
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Economics Economics 

2021 

ESSAYS ON THE ROLE OF POLICIES IN MAJOR PUBLIC HEALTH ESSAYS ON THE ROLE OF POLICIES IN MAJOR PUBLIC HEALTH 

ISSUES ISSUES 

Anh Le 
University of Kentucky, anhhnle@gmail.com 
Author ORCID Identifier: 

https://orcid.org/0000-0002-5814-5478 
Digital Object Identifier: https://doi.org/10.13023/etd.2021.353 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Le, Anh, "ESSAYS ON THE ROLE OF POLICIES IN MAJOR PUBLIC HEALTH ISSUES" (2021). Theses and 
Dissertations--Economics. 59. 
https://uknowledge.uky.edu/economics_etds/59 

This Doctoral Dissertation is brought to you for free and open access by the Economics at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Economics by an authorized administrator of UKnowledge. For 
more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/economics_etds
https://uknowledge.uky.edu/economics
https://orcid.org/0000-0002-5814-5478
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Anh Le, Student 

Dr. Charles Courtemanche, Major Professor 

Dr. Carlos Lamarche, Director of Graduate Studies 



ESSAYS ON THE ROLE OF POLICIES IN MAJOR PUBLIC HEALTH ISSUES

DISSERTATION

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Business and Economics
at the University of Kentucky

By
Anh H. Le

Lexington, Kentucky

Director: Dr. Charles Courtemanche, Professor of Economics

Lexington, Kentucky

2021

Copyright © Anh H. Le 2021
https://orcid.org/0000-0002-5814-5478



ABSTRACT OF DISSERTATION

ESSAYS ON THE ROLE OF POLICIES IN MAJOR PUBLIC HEALTH ISSUES

This dissertation explores the role of policy on health outcomes and behaviors

that relate to major public health concerns. Essay 1 and Essay 2 investigate the

effects of Medicaid expansions on substance-use outcomes. Essay 3 examines the

impacts of school reopenings in Texas on COVID-19 and mobility outcomes.

Essay 1 studies the effect of the Affordable Care Act Medicaid expansion. Us-

ing State Drug Utilization Data 2011-2017, I find that the Medicaid expansion is

associated with an increase of 40-60 Medicaid-paid opioid prescriptions per 1,000

people aged 19–64. However, the results suggest that post-expansion prescrip-

tions are, on average, shorter or prescribed in lower doses. Analyses of com-

monly misused opioids show that hydrocodone is the most affected substance,

which makes up more than 50 percent of all Medicaid-paid opioid prescriptions.

I do not find evidence that the Medicaid expansion is associated with the fentanyl

epidemic.

Essay 2 studies the impact of Medicaid expansions on discharge outcomes of

substance-use-disorder treatment and racial disparities in treatment completion.

Using data from the Substance Abuse and Mental Health Services Administra-

tion 2008-2018 and event-study analysis, I do not find evidence that Medicaid



expansions affect treatment completion rate in public-funded specialty treatment

facilities. Analyses on racial subsamples, however, show some evidence of a neg-

ative effect on treatment completion among Black patients, while there is little

effect among White and Hispanic patients.

Essay 3 examines the effect of fall 2020 school reopenings in Texas on county-

level COVID-19 cases and fatalities. Analyses from hand-collected data imply

that school reopenings led to at least 43,000 additional COVID-19 cases and 800

additional fatalities within the first two months. Results on mobility, using Safe-

graph data to provide evidence that spillovers to adults’ behaviors contributed

to these large effects. Median time spent outside the home on a typical weekday

increased substantially in neighborhoods with large numbers of school-age chil-

dren, suggesting a return to in-person work or increased outside-of-home leisure

activities among parents.

KEYWORDS: Medicaid Expansion; Health Insurance; Substance Use; Racial

Disparities; COVID-19
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Chapter 1

Effect of the ACA Medicaid Expansion on Prescription Opioid Utilization

Patterns

1.1 Introduction

Opioid abuse is a significant public health concern in the United States. Ac-

cording to the National Institute of Drug Abuse (NIDA), in 2018, 128 people in

the United States died from an opioid overdose every day (NIDA, 2020). The

epidemic started in the late 1990s with increasing prescription opioid overdose

deaths and led to rapid increases in deaths involving heroin, starting in 2010, and

synthetic opioids, starting in 2013. This opioid crisis not only creates pressure on

public health but also impacts social and economic welfare. Florence et al. (2016)

estimate a cost of $78.5 billion for prescription opioid abuse in 2013, which in-

cludes healthcare, addiction treatment, productivity loss, and legal enforcement.

The medical use of prescription opioids as an analgesic for acute and post-

surgical pain is not of serious concern. However, prolonged opioid use can lead

to drug dependence and addiction. Moreover, the ready availability of prescrip-

tion opioids is a primary factor leading to the initiation of non-medical use, and

the risk of using prescription opioids for non-medical purposes is not limited

to the individuals for whom the drugs are prescribed. More than 70 percent of

non-medical opioid users obtained the drugs from a friend or relative (Jones et

al., 2014; Lankenau et al., 2012). The Centers for Disease Control and Preven-

tion (CDC) estimate that 40 percent of deaths from opioid overdose are related

to a prescription opioid (CDC, 2020). Prescription opioids and non-prescription

opioids, such as heroin, are pharmacologically similar, which suggests a higher

probability of heroin initiation among prescription opioid users compared to non-
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users. There have been numerous studies regarding the relationship between pre-

scription opioids and heroin consumption (Jones, 2013; Compton et al. 2016).

Although most studies are descriptive, they find a consistent, positive association

between the use of these two types of opioids. Jones (2013) finds that over 80

percent of heroin users used prescription opioids before trying heroin.

Since the rise of the opioid epidemic, there have been substantial efforts to

manage prescription opioid use. Much attention has been paid to regulations

and programs designed to control prescription opioid use, including prescription

administering programs such as the state Prescription Drug Monitoring Programs

(PDMPs), pain management clinic laws, and supply-side strategies such as adding

abuse-deterrent controlled-release properties to drug formulas (e.g., OxyContin

and Butrans). Health insurance coverage is another important channel that could

affect prescription opioid use. The literature has long shown that health insurance

increases the use of health services (Currie & Gruber, 1996a & b; Card, Dobkin,

& Maestas, 2008) and prescription drugs (Duggan & Morton, 2010; Ketcham &

Simon, 2008; Lichtenberg & Sun, 2007).

This paper starts by studying the link between an increase in health insur-

ance access through the Affordable Care Act (ACA) Medicaid expansion and pre-

scription opioid utilization among the Medicaid population. The ACA has been

the largest-scale health care reform in the United States since the introduction of

Medicaid and Medicare in the 1960s. Since its implementation, the U.S. has ex-

perienced a nationwide increase in health insurance coverage. Studies that focus

on the earlier years after the ACA find consistent increases in health insurance

coverage in both expansion and non–expansion states. Initially, the Medicaid ex-

pansion was intended to occur nationwide. However, a Supreme Court decision

in 2012 allowed states to adopt the expansions optionally. At the time of the

ACA’s implementation (January 1, 2014), 25 states decided to expand Medicaid.

2



Empirically, assessing the relationship between health insurance and any type

of health care utilization is challenging due to potential reverse causality, and pre-

scription opioid use is no exception. On the one hand, having health insurance

coverage increases access to opioid medication. On the other hand, individu-

als who demand prescription opioids are more likely to seek health insurance.

The second empirical challenge that comes with estimating the effects of health

insurance on prescription opioid use is omitted variable bias. Individuals with

bad health are likely to have a higher demand for both health insurance and

painkillers. The ACA’s Medicaid expansion aims to target disadvantaged popu-

lations, which have less insurance coverage and, in general, have worse health.

However, the fact that not every state adopted the Medicaid expansions provides

plausibly exogenous variation in Medicaid eligibility for individuals in expansion

and non-expansion states, which can mitigate the issues mentioned above.

This essay contributes to the existing literature in several ways. First, the paper

provides a comprehensive analysis of the causal relationship between the Med-

icaid expansion, prescriptions (measured by per-population prescriptions and

MMEs), and Medicaid spending on prescription opioids that were reimbursed by

Medicaid. Research looking at the association between the Medicaid expansion

and opioid prescriptions mainly focuses on per-enrollee prescriptions. However,

it is necessary to investigate both measures, because changes in per-enrollee uti-

lization could only capture the differences between the pre-expansion and post-

expansion Medicaid populations, as the number of enrollees also increases in

expansion states. Per population estimates are more relevant when compared to

total opioid prescriptions across all payers or to other government-funded pro-

grams.

This essay also contributes by being the first to examine the heterogeneity

among substances and to provide an implication of the Medicaid expansion’s role

3



in the on-going fentanyl and synthetic opioid epidemic. Identifying the changes

among substances is important due to the fact that these substances differ in po-

tencies and thus in prescribing patterns (i.e. strong opioids are not prescribed to

opioid-naive patients). Moreover, opioid substances also differ in their mechanism

of action, the way each substance interacts with opioid receptors, which can lead

to discrepancies in their ability to induce addiction, as described by Stoeber et al.

(2018). Thus, examining the heterogeneity among opioids can reveal if the change

in utilization mainly reflects the change in the Medicaid-eligible population or if

it suggests signs of opioid misuse.

Using combined data from the State Drug Utilization Data (SDUD) and the

National Drug Code Directory, I employ a generalized difference-in-differences

(GDD) framework to estimate the effects of the Medicaid expansion on Medicaid-

paid prescription opioid use. In general, I find that the Medicaid expansion is

associated with an increase of opioid prescriptions paid by Medicaid per 1,000

adults under 65. However, the average post-expansion Medicaid enrollee is not

necessarily using more opioids compared to the average enrollee in the pre-

expansion population, as results for per-enrollee opioid prescriptions are not ro-

bust.

Next, I look at separate samples that contain all morphine, hydrocodone, oxy-

codone, and fentanyl prescriptions. Among these substances, hydrocodone is

shown to have the largest increase in the number of prescriptions and MMEs.

The results translate to about 32 prescriptions and 11,700 MMEs for every 1,000

people ages 19–64 (1.83 standard deviations). The effects on fentanyl, a highly

potent synthetic opioid, are relatively small, about 1.6 prescriptions per 1,000 (0.5

standard deviations). Therefore, this increase in fentanyl prescriptions through

Medicaid is not likely to have directly contributed to the fentanyl epidemic.

4



1.2 Background and Literature of the ACA

The ACA was implemented in 2014, with a goal to achieve nearly universal health

insurance coverage in the United States. The ACA consists of three main parts

that are commonly known as a “three-legged stool.” The first leg consists of regu-

lations that guarantee coverage for individuals. Insurance companies are required

to base their premiums on community rating and issue coverage regardless of pre-

existing health conditions. The second leg, or the individual mandate, includes

regulations to prevent the potential death spiral1 that the first component could

cause. The third leg addresses concerns about affordability, which consists of sub-

sidies and the Medicaid expansions. Individuals with incomes between 100 and

400 percent of the FPL, who are not eligible for Medicaid or employer-sponsored

insurance, would qualify for premium subsidies. In addition to this nationwide

subsidy program, states have the option to expand their Medicaid programs to

individuals with incomes below 138 percent FPL at almost zero cost.2

1.2.1 Effects of the ACA Medicaid Expansion on Healthcare and Health-

Related Outcomes

Since the ACA’s implementation, the literature on this healthcare reform has been

rapidly growing among researchers and policymakers. Mazurenko et al. (2018),

Antonisse et al. (2018), and Gruber & Sommers (2019) provide systematic reviews

of the ACA-related studies. Studies generally find that the ACA, especially the

Medicaid expansion, is associated with an increase in health insurance coverage

(Sommers et al., 2014; Sommers et al., 2015; Buchmueller et al., 2016; Wherry

1When premiums are based on community rating, people with worse health conditions are more
likely to sign up than healthy people. As a result, premiums would eventually rise, which would
further discourage healthy people to sign up, and so on.

2To learn more about the institutional details of the ACA, see Courtemanche et al. (2017) and
Frean et al. (2017).
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and Miller, 2016; Courtemanche et al., 2017-2019; Duggan, Goda, & Jackson, 2017;

Frean et al., 2017; Kaestner et al., 2017).

There is mixed evidence of changes in health service utilization, including

preventive care (Sabik, Tarazi & Bradley, 2015; Wherry and Miller, 2016; Simon,

Soni, & Cawley, 2017; Courtemanche et al., 2017), hospital use (Akosa Antwi et al.,

2015; Admon et al., 2019; Anderson et al., 2016), emergency services (Nikpay et al.,

2017; Sabik et al., 2017; Pines et al., 2016; Courtemanche, Friedson, & Rees, 2019).

There are also a vast number of studies investigating the association between

the Medicaid expansion and specialized services (Singhal et al., 2017; Soni et al.,

2018).

Studies exploring the link between the components of the ACA and prescrip-

tion drug use document a general increase. Ghosh, Simon, & Sommers (2019)

and Mahendraratnam et al. (2017) find that after the Medicaid expansion, aggre-

gate prescription drug use increased about 17–19 percent. Mahendraratnam et

al. (2017) also find that after one year of the expansion, Medicaid spending in-

creased more than one-third in expansion states. Amuedo-Dorantes & Yaya (2016)

also find an increase in prescription drug access due to the ACA’s expansion of

dependent coverage.

Higher utilization, however, does not necessarily translate to better health.

Studies that examine the impact of the ACA on self-assessed health find mixed

results. While a number of studies document improved self-reported health (Som-

mers et al., 2015; Sommers et al., 2016; Simon et al., 2017; Cawley et al., 2018),

other papers find mixed results and insignificant changes in health measures

(Courtemanche et al., 2018; Wherry and Miller, 2016). Most studies do not find

an association between the ACA and risky behaviors or the use of risky-behavior-

related products, including alcohol and tobacco (Courtemanche et al., 2018 &

2019; Cawley et al., 2018; Cotti et al., 2019). However, Maclean et al. (2019) find
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evidence that the Medicaid expansions provide higher access to smoking cessa-

tion medications.

1.2.2 The Role of Health Insurance in the Opioid Epidemic

The association between health insurance and opioid analgesic use also poses an

important question yet has not been fully understood. Having health coverage

provides individuals with acute pain issues, such as post-surgical pain and late-

stage cancer pain, with the necessary pain relievers. However, having access to

opioid analgesics at a lower cost can lead to moral hazard among individuals

who do not need such medication. An increase in demand for opioids can also

lead to spillovers. Powell et al. (2020) examine the impact of Medicare Part D

on opioid supply and find an increase in opioid abuse treatment admissions and

opioid-related mortality among the Medicare-ineligible population. Soni (2018)

documents a substitution effect between over-the-counter pain relievers and pre-

scription pain relievers among the Medicare-eligible population. The structure of

a health insurance program could also affect opioid analgesic utilization. Baker

et al. (2018) find that enrollment in Medicare Advantage reduces the likelihood

that beneficiaries fill an opioid prescription.

Several studies focus on the impact of ACA Medicaid expansion on opioid-

related outcomes. The current literature focuses on the two channels by which

the Medicaid expansion can affect the opioid epidemic. The first channel relies

on the theory that, by increasing access to drug-dependence and opioid-addiction

treatments to the target population, the Medicaid expansion could lower the num-

ber of opioid-dependent individuals and reduce opioid-involved deaths. Most

studies in this area find that the Medicaid expansion is associated with higher

utilization of treatment services and admissions for opioid use disorder (Wen et

al., 2017; McKenna, 2017; Andrews et al., 2018; Meinhofer & Witman, 2018; Sharp
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et al., 2018; McCarty et al., 2019; Maclean & Saloner, 2019). Meinhofer & Witman

(2018) also find no evidence that the increase in treatment admissions from Med-

icaid beneficiaries is crowding out of other types of health insurance. Feder et

al. (2017), however, find no evidence of changes in treatment service use among

people with heroin use disorder, despite higher coverage. Olfson et al. (2018) find

no changes in treatment service use among the low-income population.

The second channel focuses on the fact that Medicaid has increased access

to care. Given that the eligible population is less healthy and more prone to

conditions that require analgesic medications, the Medicaid expansion could be

efficient in serving the target population. However, opioid analgesics can initi-

ate addiction and abusive behaviors among prescribed and non-prescribed users.

Results have been mixed among these studies. Sharp et al. (2018) find a neg-

ative but statistically insignificant association between the Medicaid expansion

and per-enrollee number of prescriptions, while Cher et al. (2019) find a posi-

tive but insignificant impact on the same measure. Saloner et al. (2018) also find

an increase in the number of opioid prescriptions paid by Medicaid, using data

from California, Maryland, Washington, Florida, and Georgia. Given that the two

channels discussed above could happen concurrently and create opposite effects

on the level of opioid usage, estimates of the association between the ACA and

opioid use represent the net effect of the two channels.

Studies that investigate the effects of the Medicaid expansion on opioid-related

fatalities also find mixed results. McInerney (2017) and Kravitz-Wirtz et al. (2020)

find a reduction in opioid-related deaths and death rates associated with the Med-

icaid expansion. However, the association between the Medicaid expansion and

opioid-related deaths is unclear, according to Abouk et al. (2019) and Averett,

Smith, & Wang (2019). The mixed results and the dynamic nature of opioid-
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related issues necessitate a thorough analysis of the utilization patterns of pre-

scription opioids under the Medicaid expansion.

1.3 Data

1.3.1 Measuring Medicaid Opioid Utilization

The main data come from the State Drug Utilization Data (SDUD) collected by the

Centers for Medicare and Medicaid Services (CMS). Since the start of the Medi-

caid Drug Rebate Program (MDRP) in 1991, the CMS has required states to submit

records of Medicaid prescription drug utilization. Under the MDRP, participating

drug manufacturers are required to provide rebates to the states and the federal

government in exchange for coverage by Medicaid. The SDUD records quarterly

information of state-reported prescription drugs that are reimbursed by Medicaid,

including the number of prescriptions and total reimbursements by the covered

National Drug Codes (NDC). Reimbursement data contain the amounts that Med-

icaid paid to providers, which does not account for manufacturer rebates.3 The

data used in this essay span the years 2011–2017.

I do not include data prior to 2011 for two reasons. First, the ACA Young

Adult Coverage extension implemented in 2010 has been shown to have impacted

opioid-related outcomes among the population ages 18–25 (Wettstein, 2019). Ex-

cluding data from 2010 and earlier could avoid capturing the short-term shocks in

prescription opioid use that could have come from this extension. Second, it was

not until the enactment of the ACA in March 2010 that the CMS required states

to report prescriptions for Medicaid patients who are enrolled through managed

care organizations (MCO). Prior to this time, drug manufacturers were only obli-

gated to provide rebates to states for prescriptions that were purchased through

3The SDUD does not include drugs from state-only programs and other federal programs such as
the 340B Drug Pricing Program.
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the fee-for-service (FFS) scheme. Missing data of MCO prescriptions in 2010 and

earlier could be an estimation threat because states are differential in terms of

FFS – MCO structure. Without utilization from MCOs, reported data would in-

correctly present the actual number of Medicaid prescriptions in each state and

create bias.

To compile utilization data for prescription opioids, I create a list of prescrip-

tion opioid NDCs by matching brand-name and generic opioid drug names with

all corresponding NDCs from the FDA’s National Drug Code Directory. To ac-

count for new drugs that enter the CMS system, I match the drug names with the

Medicaid Opioid Drug lists provided by the CMS. 4 The goal is to include all opi-

oid substances and avoid the potential bias coming from the heterogeneity across

substances. Table A.3 presents a list of common prescription opioids. Next, the

opioid NDCs are linked to the SDUD to create a Medicaid utilization dataset for

opioid prescriptions only. I exclude medications that are commonly prescribed

for addiction treatments such as buprenorphine, naltrexone, and naloxone. Data

are aggregated by state and year. The SDUD has two limitations. First, NDCs

with fewer than 11 prescriptions in a state-quarter cell are suppressed. Second,

the reported quarter may represent the time the NDC was dispensed or paid by

the state rather than the time of actual utilization. Aggregating utilization by year

could provide a more precise measurement.

For each outcome category of Medicaid opioid utilization (number of prescrip-

tions and Medicaid reimbursements), I construct two measures: per population

aged 19-64, and per-enrollee using state population data from the US Census Bu-

reau and Medicaid enrollment data from the CMS Medicaid Budget and Expen-

4https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-R

eports/Medicare-Provider-Charge-Data/OpioidMap Medicaid State
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diture System (MBES) and the Henry J. Kaiser Family Foundation (KFF).5 Data

on Medicaid reimbursements are adjusted to 2011 dollars.

1.3.2 Treatment Variable

States receive a treatment status from the year that they implemented a Medicaid

expansion, either through the ACA or through their own programs. Accordingly,

treatment states can be divided into three groups. The first group consists of

states that expanded in 01/2014 and did not have prior expansions. The sec-

ond group consists of states that expanded Medicaid prior to 2014, under Section

1115 waivers (California, Connecticut, Delaware, DC, Minnesota, New Jersey, and

Washington) and/or had their own expansions with similar criteria to the ACA

Medicaid expansions (Delaware, Massachusetts, New York, Vermont, and DC).

These states are defined to have a treatment status before 2014. States that already

have similar criteria to the ACA Medicaid expansions are considered “early” ex-

pansion states. The third group consists of states that expanded after 01/01/2014.

These states are Alaska, Indiana, Louisiana, Michigan, Montana, New Hampshire,

Pennsylvania, Virginia, Maine, Idaho, Utah, and Nebraska.6 At the time of this

essay, 37 states including DC have adopted the expansion (KFF 2020).7

1.3.3 Control Variables

Numerous factors can affect prescription opioid use. Therefore, when estimating

the effects of the Medicaid expansion on prescription opioids, it is crucial to ac-

count for potential confounders that can affect state-level opioid utilization. The

paper’s main model includes two sets of controls. The first set includes variables

5The MBES did not start reporting Medicaid enrollment data until January 2014.
6See table A.1 for details of states’ expansion years.
7States expanded after 2017, Virginia, Maine, Idaho, Utah, and Nebraska, are treated as non-
expansion states in this essay.
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that control for state demographic characteristics (such as the share of individ-

uals that is white and the share of the female population), using data from the

ACS, and economic conditions, including state poverty rate of the population ages

19–64 (KFF), unemployment rate, and minimum wage (UKCPR Welfare Data).

The second set of covariates controls for major state prescription opioid reg-

ulations. Since the rise of opioid use, there has been substantial public effort to

control the epidemic. State opioid policies have been shown to have some im-

pact on prescription opioid use, which can create bias in the estimates if they are

correlated with these states’ decision to expand Medicaid. I include an indica-

tor for states’ adaptation of the Prescription Drug Monitoring Programs-mandate

(PDMP-mandate)8 collected from the Prescription Drug Abuse Policy System

(PDAPS). Although state PDMP consist of multiple components, the PDMP-

mandate has been shown to impact prescription opioid use, compared to other

parts of the regulation (Wen et al., 2017).9 Other regulations include the Pain

Management Clinic Laws10 and the Prescription Drug Time and Dosage Limit

Laws. Data on states’ implementation of these programs are collected from the

PDMP Training and Technical Assistant Center. I also include state recreational

marijuana law status, following Meinhofer and Witman (2018). Table A.2 reports

the effective time of these regulations.

1.4 Methodology

The empirical strategy of this essay aims to identify the effect of the Medicaid

expansions on Medicaid utilization and reimbursements. The variation in states’

8PDMP are state-implemented programs that record patients’ prescription history to monitor po-
tential fraudulent behaviors such as ”doctor shopping,” a behavior marked when a patient ob-
tains prescriptions from five or more prescribers (Buchmueller and Carey, 2018).

9A state is defined as having the PDMP-mandate when it requires a healthcare professional to
check with the system before prescribing or dispensing opioids.

10Pain clinic laws refer to regulations on pain management clinics such as facility and staffing
certification or supply limit regulations (PDAPS.org).
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decisions to expand Medicaid provides a natural identification for a difference-in-

differences (DD) design. However, not all states that expanded Medicaid did so

in January 2014. Previous literature has taken this variation into account in many

ways, including dropping the early expansion states or assuming that the impact

coming from these states is negligible. To both estimate the effects coming from

the early and late expansion states and maintain the sample size, in the baseline

model, I follow a generalized difference-in-differences framework described in

equation 1.1. I later include estimation results of the main model but exclude

states with their own pre-ACA expansions as a robustness check.

Yst = α + βMedicaidst + γXst + δPst + ηs + λt + εst (1.1)

The outcome variable of interest, Yst, is a measure of Medicaid prescription opi-

oid utilization or reimbursement in state s and year t. Medicaidst is the treatment

indicator, which equals 1 if period t is the year state s expanded Medicaid and

after. Xst is a vector of covariates that control for time-varying state-specific de-

mographic and economic conditions that could have influenced both state opioid

utilization and the decision to expand Medicaid, and Pst is a vector of opioid-

related policies, as described in Section 1.3.3. The model also includes state and

year fixed effects, ηs and λt, to account for heterogeneity across states and year-

specific unobservables, respectively, and εist is the error term. All regressions are

weighted by state population ages 19–64. Standard errors are adjusted for het-

eroskedasticity and clustered by state. I also include results from unweighted

regressions in the robustness check section.

The coefficient of interest, β, measures the differential change in Medicaid opi-

oid utilization or reimbursements between control and treatment states. For per-

enrollee outcomes, β represents the average change in utilization between the ini-

tial Medicaid population and the new Medicaid population. For per-population
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outcomes, β represents the average change in Medicaid-reimbursed opioid pre-

scriptions among the young adult (ages 19-64) population.

1.5 Results

1.5.1 Summary Statistics

Table 1.1 presents the summary statistics in 2013, the pre-treatment period for

most states. The average per population (in thousands) opioid utilization in a

state is about 122 prescriptions, which corresponds with an average of approx-

imately $4,800 in Medicaid spending and over 111,000 MMEs. Oxycodone ac-

counts for the largest share: about 30 percent of all opioid prescriptions. Before

the ACA, the average uninsured rate was approximately 20 percent. On aver-

age, demographic characteristics were similar between the control and treatment

states. However, economic and political characteristics were different between

the two groups. Medicaid expansion states have a higher minimum wage but

also a higher unemployment rate. Sixty percent of house and senate seats in ex-

pansion states are Democratic, compared to about 33 percent in non-expansion

states. Expansion states also differ from non-expansion states in terms of opioid

policies. For example, by 2013, 24 percent of expansion states implemented the

PDMP-mandate, compared to 8 percent of the non-expansion states.

Figures 1.1 and 1.2 show total opioid prescriptions (per 1,000 people ages

19–64) by state in 2013 and 2014, respectively. For ease of comparison, the scale in

figure 1.2 is kept similar to figure 1.1. Between the two years, prescription rates

increased in most states, including states that did not expand in 2014.

To further access the trends between expansion and non-expansion states, pan-

els a and b of figure 1.3 present the average opioid utilization and reimbursement

rate (per 1,000 people ages 19–64) in expansion and non-expansion states. The
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SDUD provides utilization data at the end of each period; therefore, the time of

the expansion (January 1, 2014) corresponds with the year 2013 on the graphs,

instead of 2014. The data show a slightly increasing pre-trend in both expansion

and non-expansion states (figure 1.3 - panel a.) After the ACA’s implementation,

there is a sharp increase in the overall trend, but Medicaid expansion states ex-

perience a larger change. The fact that there is an increase in utilization even in

non-expansion states can be potentially explained by the ”welcome mat” effect,

or the ”woodwork effect,” described in Frean et al. (2017).11 The pre-trends of

Medicaid spending in figure 1.3 - panel b, on the other hand, do not look similar.

However, the graphs present the time series trends rather than the identification

assumption that the model relies on, which are conditional on the covariates. I

later examine the trends using an event study design and control for pre-trends

in a robustness check.

It is also noticeable that the trends of prescriptions and reimbursement

amounts do not move in tandem, which suggests that underlying factors that

influence Medicaid spending can be different from those affecting the number of

opioid prescriptions. These discrepancies are not unexpected because, although

Medicaid reimbursements are calculated by average wholesale price rather than

retail price, there is evidence that manufacturers could respond to policies (Dra-

nove et. al, 2017). Moreover, drug prices can change due to new drug entrance,

including generic drugs.

Medicaid opioid prescriptions and reimbursement seem to peak in 2015 and

start to decrease in 2016 and 2017. These changes could reflect a nationwide

11The Medicaid expansion can affect both Medicaid newly- and previously-eligible individuals.
For individuals that are eligible for Medicaid coverage before the expansion, there are no official
changes to their eligibility for Medicaid after 2014. However, a large-scale health care reform
such as the ACA can increase awareness among eligible non-enrollees. Also, there will be a
reduction in social stigma with receiving Medicaid because the expansion increases income
eligibility (in most states) and the Medicaid population. For this reason, the ”welcome-mat”
effects are present in both expansion and non-expansion states.
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awareness and effort to manage prescription opioid use. Another possible ex-

planation is that in July 2016, the Comprehensive Addiction and Recovery Act

(CARA) was signed into law. This is the most comprehensive addiction policy

in the US within 40 years.12 Its main goal is to increase prevention and recovery

support to localities, especially areas that are more affected by addiction issues.

Along with other concurring state and local policies, the CARA might have played

a role in the downward trend of opioid prescriptions.

1.5.2 Total Opioid Utilization

Table 1.2 - panel A presents the baseline model estimates of the effects of the

Medicaid expansion on opioid prescriptions paid by Medicaid. Measures of the

dependent variable include number of prescriptions per population age 19–64

and per enrollee (both in thousands). All specifications observe a positive and

statistically significant association between the Medicaid expansion and opioid

use. Column 1 reports estimates the specification that includes state and year

fixed effects only. Column 2 includes state economic and demographic controls.

The preferred specification is reported in Column 3, which includes state charac-

teristics and opioid-related policy variables. The estimates do not seem to have

drastic changes across specifications. However, including state characteristics and

opioid-related policies seems to slightly increase the magnitude and precision of

the estimates. Results from the preferred specification show an increase of 60.3

Medicaid-paid opioid prescriptions per 1,000 people and 77.5 prescriptions per

1,000 enrollees when states expand Medicaid, about 49.5 percent and 17.1 percent

from the 2013 full sample means, respectively.

Table 1.2 - panel B presents the results for Medicaid reimbursements. There is

evidence that Medicaid spending also increases due to the expansion. Spending

12For further details of the CARA, see https://www.congress.gov/bill/114th-congress/sen

ate-bill/524
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per 1,000 people (age 19–64) increases by $973.5, which is 20.37 percent of the 2013

full-sample mean. However, estimates for spending per 1,000 enrollees become

small and statistically insignificant. One potential explanation is that prescrip-

tions for newly enrolled beneficiaries contain lower dosages compared to existing

beneficiaries. Scaling the estimates by the number of enrollees would decrease

the magnitude. Another explanation is that there are other mechanisms from

the Medicaid expansion, aside from prescription utilization, that could influence

reimbursement amounts, such as manufacturer response and managed care or-

ganizations (MCOs). In one of the robustness analyses, I control for the ratio of

prescriptions administered by MCOs to evaluate the extent to which MCOs could

influence opioid use and spending.

1.6 Extended Measures of Opioid Use

1.6.1 Morphine Milligram Equivalent Units

Next, I examine the results accounting for substance strength. Specifically, I cal-

culate a new outcome variable that measures potency in “units,” using the CDC’s

guide to obtain the “opioid oral morphine milligram equivalent conversion fac-

tors,” or MME factors. The formula is described in equation 1.2.

MMEs = drug strength×MME f actors× total units (1.2)

where MMEs stands for morphine milligram equivalent units, drug strength is

the unit strength of the substance associated with each NDC, total units is the

number of units reimbursed through Medicaid. MMEs measure total morphine

milligram equivalent units of opioid reimbursed by Medicaid. Ideally, researchers

would also wish to observe daily dosage,13 but due to data limitations, I could

13Daily dosage is measure by MMEs divided by the number of days prescribed.
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only calculate potency based on substances and the number of reimbursed units.

However, looking at opioid use using MMEs is important for two reasons. First,

opioids (both prescription and illicit) differ not only by strength but also by sub-

stance. Higher-dosage and higher-potency substances increase the risk of addic-

tion and overdose. Thus, it is useful to also understand the amount of opioid used

in addition to the number of prescriptions. Second, if the change in the number of

prescriptions is disproportionately distributed among lower-dosage prescriptions,

the effect on prescriptions will be higher than the effects on potency units.

Table 1.2 - panel C presents the results of re-estimating the baseline model

using the number of reimbursed MMEs as an outcome variable. The Medicaid

expansion is associated with higher MMEs prescribed per 1,000 people. The pre-

ferred estimate in column 3 shows an increase of 26,070 MMEs when states ex-

pand Medicaid.14 When scaling the number of MMEs by the number of benefi-

ciaries, similar to the results for Medicaid spending, the coefficients become small

and indistinguishable from zero. Again, if new enrollees are prescribed with less

potent substances and/or for shorter periods, per-enrollee measures will become

smaller than per-population measures. I explore this possibility in the next sec-

tion.

1.6.2 Effects of the Medicaid Expansion by Common Opioids

Opioid potency varies across substances. Certain drugs are also more often in-

volved in opioid abuse and death incidents than others. Among all prescription

opioids, hydrocodone, oxycodone, morphine, and fentanyl are related to the most

overdose deaths and abuse. According to the morphine milligram equivalent fac-

tor scale, morphine and hydrocodone are equally potent, with MME factors of

1; oxycodone has an MME factor of 1.5; and fentanyl has MME factors ranging

14Because the data does not contain prescription lengths, it is not possible to compare the estimates
to a typical or unusual opioid dose.
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from 0.13 to 7.2, depending on the form.15 Fentanyl is an important substance to

investigate due to not only its potency16 but also the severe impact of illegal fen-

tanyl starting in 2013.17 Prescribed fentanyl can take the form of tablets/lozenges,

liquid (oral or nasal spray), injections, and transdermal patches. The most com-

monly prescribed forms are transdermal patches (52.82%) and injections (47.15%).

Injectible fentanyl, however, is more common in inpatient settings. This form of

fentanyl is excluded in MME analyses due to unavailable MME factor. Fentanyl

patches, especially in extended-release forms, can be dangerous if misused due

to the high concentration. Although up to the time of this essay is written, most

fentanyl-related incidents involve illicit fentanyl rather than prescription fentanyl,

it is still essential to answer the question of whether the Medicaid expansion is

associated with the fentanyl epidemic through prescription fentanyl.

There also has been some evidence that oxycodone has a higher misuse ten-

dency compared to morphine and hydrocodone (Wightman et al., 2012). Ac-

cessing the heterogeneity in utilization among these drugs is relevant since the

results can inform policymakers about areas that need more attention. To exam-

ine the heterogeneity, I re-estimate equation 1.1 separately, allowing the outcome

variables to be measures of each drug above. Each drug category includes uti-

lization data for both the corresponding brand-names and generics. Figures 1.4

to 1.7 (both a & b) present trends in the number of prescriptions and Medicaid

reimbursements by commonly misused opioids.

Table 1.3 reports the estimates for commonly misused substances. Panel A

presents the results of per-population measures, and panel B presents per-enrollee

results. Columns (1) to (4) contain estimates for samples that include only pre-

15Fentanyl is measured in mcg, while others are measured in mg.
16Fentanyl is 50 to 100 times more potent than morphine (CDC 2020).
17From 2013 to 2017, the number of overdose deaths that involved fentanyl has increased the

sharpest, compared to other opioids. In 2017, fentanyl accounted for 30,000 of 72,000 overdose
deaths (NIDA, 2018), although most fentanyl-related deaths come from “street” fentanyl rather
than prescription fentanyl.
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scriptions of morphine, hydrocodone, oxycodone, and fentanyl. Column (5) lists

results for other opioids for comparison. The effects of the Medicaid expansion

vary across substances. In panel A, hydrocodone observes the largest impact, with

an increase of 32 prescriptions per 1,000 people, which is almost 1.5 times the 2013

mean. The effects on oxycodone and fentanyl are both positive, but are smaller,

about 36 percent of the baseline mean. There is no significant impact on morphine

prescriptions. In terms of Medicaid spending and MMEs, the impact remains

largest for hydrocodone. Compared to other substances, hydrocodone has a lower

potency (MME factor = 1) and is usually prescribed in lower doses. Therefore, hy-

drocodone is more common among opioid-naive patients (Jeffery et al., 2018). Re-

sults for Medicaid-paid hydrocodone prescriptions continue to be positive among

per-enrollee measures, while estimates for other substances become smaller and

statistically insignificant (panel B), and oxycodone took the largest share of all

opioids in 2013. These results imply that increase in opioid prescriptions paid by

Medicaid mostly consists of hydrocodone prescriptions. Results for per-enrollee

prescriptions across substances also imply that post-expansion Medicaid popu-

lation, on average, are prescribed more hydrocodone prescriptions. However,

because there is little change in the amount of opioids used (in MMEs), the av-

erage per-enrollee opioid use is not necessarily higher among the post-expansion

population.

Although there is a small increase in the number of fentanyl prescriptions, the

estimates are not significantly different from zero in other measures. Fentanyl

is usually prescribed to patients with more serious pain problems such as can-

cer pain, which are not likely to have large responses to the Medicaid expansion

given that the new enrollees are, on average, healthier than the former Medicaid

population. In other words, there is no evidence that the Medicaid expansion is
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associated with the increase in fentanyl-related overdose deaths through prescrip-

tion fentanyl.

1.7 Event-Study Model

For the parameter β in equation 1.1 to be valid, changes in prescription opioid uti-

lization through Medicaid are assumed to be similar in the treatment and control

groups in the absence of the Medicaid expansion, conditional on the observables.

This assumption can be violated if there are unobservables that influence the sup-

ply and demand for prescription opioids yet correlate with the ACA Medicaid

expansion. There are some cases in figures 1.3– 1.7 where the pre-trends in Med-

icaid reimbursement are not similar between the control and treatment groups.

However, it is necessary to examine the identifying assumption conditioning on

the covariates. I employ a flexible event-study framework, which brings two ad-

vantages. First, it can assess pre-trends while allowing the time of treatment to

vary by state. Second, the model can investigate the overall dynamic impacts

after the expansions. This is useful because there has recently been evidence of

a gradual impact of the ACA on health-related outcomes (Courtemanche et al.,

2019). The event study model is described in equation 1.3:

Yst = α +
2

∑
τ=−2,τ 6=−1

βτ(Medicaidsτ) + β−3Medicaid−3 + β3Medicaid3 + γXst

+δPst + ηs + λt + εst

(1.3)

where Yst is an outcome of opioid utilization. βτ parameters measure the effect

of the Medicaid expansions on state s prescription opioid use if year t is τ years

after state s expanded Medicaid. β−3 and β3 are indicators if year t is three to six

years before and three to six years after state s expanded Medicaid, respectively.
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Because most expansion states adopted the expansion in 2014, I group the further

periods to minimize state compositional effects from the early and late expansion

states. The other terms, Xst, Pst, ηs, λt, and εst, are defined as in equation 1.1.

Under the parallel trend assumption, βk (for all k < 0) would equal zero. In other

words, the test for pre-treatment trends is equivalent to the t-test that β−3 to β−2

equal zero. I omit the year before state s expanded Medicaid (τ = −1) as the

reference year.

Figures 1.8 to 1.10 present the event study results for different utilization mea-

sures of the dependent variables: per 1,000 people (age 19–64) and per 1,000

enrollees. All of the estimated coefficients associated with pre-treatment years

are not statistically different from zero. The test of joint significance, where the

null hypothesis is β̂−3 equals β̂−2 and zero, also fails to reject the null hypoth-

esis. These results indicate that conditional on the covariates, the parallel-trend

assumption is not violated, even if the visual evidence does not show identi-

cal pre-trends. After the expansion, there are continued effects of the Medicaid

expansions on per-population prescriptions. Total opioid utilization observes a

steadily positive and significant impact every year for t > 0. The results for Medi-

caid spending and total MMEs, however, are smaller and less precise. Figures A.1

to A.4 present the event-study results that assess the parallel trend assumption

for individual substances.

1.8 Robustness Checks

In this section, I examine the sensitivity of results from the baseline model. The

robustness checks fall into two main categories: (1) changes in the covariates

that account for potential policy- and market-related confounding factors and (2)

changes in the model specifications.

Table 1.4 reports the estimates from group (1) sensitivity checks. I first con-
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sider a channel of the ACA that could potentially influence Medicaid prescription

drug utilization. Dranove et. al (2017) find evidence of a reduction in Medi-

caid spending as states increase the share of drug benefit administered by MCOs,

which happens partly as a response to the change in the ACA’s manufacturer

rebate rule. Therefore, MCOs may play a role in opioid prescribing and spend-

ing patterns. To account for changes in MCO penetration, I construct a variable

that equals the number of prescriptions utilized through MCOs divided by the

total number of prescriptions for each state-year pair. States’ political characteris-

tics are also potential confounders. It is widely known that blue states are more

likely to expand Medicaid compared to red states. To the extent that state pollical

characteristics could influence opioid use, I include the shares of state house and

senate that are Democratic obtained from the UKCPR Welfare Data.18 DC and

Nebraska were excluded from this specification because they are unicameral.

Population composition might also affect prescription opioid use if (1) the

newly eligible population in expansion states systematically has a higher demand

for prescription opioids due to age composition or (2) individuals who are in

higher need of opioid medications and eligible for Medicaid coverage but not

living in an expansion state migrate to such states for coverage. To account for

population composition, I control for states’ share of individuals aged 45—64 of

the Medicaid population19. According to Bernstein and Minor (2017), Medicaid

recipients aged between 45 and 64 use the most prescription opioids. A CDC re-

port by Schieber et al. (2020) also shows that this age group, 45-64, has the largest

share of individuals with at least one opioid prescription filled and the largest

rate of opioid prescription per patient20. The results are reported in table 1.4,

18Other political variables were excluded due to lack of variation.
19Obtained from the ACS 2011-2017.
20Compared to the full ACA Medicaid eligible age range, 26-64, this age range also better isolates

the ages of individuals who gain coverage through the Medicaid expansions because younger
beneficiaries from non-expansion states could gain coverage via pregnancy.
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column (3). The estimates are smaller in magnitude, with an increase of about 40

Medicaid-paid opioid prescriptions per 1,000 individuals aged 19-64. This result

suggest that changes in the Medicaid population age composition could explain

part of the increase in utilization. In another sensitivity check that accounts for

migration, I re-estimate equation 1.1, using population shares of individuals aged

19–64 as a dependent variable. The results suggest that migration driven by the

Medicaid expansion, conditional on the covariates.21

In the next part, I consider the sensitivity of the estimates to the model it-

self. First, I include interaction terms of US Census Division and year indicators

to further control for trends in existing regional-specific characteristics, such as

opioid-related (both legal and illegal) or economic conditions, that might have in-

fluenced Medicaid utilization. Results are shown in table 1.5, column 1. Column

2 reports the results from the sample that excludes states with their own pre-ACA

Medicaid expansions. The estimates from both specifications are smaller in mag-

nitude than the main estimates. However, the changes are small, and the sign and

significance remain similar in most cases. One exception is that the effects on per-

population reimbursements (reported in panel A) become statistically insignifi-

cant. I present the results when re-estimating equation 1.1 without weighting in

column (3) as a reference. Last, column (4) reports the estimates when controlling

for state-specific pre-trends. The estimates are quantitatively similar to those in

Table 1.2 in most cases, with an exception of MMEs used per enrollee in Table 1.5

- Panel B, where the estimates are noisy and sensitive to different specifications

due to large standard errors. However, there are no specific patterns across the

specification.

21Results are not reported for brevity.
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1.9 Discussion and Conclusion

This essay investigates the effects of the Medicaid expansions on different mea-

sures of opioid analgesic utilization. The findings add to the understanding of

the Medicaid expansion’s role in the opioid epidemic and the ongoing discussion

of the ACA repeal. I find that the Medicaid expansion is also associated with an

increase in opioid analgesic prescriptions that were paid by Medicaid. There

is a consistently positive effect of the Medicaid expansion on per-population,

Medicaid-paid opioid prescriptions, with about a 30-50 percent increase in the

number of opioid prescriptions per 1,000 people ages 19–64. Per-enrollee pre-

scription use observes an increase of about 16 percent; however, in line with

previous studies, the per-enrollee estimates are not as robust. These results sug-

gest it is likely that the Medicaid expansion provides access to opioid painkillers

to more people, and the post-expansion enrollees were not particularly utilizing

more prescriptions. As the ACA Medicaid expansions targets low-income adults

aged 19-64, the increase in Medicaid-paid opioid prescriptions also reflects the

change in the composition of the post-expansion Medicaid population.

Results on Medicaid spending and MMEs also follow a similar pattern, with

evidence of higher per-population utilization but mixed results among per-

enrollee estimates. The estimates show relatively larger changes in the num-

ber of prescriptions compared to Medicaid spending and MME outcomes, which

suggests shorter or lower-dose prescriptions among the post-expansion Medicaid

population. Separate analyses of individual substances reveal that the increase in

prescriptions mostly comes from hydrocodone (more than 50 percent of all opi-

oids), which is less potent and more common for shorter prescriptions, compared

to other commonly prescribed opioids. Although the Medicaid expansion coin-

cides with a sharp increase in fentanyl-related overdose deaths, this essay does
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not find evidence that the expansion is associated with the fentanyl epidemic

through prescription fentanyl.

The findings can be evaluated in several layers. First, the Medicaid expansion

provides health care coverage at almost zero cost to lower-income individuals,

and it is well understood that low-income individuals are less healthy and are

likely to have higher prescription drug utilization, including opioid analgesic use.

In this sense, the expansion has served the target sub-population. The increase in

utilization may also come from beneficiaries who had other types of health insur-

ance before they were eligible for Medicaid, which represents a switch of payment

sources for prescription opioids. Under this mechanism, the Medicaid expansion

is less efficient in terms of serving the target population due to crowding out.

However, Saloner et al. (2018) find that the crowding-out effects on opioid pre-

scriptions filled by other payment sources (cash, private insurance, and Medicare)

are relatively small and not statistically significant.

The results do not suggest an unusual utilization pattern in opioid prescrip-

tions. In agreement with Goodman-Bacon and Sandoe (2017), the findings do

not conclude that the Medicaid expansions cause the opioid epidemic. However,

from the cost and benefit perspective, although it is important that the Medicaid

expansion has provided access to opioid misuse treatment and pain relievers, it

is as important for policymakers to pay attention to the risk of opioid usage. In

general, greater access to opioids comes with the risks of addiction, overdosing,

and possibly lead to increased addiction treatment utilization. These risks are not

limited to prescribed users but also extended to non-prescribed users.

This essays have some limitations. First, the data measure utilization only, so

I cannot control for beneficiaries’ characteristics or explicitly identify whether a

prescription is prescribed to a new patient or is a refill. The results, thus, do not

distinguish between changes in the intensive and the extensive margin. Second,
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because the SDUD only contains Medicaid utilization data, the results are limited

to the Medicaid population, which may not represent the effects of the ACA at

the national level. Another limitation is that this essay does not account for the

potential response from suppliers such as advertisements, physician incentives,

and new drug entrance. The scope of this essay also does not cover potential

spillover effects on non-opioid analgesic or illicit opioids. These points suggest

the next natural questions for future studies that aim for a deeper understanding

of the role of health insurance in the opioid epidemic.

1.10 Tables
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Table 1.1: Descriptive statistics (2013) - by Medicaid expansion status

(1) (2) (3)
Full sample Expansion Non-expansion

mean sd mean sd mean sd

Opioid utilization

Per 1,000 people ages 19–64
Total prescriptions 121.71 48.37 134.69 52.96 107.12 38.68
Morphine prescriptions 8.01 4.92 8.55 5.34 6.96 3.79
Hydrocodone prescriptions 21.85 12.32 22.26 12.60 21.17 11.83
Oxycodone prescriptions 40.44 23.76 46.98 24.77 27.79 15.09
Fentanyl prescriptions 4.51 3.39 4.05 2.94 5.27 3.91
Total Reimbursements 4,780 5,178 4,256 2,649 5,369 7,047
Total MMEs 111,057 59,356 124,295 62,836 88,760 46,369

Per 1,000 enrollees
Total prescriptions 453.68 148.20 471.73 145.39 433.37 151.78
Total Reimbursements 18,616 22,422 14,878 7,760 22,823 31,463
Total MMEs 412,241 189,761 444,270 196,677 358,298 168,853

State characteristics

Unemployment rate 6.79 1.75 7.23 1.87 6.36 1.54
Poverty rate 0.12 0.03 0.12 0.03 0.13 0.04
Percent female 0.51 0.01 0.51 0.01 0.51 0.01
Percent white 0.77 0.14 0.75 0.16 0.79 0.11
Percent uninsured 18.71 5.49 16.89 5.84 20.46 4.60
State minimum wage 7.42 0.71 7.68 0.72 7.17 0.62
Fr. of state house that is Democratic 0.47 0.18 0.60 0.15 0.34 0.10
Fr. of state senate that is Democratic 0.46 0.20 0.60 0.17 0.33 0.11
Share MCO 0.38 0.37 0.48 0.38 0.28 0.34

Opioid-related policies

PDMP-mandate 0.16 0.37 0.24 0.44 0.08 0.27
Pain clinic laws 0.20 0.40 0.13 0.34 0.32 0.48
Recreational marijuana laws 0.04 0.20 0.06 0.25 0.00 0.00

Observations 51 25 26

Notes: Expansion status is based on whether the state’s Medicaid is expanded in January 2014.
Medicaid reimbursements are measured in 2011 dollars. Table excludes prescription drug time
and dosage limit laws because states did not start to adopt these laws until 2016.
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Table 1.2: The effect of the Medicaid expansion on opioid utilization

(1) (2) (3)

Panel A

Prescriptions per 1,000 people 55.6*** 59.4*** 60.3***
(14.4) (11.9) (11.8)

Prescriptions per 1,000 enrollees 71.1** 74.6** 77.4**
(28.1) (29.1) (29.0)

Panel B

Reimbursement per 1,000 people 957.9** 928.6* 973.5**
(451.3) (492.1) (468.1)

Reimbursement per 1,000 enrollees 249.1 8.8 196.2
(1570.2) (1663.0) (1545.2)

Panel C

MMEs per 1,000 people 25,010.8*** 25,387.2*** 26,070.0***
(7,960.8) (8,543.9) (8,456.1)

MMEs per 1,000 enrollees 2,262.0 -247.1 2,282.2
(27,300.8) (29,931.7) (29,256.6)

State & year FEs Y Y Y
State characteristics N Y Y
Opioid-related policies N N Y
Observations 357 357 357

Notes: All specifications are weighted by state population ages 19–40. Standard
errors in parentheses are adjusted for heteroskedasticity and are clustered by
state. Reimbursement is measured in 2011 dollars. MMEs are calculated as:
drug strength×morphine equivalent factors×total units.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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Table 1.3: The effect of the Medicaid expansion on opioid utilization by commonly
prescribed drugs

(1) (2) (3) (4) (5)
Morphine Hydrocodone Oxycodone Fentanyl Other

Panel A - Per-population measures

Prescriptions 1.2 32.0*** 14.6*** 1.7** 10.9**
(0.8) (8.5) (5.4) (0.7) (4.5)

Mean 2013 8.0 21.9 40.4 4.5
(4.9) (12.3) (23.8) (3.4)

Reimbursement -56.3 468.5*** 515.8* -80.0 125.1
(122.7) (153.0) (261.0) (146.4) (101.3)

Mean 2013 465.8 336.6 2,057.8 697.8
(522.4) (186.9) (1,182.7) (1,859.1)

MMEs -716.4 11,729.3** 12,239.7** -103.0 2,909.3*
(2,115.5) (4,809.6) (4,766.9) (831.4) (1,653.8)

Mean 2013 18,679.8 10,531.8 59,057.3 9,092.5
(13,854.0) (6,423.6) (35,317.5) (6,122.1)

Panel B - Per-enrollee measures

Prescriptions -2.4 61.2*** 9.9 2.8 5.9
(2.2) (21.89) (9.4) (1.7) (12.4)

Mean 2013 29.8 80.8 151.5 18.1
(16.7) (45.3) (83.2) (15.6)

Reimbursement -540.9 872.1** 410.3 -587.3 37.7
(416.2) (394.4) (663.9) (670.5) (292.2)

Mean 2013 1,693.7 1,248.9 7,877.0 2,913.6
(1,591.5) (745.8) (4,603.8) (8,298.9)

MMEs -13,378.8* 20,826.3 -1,775.9 -4,055.7 594.0
(7,366.2) (12,619.9) (11,479.6) (3,064.7) (4,802.2)

Mean 2013 67,629.8 38,787.0 221,823.5 33,146.3
43,490.0 23,521.0 124,039.2 18,443.1

Observations 357 357 357 357 357

Notes: All specifications are weighted by state population ages 19–40. Standard errors
in parentheses are adjusted for heteroskedasticity and are clustered by state.
MMEs are calculated as: drug strength×morphine equivalent factors×total units.
Full-sample 2013 means and standard deviations are reported for reference.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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Table 1.4: Robustness checks for potential confounding factors

Share MCO Political controls Share of Medicaid
population
ages 45-64

Panel A - Per-population measures

Prescriptions 58.6*** 59.7*** 39.8***
(12.1) (11.4) (10.7)

Reimbursements 1,024.6* 930.1* 720.4*
(565.5) (468.3) (392.8)

MMEs 26,304*** 25,829*** 16826.5*
(8,185) (8,007) (9290.1)

Panel B - Per-enrollee measures

Prescriptions 74.6** 76.7** 49.6
(31.4) (29.0) (29.8)

Reimbursements 97.8 15.4 -95.7
(1,897) (1,618) (1608.8)

MMEs 1,735 1,662 -13857.2
(29,371) (29,711) (31241.9)

Observations 357 343 357

Notes: All specifications control for state opioid-related policies and include
state and year fixed effects. Regressions are weighted by state population ages
19–40. Standard errors in parentheses are adjusted for heteroskedasticity and
are clustered by state. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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Table 1.5: Specification sensitivity checks

Excluded early Census Div. & Unweighted Control for
expansion states year interactions pre-trends

Panel A - Per-population measures

Prescriptions 56.9*** 49.3*** 66.6*** 56.0***
(11.6) (11.0) (13.1) (11.9)

Reimbursements 872.2* 866.6 1,145.1 1,018.3**
(478.5) (633.3) (1071.5) (390.5)

MMEs 24,841*** 21,175*** 28,172*** 23,513**
(8,829) (7,207) (8,470) (10,977)

Panel B - Per enrollee measures

Prescriptions 70.7** 28.6 68.7** 76.3**
(28.6) (22.7) (27.4) (29.3)

Reimbursements 89.8 -904.6 -1,441.2 721.0
(1,539.9) (1,826.0) (3,336.0) (1,260.6)

MMEs -475 -24,229 -15,258 5,456
(29,832) (22,574) (24,135) (23,645)

Observations 322 357 357 357

Notes: All specifications control for state opioid-related policies and include state
and year fixed effects. Regressions are weighted by state population ages 19–40.
Standard errors in parentheses are adjusted for heteroskedasticity and are
clustered by state.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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1.11 Figures

Figure 1.1: Medicaid opioid prescriptions per population (1,000s) ages 19–64: 2013

Figure 1.2: Medicaid opioid prescriptions per population (1,000s) ages 19–64: 2014
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Figure 1.3: Medicaid utilization and reimbursement of opioids among treatment
and control states, 2011–2017: Total

Notes: Medicaid expansion status follows Henry Kaiser Family Foundation
(2019). Utilization measures are weighted by state population ages 19–64.

34



Figure 1.4: Medicaid utilization and reimbursement of opioids among treatment
and control states, 2011–2017, by drug: Oxycodone

Notes: Medicaid expansion status follows Henry Kaiser Family Foundation
(2019). Utilization measures are weighted by state population ages 19 - 64.
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Figure 1.5: Medicaid utilization and reimbursement of opioids among treatment
and control states, 2011–2017, by drug: Hydrocodone

Notes: Medicaid expansion status follows Henry Kaiser Family Foundation
(2019). Utilization measures are weighted by state population ages 19 - 64.
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Figure 1.6: Medicaid utilization and reimbursement of opioids among treatment
and control states, 2011–2017, by drug: Morphine

Notes: Medicaid expansion status follows Henry Kaiser Family Foundation
(2019). Utilization measures are weighted by state population ages 19–64.
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Figure 1.7: Medicaid utilization and reimbursement of opioids among treatment
and control states, 2011–2017, by drug: Fentanyl

Notes: Medicaid expansion status follows Henry Kaiser Family Foundation
(2019). Utilization measures are weighted by state population ages 19–64.
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Figure 1.8: Event-study results: Effect of the Medicaid expansions on opioid pre-
scriptions.

Notes: Estimates and 95% confidence intervals are results from estimating equation 1.3. t=0 is
the year of expansion, t=-1 is the reference year. Dependent variables are state-year counts of
prescriptions and are (a) divided by state population ages 19–64 (1,000s), (b) and divided by the number
of enrollees (1,000s).
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Figure 1.9: Event-study results: Effect of the Medicaid expansions on opioid re-
imbursement.

Notes: Estimates and 95% confidence intervals are results from estimating equation 1.3. Reim-
bursement is measured in 2011 dollars. t=0 is the year of expansion, and t=-1 is the reference
year. Dependent variables are state-year aggregate Medicaid reimbursement and (a) divided by
state population ages 19–64 (1,000s), (b) and divided by the number of enrollees (1,000s).
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Figure 1.10: Event-study results: Effect of the Medicaid expansions on opioid use,
in MMEs.

Notes: Estimates and 95% confidence intervals are results from estimating equation 1.3. MMEs
are calculated as: drug strength×morphine equivalent factors×total units. t=0 is the year of expansion,
and t=-1 is the reference year. Dependent variables are sum of state-year opioid use measured in
morphine milligram equivalents (MMEs) and are (a) divided by state population ages 19–64 (1,000s),
(b) and divided by the number of enrollees (1,000s).
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Chapter 2

Do Medicaid Expansions Affect Treatment Completion and Racial Disparities

in Substance-Use-Disorder Treatment Facilities?

2.1 Introduction

Substance use and its related issues are major concerns in the US, not only from

a public health perspective but also in economics and public security. Substance

use disorder (SUD) is characterized as a medical illness in which individuals

who suffer from this disease are incapable of controlling their use of drugs (legal

or illegal) and alcohol, which leads to negative consequences. Costs related to

substance use issues involve not only medical expenses and loss of life but also

costs related to crimes, loss of productivity, etc. Furthermore, individuals who

suffer from SUD are more likely to experience co-occurring mental issues. For

individuals with existing mental health conditions, the misuse of substances is

likely to worsen psychotic symptoms (Ross and Peselow, 2012).

Besides policies that aim to control and prevent substance-use-related issues,

providing treatments for people with SUD is also critical for public health and

safety (Bondurant et al., 2018; Chandler et al., 2009; McInerney, 2018). According

to the Centers for Medicare & Medicaid Services, health care costs for individuals

with untreated alcohol use disorders are twice as those who were treated. It is

also estimated that methadone treatment returns $4 to $5 for every $1 invested

(Medicaid.gov). However, only a small portion of individuals who are in need

of SUD treatment actually receive them. According to the Substance Abuse and

Mental Health Services Administration (SAMSHA) 2016 Short Report, 21.7 mil-

lion people who are 12 and older had a SUD in the past year. It is estimated

that only about 10.8 percent of them received SUD treatment (SAMHSA, 2016).
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Data from the SAMHSA also show that, among people who are admitted to a

SUD treatment facility, about 44 percent finish the treatment, which is less than 5

percent of individuals with SUD.

There are often barriers that prevent people with SUD from seeking the treat-

ment they need. Barriers to treatment include, but are not limited to, treatment

availability, access to diagnoses, stigma, lack of readiness, and financial resources

(Ali et al., 2017; Stringer and Baker, 2015). Beyond these resource-related barriers,

socio-demographic characteristics also affect individuals’ getting and completing

the appropriate SUD treatment. Racial disparities in health and healthcare have

been an issue of concern and research has generally found evidence of disparities

among people of color who are in need or who have had SUD treatment. Saloner

and Cook (2013) find that Blacks and Hispanics are less likely than Whites to

complete treatment for alcohol and drug misuse. Matsuzaka and Knapp (2019)

find that people of color have more treatment barriers compared to their White

counterparts. Lewis et al. (2018) report that African Americans experience longer

delays in treatment entry than Caucasians. Although there are many reasons for

discrepancies in treatment outcomes that are not easy to improve with a single

policy, health insurance can play a role in reducing financial barriers among racial

groups.

This essay aims to investigate to what extent an increase in insurance coverage

such as the Affordable Care Act (ACA) Medicaid expansions could affect treat-

ment discharge outcomes in SUD treatment facilities. It has been well-established

in the literature that Medicaid expansions increase health coverage among the

uninsured population. In terms of SUD treatment, earlier studies have found

that Medicaid expansions are associated with higher Medicaid coverage among

people who receive the treatment. There is also evidence of higher utilization of

outpatient medication-assisted treatment among people with opioid use disorder
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specifically (Meinhofer and Witman, 2018; Maclean and Saloner, 2019). However,

it is unclear how the increase in SUD treatment utilization translates to treatment

completion or incompletion in specialty facilities. Unlike most types of healthcare

services, SUD treatment has low completion and treatment retention rates. Be-

cause treatment completion depends on a variety of factors, coming from both the

patient and the facility (White et al., 2005), looking into completion/incompletion

outcomes deepens the understanding of the dynamic within specialty facilities.

Using data from the SAMSHA, I examine the effects of Medicaid expansions

on two main sets of outcomes: treatment discharge outcomes and disparities

across racial groups. Based on the variation in states’ decisions to expand Med-

icaid, I employ a difference-in-differences strategy in the form of an event-study

design. In general, I find little evidence that the treatment completion rate in SUD

treatment facilities is affected by Medicaid expansions. When looking into treat-

ment outcomes across subsamples of White, Black, and Hispanic patients, I find

some evidence of heterogeneous effects. Results from the White subsample follow

similar patterns to the full sample, while the treatment completion rate of Black

patients gradually decreases in the years after expansion. Further investigations

of other discharge outcomes reveal that Medicaid expansions do not affect the

percentage of patients who dropped out of treatment. However, there is sugges-

tive evidence that the percentage of patients whose treatments were terminated

by the facility may have gone up. Although this result should be interpreted

with caution due to pre-trends in some cases, the pattern is consistent for all

racial/ethnicity subsample analyses.
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2.2 Background

2.2.1 Mechanisms Medicaid Expansions Can Affect Admissions and Treat-

ment Outcomes

Medicaid expansions, along with the other parts of the ACA, may create re-

sponses from both the supply and demand of SUD treatment. An increase in

health insurance coverage can increase demand for SUD treatment by reduc-

ing the financial constraints for previously uninsured individuals who seek SUD

treatment. Based on the findings by Ali et al. (2016), affordability is a preva-

lent constraint among the uninsured population. Besides increasing access to

treatment via admissions, health insurance could also increase completion rate by

providing a continuous source of payment. For instance, uninsured individuals

may drop out of treatment because of financial instability. Also, having health in-

surance could provide a financial safety net for other types of care and encourage

patients to follow through with their treatment, as individuals who suffer from

SUD are more likely to have other co-morbid diseases. However, other factors

could influence treatment admissions and outcomes. Individuals who gain Med-

icaid coverage under Medicaid expansions but were previously insured under

private insurance may face fewer choices of facilities and treatment programs, al-

though existing evidence suggest that the number of individuals in this category

are likely small1. Also, moral hazard or inertia could make individuals less likely

to complete treatment if they rely on re-admissions due to lower costs.

Responses, or lack of responses, from the supply side can contribute to SUD

treatment outcomes through several channels. First, facilities that choose to accept

Medicaid can reach certain levels of capacity that prevent them from admitting

1Kaestner et al. (2017) find little evidence that the Medicaid expansions were associated with
changes in work effort. Abramowitz (2018) finds some evidence of switching coverage from
employer-sponsored to Medicaid. However, the estimate was small.
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additional patients. Crowded facilities may also face other constraints, such as

staffing and technology, which can affect the quality of treatment among admit-

ted patients. Second, facilities may have to adapt to the new mix of admitted

patients. These changes can lead to spillovers to treatment outcomes of patients

that are covered by other insurance types (i.e., patients with private or Medicare

coverage, etc.) and patients who were previously eligible for Medicaid. Third, be-

cause the Affordable Care Act characterizes SUD treatment as an essential health

benefit that insurers are required to cover2, facilities may face a general increase

in demand, which can create additional pressure in those that are located in an

expansion state.

For patients from minority racial groups, there could be factors, other than

those discussed above, that influence SUD treatment outcomes in the presence of

an increase in Medicaid coverage. Availability of treatment coverage may not be

obvious to minority patients due to language barriers or lack of facilities/referral

systems in areas that have a higher minority population and potential discrimina-

tion against patients from minority racial groups (Matsuzaka and Knapp, 2019).

2.2.2 Prior Literature

Medicaid Expansions and SUD Treatment.— Studies on the association between

health insurance and SUD treatments have been largely focusing on opioid treat-

ment outcomes, many of which find that Medicaid expansions are associated with

higher Medicaid coverage for SUD admissions (Wen et al., 2017; McKenna, 2017;

Andrews et al., 2018; Maclean & Saloner, 2019). Maclean and Saloner (2019) also

find a decrease in the share of individuals who did not have health insurance or

those who received payment support from other state and local programs.

Several other papers find an increase in utilization of treatment services and

2For a list of 10 categories of health benefit that insurers must cover, see https://www.healthca

re.gov/coverage/what-marketplace-plans-cover/
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admissions for opioid use disorder (Meinhofer & Witman, 2018; Maclean & Sa-

loner, 2019; Saloner &Maclean, 2020). Meinhofer & Witman (2018) also find no

evidence that the increase in treatment admissions from Medicaid beneficiaries

is crowding out of other types of health insurance. Saloner & Maclean (2020)

find that by the fourth year after Medicaid expansions, total admissions to SUD

treatment facilities increase by 36 percent. Treatment admissions for alcohol and

opioid disorders also increase due to Medicaid expansions.

There has also been evidence that Medicaid expansions are associated with a

higher number of specialty facilities that offer medication-assisted treatment such

as injectable naltrexone and buprenorphine for opioid use disorder (Abraham

et al., 2020) and antidepressants for psychiatric treatment (Shover et al., 2019).

However, Abraham et al. (2020) also note that the increase in naltrexone and

buprenorphine treatment mostly comes from nonprofit and for-profit programs,

which take up less than 10 percent of the treatment system.

On the contrary, there are also studies that do not find Medicaid expansions

are associated with a change in SUD treatment service utilization. Feder et al.

(2017), find no evidence of changes in treatment service use among people with

heroin use disorder, despite higher coverage. Olfson et al. (2018) find no changes

in treatment service use among the low-income population. A study by Andrews

et al. (2018) also finds no evidence that Medicaid expansions are associated with a

change in the numbers of clients despite an increase in Medicaid-insured patients.

Medicaid Expansions and Racial Disparities in Healthcare.— Studies that ex-

amine the relationship between the ACA/Medicaid expansion and health cover-

age have reported a general reduction in the coverage gap among racial groups

(Sommers et al., 2015; Buchmueller et al., 2016; Courtemanche et al., 2019; Buch-

mueller and Levy, 2020). However, results for the racial gap of health care access
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and health-related outcomes are mixed. Yue et al. (2018) find a widening gap in

healthcare access among Hispanics. Sommers et al. (2017) find that lower quality

of care remains an issue in health disparities across racial groups. Breathett et al.

(2017) find an increase in heart transplant rate among African American patients

in expansion states, while there is no significant change among Caucasian and

Hispanic patients.

Racial Disparities in SUD Treatment.— Papers in this area have found evidence

of racial gaps in both SUD treatment progression and completion. Saloner and

Cook (2013) find that Blacks and Hispanics were 3.5–8.1 percentage points less

likely than whites to complete treatment for alcohol and drugs, and Native Amer-

icans were 4.7 percentage points less likely to complete alcohol misuse treatment.

Mennis et al. (2018) find that Blacks and Hispanics are less likely to complete

treatment, and they also take longer to complete treatment. These results moti-

vate the question of whether Medicaid expansions have an impact on treatment

access and quality among minorities with substance use disorder issues, which

can provide a better understanding of how to improve treatment outcomes for

minority patients.

The mixed results among papers that study the association between Medicaid

expansions and SUD outcomes reflect the complexity of SUD treatment systems.

They could also reflect that different groups in the population respond differently.

Moreover, because completion rates in SUD treatment facilities are generally low

(less than 50 percent), it is important to investigate whether the Medicaid expan-

sions lead to a change in treatment completion.

This essay contributes to the literature by examining the role of Medicaid ex-

pansions in specialty treatment facilities beyond admissions. Studying the as-

sociation between the Medicaid expansion and treatment completion and other
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discharge outcomes also helps expand the understanding of responses from both

the demand and supply for SUD treatment. By examining additional years after

states expanded Medicaid, results from this study provide a closer look at longer-

term effects of Medicaid expansions as compared to existing works. To the best

of my knowledge, this is the first paper that explores the role of health insurance

in racial disparities in SUD treatment completion outcomes. Because such dis-

parities in health and healthcare, especially in SUD treatment, is still a prominent

issue, this essay informs policymakers of areas that need additional attention in

terms of increasing treatment effectiveness, especially for vulnerable populations.

2.3 Data

Data come from the Treatment Episode Data Set (TEDS) discharge data by the

Substance Abuse and Mental Health Services Administration (SAMHSA). The

TEDS is a data system that records yearly admissions (TEDS-A) and discharges

(TEDS-D) from SUD facilities that receive public funding. Data are reported by

state and year. This essay uses data recorded in the TEDS-D dataset to focus on

discharge-related outcomes. The TEDS do not include data from all SUD facilities.

According to the National Survey of Substance Abuse Treatment Services (N-

SSATS), in 2013, 57% of all SUD treatment facilities receive received federal, state,

or local government funds or grants. The study period ranges from 2008 to 2018.

I exclude data prior to 2008 to minimize the potential changes associated with the

Mental Health Parity and Addiction Equity Act (MHPAEA) in 20083.

3The MHPAEA requires health insurance providers to cover the same benefit level of mental
and/or SUD treatment as what they cover for medical and surgical services.
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2.3.1 Outcome Variables

Outcomes variables for SUD discharges are based on the questions asked in the

TEDS data. The first set of outcome variables is built upon the reasons for dis-

charge recorded in the data. These reasons include finishing treatment, dropping

out of treatment, termination by facility, transfer to other programs, incarcera-

tion, death, and other unstated reasons. Based on these classifications, I define

completion of treatment as when patients’ reasons of discharge are categorized

under “finish treatment.” Other discharge reasons are referred to as incompletion

of treatment. One thing to note in the TEDS data is that individuals represent ad-

missions rather than unique patients (i.e., an individual that was admitted twice

shows up as two separate admissions in the data). Therefore, throughout essay

paper, the term “patient” represents admissions, unless stated otherwise.

Next, based on information about patients’ time of stay at the facility, I con-

struct 2 additional outcomes: length of stay (measured in days) if the stay is 30

days or fewer and an indicator of whether the patient stays more than 30 days4

I also construct subsamples based on the substance disorder which the patients

reported at admission. These substances of treatment include alcohol, heroin,

cocaine, marijuana, and other opiates, including prescription opioids and non-

prescription methadone.

2.3.2 Control Variables

Control variables in individual analyses can be grouped into 3 categories. The

first category contains individual socio-demographic characteristics. The TEDS

include age categories (below 18, 18-24, 25-54, and over 55), education levels (less

than high school, high school, and more than high school), employment, gender,

4Length of stay information is recorded by days if the stay lasts less than 30 days but is recorded
in 7 to 15 days intervals if the stay lasts more than 30 days.
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race, and whether the patient is Hispanic. The second control group includes

individual treatment-related characteristics: whether the patient was admitted

with a narcotic disorder5, whether the patient has co-occurring substance misuse

and mental disorder, and the number of substances reported at admission. The

third group controls for state characteristics: the number of SUD treatment centers

in each state (obtained from the N-SSATS) and the fractions of State House or

Senate that are Democratic (National Welfare Data, collected by the University of

Kentucky Center for Poverty Research).

2.4 Methodology

States’ treatment status depends on the years states expand their Medicaid, either

through the ACA or equivalent programs. States that expanded Medicaid will

remain treated throughout the study period. Similar to the previous chapter6,

treatment states include those that expanded Medicaid before, during, and after

2014. States that did not expand Medicaid remain control states for the whole

period.

Difference-in-differences designs rely on the assumption that in absence of

Medicaid expansions, treatment outcomes in expansion and non-expansion states

would follow similar trajectories, conditional on the observables. Therefore, al-

lowing expansion time to vary years before and after expansions, in the form of an

event-study, can examine the validity of this assumption. This strategy brings an-

other advantage. Compared to most other types of health service utilization, SUD

treatment outcomes can experience a more gradual effect due to the complexity

of the treatment system (i.e., referral system). Other barriers such as stigma and

5I classify admissions as associated with a narcotic disorder when individuals are reported to
have a misuse disorder with at least one of the following substance: heroin, non-prescription
methadone, prescription, and other opioids.

6See Table A.1.
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procrastination in seeking treatment could also slow down the potential effects.

An event-study model will allow a continual observance of the post-period. The

model is described in equation 2.1.

Yist = α +
3

∑
τ=−3,τ 6=−1

βτ(Medicaidsτ) + β−4Medicaid−4 + β4Medicaid4 + γXist

+δPst + ηs + λt + εist

(2.1)

Yist is a measure of individual i’s treatment quality or completion. The β param-

eters, for −3 ≤ τ ≥ 3, measure the effect of Medicaid expansions on individual

treatment quality or completion if year t is τ years after state s expanded Medi-

caid. Appendix Table B.1 shows how the treatment (Medicaid expansion) periods

are distributed based on states’ expansion years. Accordingly, τ < 0 indicate

pre-expansion periods. I limit the event-study to a window of four years before

and after expansion, which spans the most states in the sample. Medicaid−4 and

Medicaid4 are indicators that equal 1 if period t is 4 or more year before and after

the expansion, respectively7. The identification assumption for a difference-in-

differences model means that βτ (for all τ < 0) would equal zero. In other words,

the test for pre-treatment trends is equivalent to the t-test that β−3 to β−2 equal

zero, as τ = −1 is omitted as the reference year. Xist is a vector of individual

characteristics. Pst controls for state characteristics. δs and αt control for state

fixed effects and year fixed effects, respectively, and εist is the error term. All

specifications are weighted by states’ 2010 Census population. Standard errors

are adjusted for heteroskedasticity and are clustered by state.

7These two indicators can be influenced by compositional characteristics of late or early expanders.
Thus, I will exclude them from the interpretations.
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2.5 Results

2.5.1 Descriptive Statistics

Figure 2.1 shows the breakdowns of all discharge reasons. Throughout the study

period, 43.9 percent of admissions were discharged through completion. About

25.8 percent of admitted patients drop out of treatment against professional ad-

vice, and 6.9 percent of admissions were terminated by the facility. Facilities also

record transfers to other facilities as discharges, which take about 16.3 percent of

all admissions.

Table 2.1 summarizes important characteristics of admissions included in the

dataset, from 2008 to 2013. In the full sample, patients admitted to specialty fa-

cilities in expansion states have similar completion rate to those in non-expansion

states. Around 43-44 percent of admitted patients finish their treatment. The

proportions of non-completion discharge are relatively similar between the two

groups, except for that admitted patients in expansion states are more likely to

drop out of treatment than those in non-expansion states (30 percent vs. 21 per-

cent). Demographic characteristics, such as age and gender compositions, are

comparable between the two groups. However, “currently working” status is

slightly more prevalent among patients in non-expansion states. Treatment dis-

charge reasons in the White subsample follow similar patterns to the full sample,

although patients in expansion states are more likely to have higher education.

The discrepancies in discharge reasons between expansion and non-expansion

states are more prominent in the Black and Hispanic subsamples.

Table 2.2 provides the summary statistics of state characteristics for the period

2008 to 2013. On average, the number of SUD treatment centers in expansion

states almost doubles the number of centers in non-expansion states (682 vs. 346).

Based on this large difference, I decide to include the number of facilities as a con-
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trol in later analyses. Political characteristics are also drastically different between

the two groups, with expansion states have a higher rate of Democratic members

in state House and Senate.

2.5.2 Treatment Completion

Figure 2.2 reports the event-study results for the effects of Medicaid expansions on

SUD treatment completion. There is no evidence that Medicaid expansions have

affected the treatment completion rate. Throughout the post-period, the estimates

are close to zero and are statistically insignificant. The pre-period estimates are

also being statistically insignificant, which confirms the validity of the baseline

model.

Table 2.3 shows the association between patients’ characteristics and treatment

completion. Older patients appear to have higher completion rate than younger

patients. Higher education and employment also increase completion rate. Fe-

male individuals are less likely to complete SUD treatment (-2.82 percentage

points), while White individuals, on average, are more likely to complete treat-

ment (5.29 percentage points). Among substance-use-related characteristics, hav-

ing a narcotic disorder is associated with a reduction of 12.91 percentage points

in completion rate, and having a co-occurring mental disorder is associated with

a 3.74-percentage-point reduction in treatment completion.

Treatment Completion By Substance.— In this section, I examine whether Medi-

caid expansions affect the treatment completion rate of each substance disorder.

Figure 2.3 presents the portions of patients who reported having a use disorder of

each substance. Individuals can report up to three substances at admission. Alco-

hol is the most common substance. More than 50% of SUD treatment admissions

involve alcohol use disorder. The second common substance is marijuana, which
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appears in 37% of admissions. Figure 2.4 reports the results for disorder treat-

ment that involve alcohol, cocaine, and marijuana. Figure 2.5 reports the results

for disorder treatment that involve heroin and other opiates. Treatment comple-

tion among patients who have a cocaine, marijuana, or heroin disorder increase

slightly when states expand Medicaid. However, these effects are not substantial.

2.5.3 Other Discharge Outcomes

I then turn to investigate whether Medicaid expansions influences non-

completion discharge outcomes (Results shown in Figures 2.6 and 2.7). There is

no significant effect on the percentage of patients who drop out of their treatment

or who are transferred to another facility. However, I find suggestive evidence that

the percentage of patients whose treatments are terminated by the facility, also re-

ferred to as administrative discharge, has increased due to Medicaid expansions.

Results also show a negative association between Medicaid expansions and the

percentage that patients are discharge due to incarceration, which is lowered by

about 0.36 percentage points, or 16 percent, by the fourth year of expansion.

Figures 2.8 and 2.9 show the results for the length of stay, measured in days if

the stay is shorter than 30 days, and the probability that the stay last more than

30 days. Figure 2.8 shows no change in the length of stays that lasts fewer than

30 days. Results for stays that last longer than 30 days, however, are inconclusive

due to pre-trends.

2.5.4 Racial Disparities in Treatment Completion and Discharge Outcomes

Treatment Completion.— To examine whether Medicaid expansions influence

disparities in SUD outcomes, I re-estimate the main model for each of the

racial/ethnicity subsamples: White, Black, and Hispanic. Results are shown in

Figure 2.10. Similar to the estimates from the full sample, treatment comple-

55



tion among White and Hispanic patients do not seem to change due to Medicaid

expansions. Among Black patients, the treatment completion rate seems to go

down after expansion, although the estimates are not significant during earlier

years. By the fourth year after the expansion, the completion rate among Black

residents has gone down by 4.13 percentage points, which is 9.58 percent from the

pre-expansion mean. In a study that examines the effect of Medicaid expansions

on admissions to SUD facilities, Saloner and Maclean (2020) find an increase in

aggregate admissions during the third and fourth years after Medicaid expan-

sions among White and Hispanic patients, but there is no change in admissions

among Black patients. Therefore, in this case, it is worth noting that there is some

negative effect on the treatment completion rate among Black patients. On one

hand, these results suggest that there may be some underlying reasons that ad-

versely influence treatment completion among Black patients. On the other hand,

the results may come from the compositional differences in Medicaid eligibility

and price sensitivity for SUD treatment across racial groups.

To further investigate to what extend the compositional differences affect the

results, I first examine whether Medicaid expansions are associated with a change

in the racial distribution across patients. Specifically, I run three regressions, fol-

lowing a difference-in-differences framework, with patient racial indicators as

dependent variables. Results are reported in Table 2.4. Accordingly, Medicaid

expansions are not associated with the probability that a patient is White or His-

panic. However, the probability that a patient is Black lowers by 2.5 percentage

points. These results are consistent with the findings by Saloner and Maclean

(2020), which suggest that the lower treatment completion rate associated with

Medicaid expansions is not likely to come from an influx of Black patients. Sec-

ond, I turn to test whether Medicaid expansions influence patient characteristics

that are related to Medicaid eligibility or SUD treatment demand elasticity. Medi-
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caid eligibility characteristics include whether the patient’s age is between 18-548,

patients’ level of education and employment status (as proxies for income eligibil-

ity). Patient characteristics that can influence the price elasticity of SUD treatment

include the number of substances and indicators of the substances with which the

patient was involved. Results in Table 2.5 show almost no evidence that Medicaid

expansions are associated with changes in relevant patient characteristics, and the

difference between racial groups is minimal. These results suggest that the po-

tential effects coming from patient composition would not be substantial in this

case.

Other Discharge Outcomes.— Results for other, non-completion discharge rea-

sons are shown in Appendix Figures B.1 to B.4. For all subsamples, Medicaid

expansion does not seem to affect the rate of patients who drop out of treatment

against professional advice, which is consistent with full-sample results. There is

also evidence that the rate of administrative discharge increases when states ex-

pand Medicaid. Although pre-trend exists in the Black subsample, for the White

and Hispanic subsample, in which there are no pre-trends, the estimates show a

positive association between Medicaid expansions and the percentage of admin-

istrative discharge.

2.5.5 Robustness Checks

In this section, I consider alternative specifications to assess the model’s validity

and results’ robustness. Panels (a) to (d) of Figure 2.11 present specifications that

test for potential issues of omitted variable bias. In Panel (a), the specification

includes only state and year dummies as covariates. Panel (b) excludes political

8Under the ACA, Medicaid expansions mostly affect individuals aged between 19 and 64. How-
ever, the TEDS records patient age in categories: less than 18, 18-24, 24-54, and over 55. Therefore,
I define eligible age based on the categories closest to 19-64.
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controls. Panel (c) controls for states’ economic characteristics by adding unem-

ployment and poverty rates to the baseline model. Panel (d) controls for Prescrip-

tion Drug Monitoring Programs, which could be a confounder between states’

underlying substance-use conditions and their decisions to expand Medicaid.

In Panel (e), I exclude early expansion states from the sample to check for

potential heterogeneity in effects between states that expanded early and states

that expanded under the ACA Medicaid expansions. The specification in Panel

(f) accounts for the fact that the number of existing treatment centers in a state

may affect the trend in treatment outcomes. I include interactions of the number

of SUD specialty centers in 2010 (time-invariant) and a time trend. In Panel (g), I

present the results from a specification that allows a longer pre-expansion period

and a more balanced sample. To avoid dropping too many states, I exclude early

expansion states (CA, CT, D.C., MN, NJ, and WA), states that had their own prior

expansions (DE, MA, NY, and VT), and states that expanded after 2015 (LA and

MT). Results from this specification show a slight decrease by the third year after

expansion. However, the effect becomes insignificant during the following year.

All specifications in Figure 2.11 show robust results that the treatment completion

rate is not affected by Medicaid expansions. There are also no significant pre-

trends among these specifications.

For racial subsamples of White, Black, and Hispanic patients, I present the

results of robustness checks in Appendix Figures B.5 to B.9. From Appendix

Figures B.5 to B.8, results are consistent that there are no significant changes in

completion rate of White patients. It is also consistent that Black patients expe-

rience a reduction in completion rate. For the Hispanic subsamples, pre-trends

are present in some cases, and the results seem to be sensitive to certain speci-

fications. In the cases with no significant pre-trends, the effects from Medicaid

expansions are generally around zero. In Appendix Figure B.9, the estimates for
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the White and Black samples are visually similar to the results for all racial groups

in Figure 2.11. There is, however, some pre-trends for the Hispanic sample.

I include another set of robustness checks for the racial subsamples, in which

specifications are weighted by states’ White, Black, and Hispanic populations,

respectively. This approach redistributes weights according to groups’ population

instead of states’ population. Results are reported in Appendix Figure B.10. White

and Hispanic subsamples continue to show no effect. Results from the Black

subsample continues to show a negative effect with a larger magnitude of the

estimates, compared to the main model.

2.6 Discussion

By providing health insurance coverage to low-income individuals, Medicaid ex-

pansions have provided access to many types of health services, including treat-

ment for individuals with SUD. Previous works have found that Medicaid expan-

sions are associated with higher number of admissions to SUD treatment facili-

ties. This essay investigates how Medicaid expansions affect the completion rate

and treatment discharge outcomes of people who are admitted to these specialty

facilities.

Analyses of all admitted patients within SUD treatment facilites show no sig-

nificant association between Medicaid expansions and the treatment completion

rate. However, in subsample analyses, there is some evidence of a heterogeneity

in the treatment completion rate across racial/ethnicity groups. While Medicaid

expansions have no significant effects on treatment completion of White patients,

the results suggest a reduction in SUD treatment completion rate among Black

patients.

Analyses on non-completion discharge outcomes find suggestive evidence that

the percentage of administrative discharges may have gone up in states that ex-
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panded Medicaid. The percentage of patients who dropped out of the treatment,

however, does not seem to be affected by Medicaid expansions, regardless of the

patient’s race or ethnicity. These results suggest that moral hazard is not likely to

be the leading cause of a lower treatment completion rate in certain populations,

and the completion rate could be improved with appropriate adjustments in the

treatment system.

This study has some limitations. The TEDS does not include data from all SUD

treatment facilities. Therefore, interpretations only apply to facilities that receive

public funds. However, these facilities are more relevant in terms of policies,

compared to those that do not receive public funds.

Overall, treatment completion among minority groups appear to be more sen-

sitive to the changes associated with Medicaid expansions. Among these sub-

populations, the treatment completion rate tends to go down in subsequent years

rather than immediately after Medicaid expansions. This pattern is parallel to

the finding of gradual increase in admissions to specialty facilities by Saloner &

Maclean (2020).

Based on findings from existing works, the lack of existing treatment/referral

network and lower quality of care may have contributed to health disparities

across racial groups. However, to unravel these underlying reasons requires fur-

ther investigations that are outside the scope of this essay. Although results from

this essay do not show substantial differences among racial groups,the results

suggest that better-targeted attention can help improve SUD treatment outcomes

for minority patients.

2.7 Tables
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Table 2.1: Summary statistics: individual characteristics

Full Sample White Black Hispanic

Exp Non-exp Exp Non-exp Exp Non-exp Exp Non-exp
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Finish treatment (%) 44.01 49.64 43.19 49.53 45.97 49.84 43.02 49.51 43.31 49.55 38.78 48.73 41.04 49.19 50.72 49.99
Dropped out (%) 30.49 46.04 21.05 40.76 28.06 44.93 21.49 41.08 31.75 46.55 23.11 42.15 35.08 47.72 15.74 36.42
Facility terminated (%) 5.39 22.59 8.27 27.54 5.63 23.05 6.91 25.36 6.92 25.38 8.50 27.89 3.74 18.98 13.24 33.90
Transferred (%) 14.85 35.56 16.96 37.53 14.85 35.56 18.89 39.14 12.78 33.39 17.99 38.41 15.83 36.51 8.52 27.91
Incarcerated (%) 2.24 14.78 2.27 14.89 2.00 14.01 2.22 14.74 2.41 15.34 2.52 15.66 2.63 16.01 1.95 13.82
Death (%) 0.21 4.63 0.32 5.60 0.22 4.71 0.35 5.94 0.19 4.38 0.28 5.28 0.22 4.70 0.13 3.65
Length of stay (≤30 days) 23.30 13.42 22.59 13.52 23.01 13.42 21.81 13.70 22.06 13.77 23.35 13.41 24.79 13.02 24.48 12.61
Stay one month 0.55 0.50 0.53 0.50 0.53 0.50 0.50 0.50 0.51 0.50 0.56 0.50 0.60 0.49 0.60 0.49

Prior treatment 0.66 0.48 0.48 0.50 0.68 0.47 0.50 0.50 0.70 0.46 0.47 0.50 0.59 0.49 0.36 0.48
Number of substances 1.75 0.72 1.75 0.82 1.79 0.75 1.79 0.83 1.78 0.71 1.68 0.80 1.67 0.66 1.73 0.79
Narcotic 0.31 0.46 0.24 0.43 0.38 0.48 0.30 0.46 0.20 0.40 0.09 0.29 0.28 0.45 0.23 0.42
Mental Disorder 0.24 0.43 0.41 0.49 0.29 0.45 0.42 0.49 0.24 0.43 0.36 0.48 0.16 0.36 0.46 0.50

Ages less than 18 0.01 0.12 0.02 0.12 0.01 0.08 0.01 0.10 0.01 0.11 0.01 0.12 0.03 0.18 0.04 0.20
Ages 18-24 0.23 0.42 0.26 0.44 0.24 0.43 0.24 0.43 0.16 0.36 0.22 0.42 0.27 0.45 0.38 0.48
Ages 25-54 0.60 0.49 0.61 0.49 0.61 0.49 0.64 0.48 0.61 0.49 0.60 0.49 0.59 0.49 0.52 0.50
Ages over 55 0.15 0.36 0.12 0.32 0.14 0.35 0.12 0.32 0.23 0.42 0.16 0.37 0.11 0.31 0.06 0.24

Less than highschool 0.38 0.48 0.37 0.48 0.27 0.44 0.31 0.46 0.43 0.50 0.42 0.49 0.56 0.50 0.55 0.50
Highschool 0.40 0.49 0.40 0.49 0.44 0.50 0.43 0.49 0.39 0.49 0.39 0.49 0.33 0.47 0.31 0.46
More than highschool 0.22 0.42 0.23 0.42 0.29 0.45 0.27 0.44 0.17 0.38 0.19 0.39 0.11 0.32 0.14 0.35
Currently working 0.19 0.39 0.23 0.42 0.23 0.42 0.24 0.43 0.10 0.31 0.18 0.38 0.17 0.37 0.24 0.42
Female 0.32 0.47 0.37 0.48 0.35 0.48 0.40 0.49 0.29 0.45 0.32 0.47 0.29 0.45 0.33 0.47

Observations 5,725,503 1,588,956 3,260,708 1,095,115 1,175,821 301,071 905,335 85,716

Notes: Statisics are based on individual-level TEDS-D data 2008-2013. Data are weighted by state Census 2010 population.
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Table 2.2: Summary statistics: state characteristics

(1) (2)
Expansion Non-expansion

Mean SD Mean SD
Number of treatment centers in state 682.24 547.03 346.41 173.20

Unemployment rate 8.57 2.00 7.64 1.94
Poverty rate 14.13 2.76 14.92 2.73
State minimum wage 7.53 0.61 6.87 0.74

Fraction of State House that is Democrat 0.64 0.08 0.40 0.08
Fraction of State Senate that is Democrat 0.57 0.11 0.38 0.09

Observations 172 107

Notes: Data come from TEDS-D 2008-2013. Data are weighted by state Census
2010 population.
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Table 2.3: Effect of Medicaid expansions on SUD
treatment completion: individual controls

Aged 18-24 2.07**
(0.90)

Aged 25-54 6.46***
(1.70)

Aged over 55 10.56***
(1.63)

Highschool 4.17***
(0.48)

More than highschool 7.62***
(0.94)

Currently working 2.43*
(1.21)

Female -2.82***
(0.28)

White 5.29***
(0.91)

Reported a narcotic substance -12.91***
(2.14)

Having a co-occuring mental disorder -3.74***
(0.51)

No. of substances report at admission -0.62
(0.84)

No. of treatment centers in state 0.00
(0.01)

Constant 36.24***
(5.99)

Observations 12,234,293

Notes: Table reports estimates of individual char-
acteristics control in equation 2.1. Specification is
weighted by state’s 2010 Census population. Stan-
dard errors are adjusted for heteroskedasticity and
are clustered by state. ∗∗∗ p < 0.01; ∗∗ p < 0.05;
∗ p < 0.1

63



Table 2.4: Effect of Medicaid expansions on patients’ racial
indicators.

White Black Hispanic

Medicaid Expansion 0.012 -0.025*** 0.003
(0.008) (0.006) (0.005)

Mean 0.533 0.218 0.226
Observations 12,234,293 12,234,293 12,234,293

Notes: Results from difference-in-differences analysis. Regres-
sions control for state, year fixed effects, and state characteristics.
Data is weighted by 2010 Census population. Standard errors in
parentheses are adjusted for heteroscedasticity and are clustered
by state. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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Table 2.5: Effect of Medicaid expansions on patient characteristics,
by race/ethnicity.

White Black Hispanic

Age 18-54 -0.001 0.005 -0.017
(0.006) (0.009) (0.016)

Mean 0.853 0.762 0.860

Currently Working 0.005 -0.005 0.012
(0.005) (0.007) (0.010)

Mean 0.232 0.105 0.168

More than Highschool 0.007 -0.002 0.000
(0.008) (0.006) (0.005)

Mean 0.287 0.172 0.113

Number of substances involved 0.027 0.009 0.016
(0.023) (0.023) (0.013)

Mean 1.785 1.780 1.674

Alcohol -0.003 -0.010 -0.010
(0.014) (0.014) (0.012)

Mean 0.540 0.590 0.485

Cocaine 0.010 0.003 0.019**
(0.008) (0.011) (0.008)

Mean 0.183 0.456 0.196

Marijuana 0.020 0.004 0.006
(0.015) (0.012) (0.007)

Mean 0.335 0.429 0.391

Heroin 0.001 0.007 -0.005
(0.011) (0.009) (0.010)

Mean 0.243 0.177 0.247

Non-Rx Methadone -0.002 -0.000 0.000
(0.001) (0.000) (0.000)

Mean 0.008 0.003 0.004

Other Opioids -0.011 -0.004 -0.011***
(0.009) (0.002) (0.002)

Mean 0.169 0.024 0.038

Observations 7,884,896 2,398,425 1,172,734

Notes: Results from difference-in-differences analysis. Regressions con-
trol for state, year fixed effects, and state characteristics. Reported means
are calculated using data from the TEDS 2008-2013. Data is weighted by
2010 Census population. Standard errors in parentheses are adjusted for
heteroscedasticity and are clustered by state. ∗∗∗ p < 0.01; ∗∗ p < 0.05;
∗ p < 0.1
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2.8 Figures

Figure 2.1: Breakdown of discharge reasons

Notes: Data come from TEDS-D 2008-2018.
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Figure 2.2: Effect of Medicaid Expansions on SUD treatment completion

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is the
year of expansion, and t=-1 is the reference year. Specification is weighted by state’s 2010 Census

population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.3: Substance use disorder reported at admission

Notes: Data come from TEDS-D 2008-2018. Graph show the frequency a substance being
reported. An individual can report up to three substances of use disorder.
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Figure 2.4: Effect of Medicaid expansions on SUD treatment completion - by
substance

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.5: Effects of Medicaid expansions on SUD treatment completion - by
substance (cont.)

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.6: Effect of the Medicaid expansions on non-completion discharge

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.7: Effect of the Medicaid expansions on non-completion discharge

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.8: Effect of the Medicaid expansions on length of stay (≤30 days)

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is the
year of expansion, and t=-1 is the reference year. Specification is weighted by state’s 2010 Census

population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.9: Effect of the Medicaid expansions on stay >30 days

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is the
year of expansion, and t=-1 is the reference year. Specification is weighted by state’s 2010 Census

population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.10: Effect of the Medicaid expansions on racial disparities in treatment
completion

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.11: Robustness checks

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.11: Robustness checks (cont.)

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure 2.11: Robustness checks (cont.)

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by
state. Sample excludes: CA, CT, DE, D.C., LA, MA, MN, MT, NJ, NY, VT, WA.
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Chapter 3

School Reopenings, Mobility, and COVID-19 Spread: Evidence from Texas1

3.1 Introduction

The COVID-19 pandemic has led to gut-wrenching decisions about whether and

when to open schools for in-person instruction. Ideally, these decisions would be

made from an evidence-based cost-benefit analysis. However, initially there was

very little evidence to make these decisions, and only recently has more informa-

tion become available. On the benefit side, recent research suggests that remote

learning leads to significant learning loss, especially among disadvantaged popu-

lations (Kuhfeld et al., 2020; Kuhfield and Tarasawa, 2020; Maldonado and Witte,

2020). Remote learning also could lead to delayed social and emotional develop-

ment and reduced detection of child abuse as teachers are often at the front lines

of detection (Schmidt and Natanson, 2020). In addition, remote learning could

lead families to make difficult decisions between working and staying home with

young children, which could dampen the speed of the economic recovery (Green

et al, 2020; Council of Economic Advisers, 2020). Together, this suggests that

opening schools could improve student learning and social and emotional devel-

opment while minimizing the possibility of child abuse.

On the cost side, there are concerns of health risks for students, staff, and the

larger community as the openings could further spread COVID-19. These con-

cerns have been championed by teacher unions, which argue that schools should

open only when they are safe (Hurt, Ball, and Wedell, 2020). However, a Centers

for Disease Control and Prevention (CDC) report examining 17 rural Wisconsin

schools using contact tracing found minimal transmission both within and out-

1This chapter is joint work with Charles Courtemanche, Aaron Yelowitz, and Ronald Zimmer.
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side of the schools (Falk et al., 2021). Other investigations of known cases among

students and staff – such as Doyle et al.’s (2021) study of Florida and Emily Os-

ter’s K-12 COVID-19 dashboard – tend to reach similar conclusions.2 Accordingly,

the CDC recently concluded that in-person instruction can be carried out safely

as long as masks are worn, social distancing is maintained, community spread

is low, and other community restrictions (e.g., on restaurants) remain in place

(Honein et al., 2021).

However, contact-tracing-based evidence alone is insufficient to fully under-

stand the health implications of reopening schools. Contact tracing is widely

known to be inadequate in the U.S. due to insufficient staff and resources to keep

up with large numbers of new cases, as well as resistance to provide information

among those contacted. For instance, a National Public Radio story found that 27

percent of cases and 43 percent of contacts lacked phone numbers in Delaware,

only 44 percent of new cases were reached within 24 hours in New Jersey, and

only 4.5 percent and 25 percent of cases could be traced to known contacts in

Washington, D.C. and Delaware, respectively (Simmons-Duffin, 2020). Moreover,

econometric evidence from Dave et al. (2020) linked more than 100,000 cases to

the Sturgis Motorcycle Rally in South Dakota, compared to just 328 identified by

contact tracing. This illustrates the potential for contact tracing to substantially

underestimate the total number of cases resulting from a particular event after

several rounds of exponential spread. One missing link in the contact tracing

chain prevents the attribution to the event of any people infected by the missing

link, any people those people subsequently infected, and so on.

On the other hand, the number of known cases resulting from in-school spread

could overstate the net increase in the number of cases, as it does not account for

the counterfactual activities students and staff would be engaging in if schools

2Oster’s dashboard is available at https://covidschooldashboard.com/.
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were closed. While some students and staff would stay at home and face little

risk, others would go to day care facilities, parks, restaurants, virtual school pods

at friends’ houses, or other places where adherence to mitigation measures could

be lower than in schools (Courtemanche et al., 2020).

Additionally, focusing only on net changes in risk among those attending

school misses a potentially important part of the story: spillover effects on the be-

haviors of parents or others in the community. Kids returning to in-person school

may allow parents or other caregivers to return to in-person work or outside-the-

home activities, leading to COVID-19 spread in the community even if there is

minimal spread in the schools. Spillovers could even extend beyond families di-

rectly affected by the return to school, as school openings could signal to the com-

munity that it is safe to return to normal activities, again fueling spread (Glaeser

et al., 2020). Alternatively, spillovers could reduce spread if people foresee danger

from school reopenings and cut back on other activities.

Econometric studies can provide answers to these debates by estimating

reduced-form effects that encompass all mechanisms through which reopening

schools influences the spread of COVID-19. Three concurrent working papers ex-

amine the effects of school openings in Germany (Isphording et al, 2021), Michi-

gan and Washington (Goldhaber et al., 2021, hereinafter we refer to as CALDER

study) and the U.S. as a whole (Harris et al., 2021, hereinafter we refer to as Tu-

lane study). While the current versions of these studies find little evidence that re-

opening schools increases COVID-19 spread on average, the Tulane and CALDER

studies find some evidence that this may not be the case in communities with

high levels of preexisting transmission.

The above discussion highlights a key distinction: the consensus that schools

can open safely with low community spread and proper safeguards is not the same as

saying that all schools are opening safely. To examine what can happen in a
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less idealized scenario, we focus on the state of Texas. All of the school districts

in Texas reopened for in-person instruction at some point during the 2020 fall

semester. Many did so when COVID-19 rates in the community were relatively

high, generally without staggered or hybrid strategies to limit the number of

students attending at one time.

We estimate the impact of school reopenings in Texas on COVID-19 spread

using hand-collected information on school districts’ instructional modality and

start dates combined with weekly county-level data on confirmed COVID-19 cases

and fatalities. Our baseline model is an event study that separately estimates ef-

fects for each week in a four-month bandwidth surrounding reopenings. This

allows us to assess pre-treatment trends while also allowing impacts to emerge

gradually due to incubation periods, testing delays, multiple rounds of subse-

quent spread, and the fact that COVID-19 deaths tend not to occur quickly. We

find that school reopenings in Texas gradually but substantially increased the

per capita numbers of new weekly COVID-19 cases and deaths. To illustrate,

95 percent confidence intervals from the baseline regression imply that school

reopenings across Texas led to at least 43,000 additional COVID-19 cases and at

least 800 additional fatalities after two months. These magnitudes represent 12

percent and 17 percent, respectively, of the total numbers of cases and deaths in

the state during that period. Results are qualitatively similar across a wide range

of robustness checks, including those that address newly discovered issues with

staggered-treatment-time two-way-fixed-effects research designs. Using similar

event-study models and SafeGraph data (which tracks the movement of individ-

uals aged 16 and older by using cell phone data), we show that time spent outside

the home by adults rose sharply in communities with the largest numbers of chil-

dren after school reopenings. Some evidence also suggests increased mobility in
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communities with large numbers of seniors, consistent with signaling effects on

those not directly affected by the reopenings.

Overall, we find convincing evidence that opening schools led to community

spread, and was likely facilitated by increased mobility, which could arise both

directly in schools but also indirectly through the behaviors of parents or other

adults. Although the recent distribution of effective vaccines is changing the

cost-benefit of the calculations policymakers are making, difficult decisions about

schools will likely continue into the 2021-2022 academic year. Children under

sixteen years old cannot yet be vaccinated, there are broad geographic pockets

across the country with low adult vaccination rates, and the emerging variant

B.1.1.7 infects children more easily than prior strains.3,4

3.2 Background

3.2.1 School Reopenings in Texas

On July 7, 2020, the Texas Education Agency (TEA) issued school reopening

guidelines, which covered topics such as COVID-19 prevention, responses, miti-

gation, and information dissemination.5 These guidelines covered the wearing of

masks, reporting of positive cases, and screening of staff, teachers, and students.

Most importantly, it provided the following guidance for reopening schools: “dur-

ing a period up to the first four weeks of school, which can be extended by an

additional four weeks by vote of the school board, school systems may temporar-

ily limit access to on-campus instruction.”

These instructions were further clarified by a July 17, 2020 joint statement

3https://health.usnews.com/health-care/patient-advice/articles/when-will-there-be

-a-covid-19-vaccine-for-kids.
4https://www.nydailynews.com/coronavirus/ny-covid-variants-michael-osterholm-new-

york-20210404-73bhzmgpzremnpr5hirw2eo724-story.html
5https://www.wfaa.com/article/news/education/texas-students-must-wear-face-masks-

at-school-tea-says/287-e2ef67ef-6ec7-4827-9a80-43fb83932564
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from Governor Greg Abbot, Lt. Governor Dan Patrick, Speaker Dennis Bonnen,

Senate Education Chairman Larry Taylor, and House Education Chairman Dan

Huberty. They stated that local school districts have the constitutional authority

to decide when and how schools safely open and noted that local school boards

have the authority to set the start date which could be in in “August, September,

or even later.”6 They also noted that local school boards can make these decisions

“on advice and recommendations by local public health authorities but are not

bound by those recommendations.” Importantly, the statement also clarified that

not only could school districts start the first four weeks as a “back to school

transition” with remote instruction, but school districts could extend their back-

to-school transition an additional four weeks with a vote of the school board

and a waiver from the state. After eight weeks, school districts could ask for an

addition extension as the result of health concerns related to COVID-19 and the

TEA will decide those requests on a case-by-case basis. Finally, the guidance from

TEA noted that school districts must provide the option for families of remote

instruction, even if the school district provides in-person instruction. However,

because of the challenges of the logistics of providing both in-person and remote

instruction, school districts could restrict families to switching their choice of

instructional modality only at the end of grading periods.

With this policy context as background, Figure 3.1 displays the start date of

opening schools for in-person instruction for school districts in the 2020-21 school

year relative to the start date of opening schools in the 2019-20 school year.7 About

two-thirds of school districts opened schools in 2020-21 within one week of the

start date of 2019-20 in spite of the widely documented surge in COVID-19 cases

6https://gov.texas.gov/news/post/governor-abbott-lt-governor-patrick-speaker-bonn

en-chairman-taylor-chairman-huberty-release-statement-on-school-re-openings
7In most districts, we were able to determine the 2019-20 start date. However, in the cases where
we were not able to identify the 2019-20 start date we either used the prior year start date (e.g.,
2018-19) or the median 2019-20 start date within the county.
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in Texas in the summer of 2020. Moreover, less than two percent of school districts

delayed the reopening by more than eight weeks, possibly because of the require-

ments imposed by the state to obtain an exemption to remain virtual longer than

eight weeks. To the extent that state directives trumped local caseloads or poli-

tics in influencing reopening decisions, that would help to alleviate endogeneity

concerns in our econometric analysis.

3.2.2 Econometric Evidence on Schools and COVID-19

As the pandemic began to unfold during the spring of 2020, very little was known

about the likelihood of spread among young populations and whether schools

could safely operate with in-person instruction. Three early studies that con-

trolled for other accompanying restrictions like restaurant closures and shelter-

in-place orders did not find evidence that school closings slowed the spread of

COVID-19 (Courtemanche et al., 2020; Hsiang et al., 2020; Flaxman et al., 2020).

However, a fourth study that did not control for these other restrictions did find

evidence of a sizeable effect (Auger et al., 2020). These prior studies are of lim-

ited usefulness for reopening decisions as almost all the spring school closures in

the United States occurred within one week of each other, leading to little iden-

tifying variation and generally imprecise estimates. While controlling for other

types of restrictions is important for causal inference, it further strains the avail-

able identifying variation, perhaps explaining the null findings from studies that

did so. Further, it is not clear that closings and openings should have symmetric

effects. Much more was known about mitigation strategies in fall 2020 compared

to spring, but community spread was also much greater in the fall.

Only recently has econometric evidence on reopening schools begun to

emerge. Isphording et al. (2020) leveraged variation in the timing of school start
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dates and found little evidence of effects on community spread in Germany.8

However, the relevance of this finding for a U.S. population with different atti-

tudes toward COVID-19 and different mitigation policies, both inside and out-

side of schools, is unclear. Tulane researchers used national insurance claims data

and U.S. Department of Health and Human Services (HHS) hospitalization data

along with national data on school reopenings to examine the impact of school

reopenings on hospitalization (Harris et al., 2021). Overall, they found no asso-

ciation between school reopenings and hospitalization. However, they noted that

in areas with higher pre-opening COVID-19 hospitalization rates, the results are

less conclusive with some evidence indicating that in these areas, school openings

could lead to greater hospitalizations. Given that the data for the study was only

collected through mid-fall 2020—prior to much of the national surge of hospital-

izations—the study’s findings do not necessarily extrapolate to later in the pan-

demic. Moreover, the sample period only allows for six weeks of post-treatment

data, which may not be enough time for meaningful increases in hospitalizations

to occur given incubation periods and the potential need for multiple rounds of

spread outward from schools before reaching the vulnerable individuals who are

most likely to require hospitalization.

Another study, released by a research consortium named CALDER, examined

monthly county level COVID-19 cases using school reopening information pro-

vided by Michigan and Washington’s departments of education (Goldhaber et al.,

2021). The researchers noted that in Washington, only 10 percent of districts (al-

most entirely rural) and only 2 percent of the student population was attending

either a school operating with hybrid or in-person instruction. In Michigan, the

percentages were higher, with 76 percent of schools operating either with hybrid

or in-person instruction. Like the Tulane study, this study examined COVID-19

8This result is consistent with two descriptive studies of small sets of schools in France and
Helsinki that also found little evidence of spread (Dub et al., 2020; Fontanet et al., 2020).
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cases prior to much of the surge of cases in the winter of 2020-21. The research

team found that in-person modality options are not associated with increased

spread of COVID-19 at low levels of pre-existing COVID-19 cases but did find that

cases increase at moderate to high pre-existing COVID-19 rates. Again, the anal-

ysis raises questions as to which set of results are more relevant to the COVID-19

conditions of the winter.

We complement these other concurrent studies by examining a state where

conditions may have been less than ideal for a safe reopening. First, Texas had

relatively high rates of COVID-19 spread in early fall of 2020 that roughly mir-

rored the national conditions that would emerge toward the end of the semester.

To illustrate, Figure 3.2 shows weekly COVID-19 cases per 100,000 residents in

Texas compared to Washington, Michigan, and the U.S. as a whole during the

latter half of 2020. The vertical lines delineate the weeks of June 20 through Octo-

ber 16 – a four-month period centered on the modal reopening date in our Texas

data, and a similar period to that used in the Tulane and CALDER studies. Texas’

rate of new cases was substantially greater than those of Washington, Michigan,

and the overall U.S. during early fall when the bulk of Texas’ schools reopened

for in-person instruction.

Additionally, many states opened schools using hybrid models where only

partial numbers of students attended schools each day to allow for greater social

distancing. In contrast, most Texas schools opened at near capacity. For instance,

in reviewing school opening plans of Texas school districts, our best estimate is

that over 90 percent of school districts opened fully in-person without any stag-

gered or phased-in attendance. This is in contrast to 42 percent nationally (Harris

et al., 2021). In addition, using Texas’ Department of State Health Services data

on the proportion of students attending in person by late September, we found

that out of the 1,049 school districts, 358 had over 90 percent of their students
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attending in person with 27 having 100 percent.9 Moreover, studies have shown

that residents of politically conservative areas – such as the majority of Texas – are

less likely to follow social distancing and mask-wearing recommendations than

those in politically liberal areas (Milosh et al, 2020). This could influence the im-

pact of reopening schools on COVID-19 spread in several ways, possibly including

weaker enforcement of guidelines at schools and extracurricular activities, greater

increases in mobility among parents, a stronger signal to the community that life

can return to normal, and less willingness to impose compensatory other aspects

of life.

The Texas context offers other advantages as well. Texas allowed districts

more discretion in when to open schools than many other states, allowing us

to examine the effect of variation in timing of school openings in the context of

common statewide mitigation policy, thereby reducing the possibility of omitted

variable bias from other restrictions.10 In addition, in contrast to the Tulane and

CALDER studies, which observed only a portion of schools open, every school

district in the state eventually opened schools during the time frame of our study.

This allows for an examination of wide-ranging school districts including rural

and urban, large and small, and non-diverse and racially diverse. In the CALDER

and Tulane studies, open schools were disproportionally rural. Finally, Texas has

a large number of school districts and counties, which provides statistical power

to detect effects. As a source of comparison, while Texas has 254 counties and

1,049 school districts,11 Michigan has 83 counties and 810 school districts, and

Washington has 39 counties and 286 school districts.

9https://dshs.texas.gov/coronavirus/schools/texas-education-agency/. We excluded
charter schools from the analysis.

10Restrictions can vary within states, but we were unable to find any instances of cities or counties
in Texas imposing or eliminating policies like shelter-in-place orders or mask mandates during
our sample period.

11One county (Loving) has no schools within the county.
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3.3 Data

To collect information for each school district’s start date and modality, we per-

formed Google searches in which a team of assistants searched for key terms

using district name and the phrase “back to school plan”.12 The vast majority of

districts had a back-to-school plan and it often included both the district’s modal-

ity plan for instruction and the school district start date. If the school district

started with virtual instruction, the back-to-school plan often listed the planned

date for in-person instruction.13 In cases in which the start date was not listed, the

team of assistants searched for the school district’s academic calendar. In cases

where back-to-school plans or calendars were not available, we also conducted

newspaper and Facebook searches to identify this information through news sto-

ries and school district’s Facebook posts.14 Even in cases where a back-to-school

plan and/or academic calendars were available, we often conducted additional

newspaper or Facebook searches to verify the district’s start date and modality of

instruction.

Because COVID-19 cases and fatalities are only available at the county level,

we need to aggregate the school reopening variable from the district to the county

12We did not include charter or private schools primarily because they represent a small minority
of the total students in the states and also because it would have been difficult to ascertain this
information.

13In some cases, districts phased in in-person attendance (e.g., Kindergarten through 3rd grade
could attend in person one week and the following week the rest of the grades could attend
in person). In these cases, we used the first date students were allowed on campus. If the
district only allowed special education students on campus, we did not count this as in-person
instruction given the small number of students on campus.

14After these steps, there were only 11 school districts in which we could not identify the start
date and only 17 school districts we could not identify the modality of instruction. We tried
to follow up with each district with a phone call. Through these phone calls, we were able
to identify the start date for seven of the 11 missing dates for school districts and the missing
modality information for 12 of the 17 school districts. Therefore, we had missing dates for
four school districts, which we imputed based on the median start date within their county.
For modality, we had missing dates of five school districts, which we imputed as the majority
instructional modality of the school districts within the county. These are very small districts,
with the average size of the missing start date districts being 78 students and the average size
of the districts with missing modality information being 177 students. Since our data will be
population-weighted, these districts are effectively inconsequential to the results.
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level, which requires accounting for the fact that not all districts within a county

opened at the same time. In the Tulane study, the researchers defined treatment

as occurring when the first district within a county reopened. However, for many

districts in Texas, this definition would result in a county being labeled “treated”

when only a small fraction of schools is actually open. Consider Bexar County, a

large county that includes San Antonio. Southwest Independent School District

(ISD), which represents less than 5 percent of the county’s student enrollment, was

the first district to open schools on August 24, 2020. However, there were some

districts within the county that opened up schools as late as seven weeks later

and six school districts representing 75 percent of the county’s student population

opened on September 8, 2020. In this case, defining treatment based on the earliest

opening school district would effectively lead to it being assigned two weeks too

early relative to the most consequential shock. Therefore, our primary treatment

definition is the week in which the county had the largest jump in percentage

of county students who could attend a school in person. In the case of Bexar

County, that would be the week of September 8th.15 We should also note that

treatment begins for our empirical analysis once schools open for any type of in-

person instruction including fully in-person, phased-in (e.g., a subset of grades

open for in-person instruction with gradual number of grades eligible to attend

in-person over time), or as a hybrid model (e.g., students attending in person part

of the week and attending virtually the rest of the week). However, as discussed

previously, phased-in and hybrid reopenings were rare in Texas.

It should also be noted that in opening schools for in-person instruction, dis-

tricts almost uniformly allowed families to choose to attend in-person or remotely.

However, districts had to prepare for the possibility that all or nearly all students

15Later, we present a series of analyses that suggests our results are robust to alternative definitions
of treatment including using the first school district that opened schools in person, 50 percent of
the county enrollment is open for in-person instruction, and 20 percent of the county enrollment
is open for in-person instruction.
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could attend in person. Therefore, our main treatment variable could be thought

of as “intent-to-treat” (ITT) analysis as a district’s decision to provide in-person

instruction is providing the opportunity for all students to attend in person. That

said, schools in Texas tended to open at relatively close to full capacity as nearly

60 percent of all school districts had 80 percent or more of their students enrolled

for in-person instruction by the end of September. Our analysis is also an ITT

analysis in a second way. Once treatment begins by a school district opening

schools for in-person instruction, we consider the school opened throughout the

analysis, even if the school has a temporary shutdown as a result of an outbreak.

In defining treatment in this way, our estimates should be seen as conservative

estimates.

Our COVID-19 data come from the Texas Department of State Health Services

(TDSHS).16 Numbers of COVID-19 cases, fatalities, and tests are recorded daily

at the county level from May 3, 2020 through January 3, 2021. We use weekly

(Sunday through Saturday) data instead of daily data because not all labs are

open daily or do not report daily (e.g., many labs are not open on weekends)

and can have duplicate numbers or reporting errors, which can lead to oscillating

numbers from one day to the next. By using weekly numbers, we are largely able

to smooth out these fluctuations.17 To account for variations in county population,

we calculated COVID-19 cases, fatalities, and tests per 100,000 residents using

2019 county population estimates from the Census Bureau.18 These cases and

16https://dshs.texas.gov/coronavirus/additionaldata.aspx
17It should be noted that some data errors within the TDSHS data systems have been discovered

over time as documented by media accounts: https://www.khou.com/article/news/health

/coronavirus/texass-record-high-covid-positivity-rate-falls-after-data-exper

ts-investigate/287-ffc19167-0d47-4be9-8c06-8648229288ef and https://www.texast

ribune.org/2020/09/24/texas-coronavirus-response-data/. Corrections to these errors
could cause accumulated cases or tests to decrease over time as the data are corrected. These
anomalies should create noise, but not bias and should largely be accounted for in our analysis
using week fixed effects.

18https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-tota

l.html
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fatalities variables will be our main outcome variables, while the testing variable

will be a control in the cases regressions.

To help understand potential spillover effects of school reopenings on adult

mobility, we utilize Social Distancing Metrics (Version 2.1, “SDM”) data provided

by SafeGraph, Inc., from May 3, 2020 to January 3, 2021.19 SafeGraph collects

information on almost 45 million cellular phone users, including about 10 percent

of devices in the U.S. The sample correlates very highly with the true Census

populations with respect to distribution by county, educational attainment, and

income.20 These data are aggregated from GPS pings provided by cellular devices

that have opted-in to location sharing services from smartphone applications. The

device data is aggregated by Census Block Group (CBG) and day, based on a

device’s “home” location.21 In our timeframe, there were 15,705 CBG’s overall in

the Texas SDM; on an average day, more than 1.9 million devices were followed

in Texas. For our analysis, we restricted the sample to a balanced panel of 14,580

CBG’s (with more than 1.6 million overall devices on an average day).22 The

typical CBG had approximately 112 devices. We created samples at the weekly

19https://www.safegraph.com/blog/stopping-covid-19-with-new-social-distancing-data

set
20https://www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset
21To impute a “home” location for a cellphone user, SafeGraph considers a common nighttime

location of each mobile device. In the entire United States, the SDM is aggregated to approx-
imately 220,000 CBGs. To enhance privacy, CBG’s are excluded if they have fewer than five
devices observed in a month.

22CBG’s were excluded if (a) the CBG was not observed for all days in our sample period, (b) the
CBG could not be merged to demographic information from the 2018 American Community
Survey (ACS) 5-year estimates, (c) the CBG’s population – according to the 2018 ACS – was in
the bottom or top 1 percent of the full distribution (corresponding to 391 and 7150, respectively),
or (d) over the course of the panel, relative to the mean device count in the CBG, any specific
CBG-day observation had a device count that more than twice the mean or less than half the
mean. By restricting to CBG’s with relatively stable numbers of devices over the long panel, we
hope to avoid complications related to installation and removal of apps, inactive devices, and
sample attrition highlighted in some other studies (Andersen et al., 2020; Allcott et al., 2020).
Although Safegraph reports that some apps implement GPS collection methods that depend on
the movement of the device (rather than a fixed time interval), this would likely affect levels of
certain metrics (e.g., completely home all day) but not changes.
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level for the full week (Monday through Sunday), for weekdays (Monday through

Friday), and for weekends (Saturday and Sunday).

We utilize four of the mobility measures provided in the SDM that are often

used in other studies. The most commonly used measure is the fraction of devices

that do not leave their home location during a given day (“Percent Completely

Home”).23 We also use two “work” measures. SafeGraph defines “work” as ei-

ther the fraction of devices that spent more than 6 hours at a non-home location

between 8am-6pm (“Percent Full Time”) or fraction of devices that spent between

4-6 hours at a non-home location between 8am-6pm (“Percent Part Time”).24 Fi-

nally, several studies have examined median time spent away from home (or at

home).25 These measures are based on the observed minutes outside of home

(or at home) throughout the day, regardless of whether these time episodes are

contiguous. The time during which a smartphone is turned off is not counted

towards the measures.

Finally, for some of our analyses, we utilize county-level variables from other

sources. The county’s college enrollment is available from the U.S. Department of

Education National Center for Educational Statistics (NCES).26 Percent of voters

who voted for President Trump in the 2016 presidential election comes from the

23See Bailey et al. (2020), Bullinger et al. (forthcoming), Cronin and Evans (2020), Allcott et al.
(2020), Dave et al. (2020a), Simonov et al. (2020), Dave et al. (2021), Friedson et al. (Forthcoming),
and Gupta et al. (2020).

24See Bullinger et al. (forthcoming) and Simonov et al. (2020).
25See Allcott et al. (2020), Dave et al. (2020a), Cotti et al. (forthcoming), and Gupta et al. (2020).
26These data were collected at http://nces.ed.gov/ccd/elsi/. The reporting years of enroll-

ment ranged from 2013-2017. As part of the data cleaning process, for residential campuses only,
we assumed all enrolled students could attend classes in person and therefore, we calculated
the maximum weekly proportion of the total county population that could be on campus by
dividing the number of enrolled students by the county population. To calculate the daily pro-
portion of college students of the total county population, we assumed that no students were on
campus during the summer (nearly all colleges did online instruction over the summer). We also
assumed all residential colleges had in-person classes for the fall semester. For those colleges
with no residential students, we assumed the colleges were providing instruction either online
or had minimal student interactions. Using Google searches of academic calendars, we identi-
fied the start date for each college, which is the day we assumed students began interacting on
campus. In many counties, there are multiple colleges with different start dates, which means
the college proportion changes over time as more and more colleges start their fall sessions.
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MIT Election and Data Science Lab (2018). We control for average weekly tem-

perature, precipitation, and snowfall using data collected by the National Oceanic

and Atmospheric Administration (NOAA) and the Global Historical Climatology

Network.

Our main analysis sample contains a balanced event-time window surround-

ing treatment, i.e. the week of the county’s largest increase in percentage of stu-

dents who can attend in-person school. For the COVID-19 outcomes, we include

eight weeks prior to treatment, the treatment week, and eight weeks after treat-

ment. A lengthy post-treatment period allows for multiple rounds of spread (e.g.

from student to parent to grandparent), incubation periods, time to receive and

obtain results from a test, and the fact that deaths can occur weeks after infection.

On the other hand, a long post-treatment period faces a relatively high risk of con-

founding from other concurrent shocks. In our case, the holiday break – which

started in many Texas districts after the week of December 13 – is a particular

concern, as schools being “reopened” should not influence spread when they are

not in session. In our view, an eight week post-treatment window best balances

these considerations. It is long enough to plausibly capture much of the dynam-

ics of the treatment effect. At the same time, it is short enough to avoid sample

windows that stretch past the week of December 13 for all but two small counties

(Starr and Zavala) that will have little influence in our population-weighted sam-

ple. For the SafeGraph mobility outcomes, there is not a clear reason to expect

a lag before treatment effects emerge, so we limit the event-time window to six

weeks on each side, thereby ensuring that the sample window does not extend

past the week of December 13 for any county.

Table 3.1 shows means and standard deviations for our outcome variables in

both the pre- and post-treatment periods, weighted by population. Interestingly,

new cases per capita were about the same in the pre- and post-treatment peri-

94



ods, while death rates went down by almost 50 percent. This was in spite of

a moderate increase in mobility across all four measures. Of course, numerous

factors affect these flat or downward trends, including better understanding of

preventive measures such as mask-wearing, advancements in treatments, and the

average age of cases gradually becoming younger. A finer-grained econometric

analysis is necessary to disentangle the causal effects of school reopenings from

these underlying trends.

Table 3.2 shows results from a simple cross-sectional regression of week of re-

opening (ranging from 14 to 28, with week 1 being the week of May 3) on several

county-level variables that might be expected to influence reopening decisions:

President Trump’s 2016 vote share, percent Hispanic, percent Black, county pop-

ulation, and percent of the SafeGraph sample who stayed completely at home for

the day in the four weeks prior to any schools reopening (a proxy for compli-

ance with public health guidelines), and average weekly new cases per capita in

the four weeks prior to any schools reopening. We standardize the covariates to

allow a direct interpretation of the magnitudes. Trump vote share is the dom-

inant predictor, which is consistent with previous research that showed politics

drove school opening decisions (Valant, 2020). Each standard deviation increase

in Trump vote share is associated with schools reopening 1.22 weeks sooner. In

contrast, none of the other variables are statistically significant, and none have a

magnitude greater than 0.17 weeks. The coefficient for pre-school-year caseloads

is nearly zero, and its p-value is nearly 0.9. Therefore, reopening decisions appear

to have been driven much more heavily by politics than public health consider-

ations, which may be surprising but is consistent with prior research (Valant,

2020). This can be seen as favorable for an econometric analysis, as it suggests

that reverse causality from caseloads influencing reopening decisions should not
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be a concern. We will be able to account for stable county characteristics such as

political views by including county fixed effects.

3.4 Econometric Methods

We aim to identify the causal effects of school reopenings on new weekly COVID-

19 cases and fatalities per 100,000 residents by estimating event-study regression

models of the form

Yct = β0 +
8

∑
i=−8,i 6=−1

β1i(Openc,t−i) + β2Testsct + αc + τt + εct (3.1)

where the subscripts c and t represent county and week; y is the case or fa-

tality outcome; OPEN is the reopening indicator; TESTS is a control variable for

the number of COVID-19 tests per 100,000 residents,27 included since differential

testing rates across locations and time can be an important driver of confirmed

case numbers; α and τ are county and time fixed effects; and ε is the error term.

Observations are weighted by county population, and standard errors are robust

to heteroskedasticity and clustered by county.

The summation term for the treatment variable reflects the inclusion of sepa-

rate indicator variables for whether schools will reopen eight weeks after week t,

seven weeks after, six weeks after, etc., down to two weeks after; whether schools

reopened exactly in week t; and whether schools reopened one week before week

t, two weeks before, etc., up to eight weeks before. The variable for whether

schools will reopen one week from now is omitted as the reference period. The

“lead” terms (weeks until school reopening) measure pre-treatment trends, while

the “lag” terms (weeks after school reopening) measure the evolution of the treat-

27Since test results might not be recorded in the same week that the test was conducted, we
experimented with including lags of the testing variable, finding that the contemporaneous
value as well as two weekly lags were statistically significant. We therefore include all three of
those variables in the regressions.
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ment effects over time. As discussed above, we expect the effects on new cases to

grow over time because of the incubation period, the lag between symptom onset

and receiving a test, the time required to obtain test results, and the exponential

nature of case growth. For fatalities, we expect an even longer lag since deaths

typically occur after an extended battle with the illness.

We also estimate a number of variants of our baseline event-study specifica-

tion as robustness checks. The first three checks add variables in an effort to

address possible omitted variable bias concerns. Causal inference in our event-

study model requires the assumption that case and death trajectories would have

evolved similarly in early versus late reopening counties in the counterfactual in

which schools did not reopen. The pre-treatment trends estimated using the lead

terms in the event-study model are informative as to how case and death trajec-

tories would have evolved in the counterfactual scenario. However, it is possible

that some confounders did not emerge until the post-treatment period. For in-

stance, most Texas colleges and universities opened for in-person instruction at

the start of the fall semester. If these post-secondary reopenings fueled COVID-19

spread and if school reopening dates were also systematically correlated with the

prevalence of college students in the county, this could bias our estimators for the

school reopening coefficients. We therefore estimate a model that controls for col-

lege and university reopenings in a dose-response, event-study manner. Specif-

ically, we construct a variable for the proportion of a county’s population that

attends an in-session post-secondary institution in a given week. We then inter-

act this continuous “dosage” measure with indicators for each of the eight weeks

before and after the first college reopening in the county. Our second robustness

check controls for time-varying unobservables more generally by including linear

county-specific time trends.

For our third check, recall that the results from Table 3.2 showed that vote
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share for President Trump was the dominant predictor of reopening week. Res-

idents’ political views are presumably fixed during a two-month sample period,

meaning that they are captured by the county fixed effects. However, it is pos-

sible that political views could influence not only levels of new COVID-19 cases

but also trends, and county fixed effects alone would not account for the latter. If

heavily Republican counties opened schools relatively early and also developed

steeper COVID-19 trajectories in the fall for reasons besides school reopenings,

our estimated effects of reopenings would be biased upwards. We therefore esti-

mate a model that adds interactions of time-invariant Trump vote share with each

week fixed effect, thereby flexibly allowing for right- and left-leaning counties to

have different COVID-19 trajectories.

The next series of robustness checks utilize alternate constructions of the key

variables. First, instead of defining reopening as occurring in the week with the

largest increase in the percentage of a county’s students who attend schools that

reopened for in-person learning, we use the week during which the county (a)

crossed over the 50 percent threshold for students attending reopened schools,

(b) crossed over the 20 percent threshold, and (c) had its first reopening. The

latter is the treatment definition used by the Tulane study. Next, two checks con-

sider alternate functional forms for the case and fatality outcomes: (a) exponential

growth rate in cumulative cases (computed as the difference in the natural logs of

cumulative cases from one week to the next) and (b) the natural log of the count

of new cases.

Our next two checks vary the way in which we control for COVID-19 testing,

since changes over time in the number of tests performed could be endogenous

to the trajectory of new infections. First, we simply drop the testing variables.

Second, we control for the number of new negative tests per 100,000 residents
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rather than total tests, as those might arguably reflect availably of tests rather

than level of virus in the community.28

The next group of robustness checks varies sample construction. Two checks

shorten the sample window from eight weeks on each side of treatment to six

and four, respectively. Next, we test whether the results could be driven by a

small number of unusual counties by dropping (a) the county of El Paso, which

experienced dramatically more COVID-19 spread than any other county in Texas

during our sample period, and (b) all six counties with more than a million res-

idents. Finally, we consider a different way to ensure that the results are not

driven exclusively by large, urban areas by re-estimating the baseline model with-

out weighting observations by county population, thereby making the estimates

reflective of effects in the average county (with each county counting equally), as

opposed to average effects across Texas as a whole. We also examine the robust-

ness of the findings by re-estimating the main model leaving out one county at a

time, for the six largest counties with population exceeding one million.

Finally, an emerging literature documents problems with two-way fixed-effects

(TWFE) models with staggered treatment times.29 First, TWFE regressions give

more weight to observations treated in the middle of the sample period, which

can lead to unreliable estimates of the average treatment effect if treatment effects

are heterogeneous. Using the event-study formulation with a balanced panel and

a sample period centered around treatment time rather than calendar time allevi-

ates this concern. Since each county has exactly eight pre-treatment observations,

one observation during the treatment week, and exactly eight post-treatment ob-

servations, the variance of each treatment variable is identical for each county.

28Note that, since we did not control for testing in the baseline fatalities regression, we do not
perform the robustness checks involving testing for that outcome.

29This literature includes Callaway and Sant’ Anna (forthcoming), de Chaisemartin and
D’Haultfoeuille (2020), Goodman-Bacon (forthcoming), and Sun and Abraham (2020). Our dis-
cussion in the remainder of this section is based on reviews of this emerging literature by Baker
et al. (2021) and Cunningham (2021, pp. 461-510).
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More troublesome in our context is that, in settings that rely exclusively on

variation in treatment timing for identification as opposed to having control units,

two-way fixed effects models implicitly use early treated units as controls for later

treated units. This leads to bias when treatment effects are dynamic because the

response of the early treated units is still evolving at the time that they are called

upon to be controls, effectively leading to a violation of the parallel trends as-

sumption for those particular late-versus-early comparisons. Event-study models

do not necessarily alleviate this concern. Under the assumption that the treatment

effect either strengthens or stays the same over time, the bias is toward zero and

we can conclude that, if anything, our estimates are conservative. We find this

assumption plausible for COVID-19 outcomes; as discussed above, all the rea-

sons to expect treatment effects to evolve over time point towards them becoming

stronger rather than weaker.

Nonetheless, we conduct two robustness checks that utilize newly developed

methods that address this issue. Both of these methods perform well in sim-

ulations and applications conducted by Baker et al. (2021). First, we employ

the “stacked regression” strategy used by Cengiz et al.’s (2019) study of four

decades of state minimum wage increases. This method begins by constructing

new datasets for each treatment event (each county’s school reopening) along

with corresponding “clean controls”, defined as those counties whose school re-

openings did not occur within eight weeks on either side of the reopening week of

the focal county. Then, we combine the resulting datasets into a single “stacked”

sample and re-run the baseline regression, except adding interactions of indica-

tors for each underlying dataset with each of the county and week fixed effects

(as well as, when COVID-19 cases is the outcome, the testing controls). Standard

errors are clustered by county to prevent the duplication of data from leading to

over-rejection of the null hypotheses. Our other robustness check implements
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the method of Callaway and Sant’ Anna (forthcoming), which first estimates

dynamic treatment effects for units treated at each time period, then combines

them by weighting by sample share rather than treatment variance. This method

also purges the potentially problematic late-treated versus early-treated-as-control

comparisons from the identifying variation.30,31

3.5 Results

Figure 3.3 displays the event-study results for the baseline model with new

COVID-19 cases per 100,000 residents as the outcome. The dots indicate the coef-

ficient estimates for each week of event time relative to the reference period of one

week before reopening. The bars represent 95 percent confidence intervals, mean-

ing that a variable is statistically significant at the 5 percent level if its bar does not

cross the horizontal zero line. As a point of reference for evaluating magnitudes,

recall from Table 1 that the pre-treatment sample mean for the dependent variable

is 147.7 cases per 100,000.

The results provide evidence of a positive, large, and causally interpretable ef-

fect of reopening schools on COVID-19 cases per 100,000 residents. The coefficient

estimates associated with the negative event time terms show little evidence of

30To implement this method, we use the open-source STATA and R packages provided by Jonathan
Roth and Pedro Sant’Anna https://github.com/jonathandroth/staggered#stata-impleme

ntation. For COVID-19 cases, the method requires us to drop three counties that are the only
county treated in a particular week. For fatalities, we encounter a problem with singular variance
matrix because small counties tend to have weeks in which there were zero deaths reported.
We therefore limit the sample to counties with more than 19,000 residents and shorten the
event study window to seven periods before and after reopening to avoid unbalanced treatment
groups.

31Note that we do not also present results from the Goodman-Bacon (forthcoming) decomposition
because that is designed for two-way fixed effects models with a single treatment variable,
rather than for event-study models like ours with numerous treatment variables. That said, if
we run a basic TWFE regression with a single treatment variable, the decomposition shows that
the treatment effect estimate is driven roughly equally by early-treatment versus late-treated-as-
control and late-treatment versus early-treated-as-control comparisons. The estimated treatment
effect from the former is more strongly positive than that from the latter, consistent with dynamic
treatment effects causing a bias toward zero when early-treated units are used as controls, as
discussed above.
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problematic pre-treatment trends. The line is nearly straight, the point estimates

are all negative but never larger than 33.5 (22.7 percent of the sample mean), and

only one of the eight estimates is statistically significant at the 5 percent level rel-

ative to the reference period. The coefficient estimates from the post-treatment

period show that a statistically significant increase in cases emerges two weeks

after reopening, consistent with the expected lag between exposure and confir-

mation as a case. The effect then grows over time before stabilizing in weeks six

through eight at slightly over 100 new cases per 100,000 residents. This effect size

is substantial, as it represents more than two-thirds of the pre-treatment sample

mean. The confidence intervals are large, but even the low end of the 95 per-

cent confidence interval for the week eight coefficient estimate would represent a

non-trivial 17 percent increase relative to the pre-treatment mean.

The results from the robustness checks for new cases, shown in Appendix Fig-

ures C.1 through C.7, are broadly similar. In all regressions, the estimated effect of

reopening schools is positive, with magnitudes and levels of statistical significance

that exhibit the general pattern of strengthening over time (although individual

coefficient estimates occasionally deviate from that pattern). In the thirteen ro-

bustness checks that have magnitudes that can be compared to those from the

baseline specification (the exceptions being the two with dependent variables that

have different scales), the coefficient estimates eight weeks after reopening range

from 75 to 194 new cases per 100,000. The baseline estimate of 108 is therefore

towards the more conservative end of this range.

Figure 3.4 shows the baseline results for weekly deaths per 100,000 residents,

which has a pre-treatment mean of 3.51. As with cases, the results suggest a

positive causal effect of school reopenings. No clear pattern emerges in the pre-

treatment period, and none of the eight negative event time terms are statistically

significant at the 5 percent level. A statistically significant increase in deaths
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emerges two weeks after reopening, and the effect strengthens over time, reaching

2.37 after eight weeks. This magnitude again represents more than two-thirds of

the pre-treatment sample mean, and the low end of the 95 percent confidence

interval is a still sizeable 0.97, or 28 percent of the pre-treatment mean.

The results from the robustness checks, presented in Appendix Figures C.8

through C.13, are again broadly similar in terms of signs and significance. In

the regressions where magnitudes are directly comparable, the effect after eight

weeks ranges from 0.88 to 4.6, putting our baseline estimate of 2.37 towards the

middle. While the general pattern of positive and strengthening effects persists

across specifications, the standard errors tend to be much larger (as a percent

of the outcome mean) for the deaths regressions than the cases regressions, and

individual coefficient estimates therefore lose statistical significance in some of the

checks more frequently. In particular, the standard errors in the late event time

periods are extremely large using the Callaway and Sant’ Anna method, making

it impossible for plausible effect sizes to be statistically significant. However, that

regression nonetheless produces some of the largest point estimates out of all the

robustness checks, with the increase in deaths per 100,000 residents reaching 4

after eight weeks.

Finally, in Appendix Figure C.14, we show the coefficient on the event study

model from week +8, leaving out one large county at a time for the six counties

in Texas with population exceeding one million. The conclusions for both cases

and fatalities are very similar from all specifications, suggesting that the results

are not driven by any one large county.

In order to help assess the practical significance of the results, we utilize the

estimates from the baseline models for cases and fatalities to predict how Texas’

COVID-19 trajectory would have evolved differently if schools had not reopened.

As discussed above, the generally large confidence intervals associated with our
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estimates mean that relying exclusively on point estimates for these calculations

could be misleading. We therefore also perform a more conservative simulation

using the low end of the estimates’ 95 percent confidence intervals.

First, we compute the predicted number of cases attributable to school reopen-

ings. Our point estimates for reopening in the present week, the prior week, two

weeks ago, and so on out to eight weeks ago, are 11.78, 20.96, 58.97, 42.35, 61.68,

58.27, 100.39, 109.91, and 109.99, respectively. These estimates imply that at the

end of the reopening week, there would have been 11.78 fewer cases per 100,000

residents. The first full post-treatment week adds another 20.96 extra cases per

100,000 residents, for a total of 32.74. After eight post-treatment weeks, the cumu-

lative number of extra cases is the sum of all nine coefficient estimates, which is

574.3 per 100,000 residents. Since our regression is weighted by population, our

estimates are interpretable as average effects across all of Texas. Therefore, the

total number of extra cases is given by multiplying 574.3 by the state’s population

of 28,995,712 and then dividing by 100,000, yielding 166,521. According to our

data, there were a total of 373,323 new cases in Texas in the nine weeks included

in our post-treatment window (including the treatment week itself). Therefore,

the point estimates imply that Texas’ caseload would have been almost 45 percent

lower during that time had schools not reopened.

As stated above, we caution against a literal interpretation of that number

given the relatively wide confidence intervals associated with our estimates. A

safer interpretation can be obtained by instead using the low end of the 95 per-

cent confidence interval to determine the minimum number of cases attributable

to school reopenings implied by our results. The low end of the 95 percent con-

fidence intervals associated with the variables for the treatment week and each

of the eight post-treatment weeks are -2.88, -13.67, 9.39, -2.72, 12.74, 5.30, 51.12,

55.5, and 33.37, for a total of 148.15. Scaling up to the population of Texas yields a
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minimum of 42,956 cases attributable to school reopenings in the nine subsequent

weeks, or 11.5 percent of the state’s total caseload during that time.

The same process can be used to compute the number of fatalities attributable

to school reopenings. The baseline regression’s point estimates for the treatment

week and eight post-treatment week variables are 0.35, 0.61, 0.91, 1.3, 1.21, 1.51,

1.98, and 2.36, for a total of 2.36 deaths per 100,000 residents, or 3,021 across the

state of Texas. The corresponding low ends of the 95 percent confidence intervals

are -0.05, 0.18, 0.35, 0.54, 0.44, 0.61, 0.83, and 1,07, which sum to 1.07 fatalities per

100,000 residents, or 818 total across the state. During the time frame, there were

4,796 COVID-19 fatalities in Texas, so the point estimates imply that 63 percent of

them were due to school reopenings, while the confidence intervals imply that at

least 17 percent of them were.

In sum, even under conservative assumptions, reopening schools had a mean-

ingful impact on both COVID-19 cases and associated fatalities in Texas. It is

noteworthy that the percentage impacts on both outcomes are roughly similar.

Ex ante, one might have expected the increase in deaths to be much smaller pro-

portionally than the rise in cases. COVID-19 mortality rates are nearly zero for

children and are much smaller for the working-age adults who comprise the ma-

jority of school teachers and staff than they are for elderly or vulnerable adults.

Our results therefore suggest that school-reopening-induced COVID-19 spread is

reaching more vulnerable segments of the population. One possible explanation

is secondary spread, where infected kids or employees spread the virus to older,

more at-risk individuals. However, this explanation appears incomplete, as it

would imply a several-week lag between new cases and new deaths, which we

do not observe in the data. Another possibility is spillover effects, where schools

opening signals to the community that it is safe to return to normal activities

including returning to in-person work, leading to spread across all segments of
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the population that may not originate in schools. Such indirect effects could also

help to explain the large effect sizes. The next section explores the possibility of

spillovers more directly.

3.6 Spillover Effects on Mobility

We next use SafeGraph data to explore whether changes in mobility patterns

among adults may help to explain the large sizes of the effects of school reopen-

ings on COVID-19 cases and deaths. Our baseline regression is again an event-

study model given by (1), with the reopening variable defined by the largest po-

tential week-to-week increase in in-person enrollment. However, we make three

small changes in order to customize the approach for mobility outcomes. First,

in contrast to the lags inherent in COVID-19 cases and deaths, effects on mobility

can emerge immediately, and it is not obvious that they will evolve over time.

Therefore, we shorten the window on each side of treatment to six weeks rather

than eight, which prevents any counties’ post-treatment windows from extending

into the holiday break. The analysis therefore uses 13 weeks of data, and given

our numbering convention, goes from -6 weeks to +6 weeks (where we denote

week 0 as the week of school reopening within the county). Second, we now

arrange weeks from Monday to Sunday, rather than Sunday to Saturday as we

did in our models for COVID-19 spread, so that we can also examine weekday

mobility separately from weekend mobility in some specifications. Third, instead

of omitting the lead one week prior to school reopening as the reference category,

we omit the lead two weeks prior, since preparation for a return to school could

plausibly increase mobility in the week prior to reopening. For example, families

may return from vacations or may engage in more back-to-school shopping.

There are three primary ways in which school reopenings can lead to spillover

effects beyond the students who attend school and the teachers and staff who
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work there. First – and most directly – in-person learning may increase trans-

mission between students and teachers, ultimately leading to secondary spread

into the larger community. The CDC guidelines emphasize ideal conditions for

in-person learning to succeed, including low initial levels of community spread,

adequate social distancing, vigilant mask wearing, and a host of other steps that

are unlikely to be fully carried out in practice. Second, opening of schools is asso-

ciated with other indirect changes for parents due to decreased childcare respon-

sibilities. This could include either greater physical presence in workplaces or

increased outside-the-home leisure activities, both of which could lead to greater

transmission and community spread. Finally, reopening schools could send an in-

correct signal to the larger community that normal activities are safe again, similar

to the “learning by deregulation” concept described in Glaeser et al. (2020). Such

a signaling effect could even extend to those – such as seniors – with no direct

ties to students or school employees.

We examine SafeGraph mobility data to explore these possible mechanisms.

We aggregate SafeGraph’s SDM database to the weekly level (averaging mobility

measures across the week), where our unit of observation is a CBG, which we

will refer to as a “neighborhood.” After a number of screens to the SDM data

(discussed in the data section earlier), we examine 14,580 neighborhoods from

252 of the 254 Texas counties. Our four mobility measures, following SafeGraph’s

SDM conventions, are percentage of devices completely at home, percent part-

time work, percent full-time work, and median minutes outside of the dwelling;

SafeGraph’s convention is to define part-time (full-time) “work” as spending 3-6

hours (6 or more hours) at one location other than home between 8 am and 6 pm

local time.

Using these SafeGraph definitions, in the weeks prior to reopening, approxi-

mately 28 percent of devices were completely home on a given day, and nearly
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8 percent were engaged in part-time work and 4 percent in full-time work on a

daily basis. In addition, the median time spent outside of the home on a given

day was 108 minutes.

The event-study specifications provide evidence of increased mobility. As il-

lustrated in Figure 3.5, only one out of sixteen pre-trend coefficients from six to

three weeks prior to reopening are significantly different from the lead term two

weeks prior to reopening. There is some evidence of anticipation effects in the

week immediately prior to reopening with significant increases in work behavior.

Starting in the week of reopening, and essentially thereafter, there is strong evi-

dence of increased mobility. In the first week of school reopening (week 0), there is

a reduction in staying completely home of 0.7 percentage points, increases in part-

time and full-time work of 0.4 percentage points, and increases in time outside the

home of more than 8 minutes. These results persist – and all grow substantially

larger – in the subsequent weeks. For example, in week 6, the mobility results are

two to three times as large. and time outside the home increases by 20 minutes.

By the end of the period, relative to the baseline prior to reopening, these are

decreases of 5 percent in completely at home per day, increases of 12 percent and

21 percent in part- and full-time work, and increases of 18 percent in time outside

the home.

Next, we examine these mobility patterns in another way. Schools operate

during weekdays, not weekends. Thus, increases in daily mobility induced by

school openings (e.g., children at school, parental labor supply) should be more

prominent on weekdays. When we run the same event study models on week-

days only in Figure 3.6, the mobility effects are much stronger, suggesting these

mechanisms are operating as expected. To illustrate, in the full-week model, recall

that there was a reduction in staying completely home of 0.7 percentage points

in week 0; when focused on weekdays, there is now a 1.1 percentage point re-
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duction. In the full week model, time outside the home increased by more than

8 minutes in week 0; when focused on weekdays, it is now nearly 13 minutes.

By week 6, time outside the home increases by 30 minutes per day, considerably

higher than the 20 minutes in the full week model. Relative to the pre-treatment

weekday mean of 116 minutes, this is an increase of 26 percent. When focusing

on the weekend in Figure 3.7, we generally find modest reductions in mobility,

which may represent an overall reallocation of activities as the school year begins.

For example, time outside the home falls by between 2 to 5 minutes per day in

the weeks after reopening, although many of the coefficients are insignificant. The

overall net effect – as represented by the full week – is clearly higher mobility.

One key benefit of the SDM database is the level of granularity. The typical

neighborhood in our sample has a population of approximately 1,500 people, and

was merged to demographic data from ACS summary files for 2018 (which aggre-

gates microdata from 2014-2018). Importantly, these neighborhood summary files

contain detailed information on the age distribution. From this, we characterize

neighborhoods in two different ways: whether they have significant numbers of

school-age children (fraction of population aged 5 to 17) and whether they have

significant numbers of elderly (fraction of population aged 65 and over). We re-

estimate our models, restricting to neighborhoods in the top quintile of school-age

children (neighborhoods where, on average, approximately 25 percent of the pop-

ulation is comprised of school-aged children). We also re-estimate models for the

top quintile of neighborhoods with elderly (where, on average, nearly 18 percent

of the population are senior citizens). By focusing on neighborhoods with many

children and parents, we expect increases in mobility due to both the resump-

tion of school and any signaling effects. In contrast, in neighborhoods with large

numbers of elderly, the effects of reopening schools and increased physical work
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presence should be diminished, although the general signal that normal activities

are safe could still apply.

The overall patterns in the event-study are somewhat stronger for the top

quintile of neighborhoods with school-age children; as illustrated in Figure 3.8,

the median time away from home at 6 weeks after opening is nearly 27 minutes,

compared with 20 minutes in the full sample. The pre-trends for all mobility

measures show little change in mobility until school reopening, and then a highly

significant and sizable increase thereafter. In contrast, the overall results are more

muted in the elderly sample in Figure 3.9. For example, median time away from

home shows no significant increase after school reopenings, and the magnitude

is substantively smaller; at 6 weeks post, time away insignificantly increases by 7

minutes. There is an increase in “full-time work” (recall, SafeGraph defines this

based on extended stays outside the home, not whether the person is actually

at work), yet the magnitudes are again considerably smaller than in neighbor-

hoods with many children. Put differently, when focused on a sample that should

largely be unaffected from reopenings or increased physical work presence, we

see only limited evidence of mobility consistent with a signal of returning to nor-

mal. The results from this granular analysis would then suggest mobility-induced

increases from opening schools and potential spillovers onto parental behavior,

especially labor supply.

Finally, we re-examine our main mobility results with a series of robustness

checks that largely mirror the results on COVID-19 in Appendix Figures C.15

through C.22. Appendix Figure C.15 modifies the event-study specification by

additionally including county-specific time trends. All of the substantive find-

ings remain. For example, 6 weeks after opening, median time away from home

is 20 minutes, virtually identical to the main specification. In Appendix Fig-

ure C.16, the specification is amended to include weekly controls for average
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temperature, precipitation, and snowfall, factors that have been shown to affect

mobility (Kapoor et al., 2020; Wilson, 2020). In all instances, none of the pre-

trends from six to three weeks prior to reopening are different from the omitted

lead of two week; additionally, the results on mobility virtually mirror the base-

line, full-week results. Next, in Appendix Figure C.17, we shorten the window to

4 weeks on either side of the school reopening. The same general patterns emerge

as in the baseline specification. For example, in this specification, time away from

home 4 weeks after reopening significantly increases by more than 15 minutes; in

the base specification, it was 17 minutes.

In Appendix Figures C.18- C.20, we modify the parameterization of school

reopenings, by considering a county to be open if 50 percent, 20 percent, or any

students had in-person learning offered to them. As the figures make clear, how

one characterizes school reopening at the county level matters for the interpreta-

tion of the mobility results. In one case (50 percent threshold), there are essen-

tially no mobility effects (and the pre-trends are generally insignificant). In other

cases (20 percent threshold or greater than 0 percent), the pre-trends for many

of the mobility measures are significant, yet there are no mobility impacts after

the “opening”. Next, in Appendix Figure C.21, we modify the baseline specifi-

cation by including an interaction of Trump’s 2016 county vote share with week

fixed effects. The same general patterns remain as in the baseline, but some of

the estimated impacts are smaller and insignificant. Thus, evolving attitudes of

Trump voters appears to be related both to school openings and increased mo-

bility. Finally, in Appendix Figure C.22, we display the coefficient from week +6

from event study models that leave out the six largest Texas counties, each with

population exceeding one million, one at a time. The estimated impacts on mo-

bility are quite similar to the exercise, suggesting that none of the large counties

are driving our results.
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Collectively, these results suggest that reopening schools leads to important

spillover effects on adult mobility that may help to explain the large effect sizes

for the COVID-19 outcomes. The evidence is consistent with parents going physi-

cally back to work and perhaps also increasing outside-the-home leisure activities.

These effects could be due to lessened child care responsibilities, signaling about

the safety of returning to normal activities, or a combination of both. In contrast,

the evidence is not as strong for neighborhoods with large numbers of elderly

residents or for the general population on weekends, which may suggest that the

time-use mechanism is relatively more important than general signaling.

3.7 Conclusion

In this study, we examine the impact of opening Texas public schools for in-person

instruction in fall 2020 on community spread of COVID-19 as well as fatalities.

In the eight weeks after reopening, we conservatively estimate, based on lower

bounds of confidence intervals, that there would have been at least 43,000 fewer

COVID-19 cases and at least 800 fewer fatalities. These results hold across a

variety of specifications and robustness checks. These results could be explained

both by the direct effect of spread within the schools and the indirect effects

of increased mobility within the community as our analysis of cellphone data

suggests that six weeks after reopening, the median time spent outside of the

home increased by 26 percent on weekdays. This suggests that decision makers

need to think strategically about how to encourage behavior to mitigate spread of

COVID-19 not only within schools, but within the community at large.

On the surface, our empirical findings diverge with several popular narratives

that have emerged about school openings. Some studies – including a prominent

CDC study from Wisconsin – rely on contract tracing efforts to quantify impacts

of school reopening. The imperfections of run-of-the-mill contact tracing efforts
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– including the inability to follow asymptomatic cases or lack of cooperation in

finding all close contacts – suggests estimates of in-school spread may be a lower

bound. Importantly, this approach does not account for inevitable, indirect be-

haviors – such as greater parental mobility including increased physical presence

in the workplace – which also may contribute to community spread. Although

other recent research teams (Tulane, CALDER) take methodological approaches

closer to our approach and find overall more modest effects on COVID-19 spread,

it is important to emphasize that the initial conditions in Texas were more ripe for

community spread and schools opened more widely, more quickly, and generally,

close to full capacity.

Although it is beyond the scope of our study to provide a cost-benefit analysis

of school reopenings, our quantitative findings contribute a key input into such

an analysis. Recent work by Kniesner and Sullivan (2020) estimate non-fatal eco-

nomic losses of about $46,000 per case, and Department of Transportation apply

an $11 million loss per fatality. Such health- and productivity-related losses from

COVID-19 must be weighed against learning losses for children, as well as other

ancillary effects related to child mental health and abuse and these losses could

be substantial but will only become clear over time. Distributional considerations

are also important, as benefits of school closures accrue disproportionately among

older individuals, whereas the costs are largely borne by children.

Obviously, as vaccinations expand, the cost-benefit calculations of opening

schools changes. As of early April 2021, approximately 33 percent of adults aged

18 and older have been at least partially vaccinated, and the percentage is consid-

erably higher among the most vulnerable.32 To the extent that the spread of new

mutations of the virus are mitigated by vaccines, almost all policies that restrict

mobility – including school closures – will eventually be unnecessary. Nonethe-

32https://www.nytimes.com/interactive/2020/us/covid-19-vaccine-doses.html
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less, there continue to be pockets of high spread of COVID-19. Furthermore,

among various groups, there is widespread vaccine hesitancy and mistrust of the

medical system. For instance, in a survey conducted in February 2021, among

white evangelical adults, 45 percent stated they would “definitely not” or “proba-

bly not” get the COVID-19 vaccine.33 In addition, vaccination rates are stubbornly

low in both the African-American and Hispanic communities,34 potentially due

to historic mistrust of medical providers (Alsan and Wanamaker, 2018). As of

April 2021, Texas lags the national average in both partial and full vaccinations,

as do many of the states in the South.35 Collectively, this suggests that there will

be significant pockets of communities where lack of restrictions – including the

opening of schools – may still lead to considerable community spread moving

forward. Additionally, the B.1.1.7 (alpha) variant that is gradually becoming the

dominant strain in the U.S. infects children more easily than prior strains, and

children under twelve years old cannot yet be vaccinated.36,37 The newer vari-

ant, B.1.617.2 (delta), has also been increasingly responsible for new cases, which

poses additional risks to the unvaccinated population.38

For these reasons, debate about school openings and mitigation strategies will

therefore likely continue to persist into the 2021-2022 school year, and our results

provide important information that can help inform that debate. In particular,

the CDC guidelines say that schools can reopen if community spread is low and

considerable precautions are taken. Our study is not necessarily at odds with that

33https://www.pewresearch.org/fact-tank/2021/03/23/10-facts-about-americans-and-co

ronavirus-vaccines/ft 21-03-18 vaccinefacts/
34https://www.kff.org/coronavirus-covid-19/issue-brief/latest-data-on-covid-19-vac

cinations-race-ethnicity/
35https://www.nytimes.com/interactive/2020/us/covid-19-vaccine-doses.html
36https://www.nydailynews.com/coronavirus/ny-covid-variants-michael-osterholm-new-

york-20210404-73bhzmgpzremnpr5hirw2eo724-story.html
37https://health.usnews.com/health-care/patient-advice/articles/when-will-there-be

-a-covid-19-vaccine-for-kids
38https://covid.cdc.gov/covid-data-tracker/#variant-proportions
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guidance; instead, it simply shows that school reopenings are not always safe if

those conditions are not met.

3.8 Tables

Table 3.1: Means and standard deviations of outcome variables

(1) (2)
COVID Outcomes Pre-reopening Post-reopening

New cases per 100,000 residents 147.73 139.74
(121.37) (171.99)

New deaths per 100,000 residents 3.51 1.8
(5.45) (3.72)

Observations 2,024 2,277

Mobility Outcomes Pre-reopening Post-reopening

Time completely home (%) 28.21 26.62
(5.94) (5.72)

Part-time work (%) 7.84 9
(2.25) (2.65)

Full-time work (%) 3.98 4.93
(1.35) (1.69)

Median non-home dwelling time (minutes) 107.76 128.25
(56.42) (62.1)

Observations 87,480 102,060

Notes: Standard deviations are in parentheses. The COVID outcomes utilize public
county-by-week-level data, while the mobility outcomes are from census-block-group-
by-week-level data from SafeGraph. Observations are weighted by county (census-
block-group) population for the COVID (mobility) variables. The pre-reopening period
refers to the eight (six) weeks prior to school reopenings for the COVID (mobility)
variables. The post-reopening period refers to the reopening week along with the eight
(six) weeks following reopening for the COVID (mobility) variables.
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Table 3.2: Predictors of reopening week

Coefficient estimate
(standard error)

Standardized 2016 percent of votes for President Trump -1.18***
(0.3)

Standardized percent Hispanic -0.19
(0.15)

Standardized percent Black -0.15
(0.12)

Standardized population 0.18
(0.16)

Standardized percent who stayed at home for full day 0.07
(0.15)

Standardized new weekly cases per 100,000 0.32***
(0.12)

Constant 17.06***
(0.19)

Notes: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1. Results are from a cross-sectional county-
level linear regression with week number of reopening (ranging from 14 to 28, with 1
indicating the week of May 3) as the outcome variable. The stay-at-home and new cases
variables are pooled averages across the four weeks prior to the earliest school reopening
(week numbers 10 through 13).

116



3.9 Figures

Figure 3.1: Relative start date of school district start date in 2020-21 school year
relative to the 2019-20 school year

Note: In some cases, we do not have the 2019-20 start date for school districts. In

these cases, we substitute a prior start date for any year we could find a record.
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Figure 3.2: Weekly COVID-19 cases per 100,000 residents in Texas, Washington,
Michigan, and the U.S.

Note: Data from the Center for Systems Science and Engineering at Johns
Hopkins Universiy.
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Figure 3.3: Event-study regression results for effect of reopening schools on
COVID-19 sases per 100,000 residents

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1.
Regression is weighted by county population. Standard errors are robust to heteroskedasticity

and clustered by county.
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Figure 3.4: Event-study regression results for effect of reopening schools on
COVID-19 fatalities per 100,000 residents

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1.
Regression is weighted by county population. Standard errors are robust to heteroskedasticity

and clustered by county.
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Figure 3.5: Effects of school reopening on mobility - Baseline model (all CBGs,
full-week)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.

Standard errors are robust to heteroskedasticity and clustered by county.

121



Figure 3.6: Effects of school reopening on mobility - All CBGs, Weekday

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.

Standard errors are robust to heteroskedasticity and clustered by county.
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Figure 3.7: Effects of school reopening on mobility - All CBGs, Weekend

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.

Standard errors are robust to heteroskedasticity and clustered by county.

123



Figure 3.8: Effects of school reopening on mobility - Areas with high percentage
of children

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.

Standard errors are robust to heteroskedasticity and clustered by county.
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Figure 3.9: Effects of school reopening on mobility - Areas with high percentage
of seniors

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.

Standard errors are robust to heteroskedasticity and clustered by county.
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Appendix A

Supplemental Material for Chapter 1

Table A.1: State Medicaid expansion years

State Year State Year State Year State Year

Alabama N/A Illinois 2014 Montana 2016 Rhode Island 2014
Alaska 2015 Indiana 2015 Nebraska N/A South Carolina N/A
Arizona 2014 Iowa 2014 Nevada 2014 South Dakota N/A
Arkansas 2014 Kansas N/A New Hampshire 2014 Tennessee N/A
California 2011 Kentucky 2014 New Jersey 2011 Texas N/A
Colorado 2014 Louisiana 2016 New Mexico 2014 Utah N/A
Connecticut 2010 Maine N/A New York 1997* Vermont 2006*
Delaware 1996* Maryland 2014 North Carolina N/A Virginia N/A
D.C. 2010 Massachusetts 2006* North Dakota 2014 Washington 2011
Florida N/A Michigan 2014 Ohio 2014 West Virginia 2014
Georgia N/A Minnesota 2011 Oklahoma N/A Wisconsin N/A
Hawaii 2014 Mississippi N/A Oregon 2014 Wyoming N/A
Idaho N/A Missouri N/A Pennsylvania 2015

Notes: The ACA Medicaid and state own expansion years obtained from The Henry and Kaiser
Family Foundation and state Medicaid websites, respectively. CA, CT, D.C., MN, NJ, and WA are
the early opt-in states via a Section 1115 Waiver.
* DE, MA, NY, and VT have their own expansion prior to the ACA and also expand Medicaid in
2014. They receive treatment status in 2014.
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Table A.2: State opioid-related polices

State Prescription drug time Must-access Pain clinic Recreational
and dosage limit laws PDMP Regulation marijuana law

Year Day limit Amount limit

Alabama 2013
Alaska 2017 7 2017 2014
Arizona
Arkansas 2017
California 2016
Colorado 2012
Connecticut 2016 7 2015
Delaware 2017 7 2012
District of Columbia 2014
Florida 2010
Georgia 2014 2013
Hawaii 2016 30
Idaho
Illinois 2012 30 2018
Indiana 2017 7 2014
Iowa
Kansas
Kentucky 2017 3 2012 2012
Louisiana 2017 7 2008 2006
Maine 2017 7 100 MME/day 2016
Maryland 2017 None Lowest effective dose 2018
Massachusetts 2016 7 2014 2016
Michigan 2018
Minnesota 2017 4 2017
Mississippi 2011
Missouri 1988 30
Montana
Nebraska
Nevada 2017 14 90 MME/day 2017 2016
New Hampshire 2017 7 Lowest effective dose 2016
New Jersey 2017 5 Lowest effective dose 2015
New Mexico 2015
New York 2016 7
North Carolina 2018 5
North Dakota
Ohio 2017 7 30 MME/day 2015
Oklahoma 2015
Oregon 2014
Pennsylvania 2017 7 2017
Rhode Island 2017 20 doses 30 MME/day 2016
South Carolina 2007 31 2017
South Dakota
Tennessee 2013 30 2013 2011
Texas 2013 30 2019 2009
Utah 2017 7 2017
Vermont 2017 Varies Varies 2015 2018
Virginia 2017 7 2015
Washington 2012
West Virginia 2012
Wisconsin
Wyoming 2016

Notes: Table reports the effective years of states’ opioid-related regulations. Prescription drug time and
dosage limit laws limit the number of days and/or amount of opioids prescribed to first-time patients.

127



Table A.3: Common prescription opioids

Generic Brand name

buprenorphine Belbuca
Butrans

butorphanol
codeine
fentanyl Actiq

Duragesic
Fentora
Subsys

hydrocodone Lortab
Norco
Vicodin
Reprexain

hydrocodone bitartrate Hysingla
Zohydro

hydromorphone Dilaudid
Exalgo

meperidine Demerol
methadone Dolophine
morphine sulfate Duramorph

Infumorph
MorphaBond
Embeda
MS Contin

nalbuphine
oxycodone Oxycontin

Xartemis
Percocet
Xtampza
Roxicodone

oxymorphone Opana
tapentadol Nucynta
tramadol Ultram

Notes: This list contains common opioid drug names with non-zero utilization.
Substance names are obtained from Medicaid Opioid Drug Lists and the Monthly
Prescribing Reference. For a full list of prescription opioids used in this essay,
visit www.cms.gov.
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Figure A.1: Event-study results: Effects of the Medicaid expansions on oxycodone
use

Notes: Estimates and 95% confidence intervals are results from estimating equation 1.3. t=0
is the year of expansion, and t=-1 is the reference year. Dependent variables: per population
(1,000 people ages 19–64) (a) number of prescriptions, (b) reimbursements, (c) MMEs, and per
enrollee (in 1,000s) (d) number of prescriptions, (e) reimbursements, (f) MMEs. Reimbursement is
measured in 2011 dollars.
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Figure A.2: Event-study results: Effects of the Medicaid expansions on hy-
drocodone use

Notes: Estimates and 95% confidence intervals are results from estimating equation 1.3. t=0
is the year of expansion, and t=-1 is the reference year. Dependent variables: per population
(1,000 people ages 19–64) (a) number of prescriptions, (b) reimbursements, (c) MMEs, and per
enrollee (in 1,000s) (d) number of prescriptions, (e) reimbursements, (f) MMEs. Reimbursement is
measured in 2011 dollars.
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Figure A.3: Event-study results: effects of the Medicaid expansions on morphine
use

Notes: Estimates and 95% confidence intervals are results from estimating equation 1.3. t=0
is the year of expansion, and t=-1 is the reference year. Dependent variables: per population
(1,000 people ages 19–64) (a) number of prescriptions, (b) reimbursements, (c) MMEs, and per
enrollee (in 1,000s) (d) number of prescriptions, (e) reimbursements, (f) MMEs. Reimbursement is
measured in 2011 dollars.
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Figure A.4: Event-study results: effects of the Medicaid expansions on fentanyl
use

Notes: Estimates and 95% confidence intervals are results from estimating equation 1.3. t=0
is the year of expansion, and t=-1 is the reference year. Dependent variables: per population
(1,000 people ages 19–64) (a) number of prescriptions, (b) reimbursements, (c) MMEs, and per
enrollee (in 1,000s) (d) number of prescriptions, (e) reimbursements, (f) MMEs. Reimbursement is
measured in 2011 dollars.
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Appendix B

Supplemental Material for Chapter 2

Table B.1: States’ treatment periods based on the year of expansion

τ ≤-4 τ=-3 τ=-2 τ=-1 τ=0 τ=1 τ=2 τ=3 τ ≥=4

AZ, AR, CO, DE, 2008, 2011 2012 2013 2014 2015 2016 2017 2018
HI, IL, IA, KY, MA, 2009, 2010
MD, MI, NV, NH,
NM, NY, ND, OH,

OR, RI, VT, WV

AK, IN, PA 2008, 2009 2012 2013 2014 2015 2016 2017 2018
2010, 2011

MT, LA 2008, 2009, 2013 2014 2015 2016 2017 2018
2010, 2011,

2012

CA, MN, NJ, WA 2008 2009 2010 2011 2012 2013 2014 2015, 2016
2017, 2018

CT, DC 2008 2009 2010 2011 2012 2013 2014, 2015
2016, 2017

2018

Note: τ = 0 is the year of expansions.
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Figure B.1: SUD treatment incompletion outcomes: dropping out of treatment

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure B.2: SUD treatment incompletion outcomes: administrative discharge

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure B.3: SUD treatment incompletion outcomes: transferred

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure B.4: SUD treatment incompletion outcomes: incarcerated

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure B.5: Excluding political characteristics - racial subsamples

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure B.6: Excluding early-expansion states - racial subsamples

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure B.7: Controlling for prescription drug monitoring programs - racial sub-
samples

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure B.8: Including No. of treatment centers and time trends - racial Subsamples

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Figure B.9: Balanced sample

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by
state. Samples exclude: CA, CT, DE, D.C., LA, MA, MN, MT, NJ, NY, VT, WA.
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Figure B.10: With racial groups’ population weights

Notes: Estimates and 95% confidence intervals are results from estimating equation 2.1. t=0 is
the year of expansion, and t=-1 is the reference year. Specifications are weighted by state’s 2010

Census population. Standard errors are adjusted for heteroskedasticity and are clustered by state.
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Appendix C

Supplemental Material for Chapter 3
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Figure C.1: Robustness checks: (a) Control for college reopenings; (b) Control for county-specific time trends; (c) Control
for Trump vote share interacted with week fixed effects.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.2: Alternative Treatment definitions for school reopenings: (a) 50% open; (b) 20% open; (c) First open

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.3: Robustness checks: (a) Outcome: cumulative cases exponential growth rate; (b) Outcome: the natural log of
new case count.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.4: (a) Drop testing variables; (b) Control for negative tests

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.5: (a) 6-week event-study window; (b) 4-week event-study window.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.6: (a) Drop El Paso County; (b) Drop six counties w/ > 1 mil residents; (c) Unweighted.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.7: (a) Stacked regression; (b) Callaway and Sant’ Anna method.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.8: (a) Control for college reopening; (b) Control for county-specific time trends; (c) Control for Trump vote share
interacted with week fixed effects.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.9: Alternative Treatment definitions for school reopenings: (a) 50% open; (b) 20% open; (c) First open

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.10: (a) Outcome: cumulative cases exponential growth rate; (b) Outcome: the natural log of new case count.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.11: (a) 6-week event-study window; (b) 4-week event-study window.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.12: (a) Drop El Paso County; (b) Drop six counties w/ > 1 mil residents; (c) Unweighted.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.13: (a) Stacked regression; (b) Callaway and Sant’ Anna method.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.14: Specifications leaving-out each of the 6 largest counties in Texas one at a time – COVID-19 outcomes at week
+8.

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regressions are weighted by county population. Standard
errors are robust to heteroskedasticity and clustered by county.
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Figure C.15: Effects of school reopening on mobility - Control for county-specific
time trends (all CBGs, full-week sample)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Regres-
sions are weighted by county population. Standard errors are robust to heteroskedasticity and
clustered by county.
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Figure C.16: Effects of school reopening on mobility - Control for weather vari-
ables (all CBGs, full-week sample)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.
Standard errors are robust to heteroskedasticity and clustered by county.
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Figure C.17: Effects of school reopening on mobility - 4-week event-study window
(all CBGs, full-week sample)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.
Standard errors are robust to heteroskedasticity and clustered by county.
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Figure C.18: Effects of school reopening on mobility - Treatment defined when
50% of students attend reopened schools (all CBGs, full-week sample)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.
Standard errors are robust to heteroskedasticity and clustered by county.
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Figure C.19: Effects of school reopening on mobility - Treatment defined when
20% of students attend reopened schools (all CBGs, full-week sample)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.
Standard errors are robust to heteroskedasticity and clustered by county.
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Figure C.20: Effects of school reopening on mobility - Treatment defined when
first school district reopened (all CBGs, full-week sample)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.
Standard errors are robust to heteroskedasticity and clustered by county.
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Figure C.21: Effects of school reopening on mobility - Control for Trump vote
share interacted with week fixed effects (all CBGs, full-week sample)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.
Standard errors are robust to heteroskedasticity and clustered by county.
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Figure C.22: Effects of school reopening on mobility - Control for Trump vote
share interacted with week fixed effects (all CBGs, full-week sample)

Notes: Estimates and 95% confidence intervals are results from estimating equation 3.1. Each
panel reports a separate dependent variable. Regressions are weighted by county population.
Standard errors are robust to heteroskedasticity and clustered by county.
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