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ABSTRACT OF DISSERTATION 

 

 

THE PERFORMANCE OF MARGINAL MODELING METHODS FOR RARE 

EVENTS WITH APPLICATION TO OPIOID OVERDOSE MORTALITY AND 

MORBIDITY 

 

Opioid misuse is a nationwide epidemic, with Kentucky having one of the highest 

opioid overdose-related fatality rates across all US states. These rates have increased 

significantly over the past decade, with particularly large increases during the COVID-19 

pandemic. This dissertation aims to study the behavior of these increases and the methods 

for the marginal modeling of count outcomes related to opioid overdose.  

Opioid overdose-related fatality rates in Kentucky increased significantly during 

the COVID-19 pandemic. In this chapter, we characterize the changes in opioid overdose 

fatality rates in Kentucky and identify associations between potential factors and fatality 

rates. County-level opioid overdose fatality data were used to fit a marginal negative 

binomial model to determine which factors were associated with opioid overdose fatality 

rates in 2019 (before the COVID-19 pandemic) and 2021 (2nd COVID-19 pandemic). 

Results show that adjacent-to-metropolitan county status was associated with opioid 

overdose fatalities in 2021, indicating a differential effect of COVID-19 on suburban 

communities.  

Rare cluster-level count outcomes are often found in epidemiological settings, 

such as cluster-randomized trials (CRTs) and observational studies. The goal of this 

chapter is to compare marginal modeling methods for rare events, with a particular focus 

on opioid overdose fatalities. For both CRT and observational study settings, simulation 

studies were conducted to compare the validity of inference and power of the three 

regression methods. Conditional on a valid standard error estimator, power was similar 

between the regression methods when the event of interest was very rare, but differed 

between the methods as the marginal probability of the event increased. Careful 

consideration is required when choosing a regression method for modeling rare cluster-

level count outcomes in the settings studied in this chapter. 

Events that can occur more than once are often of interest in epidemiology 

research. One such event is opioid-related poisonings, which is the focus of the third 

chapter. Using opioid poisoning data from Kentucky Emergency Medical Services 

(EMS) records, simulated data sets were used to compare the validity of inference and 

power of the three marginal modeling methods used in the previous chapter for modeling 

rare events that can occur more than once per person. Based on the results from the 

simulation studies, all three regression methods produced test sizes that were close to 

nominal, although slightly inflated. In terms of power, modified negative binomial and 

modified overdispersed binomial regression performed similarly, and were more 

powerful than modified Poisson regression. 

 

KEYWORDS: Opioid Overdose, Marginal Model, Count Outcome, Cluster Randomized 

Trials 
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Chapter 1 - Introduction 

Both cluster randomized trials (CRTs) and observational studies involving 

clustered data are common in epidemiological settings. [1] [2] [3] [4] [5] Count outcomes 

of events collected at the cluster level, such as diseases, are often of interest in these 

settings. In these settings, researchers may aim to model the population-averaged, or 

marginal, probabilities or rates of these events. The focus of this dissertation is on the 

application of marginal modeling methods for rare events in clusters large enough to 

observe a sufficient amount of events. First, we apply a marginal negative binomial 

regression model to an observational study of opioid overdose-related fatalities in 

Kentucky. Next, we compare the validity of inference and power of marginal modeling 

methods in both cluster randomized trial and observational study settings, with a specific 

focus on rare events that can occur at most once per person, such as opioid overdose-

related fatalities. Finally, we compare the performance of the previously studied methods 

for rare events that can occur more than once per person, and apply these methods to the 

study of opioid poisonings in Kentucky. 

 The primary motivation for this dissertation is the study of opioid overdose in 

Kentucky. Kentucky has one of the highest rates of opioid overdose-related fatalities 

among US states, and it is crucial that appropriate treatment and prevention strategies are 

developed to curb this epidemic. [6] [7] The second chapter of this dissertation serves as 

an application of negative binomial regression to modeling opioid overdose-related 

fatality rates in Kentucky. In this application, we identify county-level factors, such as 

metropolitan status and age, that were associated with opioid overdose-related fatalities in 

2019 (before the COVID-19 pandemic) and 2021 (2nd COVID-19 pandemic). 
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Additionally, using the marginal negative binomial model, we were able to characterize 

the changes in opioid overdose-related fatality rates in Kentucky from 2019 to 2021.  

 Next, in the third chapter of this dissertation, we aim to compare the validity of 

inference, power, and practicality of several methods for the marginal modeling of rare 

cluster-level count outcomes. In this chapter, which focuses on rare events which can 

occur at most once per person, both cluster randomized trial and observational study 

settings will be studied. We conduct simulation studies across a variety of settings in 

order to compare the validity of inference and power of modified regression approaches, 

which incorporate empirical sandwich standard error estimates to allow for the possibility 

of valid inference even when the overdispersion structure is misspecified. [8] [9] [10] An 

application example based on the study of county-level factors associated with opioid 

overdose-related fatalities in Kentucky, as conducted in the second chapter, is used to 

support the results from the simulation studies. In the simulation studies, we show that 

when the event of interest is very rare, conditional on a valid bias-corrected standard 

error estimator, the three methods - modified overdispersed binomial regression, 

modified negative binomial regression, and modified Poisson regression - performed 

similarly in terms of power, although with slight differences depending on the true 

overdispersion structure of the data. However, as the marginal probability of the event 

increased, the difference in power between the methods increased as well.  

 Finally, in the fourth chapter of the dissertation, we extend the study of the 

modified regression approaches compared in the third chapter to their applications in 

modeling cluster-level count outcomes of rare events that can occur more than once per 

person. Because of the additional level of clustering that results from the event of interest 
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being able to occur more than once per person, the working overdispersion structure of 

the three modified regression approaches may not correspond to the true overdispersion 

structure of the data. The applied focus of this chapter is an observational study of 

community-level opioid poisoning rates. As in the third chapter, simulation studies are 

conducted to compare the validity of inference and power of the three modified 

regression approaches. In general, the three modified regression approaches resulted in 

inference that was slightly liberal. Modified negative binomial regression and modified 

overdispersed binomial regression resulted in higher power than modified Poisson 

regression.  
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Chapter 2 - Community-Level Factors and Their Associations with Opioid Overdose 

Mortality in Kentucky from 2019 to 2021 

Overview of Chapter 2 

 Kentucky has one of the highest opioid overdose-related fatality rates among US 

states. [6] With opioid overdose-related fatality rates in Kentucky, particularly those 

attributed to fentanyl misuse, increasing over the past decade, it is imperative to identify 

factors related to these trends in order to improve treatment and prevention. [7] This 

increase in fatality rates was particularly large during the early stages of the COVID-19 

pandemic and has been linked to several societal changes due to the pandemic. [11] [12] 

In this chapter, we aim to characterize changes in opioid overdose-related fatality rates in 

Kentucky from 2019 (before the COVID-19 pandemic) to 2021 (during the COVID-19 

pandemic). Another goal of this chapter is to identify associations between community-

level factors and opioid overdose-related fatality rates in 2019 and 2021, as well as how 

these associations may have changed. By understanding the changes in opioid overdose-

related fatality rates and how pandemic-related factors are related to these increased rates, 

policymakers can construct targeted interventions that properly address opioid misuse 

given the unique characteristics of communities in Kentucky. 
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Introduction 

Overview 

 In this section, we will provide background information on the landscape of 

opioid overdose in Kentucky and the potential COVID-19-related factors that play a role 

in opioid overdose-related fatalities. First, we will describe recent trends in drug and 

opioid overdose in both the US and Kentucky. Next, we will highlight several potential 

factors related to the COVID-19 pandemic that may be associated with opioid overdose-

related fatalities in Kentucky. Finally, we will describe the overall goals of this chapter, 

which include characterizing the changes in opioid overdose-related fatality rates in 

Kentucky and identifying factors related to these fatality rates and their changes from 

2019 to 2021. 

 

Drug and Opioid Overdose in Kentucky 

Drug overdose remains a leading cause of death in the United States, with over 

107,000 deaths in 2021. [13] Of these deaths, almost three-quarters can be attributed to 

opioids. [14] Opioid overdose deaths have increased dramatically, with nationwide rates 

doubling from 2010 to 2019. [15] Initially, the majority of these deaths were a result of 

prescription opioid overdose. Due to a number of initiatives on reducing prescription 

opioid overprescribing, misuse and diversion at state and national levels (e.g. 

reformulation of OxyContin as an abuse deterrent formulation, strengthening state 

prescription drug monitoring program laws, closure of pill mill clinics, improved 

prescriber education, mandated reduction in prescription opioid production by the Drug 

Enforcement Administration), prescription opioid overdose deaths decreased significantly 
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in 2012-2013. [16] [17] However, without adequate capacity for treatment for people 

with opioid use disorder, the demand for opioids continued, and heroin became cheaper 

and more accessible, reflected in the increase in heroin-related overdose deaths after 

2011. In 2014-2015, illicitly produced fentanyl and fentanyl analogs became more widely 

available, and have proven to be much deadlier than prescription opioids because of their 

potency. [18] In a study by Gladden et al. conducted in 27 states, drug products obtained 

by law enforcement that tested positive for fentanyl increased by 426% from 2013 to 

2014. [19] Since 2016, fentanyl, either mixed with other opioids or marketed as heroin, 

has been the largest contributor to opioid-related deaths, being responsible for almost 

50% of them. [20] Because of this, in addition to those who willingly seek out fentanyl, 

there are many who overdose due to consuming fentanyl unknowingly. In summary, the 

propagation of illicit fentanyl has been a contributing factor towards the increase in 

opioid overdose deaths in recent years. 

Kentucky is especially affected by the opioid overdose epidemic, as it had the 5th 

highest opioid overdose fatality rate among US states in 2020. [6] Drug overdose has 

long been an issue in Kentucky, as prescription opioids such as oxycodone have been 

prevalent in rural areas due to aggressive marketing and lack of access to alternative pain 

treatment. [21] In addition, there is a relatively high prevalence of physical labor 

occupation in Appalachian Kentucky, which are frequently associated with acute and 

chronic pain. The overprescribing of opioid analgesics is a contributing factor towards 

the high rate of opioid use in Kentucky. [22] Prior prescription opioid misuse is linked to 

the use of heroin and illicit fentanyl, and the decrease in the availability of diverted 

prescription opioids has caused much of the opioid misuse in Kentucky to transition 
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towards these forms of opioids. [19] [23] [24] Despite legislation in the mid-2010s aimed 

at increasing the availability of the opioid antagonist naloxone, as well as substance use 

disorder treatment services, fentanyl overdose death rates have increased significantly in 

recent years. [7] [23] [25] Factors such as poverty, unemployment, and family stressors 

have been linked to opioid overdose in Kentucky communities, especially rural 

communities. [26] [27] Opioid misuse in remote rural communities poses additional risk, 

as offering help in these areas is much harder due to lack of cellular phone service and 

long distances from healthcare services. These socioeconomic root factors make tackling 

the opioid overdose problem in Kentucky much more complex. 

Opioid overdose has become an alarming issue in recent years. Nationwide, 

synthetic opioid overdose deaths increased by 39% from the 12-month period ending in 

May 2020 to the 12-month period ending in May 2021. [13] From 2019 to 2020, opioid 

overdose death rates among Kentucky residents increased from 23.10 to 35.74 per 

100,000 residents, a 55% increase, with fentanyl overdose deaths increasing from 17.08 

to 30.10 per 100,000 residents, a 76% increase. [7] There was a large increase in opioid 

overdoses in Kentucky during the early stages of the pandemic; emergency medical 

service calls for opioid overdose in Kentucky rose by 17% from the 2-month period prior 

to COVID-19 to the first two months of COVID-19 (March and April 2020). [11] 

However, it is still unclear which factors have been the most impactful in increasing 

opioid overdose fatalities after the onset of COVID-19. 

There have been several societal changes that have occurred due to COVID-19 

that have been identified as potential links to this recent increase. [12] Of these changes, 

there are two main factors - mental health and unemployment - that we aim to investigate. 
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First, stay-at-home orders at the beginning of the COVID-19 pandemic have been linked 

with increased psychological stress, which has been associated with economic instability 

and social isolation. [28] Of all US adults, 13.9% reported symptoms of psychological 

distress during the early stages of the COVID-19 pandemic (April 2020) compared to 

3.9% in 2018. [29] An increase in substance use during the COVID-19 pandemic may 

also be indicative of stressors causing individuals to turn to substances such as opioids as 

relief, thus increasing their risk of substance use-related harm. [30] In addition, access to 

mental health care was stymied during the pandemic, largely due to closures in clinician 

offices and concerns about in-person care due to the virus. [28] The lack of mental health 

care is uniquely concerning in the wake of COVID-19 due to the increased need of 

treatment in an environment with intensified psychological stressors. [31] 

The COVID-19 pandemic has caused drastic changes in unemployment in the 

United States, especially during the initial stages. The unemployment rate tripled from 

February to April 2020 and did not return to pre-COVID-19 levels until September 2021. 

[32] Increases in unemployment rates have been found to be associated with increased 

levels of opioid overdose. [33] [34] More generally, unemployment has been found to be 

associated with adverse health behaviors, such as substance misuse. [35] Unemployment 

introduces economic stressors that can limit access to health care as well as inhibit the 

ability to adhere to substance misuse treatment regimens. [36] [37] In short, the rapid and 

severe increase in unemployment during the COVID-19 pandemic has introduced 

economic stressors that may cause individuals to turn to opioid misuse, often resulting in 

harmful situations that may lead to overdose deaths. 
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Several demographic factors have been found relevant to changes in opioid 

overdose mortality trends. Age, for example, is important to account for, as opioid 

overdose is generally more common in younger populations. [38] Race is another 

demographic factor that has been found to be associated with disparity in drug overdose 

deaths. [39] Specifically, the average annual percentage change of opioid overdose 

fatalities between 2013 and 2020 was nearly twice as high among African Americans 

compared to White individuals (26.16 vs. 13.19). [40] In addition, there is evidence that 

African American communities were uniquely affected by COVID-19 due to factors such 

as access to health care. [41] Disparity in socioeconomic status and poverty within 

communities have been linked to increased risk of opioid overdose due to lack of access 

to health care as well as the prevalence of manual labor. [34] [42] [43] Another factor 

related to socioeconomic status as well as the COVID-19 pandemic is access to health 

insurance. During the initial stages of the COVID-19 pandemic, the percentage of 

uninsured individuals increased by 1.4% during the three-month period in 2020 between 

April to July. [44] Access to health insurance is crucial for opioid use disorder treatment, 

as services such as Medicaid cover medication for opioid use disorder (MOUD). [45]  

In addition to access to health insurance, availability of MOUD for opioid 

overdose is crucial. Both methadone and buprenorphine have been shown to be effective 

at treating OUD compared to other OUD treatment pathways. [46] Methadone is an 

opioid agonist that must be administered at certified opioid treatment programs (OTPs). 

[47] Because of geographic and policy limitations, access to methadone treatment from 

OTPs is often difficult, which was exacerbated during COVID-19. [48] [49] Access to 

methadone treatment is more difficult in rural areas, where distance to OTPs is much 
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greater, on average. [50] Buprenorphine is a partial opioid agonist that can be prescribed 

or administered by certain trained healthcare practitioners. [51] Access to buprenorphine 

is disproportionately limited in rural areas, with many rural counties not having access to 

a provider. [52] During the initial months of the COVID-19 pandemic, both overall 

buprenorphine prescriptions and Kentucky transmucosal (TM) buprenorphine reception 

rates decreased significantly. [53] [54] Recent initiatives, such as allowing prescription 

without an in-person physician meeting, have been introduced to counteract this 

disruption to buprenorphine access. [28] [55] 

Naloxone is a life-saving opioid antagonist that is available in community 

pharmacies. The U.S. Surgeon General called naloxone a key part of the public health 

response to the opioid epidemic. [56] While there have been recent efforts to expand 

naloxone distribution in Kentucky through legislation and pharmacist training programs, 

naloxone access still remains an issue in rural communities due to scarcity of accessible 

community pharmacies as well as a lack of knowledge of the availability of naloxone. 

[57] [58] Finally, although the majority of opioid overdose fatalities can be attributed to 

the use of synthetic opioids such as fentanyl, high-risk opioid prescribing, including 

extended duration or high dosage opioid prescription, is a factor that can contribute to 

increased risk of opioid misuse and overdose. 

Much of the disparity in access to health insurance and MOUD can be attributed 

to differences in rural and urban environments. The discrepancy between rural and urban 

socioeconomic stressors is well understood, access to health care and opioid use disorder 

treatment programs are more scarce in rural areas. [33] Furthermore, suburban 

communities, compared to rural communities, have experienced higher opioid-related 
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mortality rates since 2016. [59] In addition, rural communities may be more affected by 

social and economic stressors caused by COVID-19. Understanding the dynamics of 

opioid misuse between communities with different levels of urbanicity during COVID-19 

is key to constructing appropriate targeted interventions in Kentucky. Highlighting 

Appalachian counties in the context of opioid overdose in Kentucky is crucial – opioid 

overdose rates in Appalachia are significantly higher due to various factors specific to the 

region. Specifically, lack of transportation and health services limiting access to OUD 

and overdose treatment, as well as economic deprivation, make the opioid overdose 

situation in Appalachia uniquely severe compared to the rest of Kentucky. [60] [61]  

 

Goals 

Because of the massive societal changes due to the COVID-19 pandemic, as well 

as their demographic and geographical discrepancies within the state of Kentucky, it is 

crucial to understand the pandemic’s effects on opioid overdose. While we have 

highlighted many other potential factors that can be associated with the increase in opioid 

overdose during COVID-19, COVID-19-related factors are of particular interest due to 

the pandemic’s unique effects.  

We aim to characterize the changes in opioid overdose fatality rates in Kentucky 

from 2019 to 2021, with a specific focus on changes among Appalachian vs non-

Appalachian Kentucky residents. We will also determine which factors were associated 

with opioid overdose fatalities in 2019 and 2021 and how these associations may have 

changed. We hope that our findings will inform targeted interventions that improve both 

opioid overdose prevention and treatment of OUD. 
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Methods 

Overview 

 In this section, we will describe the data and methods used in the analyses. We 

will provide details on the structure and data sources for the outcome, county-level yearly 

opioid overdose-related fatalities, as well as for each of the county-level factors included 

in the analyses. Next, we will describe the descriptive analyses conducted. These 

descriptive analyses include opioid overdose-related fatality counts and rates, which are 

stratified by Appalachian and metropolitan county statuses. Finally, we describe the 

statistical analysis, which involves a marginal negative binomial regression model that is 

used to determine the associations between potential county-level factors and opioid 

overdose-related fatalities in 2019 and 2021. 

 

Measures and Data Sources 

The main outcome of interest was county-level yearly opioid overdose fatalities in 

Kentucky per 100,000 residents. Opioid overdose fatality counts were calculated using 

death certificates of Kentucky residents, extracted from the Kentucky Office of Vital 

Statistics. Opioid-involved overdose deaths for Kentucky residents over the age of 18 

were identified by an underlying cause-of-death ICD-10 code in the range X40-X44, 

X60-X64, X85, Y10-Y14 and a supplementary ICD-10 cause-of-death code in the range 

T40.0-T40.4, or T40.6. To calculate fatality rates, estimates for Kentucky population over 

the age of 18 were obtained from the United States Census Bureau American 

Communities Survey (ACS) in 2019. [62] 
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Based on proposed links to opioid overdose presented in the literature, a variety of 

potential factors related to opioid overdose in Kentucky, including COVID-19-related 

factors, demographics, county metropolitan and Appalachian status, and factors related to 

MOUD, were analyzed. 

For the COVID-19-related factors of interest, county-level variables related to 

unemployment and mental health were investigated. Monthly unemployment rates from 

both 2019 and 2021 were obtained from the National Bureau of Labor Statistics (BLS). 

[33] The number of mental health providers per 100,000 residents, which was obtained 

from National Provider Information (NPI) data from 2019 provided by the Centers for 

Medicare & Medicaid Services (CMS), was used to account for the availability of mental 

health care in each county. [63] 

A county was defined as Appalachian following the designation described by the 

Appalachian Regional Commission. [64] To account for disparities between rural and 

urban communities, county metropolitan status was defined using Rural-Urban 

Continuum Codes from the US Department of Agriculture’s Economic Research Service. 

[65] County metropolitan status was divided into metropolitan (continuum codes 1-3), 

adjacent-to-metropolitan (continuum codes 4-6), and non-metropolitan groups 

(continuum codes 7-9). 

Data on percentage non-White, percentage residents over the age of 65, and 

percentage residents in poverty were obtained from the US Census Bureau American 

Communities Study in 2019. [62] The percentage of residents in each county who were 

uninsured was obtained from the US Census Bureau’s Small Area Health Insurance 

Estimates (SAHIE) program. [66] 
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Prevalence of OUD estimates in 2019 were calculated for each Kentucky county 

by Thompson et al., using Multiple Systems Estimation and were shared for this study. 

[67] This method linked data from multiple Kentucky healthcare data sources, and the 

number of individuals with OUD on each combination of lists was used to estimate the 

number of individuals with OUD that were unobserved. [68] 

Number of naloxone units distributed in Kentucky communities for both 2019 and 

2021 was obtained from the Kentucky Pharmacists Association (KPhA). [69] The 

Kentucky All Schedule Prescription Electronic Reporting (KASPER) program monitors 

all controlled substance prescriptions dispensed in Kentucky. Using KASPER data, the 

number of individuals 18 years of age or older receiving buprenorphine treatment for 

OUD was used to calculate the monthly rate of buprenorphine receipt in 2019. [70] 

Methadone for treatment of OUD is dispensed at OTPs and not reported to the KASPER 

program. Thus, we could not account for availability of methadone MOUD. Finally, 

KASPER data were used to calculate measures for high-risk opioid prescribing in 2019. 

[70] 

 

Statistical Analysis 

Analyses were performed at the county level. Yearly opioid overdose fatality rates 

and 95% confidence intervals per 100,000 residents over the age of 18 for 2019 and 

2021, as well as the rate ratios comparing rates between the two years, were calculated. 

Opioid fatality counts and rates, with 95% confidence intervals, for 2019 and 2021 are 

presented in Table 2.1, and are stratified by Appalachian county status and metropolitan 

classification. County-level summary statistics for 2019 variables are presented in Table 
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2.2. Unemployment rates, naloxone distribution rates, as well as rate ratios for these 

variables over the two years are presented in Table 2.3. Monthly opioid overdose rates for 

2019 and 2021 are presented in Figure 2.1, and are stratified by metropolitan and 

Appalachian county status for each year in Figures 2.2-2.5. 

To determine which county-level factors were associated with opioid overdose 

fatality rates in 2019 and 2021, as well as if these associations changed, an adjusted 

marginal generalized estimating equation (GEE)-type negative binomial model was fit. 

[71] [72] The outcome for each county in a given year was defined as the number of 

opioid overdose fatalities, and the statistical correlation among count outcomes from the 

same county was modeled using working unstructured covariance matrices. Due to 

variation in county population, the model’s offset was the natural log of the number of 

residents in a given county. Yearly rates are directly modeled, and rate ratios are used as 

the basis for comparisons between years. Results for the associations for each year as 

well as whether the changes in association between 2019 and 2021 are statistically 

significant are presented Table 2.3. Estimates for the changes in associations are 

presented in Table 2.4, and can be interpreted as the ratio of the rate ratios for 

associations in 2021 vs. 2019. Analyses were conducted using SAS version 9.4 (SAS 

Institute, Cary, NC, USA) and R version 3.6.1 (R Foundation for Statistical Computing, 

Vienna, Austria). [73] [74] Statistical significance was defined as p < 0.05. 
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Results 

Overview 

In this section, we will provide results for both the descriptive and statistical 

analyses. Opioid overdose-related fatality rates in 2019 and 2021 and the rate ratios for 

the change between the two years will be presented for Kentucky overall, as well as 

stratified by Appalachian and metropolitan county status. Descriptive statistics for other 

variables included in the model will be presented as well. For the statistical analysis, 

adjusted rate ratios for each of the county-level factors in 2019 and 2021, as well as how 

these rate ratios changed, will be presented. By evaluating whether the adjusted rate 

ratios are statistically significant, we can identify factors that are associated with opioid 

overdose-related fatalities. 

 

Descriptive Results 

As presented in Table 2.1, opioid overdose fatalities increased from 976 in 2019 

to 1780 in 2021 (RR: 1.82). Appalachian counties had a lower fatality rate than non-

Appalachian counties in 2019 (22.01 vs. 33.06 per 100,000 residents), but experienced a 

larger increase (RR: 2.38 vs. 1.68) in fatality rate from 2019 to 2021. The fatality rate in 

Appalachian counties was higher than that of non-Appalachian counties in 2021 (52.26 

vs. 51.56 per 100,000 residents). 

Among the three metropolitan status categories, adjacent-to-metropolitan counties 

experienced the largest increase in opioid overdose fatality rates from 2019 to 2021, with 

a rate ratio of 2.54. In contrast, metropolitan had the highest fatality rate in 2019, with 
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35.19 fatalities per 100,000 residents but experienced the lowest increase in fatalities 

from 2019 to 2021, with a rate ratio of 1.59. 

The county-level average for unemployment rate increased from 4.82% to 5.16% 

(RR: 1.07) from 2019 to 2021 (Table 2.2). The naloxone distribution rate per 1,000 

residents increased 

drastically from 2019 to 2021 (RR: 3.01). 

In 2019, the average county percentage of residents older than 65 years of age 

was 17.44%; the average county percentage of non-White residents was 6.93%, and the 

percentage living in poverty was 19.73% (Table 2.2). The baseline assessment of opioid 

use disorder prevalence was 53.53 per 1,000 residents. In 2019, on average, every month 

1.72 per 1,000 residents had dispensed buprenorphine prescription(s) for treatment of 

opioid use disorder; 1.86 per 1,000 residents met the criteria for high-risk opioid 

prescribing. 

 

Modeling Results 

Regression results for 2019 and 2021 are displayed in Table 2.3, and results for 

the change in rates are displayed in Table 2.4. After accounting for other variables in the 

model, we found no significant difference in the opioid overdose fatality rate between 

Appalachian and non- Appalachian counties in 2019 (RR: 1.12, 95% CI: (0.72, 1.77)) and 

in 2021 (RR: 1.55, 95% CI: (1.04, 2.32)) (Table 2.3). The change in association between 

Appalachian status and opioid overdose mortality from 2019 to 2021 was not statistically 

significant (p-value: 0.136). 
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In 2019, metropolitan county status, compared to non-metropolitan county status, 

was associated with an increase in opioid overdose fatalities (RR: 1.96, 95% CI: (1.25, 

3.07), p-value: 0.003).This association had a statistically significant decrease from 2019 

to 2021 (RR: 0.61, 95% CI: (0.40, 0.94), p-value: 0.023), showing shrinking differences 

in mortality between metropolitan and non-metropolitan counties. Metropolitan county 

status did not have a statistically significant association with opioid overdose fatalities in 

2021. On the other hand, in 2021, adjacent-to-metropolitan counties had an opioid 

overdose mortality rate almost two times that of non-metropolitan counties (RR: 1.94, 

95% CI: (1.30, 2.89), p-value: 0.001), while in 2019 the difference in their rates was not 

significant (RR 1.48, 95% CI: (0.85, 2.59)). 

Neither of the COVID-19-related variables – unemployment or mental health 

providers – had clinically or statistically significant associations in either year, nor were 

the changes in associations from 2019 to 2021 statistically significant. As for the 

medication-related variables, the associations between estimated opioid use disorder 

prevalence in 2019 and overdose fatalities in both years were statistically significant 

(2019 – RR: 1.01, 95% CI: (1.00, 1.02), p-value: 0.002 

/ 2021 – RR: 1.01, 95% CI: (1.00, 1.02), p-value: 0.008), but the change in associations 

between the years was not statistically significant (p-value: 0.626). None of the other 

medication-related variables were associated with opioid overdose fatalities in either 

year. 

Of the demographic variables, the 2019 percentage residents over 65 was 

statistically significantly associated with opioid overdose fatalities in both 2019 (RR: 



19 

 

0.94, 95% CI: (0.91, 0.98), p-value: 0.002) and 2021 (RR: 0.88, 95% CI: (0.85, 0.92), p-

value: <0.001). In addition, 

the change in association from 2019 to 2021 was statistically significant (RR: 0.94, 95% 

CI: (0.91, 0.97), p-value: <0.001). None of the other demographic variables were 

statistically significantly associated with opioid overdose in either year. 
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Discussion 

Overview 

 In this section, we will highlight the conclusions of our results and evaluate how 

these results may be used to inform policy and construct treatment and prevention 

strategies for curbing opioid overdose-related fatalities in Kentucky. Next, we will 

identify some strengths and limitations of this study. Finally, we will highlight potential 

future work that could expand on this chapter, such as the subject of the third chapter of 

this dissertation. 

 

Summary of Results 

Our analysis showed an increased gap in opioid overdose mortality between 

Appalachian and non-Appalachian counties from 2019 to 2021 (adjusted rate ratios 1.12 

vs. 1.55), potentially indicating that the pressures brought by the COVID-19 pandemic 

affected Appalachian counties disparately. Appalachian counties are vulnerable to opioid 

overdose due to issues such as economic deprivation and lack of access to health care, 

which became more prevalent during the pandemic. [28] [31] Proliferation of alternative 

solutions to tackling opioid overdose treatment in Appalachia, such as telehealth, is 

crucial even in the post-COVID-19 world due to barriers such as spatial access to health 

care. [75] The increase in naloxone distribution rate from 2019 to 2021 (RR: 3.01) may 

be attributed to recent efforts to expand naloxone distribution in Kentucky, such as a 

Kentucky General Assembly Amendment in June 2019, which expanded the ability of 

pharmacies to distribute naloxone, likely contributed to this increase. [76] 
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Metropolitan county status, compared to non-metropolitan status, had its adjusted 

rate ratio decrease from 2019 to 2021 (1.96 vs. 1.21). This may be due to the societal 

changes brought about by COVID-19 disproportionately affecting non-metropolitan 

counties. Increased psychological distress combined with the lack of access to 

appropriate health care could have been a contributor to an increased rate of opioid 

overdose in rural communities. [28] [33] However, adjacent-to-metropolitan county 

status, compared to non-metropolitan status, had its adjusted rate ratio increase from 2019 

to 2021 (1.48 vs. 1.94). One possible explanation for this result is that due to occupations 

commonly found among suburban residents transitioning to telework during the 

pandemic, time spent in isolation may have increased, resulting in poorer mental health 

over the course of COVID-19. Further investigation into the environment of suburban 

Kentucky during the COVID-19 pandemic is necessary for clarification on this result. 

Percentage residents over 65 was associated with a decrease in opioid overdose 

fatality rates for both 2019 and 2021. Notably, this association was stronger in 2021 than 

in 2019. Since opioid overdose is generally more common among younger populations, it 

is possible that younger communities’ vulnerability to the societal pressures caused by 

COVID-19 increased their susceptibility to opioid overdose. Kentucky residents aged 15-

24 experienced the highest increase (81%) in drug overdose fatality rates from 2019 to 

2021. [7] 

 

Strengths and Limitations 

There are several strengths of this study. There exist previous studies that have 

examined the association between demographic and socioeconomic factors and opioid 
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overdose as well as ones that have investigated opioid overdose during COVID-19. 

However, this study is unique in that factors involved in societal changes during the 

COVID-19 pandemic, as well as how these associations changed during the pandemic, 

are examined. In addition, there is a lack of research regarding long-term opioid overdose 

trends after the COVID-19 pandemic. While there exists some literature examining the 

short-term implications of COVID-19 on opioid overdose, 2021 data have not been 

extensively studied, and can provide insights on the lasting effects of the pandemic. 

Being able to construct interventions and programs in a post-COVID-19 world is crucial 

to improving treatment and preventative measures in the current landscape. 

Despite the strengths of this study, there exist key limitations. Social isolation 

became more prevalent during the onset of the COVID-19 pandemic due to government-

imposed measures to enforce social distancing. Although social isolation has been linked 

to opioid overdose, we were not able to account for it in our analysis. Social isolation also 

presents a unique roadblock in traditional forms of opioid overdose reversal, as 

unconscious individuals experiencing an overdose event will not be able to administer 

naloxone. Social isolation has been linked to poor mental health and psychological stress, 

which are both factors linked to increased risk of opioid overdose. [77] [78] Isolation 

may also increase sensitivity to chronic pain, which may lead individuals to seek opioids 

as pain treatment. [79] It would be fruitful for future studies to analyze social isolation as 

a factor associated with opioid overdose fatalities. Social isolation caused by 

unemployment could have also contributed to unemployment’s lack of statistically 

significant associations with overdose fatalities in either year. 
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In addition, we were not able to account for the changes in several of the factors 

during the pandemic, as 2021 data was not available for all examined factors. For 

example, county-level data describing the proliferation of telehealth in Kentucky and 

loosening of buprenorphine prescription restrictions was not included in the models. [80] 

This may have contributed to the lack of detected change in associations from 2019 to 

2021. Incorporating 2021 data into the analysis would allow us to investigate associations 

in 2021, as well as the changes in associations between the two years, more precisely. 

Also, factors that contribute to a county’s vulnerability to COVID-19, such as population 

density and social distancing measures, were unable to be accounted for. These factors 

may have been associated with opioid overdose, as vulnerability to COVID-19 may be 

representative of vulnerability to other adverse health events, such as opioid overdose. 

The COVID-19 Pandemic Vulnerability Index (PVI) is a measure developed by the 

National Institute of Environmental Health Sciences (NIEHS) to represent each county’s 

vulnerability to COVID-19. [81] However, since this score is composite and contains 

factors already accounted for in our model, such as demographic information, it was not 

included. 

Future studies could investigate variables similar to those that compose the PVI to 

understand how factors that contribute to a county’s vulnerability to COVID-19 affected 

opioid overdose rates. Finally, the opioid use disorder prevalence variable used in our 

analysis was an estimate as opposed to the true, unknown value, and hence estimated 

associations may be biased. 

A lack of variability in community-level covariates can imply a lack of power. 

This lack of sufficient variability manifests itself as two major limitations to our analysis. 
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First, because certain demographic variables that could be confounders, such as gender, 

do not vary significantly between counties, they were not included in our analysis. In 

addition, several of the factors which have been previously linked to opioid overdose 

were not found to be associated with overdose fatalities in our analysis. For example, 

unemployment rate has been found to be associated with opioid overdose and substance 

misuse in general. [33] [34] However, we did not find unemployment rate to be 

associated with opioid overdose fatalities in either 2019 or 2021. 

Unemployment rate’s relatively small range among counties in both years (7.4% for 2019 

and 9.1% in 2021) is indicative of low variability. Thus, our ability to detect a statistically 

significant association between unemployment rate and opioid overdose fatalities was not 

as high as if we were able to use individual-level data.  

Finally, there are some limitations to the measures chosen to be included in the 

model. 

Many of the measures may not be accurate representations of the factor in question. For 

example, while mental health providers per 1,000 residents provides a picture of the 

available resources to treat mental health, it does not elucidate the entirety of the mental 

health situation for each county. Despite these limitations, however, this study provides 

salient information on how various factors could be associated with opioid overdose 

before and during the COVID-19 pandemic. 

 

Conclusion 

In conclusion, opioid overdose fatality rates increased in Kentucky from 2019 to 

2021, with the largest increases occurring in adjacent-to-metropolitan and Appalachian 
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regions. We found several variables, such as metropolitan status and Appalachian status, 

as well as age, to be associated with opioid overdose fatality rates in one or both of the 

years. In addition, we found metropolitan status and age to have observed associations 

that changed from 2019 to 2021. 

These findings can be used to construct targeted interventions that improve treatment and 

prevention in adjacent-to-metropolitan areas as well as amongst younger populations. 

Future studies should aim to investigate other COVID-19-related variables as well as 

which factors are associated with overdose fatality rates in other regions of the United 

States. Additionally, in this study, we used marginal negative binomial regression to 

model opioid overdose-related fatalities. However, other methods for marginal modeling 

of count outcomes, such as overdispersed binomial regression and modified Poisson 

regression, may result in higher power. The comparison of these methods will be the 

focus of the third chapter of this dissertation. 



26 

 

Supplemental Materials 

Figure 2.1 Opioid Overdose Fatality Rates per 100,000 Residents in Kentucky in 2019 

and 2021 
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Figure 2.2 Opioid Overdose Fatality Rates in Kentucky by Metropolitan County Status, 

2019 
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Figure 2.3 Opioid Overdose Fatality Rates in Kentucky by Metropolitan County Status, 

2021 
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Figure 2.4 Opioid Overdose Fatality Rates in Kentucky by Appalachian Status, 2019 
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Figure 2.5 Opioid Overdose Fatality Rates in Kentucky by Appalachian Status, 2021 
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Table 2.1 Opioid Overdose Fatality Counts and Rates per 100,000 Residents in Kentucky 

in 2019 and 2021 

 Fatality Counts (Rates per 100,000 

Residents) 

 

 2019 2021 RR* (95% CI†) 

Overall 976 (28.37) 1780 (51.75) 1.82 (1.68, 1.97) 

Metropolitan 

Status 

   

Metropolitan 712 (35.19) 1132 (55.96) 1.59 (1.45, 1.75) 

Adjacent-to-

Metropolitan 

124 (23.51) 315 (59.73) 2.54 (2.06, 3.13) 

Non-

Metropolitan 

164 (18.78) 348 (45.88) 2.44 (2.12, 2.81) 

Appalachian 

Status 

   

Appalachian 200 (22.01) 475 (52.26) 2.38 (2.02, 2.81) 

Non-

Appalachian 

776 (30.66) 1305 (51.56) 1.68 (1.54, 1.84) 

*RR = Rate Ratio 

†CI = Confidence Interval 
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Table 2.2 County-Level Means of Variables from 2019 and 2021 

 2019 2021  

 Mean (SD*) 95% CI† Mean (SD) 95% CI 
RR§ - 2021 vs. 

2019 

Mental Health 

Providers (per 

1,000 

Residents) 

1.67 (2.70) (1.19, 2.16) - - - 

Demographic 

Variables 
     

% Age > 65 17.44 (3.36) 
(16.84, 

18.05) 
- - - 

% Non-White 6.93 (5.49) (5.94, 7.91) - - - 

% Poverty 19.73 (6.63) 
(18.55, 

20.92) 
- - - 

Uninsured % 

(% of 

population 

under 65 

without health 

insurance) 

6.01 (0.91) (5.89, 6.13) - - - 

Medication-

Related 

Variables 

     

Monthly 

Buprenorphine 

Reception Rate 

(per 1,000 

Residents) 

1.72 (1.35) (1.55, 1.89) - - - 

Monthly High-

Risk Opioid 

Prescribing 

Rate (per 1,000 

Residents) 

1.86 (0.53) 

 

(1.80, 1.93) 

 

- - - 

Opioid Use 

Disorder 

Prevalence 

(per 1,000 

Residents) 

53.53 (32.52) 
(49.40, 

59.35) 
- - - 

Unemployment 

Rate (%) 
4.82 (1.31) (4.59, 5.05) 5.16 (1.41) (4.91, 5.41) 1.07 (1.06, 1.08) 

Naloxone 

Distribution 

Rate (per 1,000 

Residents) 

4.98 (9.49) (4.82, 5.13) 14.99 (22.19) 
(14.63, 

15.36) 
3.01 (2.96, 3.06) 

*SD = Standard Deviation 
†CI = Confidence Interval 
§RR = Rate Ratio 
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Table 2.3 Model Estimates (Adjusted Rate Ratios) for Yearly Opioid Overdose Fatalities 

per 100,000 Residents. 

Variable 2019 

RR* (95% CI†) 

2021 

RR (95% CI) 

COVID-19-Related Variables   

Unemployment Rate 0.99 (0.87, 1.14) 0.97 (0.89, 1.06) 

Mental Health Providers per 1,000 Residents 0.99 (0.96, 1.03) 1.02 (0.99, 1.05) 

Geographical Variables   

Metropolitan Status 

    Metropolitan vs. Non-Metropolitan¶ 

    Adjacent-to-Metropolitan vs. Non-Metropolitan 

    Metropolitan vs. Adjacent-to-Metropolitan¶ 

 

1.96 (1.25, 3.07) § 

1.48 (0.85, 2.59) 

1.33 (0.75, 2.35) 

 

1.21 (0.78, 1.86) 

1.94 (1.30, 2.89) § 

0.62 (0.42, 0.92) § 

Appalachian Status 

    Appalachian vs. Non-Appalachian 

 

1.12 (0.72, 1.77) 

 

1.55 (1.04, 2.32) § 

Demographic Variables   

Non-White % 0.99 (0.96, 1.03) 1.00 (0.98, 1.03) 

Age > 65 %¶ 0.94 (0.91, 0.98) § 0.88 (0.85, 0.92) § 

Poverty % 0.98 (0.95, 1.02) 0.99 (0.96, 1.01) 

Uninsured % (% of population under 65 without health insurance) 0.98 (0.83, 1.16) 0.96 (0.85, 1.09) 

Medication-Related Variables   

Monthly Naloxone Distribution per 1,000 Residents 1.01 (0.99, 1.02) 1.00 (1.00, 1.01) 

Monthly Buprenorphine Reception Rate per 1,000 Residents 1.05 (0.83, 1.33) 1.04 (0.86, 1.27) 

Monthly High-Risk Opioid Prescribing Rate per 1,000 Residents 0.88 (0.54, 1.45) 0.72 (0.49, 1.06) 

Opioid Use Disorder Prevalence per 1,000 Residents 1.01 (1.00, 1.02) § 1.01 (1.00, 1.02) § 

*RR = Rate Ratio 
†CI = Confidence Interval 
§p<0.05 
¶Change in association between 2019 and 2021 is statistically significant. Results are 

presented in Table 2.4. 
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Table 2.4 Model Estimates (Adjusted Rate Ratios) for the Interactions Between Factors 

of Interest and Year for Yearly Opioid Overdose Fatalities per 100,000 Residents. 

Variable Change from 2019 to 2021 

RR* (95% CI†) 

p-value 

COVID-19-Related Variables   

Unemployment Rate 0.98 (0.87, 1.10) 0.675 

Mental Health Providers per 1,000 Residents 1.03 (0.99, 1.07) 0.211 

Geographical Variables   

Metropolitan Status 

    Metropolitan vs. Non-Metropolitan 

    Adjacent-to-Metropolitan vs. Non-Metropolitan 

    Metropolitan vs. Adjacent-to-Metropolitan 

 

0.61 (0.40, 0.94) 

1.31 (0.85, 2.02) 

0.47 (0.31, 0.71) 

 

0.023§ 

0.218 

<0.001§ 

Appalachian Status 

    Appalachian vs. Non-Appalachian 

 

1.38 (0.90, 2.11) 

 

0.136 

Demographic Variables   

Non-White % 1.01 (0.99, 1.03) 0.291 

Age > 65 % 0.94 (0.91, 0.97) <0.001§ 

Poverty % 1.00 (0.97, 1.04) 0.814 

Uninsured % (% of population under 65 without 

health insurance) 

0.98 (0.85, 1.13) 0.751 

Medication-Related Variables   

Monthly Naloxone Distribution per 1,000 

Residents 

1.00 (0.99, 1.01) 0.501 

Monthly Buprenorphine Reception Rate per 1,000 

Residents 

0.99 (0.83, 1.18) 0.900 

Monthly High-Risk Opioid Prescribing Rate per 

1,000 Residents 

0.82 (0.55, 1.21) 0.311 

Opioid Use Prevalence per 1,000 Residents 1.00 (1.00, 1.01) 0.626 

*RR = Rate Ratio 
†CI = Confidence Interval 
§p<0.05 
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Chapter 3 - The Performance of Marginal Modeling Methods for Rare Cluster-Level 

Count Outcomes with Application to Opioid Overdose Mortality 

Overview of Chapter 3 

Clustered or correlated outcomes in study settings where people are nested within 

groups or clusters occur in a variety of epidemiological settings. [1] [2] [3] [4] [5] [82] 

Such clustered data can arise in observational studies where people are grouped into 

naturally formed clusters. In addition to observational studies, in cluster-randomized 

trials (CRTs), subjects are organized into clusters, and these clusters of subjects are 

randomized to being either an intervention or control group. Examples of clusters for 

both types of studies may include, but are not limited to, subjects’ county of residence or 

the hospital they are attending. Our focus will be on observational and CRT studies at the 

community level in order to ensure clusters are large enough to observe a sufficient 

number of rare events. Motivating examples are based on real-life data, including a 

salient count outcome in opioid overdose fatalities per county, that can be modeled using 

various regression approaches. A cross-sectional study of opioid overdose fatalities in 

Kentucky will serve as a motivating example of an observational study. The HEALing 

(Helping to End Addiction Long-termSM) Communities Study (HCS) will serve as a 

motivating example of a CRT. [90] In either situation, and regardless of how clustering 

arises, the goal of this chapter is to describe and compare regression approaches to 

modeling rare cluster-level count outcomes in terms of practicality, validity of inference, 

and power, with a specific focus on modeling population-averaged probabilities or rates 

of rare events. 
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Introduction 

Overview 

The introduction that follows will describe cluster-level observational studies and 

CRTs in more detail. First, cluster-level observational studies will be addressed with an 

overview and description of our motivating example. CRTs will be addressed with a 

similar overview and motivating example. Descriptions of the concept of relative risk and 

the nature of the count data of interest will follow. Finally, the methods used for 

comparison of power, validity of inference, and practicality will be outlined along with 

the goals of this chapter. 

 

Cluster-Level Observational Studies Overview 

In certain observational studies, especially in epidemiological settings, researchers 

might obtain data from naturally formed clusters. For instance, subjects can be grouped 

by physical distance from each other, such as residents within a state being grouped 

based on county of residence. A specific example is a 2021 observational study 

conducted by Marks et al. aimed to predict county-level opioid overdose fatality rates in 

the United States. [83] In this example, because the interest of the study was to identify 

counties at greater risk of opioid overdose fatalities, subject-level fatality data were 

grouped into clusters based on county. Although opioid overdose fatalities occur at the 

subject level and can occur only once per subject, where each observation represents a 

fatality, the data were obtained as county level counts. In this study, it was not feasible to 

obtain subject-level data for factors of interest such as socioeconomic and health care 

access indicators. Additionally, the goal of the research was to identify counties at greater 
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risk of opioid overdose fatalities. For these reasons, the data were analyzed at the county 

level. 

In addition to observations being grouped into naturally formed clusters based on 

physical location, retrospective observational studies examining the effect of an 

intervention may find it useful to group observations into clusters. For example, a study 

examining the effectiveness of a policy implemented in hospitals throughout a state may 

gather data from patients that are naturally grouped by the hospital they are attending. 

One such example is an observational study of hospital readmission rates in Maryland by 

Jencks et al. [84] In this study, subjects from the same hospital formed a cluster, and 

researchers aimed to estimate a variety of cluster-level factors’ associations with hospital 

readmission. Since the main outcome of interest, hospital readmission, came from 

patients clustered within hospitals, other factors obtained from patients, such as the area 

disadvantage index (ADI) of the neighborhood of residence, were grouped at the cluster 

level as well. In either example, the observational study was conducted at the cluster level 

due to a natural grouping of subjects, and the associated cluster-level analysis aligned 

with the goals of the research and the nature of the data. 

 

Cluster-Level Observational Studies Motivating Example 

Our motivating example is an observational, cross-sectional study of community-

level associations with opioid overdose-related fatalities across the state of Kentucky. 

Opioid overdose fatalities in the United States have doubled from 2010 to 2019. [15] 

Since the start of the COVID-19 pandemic, this number has only continued to increase, 

potentially due to structural and societal changes, such as social isolation, increase in 
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unemployment, and barriers restricting access to medications for opioid use disorder 

(MOUD). [12] [28] [34] Kentucky had the 5th highest opioid overdose fatality rate 

among US states in 2020, and experienced a drastic increase in fatalities from 2019 to 

2020, going from 29.5 to 42.6 fatalities per 100,000 residents. [6] [7] A sizable portion of 

Kentucky is part of the Appalachian region, a socioeconomically distressed region with a 

lack of adequate transportation and access to health services. [33] [60] These factors were 

magnified during the COVID-19 pandemic, which stymied many paths to access 

appropriate treatment for opioid overdose in a region that already lacked adequate 

resources. In this scenario, a researcher may be interested in whether a county being part 

of Appalachia is associated with opioid overdose fatalities in 2021, which was during the 

second COVID-19 pandemic.  In this example, our goal should be to use the most 

powerful, practical, and valid approach possible to model opioid overdose fatalities, and 

specifically the marginal probabilities of opioid overdose fatalities.  

 

Cluster Randomized Trials Overview 

CRTs are often employed by researchers to study the effects of an intervention on 

a group of individuals within already existing clusters. [1] [2] [3] [85] [86] There are 

several reasons a CRT may be optimal or necessary. [4] One such reason might be that 

the intervention that is being studied cannot be implemented feasibly at an individual 

level, so treating each community as a cluster may be the only feasible approach. For 

example, a public awareness campaign of opioid overdose prevention was conducted in 

bars and nightclubs in New York. [87] The effects of such a campaign on outcomes 

would not be able to be measured at the subject level, as anyone entering venues with the 
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campaign messages would be exposed to the intervention. Because of this, each venue 

must be treated as a cluster, and data collection and analysis must be conducted at the 

cluster level.  

Similarly, implementing interventions at the cluster level may simply be more 

practical. For example, a CRT aimed at determining whether naloxone co-dispensing 

affected opioid risk behavior randomized pharmacies to either the intervention (early co-

dispensing) or control (co-dispensing after 10 months) group. [88] Because the goal of 

the study was to examine the effect of pharmacy-based naloxone dispensing, it was more 

feasible to instruct the intervention group to begin co-dispensing naloxone to all eligible 

patients within each pharmacy than to randomize patients within a pharmacy and 

selectively co-dispense early.  

Another reason a CRT may be used is to prevent contamination. [4] [89] In 

vaccine intervention trials, CRTs are commonly used because clustering reduces the 

likelihood of contamination between the vaccinated and control groups. Contamination 

between groups can compromise the ability of the researchers to analyze the impact of 

the vaccine treatment by making potential immunity conferred by the vaccine 

indistinguishable from herd immunity developed amongst subjects assigned to a control 

group. For example, in the study of infectious diseases, CRTs are often the only feasible 

method of implementing an intervention and analyzing its effects at the population level. 

Issues of sharing medication and contamination between treatment and control groups are 

more easily avoided if clusters, rather than individuals, are assigned to groups. Ensuring 

proper implementation of treatment is also easier when done at the cluster level. 
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Providing each subject with the correct treatment is more feasible and can result in fewer 

errors if all subjects within a cluster are assigned a specific treatment.  

Because of the different reasons for conducting a CRT, the types of clusters can 

vary greatly across studies in terms of cluster size, number of clusters, and the way the 

clusters are formed. For any given situation where a CRT is deemed optimal due to 

practicality or feasibility concerns, researchers must design a CRT that is most suitable 

given the research goals and availability of resources. Additionally, the types of clusters 

that may be created in a CRT may also correspond to naturally formed clusters that could 

also be used in observational studies. Despite this variety, however, the focus of this 

chapter is on observational studies and CRTs involving clusters large enough when the 

subject-level outcome is a rare binary indicator, such as an opioid overdose fatality.  

 

Cluster Randomized Trials Motivating Example 

The HEALing (Helping to End Addiction Long-termSM) Communities Study 

(HCS), a CRT aimed at addressing the opioid epidemic in the United States, serves as a 

motivating example for this chapter. [90] [91] [92] [93] The increase in opioid overdose 

fatalities in the US, primarily due to illicit fentanyl and its analogs, has highlighted the 

need for interventions in at-risk communities. [94] The HCS aims to examine the 

Communities That HEAL (CTH) intervention, which supports the implementation of 

evidence-based practices (EBP) in 67 communities across four states - Kentucky, 

Massachusetts, New York, and Ohio. These communities are of particular interest to the 

HCS, as the average opioid overdose fatality rate in these communities was twice that of 

the national average from 2016 through 2017. The CTH intervention is composed of 
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three components that work together to help effectively implement EBPs in the 67 

communities: 1) a communication engagement strategy to support the adoption of EBPs, 

2) the Opioid-overdose Reduction Continuum of Care Approach (ORCCA), a 

compendium of EBPs and associated technical assistance guides, and 3) community-

based communication campaigns aimed at improving awareness of EBPs. Covariate-

constrained randomization, which aimed to balance opioid overdose fatality rate, 

population size, and urban/rural status, was used to assign each of the 67 communities to 

either the CTH intervention or waitlist comparison arm. In this chapter, our focus is 

motivated by the 16 counties in Kentucky that participated in the HCS. Of the 16 

counties, 8 were assigned to the intervention arm, and the other 8 were assigned to the 

waitlist comparison arm. This study is a relevant motivating example because it involves 

large communities and very rare events that can occur at most once for each subject. [92]  

 

Risk and Rarity of Event 

In epidemiology, rare events are common, and it is often the goal of researchers to 

estimate the association between an intervention and the relative risk of the event. The 

focus of the work in this chapter is on rare events in large clusters, as is the case in our 

motivating examples. Specifically, we focus on large communities where enough rare 

events may be observed that a meaningful study can be conducted.  

Risk refers to the probability of an event occurring given all possible outcomes, 

whereas odds refers to the probability of an event occurring compared to the probability 

of the event not occurring. [95] Relative risk of the associated count outcome, which is 

defined as the ratio of the risk of an event occurring in one group versus the risk of the 
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event in another group, is often of interest, and several approaches have been proposed, 

as well as used in practice, in order to estimate relative risk. Relative risk is often 

confused with odds ratio, and cannot be interpreted the same way. Discrepancies between 

the measures can result in incorrect reporting. [96] [97] Despite this, when events are 

rare, risk and odds are approximately equal. [98] When an event’s marginal probability is 

less than or equal to 0.1, the event is considered to be rare, and relative risk and odds 

ratio can be used interchangeably under the “rare disease assumption”. [99] The focus of 

this chapter will be restricted to events that fall under this assumption. 

 

Description of Count Data and Overdispersion 

Because count data caused by clustering appear so frequently in epidemiological 

settings, both in CRTs and in observational studies, it is crucial that researchers 

understand how to most effectively model the prevalence or incidence rate of an 

outcome, such as a disease or disorder. The outcome of interest in both motivating 

examples is a community-level count of the number of opioid overdose fatalities. In 

general, in this Chapter, we are interested in rare subject-level events that can occur at 

most once per person that are collected at the community level and are treated as count 

outcomes. This resulting community-level count outcome is the sum of person-level 

binary event indicators. Thus, conditional on each community or cluster, this count 

outcome can be considered to follow a binomial distribution, where the number of trials 

is equal to the number of residents in the community. Because of the binomial nature of 

the outcome variable, binomial regression using a logit link function, hence logistic 

regression, is a natural approach to utilize. [100] [101] The focus of this chapter is on rare 
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events, and a binomial outcome with a large number of residents within a community will 

behave like a Poisson outcome when events are rare. [102] Because of this, Poisson 

regression would also make sense as an alternative approach to modeling the relative risk. 

Although Poisson regression technically models the rate, it is approximately equivalent to 

risk when events are rare. 

Unfortunately, these models do not allow the potential for overdispersion to be 

considered while estimating regression parameters. Due to the variability of community-

specific probabilities or rates, which average out to marginal or population-averaged 

probabilities that are conditional on community-specific covariate values, count outcomes 

will have variances that are larger than what is assumed by a binomial or Poisson 

distribution. [103] [104] Thus, this count outcome is considered to be overdispersed.  

 

Modeling Methods for Comparison 

To account for this overdispersion when modeling the overall population average, 

we can extend the aforementioned approaches to construct marginal models. In these 

marginal models, we will be incorporating modified regression, which refers to the use of 

empirical standard error estimates, which allows for the possibility of valid inference in 

cases where the overdispersion structure is misspecified. [8] [9] Hence, inference will be 

based on quasi-likelihood. [109] 

Modified overdispersed binomial regression can be used as an extension of 

binomial regression using either a logit or a log link function. This is the most natural 

approach since the data being analyzed follow an unknown overdispersed binomial 

distribution. In general, the use of the SAS commands PROC GENMOD or PROC 
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GLIMMIX is appropriate for modeling cluster-level count outcomes. [73] However, this 

regression approach assumes a common intra-cluster correlation coefficient (ICC), which 

measures the degree of similarity between individual responses within a cluster. [103] 

Coding an overdispersed binomial regression model in SAS could be done through the 

use of, for example, PROC LOGISTIC, in order to estimate the ICC through Williams’ 

method. [105] However, in order to incorporate empirical standard error estimates, the 

additional use of PROC GENMOD or PROC GLIMMIX is required. [40] Despite this 

method’s drawbacks in terms of ease of coding, it is an important method to include due 

to its theoretical properties and its traditional use.  

Modified negative binomial regression is an extension of Poisson regression that 

uses a different functional form for the overdispersion and hence ICC. [72] Negative 

binomial regression has been proposed as an alternative to overdispersed binomial 

regression to model rare outcomes in large communities, and assumes a common 

overdispersion parameter k in the overdispersion structure. [72] Like Poisson regression, 

negative binomial regression is a method that is familiar to epidemiologists, making it an 

ideal choice if it can perform similarly or better in terms of validity of inference and 

power compared to the other methods. Additionally, negative binomial regression, unlike 

overdispersed binomial regression, can be coded using just SAS GLIMMIX or 

GENMOD. 

Finally, modified Poisson regression is another feasible method of modeling the 

data that assumes no overdispersion. [10] [106] However, modified Poisson regression 

inherently accounts for the overdispersion present in the data, and is analogous to 

assuming a specific overdispersion structure, such that the ICC and cluster size are 
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inversely related. Modified Poisson regression, like negative binomial regression, can be 

coded using only SAS GLIMMIX or GENMOD. If the modified Poisson model can be 

shown to perform similarly or better compared to the other regression models in terms of 

validity of inference and outperform other regression methods, the familiarity of Poisson 

regression and its ability to directly estimate relative risk are aspects of the model that 

epidemiologists may find appealing. These three methods are the main approaches to 

modeling the count outcome of interest that will be compared. 

 

Goals: Valid Inference, Optimal Power, and Practicality 

 We hope to elucidate the potential of each of the three described methods in 

modeling cluster-level overdispersed binomial count data through simulation studies for 

both CRT and observational study settings, as well as an application example for the 

observational study setting. Each of the three methods models the overdispersion 

structure of the data differently, but can all yield valid inference, given an appropriate 

standard error estimator. More accurately modeling the overdispersion structure can, in 

theory, result in greater efficiency of regression parameter estimates and thus improved 

power. [102] [107] This theoretical power increase drives our study of the regression 

approaches under their assumed overdispersion structures in order to identify relative 

power advantages and limitations. 

First, in order to properly compare power across the approaches, we must verify 

that these regression methods are able to ensure valid inference, ideally at the nominal 

level. To account for potentially inflated test sizes due to small numbers of clusters, 

multiple bias corrections will be studied in order to determine the preferred empirical 
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standard error estimator. If inference is valid, power comparisons are appropriate, as 

power will not be artificially inflated by a test with size that is too liberal. Simulations 

will be conducted for both CRT and observational study settings, and test sizes will be 

compared across various bias correction methods. Next, the power of the three regression 

methods will be compared across a variety of settings. We expect, given the use of 

appropriate bias-corrected empirical standard error estimates, all three regression 

approaches to result in valid inference. Additionally, we expect the regression approach 

that corresponds to the given true overdispersion structure to be the most powerful, as 

correctly modeling the overdispersion structure should reduce true standard errors and 

improve power. [102] [107] 
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Methods 

Overview 

 In the first part of this section, we will begin by describing the concept of 

overdispersion, as this is a key statistical concept in terms of power, and possibly validity 

of inference, that is differently addressed by the regression methods we will compare. 

Next, the three regression methods used will be described in detail. Modifications to the 

models used, including bias correction methods, are presented next.  

The second part of this section will focus on the simulation studies and 

application example. First, a description of the methods used to construct and execute the 

simulation studies for both the CRT and observational study settings will be provided. 

Additionally, the process used to compare validity of inference and power across the 

various settings will be detailed. Finally, a description of the application example based 

on a cross-sectional observational study of opioid overdose fatalities in Kentucky will be 

given. The HCS example data will not be analyzed. 

 

Overdispersion 

As noted above in this chapter, probabilities can vary across clusters, even though 

they may have the same covariates in the statistical model. Thus, the variance of the 

count outcome can be higher than those assumed by either binomial or Poisson regression 

models, which are approximately equivalent in the rare event settings of focus. [103] The 

modeled variance should try to accurately account for this inflation, as this can 

potentially increase power through reduced standard errors. 
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Let 𝑁 denote the number of clusters. Given 𝜃𝑁, the unknown community-specific 

probability, the count outcome 𝑌𝑖 for each cluster 𝑁 = 1, . . . ,𝑁 can be considered to arise 

from a binomial distribution - 𝑁(𝑁𝑁,𝑁𝑁) – where 𝑁𝑁 is the cluster size, e.g. the number 

of residents in cluster 𝑁. The marginal probability of the outcome, which is the 

population average of community-specific probabilities, or 𝐸(𝜃𝑖), can be expressed as 

𝜋𝑁, and thus the marginal mean of the count outcome conditional on cluster-level 

covariate values is equal to 𝑁𝑁𝑁𝑁. [36] The ICC for cluster 𝑁, 𝜌
𝑁

, is defined as the ratio 

of the variance of the community-specific probabilities to the marginal variance of a 

subject-level binary outcome: 𝜌
𝑁

= 𝑁𝑁𝑁(𝑁𝑁)/[𝑁𝑁(1 − 𝑁𝑁)]. [2] [103] [104] [108] 

When data are analyzed at the subject level, 𝜌
𝑁

 represents the exchangeable correlation 

among binary subject-level outcomes from any two subjects in cluster 𝑁. [103] In 

general, the variance of the count outcome can be expressed as 𝑁𝑁𝑁(𝑁𝑁) =

𝑁𝑁𝑁𝑁(1 − 𝑁𝑁)[1 − (𝑁𝑁 + 1)𝑁𝑁], where the multiplicative factor of the variance, [1 −

(𝑁𝑁 + 1)𝑁𝑁], is referred to as the variance inflation factor (VIF), and is the true but 

unknown form for the overdispersion. [108]  

In reality, it is impossible to know the true values of 𝜌
𝑁

. Because of this, the VIF 

is unknown. The three regression methods compared below use different working forms 

for the VIF, and are described in the next subsection. By choosing a method whose 

working form is closer to the true VIF, the estimation of the regression parameters can be 

more efficient, thus reducing the standard errors and increasing power. [102] [108] 

Therefore, theoretically, if one of our three methods correctly models the true VIF, it 

should be equally or more powerful than the other methods. 
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A quasi-likelihood approach to fitting these models is suitable because the true 

likelihood or distribution is unknown. [109] When using the quasi-likelihood approach, 

only working forms for the marginal mean and variance must be specified in order to 

potentially attain valid inference. By specifying a working form for the variance, the 

quasi-likelihood approach is able to account for overdispersion present in the data 

through a multiplicative overdispersion factor, as described above. The details of the 

working forms of each of the regression methods are presented in Table 3.1. We note that 

empirical standard errors, described below, are used as the working form for the 

overdispersion or VIF and may not be the true form. 

 

Regression Models 

Overdispersed Binomial Model 

One possible overdispersion structure in the overdispersed binomial model 

assumes a common ICC, denoted by 𝜌, which is an assumption that is generally taken due 

to limitations in statistical software. [102] The marginal mean for the modeled mean for 

𝑌𝑖, which is the number of events in cluster 𝑖 and is based on a logistic regression model, 

is given by 

𝜇𝑖 = 𝑛𝑖

𝑒𝒙𝒊𝜷

1 + 𝑒𝒙𝒊𝜷
, 𝑖 = 1, … , 𝑁 

The modeled variance is given by  

𝑉𝑎𝑟(𝑌𝑖) = 𝑛𝑖𝜋𝑖(1 − 𝜋𝑖)[1 + (𝑛𝑖 − 1)𝜌], 𝑖 = 1, … , 𝑁 

Where 𝜋𝑖 represents the marginal probability of the event for a person in cluster 𝑖 and 𝑛𝑖 

represents the number of individuals in cluster 𝑖. 
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When assuming a common ICC, 𝜌, the working or assumed form for the VIF is 

given by 1 + (𝑛𝑖 − 1)𝜌. With this assumption, the VIF, and thus regression parameter 

estimates, can be influenced by cluster size. [108] If the true overdispersion structure of 

the count data being modeled follows a common ICC, the overdispersed binomial 

regression approach assuming a common ICC should be the most powerful. 

Alternatively, a traditional assumption for how the overdispersion is modeled is to 

assume the VIF, 𝜙, is common amongst all clusters. [110] While this assumption may not 

reflect the true nature of the overdispersion, the VIF and resulting parameter estimates 

generated by this approach are not influenced by the variation in cluster size, unlike the 

assumption of a common ICC. [107] [111] This overdispersion structure will be the focus 

of modified Poisson regression, which will be discussed below, and results for 

overdispersed binomial regression using this overdispersion structure will not be 

presented. 

Traditionally, an overdispersed binomial regression approach uses a logit link 

function, as described above, which estimates the odds ratio for the count outcome. When 

events are rare, the log link function, which estimates relative risk, can be used as an 

approximation, and will result in regression parameter estimates that are similar to those 

when a logit link function is used. [72] In addition, log binomial regression models have 

been found to have convergence issues in some settings, especially when additional 

continuous covariates are included, so other methods must be used in these scenarios. 

[106] [112] [113] Despite these drawbacks, the modified overdispersed binomial 

regression model is an important approach to compare, and if it can be shown to perform 

similarly to modified negative binomial regression and modified Poisson regression in 
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terms of validity of inference, and outperform them in terms of power, it would be a 

reasonable choice for researchers aiming to model overdispersed binomial count data. 

 

Modified Poisson Model 

To estimate relative risk directly, in addition to log binomial regression, Poisson 

regression is a common approach. [114] When dealing with overdispersed binomial count 

data, there exist issues with these two approaches as they are normally used.  Log 

binomial regression models often result in convergence issues, even when applied to 

clustered data, which can result in a failure to estimate relative risk. [106] [112] [113] 

Poisson regression does not experience these convergence issues. However, Poisson 

regression, just like log binomial regression, does not account for the overdispersion 

present in overdispersed binomial count data, which makes it an inappropriate approach 

in this situation.  

A proposed solution to this issue is the modified Poisson regression approach. In 

modified Poisson regression, the modeled mean for 𝑌𝑖, which is the number of events in 

cluster 𝑖, is given by 

𝜇𝑖 = 𝑛𝑖𝑒𝒙𝒊𝜷, 𝑖 = 1, … , 𝑁 

And the modeled variance is given by 

𝑉𝑎𝑟(𝑌𝑖) = 𝑛𝑖𝜆𝑖 , 𝑖 = 1, … , 𝑁  

Where 𝜆𝑖 represents the marginal rate per person in cluster 𝑖 and 𝑛𝑖 represents the number 

of individuals in cluster 𝑖. The offset in the model is ln (𝑛𝑖). 

Modified Poisson regression was initially proposed as an alternative to binomial 

regression in scenarios with independent binary outcomes. However, it has also seen use 
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in the analysis of clustered data, and has been shown to experience fewer convergence 

issues than binomial regression, even when the data are clustered. [106] [115] [116] In 

modified Poisson regression, a Poisson model is fit using empirical sandwich standard 

errors to account for the overestimated variance that results when Poisson regression is 

normally applied to binomial data. [10] Using empirical sandwich standard errors results 

in consistent parameter estimation, and thus valid inference, even when the 

overdispersion structure is misspecified. Because the event of interest is rare, modified 

Poisson regression’s overdispersion structure corresponds to that of overdispersed 

binomial regression assuming a common VIF. 

In addition to the lack of convergence issues and improved estimation, modified 

Poisson regression has the advantage of being an extension of Poisson regression. For 

those who are familiar with using Poisson regression for modeling relative risk of a count 

outcome, which can be approximated to rate per person for rare events, modified Poisson 

regression serves as a similar approach. Modified Poisson regression, like negative 

binomial regression, can also be coded easily in a variety of statistical software. If 

modified Poisson regression can be shown to perform similarly to other methods in terms 

of validity of inference, and outperform other methods in terms of power when its 

assumed overdispersion structure matches the true overdispersion structure, it can 

potentially be a useful tool for researchers who are familiar with Poisson regression. For 

these reasons, modified Poisson regression is an important alternative method to explore 

in the context of epidemiological studies.  

 

Negative Binomial Model 
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In the negative binomial regression model, the modeled mean for 𝑌𝑖, which is the 

number of events in cluster 𝑖, is given by 

𝜇𝑖 = 𝑛𝑖𝑒𝒙𝒊𝜷, 𝑖 = 1, … , 𝑁 

And the modeled variance is given by 

𝑉𝑎𝑟(𝑌𝑖) = 𝑛𝑖𝜆𝑖(1 + 𝑘𝑛𝑖𝜆𝑖), 𝑖 = 1, … , 𝑁 [72] [117] 

Where 𝜆𝑖 represents the marginal rate per person in cluster 𝑖 and 𝑛𝑖 represents the number 

of individuals in cluster 𝑖. The offset in the model is ln (𝑛𝑖). 

Epidemiological studies are often interested in relative risk, which negative 

binomial regression is naturally tailored to. While Poisson regression is also used with 

community-level count data that are commonly found in epidemiological studies, and can 

directly estimate relative risk, negative binomial regression has the ability to account for 

the overdispersion that may be present in the data. Westgate et al. proposed the use of 

negative binomial regression as a practical approach to modeling rare count outcomes in 

large communities. [72] Compared to overdispersed binomial regression, negative 

binomial regression has some advantages. First, it is already a commonly used method 

for modeling relative risk in epidemiological settings. [118] [119] The second advantage 

of negative binomial regression, compared to overdispersed binomial regression, is that it 

can be performed easily in any type of statistical software, including the use of empirical 

standard errors. A less tedious approach that performs similarly to other approaches is 

preferable for accessibility. If negative binomial regression can be shown to have similar 

or greater power and validity of inference compared to other regression approaches in our 

study settings, researchers who use this method due to familiarity can be confident in its 
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ability to properly model the count outcome of interest in scenarios where its use is 

appropriate. 

 

Modifications for Valid Inference 

Through unbiased estimating equations and empirical sandwich standard error 

estimators, sometimes referred to as Huber-White standard errors, we can retain valid 

inference even when the covariance structure is not correctly specified. [8] [9] However, 

when the number of clusters is small, the robust empirical sandwich estimator is 

negatively biased due to residuals being too small on average. [120] This can result in 

inflated test size, which can impact valid inference for any approach using these 

empirical standard errors.  

To correct for this, several bias corrections are commonly used in CRT settings. 

Both Kauermann and Carroll as well as Mancl and DeRouen have proposed bias 

corrections to the covariance estimator that reduce bias in small sample scenarios. [120] 

[121] Westgate and Ford found that using the average of the Kauermann and Carroll and 

Mancl and DeRouen corrections with degrees of freedom equal to the number of clusters 

minus the number of regression parameter estimates results in close to nominal test sizes, 

even when the number of clusters is few or cluster size varies greatly. [122] [123]  

We will denote modeling methods that use empirical sandwich standard errors as 

“modified”. Because of the utility of modified regression approaches in producing valid 

inference in small-sample settings, the three primary approaches of interest - negative 

binomial, overdispersed binomial, and Poisson - will be compared using their modified 

versions. This way, researchers interested in analyzing count data will find results from 
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these comparisons applicable, even when the number of clusters is small and the 

overdispersion structure is not correctly specified.  

 

Simulation Studies 

 The goal of this paper is to evaluate regression approaches used in both CRT and 

observational study settings. To do this, we will conduct simulation studies to compare 

the validity of inference and power of modified negative binomial, modified 

overdispersed binomial, and modified Poisson regression approaches within the context 

of our motivating examples. These simulation studies will consist of a series of 10,000 

replications per studied setting (described below) motivated by the setup of the HCS in 

Kentucky or the cross-sectional observational study of opioid overdose fatalities in 

Kentucky in 2021 across a variety of settings. These settings vary in parameters such as 

number of clusters, the true structure of the overdispersion in the count outcome, and 

marginal probability of the count outcome. For each setting, modified Poisson regression, 

modified overdispersed binomial regression, and modified negative binomial regression 

will be compared in terms of empirical size and power.  

 

Cluster Randomized Trial Settings 

 The simulated data sets for the CRT settings will be motivated by opioid overdose 

fatalities based on the setup of the HCS in Kentucky. [90] [91] For each simulation, half 

of the clusters will be assigned to the intervention arm and the other half will be assigned 

to the control arm. To compare the effect of the number of clusters on size and power, 

simulations with 5, 8, and 20 clusters per arm will be conducted. Trial arm, the main 
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independent variable of interest, will be represented by an indicator variable in the 

statistical model. Simulations will also be conducted using an additional continuous 

covariate. This covariate will be generated from a uniform distribution whose parameters 

mirror the unemployment rates of the 16 HCS counties. The linear predictor for the 

models used in these simulations to determine power and size can be written as follows: 

𝛽0 + 𝛽1𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑖 + 𝛽2𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖, 𝑖 = 1, … , 𝑁 

where 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑖 refers to the trial arm assignment, where 1 is the intervention arm 

and 0 is the control arm, of county 𝑁. 〖𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡〗_𝑖 refers to the 

unemployment rate of county 𝑁, and will be included in the data sets with the simulated 

unemployment rates. 

The size of each cluster will be generated from a negative binomial distribution 

with a mean cluster size of 89600 and a dispersion parameter of 0.385, which mirror the 

county-level populations in the HCS counties in Kentucky. The count outcome for each 

county will be generated from a beta-binomial distribution. In the beta-binomial 

distribution, the probability used to sample from the binomial distribution is based on a 

beta distribution. [124] In this distribution, the true overdispersion structure of the data 

dictate the scale and shape parameters of the beta distribution. The marginal probability 

of the event and the ICC are used to generate the scale and shape parameters for each 

setting, and are described below.  

The marginal probability of the event will range from 0.0004, which is based on 

the average opioid overdose fatality rate in the HCS counties in Kentucky, to 0.1, which 

is considered the upper threshold for what is considered a rare event. Since the 

overdispersion of the count outcome is unknown, we will consider three possible true 
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structures, and simulated data sets will be generated for all settings for each of the three 

structures. The first structure is one where the ICC is common across all clusters, 

corresponding to the structure assumed by the overdispersed binomial regression model. 

Simulations will be conducted using ICC values that are 5% and 10% of the marginal 

probability. The second overdispersion structure of interest utilizes a common 

overdispersion parameter, k, which corresponds to the overdispersion structure assumed 

by the negative binomial distribution. In these simulations, the overdispersion parameter, 

k, will be generated such that the mean of the ICC will be equal to either 5% or 10% of 

the marginal probability. Finally, the third overdispersion structure assumes a common 

VIF, which corresponds to the structure assumed by modified Poisson regression. In 

these simulations, the VIF will be generated such that the mean of the ICC across all 

clusters will be equal to either 5% or 10% of the marginal probability.  

For the simulations used to calculate test size, marginal probabilities will be equal 

in both arms. For the power calculations, simulated data sets where the marginal 

probability of the intervention arm is 20% and 40% lower than that of the control arm 

will be generated. For all settings, we will use degrees of freedom equal to the number of 

clusters minus the number of regression parameter estimates. [123] We study three bias 

correction methods - Kauermann and Carroll, Mancl and DeRouen, and the average of 

these two bias correction methods – which will be compared to determine which works 

best in terms of validity of inference in our study settings. By choosing the bias 

correction that results in the test size that is closest to the nominal size of 0.05 for each 

regression method, we can potentially ensure fair and valid power comparisons among 

the three regression methods. 
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Observational Study Settings 

 For the simulation study based on a cross-sectional observational study of opioid 

overdose fatalities across the 120 counties of Kentucky, we will be using metropolitan 

status as the main independent variable of interest, and unemployment rate as an 

additional covariate included in the models. In each simulation, there will be 120 clusters, 

corresponding to the 120 Kentucky counties. Of these 120 counties, based on the 2013 

Rural-Urban Continuum Codes, 35 are considered metropolitan, with the remaining 85 

being non-metropolitan, and the 120 clusters in the simulations will mirror this 

distribution. [65] 

The cluster size for each county will be generated from a negative binomial 

distribution with parameters corresponding to those of counties with the corresponding 

metropolitan status in Kentucky – a mean cluster size of 57802 and a dispersion 

parameter of 0.302 for metropolitan counties and a mean cluster size of 16667 and a 

dispersion parameter of 1.793 for non-metropolitan counties. Similarly, the parameters 

for the uniform distribution generating unemployment rate will depend on whether the 

cluster is considered metropolitan or non-metropolitan. These parameters will be based 

on the minimum and maximum county-level unemployment rates in Kentucky in 2021, 

which range from 3.5% to 12.5% for metropolitan counties and 3.4% to 6.8% for non-

metropolitan counties. The marginal probabilities and overdispersion structures used for 

the CRT settings will also be used for the observational study settings, with power 

calculations being conducted using simulated data sets where the marginal probability of 

the non-metropolitan counties being 20% or 40% lower than that of the metropolitan 
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counties. As with the simulation studies for the CRT settings, we will be utilizing degrees 

of freedom equal to the number of clusters minus the number of regression parameter 

estimates, along with empirical standard error estimates incorporating the three bias 

correction methods previously outlined in order to determine which bias correction 

method most effectively ensures valid inference in our settings. 

  

Comparing Test Size and Power for Simulations 

We will compare test sizes produced by each of the three regression methods of 

interest and choose the bias correction method that results in test sizes closest to the 

nominal test size of 0.05 for power calculations. For both the CRT and observational 

study simulations, we will be choosing a bias correction method suitable for each 

regression method. Although the performance of each of the bias corrections may differ 

depending on the true overdispersion structure of the data, each regression method will 

use a single bias correction for all power calculations, regardless of the overdispersion 

structure. Once the bias corrections are chosen, they will be used to compare power 

across the three regression methods.  

For each regression method, the bias correction method with the highest 

percentage of test sizes with corresponding 95% confidence intervals covering 0.05 

(between 0.046 and 0.054) will be chosen for power comparisons. This range will be 

referred to as the nominal target range, and the bias correction method with the most test 

size calculations within this range will be preferred. It is also important to avoid bias 

corrections that result in test sizes that are too large, which can compromise valid 

inference. Because of this, a second range corresponding to all test sizes equal to or 
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below 0.054, which will be referred to as the valid target range, will be used to compare 

bias corrections to ensure valid inference. We will prioritize choosing a bias correction 

method with the highest percentage of test sizes within the nominal target range, but if 

multiple bias correction methods produce similar or equal proportions within the nominal 

range, the bias correction method with the highest percentage within the valid target 

range will be chosen. Although bias correction methods with a higher percentage of test 

sizes within the valid target range may result in a power reduction, using this range to 

select a bias correction method may be necessary to ensure valid inference. Test size 

results are presented in Table Series 3.1 and Table Series 3.3, with test sizes within the 

nominal target range in bold, and test sizes within the valid target range underlined. The 

proportions of test sizes within the nominal and valid target ranges are presented in 

Tables 3.2 and 3.3. Power calculations using the chosen bias correction for all settings 

will be presented in Table Series 3.2 and Table Series 3.4. 

 

Observational Study Application Example 

In addition to the simulation study, we will be comparing the three regression 

methods of interest in a practical setting by using cross-sectional opioid overdose fatality 

data across the 120 counties in Kentucky in 2021. Similar to the simulation study based 

on this example, the regression models used will utilize community-level covariates 

based on metropolitan status and unemployment rate. The linear predictor for the models 

used in this application example can be written as follows 

𝛽0 + 𝛽1𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑡𝑎𝑛𝑖 + 𝛽2𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖, 𝑖 = 1, … ,120 
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where 𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑡𝑎𝑛𝑖 refers to the metropolitan status, where 1 is urban and 0 is rural, of 

county 𝑁, and 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 refers to the unemployment rate of county 𝑁. For each 

regression model, parameter estimates and standard error estimates for the intercept and 

the two community-level covariates will be reported and compared. Results for all three 

bias correction methods will be presented in order to compare results. By conducting this 

example based on existing data, we hope to support the results offered by the simulation 

study and provide researchers with a practical application of the various regression 

methods discussed in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

Results 

CRT Simulations 

Test Size 

 The proportion of test sizes within the valid and nominal target ranges for the 

CRT simulations are presented in Table 3.2. All test size results are presented in Table 

Series 3.1. 

 

Overdispersed Binomial Regression 

When the true overdispersion structure involved a common ICC or a common 

overdispersion parameter k, test sizes were close to nominal most often when the average 

of the KC and MD bias corrections were utilized, as 60% of test sizes across all settings 

were within the nominal target range. However, utilizing the KC bias correction resulted 

in test sizes closest to 0.05 when the overdispersion structure utilized a common VIF, as 

48% of test sizes were within the nominal target range, as opposed to 8% when the 

average of the KC and MD bias corrections was used. None of the test sizes were within 

the nominal target range when the MD bias correction was used. In general, using the KC 

bias correction resulted in inflated test sizes when the true overdispersion structure 

involved a common ICC or a common overdispersion parameter k. Additionally, for all 

true overdispersion structures, test size calculations were within the valid target range 

when the MD or the average of the KC and MD bias corrections were used. Thus, the 

average of the KC and MD bias corrections will be used for power calculations for the 

overdispersed binomial regression simulations to ensure valid inference.  
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Negative Binomial Regression 

Across all settings, the average of the KC and MD bias corrections resulted in test 

sizes within the nominal target range 38% of the time, compared to 22% and 23% for the 

KC and MD bias corrections, respectively. Additionally, the percentage of test sizes 

within the nominal target range was higher for all three overdispersion structures when 

the average of the KC and MD bias corrections was used. However, it is important to 

note that, when marginal probabilities were low (0.0004 and 0.001), test sizes were 

slightly inflated. When the true overdispersion structure was that of a common ICC or a 

common overdispersion parameter k, using the average of the KC and MD bias 

correction resulted in only 58% of test sizes falling within the valid target range. 

Comparatively, 100% of test sizes were within the valid target range when using the MD 

bias correction. Although using the MD bias correction may result in a small power loss 

due to it being a more conservative method, it will be used to ensure valid inference. 

 

Poisson Regression 

The MD bias correction produced test sizes closest to 0.05, with 27% of test sizes 

across all settings falling within the nominal target range, as opposed to 0% and 11% for 

the KC and average of KC and MD bias corrections, respectively. However, test sizes 

were liberal when the true overdispersion involved a common ICC or overdispersion 

parameter k, as none of the test sizes were within the nominal target range when the KC 

or average of KC and MD bias corrections were used. When the true overdispersion 

structure involved a common VIF, however, both the MD and the average of the KC and 

MD bias corrections produced test sizes within the 95% confidence interval in 35% of 
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settings. However, 100% of settings utilizing the MD bias correction resulted in test sizes 

within the valid target range, compared to 0% and 45% for the KC and average of KC 

and MD bias corrections, respectively. Thus, in order to ensure valid inference, the MD 

bias correction must be used for modified Poisson regression. 

 

Summary 

In summary, for the purposes of comparing power while ensuring valid inference, 

the MD bias correction will be used for modified Poisson regression and modified 

negative binomial regression, and the average of the KC and MD corrections will be used 

for modified overdispersed binomial regression. However, as mentioned above, using the 

MD bias correction for modified negative binomial regression may result in conservative 

power calculations when the true overdispersion structure involves a common ICC or a 

common overdispersion parameter k. Also, despite the MD bias correction being the most 

conservative, power calculations for modified Poisson regression may still be slightly 

inflated. These bias correction methods, based on our test size results, will ensure valid 

inference in most settings.  

 

Power 

 Power calculations corresponding to bias corrections that result in the most valid 

inference are presented in Table Series 3.2. Similar trends in power were observed across 

settings whether or not an additional covariate was included in the model.  

When the true overdispersion structure involved a common ICC or common 

overdispersion parameter k, modified overdispersed binomial regression was the most 
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powerful approach, although the difference in power compared to modified negative 

binomial regression was small. Additionally, for all three methods, as marginal 

probability increased, so did power. Both modified negative binomial and modified 

overdispersed binomial regression were, in general, slightly more powerful than modified 

Poisson regression when marginal probability was low, especially as the number of 

clusters increased. The power difference between the former two models and modified 

Poisson regression increased as marginal probability increased.  

When the true overdispersion structure involved a common VIF, power for 

modified Poisson regression was consistently higher than for the other two regression 

methods, and the power increased as marginal probability increased. Additionally, the 

difference in power between modified Poisson regression and the other two regression 

methods increased as marginal probability increased. For example, in the setting with 8 

clusters per arm, no covariate adjustment, a 20% difference in marginal probability 

between the two groups, and a mean ICC equal to 10% of the marginal probability, 

modified Poisson regression has a power of 0.353, which is 0.040 higher than that of 

modified negative binomial regression (0.313) and 0.055 higher than that of modified 

overdispersed binomial regression (0.298) when the marginal probability is 0.0004. 

However, when the marginal probability is 0.1, modified Poisson regression has a power 

of 0.874, which is 0.554 higher than that of modified negative binomial regression 

(0.320) and 0.534 higher than that of modified overdispersed binomial regression (0.340). 

Although the differences in power between modified negative binomial regression and 

modified overdispersed binomial regression are small, it is important to note that 

modified overdispersed binomial regression was more powerful than modified negative 
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binomial regression when the marginal probability was 0.1, but was less powerful when 

the marginal probability was lower.  

 

Observational Study Simulations 

Test Size 

 The proportion of test sizes within the valid and nominal target ranges for the 

observational study simulations are presented in Table 3.3. All test size results are 

presented in Table Series 3.3. 

 

Overdispersed Binomial Regression 

 In general, for overdispersed binomial regression, the MD bias correction 

produced test sizes closest to 0.05, as 50% of test sizes across all settings were within the 

nominal target range. When the overdispersion structure involved a common ICC, the 

MD bias correction outperformed the other two bias correction methods, with all test 

sizes falling within the nominal and valid target range, as opposed to 38% and 13% for 

KC and the average of the KC and MD bias corrections, respectively. When the 

overdispersion structure involved a common overdispersion parameter k, the MD bias 

correction resulted in a test size calculation within the nominal target range for just one 

setting, whereas the other two bias corrections did not result in any test size calculations 

within the nominal target range. When the overdispersion structure involved a common 

VIF, the average of the KC and MD bias corrections performed the best, as 88% of the 

test size calculations fell within the nominal target range, compared to 63% for the KC 

bias correction and 38% for the MD bias correction. However, the MD bias correction 
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resulted in 100% of test sizes within the valid target range, compared to 38% for the KC 

bias correction. Since test sizes were generally inflated for the other two overdispersion 

structures when the average of the KC and MD bias corrections was used, the MD bias 

correction must be used to ensure valid inference. 

 

Negative Binomial Regression 

For modified negative binomial regression, the MD bias correction produces test 

sizes closest to 0.05, with 54% of test sizes across all assumed overdispersion structures 

falling within the nominal target range, as opposed to 13% for the KC bias correction and 

25% for the average of the KC and MD bias corrections. However, these test sizes are 

slightly liberal, as when the overdispersion structure is that of a common ICC or common 

k, the KC bias correction method produces no test sizes within the valid target range, and 

the MD and the average of the KC and MD bias corrections produce only 38% and 13% 

of test sizes within the valid target range, respectively. When the overdispersion structure 

is that of a common VIF, 100% of the test sizes fall within the valid target range when 

using the MD bias correction, as opposed to 38% and 63% for the other two bias 

correction methods. To ensure valid inference, the MD bias correction will be used for 

modified negative binomial regression when comparing power. 

 

Poisson Regression 

For modified Poisson regression, when the overdispersion structure assumed a 

common VIF, which corresponds to the overdispersion structure assumed by modified 

Poisson regression, all test sizes were within the nominal target range when using the MD 
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bias correction. However, test sizes were liberal (ranging from 0.070 to 0.087) when the 

overdispersion structure was assumed to have a common ICC or overdispersion 

parameter k, meaning none of the test sizes for these two overdispersion structures were 

within the nominal or valid target ranges. Thus, the MD bias correction will be used with 

modified Poisson regression. However, it is important to note that if the true 

overdispersion structure involves a common ICC or a common overdispersion parameter 

k, the empirical powers will likely be inflated. 

 

Summary 

In summary, for all three methods, the MD bias correction will be used to 

calculate power. However, it is important to highlight that if the true overdispersion 

structure follows a common overdispersion parameter k or a common ICC, power will 

likely be inflated for all three methods. Regardless, the MD bias correction is one that is 

the most likely to ensure valid inference and fair comparison of power across the three 

methods. 

 

Power 

 Power calculations corresponding to bias corrections that result in the most valid 

inference are presented in Table Series 3.4. In all settings, modified negative binomial 

regression was slightly more powerful than modified overdispersed binomial regression, 

with power differences ranging from 0.010 to 0.055. This difference was most 

pronounced when marginal probabilities were low, and as marginal probabilities 

increased, the difference in power between the methods decreased.  
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When the true overdispersion structure assumed a common ICC or overdispersion 

parameter k, both regression methods resulted in power that was significantly higher than 

that of modified Poisson regression. The difference in power also increased as marginal 

probability increased. For example, in the setting with a true overdispersion structure 

involving a common ICC, when the marginal probability difference between the groups 

was 20%, and the ICC was 5% of the marginal probability, the difference in power 

between modified negative binomial regression and modified Poisson regression ranged 

from 0.064 (0.475 vs. 0.411) when the marginal probability was 0.0004 to 0.361 (0.954 

vs. 0.593) when the marginal probability was 0.1.  

However, when the true overdispersion structure assumed a common VIF, 

modified Poisson regression was more powerful than modified negative binomial or 

modified overdispersed binomial regression. This difference in power increased as 

marginal probability increased. Additionally, as marginal probability increased, power for 

modified negative binomial and modified overdispersed binomial regression increased at 

low marginal probabilities before decreasing as marginal probabilities approached 0.1, 

whereas modified Poisson regression increased in power as marginal probabilities 

increased. For example, when the marginal probability difference between the groups 

was 20%, and the ICC was 10% of the marginal probability, modified Poisson regression 

resulted in a power of 0.704, which was 0.022 higher than that of modified negative 

binomial regression (0.683) when the marginal probability was 0.0004. However, when 

the marginal probability was 0.1, the power of modified Poisson regression was 0.997, 

which was 0.295 higher than that of modified negative binomial regression (0.702). 

These trends were consistent across all settings. 
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Application Example 

 Parameter estimates and standard error estimates for all three models and bias 

correction methods are presented in Table 3.4. In general, consistent with the results from 

the simulation study, results from the modified negative binomial and modified 

overdispersed binomial regression models are similar in terms of parameter estimates and 

standard error estimates. However, results from the modified Poisson model are quite 

different from these two. Specifically, regression estimates for both metropolitan status 

and unemployment rate experienced an increase in the modified Poisson regression 

model compared to those from the other two models. The estimate for unemployment rate 

was 0.141 for modified Poisson regression, compared to 0.097 for modified negative 

binomial regression and 0.089 for modified overdispersed binomial regression. For 

metropolitan status, this disparity was even larger, as the estimate was 0.334 for modified 

Poisson regression compared to 0.068 and 0.057 for the other two approaches. 

Additionally, standard error estimates for modified Poisson regression are larger, 

especially that of metropolitan status, where it is nearly double those of the other two 

regression approaches.  

 The differences in parameter and standard error estimates are due to the way the 

overdispersion is modeled for each of the regression methods. For modified Poisson 

regression, the working overdispersion structure is a common VIF among all clusters, 

with estimated ICC varying based on cluster size. Thus, the higher standard errors 

produced as a result of modified Poisson regression suggest that the true overdispersion 

structure of the data does not correspond to the working overdispersion structure, 



71 

 

compared to the other two regression methods. Thus, it is likely that the true 

overdispersion structure is more accurately modeled by modified negative binomial 

regression and modified overdispersed binomial regression.  
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Discussion 

Overview 

In this section, we will highlight the main conclusions of our results and how 

these results can be used to help researchers choose a method for analyzing overdispersed 

binomial count data corresponding to rare events. Next, we will highlight some 

limitations of this work. Finally, we will highlight some potential future studies that can 

help address some of the limitations or expand upon findings from this chapter. One area 

of focus for future studies is the application of the methods studied in this chapter to rare 

events that can occur more than once per person, which is the focus of the fourth chapter 

of this dissertation. 

 

Discussion of Results 

Simulation Studies  

In this chapter, we compared the validity of inference and power of modified 

negative binomial regression, modified Poisson regression, and modified overdispersed 

binomial regression in modeling rare overdispersed binomial count data. In our 

simulation studies, we found that all three methods could result in valid inference. In the 

CRT settings, the MD bias correction resulted in valid inference most often for modified 

negative binomial regression, and the average of the KC and MD bias corrections 

performed well for modified overdispersed binomial regression. However, none of the 

bias correction methods resulted in consistent valid inference for modified Poisson 

regression, although the MD bias correction worked well when the true overdispersion 

structure of the data corresponded to its working overdispersion structure. In the 
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observational study settings, the MD bias correction resulted in valid inference for 

modified negative binomial regression and modified overdispersed binomial regression 

across most settings. None of the bias correction methods resulted in valid inference for 

modified Poisson regression. 

 In terms of power, for both the CRT and observational study simulations, we 

found that when the assumed overdispersion structure was that of a common ICC or 

common overdispersion parameter k, both modified negative binomial and modified 

overdispersed binomial outperformed modified Poisson regression. Additionally, the 

power difference between the former two methods was not very large across all settings. 

We would expect modified negative binomial regression to be the most powerful when 

the overdispersion structure assumes a common overdispersion parameter k, and 

modified overdispersed binomial regression to be the most powerful when the 

overdispersion structure assumes a common ICC, as these overdispersion structures 

correspond to those assumed by each of the models. However, the results imply that the 

performance of these methods does not differ greatly in these settings. 

When the working overdispersion structure was a common VIF, modified Poisson 

outperformed the other two regression methods, and the difference in power increased as 

marginal probability increased. Our hypothesis that modified Poisson regression would 

be the most powerful when the true overdispersion structure matched that which is 

assumed was confirmed. Additionally, the performance of modified negative binomial 

and modified overdispersed binomial regression did not differ greatly across such 

settings. 
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Application Example 

For the application example, in terms of parameter and standard error estimates, 

modified negative binomial regression and modified overdispersed binomial regression 

were very similar. However, the standard error estimates were higher when modified 

Poisson regression was used. This could indicate that the true overdispersion structure did 

not correspond to the working overdispersion structure of Poisson regression. 

Theoretically, using a regression method whose working overdispersion structure 

matches the true overdispersion structure should result in lower standard error estimates.  

  

Considerations for Research 

In general, because modified negative binomial regression and modified 

overdispersed binomial regression performed similarly across our researched settings, 

researchers can choose to use either method interchangeably without a significant loss in 

power. However, the use of simulation studies to ensure these methods are applicable to 

the data and outcome of interest is encouraged. Because the true overdispersion structure 

of the data cannot be known, it is possible that, if there is reason to believe that the true 

ICC is inversely related to cluster size, modified Poisson regression may be appropriate. 

In order to assist with the selection of an appropriate working overdispersion structure, 

several criteria, such as the trace of the empirical covariance matrix (TECM) and the 

correlation information criterion (CIC) have been proposed. [125] [126] Further work is 

necessary to evaluate the performance of such criteria in different settings. 

 One potential drawback for the general use of negative binomial regression is that 

the assumption of large cluster size and rare events may not apply to all CRTs or 
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observational studies of overdispersed binomial count outcomes. When this assumption is 

violated, it is unclear whether negative binomial regression will be an appropriate 

modeling approach because the marginal variance will not be modeled correctly. 

Although the focus of this chapter is on rare events, it is important for the power and 

validity of inference to be compared in these situations in future studies, as researchers 

who are interested in modeling count outcomes where events are not rare must 

understand which approach is more applicable in these circumstances.  

Another important consideration when comparing methods is practicality. 

Because modified negative binomial and modified overdispersed binomial regression 

performed similarly in terms of power across most settings, ease of coding may be an 

important consideration for a researcher looking to choose between the methods. While 

neither approach is exceptionally computationally intensive, the benefit of modified 

negative binomial regression is its ability to be coded using solely PROC GLIMMIX or 

GENMOD in SAS. Modeling using modified overdispersed binomial regression requires 

the additional use of PROC LOGISTIC to estimate the ICC. Another facet to practicality 

is the application of these methods to different kinds of data, such as events that can 

occur more than once per person. Modified negative binomial regression and modified 

Poisson regression, due to their ability to model the marginal relative rate of the event, 

may be more appropriate than modified overdispersed binomial regression in cases where 

the outcome does not correspond to a binomial distribution. Further limitations of this 

chapter’s results are detailed below, and future study is required in order to evaluate these 

methods under different settings. It is important for researchers to carefully consider the 

data set in question before proceeding with a given approach. 
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Limitations and Further Work 

 The focus of this chapter was on rare count outcomes of events that could occur 

only once. However, there are several extensions of this chapter that could contribute to 

future studies. One limitation of our focus is that the data are cross-sectional. In many 

situations, count data may be collected longitudinally. Clustered longitudinal data can be 

analyzed retrospectively in observational studies, and the focus of the researcher may be 

to analyze how factors associated with the data change over time. For example, a 

researcher may be interested in how the association between unemployment and opioid 

overdose fatality rate changed from one year to the next. The results of this chapter do 

not focus on these types of research questions, and further studies can evaluate the 

performance of methods similar to those studied in this chapter, such as negative 

binomial and overdispersed binomial GEE regression, when applied to longitudinal data. 

 Another limitation of this chapter is that the applicability and performance of 

these methods may be worse when applied to data of events that are not rare. With 

respect to rare events, in the simulations, we found regression methods to perform 

differently as marginal probability changed. When the marginal probability of the event 

was exceptionally rare (less than 0.01), all three methods performed more similarly than 

when the marginal probability of the event was not as rare. Specifically, modified 

negative binomial regression and modified overdispersed binomial regression had a 

power advantage over modified Poisson regression when the assumed overdispersion 

structure involved a common k or common ICC, and this power advantage increased as 

marginal probability increased. Additionally, when the assumed overdispersion structure 
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involved a common VIF, modified Poisson regression was more powerful than the other 

two regression methods, and this discrepancy increased as marginal probability increased. 

Further studies of non-rare events and the performance of these regression methods in 

terms of power are necessary. 

 Another potential approach to modeling cluster-level count data is the generalized 

linear mixed-effects model (GLMM). There are several key points to note about the 

GLMM approach. In contrast to marginal modeling, meaning the estimates are 

interpreted at the population level, GLMM approaches result in cluster-specific 

interpretations. In the GLMM setup, the within-cluster correlation is accounted for by a 

random intercept for each cluster, which assumes a uniform correlation. The true 

correlation structure, however, may not be uniform; this misspecification may result in 

invalid inference, especially when the number of clusters is small. In contrast to this, 

GEE modeling has the ability to use empirical standard error estimates and is thus robust 

to misspecification of the correlation structure, meaning regression parameter estimation 

is consistent even when the correlation structure is misspecified. [127] Although GLMM 

approaches were not of particular interest in this chapter, they are important to note as a 

commonly used alternative to modeling cluster-level count data, and future studies can 

explore the viability of these approaches for modeling data similar to what was studied 

here. 

 Additionally, cluster-summary approaches, which have historically been used in 

CRTs due to their simplicity and robustness, even when the number of clusters is small, 

may be explored in their efficacy when applied to the settings studied in this chapter. [1] 

[128] One cluster-summary approach uses a two-sample t-test with the observed 
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proportions as the cluster-level outcomes. [129] [130] The unweighted version of this 

approach has been shown to produce nominal test sizes, but weights corresponding to 

cluster size are commonly used, and other weighting methods have been proposed. [1] 

[107] [129] In a second cluster-summary approach, a logistic regression model is fit, and 

inference with respect to the intervention effect is done using a two-sample t-test. [131] 

The unweighted version of this approach has been shown to produce nominal test sizes, 

whereas the weighted versions result in inflated test sizes and intervention effect 

estimates with larger variances. [109] Although test size produced by the weighted and 

unweighted versions of cluster-level summary approaches have been compared in the 

literature, there is less existing research on how these methods compare in terms of 

statistical power. [132] [133]  

With respect to the event of interest in our motivating examples, opioid overdose 

fatalities, it is an event that can occur at most once for a given subject. However, there 

exist other types of events in epidemiology that can occur more than once for a given 

subject. For example, non-fatal opioid overdose poisonings are a key outcome of interest 

for the HCS, as they represent opportunities to improve treatment and prevention 

amongst those who misuse opioids. In this scenario, the event of interest can happen 

more than once for any given subject within a cluster. Thus, the assumption of the models 

used in this chapter that the subject-level outcome is binary no longer applies. Future 

studies, including the following chapter, can aim to compare the performance of models 

for count data where people can have the event more than once. 
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Supplemental Materials 

Table 3.1 Details of Regression Methods Being Compared 

Regression method, 

working overdispersion 

structure 

Negative Binomial, 

common k 

Overdispersed 

Binomial, common ICC 

Poisson, 

common VIF 

Regression Model 

Including Link 

Function 

𝑙𝑛(𝜆𝑖) = 𝒙𝒊𝜷 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝒙𝒊𝜷 𝑙𝑛(𝜆𝑖) = 𝒙𝒊𝜷 

Mean 𝑛𝑖𝑒𝒙𝒊𝜷 
𝑛𝑖

𝑒𝒙𝒊𝜷

1 + 𝑒𝒙𝒊𝜷
≈ 𝑛𝑖𝑒𝒙𝒊𝜷 

𝑛𝑖𝑒𝒙𝒊𝜷 

Variance of 𝑌𝑖 𝑛𝑖𝜋𝑖(1 + 𝑘𝑛𝑖𝜋𝑖) 𝑛𝑖𝜋𝑖(1 − 𝜋𝑖)[1 − (𝑛𝑖 + 1)𝜌] 𝑛𝑖𝜋𝑖𝜙 

VIF 1 + 𝑘𝑛𝑖𝜋𝑖 1 − (𝑛𝑖 + 1)𝜌 𝜙 

ICC 𝜌𝑖 ≈ 𝑘𝜋𝑖  𝜌𝑖 = 𝜌 
𝜌𝑖 =

1

𝑛𝑖 − 1
 

Estimating Equations ∑ 𝑥𝑖
𝑇

𝑁

𝑖=1

𝑌𝑖 − 𝑛𝑖𝜋𝑖

1 + 𝑘𝑛𝑖𝜋𝑖
 ∑ 𝑥𝑖

𝑇
𝑁

𝑖=1

𝑌𝑖 − 𝑛𝑖𝜋𝑖

1 − (𝑛𝑖 + 1)𝜌
 ∑ 𝑥𝑖

𝑇
𝑁

𝑖=1

𝑌𝑖 − 𝑛𝑖𝜋𝑖

𝜙
 

𝑌𝑖: Number of events out of 𝑛𝑖 subjects in cluster 𝑖 

𝜋𝑖: Marginal probability of event for a given subject in cluster 𝑖 

𝜆𝑖: Marginal rate per subject in cluster 𝑖 

𝑥𝑖𝛽 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 is the linear predictor for cluster 𝑖 

Due to the rarity of events and large cluster sizes, the following approximations are used: 

1 − 𝜋𝑖 ≈ 1, 𝜋𝑖 = 𝜆𝑖, and 1 + 𝑒𝒙𝒊𝜷 ≈ 1 

[72]  
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Table 3.2 Proportions of Test Sizes within Valid and Nominal Target Ranges, CRT 

Settings 

Regression Model True 

Overdispersion 

Form 

Bias Correction Used 

for SE Estimation 

% of Test Sizes Corresponding 

to Valid Inference (<0.054) 

% of Test Sizes Corresponding to 

Nominal Inference (between 0.046 and 

0.054) 

Modified Negative 

Binomial 

Common ICC KC 29% 25% 

MD 100% 35% 

Average of KC/MD 58% 42% 

Common k KC 21% 21% 

MD 100% 29% 

Average of KC/MD 58% 44% 

Common VIF KC 52% 19% 

MD 100% 4% 

Average of KC/MD 85% 27% 

Modified Poisson Common ICC KC 0% 0% 

MD 29% 17% 

Average of KC/MD 0% 0% 

Common k KC 0% 0% 

MD 33% 29% 

Average of KC/MD 0% 0% 

Common VIF KC 0% 0% 

MD 100% 35% 

Average of KC/MD 45% 35% 

Modified 

Overdispersed 

Binomial 

Common ICC KC 40% 40% 

MD 100% 6% 

Average of KC/MD 100% 60% 

Common k KC 35% 35% 

MD 100% 8% 

Average of KC/MD 100% 60% 

Common VIF KC 94% 48% 

MD 100% 0% 

Average of KC/MD 100% 8% 
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Table 3.3 Proportions of Test Sizes within Valid and Nominal Target Ranges, 

Observational Study Settings 

Regression Model True 

Overdispersion 

Form 

Bias Correction Used 

for SE Estimation 

% of Test Sizes Corresponding 

to Valid Inference (<0.054) 

% of Test Sizes Corresponding to 

Nominal Inference (between 0.046 and 

0.054) 

Modified Negative 

Binomial 

Common ICC KC 0% 0% 

MD 63% 63% 

Average of KC/MD 25% 25% 

Common k KC 0% 0% 

MD 13% 13% 

Average of KC/MD 0% 0% 

Common VIF KC 38% 38% 

MD 100% 88% 

Average of KC/MD 63% 50% 

Modified Poisson Common ICC KC 0% 0% 

 
MD 0% 0% 

Average of KC/MD 0% 0% 

Common k KC 0% 0% 

 
MD 0% 0% 

Average of KC/MD 0% 0% 

Common VIF KC 0% 0% 

 
MD 100% 100% 

Average of KC/MD 13% 13% 

Modified 

Overdispersed 

Binomial 

Common ICC KC 13% 13% 

 
MD 100% 100% 

Average of KC/MD 38% 38% 

Common k KC 0% 0% 

 
MD 13% 13% 

Average of KC/MD 0% 0% 

Common VIF KC 63% 63% 

 
MD 100% 38% 

Average of KC/MD 100% 88% 
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Table 3.4 Parameter Estimates from Application Example 

 

 

 

 

 

 

 

 

 

 

 

 

Regression Method Modified Overdispersed 

Binomial Regression 

Modified Negative 

Binomial Regression 

Modified Poisson 

Regression 

Regression Parameter Estimates (KC SE, MD SE, Average KC/MD SE) 

𝛽0 

-8.207 (0.262, 0.275, 

0.269) 

-8.255 (0.271, 0.278, 

0.275) 

-8.456 (0.368, 0.394, 

0.381) 

𝛽1 0.057 (0.163, 0.165, 0.164) 

0.068 (0.162, 0.164, 

0.163) 

0.334 (0.255, 0.289, 

0.272) 

𝛽2 0.089 (0.041, 0.044, 0.043) 

0.097 (0.043, 0.044, 

0.044) 

0.141 (0.054, 0.060, 

0.057) 

Estimated Overdispersion 

Parameter 
�̂� = 2.31 × 𝑒−4 

�̂� = 0.559 

�̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥 = 0, 4.74

× 𝑒−4 

�̂� = 1 

�̂�𝑚𝑖𝑛, �̂�𝑚𝑎𝑥

= 1.68 × 𝑒−6, 6.15 × 𝑒−4 
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Table Series 3.1 Size Calculations for CRT Settings 

5 clusters per arm 

Without Covariate Adjustment 

Size - Common ICC - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.106 0.046 0.068 0.142 0.059 0.089 0.074 0.035 0.052 

0.001 0.099 0.044 0.064 0.146 0.057 0.087 0.065 0.032 0.044 

0.01 0.067 0.043 0.053 0.167 0.064 0.096 0.057 0.036 0.045 

0.1 0.051 0.031 0.040 0.174 0.063 0.098 0.051 0.029 0.039 

 

Size - Common ICC - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.094 0.045 0.061 0.143 0.059 0.084 0.066 0.033 0.046 

0.001 0.089 0.047 0.063 0.159 0.064 0.093 0.065 0.037 0.047 

0.01 0.058 0.040 0.048 0.172 0.068 0.102 0.053 0.036 0.044 

0.1 0.053 0.033 0.042 0.168 0.060 0.094 0.052 0.032 0.040 
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Table Series 3.1, Continued 

Size - Common k - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.103 0.043 0.065 0.135 0.056 0.083 0.065 0.028 0.040 

0.001 0.096 0.043 0.061 0.151 0.055 0.086 0.063 0.031 0.042 

0.01 0.068 0.042 0.055 0.162 0.058 0.092 0.056 0.036 0.047 

0.1 0.055 0.034 0.043 0.168 0.063 0.095 0.053 0.034 0.042 

 

Size - Common k - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.099 0.045 0.064 0.149 0.059 0.087 0.066 0.032 0.045 

0.001 0.090 0.045 0.060 0.154 0.057 0.087 0.066 0.036 0.049 

0.01 0.060 0.038 0.047 0.176 0.065 0.099 0.056 0.035 0.044 

0.01 0.052 0.034 0.043 0.167 0.061 0.093 0.052 0.034 0.043 
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Table Series 3.1, Continued 

Size - Common VIF - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.076 0.033 0.046 0.092 0.042 0.058 0.051 0.016 0.025 

0.001 0.084 0.035 0.053 0.098 0.041 0.062 0.049 0.017 0.029 

0.01 0.055 0.027 0.037 0.090 0.037 0.054 0.027 0.013 0.019 

0.1 0.028 0.015 0.019 0.095 0.042 0.058 0.027 0.014 0.019 

 

Size - Common VIF - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.079 0.032 0.048 0.093 0.039 0.057 0.050 0.027 0.046 

0.001 0.079 0.036 0.050 0.095 0.044 0.061 0.046 0.019 0.028 

0.01 0.046 0.024 0.032 0.098 0.044 0.060 0.024 0.012 0.018 

0.1 0.027 0.014 0.020 0.092 0.041 0.057 0.027 0.014 0.019 
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Table Series 3.1, Continued 

With Covariate Adjustment 

Size - Common ICC - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.113 0.034 0.057 0.139 0.042 0.071 0.063 0.019 0.034 

0.001 0.104 0.033 0.057 0.144 0.040 0.073 0.070 0.024 0.039 

0.01 0.086 0.041 0.057 0.171 0.051 0.087 0.068 0.034 0.048 

0.1 0.065 0.032 0.044 0.174 0.047 0.082 0.062 0.032 0.044 

 

Size - Common ICC - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.110 0.038 0.061 0.150 0.045 0.079 0.074 0.027 0.043 

0.001 0.103 0.038 0.061 0.156 0.045 0.076 0.072 0.030 0.045 

0.01 0.072 0.035 0.048 0.168 0.049 0.081 0.065 0.031 0.044 

0.1 0.062 0.031 0.042 0.167 0.048 0.084 0.061 0.030 0.041 
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Table Series 3.1, Continued 

Size - Common k - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.104 0.029 0.051 0.139 0.039 0.067 0.063 0.019 0.031 

0.001 0.113 0.041 0.062 0.153 0.050 0.079 0.072 0.029 0.043 

0.01 0.085 0.040 0.057 0.172 0.049 0.083 0.069 0.035 0.048 

0.1 0.063 0.032 0.044 0.167 0.049 0.081 0.061 0.031 0.043 

 

Size - Common k - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.108 0.035 0.057 0.145 0.043 0.070 0.066 0.024 0.037 

0.001 0.098 0.034 0.056 0.152 0.041 0.073 0.066 0.025 0.039 

0.01 0.072 0.051 0.063 0.170 0.048 0.082 0.064 0.033 0.047 

0.01 0.063 0.031 0.043 0.169 0.049 0.083 0.062 0.030 0.041 
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Table Series 3.1, Continued 

Size - Common VIF - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.082 0.027 0.042 0.099 0.031 0.050 0.048 0.010 0.020 

0.001 0.078 0.023 0.038 0.095 0.029 0.047 0.042 0.011 0.019 

0.01 0.068 0.019 0.033 0.097 0.028 0.044 0.034 0.012 0.019 

0.1 0.036 0.015 0.023 0.093 0.031 0.049 0.036 0.015 0.024 

 

Size - Common VIF - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.076 0.023 0.037 0.092 0.028 0.045 0.040 0.008 0.017 

0.001 0.078 0.027 0.042 0.095 0.030 0.049 0.040 0.012 0.021 

0.01 0.052 0.020 0.029 0.094 0.029 0.046 0.032 0.012 0.020 

0.1 0.036 0.015 0.021 0.097 0.031 0.049 0.036 0.014 0.022 

 

 

 

 

 

 



89 

 

Table Series 3.1, Continued 

8 clusters per arm 

Without Covariate Adjustment 

Size - Common ICC - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.088 0.052 0.067 0.124 0.065 0.089 0.067 0.041 0.052 

0.001 0.079 0.052 0.062 0.132 0.067 0.090 0.061 0.043 0.052 

0.01 0.050 0.036 0.042 0.125 0.060 0.085 0.048 0.035 0.041 

0.1 0.052 0.041 0.047 0.128 0.061 0.089 0.052 0.041 0.046 

 

Size - Common ICC - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.081 0.051 0.063 0.123 0.062 0.086 0.065 0.044 0.054 

0.001 0.068 0.047 0.055 0.133 0.067 0.092 0.057 0.039 0.046 

0.01 0.056 0.041 0.047 0.140 0.067 0.092 0.055 0.040 0.047 

0.1 0.053 0.039 0.046 0.134 0.066 0.091 0.052 0.039 0.045 
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Table Series 3.1, Continued 

Size - Common k - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.085 0.048 0.062 0.118 0.058 0.082 0.061 0.038 0.048 

0.001 0.078 0.050 0.061 0.129 0.068 0.090 0.061 0.041 0.049 

0.01 0.060 0.043 0.051 0.139 0.068 0.092 0.056 0.041 0.048 

0.1 0.051 0.039 0.045 0.140 0.068 0.095 0.051 0.040 0.044 

 

Size - Common k - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.082 0.051 0.064 0.124 0.065 0.086 0.062 0.041 0.050 

0.001 0.069 0.049 0.059 0.125 0.061 0.084 0.058 0.043 0.050 

0.01 0.057 0.042 0.049 0.134 0.063 0.087 0.056 0.041 0.047 

0.1 0.052 0.040 0.046 0.137 0.068 0.093 0.052 0.040 0.046 
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Table Series 3.1, Continued 

Size - Common VIF - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.082 0.042 0.056 0.089 0.047 0.063 0.063 0.027 0.040 

0.001 0.083 0.046 0.060 0.088 0.051 0.066 0.052 0.027 0.037 

0.01 0.054 0.035 0.042 0.086 0.047 0.060 0.034 0.025 0.029 

0.1 0.035 0.024 0.029 0.090 0.050 0.065 0.035 0.024 0.028 

 

Size - Common VIF - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.083 0.045 0.060 0.091 0.049 0.065 0.058 0.029 0.040 

0.001 0.072 0.039 0.052 0.082 0.045 0.059 0.044 0.025 0.031 

0.01 0.041 0.026 0.033 0.084 0.046 0.062 0.034 0.021 0.028 

0.1 0.038 0.027 0.032 0.083 0.046 0.059 0.038 0.027 0.032 
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Table Series 3.1, Continued 

With Covariate Adjustment 

Size - Common ICC - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.095 0.042 0.061 0.124 0.052 0.078 0.069 0.034 0.048 

0.001 0.088 0.044 0.062 0.133 0.052 0.082 0.067 0.036 0.050 

0.01 0.064 0.039 0.049 0.135 0.055 0.082 0.059 0.036 0.046 

0.1 0.054 0.036 0.043 0.139 0.055 0.083 0.054 0.035 0.043 

 

Size - Common ICC - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.093 0.048 0.067 0.135 0.057 0.085 0.071 0.039 0.053 

0.001 0.083 0.046 0.062 0.140 0.056 0.082 0.065 0.039 0.049 

0.01 0.061 0.038 0.048 0.144 0.056 0.089 0.058 0.036 0.046 

0.1 0.055 0.035 0.045 0.135 0.053 0.081 0.055 0.033 0.042 
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Table Series 3.1, Continued 

Size - Common k - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.089 0.041 0.060 0.119 0.050 0.074 0.069 0.032 0.046 

0.001 0.090 0.044 0.064 0.131 0.051 0.080 0.066 0.036 0.049 

0.01 0.061 0.038 0.048 0.137 0.054 0.083 0.058 0.035 0.045 

0.1 0.059 0.039 0.047 0.140 0.053 0.082 0.057 0.038 0.047 

 

Size - Common k - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.084 0.042 0.057 0.124 0.052 0.076 0.062 0.033 0.045 

0.001 0.083 0.042 0.058 0.134 0.050 0.079 0.065 0.034 0.049 

0.01 0.059 0.038 0.047 0.143 0.056 0.086 0.057 0.034 0.044 

0.01 0.056 0.034 0.043 0.143 0.055 0.087 0.053 0.033 0.042 
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Table Series 3.1, Continued 

Size - Common VIF - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.073 0.028 0.043 0.086 0.036 0.053 0.048 0.016 0.028 

0.001 0.075 0.035 0.046 0.087 0.040 0.054 0.049 0.020 0.029 

0.01 0.055 0.029 0.039 0.083 0.037 0.052 0.033 0.018 0.024 

0.1 0.036 0.019 0.025 0.092 0.038 0.056 0.034 0.019 0.025 

 

Size - Common VIF - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.074 0.029 0.045 0.086 0.038 0.055 0.053 0.022 0.031 

0.001 0.079 0.032 0.048 0.089 0.039 0.057 0.047 0.022 0.030 

0.01 0.045 0.025 0.034 0.085 0.036 0.054 0.036 0.021 0.027 

0.1 0.039 0.021 0.030 0.089 0.040 0.058 0.039 0.021 0.028 

 

 

 

 

 

 



95 

 

Table Series 3.1, Continued 

20 clusters per arm 

Without Covariate Adjustment 

Size - Common ICC - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.060 0.051 0.056 0.087 0.062 0.074 0.055 0.045 0.051 

0.001 0.055 0.047 0.050 0.087 0.059 0.071 0.051 0.043 0.047 

0.01 0.048 0.043 0.046 0.089 0.061 0.074 0.047 0.043 0.044 

0.1 0.053 0.047 0.050 0.093 0.066 0.078 0.052 0.047 0.050 

 

Size - Common ICC - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.059 0.050 0.055 0.087 0.062 0.073 0.053 0.046 0.049 

0.001 0.053 0.048 0.051 0.091 0.061 0.075 0.052 0.046 0.049 

0.01 0.050 0.044 0.047 0.085 0.058 0.070 0.050 0.044 0.047 

0.1 0.050 0.045 0.048 0.087 0.058 0.071 0.050 0.045 0.048 
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Table Series 3.1, Continued 

Size - Common k - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.065 0.054 0.059 0.091 0.067 0.077 0.058 0.047 0.053 

0.001 0.056 0.047 0.052 0.090 0.062 0.073 0.052 0.044 0.048 

0.01 0.047 0.042 0.045 0.092 0.063 0.074 0.046 0.040 0.043 

0.1 0.049 0.045 0.047 0.088 0.061 0.074 0.049 0.045 0.047 

 

Size - Common k - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.058 0.049 0.053 0.085 0.058 0.071 0.054 0.045 0.049 

0.001 0.059 0.050 0.054 0.097 0.065 0.080 0.056 0.049 0.053 

0.01 0.054 0.048 0.051 0.094 0.064 0.077 0.054 0.047 0.051 

0.1 0.051 0.045 0.047 0.092 0.065 0.076 0.050 0.045 0.047 
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Table Series 3.1, Continued 

Size - Common VIF - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.046 0.033 0.039 0.065 0.047 0.055 0.055 0.038 0.047 

0.001 0.042 0.030 0.035 0.064 0.049 0.057 0.049 0.037 0.042 

0.01 0.048 0.042 0.046 0.066 0.051 0.059 0.043 0.038 0.041 

0.1 0.046 0.040 0.043 0.068 0.051 0.059 0.046 0.040 0.043 

 

Size - Common VIF - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.045 0.033 0.039 0.064 0.048 0.054 0.054 0.042 0.048 

0.001 0.041 0.030 0.034 0.064 0.046 0.055 0.048 0.040 0.044 

0.01 0.042 0.038 0.040 0.060 0.045 0.051 0.042 0.037 0.040 

0.1 0.048 0.044 0.046 0.073 0.053 0.062 0.048 0.043 0.046 
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Table Series 3.1, Continued 

With Covariate Adjustment 

Size - Common ICC - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.065 0.048 0.056 0.094 0.055 0.072 0.057 0.043 0.051 

0.001 0.061 0.048 0.054 0.090 0.054 0.070 0.057 0.047 0.052 

0.01 0.055 0.045 0.050 0.090 0.054 0.068 0.053 0.043 0.049 

0.1 0.051 0.043 0.047 0.096 0.056 0.073 0.050 0.043 0.047 

 

Size - Common ICC - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.059 0.046 0.052 0.093 0.056 0.072 0.054 0.042 0.047 

0.001 0.059 0.048 0.053 0.096 0.054 0.072 0.056 0.045 0.051 

0.01 0.047 0.040 0.044 0.095 0.056 0.074 0.047 0.039 0.043 

0.1 0.049 0.042 0.046 0.100 0.059 0.076 0.049 0.042 0.046 
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Table Series 3.1, Continued 

Size - Common k - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.067 0.050 0.058 0.088 0.055 0.069 0.062 0.045 0.054 

0.001 0.055 0.044 0.049 0.089 0.054 0.069 0.051 0.040 0.044 

0.01 0.055 0.046 0.051 0.095 0.055 0.071 0.053 0.046 0.049 

0.1 0.051 0.043 0.047 0.099 0.058 0.074 0.051 0.043 0.047 

 

Size - Common k - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.059 0.047 0.053 0.089 0.052 0.067 0.055 0.043 0.050 

0.001 0.059 0.047 0.053 0.099 0.058 0.075 0.053 0.044 0.049 

0.01 0.053 0.044 0.048 0.094 0.053 0.069 0.051 0.043 0.047 

0.01 0.053 0.044 0.049 0.093 0.055 0.070 0.052 0.043 0.047 
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Table Series 3.1, Continued 

Size - Common VIF - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.074 0.044 0.058 0.058 0.043 0.055 0.054 0.031 0.042 

0.001 0.071 0.047 0.058 0.067 0.044 0.053 0.047 0.033 0.039 

0.01 0.053 0.042 0.047 0.069 0.043 0.055 0.047 0.039 0.043 

0.1 0.045 0.036 0.041 0.063 0.042 0.051 0.046 0.036 0.041 

 

Size - Common VIF - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.069 0.044 0.055 0.069 0.044 0.054 0.051 0.035 0.043 

0.001 0.068 0.045 0.056 0.070 0.047 0.057 0.049 0.038 0.043 

0.01 0.050 0.042 0.046 0.070 0.048 0.058 0.049 0.040 0.044 

0.1 0.044 0.036 0.040 0.065 0.040 0.052 0.044 0.035 0.039 
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Table Series 3.2 Power Calculations for CRT Settings 

Without Covariate Adjustment 

5 clusters per arm 

Power, 20% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.098 0.112 0.101 

0.001 0.126 0.136 0.135 

0.01 0.186 0.165 0.206 

0.1 0.211 0.162 0.239 

 

Power, 20% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.077 0.090 0.082 

0.001 0.095 0.105 0.103 

0.01 0.116 0.110 0.132 

0.1 0.122 0.114 0.142 
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Table Series 3.2, Continued 

Power, 40% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.272 0.289 0.316 

0.001 0.395 0.357 0.434 

0.01 0.632 0.422 0.677 

0.1 0.733 0.446 0.775 

 

Power, 40% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.206 0.210 0.230 

0.001 0.273 0.246 0.299 

0.01 0.390 0.271 0.432 

0.1 0.446 0.283 0.491 

 

Power, 20% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.096 0.117 0.106 

0.001 0.127 0.136 0.136 

0.01 0.195 0.166 0.218 

0.1 0.238 0.179 0.271 
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Table Series 3.2, Continued 

Power, 20% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.079 0.095 0.091 

0.001 0.096 0.105 0.107 

0.01 0.118 0.121 0.137 

0.1 0.133 0.123 0.154 

 

Power, 40% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.313 0.330 0.354 

0.001 0.452 0.409 0.499 

0.01 0.727 0.498 0.765 

0.1 0.852 0.541 0.878 

 

Power, 40% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.233 0.239 0.265 

0.001 0.321 0.286 0.351 

0.01 0.478 0.318 0.519 

0.1 0.562 0.340 0.605 
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Table Series 3.2, Continued 

Power, 20% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.165 0.196 0.147 

0.001 0.288 0.331 0.279 

0.01 0.533 0.639 0.443 

0.1 0.359 0.743 0.380 

 

Power, 20% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average KC/MD) 

0.0004 0.143 0.172 0.136 

0.001 0.236 0.276 0.225 

0.01 0.303 0.471 0.247 

0.1 0.191 0.528 0.214 

 

Power, 40% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average KC/MD) 

0.0004 0.479 0.544 0.518 

0.001 0.723 0.771 0.750 

0.01 0.929 0.967 0.902 

0.1 0.870 0.985 0.881 
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Table Series 3.2, Continued 

Power, 40% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average KC/MD) 

0.0004 0.451 0.513 0.473 

0.001 0.633 0.714 0.670 

0.01 0.771 0.896 0.737 

0.1 0.657 0.937 0.682 

 

8 clusters per arm 

Power, 20% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.164 0.170 0.171 

0.001 0.215 0.198 0.225 

0.01 0.317 0.221 0.339 

0.1 0.387 0.230 0.414 

 

Power, 20% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.129 0.131 0.137 

0.001 0.149 0.133 0.156 

0.01 0.194 0.148 0.208 

0.1 0.216 0.156 0.235 
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Table Series 3.2, Continued 

Power, 40% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.539 0.473 0.565 

0.001 0.695 0.543 0.711 

0.01 0.895 0.597 0.898 

0.1 0.953 0.620 0.961 

 

Power, 40% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.402 0.340 0.421 

0.001 0.501 0.362 0.519 

0.01 0.674 0.392 0.697 

0.1 0.725 0.408 0.749 

 

Power, 20% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.171 0.174 0.180 

0.001 0.220 0.199 0.228 

0.01 0.312 0.217 0.331 

0.1 0.397 0.240 0.420 
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Table Series 3.2, Continued 

Power, 20% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.126 0.125 0.132 

0.001 0.149 0.137 0.158 

0.01 0.192 0.146 0.207 

0.1 0.222 0.154 0.241 

 

Power, 40% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.541 0.478 0.566 

0.001 0.819 0.538 0.711 

0.01 0.899 0.597 0.911 

0.1 0.957 0.615 0.964 

 

Power, 40% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.400 0.341 0.421 

0.001 0.501 0.369 0.519 

0.01 0.656 0.388 0.681 

0.1 0.734 0.405 0.757 
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Table Series 3.2, Continued 

Power, 20% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.346 0.383 0.338 

0.001 0.583 0.625 0.555 

0.01 0.764 0.925 0.641 

0.1 0.514 0.961 0.525 

 

Power, 20% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.313 0.353 0.298 

0.001 0.513 0.548 0.452 

0.01 0.496 0.820 0.415 

0.1 0.320 0.874 0.340 

 

Power, 40% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.828 0.857 0.810 

0.001 0.959 0.969 0.943 

0.01 0.979 1.000 0.960 

0.1 0.946 1.000 0.949 
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Table Series 3.2, Continued 

Power, 40% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.794 0.828 0.765 

0.001 0.928 0.949 0.870 

0.01 0.871 0.994 0.844 

0.1 0.793 0.996 0.805 

 

20 clusters per arm 

Power, 20% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.436 0.336 0.436 

0.001 0.545 0.368 0.549 

0.01 0.745 0.405 0.751 

0.1 0.846 0.431 0.852 

 

Power, 20% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.304 0.230 0.305 

0.001 0.366 0.241 0.372 

0.01 0.477 0.249 0.487 

0.1 0.546 0.261 0.557 
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Table Series 3.2, Continued 

Power, 40% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.960 0.845 0.957 

0.001 0.992 0.869 0.991 

0.01 1.000 0.888 1.000 

0.1 1.000 0.907 1.000 

 

Power, 40% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.844 0.640 0.845 

0.001 0.918 0.672 0.921 

0.01 0.983 0.684 0.984 

0.1 0.993 0.715 0.994 

 

Power, 20% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.466 0.361 0.462 

0.001 0.588 0.407 0.590 

0.01 0.786 0.439 0.791 

0.1 0.876 0.467 0.882 
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Table Series 3.2, Continued 

Power, 20% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.317 0.245 0.317 

0.001 0.391 0.248 0.396 

0.01 0.514 0.266 0.523 

0.1 0.604 0.284 0.614 

 

Power, 40% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.981 0.906 0.977 

0.001 0.997 0.923 0.997 

0.01 1.000 0.942 1.000 

0.1 1.000 0.954 1.000 

 

Power, 40% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.906 0.727 0.904 

0.001 0.961 0.760 0.961 

0.01 0.996 0.771 0.996 

0.1 0.999 0.802 0.999 
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Table Series 3.2, Continued 

Power, 20% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.793 0.881 0.838 

0.001 0.977 0.991 0.959 

0.01 0.990 1.000 0.957 

0.1 0.908 1.000 0.906 

 

Power, 20% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.827 0.853 0.773 

0.001 0.964 0.974 0.890 

0.01 0.823 1.000 0.745 

0.1 0.667 1.000 0.671 

 

Power, 40% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.999 1.000 0.996 

0.001 1.000 1.000 0.999 

0.01 1.000 1.000 1.000 

0.1 1.000 1.000 1.000 
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Table Series 3.2, Continued 

Power, 40% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.998 0.999 0.993 

0.001 1.000 1.000 0.998 

0.01 0.999 1.000 0.998 

0.1 0.997 1.000 0.997 

 

With Covariate Adjustment 

5 clusters per arm 

Power, 20% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.062 0.077 0.074 

0.001 0.090 0.101 0.106 

0.01 0.131 0.113 0.164 

0.1 0.168 0.126 0.213 
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Table Series 3.2, Continued 

Power, 20% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.059 0.067 0.066 

0.001 0.070 0.077 0.083 

0.01 0.086 0.083 0.107 

0.1 0.096 0.084 0.119 

 

Power, 40% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.184 0.205 0.231 

0.001 0.271 0.261 0.336 

0.01 0.488 0.326 0.563 

0.1 0.598 0.343 0.672 

 

Power, 40% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.135 0.150 0.173 

0.001 0.191 0.178 0.228 

0.01 0.305 0.203 0.358 

0.1 0.347 0.222 0.411 
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Table Series 3.2, Continued 

Power, 20% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.063 0.077 0.072 

0.001 0.088 0.096 0.099 

0.01 0.146 0.121 0.179 

0.1 0.183 0.134 0.227 

 

Power, 20% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.056 0.068 0.065 

0.001 0.069 0.077 0.086 

0.01 0.093 0.084 0.116 

0.1 0.102 0.088 0.125 

 

Power, 40% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.188 0.214 0.230 

0.001 0.288 0.282 0.372 

0.01 0.568 0.377 0.647 

0.1 0.699 0.416 0.764 
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Table Series 3.2, Continued 

Power, 40% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.146 0.163 0.186 

0.001 0.208 0.198 0.260 

0.01 0.354 0.235 0.419 

0.1 0.434 0.255 0.500 

 

Power, 20% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.090 0.111 0.080 

0.001 0.164 0.198 0.165 

0.01 0.338 0.418 0.308 

0.1 0.237 0.504 0.278 

 

Power, 20% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.084 0.106 0.081 

0.001 0.128 0.154 0.131 

0.01 0.182 0.265 0.168 

0.1 0.115 0.318 0.150 
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Table Series 3.2, Continued 

Power, 40% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.293 0.354 0.326 

0.001 0.493 0.558 0.547 

0.01 0.766 0.837 0.755 

0.1 0.685 0.899 0.736 

 

Power, 40% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.272 0.323 0.300 

0.001 0.422 0.479 0.462 

0.01 0.552 0.689 0.546 

0.1 0.447 0.738 0.512 

 

8 clusters per arm 

Power, 20% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.132 0.142 0.152 

0.001 0.187 0.166 0.208 

0.01 0.272 0.183 0.301 

0.1 0.344 0.197 0.381 
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Table Series 3.2, Continued 

Power, 20% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.106 0.107 0.121 

0.001 0.132 0.117 0.146 

0.01 0.168 0.118 0.188 

0.1 0.194 0.130 0.219 

 

Power, 40% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.434 0.396 0.489 

0.001 0.596 0.466 0.644 

0.01 0.836 0.524 0.865 

0.1 0.908 0.555 0.927 

 

Power, 40% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.320 0.268 0.355 

0.001 0.423 0.304 0.460 

0.01 0.588 0.327 0.626 

0.1 0.670 0.352 0.709 
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Table Series 3.2, Continued 

Power, 20% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.136 0.142 0.155 

0.001 0.189 0.173 0.209 

0.01 0.294 0.185 0.329 

0.1 0.381 0.216 0.419 

 

Power, 20% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.111 0.115 0.119 

0.001 0.128 0.121 0.145 

0.01 0.186 0.130 0.211 

0.1 0.202 0.135 0.227 

 

Power, 40% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.474 0.441 0.537 

0.001 0.662 0.532 0.710 

0.01 0.904 0.609 0.924 

0.1 0.962 0.637 0.971 
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Table Series 3.2, Continued 

Power, 40% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.350 0.307 0.403 

0.001 0.488 0.362 0.529 

0.01 0.689 0.386 0.724 

0.1 0.765 0.413 0.797 

 

Power, 20% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.246 0.288 0.263 

0.001 0.437 0.482 0.444 

0.01 0.692 0.834 0.575 

0.1 0.457 0.902 0.485 

 

Power, 20% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.217 0.256 0.222 

0.001 0.364 0.403 0.359 

0.01 0.389 0.652 0.337 

0.1 0.252 0.716 0.287 
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Table Series 3.2, Continued 

Power, 40% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.682 0.754 0.721 

0.001 0.881 0.916 0.887 

0.01 0.964 0.994 0.940 

0.1 0.915 0.998 0.924 

 

Power, 40% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.661 0.715 0.675 

0.001 0.848 0.877 0.816 

0.01 0.828 0.972 0.802 

0.1 0.745 0.984 0.765 

 

20 clusters per arm 

Power, 20% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.402 0.311 0.412 

0.001 0.497 0.343 0.515 

0.01 0.768 0.383 0.729 

0.1 0.860 0.404 0.828 
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Table Series 3.2, Continued 

Power, 20% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.277 0.211 0.286 

0.001 0.349 0.222 0.358 

0.01 0.470 0.226 0.483 

0.1 0.536 0.249 0.549 

 

Power, 40% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.943 0.820 0.946 

0.001 0.984 0.856 0.985 

0.01 1.000 0.875 1.000 

0.1 1.000 0.895 1.000 

 

Power, 40% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.826 0.619 0.831 

0.001 0.904 0.646 0.907 

0.01 0.978 0.667 0.981 

0.1 0.991 0.688 0.992 
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Table Series 3.2, Continued 

Power, 20% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.418 0.336 0.430 

0.001 0.544 0.377 0.559 

0.01 0.768 0.421 0.779 

0.1 0.860 0.443 0.870 

 

Power, 20% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.292 0.217 0.304 

0.001 0.367 0.236 0.380 

0.01 0.500 0.246 0.515 

0.1 0.578 0.264 0.595 

 

Power, 40% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.967 0.883 0.965 

0.001 0.994 0.911 0.995 

0.01 1.000 0.931 1.000 

0.1 1.000 0.946 1.000 
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Table Series 3.2, Continued 

Power, 40% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.884 0.693 0.887 

0.001 0.953 0.735 0.954 

0.01 0.994 0.752 0.995 

0.1 0.998 0.778 0.998 

 

Power, 20% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.794 0.825 0.793 

0.001 0.969 0.975 0.942 

0.01 0.977 1.000 0.925 

0.1 0.856 1.000 0.855 

 

Power, 20% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.761 0.783 0.721 

0.001 0.931 0.946 0.840 

0.01 0.766 0.998 0.694 

0.1 0.603 0.999 0.611 
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Table Series 3.2, Continued 

Power, 40% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.998 0.999 0.993 

0.001 1.000 1.000 0.999 

0.01 1.000 1.000 0.999 

0.1 0.998 1.000 0.998 

 

Power, 40% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (Average 

KC/MD) 

0.0004 0.998 0.999 0.981 

0.001 1.000 1.000 0.991 

0.01 0.992 1.000 0.984 

0.1 0.981 1.000 0.980 
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Table Series 3.3 Size Calculations for Observational Study Settings 

Size - Common ICC - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.067 0.056 0.061 0.095 0.070 0.080 0.064 0.053 0.058 

0.001 0.061 0.054 0.058 0.101 0.072 0.085 0.059 0.052 0.057 

0.01 0.056 0.052 0.054 0.107 0.074 0.088 0.056 0.050 0.053 

0.1 0.060 0.055 0.058 0.114 0.077 0.093 0.058 0.053 0.056 

 

Size - Common ICC - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.061 0.053 0.057 0.100 0.072 0.084 0.057 0.049 0.052 

0.001 0.064 0.056 0.060 0.110 0.078 0.094 0.060 0.053 0.056 

0.01 0.058 0.051 0.054 0.118 0.084 0.098 0.056 0.050 0.053 

0.1 0.058 0.052 0.055 0.106 0.074 0.088 0.057 0.053 0.055 
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Table Series 3.3, Continued 

Size - Common k - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.073 0.064 0.068 0.115 0.083 0.095 0.070 0.060 0.066 

0.001 0.071 0.062 0.066 0.121 0.084 0.102 0.068 0.060 0.064 

0.01 0.066 0.059 0.062 0.120 0.083 0.099 0.063 0.059 0.061 

0.1 0.060 0.054 0.057 0.124 0.087 0.103 0.058 0.053 0.055 

 

Size - Common k - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.072 0.063 0.067 0.122 0.087 0.102 0.069 0.060 0.064 

0.001 0.068 0.060 0.064 0.120 0.084 0.099 0.062 0.057 0.059 

0.01 0.069 0.063 0.066 0.121 0.087 0.101 0.066 0.060 0.064 

0.1 0.065 0.060 0.063 0.125 0.086 0.101 0.064 0.058 0.060 
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Table Series 3.3, Continued 

Size - Common VIF - ICC = 5% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.070 0.055 0.062 0.063 0.051 0.056 0.055 0.045 0.048 

0.001 0.063 0.053 0.057 0.060 0.047 0.054 0.049 0.043 0.046 

0.01 0.047 0.042 0.044 0.065 0.053 0.059 0.047 0.043 0.045 

0.1 0.056 0.051 0.053 0.062 0.048 0.055 0.056 0.051 0.053 

 

Size - Common VIF - ICC = 10% of marginal probability 

Marginal 

Probability 

Modified 

Negative 

Binomial KC 

Modified 

Negative 

Binomial 

MD 

Modified Negative 

Binomial  Avg 

KC/MD 

Modified 

Poisson 

KC 

Modified 

Poisson 

MD 

Modified 

Poisson Avg 

KC/MD 

Modified 

OD 

Binomial 

KC 

Modified 

OD 

Binomial 

MD 

Modified OD 

Binomial Avg 

KC/MD 

0.0004 0.063 0.051 0.057 0.063 0.051 0.057 0.053 0.044 0.048 

0.001 0.054 0.047 0.051 0.065 0.050 0.057 0.049 0.044 0.046 

0.01 0.050 0.046 0.048 0.065 0.053 0.058 0.052 0.047 0.050 

0.1 0.057 0.051 0.054 0.065 0.053 0.059 0.056 0.050 0.053 

 

 

 

 

 

 



129 

 

Table Series 3.4 Power Calculations for Observational Study Settings 

Power, 20% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.475 0.411 0.471 

0.001 0.639 0.492 0.638 

0.01 0.887 0.556` 0.887 

0.1 0.954 0.593 0.953 

 

Power, 20% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.362 0.295 0.358 

0.001 0.473 0.326 0.470 

0.01 0.661 0.348 0.660 

0.1 0.755 0.382 0.752 

 

Power, 40% reduction - Common ICC - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.971 0.906 0.970 

0.001 0.997 0.942 0.997 

0.01 1.000 0.954 1.000 

0.1 1.000 0.966 1.000 

 

 

 



130 

 

Table Series 3.4, Continued 

Power, 40% reduction - Common ICC - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.913 0.769 0.912 

0.001 0.971 0.819 0.971 

0.01 0.998 0.842 0.998 

0.1 1.000 0.863 1.000 

 

Power, 20% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.338 0.258 0.330 

0.001 0.435 0.281 0.428 

0.01 0.599 0.302 0.593 

0.1 0.691 0.339 0.683 

 

Power, 20% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.236 0.174 0.230 

0.001 0.285 0.183 0.279 

0.01 0.373 0.195 0.366 

0.1 0.422 0.206 0.408 

 

 

 



131 

 

Table Series 3.4, Continued 

Power, 40% reduction - Common k - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.920 0.788 0.916 

0.001 0.979 0.824 0.978 

0.01 0.999 0.843 0.999 

0.1 1.000 0.869 1.000 

 

Power, 40% reduction - Common k - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.802 0.583 0.798 

0.001 0.894 0.614 0.891 

0.01 0.969 0.628 0.968 

0.1 0.984 0.666 0.983 

 

Power, 20% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.726 0.752 0.719 

0.001 0.932 0.946 0.909 

0.01 0.975 0.999 0.965 

0.1 0.931 1.000 0.928 
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Table Series 3.4, Continued 

Power, 20% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.683 0.705 0.640 

0.001 0.854 0.904 0.799 

0.01 0.756 0.992 0.743 

0.1 0.702 0.997 0.696 

 

Power, 40% reduction - Common VIF - ICC = 5% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.996 0.997 0.996 

0.001 1.000 1.000 1.000 

0.01 1.000 1.000 1.000 

0.1 1.000 1.000 1.000 

 

Power, 40% reduction - Common VIF - ICC = 10% of marginal probability 

Marginal Probability Negative Binomial (MD) Poisson (MD) Overdispersed Binomial (MD) 

0.0004 0.994 0.997 0.992 

0.001 1.000 1.000 0.999 

0.01 0.999 1.000 0.999 

0.1 0.998 1.000 0.998 
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Chapter 4 - The Performance of Marginal Modeling Methods for Rare Cluster-Level 

Count Outcomes with Application to Opioid Overdose Morbidity 

Overview of Chapter 4 

 In the previous chapter, we compared the methods of marginal modeling of rare 

cluster-level count outcomes for events that can occur at most once per person. In this 

chapter, we will return to the cross-sectional observational study settings and methods 

studied in the previous chapter to focus on rare events that can occur more than once per 

person. The motivating example will be an observational study of opioid poisonings in 

Kentucky. Opioid poisonings are rare at the population level, but can occur more than 

once per person, unlike opioid overdose-related fatalities. The goal of this chapter is to 

compare approaches to modeling rare cluster-level count outcomes in terms of validity of 

inference and power, with a specific focus on modeling rates of rare events that can occur 

more than once. 
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Introduction 

Overview 

 In this section, we will recapitulate the goals and results of the previous chapter, 

which focused modeling probabilities and rates of events that can occur at most once per 

person. Next, we will provide details on the motivating example for this chapter, which is 

a cross-sectional observational study of opioid poisoning rates in Kentucky. Finally, we 

will shift focus to the goal of this chapter, which is to compare the approaches studied in 

the previous chapter for modeling rates of rare events that can occur more than once per 

person, as well as the challenges associated with modeling this type of outcome. 

Background 

In the previous chapter, we studied the performance of regression approaches to 

modeling rare cluster-level count outcomes in terms of practicality, validity of inference, 

and power, with a specific focus on modeling population-averaged probabilities or rates 

per resident of rare events. The event studied in our motivating examples was opioid 

overdose-related fatalities, which can occur at most once per person. Modified negative 

binomial regression, modified overdispersed binomial regression, and modified Poisson 

regression were compared using simulation studies based on cluster randomized trial 

(CRT) and observational study settings. Additionally, an application example using 

county-level data of opioid overdose-related fatalities in Kentucky in 2021 was used to 

provide a practical example of how the regression methods may be used for modeling 

real-life data.  

All three methods could produce valid inference, conditional on a bias-corrected 

empirical standard error estimator. In general, modified overdispersed binomial 
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regression and modified negative binomial regression performed similarly in terms of 

power. Modified Poisson regression outperformed the other two methods when the true 

overdispersion structure corresponded to its working overdispersion structure, which 

assumes a common variance inflation factor (VIF) across all clusters, and the intra-cluster 

correlation coefficient and cluster size are inversely related. [10] However, modified 

Poisson regression was less powerful compared to the other two methods when the true 

overdispersion structure did not correspond to its working overdispersion structure. 

Researchers who choose one method over another must carefully consider the nature of 

their data in order to make an informed decision that both preserves validity of inference 

and maximizes power.  

In this chapter, we focus on events that can occur more than once per subject, 

which are commonly found in epidemiological settings, both in CRTs and observational 

studies. Unlike the outcome studied in the previous chapter, opioid overdose-related 

fatalities, opioid overdose poisonings are events that can occur more than once per person 

and are collected and analyzed as cluster-level count outcomes. Thus, the findings from 

the previous chapter may not apply to this type of outcome. 

 

Motivating Example 

 Our motivating example is a cross-sectional observational study of community-

level associations with opioid poisonings across the state of Kentucky. As opioid 

overdose-related fatality rates in Kentucky remain one of the highest among US states, it 

is important to study the factors that are associated with not only fatalities, but instances 

of opioid poisonings. [7] Not only is opioid poisoning associated with opioid overdose-
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related fatalities, but an increase in the number of non-fatal opioid poisonings has been 

found to be associated with subsequent opioid overdose-related fatalities. [134] [135] 

Despite this relationship, it is often the case that those who experience an opioid 

poisoning do not receive medications for opioid use disorder (MOUDs), such as 

buprenorphine and methadone. [136] Because MOUDs have been shown to be effective 

at preventing further opioid misuse and overdose mortality, it is crucial to understand the 

factors behind opioid poisoning in order to prevent and reduce resulting adverse health 

effects and subsequent overdose-related fatalities. [137] By understanding the factors that 

contribute to opioid poisonings, and thus potential cases of opioid overdose-related 

fatalities, intervention and policy that targets specific demographic groups or sectors of 

the healthcare system can be more effectively designed.  

This motivating example will be used to provide a basis for a simulation study 

that will compare the validity of inference and power of the three regression methods 

across multiple settings. Additionally, we will apply the regression methods studied in 

this chapter to the data from the motivating example. Through this application, we hope 

to support the results of the simulation study and provide researchers with a practical 

scenario of how these regression methods can be applied to real-life data.  

 

Challenges and Goals 

Because the results from the previous chapter may not apply to the outcomes 

studied in this chapter, it is important to highlight the challenges that using the regression 

approaches presented in the previous chapter may pose. First, modified overdispersed 

binomial regression, which was a method that corresponded to the distribution of the 
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outcome in the third chapter, may not be appropriate for the outcome studied in this 

chapter. Additionally, because of the multiple levels of clustering, the working 

overdispersion structures for the methods studied may not correspond to the true 

overdispersion structure, and thus may not be able to correctly model the data. 

In the case of rare person-level events that are collected at the cluster level, if the 

event can occur once per person, the resulting community-level count outcome is treated 

as the sum of person-level binary event indicators. [2] [103] This outcome, conditional on 

the cluster, corresponds to a binomial distribution. However, in the case of events that 

can occur more than once per person, such as opioid poisonings, as in our motivating 

example, the community-level count outcome will be the sum of person-level counts. 

This outcome is different because it no longer corresponds to a binomial distribution, and 

the true distribution will not be known. For ease of interpretability, we will choose to 

view this outcome as a population-averaged rate per resident, which is averaged across 

both communities and the residents within communities. Because the outcome does not 

correspond to a binomial distribution, it is theoretically unlikely for modified 

overdispersed binomial regression to be able to correctly model it. In contrast to modified 

overdispersed binomial regression, which models the odds ratio, both modified negative 

binomial regression and modified Poisson regression model the marginal rate of the 

outcome, which corresponds to the outcome we are attempting to model. Due to this, it is 

possible that these two methods perform better compared to modified overdispersed 

binomial regression. 

This difference in the distribution of the outcome, compared to that of the 

outcome studied in the previous chapter, contributes to an extra level of clustering. 
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Because of this, the true distribution of the count outcome, including the overdispersion 

structure, can be very complex. In the simulation studies in the previous chapter, we were 

able to generate data sets with true overdispersion structures that corresponded with the 

working forms used by each of the regression methods. By choosing a method whose 

working form for the variance inflation factor (VIF) is closer to the true VIF, we should 

expect an increase in power resulting from improved efficiency. [102] [107] However, 

because of the additional level of clustering present in the data studied in this chapter, the 

true VIF of the data cannot be assumed to correspond to the working forms of any of the 

regression methods, and we do not expect any of the methods studied in this chapter to 

perfectly model the outcome.  

Despite the challenges with respect to precisely modeling the outcome, the 

marginal methods presented in the third chapter have been shown to be appropriate for 

modeling rare count outcomes under the previously studied settings, and we would like to 

evaluate their performance when applied to the settings in our motivating example. We 

expect modified negative binomial regression and modified Poisson regression to 

perform better than modified overdispersed binomial regression in terms of power due to 

their ability to model rates. Overall, the goal of this chapter is to compare the three 

regression approaches presented in the third chapter - modified negative binomial 

regression, modified overdispersed binomial regression, and modified Poisson regression 

- in terms of validity of inference and power when applied to rare count outcomes of 

events that can occur more than once per person.  
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Methods 

Overview 

 In this section, we will describe the nature of the outcome studied in this chapter 

and how the regression approaches introduced in the previous chapter may be used for 

modeling it. Next, we will introduce the opioid poisoning data that will be used as a basis 

for the simulation study and application example. Finally, we will outline the details of 

the simulation study and application example, and how they will be used to compare the 

approaches of interest. 

 

Nature of the Event of Interest and Regression Approaches for Comparison 

 Despite the potential complexity of the true distribution of the count outcome, our 

goal with quasi-likelihood approaches, as in the previous chapter, is to specify working 

forms for the mean and variance. Through correctly specifying the mean and using bias-

corrected standard error estimates, this approach has been shown to result in consistent 

parameter estimation, and thus valid inference, even when the overdispersion is 

misspecified. [109] The three approaches outlined in the third chapter - modified negative 

binomial regression, modified overdispersed binomial regression, and modified Poisson 

regression - use different working forms for the VIF.  

Because our goal is to model the marginal rate of the outcome of interest, 

modified negative binomial regression and modified Poisson regression may be 

appropriate. In both methods, the marginal relative rate of the event per subject is 

modeled. For both of these regression approaches, the modeled marginal rate per person 

for cluster 𝑁 is given by  
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𝜆𝑖 = 𝑒𝑥𝑖𝛽 , 𝑖 = 1, … , 𝑁 

𝑁𝑁 and 𝛽 refer to the cluster-level covariates and regression parameters, respectively. 

The offset in the model is ln (𝑛𝑖). The working form for the VIF of modified negative 

binomial regression is given by 1 + 𝑘𝑛𝑖𝜆𝑖, where 𝑘 is a common overdispersion 

parameter. [107] For modified Poisson regression, the overdispersion is common across 

all clusters, and its working form corresponds to that of overdispersed binomial 

regression assuming a common VIF. 

In contrast, modified overdispersed binomial regression does not directly model 

the marginal rate of the event per person, and instead models the odds ratio, which 

assumes at most one event per person. The modeled mean number of events in cluster 𝑁 

is given by 

𝜇
𝑁

= 𝑁𝑁

𝑁𝑁𝑁𝑁

1 + 𝑁𝑁𝑁𝑁
,𝑁 = 1, . . . ,𝑁 

and the working form for the VIF is given by 1 − (𝑛𝑖 + 1)𝜌, 𝑖 = 1, … , 𝑁, where 𝜌 is 

common across all clusters. [103] [107] 

Despite the issues with respect to how the modeled VIF of the regression methods 

does not correspond to the true VIF of the data, practicality is an important consideration 

for researchers. As described in the third chapter, both modified negative binomial 

regression and modified Poisson regression can be coded using solely PROC GLIMMIX 

or GENMOD in SAS, unlike overdispersed binomial regression, which requires the 

additional use of PROC LOGISTIC to estimate the intra-cluster correlation coefficient 

(ICC). [73] [105] Thus, if there is not a large difference in terms of validity of inference 

and power, researchers may choose to use modified negative binomial regression or 

modified Poisson regression for ease of coding. 
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Motivating Example Data and Application Example 

 The opioid poisoning data used for this study is obtained from the Kentucky 

Emergency Medical Services (EMS) system. [138] The Kentucky EMS system records 

all unique emergency medical service encounters, and all records are reported to the 

National Emergency Medical Services Information System (NEMSIS), which compiles 

EMS records for every US state. [139] For the purposes of this study, we will be focusing 

on records of opioid poisoning, which will be defined using the Rhode Island Enhanced 

State Opioid Overdose Surveillance (ESOOS) Case Definition for EMS. [140] The data 

set upon which the simulation study settings will be based encompasses all recorded 

EMS encounters involving an opioid poisoning that occurred in the state of Kentucky in 

2023, and are grouped by county of incidence. In this data set, 119 of the 120 Kentucky 

counties contributed EMS records, and thus the settings for the simulation studies will be 

based on the data from these counties. 

 In addition to the simulation study described below, we will be comparing the 

regression approaches by using the cross-sectional opioid poisoning data from EMS runs 

across 119 Kentucky counties in 2023. In this example, we will consider community-

level factors and their associations with opioid poisonings in Kentucky. In the regression 

models used for this application example, we will utilize community-level covariates 

based on metropolitan status and unemployment rate. The linear predictor for the models 

used in this application example can be written as follows: 

𝛽0 + 𝛽1𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑡𝑎𝑛𝑖 + 𝛽2𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖, 𝑖 = 1, … ,119 
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𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑡𝑎𝑛𝑖 refers to the metropolitan status, where 1 is metropolitan and 0 is non-

metropolitan, of county 𝑖, and 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 refers to the percent unemployment rate 

of county 𝑖. We will present results for all three bias correction methods in order to 

compare results. For each regression model, parameter estimates and standard error 

estimates for the intercept and the two covariates will be reported and compared.  

 

 

Simulation Studies 

 To compare the validity of inference and power of the three regression 

approaches, we will conduct simulation studies motivated by the cross-sectional 

observational study of opioid poisonings in Kentucky in 2023 across a variety of settings. 

These simulation studies will consist of a series of 10,000 replications per studied setting. 

For each data set, modified negative binomial regression, modified overdispersed 

binomial regression, and modified Poisson regression will be compared in terms of 

empirical size and power. 

 In each simulation, there will be 119 clusters, corresponding to the 119 Kentucky 

counties that contributed EMS records for opioid poisonings. For the purposes of these 

simulation studies, we will be using metropolitan status as the main variable of interest, 

which will be represented by an indicator variable in the statistical model. Based on the 

2013 Rural-Urban Continuum Codes, 35 are considered metropolitan, with the remaining 

84 being non-metropolitan. [65] Thus, in our simulated data sets, 35 of the clusters will 

be considered metropolitan, with the remaining 84 being considered non-metropolitan. 

The cluster size for each county will be generated from a negative binomial distribution. 
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The mean and dispersion parameters used for generating the cluster sizes for each county 

will depend on whether the given county is considered metropolitan or non-metropolitan, 

and will be based on the mean and variance of the populations of metropolitan and non-

metropolitan counties in Kentucky. For metropolitan counties, we used a mean of 57802 

and a dispersion parameter of 0.302, and for non-metropolitan counties, a mean of 16629 

and a dispersion parameter of 1.764. We will also include settings with an additional 

covariate based on unemployment rate. This variable will be generated from a uniform 

distribution based on the county-level unemployment rates for metropolitan and non-

metropolitan counties, which range from 3.5% to 12.5% and 3.4% to 6.8%, respectively. 

In order to generate the count outcome for each subject within each county, which 

will be summed to produce the county-level count outcome, we will be sampling from a 

Poisson distribution. The count for each subject 𝑗 in cluster 𝑖, represented by 𝑦𝑖𝑗 will be 

generated based on a Poisson distribution with random effects corresponding to 

communities and subjects within communities: 

𝑦𝑖𝑗~𝑃𝑜𝑖𝑠(𝑒𝛽0+𝛽1𝑥𝑖+𝛼𝑖+𝜖𝑖𝑗) 

These subject counts will be summed for each cluster 𝑖 in order to obtain the count for 

each cluster, 𝑌𝑖. 𝛽0 is a fixed intercept equal to 1.31 × 10
−3

, which was selected such that 

the marginal rate per person under the null hypothesis corresponds to the marginal opioid 

poisoning rate per resident in our data set. 𝑥𝑖 is an indicator variable referring to the 

metropolitan status of cluster 𝑖, and will equal 1 if the county is designated metropolitan, 

and 0 if the county is designated non-metropolitan. 𝛽1 corresponds to the 20% or 40% 

decrease, conditional on the random effects, in opioid poisonings in non-metropolitan 

counties for settings in which we compare empirical powers, and will thus be equal to -
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0.22 or -0.51, respectively. 𝛼𝑖 is the cluster-specific random effect for cluster 𝑖, and will 

be sampled from a standard normal distribution. Similarly, 𝜖𝑖𝑗 is the subject-specific 

random effect for subject 𝑗 in cluster 𝑖, and will be sampled from a standard normal 

distribution.  

The linear predictor for the models fit by our three regression approaches can be 

written as follows: 

𝛽0 + 𝛽1𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑡𝑎𝑛𝑖, 𝑖 = 1, … ,119 

𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑡𝑎𝑛𝑖 refers to the metropolitan status, where 1 is metropolitan and 0 is non-

metropolitan, of county 𝑖. In settings where the additional covariate for unemployment 

rate is included, the linear predictor is given by: 

𝛽0 + 𝛽1𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑡𝑎𝑛𝑖 +  𝛽2𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖, 𝑖 = 1, … ,119 

where 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 refers to the percent unemployment rate of county 𝑖. 

We will compare empirical test sizes produced by the regression approaches 

studied in order to ensure valid inference. Specifically, for the purposes of comparing test 

size in order to ensure valid inference, we will be using three bias correction methods, as 

in the previous chapter - Kauermann and Carroll, Mancl and DeRouen, and the average 

of these two bias correction methods. [120] [121] [122] We aim to choose the bias 

correction method that results in test sizes closest to the nominal test size of 0.05 for 

power calculations. Choosing the bias correction that results in empirical test sizes closest 

to the nominal size of 0.05 for each regression method can ensure fair and valid power 

comparisons among the regression methods. For all settings, we will be using degrees of 

freedom equal to the number of clusters minus the number of regression parameter 

estimates. [123]  
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Results 

Overview 

 In this section, we will present results for the empirical test size and power 

calculations from our simulation studies. Additionally, we will provide interpretations of 

results from the application example and connect it to the simulation study results. 

Simulation Studies 

Test Size 

 Test size results for settings with and without an additional covariate are 

presented in Table 4.1. For all three approaches across all settings, the MD bias 

correction method resulted in test size closest to the nominal test size of 0.05. Notably, 

however, all test sizes were inflated. While modified overdispersed binomial and 

modified negative binomial regression had similar test sizes, modified Poisson regression 

resulted in test sizes that were, in the case of no covariate adjustment, more inflated than 

those of the other two methods. In settings with covariate adjustment, however, modified 

negative binomial regression resulted in the most inflated test size. Thus, for all three 

methods, for the purposes of power comparison, we will be using the MD bias correction 

to ensure inference that is closest to valid. 

 

Power 

 Power calculations are presented in Tables 4.2 and 4.3. For all settings, power 

was similar for both modified overdispersed binomial regression and negative binomial 

regression, and these two methods were more powerful than modified Poisson regression. 

Additionally, this power difference increased when the difference in opioid poisonings 
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between metropolitan and non-metropolitan communities increased from 20% to 40%. 

For settings with a 40% reduction, modified overdispersed binomial regression and 

modified negative binomial regression had power that was nearly double that of modified 

Poisson regression. 

 

Application Example 

 Regression parameter estimates and standard error estimates for all three 

regression approaches and bias correction methods are presented in Table 4.4. Results 

from this application example are consistent with those from the simulation studies, as 

modified overdispersed binomial and modified negative binomial regression performed 

similarly in terms of parameter and standard error estimates. Parameter estimates 

resulting from the use of the modified Poisson regression are notably different from the 

other two methods. For example, the parameter estimate for unemployment rate was 

0.040 for modified Poisson regression, compared to 0.008 for modified overdispersed 

binomial regression and 0.007 for modified negative binomial regression. Additionally, 

for metropolitan status, the parameter estimates for modified overdispersed binomial 

regression and modified negative binomial regression were both positive, being 0.42 and 

0.63, respectively. In contrast, the parameter estimate for modified Poisson regression 

was negative, being -0.036. Standard error estimates for modified Poisson regression 

were slightly different compared to those from the other two methods. However, these 

differences varied based on the parameter. For metropolitan status, the standard error 

estimates were higher for modified Poisson regression compared to the estimates from 

the other two methods, but were relatively similar for unemployment rate. 
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 As discussed in the previous chapter, the differences in parameter estimates and 

standard error estimates are due to the way the overdispersion structure is modeled for 

each of the three methods. As the standard error estimate for metropolitan status in 

modified Poisson regression was higher than those of the other two regression 

approaches, it can be implied that the working overdispersion structures for modified 

negative binomial regression and modified overdispersed binomial regression, compared 

to the working overdispersion structure for modified Poisson regression, are closer to the 

true overdispersion structure of the data. 
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Discussion 

Overview 

 In this section, we will provide a summary and conclusion of the results presented 

in the previous section. Next, we will discuss limitations of the study and its settings, as 

well as future work that could expand and improve upon on our findings. 

 

Summary of Results 

 In this chapter, we compared the validity of inference and power of modified 

negative binomial regression, modified Poisson regression, and modified overdispersed 

binomial regression in modeling overdispersed binomial count data for events that can 

occur more than once per person. In our simulation studies, we found that test size was 

generally inflated for all three methods across our settings, although the Mancl and 

Derouen bias-corrected empirical standard error produced test sizes closest to the 

nominal test size of 0.05. In terms of power, modified negative binomial regression and 

modified overdispersed binomial regression performed similarly, and were more 

powerful than modified Poisson regression across all settings. 

 Because none of the regression approaches resulted in valid inference, their use 

for modeling rare cluster-level count outcomes for events that can occur more than once 

per person should be studied further. However, given that, in general, modified negative 

binomial regression and modified overdispersed binomial regression were more powerful 

than modified Poisson regression across all studied settings, researchers may be more 

inclined to use either of the former two methods. Despite modified overdispersed 

binomial regression not being theoretically appropriate, given the theoretical distribution 
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of the outcome of interest, it may be potentially usable in the settings studied in this 

chapter. Researchers can additionally use criteria such as the trace of the empirical 

covariance matrix (TECM) or the correlation information criterion (CIC) to assist in 

choosing a regression approach. [125] [126] 

 

Limitations and Future Work 

 There are several limitations to the data set used as the basis for the simulation 

study and application example. First, there are limitations in terms of the settings studied 

in this chapter. Our focus is limited to rare events, and the models used to simulate the 

data are limited as well. Because of this, results may not be applicable to other types of 

data. Another limitation with the data used is that the same adverse health event may be 

recorded twice by EMS due to changing departments. Despite the use of unique IDs to 

track individuals through the EMS pipeline, the true number of opioid poisonings may be 

overestimated due to duplicate records. The structure for recording EMS events is also 

not rigorous and can lead to inconsistencies from regional departments in how opioid 

poisoning events are recorded. Finally, certain departments may not choose to record 

every EMS event, which can result in the true number of opioid poisonings being 

underestimated in certain counties. For example, data from Rowan County was 

suppressed due to data quality, and was thus not included in this study. To assist with 

proper estimation of opioid poisonings across all counties, Multiple Systems Estimation 

used by Thompson et al. to estimate the prevalence of opioid use disorder may be helpful. 

[67] In this method, data from multiple Kentucky healthcare sources were used to 

estimate the number of individuals with opioid use disorder that were unobserved. This 
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method may be applied to opioid poisonings in order to obtain a more robust picture of 

the opioid poisoning rate in each county. [68] 

 Future work can extend the comparisons of the regression methods studied in this 

chapter to other settings. For example, in many CRTs, rare events that can occur more 

than once per person may be of interest. Thus, further investigation into the applications 

of the regression methods studied here for CRT settings would be helpful for assisting 

researchers in choosing the most appropriate regression approach. Additionally, the 

performance of these methods when the event of interest is very rare or not rare can be 

useful, as both types of events are found in epidemiological studies. As the scope of this 

chapter is limited to the study settings examined above, more thorough study is necessary 

to evaluate the performance of marginal modeling methods when applied to data sets 

with different true overdispersion structures. Finally, as mentioned in the future work of 

the third chapter, further study into the performance of generalized linear mixed models 

(GLMM) in comparison to the marginal approaches studied here may be useful, given 

GLMM’s use as an alternative to modeling cluster-level count data.  
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Supplemental Materials 

Table 4.1 Size Calculations for Simulation Study 

Regression 

Approach 

Modified 

Overdispersed 

Binomial 

Modified Negative 

Binomial 

Modified Poisson 

Bias Correction 

Method 

KC MD Average KC MD Average KC MD Average 

Test Size 

(Without 

Additional 

Covariate) 

0.070 0.067 0.068 0.070 0.068 0.069 0.120 0.095 0.107 

Test Size 

(Including 

Additional 

Covariate) 

0.069 0.064 0.067 0.091 0.085 0.088 0.109 0.072 0.090 

 

Table 4.2 Power Calculations for Simulation Study, 20% Reduction 

Regression 

Approach 

Modified 

Overdispersed 

Binomial 

Modified Negative 

Binomial 

Modified Poisson 

Bias Correction 

Method 

KC MD Average KC MD Average KC MD Average 

Test Size 

(Without 

Additional 

Covariate) 

0.147 0.139 0.143 0.146 0.139 0.143 0.121 0.097 0.108 

Test Size 

(Including 

Additional 

Covariate) 

0.116 0.107 0.111 0.134 0.125 0.130 0.130 0.090 0.108 
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Table 4.3 Power Calculations for Simulation Study, 40% Reduction 

Regression 

Approach 

Modified 

Overdispersed 

Binomial 

Modified Negative 

Binomial 

Modified Poisson 

Bias Correction 

Method 

KC MD Average KC MD Average KC MD Average 

Test Size 

(Without 

Additional 

Covariate) 

0.533 0.521 0.527 0.531 0.522 0.527 0.301 0.265 0.283 

Test Size 

(Including 

Additional 

Covariate) 

0.374 0.355 0.364 0.386 0.372 0.379 0.236 0.179 0.206 

 

Table 4.4 Parameter Estimates from Application Example 

 

 

 

 

 

 

Regression Method Modified Overdispersed Binomial 

Regression 

Modified Negative Binomial 

Regression 

Modified Poisson Regression 

Regression Parameter Estimates (KC SE, MD SE, Average KC/MD SE) 

𝛽
0

 -6.018 (0.121, 0.124, 0.122) -6.009 (0.122, 0.125, 0.123) -6.220 (0.114, 0.145, 0.129) 

𝛽
1

 0.042 (0.131, 0.134, 0.133) 0.063 (0.131, 0.134, 0.132) -0.036 (0.153, 0.158, 0.156) 

𝛽
2

 0.008 (0.013, 0.014, 0.014) 0.007 (0.014, 0.014, 0.014) 0.040 (0.010, 0.016, 0.013) 



153 

 

Chapter 5 – Summary and Conclusions 

 In this dissertation, we explored the performance and applications of marginal 

modeling methods for rare cluster-level count outcomes. As this type of count data is 

common in epidemiological settings, it is crucial that researchers understand the 

consequences of choosing a specific approach given their data set and outcome of 

interest. Thus, one goal of this dissertation is to guide researchers on choosing the most 

powerful, practical, and valid approach possible for modeling count outcomes for rare 

events. Another goal of this dissertation is to provide practical examples of how these 

methods can be used, with a focus on applications to opioid overdose mortality and 

morbidity. 

 In the second chapter, we fit a marginal negative binomial regression model in 

order to characterize the changes in opioid overdose-related fatality rates in Kentucky 

from 2019 to 2021, and found that adjacent-to-metropolitan and Appalachian counties 

experienced the largest increases in fatality rates. Additionally, we used the regression 

model to determine which county-level factors were associated with opioid overdose-

related fatalities in 2019 and 2021 and how these associations may have changed. Both 

metropolitan county status and age were found to be associated with opioid overdose-

related fatalities in both years.  

 In the third chapter, we compared the performance of methods for the marginal 

modeling of rare events that can occur at most once per person. Motivated by the study of 

opioid overdose-related fatality rates in Kentucky, we conducted simulation studies for 

both cluster randomized trial and observational study settings in order to compare the 

validity of inference, power, and practicality of modified regression approaches. We 
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found that modified negative binomial regression and modified overdispersed binomial 

regression performed similarly in terms of power. Depending on the true overdispersion 

structure of the data, modified Poisson regression’s power was either lower or higher than 

those of the other two methods.  

 In the fourth chapter, we compare the performance of the modified regression 

methods explored in the previous chapter for rare events that can occur more than once 

per person. Through simulation studies and an application example based on county-level 

opioid poisoning data in Kentucky, we found that, across the studied settings, modified 

negative binomial regression and modified overdispersed binomial regression were more 

powerful than modified Poisson regression.  

 This dissertation focused on cluster randomized trial and observational study 

settings for rare cluster-level count outcomes. Future work can expand on this 

dissertation to explore other settings that are found in epidemiological studies. For 

example, cross-sectional data was used as the basis for the simulation studies in the third 

and fourth chapters. Comparing the performance of methods for marginal modeling of 

longitudinal data, such as what was studied in the second chapter, is also important, as 

this kind of data is also common in epidemiological settings. Future studies can also 

focus on the performance of commonly used methods for modeling clustered data, such 

as generalized linear mixed models, in comparison to the marginal methods studied in 

this dissertation.  
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Appendix 

Example Code 

Chapter 2 – Adjusted Marginal Negative Binomial Model 

/*Model Using All Data*/ 

proc import datafile="combineddata.csv" 

 out=combined 

 dbms=csv 

 replace; 

run; 

 

/*Set Offset*/ 

data combined2; 

set combined; 

rate='Overdose Rate'n * 100000; 

Buprenorphine = Buprenorphine/2; 

Prescription = Prescription/2; 

log_n = log(Denom); 

Prevalence = Prevalence*1000; 

run; 

 

 

/*Fit negative binomial model*/ 

proc genmod data=combined2; 

class County Period(ref='0') Metro(ref='0') App(ref='0'); 

model 'OD Count'n = Period Unemployment Naloxone App Prevalence 

Metro Ethnic Age Poverty Uninsured Buprenorphine Prescription 

Mental Mental*Period Unemployment*Period Naloxone*Period 

Buprenorphine*Period Prescription*Period Prevalence*Period 

Age*Period Poverty*Period Uninsured*Period Ethnic*Period 

App*Period Metro*Period/ dist=nb offset=log_n; 

repeated subject=County / type=un corrw; 

estimate "Time Period" Naloxone 0 Mental 0 Unemployment 0 Period 

1 -1; 

estimate "Unemployment 2021" Unemployment 1 Unemployment*Period 1 

0; 

estimate "Unemployment 2019" Unemployment 1 Unemployment*Period 0 

1; 

estimate "Unemployment 2021 vs 2019" Unemployment 0 

Unemployment*Period 1 -1; 

estimate "Mental Health Providers 2021" Mental 1 Mental*Period 1 

0; 

estimate "Mental Health Providers 2019" Mental 1 Mental*Period 0 

1; 

estimate "Mental Health Providers 2021 vs 2019" Mental 0 

Mental*Period 1 -1; 

estimate "Naloxone Distribution 2021" Naloxone 1 Naloxone*Period 

1 0; 
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estimate "Naloxone Distribution 2019" Naloxone 1 Naloxone*Period 

0 1; 

estimate "Naloxone Distribution 2021 vs 2019" Naloxone 0 

Naloxone*Period 1 -1; 

estimate "Buprenorphine Reception 2021" Buprenorphine 1 

Buprenorphine*Period 1 0; 

estimate "Buprenorphine Reception 2019" Buprenorphine 1 

Buprenorphine*Period 0 1; 

estimate "Buprenorphine Reception 2021 vs 2019" Buprenorphine 0 

Buprenorphine*Period 1 -1; 

estimate "High-Risk Opioid Prescribing 2021" Prescription 1 

Prescription*Period 1 0; 

estimate "High-Risk Opioid Prescribing 2019" Prescription 1 

Prescription*Period 0 1; 

estimate "High-Risk Opioid Prescribing 2021 vs 2019" Prescription 

0 Prescription*Period 1 -1; 

estimate "Percent Over 65 2021" Age 1 Age*Period 1 0; 

estimate "Percent Over 65 2019" Age 1 Age*Period 0 1; 

estimate "Percent Over 65 2021 vs 2019" Age 0 Age*Period 1 -1; 

estimate "Poverty Rate 2021" Poverty 1 Poverty*Period 1 0; 

estimate "Poverty Rate 2019" Poverty 1 Poverty*Period 0 1; 

estimate "Poverty Rate 2021 vs 2019" Poverty 0 Poverty*Period 1 -

1; 

estimate "Percent Uninsured 2021" Uninsured 1 Uninsured*Period 1 

0; 

estimate "Percent Uninsured 2019" Uninsured 1 Uninsured*Period 0 

1; 

estimate "Percent Uninsured 2021 vs 2019" Uninsured 0 

Uninsured*Period 1 -1; 

estimate "Percent Non-White 2021" Ethnic 1 Ethnic*Period 1 0; 

estimate "Percent Non-White 2019" Ethnic 1 Ethnic*Period 0 1; 

estimate "Percent Non-White 2021 vs 2019" Ethnic 0 Ethnic*Period 

1 -1; 

estimate "Appalachian Status 2021" App 1 -1 App*Period 1 -1 0 0; 

estimate "Appalachian Status 2019" App 1 -1 App*Period 0 0 1 -1; 

estimate "Appalachian Status 2021 vs 2019" App 0 0 App*Period 1 -

1 -1 1; 

estimate "Metro vs Non-Metro 2021" Metro 0 1 -1 Metro*Period 0 1 

-1 0 0 0; 

estimate "Metro vs Non-Metro 2019" Metro 0 1 -1 Metro*Period 0 0 

0 0 1 -1; 

estimate "Adjacent vs Non-Metro 2021" Metro 1 0 -1 Metro*Period 1 

0 -1 0 0 0; 

estimate "Adjacent vs Non-Metro 2019" Metro 1 0 -1 Metro*Period 0 

0 0 1 0 -1; 

estimate "Metro vs Adjacent 2021" Metro -1 1 0 Metro*Period -1 1 

0 0 0 0; 

estimate "Metro vs Adjacent 2019" Metro -1 1 0 Metro*Period 0 0 0 

-1 1 0; 

estimate "Metro vs Non-Metro 2021 vs 2019" Period 0 0 Metro 0 0 0 

Metro*Period 0 1 -1 0 -1 1; 
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estimate "Adjacent vs Non-Metro 2021 vs 2019" Period 0 0 Metro 0 

0 0 Metro*Period 1 0 -1 -1 0 1; 

estimate "Metro vs Adjacent 2021 vs 2019" Period 0 0 Metro 0 0 0 

Metro*Period -1 1 0 1 -1 0; 

estimate "Prevalence Rate 2021" Prevalence 1 Prevalence*Period 1 

0; 

estimate "Prevalence Rate 2019" Prevalence 1 Prevalence*Period 0 

1; 

estimate "Prevalence Rate 2021 vs 2019" Prevalence 0 

Prevalence*Period 1 -1; 

ods output estimates=adjresults GEEEmpPEst=adjstats; 

run; 
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Chapter 3 – Simulate CRT Data for Power Calculations, No Additional Covariate, 

20% Reduction in Marginal Probability for Intervention Arm, Common ICC 

Overdispersion Structure 

simulations=10000 # Number of simulations 

clustersize=89600.31 #mean cluster size 

disp=0.385 #dispersion parameter 

 

n=16    #total number of clusters 

cg=n/2   #clusters in each group 

mu = c(0.0004, 0.001, 0.01, 0.1) # marginal probability 

powermu = 0.8*mu #20% reduction in marginal probability for 

intervention group 

ICC = 0.05*mu #ICC 

pcl=rep(NA,cg) 

powerpcl=rep(NA,cg) 

y=rep(NA,cg) 

y2=rep(NA,cg) 

 

#simulate data 

for(j in 1:4){ 

  a = (1/ICC[j] - 1) * mu[j] 

  b = (1 - mu[j]) * (1/ICC[j] - 1) 

  powera = (1/ICC[j] - 1) * powermu[j] 

  powerb = (1 - powermu[j]) * (1/ICC[j] - 1) 

  npertotal=as.data.frame(matrix(NA,nrow=(n*simulations),ncol=4)) 

  #Now performing simulations 

  for(k in 1:simulations){ 

     

    nper = rep(NA,cg) 

    nper2 = rep(NA,cg) 

    for(i in 1:cg){ 

      #control arm 

      nper[i] = 

as.matrix(max(c(round(rnbinom(1,size=disp,mu=clustersize),0),2000))) 

#Generate cluster size per cluster 

      pcl[i] = rbeta(1,a,b) #generate probability from beta 

distribution 

      y[i]=rbinom(1,nper[i],pcl[i]) #sample from binomial distribution 

       

      #intervention arm 

      nper2[i] = 

as.matrix(max(c(round(rnbinom(1,size=disp,mu=clustersize),0),2000))) 

      powerpcl[i] = rbeta(1,powera,powerb) 

      y2[i]=rbinom(1,nper2[i],powerpcl[i]) 

    } 

 

    npertotal[((n*(k-1))+1):(cg+(n*(k-1))),1]=nper 

    npertotal[((cg+1)+n*(k-1)):(n*k),1]=nper2 

    npertotal[((n*(k-1))+1):(cg+(n*(k-1))),2]=y 

    npertotal[((cg+1)+n*(k-1)):(n*k),2]=y2 

    npertotal[((n*(k-1))+1):(n*k),3]=c(rep(1,(n/2)),rep(0,(n/2))) 

    npertotal[((n*(k-1))+1):(n*k),4]=k 
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  } 

   

  colnames(npertotal)=c("clustersize","y","inter","sim") 

  write.csv(npertotal,paste("filename",j,".csv")) 

   

} 
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Chapter 4 – Simulate Observational Study Data for Power Calculations, No 

Additional Covariate, 40% Reduction in Rate for Rural Counties 

n = 119 #number of clusters 

clustersize=57801.69 #mean cluster size (urban) 

disp=0.302 #dispersion parameter (urban) 

clustersize2=16666.91 #mean cluster size (rural) 

disp2=1.793 #dispersion parameter (rural) 

rate = (12144/3419869)/exp(1) #fixed rate  

rate2 = 0.6*rate #40% reduction in marginal probability for rural 

counties 

simulations = 10000 #number of simulations 

npertotal=as.data.frame(matrix(NA,nrow=(n*simulations),ncol=4)) 

colnames(npertotal)=c("sim","group","count","pop") 

 

#conduct simulations 

for(k in 1:simulations){ 

  c1=rep(NA,35) 

  c2=rep(NA,84) 

  nper = rep(NA,n) 

  #generate urban/rural county cluster size 

  c1 = round(rnbinom(35,size=disp,mu=clustersize),0) 

  c2 = round(rnbinom(84,size=disp2,mu=clustersize2),0) 

  nper = c(pmax(c1,2000),pmax(c2,2000)) 

   

  #calculate population for each of the groups 

  pop1=sum(nper[1:35]) 

  pop2=sum(nper[36:119]) 

  pop=sum(pop1,pop2) #total population 

   

  dat = as.data.frame(matrix(nrow=pop, ncol = 4)) 

  colnames(dat) = c("Cluster","Count","cluster.error","subject.error") 

  dat$Cluster = rep(seq(1,n),nper) 

   

  cluster.error = rnorm(n) #generate cluster-level random intercept 

  dat$cluster.error = rep(cluster.error,times=nper) 

   

  dat$subject.error = rnorm(pop) #generate subject-level random 

intercept 

   

  #generate counts for each subject 

  dat$Count = c(rpois(pop1, rate*exp(dat$cluster.error[1:pop1] + 

dat$subject.error[1:pop1])),rpois(pop2,rate2*exp(dat$cluster.error[(pop

1+1):pop] + dat$subject.error[(pop1+1):pop]))) 

   

  #calculate number of events per cluster by summing counts within each 

cluster 

  clustercount = aggregate(dat$Count ~ dat$Cluster, FUN=sum)  

   

  npertotal[((n*(k-1))+1):(n*k),1]=k 

  npertotal[((n*(k-1))+1):(n*k),2]=seq(1,n) 

  npertotal[((n*(k-1))+1):(n*k),3]=clustercount$`dat$Count` 

  npertotal[((n*(k-1))+1):(n*k),4]=nper 

  print(k) 

} 
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#generate metropolitan status variable 

npertotal$inter = rep(c(rep(1,35),rep(0,84)),simulations) 

write.csv(npertotal,paste("filename.csv")) 
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