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by SHR, which was confirmed by Q-RT PCR (Figure A.7). By contrast, in the 
whole root samples from Atdjc17, trichoblast and atrichoblast specific expressed 
transcripts (atrichoblast (WER, GL2, CPC); trichoblast (EGL3, GL3,)) both 
displayed increased abundance relative to WT. Considering the mixed identity 
among epidermal cell files observed as H-cell-fate irregularities, the observed 
increased transcript abundance among these cell type specific transcripts was 
not unexpected, but does not conclusively suggest any single element as 
responsive. Alternatively, Q-RT PCR on whole root samples might not be a 
sensitive method to uncover differences in cell type specific transcript levels. Cell 
type specific Q-RT PCR on Atdjc17 may provide better understanding of the 
differences in gene expression for epidermal patterning specific genes.  

Intriguingly, expression levels of JKD and MGP, were not differentially 
expressed in Atdjc17 further suggests that AtDjC17 functions independently of 
these factors. These data did not support our hypothesis of transcriptional 
linkage to the zinc finger proteins JKD and MGP but did identify transcriptional 
association to SCR/SHR. Given its critical requirement for root development, it is 
indeed plausible that molecular chaperone function for SHR would be important 
to safeguard the root developmental program. Taken together, JKD null 
mutations cause ectopic periclinal divisions in the cortical and endodermal layer 
but also an ectopic root hair development in a non-cell autonomous fashion 
(Hassan et al., 2010; Welch et al., 2007). Hence, while the localization of 
AtDjC17 expression to stele cells partially overlapped with SHR the phenotype of 
Atdjc17 more closely resembled jkd, although with a far less severe impact on 
cell division and whole plant morphogenic phenotypes. The position dependence 
needed to acquire H-cell versus N-cell fate in epidermal cells (Dolan, 2006) is 
such that ectopic divisions within the cortical cells observed in transverse cross 
sections of the Atdjc17 root could explain the corresponding irregular pattern of 
H-cell emergence (Figure A.2). Further studies are needed to assign 
biochemical association between possible targets of the AtDjC17 co-chaperone, 
in addition to isolation of the anticipated cognate HSP70. Although many genes 
have been identified in root development (Guimil and Dunand, 2006) no prior 
evidence supports a requirement for a DNAJ-HSP40 for epidermal cell fate 
determination, and results from Atdjc17 raise the intriguing possibility of a HSP 
complex playing a chaperone role in root development.  

A.4 Material and Methods 

Plant material and Growth conditions 

Arabidopsis thaliana (L.) Heynh (Arabidopsis) ecotype Colombia-0 was used in 
all experiments. The T-DNA insertional alleles [At5g23240, germplasm 
SALK_008678 (Atdjc17-1-1) and SALK_024726C (Atdjc17-1-2)] were obtained 
from the Arabidopsis Biological Resource Center (ABRC, Ohio State University). 
Seeds were surface sterilized and vernalized at 4°C for 2 days in the darkness 
prior to plating them on ½ strength Murashige and Skoog (MS) basal salts 
medium (pH 5.7) (Duchefa, Holland) solidified with 0.8% agar. Seeds were 
germinated under 16 h light; 8 h darkness conditions at a constant temperature 

http://www.arabidopsis.org/servlets/TairObject?type=polyallele&id=12512
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of 22°C. Seeds were plated as above described and plates were vertically 
positioned and incubated in dark grown (22°C) condition. The phenotypes of 
Atdjc17-1-1 and Atdjc17-1-2 were compared to that of WT during plant growth 
and development. Plants were grown in MetroMix 360 (SunGro Horticulture) in a 
temperature controlled environmental chamber (22°C)(Adaptis, Conviron). 

Genotyping of the mutant lines 

Homozygosity of the knockout lines Atdjc17-1-1/Atdjc17-1-2 was verified by 
polymerase chain reaction (PCR)-based genotyping, primers sequences are 
given in Table A.1. Total plant DNA was extracted as previously described 
(Rogers and Benedich, 1985). For PCR purposes the DNA concentration was 
standardized to 100 ng μl-1 in Tris pH 8.0 (10 mM).  

Microscopy 

Imaging and quantitation of seedling phenotype employed fluorescence 
stereomicroscopy (Olympus MVX) and ImageJ (National Institute of Health, 
Bethesda, MD). Statistical analysis comparing Atdjc17 and WT plants used 
PRISM4 (Graphpad, La Jolla, CA) and Minitab (Minitab Inc., USA). Seedling 
phenotypes, including root hair and epidermal patterning defects were examined 
consistently at 7-d post-germination. Seedlings were grown vertically in ½ 
strength MS agar. Root hair length measurements were averaged across the 
entire root. To examine the pattern of epidermal development in a uniform spatial 
region of the root we documented cell area in the region covering 0.65 mm of 
root, initiating approximately 2 mm above the root cap. Average cell length and 
area determinations for each trichoblast/atrichoblast cell used area measurement 
output after tracing the polygon via the freehand selection tool (ImageJ) and 
pixel-number2 converted to μm2. Due to the 3-dimentional nature of the root 
structure only those root hairs visible in the optical plane were counted. 
Transverse root sections were made as described (Hung et. al., 1998) whereby 
roots were embedded in 3% molten agarose and hand sectioned using double-
edged razor blade. The sections were stained with calcofluor-white (Sigma, USA) 
stain and visualized under fluorescence stereomicroscope (Olympus MVX; DAPI 
filter). For β-glucuronidase (GUS) histochemical assay, staining solution was 
prepared according to (Guivarc’h et al., 1996). The seedlings were cleared, 
sectioned as above and counter stained with 0.05% Ruthenium red according to 
(Hassan et al., 2010) before visualization.  Propidium iodide staining was 
performed as described in (Nawy et al., 2005). Accordingly 7-d post-germination 
seedlings were stained with 10 mgL-1 propidium iodide for 30 seconds to 2 
minutes, rinsed and mounted on water. Microscopy was performed on an 
Olympus FV1000 laser scanning confocal microscope using a 63 × N.A 1.4 
water-immersion objective. The microscope is equipped with lasers for excitation 
wavelengths ranging from 405–633 nm and propidium iodide stain was excited 
using the DsRed setting in the Olympus Fluoview software (Olympus). All image 
processing was performed by using Olympus Fluoview software (Olympus) and 
ImageJ (W. Rasband, National Institutes of Health, Bethesda, MD) software. 
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Construction of reporter and overexpression lines. Selection and 
expression analysis of transgenic lines  

The AtDjC17 transcript accumulation was assayed by fusing the AtDjC17 
promoter to the GUS (Jeffereson et al., 1987) reporter gene through a 
promoter::uidA fusion construct. A 1.5 Kb putative promoter region was PCR-
amplified with the specific primers ATDJC17P-F/ ATDJC17P-R (Table A.1) and 
the PCR amplified product was cloned into pCXPGUS ZeBaTA vectors (Chen et 
al., 2009). For overexpression studies, the open reading frame was PCR 
amplified from genomic DNA using primers ATDJC17G-F/ATDJC17G-R and the 
amplicon (1.45 Kb) was cloned into the pCXSN vector (Chen et al., 2009) under 
the constitutive expression of the Cauliflower mosaic virus (CaMV)-35S promoter 
(35S). Sequence verified clones were transformed by electroporation into 
Agrobacterium tumefaciens hypervirulent strain GVS3101. Arabidopsis plants 
were transformed (Clough and Bent, 1998) and homozygous alleles selected 
using the selectable marker hygromycin (25 μg/ml, Duchefa). Homozygous T3 
plants from independent transformants were used in subsequent studies.  T-DNA 
lines were complemented by restoring AtDjC17 under the control of the native 
promoter. The native promoter was PCR amplified and cloned within KpnI and 
HindIII sites of the pMDC32 vector replacing the 2X35S promoter. The full length 
AtDjC17 cDNA was cloned within the AscI and PacI sites completing the fusion 
cassette. For complementation, T-DNA lines were floral dipped and selected for 
hygromcyn resistance. T2/T3 generations were used for phenothypical 
characterization.  

Gene expression studies  

Sterilized Atdjc17 and WT seed were germinated and grown vertically on ½ 
strength MS agar plates in 16:8 light:dark conditions for 7-d. Root was rapidly 
excised from batches of approximately 200 seedlings using a surgical blade in 
aseptic conditions and snap frozen in liquid nitrogen. Total RNA was extracted 
using QIAGEN RNAeasy Plant mini kit and treated with DNAse I (Fermentas, 
LifeSciences) according to the manufacturer’s instructions. Up to 2 g of the 
extracted total RNA was used for single stranded cDNA synthesis using High 
capacity cDNA reverse transcription kit (Applied Biosystems). The final volume 
was diluted 4-fold and 2 μl of the synthesized cDNA (100 ng) was used in the 
subsequent RT-PCR reactions. Quantitative real time PCR was conducted using 
Fast SYBR Green Mastermix (Applied Biosystems) or HOTFIREPOL 
EvAGreen mastermix (OAK Biotechnologies LLC, USA) with StepOne Real-
Time PCR system (Applied Biosystems). For the RT-PCR reaction the following 
conditions were used: 1 cycle of initial denaturation at 95C for 10 or 15 minutes 
accordingly to the master mix employed, followed by 40 cycles of denaturation at 
95C for 15 seconds and annealing/extension at 60C for 30 seconds; followed 
by melting curve analysis. Actin 2 was used as internal control (Table A.1), with 
3-pooled biological replicates and 3 technical replicates. Primers for RT-PCR 
where possible were taken from referenced sources or designed using PRIMER3 
(http://www.embnet.sk/cgi-bin/primer3_www.cgi)(Table A.1). 

http://www.embnet.sk/cgi-bin/primer3_www.cgi
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Table A.1: List of primers employed for genotyping, cloning and for Real 
Time-PCR 

Name Function Sequence Ref. 

Genotyping 

Atdjc17-1-1-LP  5’-TATTGATTCCGTCGCCAATAC-3’  

Atdjc17-1-1-RP  5’-AATGATGGCCATATCATGACC-3’  

Atdjc17-1-2-LP  5’-GAGTCTATCGCAATCGACGAG-3’  

Atdjc17-1-2-RP  5’-TTACTGGAGTCCATCAAACGC-3’  

LBb1-3  5’-ATTTTGCCGATTTCGGAAC-3’  

Promoter and Gene Cloning 

ProAtdjc17-F  5’-GGTAGTGGTGATGAGATAGTAG-3’  

ProAtdjc17-R  5’-ATTTTCCCCTTCTCTGTTTTGGAA-
3’ 

 

Atdjc17-F  5’-
AGCTGTTCAACACAAGCTAGAAGA-3’ 

 

Atdjc17-R  5’-
AATGTTCTTTGTTACATTTGCAGGT-3’ 

 

 RT-PCR   

SCM-F  5’-ACATCGATGCGTTGACAAGA-3’  

SCM-R  5’-TATCGGCGGTCTAAATCCTG-3’  

SCR-F  5’-CAGTTGATGGAGCCAAATCC-3’  

SCR-R  5’-AACTGCCTCTCCTTTCCACA-3’  

WER-F  5’-TGTCAAAGCTCATGGCAAAG-3’  

WER-R  5’-ATCCTCTTCTTGCTCGGTGA-3’  

CPC-F  5’-TTGGCGACAGGTGGGAGTTGAT-3’  

CPC-R  5’-AACGACGCCGTGTTTCATAAG-3’  

GL3-F 
 5’-

ACATTGGTGAAGGAATGCCTGGAC-3’ 
1 

GL3-R 
 5’-

TTACTATCCGCCGTATGAGCGTTG-3’ 
1 
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Table A.1 Continued   

EGL3-F  5’-TGAAACCGCCGATAGCAAAG-3’ 1 

EGL3-R  5’-CTCCAAGAAACGGGAAGCAA-3’ 1 

TTG1-F  5’-GCGATTTCCTCCGTCTTTGG-3’ 1 

TTG1-R 
 

5’-CGCTCGTTTTGCTGTTGTTG-3’ 
1 

TTG2-F 
 

5’-CCCCACAACTTTCTAAGCAAACA-3’ 
1 

TTG2-R 
 5’-TGCTTAGGAAGTTGTGAGTGAAG-

3’ 
1 

GL2-F 

 5’-
ATGAAGCTCGTCGGCATGAGTGGG-
3’ 

1 

GL2-R 
 5’-

TGGATTGCCACTGAGTTGCCTCTG-3’ 
1 

SRT-F  5’-GGTGTTTGGTCGATGGTACA-3’ 
 

SRT-R  5’-CTCAAAGCCCATCATCAACC-3’ 
 

MGP-F 
 

5’-GGTTCTTTGCTTCGTTTGGA-3’ 
 

MGP-R 
 

5’-CCGCATTCCCAATATCAACT-3’ 
 

JKD-F 
 

5’-TTGCTCCATTGGGTTGATTA-3’ 
 

JKD-R 
 

5’-CAACCTTTGTCCCCACATTC-3’ 
 

ACT2-F  5’-GGCTTAAAAAGCTGGGGTTT-3’ 
 

ACT2-R  5’-TTGTCACACACAAGTGCATCA-3’ 
 

1-Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, 
Sato S, Kato T, Tabata S, Okada K, Wada T (2007) Arabidopsis 
TRANSPARENT TESTA GLABRA2 Is Directly Regulated by R2R3 MYB 
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Transcription Factors and Is Involved in Regulation of GLABRA2 Transcription in 
Epidermal Differentiation. The Plant Cell Online 19: 2531-2543 
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Appendix B: Analyzing cellulose biosynthesis with confocal microscopy*  

*Published as a book chapter in: The Plant Cell Wall: Methods and Protocols 

Authors: Meera Nair and Seth DeBolt 

Methods in Molecular Biology Series (Series Editor: John Walker) 

Edition Editor: Zoë Popper 

B.1 Introduction  

Once a challenging technique with limited accessibility, confocal microscopy has 
rapidly evolved into a robust technique providing proteome level localization data 
with quantitative precision (Chalfie et al., 1994; Culter et al., 2000; Heazlewood 
et al., 2007; Moore and Murphy, 2009; Tian et al., 2004). The capacity to 
visualise your target protein relies on a fused autofluorescent protein (AFP), 
which excites when laser activated. Classic examples are green fluorescent 
protein (GFP) derived from the jellyfish Aqueora victoriae being fused to your 
plant protein of interest. Since the discovery of GFP 16 years ago (Chalfie et al., 
1994), numerous forms of AFP have been derived including blue fluorescent 
protein (BFP), cyan fluorescent protein (CFP), yellow fluorescent protein (YFP) 
and the mFruits collection (Shaner et al., 2004; Shaner et al., 2005; Zhang et al., 
2002). Monomeric version of photoswitchable or DRONPA (Habuchi et al., 2005) 
and photoactivatable GFP exist (Patterson and Lippincott-Schwartz, 2004). 
Designing an AFP expression fusion can therefore be a daunting task as there 
are many considerations including; which AFP, expression vectors, the choice of 
where to fuse your AFP, what promoter to use, and whether to use stable or 
transient expression of your chimeric protein fusion. Furthermore, Fluorescence 
Recovery After Photobleaching (FRAP; Bates et al., 2006), Fluorescence 
Resonance Energy Transfer (FRET; Hink et al., 2002) and bimolecular 
fluorescence complementation (BiFC; Bhat et al., 2006) could be considered 
during experimental design depending on your application. This chapter aims to 
provide researchers with a generalised introduction to the materials and methods 
needed for performing a live cell imaging analysis of proteins in the plant cell 
wall.  

Live cell imaging has been developed to explore the location of proteins that are 
fused to AFPs in living tissue by fluorescence microscopy.  These tools have 
been developed alongside sophisticated advances in microscopy, specifically 
laser assisted confocal microscopy that relies on precise spectral wavelengths 
produced by different lasers. The morphology and motility of the protein-AFP 
fusion can then be used to place a protein in a particular part of the cell with the 
main limitation being the resolution of the focal plane of the confocal microscope. 
Cell wall biosynthetic proteins have been localised to the plasma membrane, cell 
wall, the secretory system and the endomembrane system. The central focus of 
this chapter is on the progression for cloning the gene, sequence checking the 
gene, the myriad of factors involved in selecting a vector for C or N terminal AFP 
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fusion, selection of a promoter to drive the fusion protein and the binary vector 
system to introduce the AFP tagged gene into your plant either transiently or 
stably. Where possible, the numerous pitfalls that must be negotiated during 
protein localization experiments are highlighted. Once introduced into the 
transgenic plant, the AFP-fusion protein can be imaged and a brief overview of 
imaging systems and approaches to quantification has been provided.  

Vector selection 

Promoter 

The choice of promoter used to drive the target gene fused to an AFP in the 
transgenic plant must be made. The two main choices are the use of a native 
promoter (defined as 1–2 kb of upstream sequence from the target genes start 
codon), versus a Cauliflower mosaic virus (CaMV) 35S or double 35S 
constitutive promoter. If one is interested in studying a single protein and there is 
a requirement for the AFP fusion to function as closely as possible to the native 
protein with respect to localization, tissue-specificity, timing and level of 
expression, then it may be necessary to express the fusion in transgenic plants 
under control of the native promoter. Moreover, if ones protein of interest can be 
knocked out in a model organism, for instance in the model plant Arabidopsis, 
one can functionally complement the knockout allele with the AFP-fusion protein 
as a means to check that mutant phenotypes are restored to that of wild-type 
plants. This experiment infers functionality of the chimeric protein. At the other 
extreme, if there is a need to localise thousands of fusions in a relatively short 
period of time, then transient expression may be the most cost effective as would 
a high throughput approach with a constitutive promoter such as 35S using a 
Gateway® cloning (Invitrogen, Carlsbad, CA) system, using vectors such as 
pSITE (Goodin et al., 2007) or pMDC (Curtis and Grossniklaus, 2003).  

Some consider that expression under the control of native promoters will be 
always superior to that of employing constitutive promoters.  However, simply 
using the native promoter, or more often 1–2 kb of “upstream” sequence, ignores 
the fact that promoter/gene duplication may affect expression levels, as will 
genomic context since the AFP fusion is unlikely to be expressed from the same 
genetic locus as the native gene (Bhat et al., 2006).  It also appears to be a 
common belief that expression from 35S, or even double 35S, promoters 
necessarily results in accumulation of fusions proteins of the levels higher than 
native proteins.  However, all such results are highly dependent upon the protein 
under investigation.  Fusion of an AFP to a protein may stabilise it. In systems 
such as Arabidopsis, where it is straightforward to obtain T-DNA insertion alleles 
for your gene of interest (Alonso et al., 2003), single gene complementation by 
your AFP-fusion protein provides some confidence of correct functionality of your 
fusion protein in planta. 
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Where to fuse your AFP: Amino (N), Carboxy (C) or internal 

Where to fuse your AFP? Should one use an amino (N) or a carboxy (C) terminal 
fusion? While N or C terminal fusions are the most common, and easiest to 
construct, some proteins may not tolerate AFPs fused to a terminal end and it 
may be necessary to insert the AFP into an internal site. Moreover, if your target 
protein contains an N-terminal signal peptide it may result in mislocalisation if 
expressed as fusions to the C-termini of AFPs (Simpson et al., 2001). To 
overcome this, computational methods have been developed to predict the effect 
of an AFP on a particular fusion (Simpson et al., 2001). Most binary expression 
vector systems, sometimes referred to as destination vectors, have been 
developed to suite N- or C-terminal fusions (Chakrabarty et al., 2007; Earley et 
al., 2006; Tzfira et al., 2005). To head off any potential problems when testing an 
AFP fusion, both C and N terminal fusions can be made for preliminary studies 
using a transient expression system prior to stable transformation or detailed 
quantitative imaging analysis. When considering the vector system you aim to 
use a question is, whether the researcher will use a Gateway® cloning 
(Invitrogen, Carlsbad, CA) or non-gateway restriction enzyme based cloning such 
as pCAMBIA vectors (CAMBIA Corporation, Canberra, Australia)? Gateway® 
cloning technology can be particularly useful for both high throughput studies, as 
described above, and single protein studies due to its robust and accurate 
cloning and most of the current vector systems employ this technology. Both of 
these vector systems have C and N terminal AFP variants or versions with no 
AFP to allow the user to insert their AFP internally. For Gateway® cloning the 
pMDC and pSITE vector systems are good example and for restriction enzyme 
based the use of pCAMBIA is ideal for plant based expression. 

Choice of AFP  

The demonstration that the GFP (Chalfie et al., 1994) isolated from the jellyfish 
Aqueora victoriae, could be linked to proteins of interest in order to allow in vivo 
examination of protein localization and dynamics in real-time has transformed 
cell biology in a manner similar to the effect of the polymerase chain reaction on 
molecular biology. Numerous AFP spectral variants are available in colours such 
as red fluorescent protein (RFP) (Matz et al., 1999), YFP (Zhang et al., 2002) 
and now banana, orange, cherry, tomato and plum in the mFruits collection 
(Shaner et al., 2004). Recently, a novel monomeric red fluorescent protein, 
TagRFP, has been described (Merzlyak et al., 2007).  This protein is brighter and 
more resistant to photobleaching than mRFP and can be used in combination 
with GFP in FRET experiments. To this end, despite GFP being a popular AFP 
tag for creating fusion proteins, currently the most common FRET pair is CFP/ 
YFP. For the case study described herein, YFP was chosen to fuse to cellulose 
synthase (CESA) because this allowed for cyan fluorescent protein (CFP) to be 
fused to TUBULIN. Spectral properties of YFP and CFP allow their excitation and 
thus visualization in different channels allowing the simultaneous view of two 
fluorophors in a single plant cell (Paredez et al., 2006).  
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Transformation of your AFP fusion into a plant  

There is one main question for the choice of transformation for a live cell imaging 
experiment: are you going to use a stable transformation or a transient one? This 
decision is not a trivial one. In high throughput circumstances, creating stable 
transformations is time consuming and can be restrictive depending on 
laboratory resources. Therefore for proteome-scale projects transient assays are 
often preferred. Transient assay systems utilise agroinfiltration of your AFP 
fusion into Nicotiana benthamiana leaves.  This simple technique employs 
injecting an Agrobacterium (expressing your AFP fusion) solution directly into the 
underside of a leaf blade, inoculating for 2–3 days and then imaging the living 
leaf tissue. Alternatively, stable transformation in Arabidopsis thaliana utilises 
Agrobacterium mediated floral dipping methods (Clough and Bent, 1998) to 
introduce your AFP fusion into the genome as a T-DNA insertion. The advantage 
of stable transformation is the capacity to localise your target protein in numerous 
tissues and developmental stages. The presence of the AFP fusion protein in the 
plant can then be checked by western blot using antibodies against your chosen 
AFP (readily available from common suppliers such as Sigma-Aldrich, St Louis 
MO).  

B.2 Materials 

Polymerase chain reaction (PCR) to amplify gene of interest with promoter 
and subcloning into an entry vector 
1. Proof reading enzyme for amplification, Platinum®PfxDNA Polymerase, 

stored at -20ºC (Invitrogen, Carlsbad, CA).  
2. 5’ and 3’ primers specific for promoter and gene for CESA. 100 mM stock is 

diluted to 10 mM sub stock to be used as a working solution. These are 
stored at -20ºC.  (See Note 1).  

3. 10X Pfx Buffer 25 mM MgSO4, 100 mM dNTPs (Invitrogen Carlsbad, CA), 
stored at -20ºC (See Note 2). 

4. Template as genomic DNA (gDNA) (500 ng/μL−1), stored at -20ºC (See Note 
3). 

5. pENTR® dTOPO® vector system (Invitrogen, Carlsbad, CA), stored at -20ºC.  
 
Cloning of your gene of interest into a compatible destination vector to 
make AFP fusions and introducing this into the plant by Agrobacterium 
mediated transformation 
1. pSITE2NA destination vector (See Note 4 ), stored at -20°C. 
2. Gateway® cloning kits (Invitrogen, Carlsbad, CA) stored at -20°C. 
3. Agrobacterium competent cells, stored at -80°C (Invitrogen, Carlsbad, CA). 
 

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

1. Running buffer (5X): 125 mM Tris, 960 mM glycine, 0.5% (w/v) SDS. Store at 
room temperature. 

http://www.pnas.org/cgi/redirect-inline?ad=Invitrogen
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2. 2X SDS sample loading buffer: 100 mM Tris-Cl pH 6.8, 4% v/v SDS, 0.2% 
bromophenol blue, 20% w/v glycerol, stored at room temperature. 

3. Pre-stained molecular weight markers: Kaleidoscope markers (Bio-Rad, 
Hercules, CA). 

4. 0.5 M Tris-Cl buffer pH 8.  
5. 100 mM Phenylmethanesulfonyl fluoride (PMSF; Sigma Aldrich, St. Louis)) in 

isopropanol, stored at -20ºC. 
 

Western Blotting for YFP 

1. Setup buffer: 25 mM Tris (do not adjust pH), 190 mM glycine, 20% (v/v) 
methanol, stored at room temperature. 

2. Transfer buffer: Setup buffer with the added inclusion of 0.05% (w/v) SDS. 
Store in the transfer apparatus at room temperature (See Note 5). 

3. Supported nitrocellulose membrane from Millipore, Bedford, MA, and 3MM 
Chromatography paper from Whatman, Maidstone, UK (See Note 6). 

4. Tris-buffered saline with Tween (TBS-T): Prepare 10X stock solution 
containing 1.37 M NaCl; 27 mM KCl; 250 mM Tris-HCl, pH 7.4; 1% Tween-
20.  

5. Tris-buffered saline with Tween (TBS-T): Prepare 1X stock for use by diluting 
100 mL of 10X stock in 900 mL water.  

6. Blocking buffer: 5% (w/v) non-fat dry milk in TBS-T. 
7. Primary antibody dilution buffer: TBS-T supplemented with 2% (w/v) fraction 

bovine serum albumen (BSA). 
8. Anti-YFP monoclonal antibody (available from Sigma Aldrich, St Louis) stored 

at -20ºC (See Note 7). 
9. Secondary antibody: Anti-mouse IgG conjugated to horse radish peroxidase 

(available from Sigma Aldrich, St Louis) stored at -20ºC (See Note 7). 
10. Chemiluminescence detection kit (SuperSignal West Pico Chemiluminescent 

Substrate (Pierce Biotechnology, Rockford, IL) stored at 4ºC. 
11.  Detection using Bio-Rad ChemiDoc XRS+® (BioRad, Hercules, CA). 
 

Imaging analysis 
1. Cover slips 48 × 60, 24 × 60 (Menzel, Braunschweig Germany). 
2. Fine point tweezers #5 Dumont (Electron Microscopy Sciences, Hatfield, PA). 
3. Dow Corning High Vacuum Grease (Specialty Fluids Co, Valencia, CA). 
4. Sterile water.  
 

B.3 Methods 

Herein we describe a Gateway® cloning for tagging CESA to YFP and the 
use of confocal microscopy to visualise it in plants. Gateway-compatible binary 
vectors have greatly improved the cloning efficiency of AFP tagging projects 
(Curtis and Grossniklaus, 2003; Earley et al., 2006).  Briefly, Gateway® cloning 
uses the lambda phage site-specific recombination system in order to transfer 
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DNA fragments between plasmids containing compatible recombination sites 
(Walhout et al., 2000). What makes this strategy so attractive is that once DNA 
clones of interest are captured into an entry vector (pENTR/pDONR), they can be 
mobilised into a plethora of destination vectors that permit expression in bacteria, 
insects, yeasts, or plants but also allow for introducing the target gene into an 
AFP vector with RFP, YFP, CFP or GFP fluorophors. 

Numerous factors influence imaging for instance the cell type being 
imaged, whether your experiments is simply to determine the location of your 
target protein or whether you wish to track the dynamic behaviour of the your 
target protein by time lapse imaging. The best results have been obtained by 
localizing protein dynamics in upper regions of the hypocotyls of etiolated 
seedlings grown in a vertical position on Murashige-Skoog (MS) agar plates for 
2.5– 4 days at room temperature (22°C), mounted between cover slips in water 
and then imaged (Gutierrez et al., 2009; Paredez et al., 2006). 

 

Polymerase chain reaction (PCR) to amplify gene of interest and 
subcloning into an entry vector 

1. Independent amplification of the CESA and promoter or your gene of interest 
achieved using a PCR reaction composed of 1.5 pmol of each primer, 0.3 mM 
dNTPs, 1X Pfx Buffer, 1mM MgSO4 (See Note 8) and 1.25 units 
Platinum®PfxDNA Polymerase (Invitrogen, Carlsbad, CA), 1 μL of gDNA, 
made to 20 μL with deionised H2O (dH2O). The following thermocycler 
reaction times and temperature can be used, a 3-min heating at 95°C was 
followed by 32 cycles of 95°C (30 s) denaturation, 55°C (30 s) annealing temp 
(See Note 9), 1 min per kilobase product size extension times, and a final 
extension of 7 min. 

2. Gateway® cloning of the PCR product into an entry vector is then achieved 
based on manufacturer’s instructions (Invitrogen, Carlsbad, CA). 

 

Cloning of your gene of interest with promoter into a compatible 
destination vector to make AFP fusions and introducing this into the plant 
by Agrobacterium mediated transformation 
1. The CESA gene in entry vector can then be cloned in to a destination vector 

such as pSITE2N using the manufacturer’s manual for Gateway® cloning 
(Invitrogen, Carlsbad, CA). The double CAMV 35S promoter can be excised 
using compatible restriction enzymes and the amplified promoter region 
ligated into the vector by directional cloning. This creates an additional step in 
the cloning and will depend on whether you wish to examine localization of 
your target gene with a constitutive or native promoter. 

2. At this stage a sequence verified version of your target gene (See Note 10), 
for instance pSITE2NproCESA::CESA (See Note 11), can then be 
transformed into electro or chemically competent Agrobacterium tumefaciens 
cells according to manufacturer’s manual (Invitrogen, Carlsbad, CA).  
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3. Introducing the transgene into the plant should follow published protocols 
(Clough and Bent, 1998). (See Note 12). 

4. Selection of stable transformants in A. thaliana will be achieved by growing 
the T1 progeny on sterile 0.5 strength MS media supplemented with 50 
μg/mL−1 Kanamycin (Kan50). Plants able to grow on the Kan50 media are then 
transferred to soil and grown.  

 

SDS Page and Western Blotting for detection of YFP in Plant Tissue  

For simplicity this method assumes the use of Criterion cell and precast gels from 
BioRad® (Hercules, CA) as well as the BioRad Trans-Blot® Electrophoretic 
Transfer Cell®.  

1. Total protein from individual transformants is extracted by simply grinding 2–3 
leaves using liquid nitrogen in mortar and pestle and 300 μL 0.5 M Tris-Cl 
buffer with 0.1 mM final concentration PMSF. 1 volume 2X SDS loading buffer 
is added to 1 volume of total protein and boiled for 5 minutes. It is then 
carefully loaded into the well of the precast gel along with molecular weight 
markers and the gel is run for 1 h at 80 mA in the Criterion cell system 
(BioRad® Hercules, CA).  

2.  After protein separation by SDS-PAGE the samples are transferred to a 
nitrocellulose membrane according to the manufacturer’s instructions 
(assuming the use of a BioRad Trans-Blot® Electrophoretic Transfer Cell®) 
(See Note 6).  

3. The coloured molecular weight markers should be clearly visible on the 
membrane. Nitrocellulose membrane is carefully transferred in a solution of 
blocking buffer for 1 h at room temperature on a shaker.  

4. The nitrocellulose membrane is rinsed and then immersed in a solution of 
1:10,000 dilution of anti-YFP antibody in TBST/2% BSA for 1 h on a rocking 
platform (See Note 13).  

5. Washed three times for 5 min each with 50 mL TBS-T and then immerse in 
1:30,000-fold dilution of the secondary antibody as above. Wash again 3 
times for 10 min each with TBS-T. Then incubate in equal volumes of Pico-
West (total of 4 mL) (Pierce Biotechnology, Rockford, IL) solution for 1 min, 
seal in a plastic sleeve and examine chemilluminescent signal in the BioRad® 
GelDoc. Select transgenic plants that show the presence of YFP for confocal 
imaging (See Note 14).  

Preparation of plants for imaging 

1. Once stable transformants expressing YFP::CESA fusion are identified and 
transferred to soil, the plants are grown to obtain seeds from them.  

2. The seeds once ready are harvested in a newspaper piece and dried in a dry 
corner of the lab for 3 to 4 days. They are then sterilised using 30% bleach 
and 5% SDS for surface sterilisation. The seeds are washed thoroughly to 
remove sterilization solution using sterile water. It is then resuspended in 
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0.15% Agar and stored in dark at 4°C for vernalisation for 3 days (See Note 
15).  

3. A. thaliana seedlings are grown in dark for 2.5 days on 0.5 strength MS-agar 
plates at 22ºC. 

 
Imaging Analysis 

1. Single seedlings are gently removed from 0.5 strength MS-agar plates and 
mounted in an aqueous solution between a 48 × 60 and a 24 × 60 cover slip. 

2. The silicon vacuum grease is carefully applied to the perimeter of the 24 × 60 
cover slips to avoid any water loss or evaporation over the duration of 
imaging and essentially avoids compression of the epidermal cells of the 
tissue being imaged (See Note 16). 

3. For imaging YFP::CESA, a purpose built spinning disk confocal microscope 
using Leica X 63 N.A. = 1.4 oil immersion objective and Roper Cascade 512b 
EMCCD camera can be used (See Note 17).  

4. The confocal plane is focused then on the plasma membrane focal plane with 
an exposure of 600 ms for YFP::CESA (Figure D.1). A method to improve the 
signal to background noise ratio is to average multiple frames using the frame 
averaging feature in the imaging software being used. 

5. YFP is excited at 488 nm and data is collected through a 525.50 nm band 
pass filter (Chroma Technologies, Brattleboro, VT) (Paredez et al., 2006). The 
image can be acquired using image acquisition software and analyzed (See 
Note 18). 

4. To obtain multiple frames of a single cell to provide a time-lapse series (i.e. a 
movie), seek the time-lapse feature in the image acquisition software being 
used (See Note 18) (select the number of frames to be acquired and the 
amount of time between each frame) (See Note 19). 

 

B.4 Notes 

1. When the primers arrive dilute them to 100 mM concentration using TE (10 
nM Tris-Cl, 1 mM EDTA) buffer and make a 10 mM working solution for 
yourself.  

2. Each of the dNTPs is available as a 100 mM stock which can be combined as 
a 10 mM sub stock for your use. 

3. Here the cloning strategy calls for the amplification of cellulose synthesizing 
enzyme or CESA with the promoter thus genomic DNA needs to be used to 
include introns as well as exons and regulatory regions. Genomic DNA 
preparation can be done using the established protocols (Lukowitz et al., 
2000).  

4. pMDC and pSITE vectors can be requested from the authors (Curtis and 
Grossniklaus, 2003; Goodin et al., 2004).  

5. The transfer buffer should be cooled below room temperature before you 
begin to do the transfer. This can be done by cooling the buffer at 4ºC prior to 
doing western blots. 
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6. Nitrocellulose membranes should not be touched and should not be handled 
without using gloves. It would be best to use tweezers to handle the 
membrane at all times.  

7. Primary and secondary antibodies should be aliquoted into 200 μL aliquots 
and stored at -20ºC. When required a vial should be retrieved and used and 
the remaining can then be stored at 4ºC for multiple uses. This way the main 
stock will not be contaminated if there is a chance of doing so.   

8. MgSO4 levels can be optimised for your specific PCR reaction through a little 
research.  

9. The annealing temperatures have to be optimised for a specific pair of 
primers; usually a thumb rule of 1 degree less than the melting temperature 
for the primers is used.  

10. It is usually better to sequence your target gene for missense mutations at the 
DNA level that confer changes in the amino acid sequence of the target 
protein (Sequencing reactions such as BigDye® (Applied Biosystems, 
Carlsbad, CA) and nested primer design for sequencing are not covered in 
this chapter.  

11. Amplification for C-terminal fusions (for purpose of this chapter, this refers to 
the AFP fusion being fused to the C-terminal end of the target gene) remove 
the stop codon from the target gene in the 3’ primer.  For N-terminal fusions, 
the AFP is referred to as being fused to the N-terminus of the target gene. 

12. You can also do Agrobacterium infiltration into Nicotiana benthamiana 
(Goodin et al., 2007) for transient expression.  

13. An overnight addition of primary antibody can be done in 4ºC cooler with a 
rocking bottom or shaker. 

14. If no signal is obtained for YFP in transgenic plants in stable transformants (A. 
thaliana) check for YFP in all plant samples by PCR in gDNA; if positive 
select additional lines for protein analysis by western blotting in the next 
generation or if negative retransform and proceed from there.  

15. Seed sterilization should be done under the hood to minimise the chance of 
contamination. It is always worthwhile to use only less than half of your seed 
stock so that if a mistake is made in subsequent steps, there are always 
some transformant seeds available to begin again. 

16. For transient expression, a similar strategy is employed whereby a portion of 
the infiltrated N. benthamiana is physically removed from the leaf and 
mounted as described above.  

17. Numerous confocal microscope systems are available and are equally 
attractive for live cell imaging experiments. The leading companies and 
examples of their confocal systems as of January 2010 are Leica (Leica SP5 
AOBS Point Scanning Spectral Confocal Microscope), Olympus (Olympus 
Fluo View FV1000MPE, a multiphoton laser scanning microscope), 
Yokagawa (Yokogawa CSU-10 spinning disk confocal microscope) Zeiss 
780NLO Laser-Scanning Confocal Microscope. 

18. Softwares for imaging analysis: Metamorph - Molecular Devices (Sunnyvale, 
CA), which can be used for microscope automation and image acquisition. 
LAS Image Analysis optional software module developed by Leica 



 

128 

 

Microsystems (Bannockburn, IL) provides sequence control assisting 
acquiring, detecting, and measuring multiple image features. In addition to 
Leica, all major companies have similar systems (see local representative). 
ImageJ is a Freeware software program that has numerous features 
developed by a worldwide community of cell biologists to streamline 
quantitative analysis of confocal imaging results. In addition to the numerous 
image analysis tools built into ImageJ, there are Plugins for tracking position 
over time by Kymograph, reslicing of stacks, 3D reconstruction, time-
stamping, conversion of BioRad stacks to Quicktime format as well as most 
format conversion, 3D rendering and quantitation (ImageJ, National Institute 
of Health, Bethedsa, MD). 

19. The main pitfall for time-lapse image collection is drift (x, y or z drift). X and Y 
plane drift can be overcome fairly easily by allowing the drift to occur and then 
use the Stackreg algorithm ImageJ plugin (http://rsbweb.nih.gov/ij/plugins) 
after acquisition to correct for the drift (Figure B.1A compared to Figure 
B.1B). Z drift on the other hand cannot be corrected for and therefore 
requires manual adjustment during acquisition (Figure B.1C).      
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Figure B.1 Live cell imaging of cellulose synthase. A) Plasma membrane focal 
plane B) X and Y drift during time lapse image acquisition can reduce image 
quality and make it difficult to track protein dynamics C) Z drift during time lapse 
image acquisition can reduce image quality and distort protein dynamics 
analyses 
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Appendix C: UGT80B1 is enriched in detergent resistant membrane 
fraction. 

C.1 Introduction 

Whole genome microarray data and 2-dimension gel electrophoresis 
membrane proteomics in the ugt80B1 null background was compared with that of 
wild-type plants containing active UGT80B1 (Table 2.1, 2.2 and 5.2). These data 
demonstrated a metabolic fingerprint indicative of association with lipid rafts, 
such as previously documented signaling and hormone regulation, lipid 
membrane processes and trafficking (Borner et al. 2005; Grennan, 2007; 
Lefebvre et al. 2007; Mongrand et al. 2004; Simons and Toomre, 2000) This 
network of genes contained numerous known components of mammalian lipid 
rafts (Brown and London, 1998) and termed detergent resistant membranes 
(DRM) in plants (Bhat and Pastrunga, 2005; Grennan, 2007), a term derived due 
to their biochemical fractionation using detergent treatment under cold 
conditions; and confirmed our suspicion that altering glycosylation was capable 
of altering the membrane sterol balance and DRM processes. These data were 
also supported to several recent studies of DRM composition in Arabidopsis, 
Tobacco and Leek membranes, that all found SGs were enriched in DRM 
fractions (Laloi et al. 2007; Lefebvre et al. 2007; Mongrand et al. 2004). Given 
that lipid rafts, or DRM’s are formed through the cooperative interaction of 
proteins, sterols and sphingolipids (Lingwood and Simons, 2010) there is a 
conservative rationale that SGs are further diversifications of these membrane 
elements. This encouraged us to pursue a biochemical analysis of UGT80B1 to 
determine whether its localization was enriched in DRMs. 

C.2 Results 

Utilizing transgenic Arabidopsis plants expressing Pro35S:UGT80B1:GFP 
total membrane was extracted and biochemically fractionated using a 2-phase 
PEG-Dextran. This allowed for separation of plasma membrane from 
endomembrane and thylakoid membrane (Figure C.1). The purified plasma 
membrane was then loaded on to a sucrose gradient after treatment with 2% 
TRITON-X at 4°C and each fraction collected and run on a SDS-PAGE gel to 
allow proteins to separate based on size. Proteins were transferred to a 
nitrocellulose membrane and probed against an Anti-GFP monoclonal antibody 
revealing that the location of the UGT80B1::GFP fusion protein was in the DRM 
fraction. Fluorescence microscopy confirmed punctuate globules expressing 
UGT80B1:GFP (Figure C.1). Hence, both SG and the biosynthetic enzyme 
UGT80B1 are enriched in DRM fractions of the plasma membrane.  
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Figure C.1 Method used to detect UGT80B1:GFP in DRM fraction. Following 
the arrows from left to right, illustration shows the 2-phase PEG/Dextran with red 
circles representing PM fraction and green stars representing thylakoid 
membranes and other endomenranes. PM fraction was collected and treated 
with 2% Triton-X and loaded on a sucrose density gradient. After 
ultracentrifugation all fractions were collected and tested using western blot using 
Anti-GFP antibody. Visible band is seen corresponding to UGT80B1:GFP in 
documented DRM fraction from sucrose gradient. Fluorescence microscopy 
confirms the presence of UGT80B1:GFP labelled punctate in DRM fraction. 

C.3 Method for extraction of lipid raft 

50 mg 35S:UGT80B1:GFP seeds were started on half strength MS liquid culture 
and seedlings harvested after 13 days. Total membrane extraction was done 
according to Borner et al., (2005) and Lefebvre et al., (2007) with slight 
variations. The seedlings are homogenized using liquid nitrogen and further 
homogenized using 2ml extraction buffer containing 100mM Hepes-KOH, 10% 
(w/v) glycerol, 5 mM EDTA, 0.6% (w/v) PVP K-25, 5 mM ascorbic acid and 200 μl 
protease inhibitor cocktail (Sigma Aldrich, P9599). The extract was filtered 
through Mira Cloth to remove cell debries and further centrifuged for 5 minutes at 
5000g at 4⁰C (Beckman Coulter centrifuge with JA 20 rotor). The supernatant 
collected was then centrifuged at 100,000g for 50 minutes, 4⁰C (Beckman 
Coulter centrifuge with JA 30.50 rotor). The supernatant was discarded and the 
microsomal pellet was dissolved in minimum volume (200-500 μl) of buffer 
containing 5mM potassium  phosphate pH 7.8, 5mM KCL , 0.1 mM EDTA and 
protease inhibitor cocktail (Sigma Aldrich, P9599). Plasma membranes were 
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separated from the microsomal fraction using a two-phase system with a final 
weight of 4g containing 6.4% (w/w) Dextran, 6.4% PEG and 5mM KCl in a 10 ml 
pyrex tube and collecting the upper phase after centrifuging at 7000 rpm for 5 
min at 4⁰C (Beckman Coulter, JA 20 rotor). The upper phase was then diluted in 
excess or 3 times in buffer containing 50mM Tris-HCL pH 7.5, 3mM EDTA with 
protease inhibitor cocktail (Sigma Aldrich, P9599)  and treated with 2% Triton-X 
100 on ice for 30 min. The treated plasma membranes were then combined with 
cold 2.4M sucrose in TNE to a final concentration of 1.8M sucrose and was 
overlaid on discontinuous sucrose gradient from 1.6M to 0.15M sucrose and 
centrifuged at maximum speed (41000 rpm or 288,000g) for 18 hours in a 
swinging bucket rotor (SW 41 Beckman coulter). Four fraction of the sucrose 
gradient were collected and subjected to western blotting identify whether the 
desired protein separates in the predicted lipid raft fraction which is close to 
0.15M sucrose fraction, utilizing anti-GFP antibody and chemiluminescence. All 
the fractions were checked for GFP expression using fluorescence microscopy.   
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