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ABSTRACT OF DISSERTATION 
 
 
 
 
 

SUBSTRATE TRAFFICKING WITHIN THE TYPE VII  
SECRETION SYSTEMS OF PATHOGENIC MYCOBACTERIA 

 
Tuberculosis (TB), primarily caused by infection of Mycobacterium tuberculosis (Mtb) in 
the lungs, is the deadliest infectious bacterial disease killing 1.5 million people annually. 
A major determinant of virulence is active secretion through three specialized type VII 
secretion (ESX) systems; ESX-1, ESX-3, and ESX-5. A large group of substrates exported 
by the ESX systems is the PE (Proline-Glutamine) and PPE (Proline-Proline-Glutamate) 
families of proteins, which are highly expanded in the pathogenic species of Mycobacteria 
and encompass over 7% of Mtb’s genome coding capacity. PE and PPE proteins interact 
together to form PE-PPE heterodimers, and are secreted through specific ESX systems. 
Despite this massive expansion and the implication of a few select members in key 
virulence processes, most family members have still undefined functions. This can be 
partially attributed to previously reported difficulties of working with the purified proteins 
in vitro and a poor understanding of how heterodimer pairs are trafficked within the 
mycobacterial cell to their cognate ESX system. Each ESX system that secretes PE-PPE 
heterodimers encodes a unique copy of the chaperone protein, EspG. The work contained 
here aims to elucidate the mechanism of PE-PPE heterodimer recognition by EspG for the 
ESX-3 and ESX-5 systems. Structural analysis of ESX-3-specific PE5-PPE4-EspG3 
heterotrimer shows that EspG3 and EspG5 employ unique binding modes to their cognate 
PE-PPE heterodimers, which presents unique interfaces of the highly conserved PPE 
proteins to each EspG. The ESX-5-specific PPE proteins are variable at the hydrophobic 
(hh) motif, which is shielded from solvent upon binding of EspG. Structural analysis of 
selected hh mutants in the context of the PE25-PPE41-EspG5 suggested plasticity within 
the PPE-binding region of EspG5 to allow it to bind the various ESX-5-specific PPE 
proteins. Taken together, these results improve our understanding of trafficking of an 
important group of ESX substrates, setting the stage for more targeted studies of individual 
PE and PPE proteins to determine the still unknown functions of most family members. 
This may prove to be a fruitful avenue of therapeutic development to lower the burden of 
the global public health emergency caused by TB. 
 
 
KEYWORDS: Mycobacterium tuberculosis, X-ray crystallography, type VII secretion 
system, chaperone, protein-protein interactions, mycobacteria 
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 1 

Chapter 1. Introduction. 

1.1. Tuberculosis – the ancient, deadly infectious disease. 

Tuberculosis (TB) is currently a leading cause of death worldwide, being the deadliest 

bacterial disease. Nearly 10 million people annually fall ill with TB, with 1.5 million 

ultimately succumbing to the disease (1). The primary causative agent of TB is 

Mycobacterium tuberculosis (Mtb), which has been infecting humans for tens of thousands 

of years, predating the Neolithic period (2,3). In fact, the interactions between the 

bacterium and the human host drove the evolution of Mtb (4), and some estimates have 

roughly one third of the world’s population as infected with Mtb. Despite discovery of Mtb 

in 1882 by Robert Koch (5), it is still a major global public health concern all these years 

later and has been considered an emergency for the past 25 years (6). 

Currently TB diagnosis is followed by the implementation of well-studied treatment 

regimens. The exact treatment regimen implemented depends on numerous factors, but 

most importantly on the drug susceptibility of the disease-causing strain of Mtb within the 

patient. The World Health Organization recommendation for drug-susceptible strain 

infection is a six month treatment plan of two months of daily dosing of four medications; 

isoniazid, rifampicin, pyrazinamide, and ethambutol; followed by continuing the daily 

dosing of isoniazid and rifampicin for an additional four months (7). The latest data from 

treatment outcomes of drug-susceptible TB is that 85% of patients had a successful 

treatment (1). Despite this high success rate the World Health Organization estimated that 

in 2019 about 2.9 million cases of TB were not reported, or about 29% of the estimated 10 

million global cases (1). The historical taboo associated with TB, along with current 

treatment options involving lengthy daily dosing of numerous therapeutics, and with many 

of these therapeutics having harmful side effects (8), has led to low adherence. Low 

adherence has aided in the rise and spread of drug-resistant strains of Mtb. With rifampicin 

and isoniazid being the most commonly used first line therapeutics, resistance is to them is 

often first acquired, and strains with resistance to both are known as multi-drug resistant 

TB (MDR-TB) (9). Treatment of MDR-TB infections is extremely prolonged, often lasting 

longer than 12 months, and contains regimens with daily dosing of more than five separate 

therapeutics (9). Often times these second-line therapeutics have considerably worse side 
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effects than standard anti-TB therapeutics (10). New therapeutics that can shorten the 

required treatment and can be effective against all strains of Mtb are gravely needed. 

An effective vaccine against Mtb also does not exist. A strain of a related pathogen, 

Mycobacterium bovis BCG, is commonly used as a vaccine, however this is only done in 

areas where TB is endemic and to protect children from severe forms of Mtb infection, 

such as tubercular meningitis (11-13). M. bovis BCG vaccination does not protect patients 

from developing pulmonary TB later in life (14). M. bovis BCG was created by the serial 

passage of a virulent M. bovis strain that ultimately resulted in its attenuation and was 

carried out by Albert Calmette and Camille Guérin at the Institut Pasteur of Lille between 

1908 and 1921 (11). Calmette and Guérin first tested the M. bovis BCG strain as a vaccine 

in humans in 1921, before sending out the newly created vaccine to the rest of the world in 

1924 (11). The main cause for attenuation in M. bovis BCG can be attributed to the deletion 

in region of difference 1 (RD1) (15,16). This deletion lies within ESX-1, one of the type 

VII secretion systems found within mycobacteria, and deletes the eccCb1, pe35, ppe68, 

esxB, esxA, and espI genes, and these deletions make ESX-1 non-functional (16). 

Ultimately the M. bovis BCG vaccine is not sufficient to fight the global spread of TB. 

With TB persisting as a leading cause of death worldwide, and the continued rise of drug-

resistant strains of Mtb it will be nearly impossible to eradicate Mtb and TB without the aid 

of effective vaccines. 

1.2. The lifecycle of the Mtb bacterium. 

Mtb is an intracellular pathogen that primarily spreads in aerosolized droplets from 

a patient with active TB disease to an uninfected patient. Mtb is most often phagocytosed 

by macrophages, where it sets up its replicative niche and modulates the host immune 

responses. The primary site of infection is within the lungs, and extrapulmonary TB is less 

than 10% of all cases (17). Inside the lungs Mtb targets the lower lung and the alveolar 

macrophages. The lower lung tends to have fewer competing microbes than the upper 

respiratory tract (18), which allows Mtb to focus solely on infecting the host and not on 

competing with other microbes nor dealing with the host immune responses to the 

competing microbes. Mtb contains a surface lipid, phthiocerol dimycocerosate (PDIM), to 

hide their pathogen-activated molecular patterns (PAMPs), which normally would recruit 

bactericidal macrophages(19) Instead, Mtb utilizes another surface lipid, phenolic 
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glycolipid (PGL), to recruit growth-permissive macrophages (19). This would be futile in 

the upper respiratory tract that is filled with other microbes that are recruiting bactericidal 

macrophages, and Mtb would simply be collateral damage. Further evidence for the lower 

respiratory tract being the preferred target for Mtb infection comes from studies looking at 

transmission in confined spaces (20,21), and these studies were supported by a rabbit 

infection study that showed aerosol droplet size negatively correlated with infection, as the 

most infectious droplets contained one to three mycobacteria while droplets containing 

thousands of mycobacteria caused little to no infection (22). 

Once within the macrophage Mtb has to avoid destruction by these professional 

phagocytes. Mtb’s first action is to prevent phagosome maturation and its fusion with the 

lysosome (23) and the subsequent acidification and maturation of the compartment. Mtb-

containing phagosomes maintain characteristics of early phagosomes such as limited 

acidification (24,25), maintenance of a small GTPase associated with early endosomal 

events (26-28), and access to the rapid recycling pathway (26,29,30). Modulation of 

phagosomal maturation is accomplished through a variety of methods. Numerous cell wall 

lipids have been implicated in stunting phagosomal maturation (31-35), along with two 

secreted proteins, SapM (36) and PknG (37). Despite their best efforts, Mtb can be found 

within acidified phagolysosomes, which typically reduces Mtb’s replicative potential and 

often kills the mycobacteria (38,39). Yet it seems that lysosomal fusion is not a death 

sentence for Mtb, as co-infection with Coxiella burnetii, a bacterium that occupies acidified 

vacuole and readily fuses with other vacuoles, drives Mtb to co-localize with C. burnetii 

into the acidified vacuole replicating the lysosomal fusion event, but does not rapidly kill 

the mycobacteria and may not affect the mycobacterium’s replication potency (40). Also, 

if opsonized or in later stages of infection when anti-Mtb antibodies are present, Mtb can 

enter macrophages through Fc-receptors and reside within phagolysosomes and even 

replicate within these compartments (41,42). Survival within the macrophage is crucial for 

Mtb to establish the next part of its infectious cycle, the granuloma. 

Granulomas at their most basic are described as a compact, organized aggregate of 

mature macrophages in response to a continual stimulus (43-45). The first description of 

granulomas was done in Mtb infected lungs in 1679 and was called a tubercle, predating 

the description of Mtb by Koch by over 200 years (46). The tubercle and TB were so 
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intimately connected that it is where TB gets its name (47), and even today TB remains the 

leading cause of granuloma formation (46). Granulomas are incredibly heterogeneous in 

terms of cellular composition, oxygenation levels, inflammatory milieu, and bacterial 

burden not only across different host but also within a single host (48). Transport of Mtb-

infected macrophages across the alveolar epithelium into the lung tissue is the first step in 

the initiation of the granuloma (49) and is made possible because of the recruitment of the 

correct growth-permissive macrophages by Mtb’s surface lipid PGL when the 

mycobacterium first enters the host (19). New macrophages are recruited, in part by 

substrates of ESX-1 (50,51), and in combination with an innate immune response this is 

sufficient to initiate the formation of the granuloma (52). Mtb exploits the granuloma for 

growth and dissemination within the host, and granulomas are supportive of high bacterial 

burdens (53). Residing within the granuloma are Mtb-infected macrophages which are 

actively dying, and these dying macrophages are actively recruiting new macrophages into 

the granuloma to allow phagocytosis of the dying cell by the newly arriving macrophages 

(54). Multiple newly arriving macrophages will phagocytose a single dying Mtb-infected 

macrophage, thus spreading Mtb in multiple new host cells to continue its replication cycle 

(54). The direct attraction of macrophages to phagocytose dying Mtb-infected macrophages 

is dependent on a functional ESX-1 system (54). EsxA, a substrate of ESX-1, may also 

drive the death of Mtb-infected macrophages, as it induces apoptosis through numerous 

pathways in cultured cells, some of which may be present in the context of the granuloma 

(55-59). The center of the mature granuloma is a hypoxic environment full of dying 

macrophages, many of which have undergone necrotic death (60). Interestingly, the 

necrotic release of Mtb may be beneficial as the extracellular milieu is very permissive for 

growth (61,62). The granuloma therefore sustains Mtb as not only are newly arriving 

macrophages regularly infiltrating and phagocytosing dying Mtb-infected macrophages, 

but also the extracellular environment supports the growth of released Mtb from Mtb-

infected macrophages that undergo necrosis. When a person with active TB disease coughs, 

sneezes, or spits the Mtb from their lungs can be aerosolized and expelled into the 

environment where an uninfected person can inhale the droplet and allow Mtb to spread in 

a new host. 
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1.3. The type VII secretion system and mycobacteria 

1.3.1. Protein secretion in mycobacteria. 

Mtb and the rest of the mycobacterial species have their own family, 

Mycobacteriaceae, within the Actinobacteria phylum, or the high GC Gram-positive 

bacteria, which contain a high proportion of guanine-cytosine base pairings in their 

genome. Mycobacteria can be split into two different subgroups, depending on their rate 

of replication. The so-called fast-growing mycobacteria include most of the non-

pathogenic, saprophytic mycobacteria, such as Mycolicibacterium smegmatis, although 

some species, such as Mycobacteroides abscessus can cause disease, and are considered 

the more ancestral of the mycobacteria (63). Most of the pathogenic mycobacteria, such as 

Mtb and the human pathogen Mycobacterium leprae, belong to the so-called slow-growing 

group (63). All mycobacteria contain a complex cell envelope with characteristic long 

chain fatty acids, known as mycolic acids, attached to peptidoglycan-arabinogalactan 

network (64-66). This cell envelope creates an exceptionally strong permeability barrier 

for mycobacteria; however, the organization of the cell envelope was unclear until 2007. 

Two studies identified evidence of an outer membrane bilayer that exists in the cell 

envelope, that would become known as the mycomembrane (67,68). The mycomembrane 

presents an export challenge for mycobacteria similar to the one present in Gram-negative 

bacteria. None of the specialized secretion systems found in Gram-negative bacteria have 

been identified in mycobacterial species, and in fact the identification of mycomembrane 

transporters has thus far eluded researchers (69,70)., This limits the current knowledge of 

protein secretion in mycobacteria to mechanisms and systems of transport across the 

plasma membrane, with still unclear modes of transport across the mycomembrane. 

Numerous pathways across the inner membrane of mycobacteria have been 

identified including the conserved general secretion (Sec) pathway, twin-arginine 

translocase (Tat) pathway, and the type VII secretion system. The Sec pathway is a highly 

conserved and essential export pathway ubiquitously found within all bacteria (71,72). The 

SecYEG complex forms the main complex through which Sec export occurs. SecY forms 

the main pore of the channel, which is stabilized by SecE, and the efficiency of transport 

is improved with SecG (73-75). Proteins are translocated across the channel in an unfolded 

state and contain a conserved signal peptide in their N-terminus, which is characterized by 
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a positive N-terminal domain, a hydrophobic central domain, and an uncharged C-terminal 

domain with a cleavage site (76,77). Export through SecYEG is a posttranslational process, 

however SecYEG also works to insert integral membrane proteins into the plasma 

membrane in a co-translational manner with the aid of SRP and FtsY (78-80). The 

chaperone SecA is also associated with the SecYEG channel and acts to bring proteins to 

the channel and use its intrinsic ATPase activity to drive export (81). Mycobacteria, 

including Mtb, along with other actinomycetes and a small subset of Gram-positive bacteria 

have an additional SecA paralog known as SecA2 (72,82). In mycobacteria, SecA1 is the 

SecA paralog with the highest similarity to the E. coli SecA protein. A large variety of 

proteins are secreted in an SecA1-dependent manner through the SecYEG channel and 

have roles in a large variety of cellular functions such as cell wall synthesis and virulence 

(72). SecA2 overexpression does not allow for secA1 to be deleted, suggesting that SecA2 

interacts in a unique manner and similarly SecA1 overexpression does not rescue a ΔsecA2 

phenotype (82). SecA2 utilizes the same SecYEG channel in mycobacteria (83-85). SecA2 

is not essential for growth in vitro yet does function in virulence in both macrophage and 

animal models of mycobacterial infection (72,86-90). Overall, numerous vital proteins are 

secreted in a Sec-dependent manner, whether with the aid of SecA1 or SecA2, that not only 

allow mycobacteria to grow but also play roles in the virulence of pathogenic species. 

Another conserved secretion pathway in mycobacteria is the Tat pathway. The Tat 

pathway in mycobacteria functions similarly to the Tat systems studied in other bacteria 

and encompasses the integral membrane proteins TatA, TatB, and TatC (91-94). TatA and 

TatB are small homologous proteins with a single transmembrane domain, while TatC is a 

large integral membrane protein (95). TatBC binds substrates and recruits TatA homo-

oligomers to the complex for translocation across the membrane with energy from the 

proton motor force (96-98). The exact mechanism of transport is currently unknown. Some 

models propose TatA oligomers form a channel for substrates to translocate through, while 

others propose that TatA destabilizes the membrane near the TatBC-substrate complex to 

allow for TatC to drive translocation across the plasma membrane without a channel 

(99,100). The signal peptide of Tat substrates shares many similarities with the Sec signal 

peptide such as a positively charged N-terminus followed by a hydrophobic domain and a 

neutral polar C-terminal domain. The Tat signal peptide does contain a key difference in 
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the presence of a Tat motif, with characteristic twin arginines followed by another amino 

acid and two hydrophobic amino acids (101). Most Tat systems are dispensable, at least 

when bacteria are grown in standard laboratory media (102). This is not the case for Mtb, 

as it is one of the few species where Tat is essential (94), and even in other mycobacteria, 

such as M. smegmatis, the Tat pathway is not essential (92,93). The Tat pathway represents 

an alternative pathway for secretion of proteins across the plasma membrane. 

The major export system in mycobacteria is the type VII secretion systems, also 

known as the ESX systems. The ESX systems will be the primary focus of the rest of this 

section. All mycobacterial species encode for at least one ESX system, with numerous 

unique systems being found within pathogenic mycobacteria, such as Mtb which contains 

five ESX systems. Genetically the systems are organized in clusters which encode all the 

core components that make up the inner membrane transport machinery, conserved 

accessory proteins, and a few select substrates. A more detailed description of the ESX 

systems including genetic organization, core components, substrate properties, and 

individual system functions will be the focus of the rest of this chapter. 

1.3.2. Genetic organization and evolution of the ESX systems. 

The ESX systems are genetically organized in loci/clusters that contain the 

conserved core components eccB, eccC, eccD, eccE, and mycP, a pair of esx genes, the 

accessory genes espG and eccA, and a pe and ppe pair (Figure 1.1.). The naming of the 

genes follows a standardized nomenclature, for example the eccD gene from ESX-1 is 

known as eccD1 (103). Each component, along with functions of the various systems will 

be discussed further in the following subsections. The precise arrangement of the genes has 

changed over the evolution of the systems.  

ESX-4 is the most ancestral of the ESX systems and similar systems are present in 

non-Mycobacterium genera such as Gordonia, Nocardia, and non-mycolic acid producing 

Actinobacteria orders such as Strepromycetales and Pseudonocardiales (104). The more 

distantly related phylum Firmicutes also has ESX-like systems, however only eccC and 

esxA homologs exist in these systems (105-107). These ESX-like systems in Firmicutes 

species have been shown to be functional for the secretion of their esxA homologs, but are 

likely mechanistically distinct from any Actinobacteria ESX systems, such as the ones 

found within in Mtb (105,108-113). The presence of orthologous ESX-4 systems in a 
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variety of actinobacterial species, many which do not contain a mycomembrane, suggests 

that it plays a role only in inner membrane translocation, and this could carry to the other 

ESX systems found within mycobacterial species. Functional ESX-4 evidence has only 

recently been identified, including intracellular survival in M. abscessus (114) and 

conjugation in M. smegmatis (115,116). The lack of the eccE4 gene in Mtb (Figure 1.1.) 

could explain why ESX-4 mediated secretion has not been observed using Mtb systems, 

however recent work has identified a co-dependence on intact ESX-4 in order to secrete 

the toxin CpnT (117). Also missing from ESX-4 are eccA4, espG4, pe, and ppe genes. As 

these four genes have hypothesized interconnections, which will be discussed in a future 

subsection, it is unsurprising that all four are absent together. 

ESX-3 is present in nearly every sequenced mycobacterial species (104) and 

contains all conserved core components, along with the substrates esxG and esxH, and the 

PE-PPE-associated genes; eccA3, espG3, pe5, and ppe4. ESX-3 is essential for in vitro 

growth of Mtb (118-120).  

ESX-1 is present in almost all mycobacteria, only a few of the most ancestral 

species, such as M. abscessus, contain only ESX-4 and ESX-3 (104). A few mycobacterial 

species such as Mycobacterium avium, Mycobacterium ulcerans, and Mycobacterium 

xenopi had ESX-1 present in their genomes at one point, but it has since been deleted from 

their genomes. The vaccine strain M. bovis BCG strain has a main attenuation deletion, 

RD1, that is located within the ESX-1 cluster. The presence of ESX-1 in most 

mycobacteria, including pathogenic and non-pathogenic species, suggests a non-virulence 

primary function, and perhaps virulence effectors have evolved more recently in the 

pathogenic species (104). Both eccE1 and mycP1 are often inverted, along with numerous 

gene insertions not shown in Figure 1.1. The eccC gene is unique in ESX-1 as it is split 

into two different genes, eccCa1 and eccCb1, yet the two gene products interact with each 

other to function similar to other EccC paralogs from Mtb. 

The most recently evolved systems are ESX-2 and ESX-5 and are only found within 

the slow-growing mycobacteria such as Mtb. There is no evidence that either cluster causes 

the slow-growing phenotype as ESX-2 is absent in numerous slow-growing mycobacteria, 

such as M. leprae and M. marinum (104). Furthermore, the deletion of ESX-5 does not 

increase the growth rate of Mtb or M. marinum (121,122). ESX-5 is unique in that it 
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contains multiple pe and ppe genes within the cluster (Figure 1.1.) and is hypothesized to 

secrete most of the known PE and PPE proteins (123). The evolution of ESX-5 is closely 

linked with the expansion of the pe and ppe genes (124). The expansion of the pe and ppe 

genes will be discussed further in 1.4. 

1.3.3. The core components of the ESX systems. 

The core ESX machinery can be defined as the complex containing EccB, EccC, 

EccD, EccE, and MycP. Most studies do not capture MycP during purification of the 

complex (125-128), however work on MycP shows it does interact with the other 

components and is hypothesized to play a role in stabilizing the complex (129), and 

therefore is considered a component of the core complex. The first structures of the core 

complex were negative-stain electron microscopy reconstructions from the ESX-5 systems 

of M. marinum and M. bovis BCG, and revealed that the machinery exists solely within the 

plasma membrane (126) and it is still unknown what facilitates transport of ESX substrates 

across the mycomembrane. Recently, cryo-EM structures of ESX-3 machinery from M. 

smegmatis have been published (127,128). These structures both identified a core unit of 

EccB3C3D3E3 in a 1:1:2:1 ratio that forms a stable dimer of protomers (127,128). The 

original ESX-5 negative-stain structure contains six-fold symmetry and three of the ESX-

3 dimers can be modelled within its envelope (127). Famelis et al., (127) propose this 

hexameric model of the ESX-3 machinery as the functional unit (127). The functional 

model contains an inner pore created by transmembrane helices from EccC3 that is roughly 

25 Å in diameter, which is wide enough to secrete the folded EsxGH heterodimer (127). 

Poweleit et al. propose two models in their publication (128). The first largely agrees with 

Famelis et al. (127), however Poweleit et al. (128)indicate it is not clear how EccC3’s 

ATPase activity would be activated based upon the current understanding of its mechanism 

of action (127,128). In Poweleit et al.’s second model for secretion the core protomer 

dimerizes and an inner pore is created by EccD3 (128). This EccD3-pore is also wide 

enough to secrete the folded EsxGH, a known ESX-3 substrate. However, because of the 

hydrophobicity of the transmembrane helices from EccD3 a unique, non-water mediated 

secretion mechanism would be required, which has not been observed in other bacterial 

secretion systems (128). These structures provide insight into the mechanism of secretion 

via ESX, and recently two structures of the ESX-5 core complex have been published or 
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made available as a preprint on bioRxiv (130,131) and no structure exists for the ESX-1 

core machinery. The exact mechanism of secretion through the core ESX machinery 

remains elusive, despite the available structural information of the core complex. The 

pathway of translocation of substrates across the mycomembrane also remains unknown. 

EccB is required for proper secretion (132) and interacts with MycP to tether MycP 

to the core complex (133). EccB1 is 51 kDa protein with a small N-terminal soluble domain 

of about 40 amino acids and a large C-terminal soluble domain of about 400 amino acids 

connected by a single helix transmembrane domain, and all paralogs are roughly organized 

the same. The C-terminal domain of EccB1 has been structurally characterized and revealed 

a single elongated fold in a distorted propeller shape, which includes a quasi 2-fold 

symmetry (134). A central core domain composing a six stranded β-sheet is flanked on 

either side by two repeat domains (134). The structure of EccB1’s C-terminal domain was 

not significantly similar to any other known structure (134). EccB1 also has evidence of 

ATPase activity, but the localization of the large soluble domain in the periplasm does not 

indicate a clear functional role of the reported ATPase activity (135). The recent structures 

of the ESX-3 core machinery provided insight on EccB function as both reported structures 

reported dimerization of the protomers that was stabilized and/or facilitated by the 

dimerization of EccB3’s periplasmic domain (127,128). 

EccC has two transmembrane helices located N-terminal to a domain of unknown 

function, which is followed by three ATPase domains. Interestingly, in ESX-1 EccC is split 

into two separate proteins, EccCa1 containing the transmembrane helices, the DUF and the 

first ATPase domain and EccCb1 which contains the other two ATPase domains. EccCa1 

and EccCb1 interact to form a functional EccC (136). The hypothesized function of EccC 

is to recognize substrates and provide the energy required for their transport. EccC is 

required for proper secretion (136), and specifically its ATPase activity is required 

(127,137). Work on an EccC homolog suggests that it binds a specific sequence on a 

substrate that modulates EccC multimerization, and ultimately its activity (138). It has also 

been hypothesized that the third ATPase domain may specifically recognize cognate 

substrates as variety exists in numerous loops of Mtb EccC paralogs (139). Both ESX-3 

core machinery structure publications proposed models of secretion through a channel 

partially formed by EccC3’s transmembrane helices and the pore’s opening could be linked 
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to ATPase activity of EccC’s ATPase domains through other members of the core 

machinery (127,128). 

EccD has a small N-terminal domain followed by 11 transmembrane helices. It was 

originally thought that EccD could form the main pore in the plasma membrane as it has 

the most transmembrane helices of any conserved component. The N-terminal domain of 

EccD1 was structurally characterized and revealed a ubiquitin-like fold (134). The 

structural characterization utilized two crystal forms of EccD1 and in both forms EccD1 

dimerized, this along with the extensive nature of the dimerization interface suggested that 

EccD1 is a natural homodimer (134). The homodimerization of EccD could be a tethering 

of two separate channels or perhaps the formation of one large pore containing all 22 

transmembrane helices (134). With the core structures from ESX-3 it is now unlikely that 

EccD creates the central pore for the ESX system, instead EccD could be considered as the 

scaffold on which the core machinery is built as it interacts with every other conserved 

component, and in each ESX-3 core machinery structure EccD is dimerized along the N-

terminal domain interface (127,128). 

EccE contains an N-terminal domain with two transmembrane helices and a C-

terminal soluble domain, that exists in the cytoplasm. To date no biochemical analysis has 

been published on EccE. A single structural study on the topology of the N-terminal 

transmembrane helices domain of EccE1 was recently published (140), which agrees with 

the models of EccE3 present in both ESX-3 core machinery structures (127,128). 

Additionally, EccE1 has been shown to be essential for Mtb virulence ex vivo, and acts to 

stabilize the other members of the core machinery (141). 

1.3.4. Substrates of the ESX systems. 

The substrates of the ESX systems can be classified into three major groups: the 

Esx proteins, the Esp proteins, and the PE and PPE proteins. The Esx and Esp proteins will 

be described in more detail within this subsection, while a more in-depth description of the 

PE and PPE proteins will follow in section 1.4. All of these proteins belong to the Pfam 

clan EsxAB (Pfam CL0352, (142)). It is hypothesized that the substrates are secreted as 

folded proteins with a structural motif of a four-helix bundle. This four-helix bundle is 

often created by the heterodimerization of two substrates, such as EsxA and EsxB (143) or 

PE25 and PPE41 (144), but can also be formed by a single protein, such as EspB (145,146). 
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Each substrate pair also contains a conserved ESX secretion signal of YXXXD/E 

(147,148). The signal was first identified as the C-terminal tail of EsxB, and shown to 

interact with EccC, but the critical residues of EsxB could not be identified (148). The 

critical residues of tyrosine (Y) and a negatively charged amino acid (D/E) separated by 

three residues are also found in PE25 (147). The ESX secretion signal is found within all 

PE proteins, EsxB and its homologs, and many of the Esp proteins (147). However, this 

signal is only a general signal for all of the ESX systems and does not confer any system 

specificity. 

The Esx proteins are small proteins belonging to the WxG100 family (Pfam 

PF06013) within the larger EsxAB clan (Pfam CL0352), characterized by a tryptophan and 

glycine separated by a single residue in the turn of a helix-turn-helix structure of about 100 

amino acids. Each ESX loci contains a pair of esx genes which form a heterodimer, that is 

a characteristic four helix bundle. There is a total of eleven tandem pairs of esx genes, five 

of which are located within the ESX-1 through ESX-5 loci, and the other six at other places 

within the genome (149). The esx genes located outside the ESX loci are closely related to 

ones within the ESX loci, and likely arose from recent duplication events (105). 

Functionally Esx proteins can serve a wide variety of functions, as EsxA and EsxB play 

important roles in ESX-1-related functions such as phagosomal rupture, host membrane 

pore formation, T-cell modulation, and macrophage recruitment in the granuloma 

(50,51,55-59,150-154). EsxG and EsxH serve very different functions in iron homeostasis 

(155). It seems there is no unifying function of Esx proteins. The Esx proteins are best 

represented by EsxA and EsxB of ESX-1, as they are the most well studied of the family. 

EsxA and EsxB are also known as ESAT-6 and CFP-10, respectively. EsxA was the first 

identified substrate of an ESX system (156), and in fact is responsible for the naming of 

the ESX systems. EsxB was discovered shortly after EsxA (157), and it forms a 1:1 

heterodimeric complex with EsxA (158). The structure of the EsxAB heterodimer was the 

first of an ESX substrate (143), and with the solution structure of EsxGH from ESX-3 

appears to be standard for Esx proteins (159). The Esx proteins are likely the most archaic 

substrate of the ESX systems as they are found in all ESX systems, not only in 

mycobacteria but also in other species (107). The more distantly related Firmicutes do not 

always contain a pair of esx genes, and instead only have a single esx gene. Yet there is 
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evidence that these single Esx proteins from Firmicutes systems homodimerize to form the 

classical helical bundle structure of ESX substrates and is secreted as a homodimer 

(160,161). 

The Esp proteins are unique to ESX-1 and are not found in other ESX systems. The 

espB, espE, espF, espH, espI, espJ, espK, and espL genes are all located with the ESX-1 

genetic loci (not shown in Figure 1.1.). In addition, an operon of espACD is located about 

260 kbp upstream of the ESX-1 loci (162). EspG1 is not a secreted protein and was 

originally mischaracterized since it is within the ESX-1 loci and does not share sequence 

similarity with its EspG paralogs in other ESX systems. It has kept its name for historical 

reasons, and simply follows the standard nomenclature for ESX homologs in multiple 

systems (103). EspG will be discussed further in later sections, and the rest of this section’s 

discussion will focus on the other Esp proteins. The rest of the Esp proteins all belong to 

the EsxAB clan (Pfam CL0352) and are hypothesized to have the characteristic helix-turn-

helix structural motif. Some Esp proteins have been shown to be secreted (162-168), while 

some have been shown to play roles in the secretion of other ESX-1 substrates (169-173). 

EspB is perhaps the most well studied Esp protein. Initially, it has been structurally 

characterized by two different groups and revealed that EspB’s N-terminal domain shares 

similarities with the PE-PPE heterodimers (145,146). In solution EspB forms a heptameric 

complex in a donut-ring shape (145,146), and just recently a high resolution model of this 

structure was published (174). EspB is within all mycobacteria that contain an ESX-1 

system, except for M. leprae (175). EspB functions in membrane lysis and is essential for 

macrophage cytotoxicity and intracellular mycobacterial growth (166-168,176). Loss of 

espB attenuates M. marinum in zebrafish and prevents conjugation in M. smegmatis 

(166,177). Interestingly EspB is required for EsxAB secretion, and likewise EsxA and 

EsxB are required for EspB secretion (168). Upon secretion EspB is cleaved by MycP, and 

the importance of this cleavage to the mature EspB in ESX-1 function and/or regulation is 

still under active investigation (129,167,168,176,178,179). While much is left to be 

uncovered about the Esp proteins and why they only exist in ESX-1, they highlight the 

interdependence of ESX substrates on each other for proper secretion.  
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1.4. The PE and PPE proteins. 

1.4.1. Classification and genetic organization of PE and PPE proteins. 

The PE and PPE families of proteins are a major class of substrates for the ESX 

systems, and they were discovered with the sequencing of the Mtb genome in 1998 (149). 

Remarkably, at the time of sequencing these two families encompassed 10% of the Mtb 

genome (149), although current analysis has them at about 7% of the genome (180). PE 

and PPE genes are also unique to mycobacterial species and are yet to be found in any other 

genera (124). These families are named for conserved Pro-Glu (PE) or Pro-Pro-Glu (PPE) 

residues within their conserved N-terminal domains, and both families can have expanded 

C-terminal domains. The conserved PE N-terminal domain is roughly 110 amino acids in 

length and forms a helix-turn-helix structure (PFAM: PF00934). The C-terminal portion of 

the PE domain also contains the conserved YxxxD/E ESX secretion signal, which is 

required for proper secretion (147). The conserved PPE domain is about 180 amino acids 

in length and is mostly helical in structure (PFAM: PF00823). PPE proteins do not contain 

the ESX secretion signal, and only contain the WxG motif between the second and third 

alpha helix of all PPE proteins (147,181). As it is currently understood, PE and PPE 

proteins form heterodimers in a helical bundle structure, and it is this folded structure that 

is secreted through the ESX systems (106). This PE-PPE helical bundle is extremely 

similar to the bundle seen in other ESX substrates, such as the EsxAB heterodimer, except 

that the PPE portion of the helical bundle has an extended helical tip (Figure 1.2.). 

Functionally most PE and PPE proteins are dependent on cell envelope or extracellular 

localization, and numerous studies have highlighted the conserved PE and PPE domains as 

the drivers of this localization (180,182-189). Along with their genetic linkage to the ESX 

systems, it has been experimentally shown that many PE and PPE proteins rely on ESX 

systems for proper localization (124,155,185,190,191).  

PE and PPE proteins can be found within pathogenic and non-pathogenic 

mycobacterial species, however they are extremely expanded within pathogen species, 

such as Mtb. For example, there are only 2 pe and 2 ppe genes in the non-pathogenic M. 

smegmatis, while Mtb has 99 pe genes and 69 ppe genes (124,149). The expansion of pe 

and ppe genes in pathogenic mycobacteria has suggested an important role in virulence for 

the PE and PPE proteins, yet their prevalence in non-pathogenic species also suggests they 
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originally carried a more central role to mycobacterial metabolism and that some still do 

(124,192). The expansion of pe and ppe genes is also closely linked to the expansion of the 

ESX systems (124). Expansion of pe and ppe genes are also tightly linked with 

pathogenicity, as Mtb and the other members of the Mycobacterium tuberculosis Complex, 

which includes closely related species that cause Tb in humans or other animals, contain 

the most copies of pe and ppe genes (193). 

It is also important to note that it is unclear exactly which PE and PPE proteins 

interact together to form heterodimers. While some pe and ppe genes are located in operons 

with only one possible pairing, like pe5-ppe4 and pe25-ppe41, others are located in uneven 

groupings, like ppe25-pe19 in the ESX-5 cluster, where it is unclear which pe and ppe 

genes encode functional PE-PPE dimers. Some pe genes also exist in operons either with 

only additional pe genes and even some exist by themselves without any adjacent pe or ppe 

genes (144). There exists an uneven amount of each group, with 99 pe genes and 69 ppe 

genes (149). Since both PE and PPE groups can have extended C-terminal domains, each 

subgroup can be further divided based upon the features of the C-terminal domain. 

PE proteins can be sub-classified into two distinct groups: PE and PE-PGRS. The 

PE-PGRS sub-classification is for pe genes with expanded C-terminal domains that contain 

polymorphic GC-rich sequences (PGRS). The PE sub-classification contains all other pe 

genes and they can contain either no expanded C-terminal domain or a C-terminal domain 

with no distinctive features. Most pe genes belong to the PE-PGRS sub-classification, 

including 65 of the 99 genes in Mtb (123,124,149). The PGRS domain contains the 

repeated motif of GGAGGX, which can be repeated over 30 times (194). The size of PE-

PGRS proteins varies wildly from as small as 175 amino acids in length, to as large as 1900 

amino acids, with the average PE-PGRS protein being 550 amino acids (194). Due to the 

extended size of the GC-rich repeats within the genes and the high hydrophobicity of the 

amino acid repeats, along with the long length of many PGRS domains it has been 

incredibly difficult to study the PE-PGRS proteins exact functions (123). Originally the 

PE-PGRS proteins were thought to be involved in immune evasion strategies, although that 

has been under increasing scrutiny in recent years (195-199). 

PPE proteins are sub-classified into three groups: PPE, PPE-PPW PPE-SVP, and 

PPE-MPTR. PPE-PPW proteins contain a PXXPXXW motif that is located about 10 to 30 
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amino acids from the C-terminus (123). PPE-SVP proteins contain a conserved SVP motif 

within their C-terminal domain and are the largest of the PPE groupings (123). The PPE-

SVP proteins average between 350 and 468 amino acids, other than two truncated genes 

(123). PPE-MPTR proteins have C-terminal domains that contain major polymorphic 

tandem repeats (MPTR) (123). These repeats vary around a NXGXGNXG motif and have 

widely variable sizes with some members being over 3700 amino acids in length (123). 

The PPE grouping contains all other ppe genes. A vast majority of PPE proteins are 

hypothesized to be dependent on ESX-5 for secretion including both PPE-SVP and PPE-

MPTR groups (121,191,200,201). 

The first PE-PPE structure was of PE25-PPE41 and was published in 2006 (144). 

To date no other PE-PPE heterodimer structure has been solved without the presence of 

the cytosolic chaperone EspG. Full discussion on EspG and its function in context of PE-

PPE heterodimers will follow in the next subsection. The lack of structures of other PE-

PPE heterodimers highlights the difficulty associated with the study of these two families. 

It has been incredibly challenging to study individual PE and PPE proteins and most do not 

have assigned functions. The limited PE and PPE proteins with known functions mostly 

have C-terminal domains with conserved features, such as LipY (185). There are some that 

are known to function in broader pathways, such as PE5-PPE4 in iron metabolism (155) 

and PE22-PPE36 and PPE62 in heme utilization (183), but their exact roles in these 

pathways is unclear. There is also thought that many pe and ppe genes are redundant or co-

dependent on each other, which further complicates knockout experiments in mycobacteria 

(123). 

1.4.2. PE and PPE interactions with other ESX proteins. 

A discussion of PE and PPE proteins is incomplete without mention of their 

cytosolic chaperone EspG. A copy of the espG gene is located within each ESX locus that 

also contains a pe and ppe gene, with only ESX-4 in Mtb lacking an espG gene (Figure 

1.1.). It was originally not thought to be a conserved component since sequence homology 

of espG paralogs across the ESX systems is low, however significant homology exists and 

in fact each structurally characterized EspG has the same overall fold (103,202). EspG 

specifically interacts with PPE proteins, and recent structural studies of PE-PPE-EspG 

heterotrimers has uncovered this interaction in ESX-5-specific heterotrimers (203-206). 
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The first two structures were of the PE25-PPE41-EspG5 heterotrimer, which is also the 

only PE-PPE heterodimer to be structurally characterized without EspG present 

(144,204,205). Analysis of the PPE41-EspG5 interface highlighted that the tip of PPE41, 

which includes the helix-turn-helix motif between α4 and α5, is completely shielded by 

interactions with EspG5 (204,205). Also, of note is that the structure of the PE25-PPE41 

heterodimer is conserved between the apo- and EspG5-bound structures (204,205). It is 

hypothesized that binding of EspG does not alter the conformation of PE-PPE 

heterodimers. EspG aids in the folding and/or stability of PE-PPE heterodimers, partially 

through preventing self-aggregation of the heterodimers (205). Currently PE25-PPE41 is 

the only known PE-PPE heterodimer to stably express in an E. coli expression system 

without the presence of its EspG chaperone (144,204,205). In the loop between α4 and α5 

of PPE proteins exists an hh motif, characterized by two hydrophobic amino acids. PPE41’s 

hh motif is Ala-Leu, and mutations to bulkier hh motifs reduced protein yield compared to 

WT (205). 

EspG only binds cognate PE-PPE heterodimers (203,205). However, the molecular 

mechanism for this selectivity is unclear. Currently the only structural information 

available on PE-PPE-EspG heterotrimers comes from the ESX-5 system with PE25-

PPE41-EspG5 and PE8-PPE15-EspG5 being the only structurally characterized 

heterotrimers (204-206). Analysis of the EspG-binding region on PPE proteins showed a 

high level of conservation at a sequence level regardless of which ESX system the PPE is 

associated with (205). Even mutational studies on PE25-PPE41 to alter the EspG-binding 

region of PPE41 to match ESX-1- and ESX-3-specific PPE proteins were unable to block 

PPE41-EspG5 interaction (205). EspG recognition of cognate PPE proteins is still unclear. 

The interaction between PPE and EspG ranges from the low nanomolar range to 

low hundred nanomolar range depending on the PE-PPE heterodimer and methodology 

used (204-206). In spite of this strong affinity, the PE-PPE heterodimers are secreted 

through their cognate ESX systems, while EspG is maintained within the cytosol (203). An 

extra factor must uncouple PE-PPE heterodimers from EspG for efficient secretion, and 

the primary suspect is EccA. EccA is a conserved component of the ESX systems but is 

not a part of the conserved secretion machinery that sits within the plasma membrane. EccA 

is also not encoded in ESX systems that do not encode PE and PPE proteins, such as ESX-
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4 (Figure 1.1.). Interestingly, an EccA5 knockout accumulated EspG-bound PPE proteins 

in the cytosol (203). EccA has an N-terminal domain with six tetratricopeptide repeat 

(TPR) motifs and a C-terminal ATPases associated with various cellular activities (AAA) 

domain. The N-terminal domain of EccA1 has been structurally characterized and it forms 

a canonical super-helix structure with a unique β-finger insertion in the concave face (207). 

Six tandem TPR repeat motifs form a right-handed super-helix that has a pitch of about 60 

Å and a width of about 40 Å (207). The β-finger insert is between TPR motifs 2 and 3 and 

resides within the concave face of the super-helix (207). TPR domains are well defined 

protein-protein interaction domains, and although they usually mediate interactions with 

the concave face of their super-helix, there is evidence of proteins utilizing the convex face 

or similar β-finger insertions to mediate interactions (208-212). EccA interacts with both 

PPE and EspG proteins in yeast-two hybrid experiments, and this is likely mediated by the 

N-terminal TPR domain (204,213). The C-terminal domain of EccA can function as an 

ATPase (214,215), although there is no published evidence of ATPase activity of any full-

length EccA paralog. It is plausible that EccA’s interacting partner would need to be 

present to stimulate its ATPase activity. 

1.5. Functions of the ESX systems. 

ESX-1 was the first discovered ESX system (136). Since its discovery it has been 

perhaps the most studied of all the ESX systems. ESX-1 secretes the two most well studied 

ESX substrates, EsxA and EsxB, which were the first discovered substrates and important 

antigens for immune responses (136,156). Loss of ESX-1 function was also identified as a 

key contributor to M. bovis BCG attenuation (15). Mtb and M. marinum are also attenuated 

in their natural hosts without a functional ESX-1 system (16,136,166,216). There are 

numerous virulence functions that have been assigned to ESX-1 including: phagosomal 

escape into the cytosol, inhibiting T-cell responses, inhibiting phagosomal maturation and 

acidification, autophagy, and host cell-death (150-154,217). ESX-1 also highlights the 

interdependence of substrates on each other for proper secretion. Deletion of both esxA and 

esxB blocks the secretion of the ESX-1 substrate EspA (162). Since M. bovis BCG lacks a 

functional ESX-1 system it cannot escape the phagosome and enter the host cytosol, and 

this may have important immune response side effects. M. bovis BCG does not induce 

some immune signaling pathways because of its inability to access the host cytosol and 
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this could be the reason for why it is not effective at preventing pulmonary TB (218,219). 

ESX-1 is also found in non-pathogenic species. In these non-pathogenic species ESX-1 is 

required for conjugation and functions to negatively regulate the process in donor cells, 

while its activity is required for recipient cells (177,220,221). 

ESX-3 is essential for the in vitro growth of Mtb (118,119). The entire genetic loci 

containing ESX-3 is under the regulation of transcription factors Zur, and IdeR (222,223), 

being down-regulated in the presence of zinc and iron, respectively. The ESX-3 locus is 

also induced during manganese limitation through MntR (224), indicating a role for ESX-

3 in broad divalent cation homeostasis processes. This has direct virulence implications, 

especially because of the iron homeostasis roles of ESX-3. The availability of aqueous 

ferric iron (Fe3+) is incredibly scarce within human serum at about 10-24 M (225). Humans 

use a number of proteins to sequester and store iron. Pathogenic bacteria have to find a way 

to uptake and utilize iron from the host. Mtb has two pathways to do this, either via its 

siderophores mycobactin or carboxymycobactin, or in a siderophore-independent uptake 

and utilization of heme-bound iron sources. ESX-3 effectors have roles in iron uptake, as 

loss of secretion prevents mycobacteria from properly utilizing mycobactin (120,155,226). 

Interestingly, ESX-3 is not essential in the non-pathogenic M. smegmatis (118), although 

this could be due to redundant iron, zinc, and/or manganese homeostasis regulators that 

have been lost through genetic reduction in Mtb. ESX-3 also modulates the host response 

to the Mtb-containing phagosome through the EsxGH heterodimer. The action of EsxGH 

is iron-independent, as a ΔesxH strain is attenuated in vivo, while a Δpe5-ppe4 strain is not, 

despite both strains displaying a similar iron phenotype (155). The connection between 

iron or other divalent cations homeostasis and the modulation of the host response to the 

Mtb-contained phagosome could be a mechanism to signal the proper spatial and/or 

temporal timing to the mycobacteria. 

ESX-5 functions to modulate the host immune responses and nutrient uptake 

(121,122,200,227) and also potentially in the biogenesis and/or homeostasis of the cell 

envelope (200,228). ESX-5 is the most recently evolved ESX system, and its emergence 

seems to correlate with the expansion of the PE and PPE families. Most PE and PPE are 

expected to be secreted through ESX-5 as all PPE-SVP, PPE-MPTR, and PE-PGRS genes 

are ESX-5-substrates (121,191,200,201). In fact, the only pe genes not hypothesized to be 
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secreted via ESX-5 are located within an ESX cluster or are closely associated with a 

specific class of ppe genes, the ppe-ppw genes, which are all hypothesized to be secreted 

via ESX-3 (121,200,201,229-231). 

As mentioned earlier, evidence of a functional ESX-4 has only recently been 

established. M. abscessus intracellular survival depends on functional ESX-4 (114). M. 

abscessus is an emerging opportunistic pathogen (232-240), and the environmental host of 

M. abscessus remains unknown (241). M. abscessus can survive within free-living amoeba 

(242,243) and its virulence increases upon co-culturing with amoebae (244). Importantly, 

the M. abscessus ESX-4 system contains an eccE4 gene (245). The M. abscessus ESX-4 

system showed similar functions to the Mtb ESX-1, such as blockage of phagosomal 

acidification and phagosomal membrane permeation (114). As M. abscessus lacks an ESX-

1 system (104,245), perhaps ESX-4 has replaced this function. The ESX-4 system from M. 

smegmatis has also recently been implicated in conjugation (115,116). Functional ESX-4 

is required in recipient M. smegmatis strains for conjugation to occur as loss of either eccC4 

or eccD4 abolished conjugation (116). Interestingly, ESX-4 function was dispensable for 

donor strains (116). In fact, donor strains actually signal recipient strains to express ESX-

4 genes through SigM (115). Therefore, ESX-4 and ESX-1 have non-redundant roles in 

conjugation (116). 

Currently there is no evidence that ESX-2 secretes any substrates and whatever 

function, if any, it serves remains unclear. 

1.6. Conclusions and dissertation overview. 

 The PE and PPE proteins are uniquely mycobacterial proteins that are a large 

substrate class of the ESX systems. Each of the three active ESX systems in Mtb secrete 

their own unique subset of PE-PPE heterodimers, and there is no cross-talk between any 

of the systems. PE-PPE heterodimers interact with a cytosolic chaperone, EspG, that is 

unique to its cognate ESX system and aids in the folding and/or stability of the 

heterodimers and keeps them in a secretion-competent state. It is poorly understood what 

the molecular mechanisms that dictate EspG binding and what determines system 

specificity. The work in this dissertation aims to close the gap by providing a more 

complete picture of the PE-PPE heterodimer interaction with EspG. Chapter 3 examines 

the ESX-5 system and how its chaperone, EspG5, interacts with the large variety of ESX-
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5-specific PPE proteins. Chapter 4 presents the structure of the PE5-PPE4-EspG3 

heterotrimer, the first from the ESX-3 system, and analyzes how EspG differentiates 

between cognate and non-cognate PPE proteins. Chapter 5 provides some discussion on 

the results from Chapters 3 and 4, and how they fit in the field, along with some exciting 

new avenues of future research.  
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Figure 1.1. Genetic organization of ESX clusters in Mtb. 

Genetic organization of ESX clusters in Mtb. Only conserved core components, the ecc 

genes and mycP, selected other core components, espG and eccA, and selected substrates, 

esx, pe, and ppe, genes are shown. Paralogous genes are color coded the same color. The 

esp genes from ESX-1 are excluded.  
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Figure 1.2. Structures of selected ESX substrates. 

This figure is reprinted from (105) with permission. The structures of the EsxAB 

heterodimer (143), EsxGH heterodimer (159), and PE25-PPE41 heterodimer (144) are 

presented from left to right. The WXG motifs on EsxA, EsxB, EsxH, and PPE41 are 

highlighted. EsxG has a HXG variant of the WXG motif. The YXXXD/E ESX secretion 

signal motifs (147) in EsxAB and EsxGH are also highlighted. This signal is disordered in 

the PE25-PPE41 structure.  EspB is not shown, but its N-terminal domain has the same 

fold as the PE25-PPE41 heterodimer (145,146).
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Chapter 2. Materials and Methods. 

 
2.1. Bacterial Strains and growth conditions. 

Escherichia coli Rosetta2 (DE3) strains were grown in Luria-Bertani Miller (LB) 

liquid medium (IBI Scientific) or on solid LB agar (LB liquid with 1.5 % w/v agar) at 37° 

C. When grown in liquid medium, cells were agitated at 200 rpm. Antibiotics were added, 

as needed, at the following concentrations: chloramphenicol at 10 µg/ml, streptomycin at 

50 µg/ml, and kanamycin at 50 µg/ml. 

2.2. Bacterial Transformation. 

 Competent E. coli Rosetta2 (DE3) cells were thawed from -80° C on ice for 10 m 

in 50 µl aliquots. Plasmids were added to cells at 1 µl per 100 mg/ml. If multiple constructs 

were transformed into the same cell, they were added at the same time. The cell-plasmid 

mixture was incubated on ice for an additional 20 min. Cells were heat shocked at 42 °C 

for 60 s and place immediately back on ice for an additional 5 m. Afterwards, 500 µl of 

Super Optimal Broth (SOB, 2% w/v tryptone, 0.5% w/v yeast extract, 10 mM NaCl, 2.5 

mM KCl, and 10 mM MgSO4) was added and the cells were grown at 37 °C cells with 

agitation for 50 min. Cells were plated on LB agar plates with appropriate antibiotics and 

2% glucose and allowed to grow at 37 °C for 20 h. A single colony was selected and grown 

in liquid media at 37 °C for 20 h. Selected colonies were then stored in liquid LB 

supplemented with 15% glycerol at -80 °C until needed for expression and purification. 

2.3. Expression and purification of recombinant proteins. 

2.3.1. PE5-PPE4-EspG3 heterotrimers. 

 DNA sequences of full-length PE5 and residues 1-180 of PPE4 from the 

Mycobacterium tuberculosis genome were optimized for E. coli expression and obtained 

from Invitrogen. Constructs were inserted into a pRSF-NT vector (246) using NcoI and 

HindIII restriction sites. When expressed, PE5 has an N-terminal His6 tag that is cleavable 

by TEV protease. Plasmids containing EspG3 from Mycobacterium marinum and 

Mycobacterium tuberculosis were created by the Korotkov Lab and are described in (205). 

Plasmids containing EspG3 from Mycolicibacterium smegmatis, Mycolicibacterium 

hassiacum, and Mycobacterium kansasii were also created by the Korotkov Lab as 
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described in (247). Mutations in PPE4mt, EspG3mt, and EspG3mm were introduced with 

Gibson assembly mutagenesis (SGI-DNA). 

  E. coli strains containing the appropriate PE5mt-PPE4mt and EspG3 plasmids were 

induced at an A600nm of 0.5 to 0.8 with 0.5 mM of isopropyl β-D-thiogalactopyranoside. 

After induction strains continued growing at 16 °C for 20 h. Cells were harvested by 

centrifugation at 5000 rpm. Cells were resuspended in a 1:10 ratio of Lysis Buffer (300 

mM NaCl, 20 mM Tris-HCl, pH 8.0, and 10 mM imidazole) with the addition of 1:100 

ratio of Halt protease inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA). The 

cells were lysed using an EmulsiFlex-C5 homogenizer (Avestin, Ottawa, Canada). Soluble 

lysate was separated from insoluble lysate by centrifugation at 18000 rpm for 50 m. Soluble 

lysate was purified over a nickel-nitrilotriacetic resin in a two-step purification. For the 

first step after loading the soluble lysate, the resin is washed with Lysis Buffer and then 

the heterotrimer is eluted with Elution Buffer (300 mM NaCl, 20 mM Tris-HCl, pH 8.0, 

and 250 mM imidazole). The His6 tag is cleaved by addition of TEV Protease in a 1:20 

ratio at 4° C for 20 h, which is performed while dialyzing the sample against Wash Buffer 

(300 mM NaCl and 20 mM Tris-HCl, pH 8.0). Cleaved sample is then reapplied to the 

nickel-nitrilotriacetic resin, and is this time washed with Wash Buffer (300 mM NaCl and 

20 mM Tris-HCl, pH 8.0) before being eluted with Elution Buffer. Samples from the first 

and second steps were analyzed by SDS-PAGE for cleavage of His6-tag and homogeneity 

of samples from the second step. Flow-through and wash fractions from the second step 

were pooled and concentrated for size-exclusion chromatography over a Superdex 200 

Increase 10/300 GL column (GE Healthcare Life Sciences, Marlborough, MA) that was 

pre-equilibrated in Buffer SE (100 mM NaCl and 20 mM HEPES, pH 7.5). Samples from 

the size-exclusion chromatography run were analyzed by SDS-PAGE for purity and then 

fractions were pooled and concentrated before either being utilized immediately or flash 

frozen in liquid N2 and stored at -80° C. 

2.3.2. PE25-PPE41-EspG5 heterotrimers. 

All PE25mt-PPE41mt constructs were obtained from lab storage and their creation is 

outlined in (205). An EspG5mm construct was created by the Korotkov lab. The protocol 

outlined in 2.3.1. was followed for expression and purification of all PE25-PPE41-EspG5 

heterotrimers. 
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2.4.  Crystallization, data collection, and structure solution. 

2.4.1. PE5mt-PPE4mt-EspG5mm. 

 Purified protein was concentrated to 4.2 mg/ml. Initial screening was done with the 

MCSG crystallization suite (Anatrace, Maumee, OH) and was set up with the mosquito 

crystal crystallization robot (SPT Labtech, Melbourn, England) in 200 nL drops with 

mother liquor to protein ratios of 1:3, 1:1, and 3:1. The initial screen produced P212121 

crystals grown in 200 mM NH4 tartrate and 20% PEG 3350. Optimization around three 

other hits from the initial screen that all contained NaCl as the precipitant and various 

buffers ranging from pH 5.5 to pH 8.0, led to the growth of I422 crystals, which were 

grown in 2.0 M NaCl and 100 mM Bis-Tris, pH 6.5. Crystals of each form were harvested 

and transferred to cryoprotectant solution containing the crystallization mother liquor 

supplemented with either 20% (P212121) or 25% (I422) glycerol and flash cooled in liquid 

N2. Data was collected at the Southeast Regional Collaborative Access Team (SER-CAT) 

22-ID Beamline at the Advanced Photon Source, Argonne National Laboratory. Data were 

processed using XDS and XSCALE (248). Molecular replacement using Phaser (249) was 

used to solve structures from both crystal forms. First, the model of the PE25mt-PPE41mt 

heterodimer from 4KXR (205) and the model of EspG3mm from 5DLB (202) were used as 

search models for the I422 data set. Later, an early model of the I422 data set was used as 

a search model for the P212121 data set. Starting models of both P212121 and I422 data sets 

were iteratively rebuilt and refined using Coot and phenix.refine (250,251). The final 

model of both crystal forms was refined in phenix.refine (251), with the P212121 model 

using non-crystallographic symmetry restraints. The final models were assessed using Coot 

(250) and the MolProbity server (252) for quality. 

2.4.2. PE25mt-PPE41mt-EspG5mm. 

 Purified PE25mt-PPE41mt-EspG5mm was concentrated to 3.41 mg/ml and initial 

screening was performed using MCSG (Anatrace, Maumee, OH). Screens were set up with 

the mosquito crystal crystallization robot (SPT Labtech, Melbourn, England) as outlined 

in 2.4.1. Diffraction quality crystals were grown in the original MCSG screening plates, 

with the well containing 100 mM sodium citrate pH 5.6, 10% (w/v) PEG 4000, and 10% 

(v/v) isopropanol. Crystals were harvested and transferred to a cryoprotectant solution 

containing the crystallization mother liquor supplement with 30% glycerol and then flash-
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cooled in liquid N2. Data was collected at the Southeast Regional Collaborative Access 

Team (SER-CAT) 22-ID Beamline at the Advanced Photon Source, Argonne National 

Laboratory. Data were processed using XDS and XSCALE (248). Molecular replacement 

was performed using Phaser (249) with WT PE25mt-PPE41mt-EspG5mt (PDB: 4KXR, 

(205)) as the search model. The starting model was iteratively rebuilt and refined using 

Coot and phenix.refine (250,251). The final model was refined in phenix.refine (251). The 

final model was assessed using Coot (250) and the MolProbity server (252) for quality. 

2.5. Size-exclusion chromatography with multi-angle light scattering (SEC-MALS). 

Proteins were expressed and purified as described in 2.3.1. and then passed over an 

AKTA pure with an inline Superdex 200 Increase 10/300 GL column (GE Healthcare Life 

Sciences), miniDAWN TREOS, and Optilab T-rEX (Wyatt Technologies, Santa Barbara, 

CA). The system was equilibrated and run with in Buffer SE (100 mM NaCl and 20 mM 

HEPES, pH 7.5). The samples were loaded at a volume of 500 µl at a concentration of 2-4 

mg/ml, and the system was run at 0.5 ml/min. Analysis of light scattering data was 

performed using Astra (Wyatt Technologies). Molecular mass determination was done by 

analyzing peaks at one-half their maximum. Graphics from these results were prepared 

using Prism (GraphPad Software, La Jolla, CA). 

2.6 Small angle X-ray scattering (SAXS) data comparison and ab initio model 

reconstruction. 

 PE5Ms–PPE4Ms–EspG3Ms heterotrimer SAXS data (SASDDX2) (202) was 

compared with a single copy of the mixed PE5mt– PPE4mt–EspG3mm heterotrimer structure 

(PDB code 6UUJ) using CRYSOL (253). Ab initio reconstruction of the envelope was 

completed using GASBOR (254). Monomeric symmetry was used as a constraint for 

GASBOR. Twenty ab initio models were generated and averaged using the DAMAVER 

software package (255). DAMSEL rejected only one model. 

2.7. Sequence Analysis. 

Sequence alignments were performed using the EMBL-EBI analysis tools, 

specifically the Clustal Omega program (256) via the EMBL-EBI webpage. Rendering of 

sequence analysis was done with the ESPript server via its webpage (257). 
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2.8. Structural Analysis. 

Structural figures were generated using PyMOL (http://www.pymol.org). 

Electrostatic surface potentials were calculated using the APBS Electrostatics plugin in 

PyMOL (258). Structural alignments were performed using the Dali server (259). Packing 

analysis was performed with the Voronoia software (260) using the ProtOr radii definition 

(261) and grid spacing of 0.05 Å while reporting all atoms. Sequence tolerance was 

performed on ROSIE (262) with the sequence_tolerance protocol (262-264) with the 

generalized protocol and the default options (264). 

2.9. Data Availability. 

The coordinates and structure factors were deposited in the Protein Data Bank with 

accession codes 6UUJ (PE5mt-PPE4mt-EspG3mm, P212121 data), and 6VHR (PE5mt-PPE4mt-

EspG3mm, I422 data). The hh mutant highlighted in Chapter 3 was crystalized and solved 

by the Korotkov Lab and is also deposited in the Protein Data Bank with accession code 

6VJ5.

http://www.pymol.org/
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Chapter 3. Structural plasticity of EspG5 accommodates variety seen in ESX-5-
specific PPE proteins. 

3.1. Introduction. 

Binding of EspG to PE-PPE heterodimers is required for proper folding and/or 

stability of the PE-PPE heterodimers (203,205). Each ESX system secrets its own unique 

subset of PE-PPE heterodimers and each system encodes its own unique copy of EspG. 

EspG only binds to the PE-PPE heterodimers from its cognate ESX system (203,205). 

Structures of ESX-5-specific PE-PPE-EspG5 heterotrimers showed that EspG5 makes 

extensive contacts with the PPE protein, and not with PE (204-206). Currently there are 

three different structures of two different heterotrimers from the ESX-5 system: two PE25-

PPE41-EspG5 structures that represent the same crystal form (204,205), and one PE5-

PPE18-EspG5 structure (206) . We hypothesize that all ESX-5-specific PPE proteins bind 

to EspG5 in the same manner as these structures. 

ESX-5 is hypothesized to secrete the most PE-PPE heterodimers, and currently 46 

PPE proteins are believed to be exported via ESX-5 (123). There is variety within the 

EspG5-binding domain of PPE proteins, as defined by the PPE41-EspG5 interface. Of note 

is the hh motif within this binding domain that is located in a turn between two alpha helices 

of PPE and is buried within the PPE-EspG5. The hh motif is simply two hydrophobic 

residues and is highly variable within ESX-5-specific PPE proteins. The hh motifs of 

PPE41 and PPE18 are AL and VL, respectively. Bulkier hh motifs, such as FF and WF, 

can be found within ESX-5-specific PPE proteins. The PPE-EspG5 interface would require 

some level of plasticity to allow for the various substitutions found within the interface, 

particularly with the substitutions found within the hh motif. Ekiert and Cox (204) 

hypothesized that this was accomplished by underpacking of the interface in the PPE-

EspG5 interface of PPE proteins that contained smaller hh motifs, such as PPE41 and its 

motif of AL. 

 In this chapter we attempted to crystallize various PPE41 mutants in the context of 

the PE25-PPE41-EspG5 heterotrimer to investigate how the bulkier hh motifs found within 

the ESX-5-specific PPE proteins affect the PPE41-EspG5 interface. Here we present the 

structure of PE25mt-PPE41A124L
mt-EspG5mm, which contains an hh motif of LL. Our results 

suggest that EspG5 is dynamic and the PPE-EspG5 interface is flexible to accommodate the 
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various amino acids found within the numerous ESX-5-specific PPE proteins, particularly 

within the hh motif. 

3.2. Results. 

3.2.1. Structure of PE25mt-PPE41A124L
mt-EspG5mm. 

To understand how EspG5 accommodates the variety of hh motifs present in ESX-

5-specific PPE proteins, high-resolution structures were needed. Ideally the structure of 

unique PE-PPE heterodimers in complex with EspG5 would have been solved, but the 

uncertainty in defining PE-PPE interacting pairs lead us to take the defined PE25-PPE41 

heterodimer and make mutations in PPE41’s hh motif. As mentioned earlier PPE41 has an 

AL hh motif, and we made mutations to create PE25-PPE41 heterodimers with LL, LF, 

FF, or WF hh motifs. These motifs represent 56.5% of the hh motifs found in ESX-5-

specific PPE proteins (Figure 3.1.).  We also made the decision to co-express the hh motif 

mutants with Mycobacterium marinum EspG5 due to stability and/or degradation issues we 

noticed in our previous work with M. tuberculosis EspG5 (205). We also crystalized the 

mixed heterotrimer of WT PE25mt-PPE41mt-EspG5mm, and while it was successful the 

quality of the data and subsequent model was worse than the lab’s previous full Mtb WT 

heterotrimer (4KXR, (205)). Therefore, the mixed heterotrimer was not used for any 

comparison analysis. 

We were able to obtain diffraction quality crystals of only the LL hh motif mutant, 

and the crystals diffracted to 2.4 Å (Table 3.1). The mutations in the hh motif do not affect 

the overall fold of any protein in the heterodimer, as the heterotrimer is similar to the 

previously reported ESX-5-specific PE-PPE-EspG5 heterotrimers, including the WT PE25-

PPE41-EspG5 heterotrimers, and crystallized in the same crystal form (204,205) (Figure 

3.2A).  

The PE25-PPE41 heterodimer is a compact, elongated alpha-helical bundle. PPE41 

encompasses the entire heterodimer, while PE25 is located at one end and forms a four 

helical bundle with α2 and α3 of PPE41. The extension of PPE41, containing α4 and α5, 

interacts with EspG5. Importantly, the C-termini of both PE25 and PPE41 are located distal 

from EspG5, as many PE and PPE proteins have expanded C-terminal domains it is unlikely 

that they would sterically clash or interact with EspG5. The YXXXD/E motif on PE25 is 
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also distal to the PPE41-EspG5 interaction and is available for interaction with the core 

ESX machinery. 

The mutant heterotrimer was aligned to both available models of the WT 

heterotrimer and to the PE8-PPE15-EspG5 model (206) and each component aligns well 

with RMSD less than 0.4 Å for both PE25 and PPE41 to both models and 0.7 Å for EspG5 

to both models (Table 3.2). The PPE41-EspG5 interface buries 3210 Å2 of solvent-

accessible surface area, as calculated by the PISA server (265), and is similar to the 

interface area of the previous WT models of 2880 Å2 (205) and 3500 Å2 (204). Despite 

the overall similarity of the PE25-PPE41A124L-EspG5 heterotrimer to the previously 

reported ESX-5-specific PE-PPE-EspG5 heterotrimers, we noticed differences between 

them in their PPE-EspG5 interfaces. We next investigated these PPE-EspG5 interfaces to 

understand the changes caused by the mutation of the WT hh motif to LL. 

3.2.2. Structural plasticity of EspG5 accommodates variety in hh motifs. 

 Accommodation of bulkier hh motifs by EspG5 could be accomplished by either an 

under-packing of the PPE41A124L -EspG5 interface to allow the bulkier residues to fit in the 

already defined interface, or alternatively by structural flexibility of EspG5 to adjust to fit 

the variety of hh motifs present in ESX-5-specfic PPE proteins. We compared our interface 

of the mutant PPE41A124L-EspG5 to the WT PPE41-EspG5 interface to see if there is any 

structural change in EspG5. To best compare the structural differences in EspG5 in the two 

different interfaces, we utilized the PPE41-based structural alignment. Upon initial visual 

inspection of the alignment, we noticed a deviation in the EspG5 proteins in the C-terminal 

helical bundle (Figure 3.2B). We next used Gesamt (266) in the CCP4 suite (267) to 

analyze the deviations on a per-residue basis with an alignment of 4KXR and 6VJ5’s EspG5 

(Figure 3.2C). The deviations matched our visual inspection, as the C-terminal helical 

bundle residues largely deviated by more than the overall rmsd of 0.7 Å. We hypothesize 

that this helical bundle structurally adjusts to accommodate the variations in hh motifs of 

the ESX-5-specific PPE proteins. 

 We next took a closer inspection on the hh motif and its interactions with EspG5 to 

investigate which residues were altered by the mutation from Ala to Leu in PPE41A124L by 

comparing the 4KXR and 6VJ5 models. We utilized the MolProbity all-atom contacts 

(268) feature in Coot (250) to identify which residues of EspG5 are interacting with hh 
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motif of PPE41 in the 4KXR model. It identified Q187EspG5, F191 EspG5, and L216 EspG5 as 

interacting with A124 PPE41; and M179 EspG5, L180 EspG5, T183 EspG5, L254 EspG5, and L268 

EspG5 as interacting with L125 PPE41. As L125 PPE41 is present in both 4KXR and 6VJ5, we 

did not expect many alterations in the residues interacting with it in EspG5, and in fact all 

of the residues are in mostly the same position and orientation with only minor differences 

(Figure 3.3A). A124PPE41 is mutated to L124PPE41 in the 6VJ5 model, and we expected this 

to cause alterations in the EspG5 residues. L216EspG5 and Q187EspG5 are mostly unaffected 

by the mutation, with Q187EspG5 having some slight differences, largely due to the 

difference in the backbone of EspG5 differing between the two models in this position 

(Figure 3.3B). F191EspG5 is most altered as it is shifted about 2.3 Å away from the mutated 

L124PPE41 (Figure 3.3B). This makes sense as the mutation from Ala to Leu introduces a 

longer amino acid and F191EspG5 is interacting with the wild-type Ala residue in the space 

the mutated Leu takes up. We hypothesize that this shift in F191EspG5 is the cause of the 

perturbance in the helical bundle of EspG5. 

3.2.3. Limited tolerance of bulkier hh motif residues in PPE41-EspG5 interface. 

To support our hypothesis that EspG5 is dynamic and adjusts to accommodate the 

bulkier hh motifs that can be found in ESX-5-specific PPE proteins we investigated the 

packing and sequence tolerance of the hh motif in the context of available ESX-5-specific 

PE-PPE-EspG5 heterotrimers. Currently there are four structural models: two models of 

WT PE25-PPE41-EspG5 heterotrimers (4KXR (205)) and 4W4L (204)), our new model of 

a heterotrimer with a mutated PPE41A124L (6VJ5), and a PE8-PPE15-EspG5 heterotrimer 

(5XFS (206)). We took all of the available models and ran them in the MolProbity 

webserver to add hydrogens at electron-cloud positions (252) to fully analyze packing and 

interactions in the PPE-EspG5 interface. We first visually inspected the interactions 

between each PPE protein’s hh motif with EspG5. Each interface appears to be well packed 

with no “extra space” available to accommodate substitutions of bulkier amino acids at 

either hh motif position (Figure 3.3A-B). We also analyzed the interface using Voronoia 

(260) to quantify the packing of the hh motif of each model. The hh motifs of the PPE 

proteins are either AL (4KXR and 4W4L), LL (6VJ5), or VL (5XFS). We first examined 

the first position of the hh motif. PPE41 is unique to all other ESX-5-specific PPE proteins 

in that it has an Ala in the first hh motif. PPE15 contains a Val which is only found in 20% 
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of the ESX-5-specific PPE proteins (Figure 3.1B.). Our mutated PPE41A124L contains Leu, 

which is the most common of first position among ESX-5-specific PPE proteins, with 37% 

containing it (Figure 3.1B.). Overall, the two Ala containing models, 4KXR and 4W4L, 

have their first positions slightly “underpacked” having packing densities of 0.59 and 0.62, 

respectively (Table 3.3). The bulkier substitutions of Val (5FXS) or Leu (6VJ5) increasing 

the residue’s overall packing to 0.71 and 0.73, respectively, which is mostly attributed to 

the packing density of the gamma or delta carbons being 1.0, respectively (Table 3.3). 

About 24% of the ESX-5-specific PPE proteins contain the bulkier Phe or Trp at this first 

position (Figure 3.1B.), and either of these residues fitting within this interface without any 

kind of rearrangement is unlikely. We also analyzed the second position of the hh motif, 

which all four models contain a Leu at this position. ESX-5-specific PPE proteins contain 

either a Leu or Phe at this position, with Leu appearing in 41% of PPE proteins (Figure 

3.1C.). Interestingly all four models pack similarly at this position with residue packing 

densities of 0.81, 0.81, 0.78, and 0.80 for 4KXR, 4W4L, 5XFS, and 6VJ5 respectively. 

Again, the last carbons, the delta carbons, are completely packed with packing densities of 

1.0 for all four models. Thus, it is hard to imagine a Phe substitution taking place at this 

position and fitting in the observed interfaces without any rearrangement from either the 

PPE proteins or EspG5. 

We also utilized the sequence_tolerance protocol on the ROSIE web server (262-

264) to determine if substitutions in the hh motif could be tolerated in any of the known 

PE-PPE-EspG5 heterotrimer structures. For the first position in the hh motif in PPE41 

(residue 124), Ala in the WT 4KXR and 4W4L and Leu in the mutant 6VJ5, there is some 

tolerance as most of the standard amino acids are hits in the sequence_tolerance output (Fig 

4.4A-C). However, both WT heterotrimers only had Glu account for at least 50% of 

possible outcomes (Figure 3.4A-B). This is similar to the mutant 6VJS, except both Glu 

and Leu make up about 80% of the possible outcomes (Figure 3.4B). Interestingly none of 

the other amino acids found in ESX-5 hh motifs (Figure 3.1B) are represented well in the 

outcomes (Figure 3.4A-C). The first hh motif position, residue 125, for PPE8 in the 5XFS 

heterotrimer is more tolerate with about 20% each of outcomes being Ile, Leu, and Trp 

(Figure 3.4D). The second position of the hh motif, Leu in all heterotrimers and residue 

124 in 4KXR, 4W4L, and 6VJ5, and residue 125 in 5XFS, only accepts a Leu as nearly 
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every sequence tolerance outcome contains this residue (Figure 3.4). Over half of the 

expected ESX-5-specific PPE proteins contain a Phe in this second hh motif position 

(Figure 3.1C.), and therefore structural rearrangement beyond what is allowed within the 

sequence_tolerance protocol must occur for EspG5 to bind these PPE proteins. 

3.3. Discussion. 

In this work we present a structure of a mutated PPE41A124L in the context of the 

PE25-PPE41-EspG5 heterotrimer. We opted to use the defined PE25-PPE41 heterodimer 

to make mutations within the hh motif and assess the impacts they had on the PPE-EspG5 

interface because of the difficulty of assigning PE-PPE heterodimers. We also attempted 

to solve the structures of numerous hh motif mutants, including the motifs LF, FF, and FF 

but we were only successful in solving the structure of the LL mutant. Overall, the mutant 

heterotrimer has the same overall fold and shape as the previously solved WT PE25-

PPE41-EspG5 heterotrimers (204,205) and the PE5-PPE18-EspG5 heterotrimer (206). This 

suggests that that changes within the hh motif do not alter the binding mode of ESX-5-

specific PPE proteins to the cognate chaperone EspG5. The hh motif is of interest because 

it is hypothesized to be a large contributor to the binding energy of the PPE-EspG5 interface 

and be a driving factor to aggregation that causes PE-PPE heterodimers to be insoluble in 

the absence of EspG. The mutations we tested here made the PE25-PPE41 heterodimer 

insoluble in the absence of EspG5 during protein purification, and ultimately prevented the 

ability to analyze the binding affinity changes that occur with substitutions in the hh motif. 

The structure presented here is the fourth ESX-5-specific PE-PPE-EspG5 heterotrimer 

structure, two WT PE25-PPE41-EspG5 (204,205), one PE5-PPE18-EspG5 (206), and the 

mutated PE25-PPE41A124L-EspG5. All of these structures have the same basic shape with 

PE-PPE forming an elongated helical bundle with one being solely made up of a helix-

turn-helix from PPE that is bound by EspG5, suggesting that this is a conserved binding 

mode and all ESX-5-specific PPE proteins bind EspG5 in the same manner. 

 The structure presented here reveals EspG5 has some structural plasticity to 

accommodate the bulkier LL motif present in the PPE41 mutant. The C-terminal helical 

bundle of EspG5 shifts to allow the bulkier LL motif to fit within the PPE-EspG5 interface. 

Most of the perturbances of the EspG5 structure are minor, with the exception of F191EspG5 

(Figure 3.3B.). Because Leu contains an additional alkyl group compared to Ala, it makes 
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sense that the changes are localized on the EspG5-side of the interface. Bulkier Phe and 

Trp make up a smaller percentage of residues in the first position, it poses the question if 

the changes within EspG5 are broader to accommodate the added bulk. 

 Ekiert and Cox hypothesized that the PPE-EspG5 interface was underpacked in their 

PE25-PPE41-EspG5 structure to allow for substitutions of bulkier amino acids found 

within ESX-5-specific PPE proteins (204). Our analysis of the structure through the 

Voronoia software (260) and using the sequence_tolerance protocol on ROSIE (262-264) 

does not support this. The Voronoia analysis showed that all structures we analyzed; the 

two WT PE25-PPE41-EspG5 heterotrimers, the PE5-PPE18-EspG5 heterotrimer, and the 

newly present mutant PE25-PPE41A124L-EspG5; all have similar packing levels within the 

hh motifs. The available space for the bulkier Phe or Trp substitutions to reside did not 

seem plausible without some level of rearrangement from EspG5. The sequence_tolerance 

results show some tolerance available for the first position of the hh motif, however the 

residues found in ESX-5-specific PPE proteins; Ale, Leu, Val, Phe, and Trp; were not 

enriched. This first position allowing other residues to fit makes some sense because this 

location is close to the surface of the interface. The second hh motif position showed almost 

zero tolerance for anything other than Leu in all four models. Therefore, for the bulkier 

Phe amino acid, which is present in over half of ESX-5-specific PPE proteins, to fit in the 

PPE-EspG5 interface some broader structural rearrangement which is beyond what is 

allowed by the sequence_tolerance protocol must occur. The second hh motif position is 

buried deeper within the PPE-EspG5 interface. 

 In conclusion, we presented a mutant PE25-PPE41A124L-EspG5 heterotrimer 

structure. This structure revealed that bulkier substitutions within the hh motif of ESX-5-

specifc PPE proteins cause structural changes within the PPE-EspG5 interface. This 

suggests that EspG5 has structural plasticity and can accommodate the various hh motifs 

found in ESX-5-specific PPE proteins.  
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Table 3.1. Data collection and refinement statistics of ESX-5 mutant heterotrimer. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Values in parentheses are for the highest resolution shell. 
b CC1/2 correlation coefficient is defined in (269) and was calculated with XSCALE 
(248). 
c Calculated with the MolProbity server (http://molprobity.biochem.duke.edu) (252). 
d Clashscore is the number of serious steric overlaps (> 0.4 Å) per 1000 atoms. 
e MolProbity Score combines the clashscore, rotamer, and Ramachandran evaluations into 
a single score, normalized to be on the same scale as X-ray resolution (252).  

 PE25mt-PPE41mt
LL-EspG3mm 

(PDB ID 6VJ5) 
Data Collection  
Wavelength (Å) 0.9791 
Space group P6122 
Cell Dimensions:  

a, b, c (Å) 139.02, 139.02, 170.57 
α, β, γ (°) 90, 90, 120 

Resolution (Å) 45.5 – 2.4 (2.46 – 2.4)a 
Rsym 0.154 (0.964) 
Rpim 0.067 (0.674) 
CC1/2

b 97.5 (73.3) 
I/σ 6.73 (2.01) 
Completeness (%) 99.7 (99.4) 
Multiplicity 4.8 (4.9) 
  
Refinement  
Resolution (Å) 45.5 – 2.4 
No. reflections (total/free) 38512/1981 
Rwork/Rfree 21.00/25.38 
Number of atoms:  

Protein 4230 
Ligand/ion 2 
Water 184 

B-factors:  
Protein 55.08 
Water 51.78 
All atoms 58.72 
Wilson B 48.83 

R.m.s. deviations:  
Bond lengths (Å) 0.004 
Bond angles (°) 0.59 

Ramachandran distributionc (%)  
Favored 97.58 
Allowed 2.23 
Outliers 0.19 
Rotamer outliersc (%) 0.00 
Clashscored 2.15 
MolProbity Scoree 1.07 
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Table 3.2. Structural deviations between PPE41LL mutant heterotrimer and 

previously published ESX-5 heterotrimers. 

 4KXR 4W4L 5XFS 
 

6VJ5 
PE25 0.3 0.3 1.1 
PPE41A124L 0.3 0.3 2.2 
EspG5 0.7 0.7 0.6 
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Table 3.3. Packing  density of hh motif residues. 

 4KXR 4W4L 5XFS 6VJ5 
h1 residue Ala Ala Val Leu 
h1 PD 0.59 0.62 0.71 0.73 
β carbon PD 0.491 0.513   
γ carbon PD   1/1  
δ carbon PD    1/1 
     
h2 residue Leu Leu Leu Leu 
h2 PD 0.81 0.81 0.78 0.80 
δ carbon PD 1/1 1/1 1/1 1/1 
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Figure 3.1. Variety in hh motifs in ESX-5-specific PPE proteins.  

A, The representation of each of the eleven unique hh motifs found in ESX-5-specific PPE 

proteins. B, The variety in the first position of the hh motif among the ESX-5-specific PPE 

proteins. C, The variety in the second position of the hh motif among the ESX-5-specific 

PPE proteins.   
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Figure 3.2. Structure of PE25mt-PPE41LLmt-EspG5mm and comparison to wild-type 

heterotrimer.  

A, Cartoon representation of the PE25-PPE41A124L-EspG5mm in two views related by a 

rotation of 180°. B, Comparison of 4KXR and 6VJ5 trimer PPE-based alignment structures 

highlighting differences in C-terminal helical bundle. C, rmsd deviations in angstrom 

between equivalent EspG5 residues when aligning EspG5.  
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Figure 3.3. Interactions between the hh motif of PPE proteins and EspG5.  

View of hh motif on PPE41-based alignment of 6VJ5 and 4KXR. A, Leu125 of PPE41 

(4XKR in blue and 6VJ5 in red) interacts with Met179, Leu180, Thr183, Leu254, and 

Leu268 of EspG5. There are minimal structure changes in the EspG5 residues between the 

4XKR (purple) and 6VJ5 (yellow). B, Ala124 (4KXR, blue) and Leu124 (6VJ5, red) from 

PPE41 interacts with Gln187, Phe191, and Leu216 of EspG5. The mutation of Ala124Leu 

in 6VJ5 is likely the cause of the 2.3 Å shift in Phe191 this causes the perturbance in the 

alpha helix that Gln187 is in.  
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Figure 3.4. Sequence tolerance of hh motifs in selected ESX-5 PPE proteins. 

Boxplot representation of the distributions of tolerated amino acid substitutions in the hh 

motifs of A, 4KXR; B, 4W4L; C, 6VJ5; and D, 5XFS as calculated within the ROSIE server 

(262).



 

 43 

Chapter 4. PE5–PPE4–EspG3 heterotrimer structure from mycobacterial ESX-3 
secretion system gives insight into cognate substrate recognition by ESX systems. 

4.1. Introduction. 

This chapter was originally published in the Journal of Biological Chemistry. 

Zachary A. Williamson, Catherine T. Chaton, William A. Ciocca, Natalia Korotkova and 

Konstantin V. Korotkov. PE5–PPE4–EspG3 heterotrimer structure from mycobacterial 

ESX-3 secretion system gives insight into cognate substrate recognition by ESX systems. 

J Biol Chem. 2020; 295:12706-12715. © Williamson, et al. The introduction of the original 

publication has been modified for this chapter. 

Each ESX system secretes a unique subset of PE–PPE heterodimers, and therefore 

each encodes an EspG that binds to only its corresponding heterodimers (203,205). The 

first structural insight into the EspG and PE–PPE interaction was revealed by analysis of 

the structure of the PE25–PPE41–EspG5 complex, a heterotrimer from ESX-5 (204,205). 

EspG5 interacts solely with PPE41 at the tip distal to the PE25 interaction and aids in 

preventing PE–PPE heterodimer aggregation in part by shielding a conserved hydrophobic 

tip on the PPE proteins, known as the hh motif (205). The additional structure of the ESX-

5–related, PE8–PPE15–EspG5 heterotrimer, revealed similar interactions of the substrate 

PE–PPE dimer with the EspG5 chaperone (206). Despite high conservation among PPE 

proteins in the identified EspG5-binding region from PPE41, three residues vary depending 

on whether the PPE protein is secreted by ESX-1, ESX-3, or ESX-5 (205). Alteration of 

any or all of these positions in the ESX-5–dependent PPE41 did not disrupt PPE41-EspG5 

binding (205). Based on this observation it has been suggested that structural elements 

outside of the EspG-binding region differentiate the ESX-5–specific PPE proteins from 

their ESX-1 and ESX-3 homologs to bind EspG5 (205).  

The work in this chapter was initiated to understand the how each EspG from the 

different ESX systems specifically recognizes its unique subset of cognate PE–PPE 

heterodimers. Here we present the structure of PE5–PPE4–EspG3 from ESX-3. This 

structure reveals a novel binding mode of PE–PPE proteins with the EspG chaperone and 

suggests the molecular mechanism by which the PE–PPE dimers are specifically targeted 

by cognate chaperones. 
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4.2. Results. 

4.2.1. EspG3 forms a complex with PE5–PPE4, and binding is conserved across species. 

To understand the mechanism for the specificity of PE–PPE recognition by cognate 

chaperones, a high-resolution structure of a heterotrimer produced by the ESX systems, 

other than ESX-5, was needed. Our efforts have focused on optimizing the ESX-3 PE–

PPE–EspG heterotrimer for X-ray structural studies. Constructs of full-length PE5 

(Rv0285), the conserved N-terminal PPE domain of PPE4 (Rv0286, residues 1–181), in a 

complex with the cognate full-length EspG3 (Rv0289) from Mycobacterium tuberculosis 

(Figure 4.1A) never formed high-resolution diffraction quality crystals, despite our best 

efforts. The difficulty could be due to some heterogeneity in the processing of EspG3mt 

within the Escherichia coli cell, as seen by the double band in Figure 4.1B and Figure 4.2A. 

Numerous variations of PE5– PPE4–EspG3 constructs were screened utilizing multiple 

mycobacterial species, different fusion approaches, and even mixing PE5–PPE4 dimers 

with EspG3 chaperones from different species (Table 4.1). This latter approach was 

inspired by the work done on the Plasmodium aldolase–thrombospondin– related 

anonymous protein complex (270) and in the end, produced the best crystals for further 

diffraction experiments. To ensure that the mixed heterotrimers behaved the same in 

solution as the WT heterotrimer, a size-exclusion chromatography with multiangle light 

scattering (MALS) experiment was performed on both the WT PE5mt–PPE4mt–EspG3mt 

heterotrimer and the mixed PE5mt–PPE4mt–EspG3mm heterotrimer that contained the 

Mycobacterium marinum EspG3 (MMAR_0548) with 78% sequence identity to EspG3mt 

(Figure 4.1B-C). Both heterotrimers form a 1:1:1 complex with experimental molecular 

masses of 56.2 kDa (Figure 1B) for the full M. tuberculosis heterotrimer (theoretical 

heterotrimer molecular mass of 58.8 kDa) and 54.6 kDa (Figure. 1C) for the mixed 

heterotrimer with the M. marinum EspG3 (theoretical heterotrimer molecular mass of 58.1 

kDa). Co-purification assays were run with both M. tuberculosis and M. marinum EspG3 

with the M. tuberculosis PE4–PPE5, along with EspG3s from Mycolicibacterium 

smegmatis (MSMEG_0622), Mycolicibacterium hassiacum (MHAS_04631), and 

Mycobacterium kansasii (MKAN_17015). Because of the His6 tag only being present on 

PE5mt, EspG3 copurification required interaction with the PE5mt–PPE4mt heterodimer. 

Across all species that were tested, EspG3 co-purified with the PE5mt–PPE4mt heterodimer 
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(Figure 4.2A–E). The binding of different EspG3s to the same PE–PPE heterodimer 

suggests a common protein–protein recognition mechanism within the ESX-3 family. 

4.2.2. Overall structure of PE5mt–PPE4mt–EspG3mm. 

The PE5mt–PPE4mt–EspG3mm heterotrimer was able to form diffraction quality 

crystals, and two different crystal forms were observed that diffracted to 3.3 Å (I422) and 

3.0 Å (P212121) (Table 4.2). The final refinement and data statistics are shown in Table 4.2. 

Overall, there is little structural variation between the individual proteins across the copies 

present in the two crystal forms (Table 4.3). 

For all structural analysis and comparisons, the first copy of the PE5mt–PPE4mt–

EspG3mm heterotrimer from the higher resolution P212121 crystal form was used because it 

diffracted at a higher resolution and has the lowest B-factors from the noncrystallographic 

copies in the P212121 form. EspG3mm interacts solely with the tip of PPE4mt (Figure 4.3), 

similar to EspG5 in the previously solved ESX-5 heterotrimers (204-206). However, the 

orientation of PE5mt–PPE4mt relative to EspG3mm is dramatically different from what was 

observed for either ESX-5 heterotrimer, and the differences between them will be described 

in later sections. The YXXX(D/E) motif for ESX secretion of PE5mt is accessible for 

interactions with the rest of the ESX machinery because it is located distal to the EspG3mm 

interaction (203). In both crystal forms, this secretion motif is disordered, similar to the 

motif in PE8mt from the PE8mt–PPE15mt– EspG5mt heterotrimer (206). The individual 

components of the PE5mt–PPE4mt–EspG3mm heterotrimer align well to the individual 

components of the previously reported ESX-5 heterotrimers, both PE25mt–PPE41mt–

EspG5mt (4KXR and 4W4L) and PE8mt–PPE15mt–EspG5mt (5XFS), with only moderate 

variations (Table 4.4). 

In a previous study on EspG structures (202), a small-angle Xray scattering (SAXS) 

experiment was done on the PE5–PPE4–EspG3 heterotrimer from M. smegmatis. 

Comparisons between this SAXS analysis and our crystal structure were performed to see 

whether the solution-based characterization of the heterotrimer matched the X-ray-based 

characterization. We ran CRYSOL (253) on our crystal structure compared with the 

experimental scattering data from the M. smegmatis heterotrimer. The overall χ2 is 2.53, 

which is acceptable given that the heterotrimers are from different species with only 54.0–

73.8% sequence identity across the different components (Figure 4.4). The main 
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differences are in the extreme high- and low-resolution areas, likely arising from 

differences in the primary structure between the two samples and from aggregation in the 

SAXS sample, respectively. Therefore, we are confident that the crystal structure is an 

appropriate model of the ESX-3 heterotrimer because it exists in solution. 

4.2.3. Interface between PPE4mt and EspG3mm. 

The interface between EspG3mm and PPE4mt contains numerous hydrophobic 

interactions, multiple hydrogen bonds, and two salt bridges centered around Glu140 of 

PPE4mt (Figure 4.3B–F). Overall, the interface buries 3,121 Å2 of solvent-accessible 

surface area, as calculated by the PISA server (265), and has the shape correlation Sc value 

of 0.664 (271). The interface is comprised of 30 total residues from PPE4mt and 49 residues 

from EspG3mm (Figure 4.5). The tip of PPE4mt containing the ends of α4 and α5, and the 

loop between them is inserted into a groove on EspG3 composed of its central β sheet and 

C-terminal helical bundle. This bundle shields the hydrophobic tip of PPE4mt, including 

the hh motif of Phe128-Phe129, from solvent access. The tip of PPE4mt is interacting with 

EspG3 in such a way that the complex is unlikely to disengage at the ESX secretion 

machinery without structural rearrangement of the chaperone. 

4.2.4. Mutations cause disruptions in the PPE4–EspG3 interface. 

 To probe the interface of the crystal structure and test the importance of interacting 

residues, we made several mutations on both PPE4 and EspG3 sides of the interface and 

opted to use the cognate PE5mt–PPE4mt–EspG3mt heterotrimer to test our mutations. The 

PISA output (265) of the interface was analyzed along with sequence alignments of the 

current known ESX-3 PPE proteins (Figure 4.6) and alignments of the EspG3 used in this 

study (4.7) to select which residues in the interface would be mutated. PPE4mt is well-

conserved along the interface among ESX-3-specific PPE proteins (4.6), and we targeted 

strictly conserved residues in the interface. We selected N127 and N132 because they 

contain buried hydrogen bonds, F128 and F129 because they are the hh motif and 

contribute a large amount of solvation energy to the interface according to PISA (265), and 

E140 because it is part of the salt bridges in the interface. We ran co-purification pulldown 

assays with mutated PPE4mt and EspG3mt (Table 4.5). As described earlier, EspG3mt is only 

co-purified with the PE5–PPE4 heterodimer if it forms a complex. The introduction of 

charges into the buried hydrogen bonds with N127D and N132E was unable to break the 
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PPE4mt–EspG3mt interaction, and neither was the charge reversal of E140R, because all 

three mutations co-purify with EspG3mt (Figure 4.8A). This suggests that disruption of any 

of these single positions is not sufficient to abolish PPE4mt–EspG3mt interaction. 

Conversely, the introduction of charged residues into the hh motif with F128R or F129E 

did disrupt the interface and prevented EspG3mt from being co-purified (Figure 4.8A), 

because it interrupts with the hydrophobic environment deep within the EspG3mt-binding 

pocket. The interface of EspG3mt is also well-conserved among the various EspG3s tested 

in this study (Figure 4.7), and again, we targeted strictly conserved residues. We selected 

R208 and E212 because they contain buried hydrogen bonds, R87 and R102 because they 

form the salt bridge within the interface, and S231 because it sits at the top of the groove 

of EspG3 and could sterically block entrance into the pocket. Neither single mutation of 

the salt bridge, R87E or R102E, was able to prevent co-purification of EspG3mt (Figure 

4.8B). Also, the introduction of a charged residue with R208E was unable to prevent the 

interaction (Figure 4.8B). In contrast, E212R was sufficient to prevent co-purification, as 

well as S231Y (Figure 4.8B), because both prevent the hydrophobic tip of PPE4mt from 

interacting with the binding pocket of EspG3mt either by charge repulsion or steric 

hindrance. Thus, our mutations on both PPE4mt and EspG3mt highlight the importance of 

the hydrophobic environment deep within the PPE4mt–EspG3mt interface. 

4.2.5. Structure of EspG3 in and out of heterotrimer complex. 

 Our structure is the first of EspG3 solved in complex with a cognate PE–PPE dimer, 

and thus we wanted to compare it with the previously solved unbound EspG3 structures. In 

total, there are six available EspG3 structures, four of EspG3ms (PDB codes 4L4W, 4RCL, 

5SXL, and 4W4J (202,204)), one EspG3mt (PDB code 4W4I (204)), and one EspG3mm 

(PDB code 5DLB (202)). These six structures can be classified into two different forms, 

an “open” form and a “closed” form. The differentiation between these two forms is the 

orientation of the C-terminal helical bundle relative to the core β-sheet. The EspG3mm 

structure (PDB code 5DLB) is representative of the open form, and one of the EspG3ms 

structures (PDB code 4RCL) is representative of the closed form. Analysis of EspG3mm as 

it exists in the PE5mt–PPE4mt–EspG3mm heterotrimer was done relative to these two 

representative structures. The overall alignment of the representative structures to the 

bound EspG3mm was good with RMSDs of 2.1 and 1.9 Å for the open and closed forms, 
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respectively (Figure 4.9A). Inspection of these alignments show the majority of differences 

to be within the arrangement of the C-terminal helical bundles, with the bound form of 

EspG3mm being in close to the orientation found in the closed form (Figure 4.9B-C). The 

bound EspG3mm cannot be any closer to the closed form orientation because the C-terminal 

helical bundle makes contact with PPE4mt. We hypothesized that this C-terminal helical 

bundle is dynamic and closes on cognate PPE proteins upon interaction. A comparison 

between the bound EspG3mm structure and the open EspG3mm was performed with the 

DynDom server to test this hypothesis (272). DynDom identified a moving domain within 

the structures that was located in the C-terminal helical bundle (Figure 4.9D). DynDom's 

analysis also performed a whole structure alignment that agreed with the previous Dali 

alignment in Figure 4.9A-B. DynDom performed alignments between the fixed domains 

(residues 11–168 and 189–279) and the moving domains (residues 168–188), which 

resulted in much better alignments with RMSDs of 1.76 and 0.86 Å, respectively. 

Therefore, the moving domain, the C-terminal helical bundle, is essentially structurally 

identical between PPE4mt-bound EspG3mm and the open EspG3mm and its rotation of 30.2° 

and translation of 0.8 Å is moderately perturbing the fixed domain. Because the moving 

domain making extensive contact with PPE4mt and PPE4mt would sterically clash with the 

current orientation of the C-terminal helical bundle, the movement from the closed to the 

open orientation could be significant in releasing the secreted PE–PPE dimers from the 

chaperone at the secretion machinery. 

4.2.6. Comparison of ESX-3 and ESX-5 PE–PPE–EspG heterotrimers. 

 A vastly different binding mode is observed when comparing the ESX-3–specific 

PE5mt–PPE4mt–EspG3mm heterotrimer to the previously published ESX-5–specific 

heterotrimers. As mentioned earlier, there is good agreement when comparing individual 

components of the ESX-3–specific heterotrimer to the available ESX-5–specific 

heterotrimers (Table 4.4). The difference between the two sets of heterotrimers became 

apparent when they were aligned via EspG (Figure 4.10A-B and Figure 4.11) (259). Our 

results focused on comparisons with the PE25mt–PPE41mt–EspG5mt (PDB code 4KXR) 

heterotrimer, but the same differences were present with the PE8mt–PPE15mt–EspG5mt 

(PDB code 5XFS) heterotrimer. The interaction angle of the different PE–PPE heterodimer 

with EspG is drastically different between the two heterotrimers, with a 30° angle 
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difference (Figure 4.9B). Another difference lies within the hh motif loops of PPE25mt (α4-

α5 loop) and PPE4mt (α5-α6 loop) (Figure 4.10C). In PPE25mt, this loop is seven residues 

long and undertakes a compact conformation that is not altered during EspG5mt binding 

(205). In contrast, in PPE4mt, this loop is nine residues long and has an extended 

conformation. This difference was rapidly apparent when PPE25mt and PPE4mt were 

aligned (Figure 4.10C).  

This loop conformation also made each PPE protein incompatible with the other's 

binding mode. When looking at the PPE alignment in the context of the ESX-3 

heterotrimer, the α4-α5 loop of PPE25mt does not align over the central groove of EspG3mm 

and instead sterically clashes the central β sheet of the chaperone (Figure 4.10D). The tip 

of PPE41mt would have to undergo a drastically new tip confirmation to bind in the opening 

of EspG3mm. In the context of the ESX-5 heterotrimer, the α5-α6 loop does not align with 

the central groove of the chaperone, and instead, PPE4mt's hh motif sterically clashes with 

the C-terminal helical bundle of EspG5mt (Figure 4.10E). Also, none of the salt bridges 

between PPE41mt and EspG5mt are conserved in PPE4mt. Specifically, D134PPE41-

K235EspG5mt, D140PPE4mt-R109EspG5mt, and D144PPE4mt-R27EspG5mt; that are all replaced with 

hydrophobic residues in PPE4mt: either T137PPE4mt or L138PPE4mt, V144PPE4mt, and 

L147PPE4mt, respectively.  

4.3. Discussion. 

 In this work, we present the first structure of the PE5mt–PPE4mt–EspG3mm 

heterotrimer, which is from the ESX-3 system. Our structure is a mixed heterotrimer, and 

we presented evidence that EspG3 from numerous mycobacterial species can bind the 

PE5mt–PPE4mt heterodimer. Conservation of the EspG3s used in this study ranged from 57 

to 83% identity, yet an enrichment in conservation is observed within PPE4-interacting 

residues (Figure 4.9). The ability of EspG3 from numerous mycobacterial species to bind 

PE5mt–PPE4mt suggests that the recognition mechanism is conserved within ESX systems 

across species. Overall, the PE5mt–PPE4mt interaction is similar to the previously reported 

PE–PPE–EspG heterotrimers (204-206) in that PPE4mt's tip is solely interacting with 

EspG3mm and the general secretion motif of YXXX(D/E), on PE5mt, is at the distal end of 

the PE5mt–PPE4mt heterodimer. In all copies of PE5mt, this motif is unstructured because it 

is in the PE8–PPE15–EspG5 heterotrimer (206), and similarly, W63PPE4mt is pointed away 
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from this secretion motif. This arrangement is distinct from the PE25–PPE41–EspG5 

heterotrimers (204,205) and EspB, an ESX-1 substrate that has a similar structural fold to 

the PE–PPE heterodimers (145,146). PE8mt contains an expanded C-terminal domain, and 

because the secretion motif is located in the linker between the C-terminal domain and the 

PE domain, the orientation of the secretion motif was unclear (206). PE5mt does not have 

an expanded C-terminal domain and is just the conserved PE domain, yet its secretion motif 

is still unstructured in our heterotrimer. Therefore, the exact significance of the structural 

variations in the ESX secretion motif is still unclear, and further work is needed.  

Our structure is the first of EspG3 bound to a cognate PE–PPE heterodimer. In 

comparisons of the various published EspG3 structures, we identified two different forms 

that relate to the orientation of the C-terminal helical bundle: an open form and a closed 

form. EspG3mm, when bound to the PE5mt–PPE4mt heterodimer, is in a conformation 

slightly different from the closed form because of interactions with the tip of PPE4mt. We 

also found that the C-terminal helical bundle is a dynamic domain and shifts between the 

open and closed forms via a hinge movement (Figure 4.9D). The functional significance 

of this domain movement could be 2-fold. First, the plasticity of the C-terminal helical 

bundle could allow EspG3 to accommodate any variation in the ESX-3–specific PPE tips. 

Although the tip of ESX-3–specific PPE proteins is mostly conserved (Figure 4.6), there is 

some variations at the end of α5 that could alter the tertiary structure and thus slightly alter 

the interactions with the EspG3 chaperone and the PPE protein. Second, the movement of 

the C-terminal helical bundle could be critical to the release of the PE–PPE heterodimers 

at the ESX-3 secretion machinery. It is unlikely that PPE4mt could be removed from its 

interactions with EspG3mm without either movement of the C-terminal helical bundle or 

steric clashes with the C-terminal helical bundle. Movement of this helical bundle and 

release of PPE4mt would likely require energy input and a candidate to provide that energy 

is EccA. EccA is an ATPase (103) and interacts with both EspG and PPE proteins in yeast 

two-hybrid experiments (204,213). Recent structures of the ESX machinery from both 

ESX-3 (127) and ESX-5 (126) suggests overall 6-fold symmetry of the core ESX 

machinery within the inner membrane, and EccA could be acting not only to provide the 

energy required to uncouple the PE–PPE heterodimers from their EspG chaperone but also 
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to provide a platform for interaction with the core secretion machinery because EccA is 

likely hexameric when functional.  

Previous studies showed that each EspG only recognizes PE–PPE heterodimers 

from their cognate systems (203,205). Despite the structures of two different PE–PPE–

EspG heterotrimers from ESX-5 (204-206), it was still unclear how EspG5 was 

differentiating from cognate and noncognate PE–PPE heterodimers. Our structure 

represents the first PE–PPE–EspG heterotrimer from ESX-3 and allows for direct 

comparisons between the ESX-3 and ESX-5 heterotrimers. Our structure reveals that 

PE5mt–PPE4mt interacts with EspG3mm at a different angle of interaction than what was 

shown for either ESX-5 heterotrimer. This difference in interaction angle presents a 

different face of PPE4mt to EspG3mm. We hypothesize that this is a conserved feature of the 

ESX-3 PPE–EspG3 interaction, because both characterized ESX-5 PE–PPE heterodimers 

(204-206) display the same face to EspG5 despite 33% sequence identity between PPPE41 

and PPE15. Therefore, we hypothesize that each ESX system has a unique shape 

complementarity between its subset of PPE proteins and their cognate EspG chaperone, 

and these unique shapes are likely not compatible for interaction with noncognate 

chaperones. Our structure is also the first of an ESX-3–specific PE–PPE heterodimer. 

PE5mt–PPE4mt shares the same global conformation as the previously solved PE–PPE 

heterodimers; however, it differs drastically in PPE4mt in the loop between α5 and α6, 

which contains the hh motif. This longer, more extended loop interacts deeper in the cleft 

of EspG3mm and is subsequently much more shielded from solvent. It is possible that the 

longer, extended loop conformation is a feature of ESX-3 PPE proteins and could play an 

essential role in EspG3 recognition.  

In conclusion, we presented the first structure of a PE–PPE–EspG heterotrimer 

from the ESX-3 system. This structure allowed us to compare the interactions of EspG3 

and a cognate PPE protein to the previously described EspG5–PPE interactions. We 

hypothesize that shape complementarity is a key feature of distinguishing cognate and 

noncognate PPE proteins from the EspG chaperones.  
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4.1. Summary of constructs utilized for crystallization experiments and final 

outcomes. 

  
PE5 construct 

(all constructs contain His6 
purification tag) 

PPE4 construct 
(only N-terminal 

PPE domain) 

EspG3 
construct 

Crystallization 
Outcome 

MSMEG_0618 MSMEG_0619 MSMEG_0622 Low resolution 
crystals 

MSMEG_0618 with MBP 
fusion 

(two different linker lengths) 
MSMEG_0619 MSMEG_0622 

Low resolution 
crystals for both 

linker lengths 
MSMEG_0618 with T4L 

fusion  
(3 different forms of T4L) 

MSMEG_0619 MSMEG_0622 Poor expression of 
trimer in all forms 

Rv0285 Rv0286 Rv0289 Low resolution 
crystals 

Rv0285 Rv0286 MMAR_0548 Two crystal forms 
solved 
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Table 4.2. Data collection and refinement statistics of ESX-3 heterotrimer. 

a Values in parentheses are for the highest resolution shell. 
b CC1/2 correlation coefficient is defined in (269) and was calculated with XSCALE (248). 
c Calculated with the MolProbity server (http://molprobity.biochem.duke.edu) (252). 
d Clashscore is the number of serious steric overlaps (> 0.4 Å) per 1000 atoms. 
e MolProbity Score combines the clashscore, rotamer, and Ramachandran evaluations into 
a single score, normalized to be on the same scale as X-ray resolution (252).  

 PE5mt-PPE4mt-EspG3mm 
(PDB ID 6UUJ) 

PE5mt-PPE4mt-EspG3mm 
(PDB ID 6VHR) 

Data Collection  
Wavelength (Å) 1.000 1.000 
Space group P212121 I422 
Cell Dimensions:   

a, b, c (Å) 72.26, 158.63, 209.31 219.14, 219.14, 104.44 
α, β, γ (°) 90, 90, 90 90, 90, 90 

Resolution (Å) 39.51 – 3.00 (3.08 – 3.00)a 35.73 – 3.30 (3.39 – 3.30) 
Rsym 0.131 (1.56) 0.087 (2.18) 
Rpim 0.070 (0.848) 0.029 (0.524) 
CC1/2

b 0.998 (0.590) 0.999 (0.597) 
I/σ 9.45 (1.14) 15.70 (1.31) 
Completeness (%) 99.1 (99.5) 99.8 (100) 
Multiplicity 4.2 (4.4) 10.3 (9.5) 
 
Refinement  
Resolution (Å) 39.51 – 3.00 35.73 – 3.30 
No. reflections (total/free) 48463/2462 19335/928 
Rwork/Rfree 0.266/0.303 0.248/0.266 
Number of atoms:   

Protein 14535 3643 
Ligand/ion 0 0 
Water 4 0 

B-factors:   
Protein 101.6 173.2 
Water 70.6  
All atoms 101.6 173.2 
Wilson B 87.9 147.3 

R.m.s. deviations:   
Bond lengths (Å) 0.002 0.002 
Bond angles (°) 0.53 0.503 

Ramachandran distributionc (%)   
Favored 96.42 91.34 
Allowed 3.58 8.04 
Outliers 0 0.62 
Rotamer outliersc (%) 0.28 0 
Clashscored 7.02 6.94 
MolProbity Scoree 1.62 1.89 
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Table 4.3. Structural variations in copies of PE5mt–PPE4mt–EspG3mm structure in 

RMSD (Å). 

  
 PE5mt PPE4mt EspG3mm 
 Aligned to 6UUJ copy 1 
6UUJ copy 2 0.2 0.3 0.4 
6UUJ copy 3 0.4 0.2 0.4 
6UUJ copy 4 0.3 0.2 0.4 

6VHR 0.4 0.5 0.6 
 Aligned to 6UUJ copy 2 

6UUJ copy 1 0.2 0.3 0.4 
6UUJ copy 3 0.3 0.3 0.3 
6UUJ copy 4 0.3 0.3 0.4 

6VHR 0.4 0.5 0.6 
 Aligned to 6UUJ copy 3 

6UUJ copy 1 0.4 0.2 0.4 
6UUJ copy 2 0.3 0.3 0.3 
6UUJ copy 4 0.4 0.3 0.4 

6VHR 0.5 0.5 0.6 
 Aligned to 6UUJ copy 4 

6UUJ copy 1 0.3 0.2 0.4 
6UUJ copy 2 0.3 0.3 0.4 
6UUJ copy 3 0.3 0.3 0.4 

6VHR 0.4 0.5 0.7 
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Table 4.4. Structural variations between individual components of ESX-3 

heterotrimer and the previously published ESX-5 heterotrimers in RMSD (Å). 

 PE25mt-PPE41mt-EspG5mt 
(4KXR) 

PE25mt-PPE41mt-EspG5mt 
(4W4L) 

PE8mt-PPE15mt-EspG5mt 
(5XFS) 

PE5mt 2.3 2.3 1.4 
PPE4mt 3.3 3.4 2.5 
EspG3mm 2.4 2.7 2.3 
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Table 4.5. Summary of analysis of PE5mt–PPE4mt–EspG3mt interactions in vitro. 

  
PPE4 mutations 
N127D + 
F128R - 
F129E - 
N132E + 
E140R + 

EspG3 mutations 
R87E + 

R102E + 
R208E + 
E212R - 
S231Y - 
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Figure 4.1. Solution characterization of the PE5–PPE4–EspG3 heterotrimer.  

A, schematic showing design and molecular masses for constructs used in this study. PE5 

from M. tuberculosis (Rv0285) contains an N-terminal His6 tag that is connected to the 

gene via a TEV protease cleavable linker. PPE4 (Rv0286) was truncated after its N-

terminal PPE domain. Full-length copies of both M. tuberculosis (Rv0289) and M. marinum 

(MMAR_0548) EspG3 were used. B and C, elution profile of PE5mt–PPE4mt–EspG3mt (B) 

and PE5mt–PPE4mt–EspG3mm (C), with the right y axis showing the MALS-measured 

molecular mass. The insets show an SDS-PAGE image of the major peak fraction. res., 

residues. 
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Figure 4.2. PE5mt-PPE4mt dimer is bound by EspG3 from various mycobacterial 

species.  

Copurification of PE5mt-PPE4mtb with a, EspG3mt, b, EspG3mm, c, EspG3ms, d, EspG3mk, or 

e, EspG3mh. T is total lysate, I is insoluble lysate, S is soluble lysate, F is column flow 

through, W is column wash, and E is column elution. 
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Figure 4.3. Crystal structure of the PE5mt–PPE4mt–EspG3mm heterotrimer and 

selected interactions in PPE4mt-EspG3mm interface. 

A, crystal structure of the PE5mt–PPE4mt–EspG3mm heterotrimer in a cartoon representation 

with two views related by a rotation of 180°. EspG3 interacts exclusively with the tip PPE4, 

distal to PE5. B–F, interacting residues are shown with main chain and side chain in stick 

form with electron density map (2Fo − Fc shown at 1.0 σ) covering side chains and 

hydrogen bonding in gray dashed lines.  
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Figure 4.4. Comparison of PE5mt-PPE4mt-EspG3mm crystal structure and PE5ms-

PPE4ms-EspG3ms SAXS data.  

The SAXS data was originally collected in (202) and compared to the 6UUJ structure we 

obtained. The χ2 between the crystal structure and SAXS data is 2.53. An insert shows the 

6UUJ structure inside an envelope created by GABSOR (254). 
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Figure 4.5. Interface between PPE4mt and EspG3mm.  

A, surface representation of PPE4mt and EspG3mm shown in an “open book” view. 

Interacting residues are colored in blue (PPE4mt) and orange (EspG3mm), with mutated 

residues highlighted in light orange (PPE4mt) and light blue (EspG3mm). Another view of 

PPE4mt, related by a 180° rotation, is also shown. B, the same orientations as A but with 

the surface colored according to surface potential as calculated by APBS (258). The 

interacting residues are highlighted with a black outline.  
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Figure 4.6. Sequence alignment of M. tuberculosis ESX-3-specific PPE genes.  

Genomic sequences of M. tuberculosis PPE proteins were aligned with Clustal (256). The 
secondary structure from PPE4mt from the trimer model (6UUJ) is shown above each row 
of the alignment. Residues that are identical across all of the ESX-3-specific PPEs are 
highlighted in red. Residues interacting with EspG3mm in the crystal are denoted with 
black circles and the ones that were chosen for mutagenesis are denoted with a red star.  
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Figure 4.7. Sequence alignment of selected EspG3’s shows interacting residues are 

conserved.  

Genomic sequences of the five EspG3s used in this study were aligned using Clustal (256). 

The secondary structure from EspG3mm from our trimer model (6UUJ) is shown above each 

row of the alignment. Residues that are identical across the five species are highlighted in 

red. Residues interacting with PPE4mt in the crystal are denoted with black circles and the 

ones that were chosen for mutagenesis are denoted with a red star. 
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Figure 4.8. Co-purification of selected PPE4mt and EspG3mt mutants with their wild-

type partners.  

Gels from co-purification pulldowns of PPE4mt (a) and EspG3mt (b) mutations show which 

mutations disrupt the PPE4mt-EspG3mt interface (PPE4mt
F128R, PPE4mt

F129E, EspG3mt
E212R, 

EspG3mt
S231Y), and which do not. Results are summarized in Table 4.2. Each protein is 

denoted with a unique symbol in each gel; PE5mt (^), PPE4mt (#), and EspG5mt (*). T is total 

lysate, I is insoluble lysate, S is soluble lysate, F is column flow through, W is column 

wash, and E is column elution. The identity of PE5mt, PPE4mt, and EspG5mt was confirmed 

by mass spectrometry analysis.  
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Figure 4.9. EspG3 exists in multiple structural forms.  

A, open (PDB code 5DLB, EspG3mm, sand) and closed (PDB code 4RCL, EspG3ms, 

maroon) conformations of EspG3 were aligned to EspG3mm (PDB code 6UUJ, orange) as 

it is bound to PPE4mt. Overall the different conformations align well to the bound 

conformation of EspG3mm with RMSDs of 2.1 Å (open) and 1.9 Å (closed). B and C, 

closeups highlighting the different orientations of the α5 helices in the open (B) and closed 

(C) EspG3 structures as compared with EspG3mm bound to PPE4mt. D, movement regions 

defined in EspG3 as it moves from the open conformation to the bound conformation in 

two different views related by a 90° rotation. The rotation axis for the moving domain is 

shown in gray. Each conformation maintains the same coloring as in A, with the hinge 

between the moving and fixed domains colored blue (open) and light blue (bound).   
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Figure 4.10. PE5mt–PPE4mt interacts with EspG3mm chaperone in a unique mode 

compared with ESX-5 PE–PPE dimers.  

A, structural alignment (259) of the ESX-3 and ESX-5 heterotrimers via the EspG 

chaperones reveals a difference in the angle of interaction between the PE–PPE 

heterodimers with their respective chaperone. B, top view of alignment from A. C, 

superposition of PPE41mt and PPE4mt highlights difference in hh loop conformations 

between ESX-3 (PPE4mt) and ESX-5 (PPE41mt). D and E, superposition of PPE alignment 

from C in context of EspG3mm interaction (D) and EspG5mt interaction (E) shows the 

incompatibility of each PPE protein with noncognate chaperone binding. 
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Figure 4.11. Comparison of interfaces in the ESX-3- and ESX-5-specific PPE-EspG 

complexes. 

A, Structure-based sequence alignment of PPE4 (6UUJ) and PPE41 (4KXR). Residues 

interacting with EspG3mm and EspG5mt chaperones are indicated with black and blue circles, 

respectively. B, Structure-based sequence alignment of EspG3mm and EspG5mt. Residues 

interacting with PPE4 and PPE41 are indicated with black and blue triangles, respectively. 
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Chapter 5. Discussion. 

5.1. Summary of this dissertation.  

The work of this dissertation aimed to expand the knowledge of PE-PPE 

heterodimer interaction with EspG. Chapter 3 investigated the interaction of ESX-5-

specific PE-PPE heterodimers and how EspG5 accommodates the variety found within the 

PPE proteins it interacts with, particularly the variety found within the hh motif of ESX-5-

specific PPE proteins. The results within Chapter 3, including the structure of PE25mt-

PPE41A124L
mt-EspG5mm suggests that EspG5 is dynamic and has structural plasticity to 

accommodate its repertoire of PPE proteins. Chapter 4 is focused on the ESX-3 system and 

aimed to uncover the mechanism of binding between EspG3 and an ESX-3-specific PE-

PPE heterodimer. The first ESX-3-specific PE-PPE-EspG3 heterotrimer structure was 

described in Chapter 4, and along with the rest of the results contained in the chapter, 

identified a unique binding of EspG to PPE, that is different than what was previously 

observed with ESX-5-specific PE-PPE-EspG5 heterotrimers. Our analysis in Chapter 4 also 

highlights a dynamic motion within EspG3 that may be important for recognition and/or 

unloading of the PE-PPE heterodimer at the core ESX machinery. The work in this 

dissertation begins to give a more complete picture of PPE-EspG binding, yet still some 

questions exist in the PPE-EspG binding mechanism, along with how PE, PPE, and EspG 

proteins fit within the broader ESX systems. 

5.2. Recognition of PPE by EspG and the ESX-1 heterotrimer mystery. 

To date only three unique PE-PPE-EspG heterotrimers have been structurally 

characterized. The first was PE25-PPE41-EspG5, which was done by two groups in 2014 

(204,205). Another ESX-5 heterotrimer, PE8-PPE15-EspG5 was published in 2017 (206). 

The third is described in Chapter 4, was published in 2020 (247), and was the first to be 

from the ESX-3 system. Only ESX-1 is left without a characterized PE-PPE-EspG 

structure. It is still unclear what drives PPE recognition by the EspG chaperones. The 

hypothesis outlined in Chapter 4 is that shape complementarity between EspG and its 

cognate PPE proteins only allows for binding between the cognate PPE-EspG pairs. 

The ESX-1-specific PE-PPE-EspG1 heterotrimer has been an exceptionally 

challenging mystery to uncover. ESX-1 is hypothesized to be the most ancestral ESX 

system to secrete a PE-PPE heterodimer, and predates the expansion of pe and ppe genes 
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(124). This presents a challenge for structural characterization as the PE-PPE pair with 

experimental evidence as an ESX-1 substrate is PE35-PPE68_1. PE35 belongs to pe 

sublineage 1 and contains only the conserved PE domain. Only one other sublineage 1 pe 

gene exists in Mtb, PE34, although its classification as a PE protein is only ‘probable’ and 

it is located in the genome alone without a putative PPE partner (123,273). PPE68_1 

belongs to ppe sublineage 1 and is the only sublineage 1 ppe gene in Mtb (123). The PE35-

PPE68_1 heterodimer has been purified in an E. coli system in the presence of EspG1, 

however it was done with full-length PPE68_1, which contains a long extension in addition 

to the conserved PPE domain (123,205,273). Full-length PPE68_1 may prove problematic 

to structural characterization due to the unknown nature of its C-terminal domain. 

Interestingly, all current PE-PPE-EspG heterotrimer structures contain just the conserved 

PE and PPE domains from the PE-PPE heterodimers (204-206,247). Although, with only 

three current PE-PPE-EspG heterotrimers published in the PDB, and with only one of those 

PE-PPE heterodimers published without EspG, PE25-PPE41 (144), there might be 

challenges related to the PE-PPE heterodimers themselves. EspG1 also proved to be a 

difficult protein to structurally characterize. The first, and currently only, EspG1 structure 

was published in 2019 (202). In the publication of the structure, the authors comment on 

the difficulty of obtaining crystals from the Mtb copy of the gene, along with the numerous 

homologs they screened (202). In fact, it was not until they added T4 lysozyme as an N-

terminal fusion, did they obtain diffraction quality crystals (202). 

Previous members of the Korotkov lab have attempted to obtain diffraction quality 

crystals of the PE35-PPE68_1-EspG1 heterotrimer from Mtb, which utilizes full-length 

copies of each protein without success. Future attempts to obtain diffraction quality crystals 

could utilize a truncated PPE68_1 construct that only contains the conserved PPE domain. 

Also, the EspG1 construct with the T4 lysozyme fusion utilized in (202) could also be used 

since the PPE-binding pocket of EspG1 is not occluded in the structure. Alternatively, 

utilizing other EspG1 homologs might prove a fruitful avenue as it was successful for the 

PE5Mt-PPE4Mt-EspG3Mm structure (247). The ability to utilize additional ESX-1-specific 

PE-PPE heterodimers is limited, as only the only option is PE35-PPE68_1 from Mtb. 

Recently MMAR_2894, a pe gene in M. marinum, was shown to be dependent on ESX-1 

for secretion (274). MMAR_2894 is located next to a ppe gene, MMAR_2895, and this 
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could be its PPE partner although the genes are not located in an operon and are transcribed 

in opposite directions (273). MMAR_2894 and MMAR_2895 could easily be tested as a 

potential PE-PPE pair and if shown to interact, they then can be used for crystallographic 

studies. 

The ability of EspG5 to recognize its diverse group of cognate PPE proteins still 

requires more investigation. Chapter 3 began the work to understand EspG5’s ability to 

bind its cognate PPE proteins by making mutations in the hh motif of PPE41. However, 

this would be greatly enhanced by utilizing novel PE-PPE heterodimers and structurally 

characterizing them in complex with EspG5. This has been challenging because of the 

uncertainty in PE and PPE pairings for most genes. To date only PE25-PPE41 and PE8-

PPE15 have been structurally characterized as complexes with EspG5. Even within the 

ESX-5 cluster it is unclear which pe genes partner with which ppe genes as there is an 

uneven number of each, two pe and three ppe. Some work has been done to 

computationally predict PE-PPE pairings, however ambiguity and multiple pairings still 

existed for many of the PE-PPE heterodimers studied (275). Only a small number of 

possible pairings outlined in the computational study have been experimentally verified as 

interacting, and individual PE or PPE proteins interacting with multiple partners has not 

yet been ruled out (206,275,276). 

The exact molecular determinants of PPE-recognition by EspG are still unclear, but 

the work in this dissertation aided the formation of the hypothesis that shape 

complementarity plays an important role. A crucial missing piece is the structure of an 

ESX-1-specific PE-PPE-EspG heterotrimer. 

5.3. Recognition of the PE-PPE-EspG heterotrimer by the core ESX machinery. 

A conserved type VII secretion signal has been discovered (147). This signal is 

found in  substrates from each ESX system, so it does not confer system specificity. What 

drives each substrate to its cognate secretion machinery remains unsolved. EccC may be 

the receptor for substrates at the core secretion machinery. Substrates bind EccC and 

activate its multimerization (138), and recently the linker 2 domain of EccC has been 

shown to mediate species-specificity of the ESX systems (277). If EccC is the receptor for 

substrates at the core machinery, it is unclear how it would recognize its cognate substrates. 
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I hypothesize that a system specificity code exists for ESX substrates and I will discuss this 

specificity signal in the context of the PE-PPE-EspG heterotrimer. 

In terms of the PE-PPE-EspG heterotrimers three interesting options present 

themselves as the key to system specificity. The first is that the system specific signal is 

located within EspG. There is low sequence homology across the paralogs of EspG in Mtb, 

ranging from only 13% to 23% sequence identity (202), which leaves plenty of sequence 

space for unique, system specific codes to be encoded within each EspG. It is also simpler 

to encode the system specificity signal on EspG than it would be individual PE or PPE 

proteins. Evidence suggests that PE-PPE heterodimers require EspG for proper secretion 

(190,191,203,205). Therefore, EspG will always be present at the core machinery with its 

system specificity signal to ensure PE-PPE heterodimers are secreted by the correct ESX 

system. The linkage of PE-PPE heterodimers with EspG leads to the second option for 

system specificity, the signal is a part of the PPE-EspG interface. My hypothesis outlined 

in Chapter 4 is that each EspG is binding its cognate PPE proteins in unique modes due to 

the variety of the shape complementarity between EspG and PPE. This would present 

unique cross-faces to the core secretion machinery for each subset of PPE-EspG 

interactions. This hypothesis can be tested with more structures of PE-PPE-EspG 

heterotrimers and analyzing the combined PPE-EspG face. Currently only ESX-5 has 

multiple heterotrimers structurally characterized with PE25-PPE41-EspG5 (204,205) and 

PE8-PPE15-EspG5 (206). 

The final option is linked with the uncoupling of the PE-PPE heterodimers from 

EspG. It is established the EspG is maintained cytosolically while PE-PPE heterodimers 

are secreted (203), with the low nanomolar affinity of PPE-EspG it is unlikely that this 

interaction is broken without an external energy input. EccA is the current leading 

candidate to provide this energy due to its ATPase activity and its ability to interact with 

both PPE and EspG (204,213-215). The eccA gene is also only encoded in ESX systems 

that also encode pe, ppe, and espG genes. EccC is another ATPase in the ESX core 

machinery, however it is hypothesized that it provides the energy for translocation across 

the plasma membrane, and it is unlikely that it would also provide the energy to uncouple 

PE-PPE heterodimers from EspG (127,136,137). The interaction platform between EccA 

and the PE-PPE-EspG heterotrimer is likely unique between each ESX system as each ESX 
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system encodes its own copy of eccA and knocking out eccA only effects specific ESX 

systems (103,121). I hypothesize that this action would be a two-step activation of EccA’s 

ATPase activity. EccA would first bind the PE-PPE-EspG heterotrimer in a system-specific 

manner. The EccA-heterotrimer complex would then be recognized by the ESX core 

machinery, which would activate EccA’s ATPase activity to uncouple the PE-PPE 

heterodimer from EspG and allow the PE-PPE heterodimer to be translocated through the 

ESX core machinery. The recognition of the EccA-heterotrimer complex by the ESX core 

machinery would be a key regulatory step to prevent the unproductive uncoupling of PE-

PPE heterodimers in the cytosol. EccA is a soluble protein and is not a part of the stable 

core ESX machinery (125-128). Although EccA could be transiently interacting with the 

core machinery, similarly to how MycP interacts with the core machinery (129,133). If 

EccA does not interact with the core machinery it would be specifically recognizing 

cognate PE-PPE-EspG heterotrimers and the system specificity signal could be located in 

either manner described above: on EspG or as part of the PPE-EspG interface. 

Recently it was postulated that the EspG-binding region of PPE proteins conferred 

system specificity. In so-called swapping experiments, the EspG-binding region of the 

ESX-5-specific PPE18 replaced the EspG-binding region of the ESX-1-specific PPE68_1 

(278). This “swapped” PPE68_1 was co-expressed with its PE partner, PE35, and shown 

to be dependent on ESX-5 for proper secretion (278). It is unclear if this “swapped” 

PPE68_1 is interacting with EspG5, and therefore it makes it difficult to piece out where 

exactly the system-specificity signal is located. If PPE68_1 is interacting with EspG5, then 

EspG5 could still be carrying the system specificity signal and “swapped” PPE68_1 is 

simply re-routed to ESX-5 because of this EspG5 interaction. A combined PPE-EspG 

interface signal is also plausible if “swapped” PPE68_1 is interacting with EspG5. Since 

the “swapped” portion of PPE68_1 contains the entirety of the PPE-EspG5 interface from 

PPE18, whatever cross-face was present in the PPE18-EspG5 interface would still be 

present in the “swapped” PPE68_1-EspG5 interface. Evidence of which specific EspG the 

“swapped” PPE68_1 is bound to would clear up some of this uncertainty. It would also be 

beneficial to repeat these experiments in the opposite direction, or swap the EspG-binding 

region of PPE68_1 into PPE18. I would expect this set of experiments to make the 

“swapped” PPE18 dependent on ESX-1 for proper secretion. The system specificity signal 
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would likely be carried in the same location for all ESX systems, and these experiments 

could also be extended to PPE proteins from ESX-3 These “swapping” experiments are 

made more interesting by the recent discovery that an ESX-1-specific Esx heterodimer 

could be re-routed to ESX-5, solely by manipulating the EspG-binding region of the ESX-

1-specific PE35-PPE68_1 (279). The ESX-1-specific Esx heterodimer’s secretion through 

ESX-1 was severely enhanced when the ESX-1-specific PE35-PPE68_1 heterodimer was 

co-expressed, and evidence suggested that this was not transcriptional linkage between the 

Esx heterodimer and PE-PPE heterodimer (279). While the Esx heterodimer was able to 

be re-routed to ESX-5 by only modifying the EspG-binding region of PPE68_1, the 

efficiency of re-routing for both Esx and PE-PPE heterodimers were enhanced when their 

C-terminal regions, which contain the YXXXD/E general ESX secretion motif, was also 

swapped for C-terminal regions of ESX-5-specific Esx and PE proteins, respectively (279). 

The reason for this enhanced efficacy with proper C-terminal regions could be because of 

known interactions with Esx proteins to the core secretion machinery through EccC 

(138,148). However, it still appears that for the PE-PPE heterodimers system specificity is 

largely controlled via the EspG-binding region as swapping only this region was sufficient 

to re-route the heterodimers in both studies (278,279). These “swapping” studies 

unfortunately do not indicate whether the system specificity signal just overlaps with the 

EspG-binding region, or if the system specificity signal is instead carried on EspG, or 

perhaps the third alternative that the system specificity signal is combination from both 

PPE and EspG. The work in Damen et al. (279) also highlights the previously known 

interconnected nature of ESX substrates and provides a solid foundation for the continued 

work to understand the specificity mechanisms of ESX substrates, including the PE-PPE 

heterodimers.  

Understanding the determinants for system specificity can improve vaccine 

developments for TB. As outlined in chapter 1.1., M. bovis BCG is used as a vaccine strain 

in areas where TB is endemic to protect children from severe forms of Mtb infections (refs 

11-13). Unfortunately, vaccination with M. bovis BCG does not protect against the major 

pulmonary form of TB (14). Recently work has been done to improve vaccination 

strategies. One such new strategy involves a heterologous boost of M. bovis BCG with a 

strain of Mtb that is deficient in secretion via ESX-5 (280). The heterologous boost strategy 
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provided better protection against clinically relevant Mtb strains in both murine and guinea 

pig models when compared to only M. bovis BCG vaccination (280). The mechanism for 

this enhanced protection was not determined, and the creation of the ESX-5 deficiency was 

accomplished by deletion of the entire ESX-5 genetic locus (280). The determination of 

functions for individual pe and ppe genes, in addition to the knowledge of the molecular 

mechanism of system specificity could allow for the development of enhanced booster 

vaccination strains that have specially selected secretion profiles. 

While it is well established that PE and PPE proteins are secreted through specific 

ESX systems, it is still unclear what drives the system specificity of these substrates. 

Numerous potential locations still exist for the system specificity signal and more work is 

needed. 

5.4. Function of the conserved PE and PPE domains. 

The conserved PE and PPE domains are well established to be the drivers of 

localization to the cell envelope (184-186,188,281,282). This makes sense for the PE and 

PPE proteins with expanded C-terminal domains, with their localization linked to their 

function, however there are PE and PPE proteins that contain just the conserved N-terminal 

domains. What is the function of these proteins? There are about 18 pe and 7 ppe genes 

that code for only the conserved N-terminals, and while some are likely pseudogenes, many 

are likely expressed. The best biochemically studied PE-PPE pair, PE25-PPE41, both only 

contain the conserved N-terminal domains. What function are these proteins serving? An 

interesting possibility is a role in pore formation.  

The related EspB may provide insight into pore formation. EspB contains an N-

terminal domain that is a fused PE domain and PPE domain in a single chain and shares a 

similar structure to PE25-PPE41, and forms a hexameric donut ring structure in solution 

with 45 Å in diameter pore (145,146,174). EspB also functions in membrane lysis, and its 

N-terminal domain’s structure alludes to functions as a porin or transporter (166,174). 

There are some inconsistences between the structure of the N-terminal domain of EspB 

and known porins and transporters, such as pore diameter and its negative surface charge 

(174). Yet, EspB still provides an interesting comparison to PE and PPE proteins, and 

perhaps some PE-PPE heterodimers could form similar ring structures, although no ring 

structures have been observed as of yet. 
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Recently, the EsxEF heterodimer was characterized as forming a heptameric 

oligomer structure (283). The EsxEF oligomer also contained a central pore with a diameter 

of 25 Å and this oligomer can embed itself in a membrane to form a membrane-spanning 

pore (283). EsxE and EsxF are both WXG-100 proteins and likely have similar structure 

as the previously characterized Esx heterodimers EsxAB, EsxGH, and EsxOP (284,285). 

Given the established role of EsxAB in cytolysis and potential for pore formation of EsxA 

(16,166,286) and the ring forming EspB oligomers (145,146,174), perhaps forming 

oligomeric rings is commonplace for ESX substrates. 

There is potential for PE-PPE heterodimers consisting of just the conserved N-

terminal domains to form similar oligomeric ring structures. However, to date none have 

been observed, although this could be because PE-PPE heterodimers are incredibly 

difficult to work with without their EspG chaperones, and EspG would likely be preventing 

any kind of PE-PPE oligomeric structure. An interesting function for these PE-PPE 

oligomeric structures is the formation of the mycomembrane transport channel for ESX 

substrates. How ESX substrates cross the mycomembrane remains unsolved. However, this 

is unlikely, as ESX-4 lacks any PE-PPE substrates encoded within its genetic locus and the 

only known ESX-3 PE-PPE substrates have functional roles in iron homeostasis 

(155,226,273). What function other than driving localization to the cell envelope, if any, 

remains to be uncovered for the conserved PE and PPE domains. 

5.5. Concluding remarks. 

The work in this dissertation adds crucial information to the understanding of EspG 

recognition of PPE proteins. Chapter 3 provided a new structure of a mutated PE25-PPE41 

heterodimer in complex with EspG5. This mutated heterodimer contained a novel hh motif, 

LL, and the results in Chapter 3 expanded the knowledge of EspG5 interactions with its 

cognate PPE and provided evidence that EspG5 has structural plasticity to bind its 

numerous cognate PPE proteins. Chapter 4 presented the first heterotrimer from the ESX-

3 system, PE5-PPE4-EspG3. The results in Chapter 4 highlighted the unique binding mode 

between PPE4-EspG3 and lead to the hypothesize that shape complementarity drives PPE 

recognition by cognate EspG. Chapter 4 also highlighted a dynamic domain located within 

EspG3 that moves upon binding of PE-PPE heterodimers, which could allow for flexibility 

in bind a variety of PPE proteins and may also be critical for release of PE-PPE 
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heterodimers at the core secretion machinery. In total the work in this dissertation provides 

further understanding of the PE-PPE heterodimer interaction with the EspG chaperone.  

There is still much work to be done on understanding the functions of individual 

PE and PPE proteins, and a more complete picture of their interactions with their chaperone 

EspG will aid in their studying. The importance of PE and PPE proteins in the virulence 

pathways of Mtb highlight the need for better understanding of these uniquely 

mycobacterial protein families. In the future this knowledge can be leveraged to develop 

better therapeutics. Perhaps by blocking PE-PPE heterodimer interactions in ESX-3 and 

thereby disrupting Mtb iron homeostasis. Additionally, being able to direct specific PE-

PPE heterodimers to different ESX systems at will may be able to improve vaccine 

development by preventing secretion through damaging ESX systems, but still allowing 

specific immunogenic PE and PPE proteins to be secreted.  
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