AGs, we hypothesized that this would 

result in an altered density of mutant cysts in Percoll gradients relative to the WT . 

To determine if the TgLaf cysts exhibited a different density profile, we analyzed 

the distribution of cysts across Percoll fractions. To account for potential 

differences in gradients preparations across experiments, we standardized the 

distribution based on the location of the  RBC layer the Percoll prep (fraction 0; 

highest density-typically corresponding to fraction 8-10 in individual gradients) 

proceeding up to the brain homogenate layer (fraction 12; lowest density). 

Surprisingly, we noted that the overall distribution of cysts remained relatively 

constant among the 3 lines. This indicated that despite the increase in AGs in the 

TgLaf bradyzoites, their ability to travel through Percoll remained unchanged 

(Figure 5.17a).  

 To understand how other factors might contribute to this outcome, we analyzed 

the packing density of bradyzoites in each line. This previously defined metric 

establishes a relationship between the number of bradyzoites within a cyst and the 
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overall volume of the cyst. This is achieved through counting the number of 

bradyzoite nuclei within an optical section of a cyst using BradyCount 1.0 (55) and 

dividing that number by the volume of the optical section. When we analyzed the 

packing density of each line of parasites, we noted that TgLaf parasites had 

significantly lower packing density than that of the WT or COMP parasites (Figure 

5.17b), indicating that loss of TgLaforin indeed resulted in significant parasite 

death. Moreover, when analyzing cyst diameter, we also saw a significant 

decrease in overall cyst size (Figure 5.17c). We interpreted these data as 

indicating that although TgLaf bradyzoites contain many more AGs than either 

WT or COMP bradyzoites, their overall lower packing density and cyst size 

counterbalance their potential increase in overall density. Therefore, their overall 

distribution through the Percoll gradients remained unchanged. 

 

5.3 Discussion 
 

 We investigated the role of TgLaforin, and by extension polysaccharide 

storage, throughout the asexual cycle in T. gondii. Through comparative 

microscopy, we first characterized a potentially glycogen-like glucan in the 

cytoplasm of ME49 tachyzoites. To determine the role of reversible 

phosphorylation on this glucan, we knocked out the parasite’s glucan 

phosphatase, TgLaforin. We showed that tachyzoites become dependent on 

glutamine in the absence of TgLaforin, and this nutrient defect appeared to result 

in highly attenuated parasite virulence in vivo and defective cyst formation as 

measured by multiple metrics. Moreover, while perturbation of TgLaforin did not 

result in any obvious defects related to the tachyzoite glucan, it did result in 

bradyzoites containing AGs with significant morphological defects.  

 Therefore, our studies demonstrate a fundamental role for reversible glucan 

phosphorylation in T. gondii. As predicted, loss of proper AG turnover in 

bradyzoites resulted in aberrant AG morphology, as seen previously in other 

protozoa, plants, and vertebrates. These defects appeared to result in smaller 

cysts with a lower packing density—upending the trend previously reported in 

ME49-WT bradyzoites that smaller cysts typically demonstrate higher packing 

density (55). Most interestingly, however, these studies add to the growing 

literature pointing to the importance of glucan metabolism in tachyzoites. This 

study suggests that tachyzoites utilize glucans for glucose allocation as suggested 

in a study examining the role of the T. gondii starch synthase (TgSS) (203), as loss 

of glucan access via TgLaforin results in complete glutamine dependence. As T. 

gondii tachyzoites primarily utilize exogenous glucose and glutamine to support 

their rapid growth, this dependence on glutamine implies upregulation of 

glutaminolysis to fuel gluconeogenesis, highlighting the possibility that loss of 

TgLaforin resulted in deficient glucan degradation and glucose allocation in 

tachyzoites.  
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 These results are consistent with previous studies that disrupt glucose and/or 

glucan metabolism, but also contrast them in significant ways (Figure 1.7). 

Disruption of TgGT1, the only plasma-membrane glucose transporter in T. gondii 

(225,226), or TgHK, T. gondii-hexokinase, resulted in upregulation of 

glutaminolysis and gluconeogenesis, and thus parasite growth was highly 

attenuated with glutamine depletion (211). However, neither of these mutants 

became entirely dependent on glutamine as in the present study. Most strikingly, 

TgSS parasites displayed no dependence on glutamine and, in fact, grew faster 

than WT parasites when both glucose and glutamine were removed from the 

culture media (203). Perturbations of other glycolytic enzymes also demonstrated 

varied effects related to the presence of glutamine: loss of the essential GAPDH1 

could be rescued with high levels of glutamine (362), but glutamine could not 

rescue pyruvate kinase (TgPYK1) knockdown parasites (235). Therefore, while 

many other studies have demonstrated that perturbations in glucan metabolism 

result in an increased importance of glutamine through gluconeogenic flux, only 

loss of TgLaforin and GAPDH1 demonstrate a complete dependence of 

tachyzoites on glutamine to our knowledge at the time of writing this manuscript.  

 Regardless, loss of TgLaforin renders the parasites much more sensitive to the 

nutrient composition of their environment. This was most clearly seen in their 

attenuated virulence and cyst burden in mice. Like other studies of glucan 

perturbations, the number of cysts formed by TgLaf parasites was much lower 

than its WT counterparts (206,228,234,311). The cysts that were formed also 

appeared to be highly defective. Interestingly, there was a large increase in the 

number of parasites containing high levels of aberrant AGs in when comparing 

TgLaf bradyzoites converted in vitro (6 days) vs in vivo (>6 days). This suggests 

that either the in vitro conversion conditions are not adequate to produce this 

phenotype, or that the accumulation of these aberrant AGs is time dependent. If 

true, one could assume that an increase in the duration of the chronic infection for 

these mutants may lower the infectivity of their cysts, a possibility that is supported 

by a large number of parasites that appeared to no longer be viable by TEM. Our 

in vivo work highlights that targeting the parasites on the level of reversible 

phosphorylation, especially in the context of its interaction with CDPK2, may inhibit 

the parasite’s ability to reactivate. This process utilizes several plant-like enzymes 

that represent ideal drug targets in humans (TgGWD and CDPK2), and we recently 

developed an inhibitor to TgLaforin (Chapter 3). 

 The present study has many strengths that allow for the detailed dissection of 

in vivo bradyzoites. This includes the utilization of our previously developed cyst 

purification protocol and automated computer-based methods that allowed us to 

accurately count, measure, and determine packing density on all cysts in this 

study. Moreover, we developed a method to concentrate purified cysts into 

agarose blocks which allowed for the relative ease of cyst visualization by TEM 

that would otherwise have been much more difficult if searching through brain 

homogenate as is done traditionally. The limitations of this study were primarily 
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related to our inability to purify the tachyzoite glucan from ME49 parasites and 

inability to pinpoint the exact reason for arrest of parasite growth. With these data, 

a more precise mechanism could be described. While the exact mechanism 

related to the parasite’s inability to grow without glutamine is unknown at present, 

the rescue of this defect by complementation ensures the effects we observed 

were indeed specific to TgLaforin. Moreover, the limitations posed here did not 

prevent a detailed, thorough characterization of many aspects of glucan 

phosphatase biology.  

 Therefore, future work should seek to characterize the nature of the glucan in 

tachyzoites with respect to chain length and phosphate content. Such a 

characterization would determine the overall architecture of the glucan and allow 

for classification as more glycogen-like or amylopectin-like, as well as reveal what 

is stored within. Curiously, loss of TgLaforin resulted in the selective disruption of 

AG morphology in bradyzoites while seemingly having no effect on tachyzoites as 

it did in other knockouts such as such as -amylase, CDPK2, and glycogen 

phosphorylase (in which bradyzoites also accumulated excess AGs). 

Understanding if/how the tachyzoite glucan is broken down in the absence of a 

glucan phosphatase would yield insights into the requirements of glucan 

degradation in T. gondii. Overall, this work necessitates such a characterization as 

it advances what is known about the role of storage polysaccharides in both 

tachyzoites and bradyzoites, what results from the fact that they are present and 

inaccessible and opens up reversible glucan phosphorylation as both a window 

into understanding AGs and into developing therapeutics.  
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Figure 5.1 Generation of a parental ME49 line by knocking out HXGPRT. 
A, Purine interconversion pathways in T. gondii and the drugs used in HXGPRT+/- 

selection; adapted from (352). B, Schematic of HXGPRT locus and PAM sites 

used in this study. Numbered exons depicted as blue boxes and introns as black 

lines. CRISPR/Cas9 nuclease sites are 3-bp upstream of PAM sites. C, Depiction 

of modified HXGPRT locus after 1214-bp deletion resulted in the fusion of partial 

exons 2 and 5, creating a TGA codon in exon 5. Sequencing of the fusion site is 

depicted below. Abbreviations: 6-thioXMP = 6-thioxanthosine monophosphate; 

AMP = adenosine monophosphate; GMP = guanosine monophosphate; 

HXGPRT/HX = hypoxanthine-xanthine-guanine phosphoribosyl transferase; IMP 

= inosine monophosphate; IMPDH = IMP dehydrogenase; MPA = mycophenolic 

acid; PAM = protospacer adjacent motif; XMP = xanthine monophosphate. 
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Figure 5.2 Glucan dynamics in T. gondii ME49 parasites. 
A, Microscopy-based glucan evaluation of T. gondii tachyzoites and bradyzoites 

using PAS, IV58B6 (-glycogen IgM mAb), and TEM. B, GAA digest of AGs in 

tachyzoites and bradyzoites results in disappearance of IV58B6 and PAS signal 

by IF analysis. Abbreviations: AG = amylopectin granule; DBA = Dolichos biflorus 

agglutinin; GAA = acid -glucosidase; PAS = periodic acid-Schiff; TEM = 

transmission electron microscopy.   
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Figure 5.3 Endogenous tagging and localization of TgLaforin. 
A, Schematic depicting the TgLaforin 3xHA-epitope tagging strategy. B, 

Successful tagging of TgLaforin (62 kDa) was verified using immunoblot analysis 

with an -HA antibody with SAG1 used as a loading control. C, IF analysis in 

WT/tagged parasites with -HA antibody. D, IF analysis of TgLaforin colocalization 

with PAS. Pearson’s coefficient: 0.765. E, IF analysis of TgLaforin colocalization 

with IV58B6. Pearson’s coefficient: 0.737. All scale bars = 5 m. Abbreviations: 

HX = hypoxanthine-xanthine-guanine phosphoribosyl transferase; PAS = periodic 

acid-Schiff.  
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Figure 5.4 Downregulation of TgLaforin in T. gondii bradyzoites. 
A, Western blot analysis of TgLaforin expression levels in tachyzoites and 

bradyzoites. GAP45 is the loading control, and loss of SAG1 serves as 

confirmation of tachyzoite to bradyzoite conversion. B, Comparative levels of 

TgLaforin mRNA in tachyzoites and bradyzoites alongside levels of the bradyzoite 

marker, SRS9 for comparison. Transcriptomic data was plotted from ToxoDB.org 

derived that is based on data from Fritz, et al. (332). In this study, in vitro 

bradyzoites were harvested at 4 days after induction. 
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Figure 5.5 Schematic of TgLaforin knockout strategy, and PCR 
confirmation of DHFR disruption of TgLaforin. 
A, Schematic of TgLaforin KO strategy: the pyrimethamine-resistant DHFR* gene 

containing 40-nt homologous arms (hashed boxes) was inserted into the TgLaforin 

locus by eliminating most of the gene by homologous recombination. A double 

stranded break was induced using CRISPR/Cas9-GFP with a PAM site in the first 

exon. B, PCR amplification of NcGra7-DHFR cassette with 40-nt homologous 

arms. C, Representative image of FACS plot used to select GFP+ parasites. Area 

circled indicates gating used to select GFP+ parasites that were chosen for further 

drug selection. D, Inside/out PCR verification of DHFR integration into TgLaforin 

locus. Amplicons (PCR1-4) illustrated in (A). E, Loss of TgLaforin mRNA was 

confirmed by generating cDNA from both WT and TgLaf knockout strains. Actin 

cDNA amplification serves both as a loading control and as a control to verify the 

absence of gDNA. Abbreviations: DHFR = dihydrofolate reductase; FACS = 

fluorescence-activated cell sorting; PAM = protospacer adjacent motif. 
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Figure 5.6 Loss of TgLaforin selectively alters glucan morphology in 
bradyzoites with no AG defects in tachyzoites. 

A, Analysis of glucan levels in TgLaf tachyzoites using three different 

approaches: PAS and IV58B6 immunofluorescence, and TEM. B, in vitro 

tachyzoite to bradyzoite conversion efficiency of TgLaf vs WT parasites as 

measured by DBA. C, Change in PAS levels during bradyzoite conversion by PAS 

levels. Abbreviations: AG = amylopectin granule; DBA = Dolichos biflorus 

agglutinin; PAS = periodic acid-Schiff. Statistical comparisons were done with an 

ordinary one-way ANOVA using Tukey’s post-hoc test to correct for multiple 

comparisons. Statistical significance is indicated as follows: ****p<0.0001. 
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Figure 5.7 TEM images of in vitro bradyzoites. 
A, Representative images of bradyzoites from each parasite line. At 4300x 

magnification, scale bar = 2 m; at 8600x magnification, scale bar = 1m. COMP 

= complemented parasites generated by complementing TgLaf parasites with 

TgLaforin cDNA. Arrowhead = canonical AG (white, round/ovoid); Arrow = aberrant 

AG (grey, flattened, multi-lobed). B, Quantification of relative parasite AG content 

and grayness across lines used in this study. Statistical comparisons were done 

using an ordinary one-way ANOVA with Tukey’s post-hoc test to correct for 

multiple comparisons. Statistical significance is indicated as follows: *p<0.05, 

***p<0.01, ****p<0.001, ns=p>0.05. 
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Figure 5.8 Schematic of TgLaforin complementation strategy and 
confirmation of successful expression of TgLaforin. 

A,  Schematic of TgLaforin complementation into TgLaf parasites in which a PAM 

site was chosen at a neutral locus previously identified in Chr. VI (270) to insert 

TgLaforin cDNA containing its endogenous promoter. The TgLaforin construct was 

connected to the HXGPRT selectable drug marker and inserted using NHEJ. B, 

PCR confirmation of integration of TgLaforin construct into Chr. VI. Primer sets are 

indicated above amplicons. WT amplicon demonstrates restoration of TgLaforin, 

and KO amplicon confirms that KO locus is still intact. WT/TgLaf gels serve as 

controls for these PCR reactions. C, Western blot confirmation of expression of 

TgLaforin in complemented parasites. Tagged LAF-HA parasites confirm the 

correct MW (~60 kDa) and expression level. D, IF analysis demonstrates 

restoration of cytoplasmic, punctate localization of TgLaforin. Scale bar = 5 m. 

Abbreviations: NHEJ = non-homologous end joining; PAM = protospacer-adjacent 

motif. 
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Figure 5.9 Steady-state metabolomics reveals upregulation of 

glutaminolysis in TgLaf parasites. 

Metabolite levels of intracellular tachyzoites were analyzed after 48 hours of 

growth in HFFs by GC/MS analysis.  
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Figure 5.10 Loss of TgLaforin renders T. gondii tachyzoites dependent on 
glutamine. 
Representative plaque assay pictures are presented for each line and condition. 

Total plaque area was measured in ImageJ and plotted in arbitrary units. Statistical 

comparisons were done using an ordinary one-way ANOVA using Tukey’s post-

hoc test to correct for multiple comparisons. Statistical significance is indicated as 

follows: *p<0.05, ns=p>0.05. 
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Figure 5.11 The effects of glutamine deprivation on the tachyzoite lytic 
cycle. 
A, Replication assay in which parasites were pre-starved of glutamine for 48 hours, 

seeded into HFFs, and counted after 24-hours of growth. Data is the average of 3 

biological replicates with at least 70 vacuoles counted per replicate. B, Calcium 

ionophore stimulated egress assay in which parasites were pre-starved of 

glutamine for 48 hours, seeded onto HFFs and allowed to grow for 48 hours to 

produce vacuoles containing >16 parasites, and stimulated with 3-M A23187. 

Egress was monitored by video microscopy and time to egress was monitored as 

described in Materials and Methods. Data is the average of 3 biological replicates. 

C, Zaprinast stimulated egress assay performed as described for ionophore, 

however 500-M zaprinast was used to stimulate egress. Error bars depict SD 

from the mean. Statistical comparisons were done using an ordinary one-way 

ANOVA using Tukey’s post-hoc test to correct for multiple comparisons. Statistical 

significance is indicated as follows: ns=p>0.05.  
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Figure 5.12 The effects of glutamine starvation on IV58B6 staining. 
Parasites were starved of glutamine for 72-hours total before monitoring the effect 

of glutamine starvation on tachyzoite AG levels. Scale bar = 5 m.  
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Figure 5.13 Loss of TgLaforin attenuates virulence and cyst burden in mice. 
Equal numbers of male and female CBA/J mice were infected IP with 100 

tachyzoites from each group for symptoms and death: A, Symptomology 

throughout acute phase of infection. Mice were monitored 1-2x/day and assigned 

a body score index ranging from asymptomatic (Stage 0) to moribund/deceased 

(Table 2.6). WT and TgLaf groups contain 24 mice each, and COMP group 

contains 16. B, Kaplan-Meier curve of mouse survival during acute tachyzoite 

infection. C, Mice that survived 4-weeks were euthanized, and brains were 

homogenized in pairs, layered over Percoll for purification of cysts, and cysts were 

counted as done previously (55,275). Error bars depict SD from the mean. 

Statistical comparison for Kaplan Meier curve is indicated on plot, and statistical 

comparison of cyst burden resulting from WT/TgLaf infection was done using an 

unpaired t-test. Statistical significance: *p<0.05, ***p<0.0002. 
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Figure 5.14 Mouse infection with TgLaf tissue cysts results in less 
symptomology, death, and lower cyst burden. 
CBA/J mice were infected IP with 20 cysts taken from previously infected mouse 

brains and monitored for symptomology and death. A, Symptomology throughout 

acute phase of infection as described in Figure 6B. B, Cysts/brain after 4-week 

bradyzoite infection. Cyst numbers were determined as described in Figure 6C. 

Statistical comparisons were done using an ordinary one-way ANOVA using 

Tukey’s post-hoc test to correct for multiple comparisons. Statistical significance is 

indicated as follows: *p<0.05, ns=p>0.05. 
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Figure 5.15 T. gondii bradyzoites accumulate excess AGs in the absence of 
TgLaforin. 

Left panels: scale bar = 5 m; right panels (zoom of boxed region from left panel): 

scale bar = 2 m.  
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Figure 5.16 Additional images of in vivo tissue cysts. 
A, WT tissue cyst (too large to fit in camera view) with two zooms depicted below. 

B, TgLaf tissue cyst also with two zooms depicted below. Asterisks highlight 

empty nuclei and arrow shows example of rhoptry displacement by AGs.  

Top row scale bar = 5 m; Zoom scale bars = 2 m.   
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Figure 5.17 Cysts formed by TgLaf parasites are smaller and contain a 
lower bradyzoite packing density. 
A, Distribution of cysts in Percoll gradient after centrifugation. Fraction 1 is defined 

as the furthest traveling fraction adjacent to the RBC layer (most dense), and 

fraction 12 is the least mobile fraction adjacent to brain homogenate (least dense). 

Shaded area corresponds to SEM for each fraction. B, Packing density 

comparison among WT, TgLaf, and COMP lines, a metric that describes cyst 

occupancy that has been described previously (55). Calculations were made using 

BradyCount1.0 to identify and quantify nuclear profiles from DAPI-stained tissue 

cysts. C, Cyst diameter comparison among WT, TgLaf, and COMP lines as 

measured in ImageJ. Statistical comparisons were done using an ordinary one-

way ANOVA using Tukey’s post-hoc test to correct for multiple comparisons. Error 

bars in (B) and (C) depict SD from the mean. Statistical significance is indicated 

as follows: *p<0.05, **p<0.01, ns=p>0.05.  

 



 
 

CHAPTER 6.  CONCLUDING REMARKS 
 

6.1 Summary 
 

 After the discovery of reversible glucan phosphorylation in both plants 

(167,174,239) and animals (184,186,191,247), it was suggested that this cycle 

might also play a role in red alga and starch accumulating protists of red algal 

descent such as T. gondii (204,205). Herein, we demonstrated the functionality of 

the cycle of reversible glucan phosphorylation in T. gondii. We demonstrated that 

both the glucan phosphatase (TgLaforin, TGME49_205290) and glucan, water 

dikinase (TgGWD, TGME49_214260) are active against glucan substrates in vitro. 

We also defined the unique biophysical and biochemical properties of these 

enzymes using a wide range of techniques. In characterizing TgLaforin, we 

provided the first biophysical evidence for a split CBM domain, we demonstrated 

that TgLaforin is an anti-parallel DSP-mediated dimer, and we found that TgLaforin 

is an active glucan phosphatase that prefers to dephosphorylate the C3-position 

of glucosyl residues (Chapter 3). Moreover, we exploited the unique active site 

topology of glucan phosphatases to identify an inhibitor of TgLaforin that is 

selective against other DSPs and PTPs.  In characterizing TgGWD, we showed 

that TgGWD is a monomer, we discovered that it phosphorylates exclusively the 

C6-position of glucosyl units, and we created a CE-based AMP detection assay 

for use in studying the general GWD catalytic mechanism (Chapter 4).  

 To explore the relevance of reversible glucan phosphorylation in T. gondii 

across its asexual life cycle, we first investigated the nature of the tachyzoite 

glucan that has been recently recognized by PAS staining and 14C-glucose pulse-

chase experiments (203,212,228,363,364). Through comparative microscopy 

techniques, we demonstrated that the PAS+ tachyzoite glucan is not visible by 

TEM, but that it is recognized by an anti-glycogen antibody, IV58B6. We then 

verified that this tachyzoite glucan co-localizes with TgLaforin. Loss of TgLaforin 

did not appear to result in aberrant glucan morphology in tachyzoites as was 

expected, but it did result in tachyzoite dependence on glutamine. Further, loss of 

TgLaforin resulted in parasites with decreased virulence in mice and defective cyst 

formation with regard to glucan content, size, and bradyzoite packing density 

(Chapter 5).  

 In summary, this work builds upon recent work that recognizes the importance 

of glucan turnover in tachyzoites through the contribution of glucan turnover to 

central carbon metabolism, and its influence in acute virulence and cyst formation 

in mice. Together with the identification of an inhibitor to TgLaforin, the entirety of 

this work has characterized a valuable therapeutic target in the process of 

reversible glucan phosphorylation in T. gondii. Such a target is unique in that it has 

the potential to reduce the efficiency of reactivation, as T. gondii cysts lacking 

TgLaforin appear to be less virulent than their wildtype counterparts.  
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6.2 Discussion 
 

6.2.1 The role of reversible glucan phosphorylation in tachyzoites 
 

 Our study supports the hypothesis that the glucan in T. gondii tachyzoites plays 

a crucial role in providing glucose for central carbon metabolism, as loss of 

TgLaforin, and thus loss of functioning reversible glucan phosphorylation and 

turnover, in tachyzoites appears to necessitate glutaminolysis and 

gluconeogenesis to make up for a glucose defect.  

 The mechanism potentially underlying this hypothesis is explained by recent 

discoveries in T. gondii and other systems. In T. gondii, the metabolic alterations 

seen in the starch synthase (TgSS) knockout are highly suggestive that AGs play 

a role in glucose allocation, as loss of TgSS resulted in a decreased flux of glucose 

through glycolysis (203). In other systems, such a function has been attributed to 

mammalian glycogen as it has been demonstrated that the majority of glycolytic 

intermediates in mammals are provided by glycogen, and not directly by circulating 

glucose (365). This suggests that glucose storage precedes utilization and thus 

implies a degree of metabolic compartmentalization and buffering against 

fluctuating glucose levels (365). Such a model is consistent with a recent study 

performed in Leishmania parasites that demonstrated mannogen, the Leishmania 

carbohydrate reserve, is constantly cycled in the amastigote life stage, acting as a 

proposed “metabolic rheostat” to buffer metabolic flux (313). A similar function of 

AGs is supported by continuous incorporation of glucose into and breakdown of 

AGs in WT parasites (228,312). In fact, the term “futile metabolic cycling” was 

applied to T. gondii metabolism in light of the discovery that both glycolytic and 

gluconeogenic enzymes are co-expressed and constitutively active in tachyzoites 

(Figure 1.7). This is hypothesized to allow maximum metabolic flexibility and 

steady levels of hexose phosphates at all times (209). Continuous storage and 

liberation of glucose into and out of AGs may serve a similar function.  

 Loss of TgLaforin might be enough to disrupt the efficiency of this cycle in 

providing needed glucose without completely halting it, explaining the lack of 

glucan overaccumulation. Such a model would involve continuous storage and 

degradation of glucose into and out of AGs under normal conditions, akin to the 

charging and discharging of a battery (Figure 6.1a). Glucose liberated from AGs 

would then be utilized for glycolysis, the TCA cycle, the pentose phosphate 

pathway, and in providing substrates for glycosylation. In the absence of reversible 

glucan phosphorylation, the liberation of glucose from AGs might be significantly 

slowed such that glutaminolysis and gluconeogenesis are needed to provide 

carbon to fuel central carbon reactions, and possibly carbon for the creation of 

glucose needed to make AGs, as this possibility has also been previously 

demonstrated (Figure 6.1b) (235). Without glutamine, however, the glucose 

liberated from AGs in the context of a TgLaforin knockout might not be enough to 
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sustain the rapidly dividing tachyzoite, explaining why glutamine imposes such a 

strong penalty in the absence of TgLaforin (Figure 6.1c).  

 This mechanism does not explain why other disruptions of glucan/glucose 

metabolism do not also result in a complete glutamine dependence. Recently, our 

understanding of glycogen’s role in metabolism has changed to include functions 

beyond energy storage, as there is now evidence that glycogen may provide 

substrates for epigenetic modifications in the nucleus (282) and for protein 

glycosylation (154). An impairment in glucan access might also extend beyond 

glucose deprivation, as very recent studies demonstrated glycogen in humans is 

not entirely composed of glucose (154). Glycogen is comprised of 25% 

glucosamine in neurons. Loss of laforin in humans was shown to result in N-linked 

protein glycosylation defects, and this was due to sequestration of glucosamine 

into glycogen that could not be liberated efficiently without HsLaforin. Therefore, 

the distinct mechanism underlying the TgLaf parasite’s inability to survive in the 

absence of glutamine may indeed be a result of hindered access to glucose, but 

potentially glucosamine as well. Under such a mechanism, glutamine would play 

two roles in TgLaf parasites that it would not necessarily be playing in the GT1 

or HK parasites: 1) providing a carbon skeleton to operate the TCA cycle and 

gluconeogenesis in the absence of efficient glucan turnover, and 2) providing an 

amino group for the formation of glucosamine that may be sequestered away.  

 Alternatively, it was recently demonstrated that glutamine deprivation resulted 

in the downregulation of the arginine transporter TgApiAT1 (366), indicating that a 

lack of glutamine may initiate a generalized starvation response in T. gondii. Under 

such conditions, TgLaf parasites would not have easy access to internal energy 

stores as their WT counterparts might, providing another possible mechanism that 

explains this phenotype.  

 

6.2.2 The role of reversible glucan phosphorylation in stage conversion 
 

 Strikingly, and somewhat unexpectedly, we discovered that TgLaforin 

expression decreases during the tachyzoite to bradyzoite conversion in vitro even 

though its transcript levels do not change (Figure 5.4a-b). Moreover, a previous 

study indicates the possibility that transcript levels of TgGWD increase during the 

course of differentiation (40). During differentiation, both in vitro and in vivo, the 

appearance of crystalline AGs is also observed, raising the possibility that 

expression levels of these two enzymes relative to one another may contribute to 

the crystallinity of the T. gondii glucan. Loss of glucan phosphatases, and thus 

increased glucan phosphate content, results in enlarged granule morphology in 

plants (137), and the precipitation of glycogen into amylopectin-like Lafora bodies 

in animals (186). The programmed downregulation of TgLaforin and upregulation 

of TgGWD in T. gondii might result in the fine-tuned precipitation of the tachyzoite 

glucan into the bradyzoite AG. As such, T. gondii might provide a system in which 

to explore the interplay of these two enzymes and their contributions to crystallinity 
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through their controlled expression, and the controlled phosphorylation of glucans. 

Moreover, expression levels of branching and debranching enzymes, the two 

enzymes that have the biggest impact on glycogen and starch crystallinity in other 

systems (166), have not been explored during stage conversion in T. gondii. 

Because the enzymology related T. gondii starch synthesis and degradation is 

relatively simple compared to plants and green algae (199), the interplay of these 

limited number of enzymes could be more easily untangled and provide models 

for more complex systems in plants.  

 

6.2.3 The role of reversible glucan phosphorylation in bradyzoites 
 

 In bradyzoites, the proposed roles of AGs traditionally been rooted in inferred, 

albeit reasonable, observations. AGs are believed to serve bradyzoites in 

persistence, reactivation, and transmission; essentially, they function as glucose-

storage molecules to be used in situations of uncertainty such as the digestive 

system of a new host or in weathering nutrient fluctuations in the brain. These roles 

are attributed to AGs for a number of reasons, one being that such storage 

molecules are used in plants and algae for survival when photosynthesis is not 

possible (144). Further support of their role comes from the observations that the 

only life stages of T. gondii that accumulate large, visible AGs are those that are 

responsible for transmission, and that encounter the most challenging 

environments: the bradyzoite and the sporozoite (134,367). Indeed, in Eimeria, it 

was shown that the levels of amylopectin in sporozoites was directly correlated 

with their ability to invade chicken cells in cell culture (368), lending further 

legitimacy to this assumption in T. gondii. Some direct evidence has been provided 

for these assumptions as well—a study from Stanislas Tomavo’s lab provided an 

undocumented observation that bradyzoites in cell culture lose their AGs upon 

conversion to tachyzoites (196), and the recent knockout of TgSS demonstrated 

that bradyzoite conversion to tachyzoites was significantly reduced compared to 

its WT counterpart (203). In light of the discovery that bradyzoites undergo cyclical 

bursts of replication (55), it has been suggested that AGs serve as a marker for 

replication potential and fuel these events as well (101,369). Toward an 

understanding of this relationship, software for the analysis of AGs, replication, and 

mitochondrial activity has recently been developed to untangle the relationships 

among these three physiological parameters (337). 

 The role of TgLaforin in the context AG metabolism in bradyzoites is, therefore, 

possibly more straightforward than its role in tachyzoites. Loss of TgLaforin results 

in bradyzoites with a “starch-excess” phenotype as has now been observed in 

plants, animals, and red algae (174,187,207). Moreover, this phenotype is 

progressive, as in vitro TgLaf bradyzoites (day 6) display a milder defect in 

overaccumulation of AGs than in vivo bradyzoites (>day 6). However, by the time 

mature tissue cysts have formed in mice, many TgLaf bradyzoites appear dead. 

Interestingly, TgLaf bradyzoites are capable of reinfecting new mice when 
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injected IP. It should noted, however, IP injection allows for the bypassing of the 

stomach where cysts usually initiate infections in new hosts, and thus does not 

provide any insight into whether or not these parasites would be able to survive an 

oral route of infection, or if they could reactivate in the context of the immune 

system.  

 

6.2.4 Limitations and future directions of these studies  

 

 While AG turnover in T. gondii was partially characterized through the lens of 

reversible phosphorylation in these studies, several limitations prevented a full 

mechanistic understanding of TgLaforin’s role in T. gondii. Primarily, purification of 

the T. gondii glucan from tachyzoites or bradyzoites was unsuccessful, most likely 

due to attempted purifications from an insufficient quantity of parasites. Because 

T. gondii is an obligate, intracellular pathogen, extensive washing and filtration of 

parasites is required to rid them of host material, such as host glycogen that could 

easily confound parasite glucan analysis. Extensive washing and filtering results 

in the loss of at up to 95% of parasites over the course of purification (370). 

Therefore, we were unable to directly characterize relevant properties of the glucan 

such as phosphorylation status, chain length, and crystallinity in both WT and 

TgLaf parasites. With regard to metabolomics, we were unable to visualize 

glycolysis using GCMS analysis, and we have not yet performed stable isotope 

tracing of glucose or glutamine. Therefore, while we speculate that glutaminolysis 

is being upregulated in TgLaf parasites due to the inaccessibility of a 

hyperphosphorylated glucan, we have yet to complete the studies that would prove 

this.  

 Toward understanding TgLaforin’s role in tachyzoites, we have also not yet 

identified what precisely results in the inability of TgLaf tachyzoites to form 

plaques in the absence of glutamine. While we have explored replication and 

egress, neither of these components of the lytic cycle seem to be affected in the 

simultaneous absence of both TgLaforin and glutamine. The fact that TgLaf 

parasites were identified and counted in replication assays with the same ease as 

WT parasites argues against a significant invasion defect. In replication assays 

performed in this study, parasites were pre-starved of glutamine and then 

subsequently forced to reinvade host cell monolayers and divide for 24 hours 

before counting. Therefore, the defect in TgLaf growth under glutamine depleted 

conditions likely lies in either a natural egress defect, as opposed to the stimulated 

egress assays we utilized, or in a progressive decline in overall parasite fitness 

during the course of glutamine starvation that is not specific to any portion of the 

lytic cycle.  

 Finally, restoration of TgLaforin into TgLaf parasites did not result in a perfect 

complementation, despite its having been restored under its native promoter to 

near identical expression levels found in WT parasites (Figure 5.8e). Importantly, 

complementation did restore the ability of the parasite to grow in the absence of 
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glutamine, tachyzoite virulence in mice, and its ability to form normal cysts from 

tachyzoite infection. However, in cyst re-infection studies, complementation did not 

rescue the number cysts formed in the TgLaf line. This suggests that the lower 

cyst burden from reinfection is either unrelated to TgLaforin and possibly the result 

of an off-target effect of CRISPR/Cas9, or that loss of TgLaforin resulted in 

metabolically re-programmed parasites that could not be completely returned to 

WT levels. To further explore these possibilities, conditional knockdown of 

TgLaforin could address if the lower cyst burden during re-infection with cysts is 

specific to TgLaf parasites or the result of some other mechanism. Recently, an 

auxin-inducible degron (AID) system has been adapted to T. gondii. AID 

knockdown of AID-tagged proteins relies on indole-3-acetic acid (IAA) treatment 

that can be safely administered to mice to maintain the knockdown (9).  

 These studies also present the opportunity for future directions in 

understanding basic glucan metabolism in T. gondii. So far, the glucan within 

tachyzoites has not been biochemically characterized under unstressed 

conditions. Moreover, it has not been characterized throughout the tachyzoite lytic 

cycle. Future studies could address whether the glucan is utilized during energy 

intensive processes such as invasion, replication, egress, or motility. Correlations 

between glucan levels and the parasite’s progress through each of these events 

could be easily monitored in conjunction with well-established assays used in 

evaluating each of the components of the lytic cycle. We demonstrated the 

disappearance of IV58B6 staining during bradyzoite differentiation (Figure 5.2) as 

a mature cyst wall develops. Future studies can also examine the reasons for this 

disappearance. For example, does IV58B6 staining disappear because the 

fundamental properties of the tachyzoite glucan shift toward amylopectin-like 

crystallinity? Or does IV58B6 staining disappear because the tachyzoite glucan is 

completely degraded while the bradyzoite AGs are synthesized de novo? 

Experiments exploring the staining patterns over the course of differentiation in 

conjunction with determining the biochemical characteristics of the parasite’s 

glucan over the course of differentiation could begin answering these questions.  

 HsLaforin and the role of phosphate in glycogen have often been the subject 

of debate as it has been difficult to separate the importance of its catalytic 

phosphatase activity from its scaffolding roles in bringing other degradation 

machinery to glycogen (189). Thus, future work could include investigating the 

nuanced functions of TgLaforin through a dissection of the relevance of its catalytic 

activity versus its scaffolding activity by mutating TgLaforin’s catalytic cysteine in 

vivo, or attempting complementation of the TgLaf parasites with catalytically 

inactive versions of the protein. Notably, TgLaforin’s CBM domain contains large 

unstructured inserts (Chapter 3). While the role of these inserts is unclear, it is 

possible that these intrinsically disordered regions (IDRs) in TgLaforin might play 

a role in protein-protein interactions. IDRs are unusually abundant in parasitic 

protozoa (308) and have been speculated to be crucial in protein-protein 

interactions in Plasmodium (307). Therefore, further work could characterize 



 
 

147 

TgLaforin’s interacting partners. Toward this end, we collaborated with Hybrigenics 

Services (Paris, France) to conduct a yeast-two-hybrid screen utilizing TgLaforin 

fused to both an N-terminal LexA and Gal4 DNA-binding domain as bait against a 

fragment-based library of the T. gondii proteome (Table 6.1) and discovered 

several putative interacting partners related to glucan metabolism including 

debranching enzyme, CDPK2, and TgGWD. Of note, the LexA fusion screen 

indicated the possibility that TgLaforin interacts with BFD1, a transcription factor 

recently identified as being both necessary and sufficient for bradyzoite 

differentiation (107). However, the confidence in this interaction was low. Further 

immunoprecipitation experiments with the TgLaforin-HA epitope-tagged line that 

we generated could determine which of these interactions are relevant in vivo.  

 

6.3 Conclusion 
 

 From its initial discovery (1,2), T. gondii was initially mis-identified as 

Leishmania in both labs that first found it (371). Since then, T. gondii has not 

ceased in its ability to surprise and confuse scientists. Such attributes are 

especially evident in its glucan biology, which itself has provided surprising insights 

into the evolutionary history of T. gondii.  

 Herein, we build on the recent surprise that glucan biology is relevant in T. 

gondii tachyzoites and provide evidence that the tachyzoite glucan may have 

glycogen-like properties that distinguish it from AGs in bradyzoites. We then 

demonstrated that TgLaforin colocalizes with this glucan in tachyzoites but is likely 

downregulated in bradyzoites coinciding with the appearance of crystalline AGs. 

We also characterized the enzymology TgLaforin alongside TgGWD. We 

demonstrated that TgLaforin contains an incredibly unique CBM20 domain that is 

split by flexible linkers that possibly allow for protein-protein interactions and 

provide evidence that the enzymatic activity of TgLaforin can be selectively 

inhibited. Analysis of a TgLaforin knockout in vivo suggested the value in such an 

inhibitor as we further built on recent discoveries suggesting that the tachyzoite 

glucan might also behave like animal glycogen in its potential metabolic buffering 

capacity. Critically, through loss of TgLaforin, we saw that reversible glucan 

phosphorylation, and thus glucan degradation, play a critical role in T. gondii’s 

ability to survive nutrient scarcity, establishment of virulence in mice, formation of 

proper AGs in bradyzoites.  

 In summary, this work has contributed not only to our knowledge of T. gondii 

biology, but to more general themes of glucan solubility versus crystallinity, the 

diversity of CBM organizations, and diversity of DSP domain active sites. Future 

work should seek to exploit these unique traits in TgLaforin to further home in on 

more effective T. gondii therapeutics.   

  



 
 

148 

Table 6.1 Yeast-two hybrid screen to identify TgLaforin interacting proteins. 
Yeast two hybrid screen using TgLaforin as bait. Table lists prey interacting 

domains, indicating the amino acid residues of prey and which domain prey falls 

into, along with the name and accession number of the protein. PBS = protein 

biological score, an indicator of confidence in the interaction, proceeding from 

highest (A) to lowest (E).  

Fusion 

construct 

ToxoDB 

Accession # Protein name 

Interaction 

domain [AA# 

(Pfam ID)] PBS 

Gal4 

TGME49_226910 
Debranching 

enzyme 

857-1039 

(CBM48) 
B 

TGME49_225490 CDPK2 1-118 (CBM20) B  

TGME49_206640 
Hypothetical 

protein 
630-993  B 

TGME49_223985 

Serine/threonine 

protein 

phosphatase 

1538-1785 

(CBM48) 
B 

TGME49_254140 
RNA polymerase 

II 

20-52 (subunit 

CX) 
C 

TGME49_268960 AMPK -subunit 80-192 (CBM48) D 

TGME49_214260 TgGWD 1-324 (CBM45) D 

TGME49_229260 
Hypothetical 

protein 
1668-2268 D 

TGME49_215520 
Hypothetical 

protein 
145-315 E 

LexA TGME49_200385 BFD1 2562-4092 E 
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Figure 6.1 Proposed mechanism underlying TgLaf tachyzoite dependence 
on glutamine. 
A, Unperturbed conditions in which reversible glucan phosphorylation allows for 

efficient glucan degradation in tachyzoites. Glucose and glutamine usage is 

balanced as seen in Figure 1.7. B, Loss of TgLaforin results in upregulation of 

glutaminolysis due to loss of glucan breakdown efficiency. Glutamine-derived 

carbon fuels the entire TCA cycle and provides glycolytic intermediates through 

gluconeogenesis. C, Removal of glutamine from TgLaf parasites removes the 

only carbon source, resulting in the complete loss of central carbon metabolism. 
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