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INTRODUCTION

The equine genetics and genomics research community has a long history of synergistic
collaborations for developing tools and resources to advance equine biology. Starting in 1995
with the first International Equine Gene Mapping Workshop supported by the Dorothy Russell
Havemeyer Foundation Inc. (Bailey, 2010), researchers collaborated to build comprehensive equine
linkagemaps (Guérin et al., 1999, 2003; Penedo et al., 2005; Swinburne et al., 2006), radiation hybrid
and comparative maps (Caetano et al., 1999; Chowdhary et al., 2002), physical marker and BAC
contig maps (Raudsepp et al., 2004, 2008; Leeb et al., 2006), reference genomes for the horse (Wade
et al., 2009; Kalbfleisch et al., 2018), and genotyping arrays to economically map and study traits of
interest for horse owners and breeders (McCue et al., 2012;McCoy andMcCue, 2014; Schaefer et al.,
2017). Continuing the legacy of community-based advancements, a new collective effort began in
2015 to functionally annotate DNA elements in the horse as part of the international Functional
Annotation of ANimal Genomes (FAANG) Consortium (Andersson et al., 2015; Tuggle et al., 2016;
Burns et al., 2018).

Reminiscent of the ENCODE project in humans and mice (Dunham et al., 2012), the ultimate
goal of the FAANG consortium is to annotate the major functional elements in the genomes of
domesticated animal species (Andersson et al., 2015). In particular, four histone modifications
were chosen by the consortium to characterize the genomic locations of enhancers (H3K4me1),
promoters and transcription start sites (H3K4me3), open chromatin with active regulatory
elements (H3K27ac), and facultative heterochromatin with inaccessible or repressed regulatory
elements (H3K27me3) (Andersson et al., 2015; Giuffra and Tuggle, 2019). The initial equine
FAANG efforts identified putative regulatory regions in eight prioritized tissues of interest (TOI) by
performing Chromatin Immuno-Precipitation Sequencing (ChIP-Seq) for the four target histone
marks (Kingsley et al., 2020). In that investigation, more than one million putative regulatory sites
were characterized across the equine genome. With more than 80 tissues, cell lines, and body fluids
stored in the equine biobank (Burns et al., 2018), further opportunities to expand the scope of
the annotation work exist. To leverage the benefits of the biobank, a collaborative sponsorship
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program titled “Adopt-a-Tissue” was created to enable
researchers from across the globe to select and support
annotation of a tissue by the equine FAANG group. Through this
effort, four additional “Adopted” tissues— spleen, metacarpal
3 (MC3), sesamoid, and full thickness skin— were assayed by
histone mark ChIP-Seq to expand the tissue-specific annotation
resources for the entire equine research community.

METHODS

All ChIP-Seq assays were performed by Diagenode ChIP-Seq
Profiling Service (Diagenode, Cat# G02010000, Liège, Belgium).
Summarized experimental procedures are available in more
detail at the FAANG FTP portal hosted by EBI (ftp://ftp.
faang.ebi.ac.uk/faang/ftp/protocols/assays/ and ftp://ftp.faang.
ebi.ac.uk/faang/ftp/protocols/experiments/). Spleen samples
were processed following the assay procedures outlined in
UCD_SOP_ChIP-Seq_for_Histone_Marks_20191101.pdf.
Skin and both bone tissues were processed following
the experimental protocols outlined in UCD_SOP_ChIP-
seq_for_Histone_Marks_Skin_20201218.pdf and
UCD_SOP_ChIP-seq_for_Histone_Marks_Bone_20201218.pdf,
respectively. “Adopted” tissues, as summarized in
Supplementary Table 1, were collected from two Thoroughbred
mares (denoted as ECA_UCD_AH1 for SAMEA104728862 and
ECA_UCD_AH2 for SAMEA104728877) as part of the FAANG
equine biobank (Burns et al., 2018) following protocols approved
by the University of California, Davis Institutional Animal Care
and Use Committee (Protocol #19037).

Chromatin was isolated from the two bone tissues using
the TrueMicro ChIP-Seq kit (Diagenode Cat# C01010140)
and from spleen and skin using the iDeal ChIP-Seq kit for
Histones (Diagenode Cat# C01010059). Starting amounts for
each replicate varied by tissue with ∼100mg for spleen, 375–
770mg for MC3, 445–650mg for sesamoid, and ∼125mg for
skin. After homogenization, fixed samples were sheared with the
Bioruptor R© Pico (Diagenode Cat# B01060001) for 12 (spleen),
10–12 (MC3 and sesamoid), and 8 (skin) cycles of 30 s on and
30 s off. The amount of chromatin yield and thus chromatin per
IP varied by tissue. Spleen and skin had the greatest amounts (1.5
µg and 600 ng, respectively) per IP and MC3 and sesamoid had
the least (350 ng each). The following antibody concentrations
were used for MC3, sesamoid, and skin: 0.5 µg for H3K4me1, 0.5
µg for H3K4me3, 1µg for H3K27ac, and 1µg for H3K27me3. To
account for the greater amount of chromatin from spleen, twice
the amount of antibody was used for each mark compared to
the other three tissues. For all tissues, 10% of the total chromatin
from each replicate was saved for the input.

Libraries were prepared with the IP-Star R© Compact
Automated System (Diagenode Cat# B03000002) using the
MicroPlex Library Preparation Kit v2 (Diagenode Cat#
C05010013). Spleen, MC3, and sesamoid were sequenced as
50 base pair single-end (SE) reads on the HiSeq 4000 platform
(Illumina, San Diego, CA, USA). For these tissues, the broad
mark (H3K27me3) was sequenced to a minimum of 50M raw
reads while the remaining marks (H3Kme1, H3K4me3, and

H3K27ac) and the input were sequenced to a minimum depth of
30M raw reads. Due to advancements in sequencing technology,
skin tissue was sequenced as 50 base pair paired-end (PE) reads
on the NovaSeq 6000 (Illumina, San Diego, CA, USA). For skin,
the broad mark (H3K27me3) was sequenced to a minimum
of 100M raw fragments while the remaining marks (H3Kme1,
H3K4me3, and H3K27ac) and the input were sequenced to a
minimum depth of 40M raw fragments.

Methods for analyzing SE reads followed the procedures
described previously (Kingsley et al., 2020) and modifications
were made to the SE analysis methods to accommodate PE
data generated from skin. After trimming with Trim-Galore
version 0.4.0 (Martin, 2011; Andrews et al., 2012), reads were
aligned to EquCab3.0 (Kalbfleisch et al., 2018) with BWA-
MEM version 0.7.9a (Li and Durbin, 2009). Alignments in
BAM format were filtered using SAMtools version 1.9 (Li et al.,
2009). Reads were removed if they did not map, had secondary
alignments (including split hits), failed platform/vendor quality
tests, were identified as optical duplicates, or had an alignment
quality score <30. PE reads were also removed if the mates
did not map. PCR duplicates were marked with PicardTools
version 2.7.1 (Picard toolkit, 2019) and removed with SAMtools.
For peak-calling, MACS2 version 2.1.1.20160309 (Zhang et al.,
2008) was used to call peaks for all marks with PE data
denoted by a PE flag (-f BAMPE). SICERpy version 0.1.1
was also used to call peaks for H3K27me3 as it specializes
in broad peak calling (SICERpy, SICERpy, GitHub Repository;
Zang et al., 2009). To use SICERpy with the PE data,
the second read in each pair was removed and data were
processed as SE based on recommendations from the software
developers. Peak-calls were combined by identifying overlapping
regions of enrichment in both biological replicates where
at least one replicate was significantly enriched for a given
mark. Heatmaps and quality metrics were generated using
deepTools 2.4.2 (Ramírez et al., 2016), SPP 1.13 (Kharchenko
et al., 2008), and custom scripts. Detailed bioinformatic
workflows are available at ftp://ftp.faang.ebi.ac.uk/faang/ftp/
protocols/analysis/.

QUALITY ASSESSMENT

Library Complexity
Data were assessed for library complexity with metrics
established by ENCODE and endorsed by FAANG, including
nonredundant fraction (NRF), PCR bottleneck coefficient
1 (PBC1), and PCR bottleneck coefficient 2 (PBC2) (Landt
et al., 2012; Kingsley et al., 2020). All of the libraries prepared
surpassed the quality threshold for the PBC2 metric (PBC2 >

1), however, several marks and tissues fell below the quality
threshold for NRF and PBC1 (Table 1). For example, three of
the four marks for spleen passed all library complexity measures
while the H3K27me3 data from both biological replicates failed
NRF and PBC1. Additionally, both replicates for sesamoid and
MC3 passed all three metrics for H3K4me1 and H3K27me3
but fell below threshold for H3K4me3 and H3K27ac. All skin
libraries passed NRF and PBC1 thresholds with three exceptions:

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 649959

ftp://ftp.faang.ebi.ac.uk/faang/ftp/protocols/assays/
ftp://ftp.faang.ebi.ac.uk/faang/ftp/protocols/assays/
ftp://ftp.faang.ebi.ac.uk/faang/ftp/protocols/experiments/
ftp://ftp.faang.ebi.ac.uk/faang/ftp/protocols/experiments/
ftp://ftp.faang.ebi.ac.uk/faang/ftp/protocols/analysis/
ftp://ftp.faang.ebi.ac.uk/faang/ftp/protocols/analysis/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kingsley et al. “Adopt-a-Tissue” Initiative in the Mare

TABLE 1 | Quality metrics and peak-calling summary for each biological replicate.

Mark Tissue Replicate NRF PBC1 PBC2 NSC RSC JSD FRiP Peak calls

Threshold: (>0.5) (>0.5) (>1) (>1.05) (>0.8) (>0.05) (>0.01)

K4me1 Spleen AH1 0.65 0.64 2.82 1.03 0.98 0.39 0.20 84,146

K4me1 Spleen AH2 0.74 0.74 3.80 1.04 0.96 0.39 0.25 113,447

K4me3 Spleen AH1 0.62 0.64 2.98 2.67 1.44 0.62 0.57 28,735

K4me3 Spleen AH2 0.57 0.60 2.67 2.53 1.34 0.62 0.57 31,198

K27ac Spleen AH1 0.65 0.66 2.96 1.34 1.54 0.46 0.29 50,977

K27ac Spleen AH2 0.70 0.70 3.40 1.31 1.46 0.45 0.29 60,281

K27me3 OriginalSpleen AH1 0.43 0.42 1.79 1.01 0.64 0.02 0.05 1,136

K27me3 RepeatSpleen AH1 0.13 0.28 2.94 1.03 0.33 0.20 0.02 164

K27me3 MergedSpleen AH1 0.32 0.40 1.86 1.01 0.59 0.50 0.05 6,297

K27me3 OriginalSpleen AH2 0.44 0.43 1.82 1.01 0.67 0.05 0.08 6,647

K27me3 RepeatSpleen AH2 0.66 0.67 3.02 1.02 0.74 0.06 0.10 32,492

K27me3 MergedSpleen AH2 0.53 0.55 2.40 1.01 0.83 0.06 0.11 37,629

K4me1 Sesamoid AH1 0.63 0.63 2.64 1.02 0.63 0.31 0.08 43,397

K4me1 Sesamoid AH2 0.84 0.85 6.46 1.01 0.49 0.21 0.00 4

K4me3 Sesamoid AH1 0.37 0.39 1.79 2.33 1.26 0.57 0.48 19,617

K4me3 Sesamoid AH2 0.39 0.40 1.78 1.40 1.20 0.41 0.21 16,524

K27ac Sesamoid AH1 0.42 0.42 1.81 1.16 1.19 0.40 0.19 34,223

K27ac Sesamoid AH2 0.34 0.34 1.67 1.02 0.60 0.31 0.02 5,013

K27me3 Sesamoid AH1 0.68 0.68 3.11 1.01 0.48 0.25 0.06 1,840

K27me3 Sesamoid AH2 0.75 0.75 3.97 1.01 0.56 0.18 0.00 0

K4me1 MC3 AH1 0.74 0.74 3.76 1.02 0.68 0.12 0.09 56,238

K4me1 MC3 AH2 0.77 0.77 4.28 1.02 0.63 0.13 0.07 47,452

K4me3 MC3 AH1 0.14 0.27 2.91 2.73 1.22 0.48 0.50 19,209

K4me3 MC3 AH2 0.32 0.34 1.71 2.56 1.20 0.48 0.50 21,339

K27ac MC3 AH1 0.27 0.29 1.65 1.25 1.19 0.30 0.23 36,022

K27ac MC3 AH2 0.09 0.26 4.56 1.38 0.95 0.32 0.19 16,638

K27me3 MC3 AH1 0.57 0.58 2.36 1.01 0.55 0.25 0.10 17,001

K27me3 MC3 AH2 0.65 0.65 2.88 1.01 0.51 0.22 0.08 13,790

K4me1 Skin AH1 0.43 0.47 2.14 1.15 2.85 0.29 0.34 115,470

K4me1 Skin AH2 0.53 0.55 2.39 1.13 3.06 0.25 0.29 109,322

K4me3 Skin AH1 0.41 0.46 2.12 3.14 1.27 0.60 0.69 24,442

K4me3 Skin AH2 0.32 0.40 2.12 3.19 1.30 0.60 0.68 23,584

K27ac Skin AH1 0.50 0.53 2.30 1.51 1.45 0.41 0.47 58,278

K27ac Skin AH2 0.58 0.59 2.57 1.47 1.46 0.40 0.47 57,737

K27me3 Skin AH1 0.50 0.53 2.36 1.06 3.20 0.14 0.24 95,788

K27me3 Skin AH2 0.50 0.54 2.40 1.06 4.09 0.11 0.21 77,151

The summary includes six quality metrics—NRF, Non-Redundant Fraction; PBC1 and PBC2, PCR Bottleneck Coefficient 1 and 2; NSC, Normalized Strand Cross-Correlation Coefficient;

RSC, Relative Strand Cross-Correlation Coefficient; FRiP, Fraction of Reads in Peaks– and thresholds originally established by ENCODE, and the Jensen Shannon Distance (JSD).

Samples include all of the original spleen IP, the repeated spleen IP for H3K27me3, and the merged (original + repeated) spleen IPs for H3K27me3. Peaks used to determine FRiP

and peak numbers for H3K27me3 were called with SICER. All other peaks were generated with MACS2. Biological replicates are denoted as AH1 for SAMEA104728862 and AH2

for SAMEA104728877. Red highlighting indicates values below the quality thresholds.

both replicates for H3K4me3 and ECA_UCD_AH2 replicate
for H3K4me1.

In addition to quality metrics, sequencing data were evaluated
at several processing stages of the analysis including alignment
and PCR deduplication. All datasets generated high mapping
quality scores (>35) and exceeded the minimum sequencing
targets as described in the methods (Supplementary Table 2).
Skin and spleen tissues retained a high number of reads
for H3K4me1, H3K4me3, and H3K27ac after alignment,

filtering, and deduplication (>20M reads per replicate).
Although all three activating marks were sequenced to
the same target for both bone tissues, H3K4me1 retained
more than 20M reads per replicate while H3K4me3 and
H3K27ac fell below 20M processed reads per replicate
with the majority of reads removed by deduplication. More
than 40M reads remained for each H3K27me3 replicate
after processing with the exception of ECA_UCD_AH2
for sesamoid.
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IP Enrichment
Data were also evaluated for IP enrichment using a variety of
metrics to determine signal quality. Using normalized strand
cross correlation (NSC) and relative strand cross correlation
(RSC) assessments established by ENCODE (Landt et al.,
2012), all marks for skin tissue exceeded the minimum quality
threshold (Table 1). Additionally, the biological replicates for
H3K4me3 and H3K27ac from spleen and MC3, as well as the
H3K4me3 replicates for sesamoid, passed both cross-correlation
measures. Similar to the library complexity metrics, several
tissues fell below the quality thresholds (NCS > 1.05 and RSC
> 0.8) including H3K4me1 from sesamoid and MC3; H3K27ac
from ECA_UCD_AH2 sesamoid; and H3K27me3 from spleen,
sesamoid, and MC3. Alignments were also assessed using the
Jensen Shannon distance (JSD) to compare the distribution of
reads with that of the background (input). Using JSD, H3K27me3
from both spleen replicates had values below 0.05, which is
indicative of insufficient IP enrichment.

The final measure of IP enrichment evaluated the fraction
of reads in peaks (FRiP) by comparing the peak calls with the
read distribution for each sample. All tissues produced a high
proportion of aligned reads within peaks for H3K4me3, ranging
from 0.21 for sesamoid to 0.69 for skin. Similarly, MC3, skin,
and spleen generated high FRiP scores for H3K27ac (0.47–0.19),
and peaks from skin and spleen also scored well for H3K4me1
(0.47–0.29). Although lower than the values from skin and
spleen, FRiP scores from MC3 indicated sufficient enrichment
was obtained for H3K4me1 (0.07–0.09). For sesamoid tissue,
the ECA_UCD_AH2 replicate generated peaks with comparable
enrichment for H3K4me1, H3K27ac, and H3K27me3, while
the ECA_UCD_AH2 replicate scored below threshold for both
H3K4me1 and H3K27me3 (0.0005 and 0.0043, respectively).
Further, H3K27me3 peaks from skin generated a substantially
higher fraction of reads compared with MC3 and spleen (0.21–
0.24 vs. 0.05–0.10), although all three of these tissues obtained
sufficient enrichment based on this assessment.

Replicate Comparison
In addition to quality assessments for the read alignments,
peaks called from the biological replicates were compared.
For most of the marks, the percentage of genome covered by
peaks was consistent with previously reported values for the
TOI (Table 1). For sesamoid tissue, at least one replicate for
H3K4me1, H3K27ac, and H3K27me3 generated fewer peak calls
than expected based on results from the other replicate and
the MC3 replicates. Additionally, the initial data for H3K27me3
from both spleen replicates yielded fewer peaks in accordance
with the low complexity and enrichment scores for those
libraries. The Jaccard similarity coefficient identified the highest
correlation between the biological replicates for H3K4me3 across
all “adopted” tissues, ranging from 0.65 to 0.84 (Table 2), and
data from skin also showed high correlation for all marks
(0.44–0.84). Replicates for spleen and MC3 had moderate levels
of similarity for H3K4me1 and H3K27ac (0.32–0.58), while
the biological replicates for H3K4me1 and H3K27me3 from
sesamoid had no identity detected, consistent with the low-
scoring quality assessments.

Additional Data Collection
Due to insufficient enrichment and replicate identity, IP and
sequencing were repeated for H3K27me3 from both spleen
replicates. Unfortunately, the repeated ECA_UCD_AH1 data
had low library complexity and IP enrichment (Table 1 and
Supplementary Table 2). To achieve sufficient data for accurate
peak calling from spleen tissue, the first round of IP and
sequencing from ECA_UCD_AH1 for H3K27me3 and both
rounds from ECA_UCD_AH2 were used for combined peak
calling. Reads from the two input files for ECA_UCD_AH2 were
also merged. The number of combined peaks increased from
4,955 covering 1.98% from the first round of sequencing to
5,267 covering 2.18% of the genome when data were merged
(Table 2). Similar issues with enrichment prevented sufficient
signal for peak calling in sesamoid for three of the four marks,
and therefore, a second round of IP and quality evaluation of
ECA_UCD_AH2 sesamoid is underway for H3K4me1, H3K27ac,
and H3K27me3.

DATA METRICS

After combining replicates, the number of retained peaks for each
mark from the SE data ranged from 4,933 to 73,528 for spleen
and from 5,628 to 46,511 for MC3 (Table 2). For both tissues,
H3K4me1— the mark indicative of enhancers— was found to
have the highest number of peaks while the repressive mark
was found to have the lowest. This pattern is also consistent
with the TOI data (Kingsley et al., 2020). For PE skin data,
the number of combined peaks varied from 24,353 to 92,971
regions, and H3K4me3, which denotes promoters, was the mark
with the lowest number of peaks. Additionally, the amount
of the genome covered by H3K27me3 peaks was substantially
higher for skin compared to the other equine FAANG tissues
analyzed to date (6.28 vs. 2.94%), while the number of reads
retained for H3K27me3 from the PE data after filtering (42.8%)
was comparable to the average retained for all of the equine
H3K27me3 SE data (41.3%, PRJEB42315 and PRJEB35307).

Evaluating general enrichment patterns revealed that the
“adopted” tissues detected mark distributions for the activating
marks that were consistent with those identified previously for
the TOI (Supplementary Figures 1–3). Data for H3K27me3
from skin, however, generated strong enrichment around the
TSS and upstream of an average gene, while still maintaining a
similar level of relative enrichment for H3K27me3 distributed
throughout the rest of the gene body and downstream as
seen for other tissues (Supplementary Figure 4). Evaluation
of the spleen datasets detected the strongest H3K27me3
enrichment when combining the original ECA_UCD_AH1
dataset and the merged ECA_UCD_AH2 dataset (denoted
as “spleen” on Supplementary Figure 4). While enrichment
distributions for sesamoid tissue detected consistent patterns
for H3K4me1, H3K27ac, and H3K27me3, the relative level
of enrichment is lower than expected based on the other
tissues. In addition to genome-wide evaluations, the replicate-
combined peak calls were also manually evaluated across
a small number of well-characterized regions. Consistent
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TABLE 2 | Summary of the combined peak calls and replicate comparison.

Mark Tissue Combined peak number % Covered Jaccard similarity coefficient

H3K4me1 Spleen 73,528 2.98 0.44

H3K4me3 Spleen 28,661 1.56 0.80

H3K27ac Spleen 51,427 1.82 0.58

H3K27me3 MACS2 Spleen 7,349 0.09 0.01

H3K27me3 SICER Spleen 449 0.22 0.03

H3K4me1 MC3 46,511 1.16 0.32

H3K4me3 MC3 20,556 1.10 0.75

H3K27ac MC3 31,547 1.08 0.38

H3K27me3 MACS2 MC3 15,304 0.40 0.28

H3K27me3 SICER MC3 5,628 2.57 0.28

H3K4me1 Sesamoid 750 0.01 0.00

H3K4me3 Sesamoid 17,361 1.07 0.65

H3K27ac Sesamoid 13,160 0.67 0.08

H3K27me3 MACS2 Sesamoid 390 0.01 0.00

H3K27me3 SICER Sesamoid 703 0.26 0.00

H3K4me1 Skin 92,971 4.56 0.50

H3K4me3 Skin 24,353 1.60 0.84

H3K27ac Skin 54,946 3.38 0.67

H3K27me3 MACS2 Skin 51,480 6.02 0.44

H3K27me3 SICER Skin 11,764 6.28 0.44

The summary includes the combined number of peaks and the percentage of the genome covered by those peaks. The Jaccard Similarity Coefficient compares the two biological

replicates with 1 being perfectly concordant and 0 being entirely discordant. Peaks for H3K4me1, H3K4me3, and H3K27ac were called with MACS2.

with expectations, activating marks were detected at the
TSS and upstream of ubiquitously expressed genes such
as ACTB for all tissues (Supplementary Figures 5A,B).
Additionally, all “adopted” tissues lacked peaks indicative
of active transcription for a liver-specific gene known as CYP2E1
(Supplementary Figures 5C,D).

DISCUSSION

The ENCODE project profoundly impacted scientific
understanding of genome function in humans by enabling
researchers to explore previously impossible challenges, such
as charting genomic landscape shifts during development
and uncovering enhancer networks associated with disease
(Nord et al., 2013; Rhie et al., 2016). The advancements made
by ENCODE paved a path for the FAANG consortium to
characterize genomic function in numerous agricultural species
(Andersson et al., 2015; Tuggle et al., 2016; Giuffra and Tuggle,
2019), which will expand research opportunities across diverse
genera. As a part of the larger consortium, the equine FAANG
group established a community-based initiative to “adopt”
additional tissues for annotation. As a result of that expansive
collaborative effort, characterization of putative regulatory
regions was performed in spleen, sesamoid, MC3, and skin.
The four additional tissues are of major importance for equine
health and traits of economic impact. Specifically, research
on catastrophic fracture involving sesamoid and MC3 can

benefit from bone-specific annotations as recent advances in
treatment have focused on transgenically modified stem cell
therapeutics (Ball et al., 2019). Similarly, many diseases and
traits under artificial selection in horses, such as melanoma,
insect bite hypersensitivity, and coat colors including Appaloosa
spotting among others, involve skin tissue (Rieder et al., 2000,
2001; Bellone et al., 2008, 2013; Rosengren Pielberg et al.,
2008; Curik et al., 2013; Lanz et al., 2017). Several of these
characterized phenotypes have been associated with mutations
affecting gene expression (Rieder et al., 2000; Rosengren
Pielberg et al., 2008; Bellone et al., 2013), making regulatory
regions identified from whole skin a valuable resource for
equine researchers. The “Adopt-a-Tissue” effort fits into a

broader legacy of collaborative resource development that has

historically led to rapid advancements for equine genomics

and will continue to push equine science toward new frontiers.
In concordance with past community efforts, the high quality
data generated from the “Adopted” tissues are publicly available
to benefit all investigators and lead to further progress in
equine research.

Using quality metrics first standardized by ENCODE
(Dunham et al., 2012), we identified low IP enrichment
for the broad mark in spleen, sesamoid, and MC3 tissues.

Unlike the SE datasets, the skin replicates sequenced with PE

reads generated a higher enrichment signal for H3K27me3 as

determined by quality metrics and enrichment topology plots.
In particular, enrichment near the TSS was more strongly
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detected for skin than for any of the TOI or the other
“adopted” tissues, suggesting that PE reads may better evaluate
the broad repressive mark than SE datasets. With only one
tissue evaluated as PE, we cannot exclude the possibility
that this enrichment pattern may be skin-specific rather than
evidence of a better method for detecting H3K27me3. Although
enrichment difficulties have been previously recognized for the
broad domains like those of H3K27me3 (Landt et al., 2012;
Carelli et al., 2017), investigation of specific ChIP methods for
broad histone marks appear to be rare. O’Geen et al. (2011)
used both short and long sonication periods to account for
the different rates of shearing efficiency for compact versus.
open chromatin. They found that the larger DNA fragments
after sonication were more enriched for broad repressive histone
marks while smaller fragments were more likely to contain
active chromatin modifications (O’Geen et al., 2011). Their
work suggests that shorter sonication times and stringent size
selection may bias ChIP samples toward higher enrichment
of regions containing narrow marks at the expense of more
condensed areas with broad marks, yet current ChIP-Seq
standards do not encourage separate protocols for the different
mark topologies (Landt et al., 2012; ENCODE Guidelines
for Experiments Generating ChIP-seq Data, 2017). Instead,
advances in ChIP-Seq methods have focused on analysis and
software development to accommodate the different enrichment
levels expected from broad and narrow domains assayed with
the same protocol (Zhang et al., 2008; Zang et al., 2009).
Future investigations involving H3K27me3 and other broad
histone modifications may benefit from developing bench
protocols, including sequencing parameters, that are specific for
broad marks.

To account for insufficient H3K27me3 signal from spleen
tissue, IP and sequencing were repeated for both biological
replicates. By combining the reads from both sets of data for
ECA_UCD_AH2, we were able to obtain sufficient enrichment
for peak identification. These data support that combining
results from different IPs performed on the same tissue
sample can be a useful approach to obtain the enrichment
needed for annotation purposes. Study of the best means for
combining information from biological and technical replicates
for differential enrichment analyses suggests that combining
ChIP datasets without accounting for enrichment levels may
lead to more false negatives (Bao et al., 2013). Although our
data may not have captured all possible peaks, combining data
enabled detection of more H3K27me3 peak calls with higher
consistency than possible with the first dataset alone. Therefore,
the current peak calls can serve as the starting point for
spleen-specific annotations, which can be improved upon with
characterization of heterochromatin regions from additional
equine spleen samples.

The low quality metrics for three of the four marks from
ECA_UCD_AH1 sesamoid tissue indicated there was low IP
enrichment. To the best of the authors’ knowledge, the MC3
and sesamoid data generated here represent the first histone
mark peak calls from healthy, whole bone tissue. The overall
lower quality metrics for bone tissues support the difficulty of
working with these tissues, however, one of the two replicates for

sesamoid showed sufficient quality for all four marks, suggesting
the issue may be sample specific. To determine if any issues
arose during chromatin extraction or IP, further evaluation
of H3K4me1, H3K27ac, and H3K27me3 marks in sesamoid
tissue from ECA_UCD_AH1 is warranted. Additional data
generated from ECA_UCD_AH1 sesamoid tissue will be added
to PRJEB42315 when available.

Previous equine annotations were developed based on
homology and transcriptomics, leaving much of the genome,
especially noncoding regions, uncharacterized (Hestand et al.,
2015; Aken et al., 2016; Mansour et al., 2017). While valuable,
annotation of regulatory regions based solely on homology
with other species is not expected to be sufficient given the
evolutionary role of these elements within and among species
(Schmidt et al., 2010; McLean et al., 2011; Shibata et al.,
2012; Lowdon et al., 2016). With the first publication of the
equine FAANG data from eight prioritized tissues (Kingsley
et al., 2020) and the four “adopted” tissues presented in
this manuscript, researchers can begin to interrogate the role
of regulatory regions in equine traits, such as the recent
investigation of a novel 16KB deletion associated with an
ocular disorder known as distichiasis (Hisey et al., 2020). Future
annotations for the horse will include maps of regulatory states
characteristic of healthy tissue, making it a vital resource to
compare against disease states. The histone ChIP-Seq data
from the horse have already been integrated into a useable
annotation resource by a new project known as FAANGMine
(FAANGMine, FAANGMine). Similar to FlyMine (Lyne et al.,
2007), the project aims to combine the results from all of
the genomic assays used by the FAANG consortium into a
single resource for easier use. Thanks to these integration effort,
additional equine FAANGdatasets including the “adopted” tissue
peak calls will open up opportunities for variant investigations
in previously uncharacterized noncoding regions and expand
research opportunities in equine omics.
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