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ABSTRACT OF THESIS 

AUTOMATIC TRANSCRIPTION OF NORTHERN PRINMI ORAL ART: 
APPROACHES AND CHALLENGES TO AUTOMATIC SPEECH RECOGNITION 

FOR LANGUAGE DOCUMENTATION 

 

One significant issue facing language documentation efforts is the transcription 

bottleneck: each documented recording must be transcribed and annotated, and these tasks 

are extremely labor intensive (Ćavar et al., 2016). Researchers have sought to accelerate 

these tasks with partial automation via forced alignment, natural language processing, and 

automatic speech recognition (ASR) (Neubig et al., 2020). Neural network—especially 

transformer-based—approaches have enabled large advances in ASR over the last decade. 

Models like XLSR-53 promise improved performance on under-resourced languages by 

leveraging massive data sets from many different languages (Conneau et al., 2020). This 

project extends these efforts to a novel context, applying XLSR-53 to Northern Prinmi, a 

Tibeto-Burman Qiangic language spoken in Southwest China (Daudey & Gerong, 2020).  

Specifically, this thesis aims to answer two questions. First, is the XLSR-53 ASR 

model useful for first-pass transcription of oral art recordings from Northern Prinmi, an 

under-resourced tonal language? Second, does preprocessing target transcripts to combine 

grapheme clusters—multi-character representations of lexical tones and characters with 

modifying diacritics—into more phonologically salient units improve the model's 

predictions? Results indicate that—with substantial adaptations—XLSR-53 will be useful 

for this task, and that preprocessing to combine grapheme clusters does improve model 

performance.  
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CHAPTER 1. INTRODUCTION 

One significant issue facing language documentation efforts is the transcription 

bottleneck: each recording that is collected must be transcribed and annotated, and these 

tasks are extremely labor intensive (Ćavar et al., 2016). Researchers have sought to 

accelerate these tasks with partial automation via forced alignment, natural language 

processing, and automatic speech recognition (ASR) (Neubig et al., 2020). 

Neural network—especially transformer-based—approaches have enabled large 

advances in ASR over the last decade. Models like XLSR-53 promise improved 

performance on under-resourced languages by leveraging massive data sets from many 

different languages (Conneau et al., 2020). Prior research has successfully applied the 

XLSR-53 model to the documentation of several low-resource languages (Coto-Solano et 

al., 2022; Guillaume et al., 2022; Nowakowski et al., 2023). This project extends these 

efforts to a novel context, applying XLSR-53 to Northern Prinmi, a Tibeto-Burman 

Qiangic language spoken in Southwest China (Daudey & Gerong, 2020).  

Specifically, this project aims to answer two questions.  

First, is the XLSR-53 ASR model useful for first-pass transcription of 

documentation data from Northern Prinmi, an under-resourced tonal language? In 

particular, can it be successfully applied to recordings of oral art, like rituals and songs? 

Second, does preprocessing target transcripts to combine grapheme clusters—

multi-character representations of lexical tones and characters with modifying diacritics—

into more phonologically salient units improve the model's predictions? 

In Chapter 2, I provide an overview of this project’s background, exploring the 

literature on automatic speech recognition and its application to language documentation 



2 

 

as well as Northern Prinmi. I then describe the particular documentation context, discussing 

its notable characteristics and the challenges these features pose for automatic speech 

recognition. 

In Chapter 3, I describe my methodology, explaining how I chose XLSR-53, 

preprocessed the documentation collection for use with XLSR-53, and fine-tuned four 

XLSR-53 models on the preprocessed data. 

In Chapter 4, I report my results, providing both Word and Character Error Rates 

for each model, as well as rates of character substitution by each model, while in Chapter 

5, I discuss these results in comparison to both my expectations and previous work. I 

additionally provide an overview of possible future directions for my own work, as well as 

implications for the field more broadly. 

Ultimately, I find that XLSR-53 may be useful for first-pass transcription of 

Northern Prinmi oral art, although my models are not very accurate. The error rates of even 

my best model are quite high, especially in comparison with other similar projects’ models. 

However, compared with having no predictions at all, these predictions could still serve as 

a baseline for correction. 

I also find that preprocessing transcription targets to more closely approximate 

phonologically salient units does have a positive impact on model performance. Combining 

tone character pairs into single predictive labels produces a substantial improvement in 

character error rates, whereas combining character diacritic clusters into single predictive 

labels has a slightly less substantial impact. 
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CHAPTER 2. BACKGROUND 

2.1 Literature Review 

2.1.1 Language Documentation 

Language documentation may be broadly described as producing “a lasting, 

multipurpose record of a language” (Himmelmann, 2006). A key element of a linguistic 

record being multipurpose is its possession of annotations, most crucially transcriptions 

and translations, as these allow both linguists and non-linguists to understand the content 

of recordings and navigate collections. 

One significant issue facing language documentation is therefore what is referred 

to as the transcription bottleneck: each recording that is collected must be transcribed and 

annotated, and these tasks are extremely labor intensive, estimated to take anywhere 

between 30–120 hours of work per hour of speech data (Adams et al., 2017; Ćavar et al., 

2016; Seifart et al., 2018; Shi et al., 2021). Closing the gap between quantity of recorded 

speech and quantity of annotated speech will greatly increase the utility of language 

documentation corpora for both the documented language’s communities and linguistic 

researchers (Seifart et al., 2018). 

Researchers have sought to overcome this challenge by accelerating transcription 

and annotation through a variety of computational approaches, including forced alignment, 

natural language processing, and ASR (Neubig et al., 2020). Forced alignment and natural 

language processing, however, are both reliant on ASR for base transcriptions. 

In the process of adapting speech and language technologies for language 

documentation, it is crucial that the technologies serve the purposes of documentation 

rather than vice versa. Bird (2020) cautions against using language technology for 
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documentation as an opportunity for data capture, while also calling for researchers to put 

more focus on community priorities, like intra-community preservation and transmission 

of teachings on country and other traditional knowledge. With this project, I hope to test 

one way a current speech and language technology, ASR, may be brought to bear for this 

sort of knowledge preservation, specifically examining and trying to optimize ASR 

performance on recordings of oral art. 

2.1.2 Automatic Speech Recognition 

Many ASR models have been based on hidden Markov models (HMMs). HMM-

based systems tend to have three main components: an acoustic model, a 

lexical/pronunciation model, and a text-based language model (Besacier et al., 2014). The 

lexical/pronunciation model is essentially a pronunciation dictionary, the acoustic model 

is trained on speech from many different speakers so that it can discriminate between 

speech units across speakers and contexts, and the language model is trained on large 

amounts of text so that the overarching architecture’s predictions will be constrained by 

the language’s typical word order and collocations. This means that using HMM-based 

ASR systems for documentation or with endangered and low-resource languages poses a 

unique challenge, as these contexts often lack the required corpora and lexical resources 

(Adams et al., 2017). 

Despite these challenges, at least one HMM-based ASR model, Kaldi (Povey et al., 

2011) has been specifically adapted to the task of language documentation as part of the 

Endangered Language Pipeline and Inference System (Elpis) (Foley et al., 2018). 

Presenting an alternative to HMMs, neural network approaches have proliferated 

in ASR over the last decade, coming to dominate the field (Wang et al., 2019). Beginning 
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in 2011, neural networks were adopted into hybrid HMM-deep neural network (DNN) 

models, using DNNs to perform acoustic modeling in place of Gaussian mixed models 

(GMMs). Since 2014, many non-HMM ASR approaches have been proposed; the methods 

and models most relevant to under-resourced languages include the DNN-based model 

Deep Speech (Hannun et al., 2014), the long short-term memory (LSTM) model 

Persephone (Adams et al., 2018), the attention-based encoder-decoder model ESPnet 

(Watanabe et al., 2018), and the transformer-based model XLSR-53 (Conneau et al., 2020). 

In addition to being distinguished from prior HMM-based ASR models by their use 

of neural networks, these models are also distinct in being end-to-end speech recognition 

systems: they directly map speech input to text output without (generally) relying on lexical 

and syntactic-semantic models. For example, while Deep Speech uses a language model 

for post-processing, Persephone, ESPnet, and XLSR make their predictions solely on the 

bases of labeled audio data in the target language (and, in the case of XLSR, massive 

amounts of unlabeled multilingual audio data).  

As a result, while they may require more training data overall, end-to-end neural 

network ASR models require substantially fewer linguistic resources in the target language 

than HMM-based ASR models (Wang et al., 2019). This makes them a promising 

candidate for use in low-resource contexts like language documentation, and both 

researchers and practitioners have begun to test them in a wide range of contexts (Adams 

et al., 2021; Boulianne, 2022; Coto-Solano et al., 2022; Guillaume, Wisniewski, Macaire, 

et al., 2022; Jimerson et al., 2018; Nowakowski et al., 2023; Shi et al., 2021; Zahrer et al., 

2020).  
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One of the most used end-to-end ASR models is XLSR, a particular instance of 

Meta’s wav2vec 2.0 system (Conneau et al., 2020). wav2vec 2.0 is a transformer-based 

unsupervised-learning model which is trained on unlabeled speech to identify shared 

speech units across audio recordings (Baevski et al., 2020). wav2vec 2.0 models can be 

used for automatic transcription through fine-tuning, retraining an already trained model 

on novel data for a new task. Specifically, wav2vec 2.0 is designed to be fine-tuned by 

adding a linear character prediction layer trained on transcribed speech data with a 

Connectionist Temporal Classification (CTC) loss function (Graves et al., 2006) on top of 

the existing model in order to perform automatic transcription.  

XLSR-53 is a particular cross-lingual wav2vec 2.0 model trained on 56,000 hours 

of speech from 53 languages (Conneau et al., 2020). Training on cross-lingual speech data 

allows the model to perform significantly better on previously unseen languages than 

monolingual wav2vec 2.0 models. As a result of these findings, the authors argue their 

approach holds significant promise for work on low-resource languages; while they do not 

provide an explicit definition of low-resource, they provide the examples of two languages 

which possess 3 and 5 hours of labeled speech data. Prior research has successfully applied 

the XLSR model to the documentation of several languages with relatively small corpora 

of recorded speech, including Cook Islands Māori, Japhug, and Ainu (Coto-Solano et al., 

2022; Guillaume, Wisniewski, Macaire, et al., 2022; Nowakowski et al., 2023). 

2.1.3 Challenges for ASR for Language Documentation 

As implied in the above sections, aside from the definitional lack of data, there are 

a multitude of other challenges involved in applying ASR in the context of language 

documentation.  
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One key challenge is overcoming asymmetries between the properties of linguistic 

records collected through language documentation fieldwork and the requirements of 

existing ASR models (Wisniewski et al., 2020). Due to the differing goals and the unique 

circumstances of each documentation project, documentation recordings are characterized 

by relatively few speakers (Adams et al., 2018; Boulianne, 2022; Foley et al., 2018), 

idiosyncratic annotation and formatting schemes (Wisniewski et al., 2020), and widely 

varying audio quality produced by diverse recording settings and strategies (Amith et al., 

2021; Ćavar et al., 2016). In contrast, commonvoice and Multilingual Librispeech, two of 

the major multilingual speech datasets used for end-to-end ASR training, both consist 

entirely of single speaker read speech transcribed with consistent annotation schemes 

(Ardila et al., 2020; Pratap et al., 2020).  

A solution to this particular problem is adapting language documentation practices 

to facilitate the collection of linguistic records more amicable to computational methods 

(Amith et al., 2021; Seifart et al., 2018; Zahrer et al., 2020). However, as noted by 

Wisniewski et al. (2020, p. 307), given the extremely limited resources available to 

language documentation researchers and consultants, “there is a potential conflict between 

the traditional perspective of creating a reasonably thorough and balanced record for 

posterity… and on the other hand, the requirement to put together data sets that lend 

themselves easily to Natural Language Processing.” Moreover, changing future practices 

does not help with applying ASR to documentation materials already produced. 

Another—potentially parallel—solution is to improve methods for preprocessing 

documentation records, applying small transformations to bridge their differences from 

ideal ASR data. Several researchers have investigated the effects of specific preprocessing 
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choices on end-to-end ASR of language documentation recordings (Adams et al., 2017, 

2018; Guillaume, Wisniewski, Macaire, et al., 2022; Wisniewski et al., 2020). 

Working with the LSTM model Persephone, Adams et al. (2017, 2018) assessed if 

including tones as part of the input transcription and jointly predicting phonemes and tones 

or separately predicting tones from phonemes results in more accurate transcriptions of 

Chatino and Yongning Na. They segmented all multi-character phonemes and tones as 

single vocabulary items. They found that jointly predicting phonemes and tones (taking 

both as input in the same linear character sequence) had roughly the same accuracy as 

predicting phonemes and tones separately.  

Wisniewski et al. (2020), also working with Persephone, tested a Unicode-based 

“grapheme cluster” segmentation scheme on the same corpus of Yongning Na as Adams 

et al. (2018). They segmented each character with its Unicode modifying characters into a 

prediction label. This means that some IPA diacritics, like “ʰ”, are considered 

independently, while others, like the nasal and syllabic diacritics, are segmented jointly 

with the character they modify; lexical tones, while made up of multiple characters, are 

also segmented together. They found that applying this segmentation method achieved very 

similar (albeit marginally worse) results to Adam et al.’s manually curated phoneme 

segmentation. However, they also note that the Persephone LSTM model requires 

phonemically transparent transcription to be effective, as the system fails to successfully 

transcribe audio from other languages when trained on orthographically transcribed 

recordings. 

Applying XLSR-53 to an audio corpus of the Sino-Tibetan Japhug language, 

Guillaume et al. (2022) followed Wisniewski et al. (2020) in mapping single characters 
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one-to-one to prediction labels. Unlike Wisniewski, they do not mention combining 

Unicode modifiers with their preceding characters. They achieved WER and CER rates 

highly comparable to Wisniewski et al. (2020). 

2.1.4 Northern Prinmi 

Prinmi (also known as Pumi, or Pǔmǐ [普米] in Mandarin) is a Tibeto-Burman 

Qiangic language spoken by roughly 45,000 people in the southwestern Chinese provinces 

of Sichuan and Yunnan (Daudey & Gerong, 2020). Northern Prinmi is the language's 

northern branch, with a speech community along Yunnan's northern border extending into 

south-west Sichuan (Daudey, 2014). The region is not exclusively, or even predominantly, 

settled by the Prinmi; rather, Prinmi reside alongside Tibetan, Nuosu, Naxi, Mosuo, and 

Han people. As a result, many speakers of Prinmi also speak other languages, and Northern 

Prinmi has been particularly influenced by Tibetan and the Southwestern Mandarin 

Chinese. 

There is no widely adopted orthography for writing Prinmi, and it is not widely 

taught, although the Tibetan script is used to teach it in one school in Yunnan (Daudey & 

Gerong, 2018). Prinmi has extensive internal variation, with several different dialect 

classification schemes. Ding (2014) proposes three possible dialect categories, Western, 

Central, and Northern. Grammars have been produced for varieties of both the Central 

(Ding, 2014) and Northern (Daudey, 2014) dialects, but not for any dialect group as a 

whole, as the dialects are not standardized. Ding notes that his grouping of varieties under 

the term “Northern” is tentative, as the region the term refers to contains more than half of 

all Prinmi speakers and is not extensively documented.  
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 Figure 2.1 Map of the Pǔmǐ language area (Daudey, 2014, p. 4) 

 

Due to this lack of a generalized grammar description, my phonological description 

of Northern Prinmi is based on the grammar of Wadu Pumi published by Henriëtte Daudey 

in 2014. Wadu Pumi is spoken in Middle Wadu Village of the Wenquan township of 
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Yunnan. Therefore, it will not reflect every variety of Northern Prinmi perfectly, but 

instead will provide a general sense for the type of features common to Northern Prinmi 

varieties. I am primarily interested in characterizing the range of phonetic possibilities that 

are produced by speakers of Wadu Pumi to identify possible phonetic classes the automatic 

speech recognition model will need to recognize and correctly classify to perform effective 

automatic transcription of Northern Prinmi data from a variety of locations. 

Wadu Pumi's consonant system distinguishes between seven places of 

articulation—bilabial, alveolar, retroflex, alveopalatal, velar, uvular, and what Daudey 

refers to as cavity—and six manners of articulation—stops, affricates, fricatives, nasals, 

liquids, and approximates—and possesses a total of 42 phonemic consonants (2014). 

 

 Figure 2.2 Wǎdū Pǔmǐ consonant phonemes (Daudey, 2014, p. 19) 
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The place of articulation label "cavity" is used by Daudey for two fricatives that 

may be freely realized at the velum, uvula, or glottis. Wadu Pumi stops and affricates 

contrast by voicing and aspiration, while fricatives, nasals, and liquids contrast by voicing. 

Palatalization is phonetically realized with bilabial and alveolar stops, nasals, and liquids, 

alveopalatal consonants, cavity fricatives, and velar stops and nasals in specific contexts. 

Wadu Pumi has seven oral vowels, /i/, /ʉ/, /u/, /ə/, /æ/, /ɐ/, and /ɑ/; four nasal 

vowels, /ĩ/, /ẽ/, /õ/, and /æ̃/; and three diphthongs, /ɛj/, /ej/, and /ɑw/. 

 

Figure 2.3 Composite chart of vowels (Daudey, 2014, p. 47) 

 

/ɑw/ and /ej/ developed from /o/ and /e/, respectively, and are still realized /o/ and 

/e/ in specific contexts and other varieties of Northern Prinmi. Daudey also notes that her 

main consultant considers the phoneme Daudey labels as /ɐ/ to be farther back, and 

therefore transcribes it as /ʌ/. Due to phonological processes, Daudey still considers the 

underlying form to be /ɐ/. 

In terms of syllable structure, Wadu Pumi is characterized by the pattern 

(C_1)(G)V(G) (Daudey, 2014). Optional C_1 can be any consonant, the first G is an 

optional medial /w/, V is obligatory and can be any vowel, and the second G is an optional 
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/w/ or /j/ offglide present in diphthongs. Daudey considers palatalization to be an optional 

feature of the initial consonant and tone to be an optional feature of the vowel. 

Daudey describes Wadu Pumi as possessing a complex tonal system with tone 

spreading, tone sandhi, and several phrasal intonation processes (2014). However, it only 

possesses four underlying lexical tones: a high-level tone, a high-falling tone, a low-level 

tone, and a low-rising tone. Moreover, an extra high high-level tone is realized 

intonationally when speakers intend to intensify a specific word. As mentioned above, 

syllables may also be toneless. 

 

2.2 Documentation Context 

2.2.1 Description of Collection 

This study's data is specifically drawn from the corpus of Northern Prinmi oral art 

collected by Henriëtte Daudey and Gerong Pincuo in 2017 and hosted by the Archive of 

Endangered Languages (ELAR) (2018). The collection, “Documentation of Northern 

Prinmi oral art, with a special focus on ritual speech,” contains over 24 hours of audio and 

video recordings, primarily documenting rituals but also containing songs and folktales. 39 

speakers—12 females and 27 males—were recorded in 12 different locations. Recordings 

were sampled at 48000 HZ. Daudey and Gerong (2018) define ritual speech as “speech 

that is addressed to the supernatural world,” and Northern Prinmi rituals are typically 

delivered in a chant intonation. These rituals are linked with both indigenous Prinmi 

religious practices and Tibetan Buddhism. The other forms of oral art in the collection are 

primarily distinguished by not being addressed to supernatural entities. The vast majority 

of recordings in the collection are either rituals or songs, meaning that most speech in the 
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collection is chanted or sung rather than spoken conversationally. Some recordings also 

include instrumental music, and many have ambient noise. Daudey and Gerong are 

analyzing this collection to characterize Northern Prinmi ritual speech, exploring its genre 

conventions and grammatical structures like exhaustive constructions (2020). 

Of the 24 hours recorded, 3 hours of audio were annotated with time-aligned IPA 

transcriptions. Gerong transcribed the recordings and provided Chinese translations, while 

Daudey glossed them, provided English translations, and time aligned them using ELAN 

(2018). Daudey and Gerong state that they transcribed recordings from the Wenquan area 

phonemically and recordings from other regions phonetically, which I interpret 

respectively as “broad” and “narrow” transcription. 

For the purposes of this study, I filtered the collection by transcription status and 

created a list of all recordings with time-aligned transcriptions. This resulted in a much 

smaller corpus containing 34 recordings of 15 speakers from 8 locations, for a total of 187 

minutes of audio. These locations include the Jiulong, Ninglang, Shuiluo, and Yanyuan 

townships of Sichuan, and the Jiaze, Mudiqing, Tuodian, and Wenquan townships of 

Yunnan. 

From ELAR's web interface, I downloaded the ELAN file for each transcribed 

recording. As only MP3 versions of the audio could be downloaded through the ELAR 

web interface, I requested and was provided with uncompressed WAV files of each 

transcribed recording. Obtaining WAV files was necessary for proper time-alignment 

between the audio and ELAN transcription tiers and provided the added benefit of higher 

audio quality. 
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Recordings range in length from 1.5 minutes to almost 15 minutes. Most recordings 

have one to three speakers: the participant performing the ritual or song—who typically 

speaks continuously with little interruption for the majority of the recording time—and one 

or both of the two researchers. Only one recording is described as a performance of two 

individuals and includes one participant chanting and another participant singing. Most 

speech in the corpus is non-overlapping, as very little of the audio contains conversations.  

Each ELAN transcription file—in the EAF file format—includes several 

transcription tiers for each speaker. These vary across recordings, but all recordings include 

Northern Prinmi phrasal transcriptions, English phrasal translations, and Chinese phrasal 

translations. Some also include word-level and morpheme-level glosses in Northern 

Prinmi, English, and Chinese. 

2.2.2 Survey of Phones and Orthography 

As this corpus represents multiple varieties of Northern Prinmi—rather than solely 

Wadu Pumi—I conducted additional analysis of the transcriptions to identify which classes 

of sounds were actually realized during data collection. This analysis was conducted using 

regex functions in Python (Van Rossum & Drake, 2009), and identified 44 consonants, five 

consonant clusters, 15 vowels, four diphthongs, and five tones (although one of these is 

likely transcription error). 

This sound inventory may differ from that identified by Daudey's 2014 grammar of 

Wadu Pumi for several reasons. First, the collection includes varieties spoken in other 

locations and regions, and so may include different phonemes altogether. Second, 

regardless of the phonologies involved, as mentioned above recordings made outside of 

Wenquan Township were transcribed narrowly rather than broadly, and so even if the 
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phonemes are the same these transcriptions may also include allophones. Third, even with 

their broad transcriptions of Wenquan Township recordings, the researchers applied a 

different orthographic scheme from Daudey's 2014 grammar when transcribing data for 

the oral art collection. I provide a table below of the likely correspondences between the 

corpus and grammar’s orthographic representations of Northern Prinmi phones. 

Table 2.1 Orthographic Representations of Northern Prinmi Phone Inventory 

Consonants Bilabial Labiodental Alveolar Retroflex Alveopalatal Velar Uvular Cavity 

Stops p  b  t  d ʈ  ɖ  k  g q  

 pʰ  tʰ ʈʰ  kʰ qʰ  

Affricates   ts  dz ʈʂ  ɖʐ tɕ  dʑ    

   tsʰ ʈʂʰ tɕʰ    

Fricatives  f s  z ʂ  ʐ ɕ  ʑ x  (h) 

   sʰ ʂʰ ɕʰ   ɦ 

Lateral fricative   ɬ      

Nasals m̥  m   n̥  n   ŋ   

Liquids   r̥ (ɹ̥)  r (ɹ)  l      

   (l̥)      

Approximates w         j     

         

Vowels   Front Central Back  

    -round round -round round -round round  

High Oral i   ɨ (ʉ) ɯ u  

 Nasal ĩ  ɨ ̃     

Mid Oral   ə  ʌ (ɐ) o  

 Nasal (ẽ)  ə̃   õ  

Low Oral æ    ɑ   

  Nasal æ̃       ɑ̃    

         

Diphthongs   Front Central Back  

    ei (ej) ɛi (ɛj)   əu   ɑu (aw)  

         

Tones Description of tone 

Relative 

Pitch      

 High level 55 (44)      

 High falling 51 (54)      

 Low level 22      

  Low rising 35 (24)      

         

         

Key           
Shared representation character 

    
Shared but different 2018 character (2014 character) 

    
Only in Daudey & Gerong (2018)  2018 character 

    
Only in Daudey (2014) (2014 character) 
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CHAPTER 3. METHODS 

3.1 Model Selection 

Only a small corpus of Northern Prinmi written texts is available. In total, ten 

recordings totaling 42 minutes are transcribed in a Pangloss corpus contributed to by 

Daudey (2014) and Guillaume Jacques (2011), three texts are included in the appendix of 

Daudey’s (2014) grammar, and 36 recordings are transcribed in the oral art collection 

(Daudey & Gerong, 2018). Of these, the transcribed recordings provide the most textual 

data, and they include around 28,000 words and 3,500 word types. This means that any 

Northern Prinmi language model produced from currently collected texts would be quite 

small. 

While it is hard to pinpoint exactly what size of written corpus is necessary for a 

useful language model for ASR, one study (Pellegrini & Lamel, 2008) examining the 

relative impact of audio versus textual data for HMM ASR models used a 10,000-word 

corpus with 7,000 types as its smallest textual data testing condition. Although this paper 

was looking at Amharic, an agglutinative language, this implies 3,500 types is a very small 

lexicon for HMM ASR.  

Another study working on ASR in a documentation context suggests that “a few 

tens of thousands of words… [is] an insufficient amount to train a language model 

according to standard workflows” (Guillaume, Wisniewski, Macaire, et al., 2022, p. 172). 

While some of the same authors from that study went on to successfully incorporate a small 

language model to improve the performance of XLSR-53 (Guillaume, Wisniewski, Galliot, 

et al., 2022), it is unclear how useful such a small lexicon and language model would be 

for HMM ASR.  
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Due to this lack of audio and textual data, I decided to use an end-to-end 

transcription model which would bypass the need for a lexicon and text corpus. I selected 

XLSR-53 for use with the Northern Prinmi corpus due to its successful applications in 

settings with very little audio data (Boulianne, 2022) and on documentation tasks (Coto-

Solano et al., 2022; Guillaume, Wisniewski, Galliot, et al., 2022; Guillaume, Wisniewski, 

Macaire, et al., 2022; Nowakowski et al., 2023). 

 

3.2 Data Preprocessing 

3.2.1 Partitioning the Dataset 

As in machine learning more generally, it is best practice to use a training set and 

testing set with XLSR-53; the model is trained (or fine-tuned) on the larger training set and 

then tested on the smaller testing set to confirm the patterns it learned during training 

actually generalize to other data. 

I decided on a 90% training, 10% testing split, selecting 8 out of the 34 recordings 

to serve as the testing data, resulting in ~167 minutes of training data and ~20 minutes of 

testing data. The eight testing recordings were heuristically selected to maximize variance 

within each dataset while ensuring that both datasets were still broadly reflective of one 

another. 

In order to maximize testing set diversity, testing set recordings were in part 

selected by length so that there could be more total recordings—with more distinct speakers 

and topics—included in the testing dataset. The average testing recording is ~2.5 minutes, 

while the average training recording is ~6.4 minutes. Moreover, each recording in the 

testing set has a different primary speaker and topic. I did not segregate speakers entirely 
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by set—some speakers are present in both sets—because Liu et al. (2022) suggest that 

speaker segregation does not improve ASR performance on under-resourced languages. 

In terms of other characteristics, such as genre, region, and postal address, I sought 

to balance the properties of the two sets. Song recordings make up 20% of the training set 

minutes and ~36% of the testing set minutes. Recordings from Sichuan make up ~16% of 

the training data minutes and ~18% of the testing data minutes. In terms of more granular 

location information, seven of eight recording location postal addresses are included in the 

training set, while four of eight are included in the testing set, with all but one of the testing 

set locations also present in the training set. 

Table 3.1 Summary of Data Partition Properties 

 Training Set Testing Set 

% of Recordings 90% 10% 

# of Recordings 26 8 

Total Minutes 167 20 

Average Minutes 6.4 2.5 

Song Recordings % (of Total Min.)  20% 36% 

Sichuan Recordings % (of Total Min.)  16% 18% 

# of Postal Addresses 7 4 

 

3.2.2 Phrasal Segmentation of the Data 

After partitioning the data through the process described above, I used Python (Van 

Rossum & Drake, 2009) to preprocess the audio and text data and load and fine-tune the 

XLSR-53 ASR model. Preprocessing consisted of two steps: phrasal segmentation of the 

audio and transcription data, described in this subsection, and orthographic preprocessing 

of the transcription data, described in the subsection below. 

The XLSR-53 model is built to process short audio segments of roughly one phrase 

at a time, using a short audio input to generate a transcription text prediction. Therefore, in 
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order to apply the XLSR-53 model to the corpus, each audio and transcription file required 

segmentation by phrase. 

As the corpus is almost entirely composed of recorded rituals and songs primarily 

sung or chanted by one speaker, I decided to segment the audio and transcription files by 

the time-alignments of the primary speaker’s Northern Prinmi phrase transcriptions. I 

wrote a Python script to accomplish this task using the pympi and librosa python libraries 

(Lubbers & Torreira, 2013; McFee et al., 2022). I designed the script to iterate through the 

data directory for the training and testing datasets separately, using librosa to load each 

WAV file and pympi to load each ELAN EAF transcription file. It identified the primary 

speaker’s transcription tier by iterating through each recording’s Northern Prinmi phrasal 

tiers, returning the tier with the highest number of phrasal annotations.  

Using this primary tier’s phrases and time stamps, it created a list of phrasal 

segments for each recording, each entry in the list possessing its file of origin, segment 

number, start time, end time, Northern Prinmi transcript, and corresponding segment of 

audio. The script concatenated these segment lists together into one larger list for the 

training and testing sets separately, converted those lists into Pandas dataframes 

(McKinney, 2010; The pandas development team, 2022), and then converted those 

dataframes into two HuggingFace datasets for further preprocessing and use with the 

XLSR-53 model. 

3.2.3 Preprocessing the Transcription Data 

In this section, I describe the methods by which I preprocessed the transcription 

data to both increase model efficacy and answer my second research question on how 
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different approaches to label segmentation preprocessing perform with XLSR-53 in the 

context of Northern Prinmi, a low-resource tonal language.  

All transcription data was first preprocessed using a Python function adapted from 

von Platen (2021) to remove special characters, including punctuation. All punctuation 

characters were removed aside from the hyphen (“-”) character, which was used in the data 

to mark morpheme boundaries. I chose to leave the hyphen in the training data for all 

models, as previous work has shown the XLSR-53 model can perform well even while 

predicting punctuation (Guillaume, Wisniewski, Macaire, et al., 2022); given the hyphen’s 

morphological orthographic function, the trade-off in accuracy versus aid to word 

identification seemed worthwhile. 

I adapted this Python function to also correct several tonal transcription errors that 

existed in the transcription data. The tone superscript sequence “⁵⁵⁵” occurred in some 

transcriptions, and these sequences were converted to “⁵⁵,” the closest licit tone sequence. 

Individual tone superscripts also occurred in some transcriptions. Unlike the “⁵⁵⁵” 

sequences, these could not be predictably corrected, and were instead removed. These 

corrections were made to avoid training any of the models to predict single or triple tone 

superscript sequences. 

Transcription is a theoretically fraught process, deeply interconnected with 

phonetic and phonological arguments. Given that the XLSR-53 model is fine-tuned for 

ASR by learning associations between speech representations and character sequences 

which act as labels, the transcription conventions used to produce the model’s output labels 

may have a sizable effect on the model’s efficacy. In the HuggingFace tutorial for 

finetuning XLSR-53 (2021), von Platen notes that it is typical to use letters as labels for 



22 

 

CTC loss; i.e., using a one-for-one correspondence between unique characters in the 

transcription data and labels the model will use for prediction. The transcription data in the 

Northern Prinmi Oral Art corpus is written with one set of orthographic conventions, but 

it is possible to preprocess the transcriptions into orthographically distinct target 

transcription sets to test how different label segmentation schemes impact automatic 

transcription accuracy. 

I conducted this further preprocessing of the transcription data to explore how 

differing transcriptions—and therefore segmentations—of lexical tones and multi-

character phonemes impacted model performance. As discussed in the literature review 

above, differing strategies for segmenting lexical tone and grapheme clusters into 

predictive labels have been explored by several previous researchers (Adams et al., 2017, 

2018; Guillaume, Wisniewski, Macaire, et al., 2022; Wisniewski et al., 2020).  

I wrote two Python functions to perform this preprocessing. One function combines 

each pair of tone characters—two superscript numbers—into a one-character placeholder 

intended to represent a lexical tone contour. The other combines a character and all of its 

modifying diacritics into a single character placeholder intended to represent an individual 

phone; notably, this function does not combine affricates. Both functions relied on 

manually collected lists of the character sequences to combine, identified using regex 

searches of tone superscripts and diacritic characters respectively.  

I applied these two functions in four different ways to the transcription data to allow 

for the fine-tuning of four XLSR-53 models with different transcription target labels. The 

first function was applied to produce a solely tone-character-combined target transcription 

(hereafter referred to as tones-combined) set, echoing the approach of Wisniewski et al. 
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(2020) in which each Unicode character that is not a modifier receives its own label. I 

applied the second function to produce a solely character-diacritics-combined target 

(hereafter referred to as cluster-combined) set, without combining tone superscripts. Both 

functions were applied to produce a target transcription set (hereafter referred to as the 

both-combined set) in which both tone superscripts and character-diacritic clusters were 

combined, following the approach of Adams et al. (2017, 2018) in segmenting by phoneme 

and considering multi-character renderings of lexical tones as single segments. The original 

target transcription set without combinations was also preserved to be used as a control. 

 

Figure 3.1 Example Output and Segmentation by Preprocessing Method 

 

3.3 Model Fine-Tuning 

I fine-tuned four separate XLSR-53 models on the target datasets generated via the 

preprocessing functions described in the previous function. Fine-tuning was conducted on 

several nodes of the Lipscomb Compute Cluster equipped with Nvidia V100 GPUs, 

provided by the University of Kentucky Center for Computational Sciences and 
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Information Technology Services Research Computing. XLSR-53 was accessed and fine-

tuned through the HuggingFace Transformers Python library (Wolf et al., 2020). 

 

Figure 3.2 XLSR-53 Fine-Tuning Schematic 

 

I adapted the Python script used to load and fine-tune the models from 

HuggingFace’s XLSR-53 fine-tuning tutorial by Patrick von Platen (2021). I decided to 

not change the training parameters; von Platen describes setting them heuristically without 

detailing a process for adapting them to a different fine-tuning training set.  

Table 3.2 Fine-Tuning Parameters 

Training Parameters Value  CTC Model Parameters Value 

Per device training batch 

size 1  Attention dropout 0.1 

Gradient accumulation 

steps 2  Hidden dropout 0.1 

Epochs 30  

Feature projection 

dropout 0 

Mixed precision TRUE  Mask time probability 0.05 

Learning rate 3E-04  Layerdrop 0.1 

Evaluation steps 100  CTC loss reduction mean 

Warmup steps 500    
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Following von Platen (2021), I used word error rate (WER) as the evaluation metric 

during fine-tuning, calculated periodically to assess how well the process was going. 

WER—and character error rate (CER), which I use in the results section—are described in 

Figures 1 and 2 below. In these formulas, S stands for substitutions, D for deletions, I for 

insertions, and H for hits (correct matches). Both calculations compare a reference sentence 

(or string of characters) with a hypothesis sentence, aligning the two sentences and 

counting the number of insertions, deletions, substitutions, and hits (correct predictions). 

 

Figure 3.3 Word and Character Error Rate Formulas 

 

WER evaluation during training was calculated comparing the specific model’s 

relevant preprocessed target transcriptions as the reference with the model’s direct 

predicted transcriptions as the hypothesis. It was calculated using the HuggingFace dataset 

library WER metric function. 
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CHAPTER 4. RESULTS 

4.1 WER and CER 

After fine-tuning each model, I used the Python library JiWER (Vaessen, 2022) to 

calculate each of the four model’s WER and CER on both the full testing set and the 

province and genre subsections. Prior to evaluation, the predictions of the cluster-

combined, tones-combined, and both-combined models were converted back to the original 

orthographic conventions. This decision had two core motivations. First, reconversion 

allowed for all error rates to be comparable to one another, calculated on the same character 

vocabulary. Second, to be maximally useful, the models should directly output predictions 

with the same orthographic conventions as the original transcriptions; calculating error 

from reconverted predictions evaluates the models’ abilities to do this. Therefore, the WER 

and CER reported here are not calculated in the same fashion as the WER calculated during 

fine-tuning. This process is displayed in Figures 4.1 and 4.2 below. 

 

 

Figure 4.1 XLSR-53 Evaluation Schematic 
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Figure 4.2 Explanation of WER and CER Calculation 

 

The WER and CER results are displayed in Tables 4.1 and 4.2 below, with the 

lowest (best) score on each subsection of the testing data bolded. Red backgrounds indicate 

higher rates, and white backgrounds indicate lower rates. 

Table 4.1 Model WER by Testing Set Subsection 

    Model WER 

Testing Set 

Section 

% of 

Training 

Data No Changes 

Cluster 

Combined 

Tones 

Combined 

Both 

Combined 

Full NA 1.003 0.979 0.997 0.987 

Yunnan 84% 1.002 0.971 0.979 0.963 

Sichuan 16% 1.005 1.009 1.064 1.075 

Rituals 80% 1.010 0.977 0.997 0.990 

Songs 20% 0.972 0.987 0.995 0.976 

 

Table 4.2 Model CER by Testing Set Subsection 

    Model CER 

Testing Set 

Section 

% of 

Training 

Data No Changes 

Cluster 

Combined 

Tones 

Combined 

Both 

Combined 

Full NA 0.479 0.481 0.441 0.433 

Yunnan 84% 0.433 0.435 0.389 0.378 

Sichuan 16% 0.652 0.655 0.636 0.642 

Rituals 80% 0.487 0.482 0.444 0.439 

Songs 20% 0.443 0.476 0.426 0.404 

 

Comparing individual models on the full test set, the model fine-tuned with 

combined character clusters (clusters combined) achieves the lowest WER, while the 

model fine-tuned with both character-diacritic clusters and tone character pairs combined 

 Transcription    

Original tɕʰʷæ⁵⁵nʲæ²²kʰɑu²²   WER and CER for results 

Target (Both Combined) t⑨æ5Ⓡæ2Ⓛɑu2    

Model Prediction (Both Combined) ɕæ5Ⓡæ2Ⓛu2  WER during fine-tuning 

Reconverted Prediction ɕæ⁵⁵nʲæ²² kʰu²²    
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(both combined) achieves the lowest CER, and an almost as low WER. No single model 

performs best on every section of the data. 

Combining tone character pairs is the preprocessing method which most improves 

model CER performance, by roughly 0.03 pts without cluster combination and 0.04 pts 

with cluster combination. The both-combined model has the lowest CER across every 

subset except for recordings from Sichuan (on which it is only slightly worse than the 

tones-combined model). However, it does not have consistently better WERs than the other 

models, and its CER rates are only slightly better than the tones-combined model, which 

implies the majority of its performance gains come from the combination of tones.  

Preprocessing to combine character-diacritic clusters has mixed results. The two 

models which did not combine character clusters (the no changes and tones-combined 

models) performed only slightly worse than the two models which did combine clusters, 

about a 0.01 CER difference and a 0.02 WER difference on the full testing set. The clusters-

combined model actually has a worse CER than the no changes model on the full testing 

set. 

The models perform better on certain subsections of the testing data than others, 

and this patterning is not completely representative of which subsections are most reflected 

in the training data. All models perform substantially better on recordings from Yunnan 

than Sichuan, and all but one perform slightly better on songs than rituals. This second 

result is especially surprising considering that recordings of songs only make up 20% of 

the training data. The one exception to this is the clusters-combined model, which has a 

slightly better (lower by 0.01) WER on rituals than songs.  



29 

 

4.2 Substitution Rates 

In order to analyze what kinds of errors each model was making, I wrote a script 

using the Python library Levenshtein (Bachmann, 2022) to count how many times each 

model incorrectly substituted one character label for another in its prediction (for example, 

predicting the character “t” instead of “d”). These substitutions were calculated comparing 

the no changes transcription data with the reconverted predictions. 

I used these counts to produce substitution tables, aggregating how many times 

each model mistakenly chose a different label instead of the correct target label. I focused 

on substitutions instead of insertions and deletions because, in the case of substitutions, the 

relationship between the target label and the mistakenly predicted label may provide 

evidence for why the error occurred. I display a summary of this data in Table 4.3 below, 

showing each model’s percentage of substitutions for consonant, vowel, diacritic, and tone 

characters. Each percent is equal to the sum of times each target character of the given type 

was mistakenly predicted to be a different character over the number of times the target 

character type occurred in the testing set. 

Table 4.3 Model Substitutions by Character Class 

    Model 

Character 

Class 

# in Testing 

Set 

No 

Changes 

Clusters 

Combined 

Tones 

Combined 

Both 

Combined 

Tones 13,554 21.43% 21.76% 21.03% 20.69% 

Vowels 7,658 30.77% 28.36% 31.84% 29.86% 

Consonants 7,390 31.88% 33.55% 31.76% 31.53% 

Diacritics 1,868 23.98% 30.35% 28.80% 24.63% 

 

The both-combined model makes the fewest tone and consonant substitution errors, 

while the clusters-combined model makes the fewest vowel substitution errors, and the no 

changes model makes the fewest diacritic substitution errors. 
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CHAPTER 5. DISCUSSION 

5.1 Effects of Preprocessing 

These findings suggest that the default XLSR-53 approach of segmenting 

characters one-to-one into prediction labels is not untenable, as there are only modest gains 

for both WER and CER by combining characters with their diacritics. This replicates the 

findings of Wisniewski et al. (2020), whose one-to-one character to label segmentation also 

performed only marginally worse than language-specific phone segmentation. Wisniewski 

et al. interpret this as being a general product of machine learning systems’ abilities to learn 

patterns without exploring any specific mechanisms. 

However, the fact that there are any gains at all from combining character-diacritic 

clusters is somewhat surprising, as it increases the number of labels the ASR model must 

choose between when transcribing a frame of audio. The following table displays each 

model’s number of prediction labels. 

Table 5.1 Prediction Label Vocabulary by Model 

  

  

Prediction Labels 

Model 

No changes Clusters Combined Tones Combined Both Combined 

54 106 59 111 

 

The clusters-combined model has almost twice as many prediction labels as the no 

changes model yet performs at roughly the same level. The tones-combined model has 

slightly more labels than the no changes model yet still performs better, and the both-

combined model outperforms all other models, yet by far has the most prediction labels. 

While this analysis ignores the frequency of each label in the training and testing sets, it 

nonetheless does suggest that cluster-based labels must be providing the model with some 

additional information that is useful for prediction—possibly something related to 



31 

 

language-specific phonotactics—because otherwise adding more labels would cause the 

models to perform more poorly.  

The question therefore becomes if the slight gains provided by language specific 

prediction labels more closely approximating phonemes is worth the additional time 

required to manually produce them. If a member of the documentation project is involved 

in the automatic transcription project, this question is easier to answer, as their familiarity 

with the transcription conventions will make producing language-and-project specific 

prediction labels relatively easy. Even if members of the original documentation project 

are not directly involved, depending on the particular documentation project and how much 

recording data is actually available, these modest gains may be worth the time necessary 

to implement more language specific prediction labels.  

The positive impact of using one prediction label per lexical tone unit was a much 

more expected result, for several reasons. The first is that both Adams et al. (2017, 2018) 

and Wisniewski et al. (2020) combined lexical tone character pairs into single predictive 

labels in their projects and had relatively high degrees of success, which at bare minimum 

made it clear the approach was feasible with other neural network-based ASR models.  

Moreover, at least in the case of Northern Prinmi, there are the same number of licit 

lexical tones as there are individual characters combined to represent those lexical tones. 

Northern Prinmi has low level, low rising, high level, and high falling tones, and these 

tones are written in the corpus respectively as ²², ³⁵, ⁵⁵, and ⁵¹, composed orthographically 

by combinations of ¹, ², ³, and ⁵. Therefore, combining tone character pairs does not 

meaningfully increase the number of prediction labels, but does make it impossible for the 
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model to produce illicit tones; e.g., the no changes model could produce the illicit tone 

digraph sequence “¹⁵,” whereas the tones combined or both-combined model could not.  

This suggests that when applying XLSR-53 to tonal languages, it is worthwhile to 

ensure that each lexical tone receives one prediction label, even if it is typically written 

with multiple characters. One caveat is that Northern Prinmi has relatively few lexical 

tones, so it is possible the benefits of this approach would not scale to languages with 

substantially more tones, especially as there would be a disproportionate increase in 

individual tone labels compared to component characters used to write tones.  

 

5.2 Model Performance on the Corpus 

5.2.1 Model Comparison 

Comparing all the XLSR-53 Northern Prinmi models with other applications of 

ASR to language documentation, their performance is relatively poor, especially in 

comparison with other implementations of the XLSR-53 model. 

Table 5.2 Comparison of Closely Related Projects’ WER and CER 

 Language Model Transcribed Audio WER CER 

This project Northern Prinmi XLSR-53 3h 7m 0.987 0.433 

Guillaume et al. (2022) Japhug XLSR-53 3h 0.267 0.086 

Adams et al. (2021) Japhug ESPnet 2h 50m -- 0.128 

Wisniewski et al. (2020) Yongning Na Persephone 7h 49m -- 0.186 

 

Two overlapping research teams (Guillaume, Wisniewski, Galliot, et al., 2022; 

Guillaume, Wisniewski, Macaire, et al., 2022) fine-tuned an XLSR-53 model on language 

documentation recordings of Japhug, another Sino-Tibetan language. They fine-tuned 

multiple XLSR-53 models on different quantities of audio data, including a three-hour 

corpus to which they apply a 90/10 training/testing split. With three hours of transcribed 
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audio data, Guillaume et al. achieved an average CER of 0.086 and an average WER of 

0.267. These scores are substantially better than my best model, which only achieved a 

CER of 0.433 and a WER of 0.987. Notably, however, there are several crucial differences 

between the two projects.  

First, Japhug is not a tonal language, and its basic one-to-one character to prediction 

label vocabulary consists of only 44 characters, 10 fewer than Northern Prinmi. Not having 

to predict lexical tones simplifies the ASR process, and the smaller vocabulary size may 

also help. Second, Guillaume et al.’s testing set consisted solely of narratives—rather than 

including sung or chanted speech—a genre of speech generally easier for ASR and 

specifically more similar to the read speech XLSR-53 is primarily trained on. 

Third, Guillaume et al. tuned their model’s hyper-parameters specifically for their 

dataset, training the model 91 separate times to discover the optimal values. Most of the 

models they trained in this process performed worse than their best model, although their 

worst model’s CER was 0.288, still quite a bit better than my best model’s CER of 0.433. 

The final difference, and the only one which should have disadvantaged them, is that 

Guillaume et al. did not evaluate their models’ performance on manually phrasally 

segmented testing data. They instead used silence detection to segment the recordings in 

order to simulate a fully automatic transcription pipeline.  

All of these comparisons provide different possible causes for the poor performance 

of the Northern Prinmi models: Northern Prinmi’s tonality, the corpus’ number of 

orthographic characters and genres, and the models’ lack of hyper-parameter optimization. 

However, there are several additional potential causes that are not made explicit by such a 

comparison. 
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Daudey’s 2014 grammar gestures at the fact that there is no standard Northern 

Prinmi and that each village may speak a slightly different variety. Paired with the fact that 

Daudey and Gerong (2018) mention that they transcribed recordings broadly in the 

Wenquan area and narrowly other places, the collection may actually be representative of 

up to eight distinct varieties of Prinmi speech, seven of which are narrowly transcribed. It 

is possible, therefore, that this level of speech variety diversity is too high for XLSR-53, 

or at least that the differences in transcription may be confusing to the model. Indeed, 

depending on the differences between the broad and narrow transcriptions, it is possible 

that transcription differences alone could contribute a substantial amount of the models’ 

errors. Amith et al. (2021), working with Yoloxóchitl Mixtec, describe facing similar 

challenges with intralanguage variation, although notably their models fared much better, 

with a CER as low as 0.195 on 10 hours of training data. 

The audio quality of the recordings may also be a problem, another challenge for 

ASR in documentation contexts named by Amith et al. and Ćavar et al. (2021; 2016). All 

of the recordings are chanted or sung, with some of the chants being incredibly high tempo, 

presumably making both human and machine transcription much more difficult. Alongside 

the vocal quality of the participants, several of the recordings include musical instruments, 

an additional challenge for signal recognition.  

5.2.2 What is a Useful Error Rate? 

Amith et al. (2021) claim that reductions in CER are beneficial down to a CER of 

0.06-0.10, as predictions made with this CER take as long to correct as to simply review. 

While this provides a floor for utility, the literature is less clear on a ceiling. Jimerson et 

al. (2018) state that a WER of 0.95 is probably not useful, while implying a WER of ~0.70 
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may be useful. Zahrer et al. (2020, p. 2898) describe their model’s phoneme error rate 

(PER, roughly the equivalent of CER) result of 0.437 as not useful, noting that any 

PER/CER around 0.50 translates to correcting roughly half of all characters. As my best 

model achieves a CER of 0.433 and a WER of 0.987, there is definite room for 

improvement. 

However, looking solely at error rate metrics may be misleading. Guillaume, 

Wisniewski, and Macaire et al. (2022) conducted a qualitative analysis of the correction 

process, passing their model’s predictions to the documentation linguist who transcribed 

the original data, and found that the linguist made fewer corrections to the predictions than 

the predictions’ CER suggested. While they were working with a relatively low CER 

(0.074), it is possible this observation could generalize to other contexts. 

 

5.3 Future Directions 

Most of the issues described could be targeted and potentially ameliorated in future 

work. The lack of hyper-parameter optimization is the most immediately obvious, requiring 

the fewest modifications to the project’s methods. Guillaume, Wisniewski, and Macaire et 

al. (2022) saw a difference of 0.20 points in CER between their best and worst optimized 

models, a huge improvement obtained solely through searching the parameter space. 

Training on different partitions of the data could also improve model performance, 

as the model performed substantially better on specific recordings and genres of recordings 

than others. Training solely on the recordings from Wenquan which are all transcribed 

broadly could increase model consistency, and training on the less acoustically challenging 

recordings could provide the model better baseline speech recognition performance. 
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Assuming that the models’ performance can be significantly improved, I would also 

like to create an easier XLSR-53 pipeline for implementing it with other documentation 

projects. This would involve building a front end or command line interface to conduct the 

steps I describe in this project: preprocessing audio and transcripts from ELAN files, 

partitioning the data, segmenting prediction labels from the transcriptions, fine-tuning the 

model on the partitioned and preprocessed data, and evaluating the model’s performance 

on the testing data. Moreover, to actually make it useful, I would also need to integrate 

speaker diarization and silence recognition for preprocessing untranscribed audio 

recordings so the model could actually be applied. 

 

5.4 Applications and Implications 

While not resulting in a high-performance, immediately applicable ASR model for 

actual documentation use, this attempt does illustrate the increasing accessibility of 

powerful and innovative speech and language technologies to non-specialists. It also 

demonstrates that there is still significant work to be done, both in increasing accessibility 

even further and in tailoring these tools to better suit work on language documentation.  

Substantial work has been done to make language technology better serve the needs 

of documentation workers and communities, with the development of toolsets and 

pipelines like ELPIS (Foley et al., 2018) and ESPnet (Watanabe et al., 2018). However, to 

my knowledge, transformer-based models have not yet been similarly integrated. While 

HuggingFace makes these models much more accessible, the HuggingFace API is far from 

being optimally designed for the needs of language documentation practitioners. Work to 
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integrate transformer-based models into either an existing or new non-specialist 

documentation pipeline would likely be a valuable contribution. 

In this instance, even leveraging a recent and high performing transformer-based 

ASR model, automatic transcription of culturally significant genres for documentation—

teachings on country and traditional knowledge conveyed through songs and rituals (Bird, 

2020)—was still a major challenge. General computational improvements to the 

underlying models may help alleviate these problems, but more specific work on ASR for 

non-conversational or read speech would also be beneficial. Moreover, less described 

languages may have linguistic features that are highly distinct from the languages for which 

most ASR methods are developed (Guillaume, Wisniewski, Macaire, et al., 2022), so 

special attention must be paid to preprocessing and adapting the ASR model to the specific 

needs of each language. 

Overarchingly, there are many reasons for optimism in this area; computational 

tools continue to improve, and many vital conversations are now taking place between ASR 

specialists, documentation workers, and language communities (Amith et al., 2021; Bird, 

2020; Guillaume, Wisniewski, Galliot, et al., 2022; Guillaume, Wisniewski, Macaire, et 

al., 2022; Zahrer et al., 2020). This attempt sought to synthesize some of these diverse 

perspectives, and in the process, made manifest many of this approach’s promises and 

perils.
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