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ABSTRACT Separating the HVAC energy use from the total residential load can be used to improve energy
usage monitoring and to enhance the house energy management systems (HEMS) for existing houses that do
not have dedicated HVAC circuits. In this paper, a novel method is proposed to separate the HVAC dominant
load component from the house load. The proposed method utilizes deep learning techniques and the physical
relationship between HVAC energy use and weather. It employs novel long short-term memory (LSTM)
encoder-decoder machine learning (ML) models, which are developed based on future weather data input in
place of weather forecasts. In addition to being used in the proposed HVAC separation method, the LSTM
models are employed also for accurate day-ahead HVAC and solar photovoltaic (PV) energy forecasts. To test
and validate the proposed method, the SHINES dataset, a publicly available dataset spanning three years at
15-minute time resolution from a large-scale DOE experimental project, is used. Two computational case
studies are constructed with a test HEMS to investigate the power regulating capability of smart home virtual
operation as dispatchable loads or generators. Prediction results obtained with the proposed method show
hourly and daily CV(RMSE) of 29.4% and 11.1%, respectively. These results are well within the bounds of
error established by academia and the ASHRAE building model and calibration standards.

INDEX TERMS Machine learning (ML), long short-term memory (LSTM), home energy management
system (HEMS), demand response (DR), solar photovoltaic (PV), non-intrusive load monitoring (NILM),
heating, ventilation and air-conditioning (HVAC) systems, distributed energy resources (DER), smart home,

smart grid.

I. INTRODUCTION

Residential demand of modern state of the art buildings is a
large and growing portion of total electricity usage. Accord-
ing to the U.S. Energy Information Administration (EIA),
population increase, urbanization, access to electricity for end
use purposes such as appliances and space conditioning, and
rising use of electric vehicles are factors driving this trend.

The associate editor coordinating the review of this manuscript and

approving it for publication was Neetesh Saxena
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With this increase in residential energy usage, innovative
planning with home energy management systems (HEMS)
is necessary to reduce the increasing carbon footprint by
incorporating distributed energy resources (DERs) such as
solar photovoltaic (PV) and battery energy storage (BES)
systems. Research explores demand response (DR) schemes
to incorporate solar PV, BES, and HVAC system controls
into modern HEMS for the smart grid. Many of these
studies involve machine learning (ML) based forecasting
employed in look-ahead optimizations. Previous studies may
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be classified into two main categories: community/district
and residential level. Community-level studies are more
prominent and have reported electricity savings through
smart home control methods such as HVAC system load
scheduling.

Examples of community-level studies of HVAC load con-
trol include the work by Gong et al., which presents an aggre-
gation technique used for reducing power peaks in a typical
community constructed with reference homes [1]. As another
example, Bandyopadhyay ef al. presented a K-means cluster-
ing algorithm to shift the peak loads of the HVAC system,
electric water heater (EWH), and pool pumps outside of high
demand hours [2]. The study completed by Oakridge National
Lab in [3] presented an investigation into adaptive controls
and Model Free Controls (MFC) to control a community of
HVAC systems load demand to follow a daily profile of PV
generation.

Residence-level studies into HVAC controls are much less
common in part due to the challenges of energy forecast-
ing from increased variability or unpredictability when com-
pared to aggregated load forecasting at the community-level.
An example of such studies is the work of Kurte ef al. that
presented a deep reinforcement learning based HVAC control
approach for residences which reported 30% cost reduction
through simulations and 21% reduction on real houses [4].
Often times, the above studies make use of various forecast-
ing or prediction techniques to implement look-ahead - such
as day-ahead - type of optimizations. One can find such fore-
casting techniques for PV generation, HVAC, or total house
or community power loads. For example, PV generation fore-
casting was studied with both machine learning and physics
based models. Hafiz ef al. described an energy management
system to optimize energy purchasing cost and to reduce peak
power usage for residences based on solar-PV forecasts using
a Long Short-Term Memory (LSTM) model [5]. The study
in [6] compared several forecasting methods for PV gener-
ation and reported that LSTM models provided the lowest
prediction errors.

Many previous studies focused on HVAC load forecast-
ing for combined industrial or commercial buildings, which
exhibit smoother load curves, and therefore are simpler to
predict. An example study in this more mature area include
the Artificial Neural Network (ANN) activation layer com-
parison and sensitivity study of weather inputs in the work by
Zwolinska et al. on a hotel building [7]. Lu et al. implements
an LSTM encoder-decoder layer configuration method with
an additional attention mechanism layer to predict a regional
community conditioning load including weather inputs [8].
The investigation conducted by Klessi et al. [9] also reported
that LSTM models outperform ANN models in forecasting
energy usage. Their paper compared the standard LSTM
model and the more advanced encoder-decoder configuration
to showcase the even better performance of the advanced
configuration on data sets from an amusement park build-
ing, an office building, and an operation center building.
Kim et al. [10] also used the LSTM encoder-decoder model
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to predict simulated heating and cooling load from an Ener-
gyPlus model of an office building.

Studies have found that LSTM models were among the
best performing at residential load prediction. Turgut ef al.
showed that LSTM models outperformed other models when
forecasting appliance power such as the television and
microwave [11]. The study in [12] also investigated LSTM
models to predict total load and lighting for several different
prediction windows or horizons. In another recent study,
Syed et al. investigated a bi-directional LSTM model and
compared it to other configurations with the use of future
weather inputs to predict the household and appliance power
at a high resolution of 10 minutes [13]. This reference does
not forecast the air-conditioning load on its own or disaggre-
gate it from the total load, which is a main focus of this current
paper.

On the other hand, one can find only a few studies on
home-level air conditioning load prediction, and, those too
identified LSTM recurrent neural networks (RNN) as the
most promising ML approach. For example, Gutierrez et al.
used an LSTM encoder-decoder model to predict the daily
HVAC consumption of a smart home [14]. Xia et al. also
used a bi-directional LSTM model for daily HVAC predic-
tions [15]. Zingre et al. used LSTM models in conjunction
with EnergyPlus output data to predict cooling load at a
finer resolution [16]. These studies reported a variety of pre-
diction error metrics, which makes their overall comparison
challenging and emphasizes the need for further standardiza-
tion of error reporting in this context. Along this line, the
authors also propose in this paper to adopt the Coefficient
of Variation (CV) of the Root Mean Square Error (RMSE)
error metric to align with the ASHRAE Building modeling
standards, denoted throughout the paper as CV(RMSE).

Recent studies integrated LSTM models with other meth-
ods such as Sparrow Search Algorithm (SSA) swarm intelli-
gence optimization [17] or Particle Swarm Optimization [18].
Motivated by these previous studies, in this paper, an inves-
tigation into novel LSTM models for prediction of PV
generation and HVAC load for an individual residence is
completed, and those models are used for HEMS HVAC load
dis-aggregation computational case studies. More specifi-
cally, to gain insights into the benefits of machine learn-
ing models for residential HVAC power separation, this
paper’s objectives are to provide contributions to the fol-
lowing areas: (1) development of satisfactory LSTM models
for HVAC load with future weather inputs for prediction of
single-residence HVAC and PV system power; (2) selection
of physical characteristics for PV forecasting based on typical
PV power equations and differential evolution (DE); (3) novel
separation method of HVAC power from total residential
load; (4) combined HEMS control method that incorporates
HVAC, PV, and BES systems by employing the LSTM fore-
casting.

The remainder of this paper starts with a discussion on
the experimental data set used for developing the proposed
encoder-decoder LSTM model for HVAC load prediction,

VOLUME 9, 2021
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FIGURE 1. SHINES House #1 [19] and schematic of the components and
HEMS considered in the study (top). Experimental data available for total
and HVAC load and PV generation over three years 2018, 2019, and 2020
(bottom). Seasonal summer sets for daily and day-time (6am to 9pm)
data have been employed in the reported studies.

which is provided in Section II. Then, the LSTM model is
presented in Section III, and the classic physics-based method
for predicting the PV generation is discussed in Section IV.
Sections V and VI provide the prediction results and the
proposed novel HVAC load separation method, respectively.
The behind-the-meter (BTM) optimal control studies that
utilize the LSTM forecasts are included in Section VII, and
conclusions are discussed in the final section.

Il. THE EXPERIMENTAL DATA

This paper utilizes experimental data from the SHINES Resi-
dential Demonstration, a field site comprised of two homes in
Pensacola, Florida managed by the Electric Power Research
Institute (EPRI). Each home is equipped with rooftop solar
PV and BES systems. Average electric power data with a
resolution of 15 minutes is available for the local distribu-
tion transformer and total house usages as well as for the
water heaters, pool pumps, and HVAC, solar PV, and BES
systems through the data dashboard [19]. Local weather data,
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including ambient temperature and solar irradiance, are also
provided at the same resolution.

The SHINES power and weather data for the summer
months, specifically June 1st to September 15th, was selected
for years 2018-2020 from House #1 as illustrated in Fig 1.
In addition to the full 24-hour data set, a ““pruned” version
of the summer data was processed such that only times from
6am to 9pm were considered. This method of “pruning”
isolates the time of particular interest during which HVAC
system demand significantly increase total energy load to
be met by utilities. This time frame also includes the times
at which solar PV generation is commonly available. The
combination of high HVAC system demand and solar PV
generation offers an opportunity for HEMS control to be
utilized most effectively.

Section V shows that the discussed energy forecast-
ing methods produce satisfactory results when utilizing the
“pruned’ dataset. In the following section, the ‘“‘non-pruned”
data set with full 24-hour days is employed to show the
effectiveness of the novel separation method for HVAC sys-
tem power. The resulting advantage of no longer requiring
dedicated instrumentation to monitor HVAC system energy
is also discussed. It should be noted that, for both data
sets, a conversion from 15-minute to hourly resolution was
performed to reduce computational runtime and to reduce
variability of ML inputs while retaining both the trends and
patterns captured by higher resolution data.

Ill. ENCODER-DECODER LSTM MODELS FOR
SEQUENCE-TO-SEQUENCE PREDICTION OF HVAC LOAD
AND PV GENERATION

LSTM models are a category of ML models within RNNs.
Generally, RNNs are different from standard neural net-
works (NNs) in that they have additional connections or loops
in the topology between cells in a layer. It is these connections
that enable RNN models to remember past information by
adding memory or state to the network. The ability to accu-
mulate state over the input sequence allows the RNN model
to learn the ordered nature within input sequences’ obser-
vations. However, standard RNN models may suffer from
the so-called vanishing gradient problem that can degrade
performance.

It was reported that the encoder-decoder approach to
sequence prediction is more effective compared to outputting
a vector directly [20]. Therefore, an LSTM model for multi-
step sequence-to-sequence forecasting with an encoder-
decoder two-layer structure based on [21] was developed and
the architecture is shown (Fig. 2). The model is used to predict
both residential HVAC system load and PV generation.

The encoder sub-model receives the input sequence and
produces a compressed fixed-length vector, as an internal
representation of the input. A stacked LSTM model is con-
structed by using multiple hidden layers stacked together.
The encoder’s output is repeated a number of times equal to
the number of steps for which the output sequence must be
predicted and then used as input into the decoder sub-model.
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I
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irradiance

FIGURE 2. General diagram of the architecture for the proposed LSTM model. Actual weather data was used as an input to emulate a “perfect”
weather forecast so that the best possible performance may be determined by utilizing the relationships between the weather, HVAC energy

usage, and PV generation at the time of predictions.

The decoder sub-model generates an output value for each
predicted output time step. The model from Fig. 2 predicts
a sequence of output time steps with the entire prediction
being produced at once as a vector of k values, which will
be interpreted as time steps. In other words, there are several
parallel input time series (i.e., multiple observations at the
same time step) and an output time series, which depends on
the inputs. This is a forecasting problem, which is formulated
or framed as a multi-step multivariate input, multi-step uni-
variate output time series forecasting problem.

The LSTM model was trained with data from the first
two summers of the SHINES experimental dataset, and the
predictions were tested on the data from the third summer
of the dataset. The prediction horizon or output for the res-
idential HVAC power load and PV generation was the next
16 hour “pruned” day, from 6am to 9pm. The model was
provided with two days of previous power usage/generation
as well as two days previous and one day future of selected
weather conditions. The one day future input plays the role of
a weather forecast to capture the impact of weather on HVAC
and PV power. Therefore, the weather input is a “perfect
forecast” as actual measured data is used in its place for
validation of the approach.

The types of model-inputs used in previous air
conditioning studies highlighted the importance of solar
irradiance and temperature in capturing the HVAC usage
patterns [22]. In addition, the study by Liang and Ma [23]
explained the influence of thermal inertia in a home and the
concept of a “lag” between the outdoor temperature and
the peak HVAC usage. Informed by results from previous
studies on ML based forecasting and by the physical rela-
tionships between weather conditions and residential HVAC
load, in this encoder-decoder LSTM model, the outdoor
temperature, temperature difference from an internal set-
point (assumed to be 21 °C for this home) to model the
thermal inertia of the home, and solar irradiance were selected
as inputs into the model for HVAC load predictions. For the
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FIGURE 3. The thermal inertia of this home can be seen in this example
week of August 2nd to August 8th. The HVAC system load starts to
increase after the temperature and irradiance start to increase, delayed
about one hour.

PV generation predictions, the inputs include the outdoor
temperature and solar irradiance, which were found to be
among the most relevant by previous studies as well [5].

IV. PHYSICS-BASED CONSIDERATIONS AND PV
GENERATION CALCULATOR

The AI models presented in this paper include inputs that
are based on the physical relationships between the predicted
generation or load to the weather, ie outdoor temperature
and solar irradiance, at the time of the prediction. Another
important physical relationship that the models must capture
for suitable HVAC load predictions is the thermal inertia of
the home, ie the capacity or ability to store heat or insulate
from external heat, which can be seen in the delay between
when the outdoor temperature starts to increase and when
the HVAC systems starts drawing power to cool the home
(Fig. 3).
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FIGURE 4. Day-ahead, hourly forecast of HVAC power draw during the
example week also showed in Fig. 3. Daily and hourly CV(RMSE) errors
are substantially lower than ASHRAE requirements for a calibrated
building energy model.

The machine learning model learns this thermal inertia
based relationship to the outdoor temperature and solar irradi-
ance to have accurate prediction results for the cooling load.
The PV predictions are not influenced by a lag-time effect
from weather inputs and may thus be easier to forecast using
a machine learning or calculation method.

To provide a basis or reference of comparison for the
accuracy of the proposed ML based prediction models, a clas-
sic physics-based method for predicting PV generation was
developed. The power estimator utilizes the onsite, mea-
sured outdoor temperature and irradiance as inputs and was
developed for the rooftop solar PV system of the EPRI
SHINES House #1. The power output of the PV power esti-
mator and the net power flow are estimated by the following
expressions:

Puc = [(1’(%) P, ] [1 - <% (Tee — 25°c))] (1)

NOCT —20°C ( y ) ®

0.8 1000
Py = HVAC—PV + M + B A3)

Teetl = Tamp +

where P, is the AC power output [W], y, the solar irradiance
w/ m?], P,, the rated PV array DC power [W], k,, the
temperature coefficient of maximum power [%/°C], Tce11, the
temperature of the PV cell [°C], Tynp, the outdoor ambient
temperature [°C], NOCT, the nominal operating cell temper-
ature [°C], and n, the efficiency of the system. The net total
power, battery power, and miscellaneous loads of the home
are denoted by Py, B, and M for the demand response case
study. The accuracy of the estimator was improved through
a DE based optimization scheme with the objective of deter-
mining the best feasible combination of parameters P, kp,
NOCT, and n based on the Root Mean Square Error (RMSE)
between the estimator output and measured PV power data.

V. PREDICTION RESULTS AND ERROR ANALYSIS
This section presents prediction results obtained with the
LSTM model introduced in the previous section. These
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FIGURE 5. Day-ahead hourly PV generation forecast from the same week
in August for uniformity. The PV day-ahead forecasts are comparable with
the calculation for that timestep, indicating a very strong performance of

the LSTM model against the benchmark.
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=
[
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FIGURE 6. The errors for the HVAC forecasts over the entire test period of
three and a half months are strongly clustered with approx. 45%
probability within +0.2 kW around 0. The PV forecasts are also strongly
clustered with the majority of the error within +0.25 kW of 0. Results are
satisfactory considering the peak power of approx. 3kW for both the
HVAC and the PV.

results include forecasts of the HVAC load and PV generation
during the summer of 2020. Representative plots of these
forecasts are shown in Fig. 4 and Fig. 5, where it can be
seen that the forecast traces follow closely with the actual
measurements.

The plot from Fig. 5 also shows the PV generation as
calculated by the classical model paired with DE optimization
discussed in Section I'V. It can be noted that the LSTM based
forecasting performs comparably to the estimation method,
used as a benchmark here, indicating that machine learning
methods such as the LSTM can well serve as a day-ahead
alternative to classical real time estimations.

To quantify the forecasting accuracy of the LSTM
encoder-decoder model for PV and HVAC power, Table 1
reports several common error metrics, which demonstrate
the results are satisfactory. One of the metrics included, the
co-variance (CV) of the Root Mean Square Error (RMSE),
is a common building modeling error calculation that can be
applied to machine learning forecasting to assess suitability
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FIGURE 7. Schematic diagram of the mathematical algorithm for the novel HVAC separation method for individual residencies. Total load and baseload
forecasts are illustrated in the two smaller graphs and an example week from July 16 to July 22, 2020 of the HVAC separation from the total forecasts
(Sep FCST) and the total measured data (Sep Meas.) is shown in the larger plot. The separated HVAC load for the summer of 2020 is satisfactory but not

as accurate as the forecasts from HVAC measured data shown in Section V.

of these artificial intelligence (AI) based modeling methods
against other types of building models such as black box or
physics based models.

The ASHRAE Standards indicate that at the hourly res-
olution a CV(RMSE) of 30% is considered calibrated for a
building [24] and a consensus between researchers applying
the ASHRAE standards to HVAC modeling specifically has
determined that a daily CV(RMSE) under 35% is accept-
able [25]. The HVAC load predictions obtained with the
proposed LSTM model using the “‘perfect” weather forecast
are well within these limits. These predictions will be used
later in Section VII.

Furthermore, the HVAC and PV error distributions are very
strongly clustered around 0 kWs as shown in Fig. 6. For the
HVC predictions, a nearly 45% likelihood that an error of
0.2 kW or less occurs. The PV is also clustered near zero,
with more than the majority of the errors within 0.25 kW.

VI. NOVEL HVAC LOAD SEPARATION METHOD USING
LSTM MODEL

The approach presented in the previous section for HVAC
load forecasts was developed under the assumption that
the subject modern house is equipped with dedicated
HVAC energy monitoring circuits, which collect real HVAC

160502

TABLE 1. Summary of errors for solar PV calculations as well as PV
forecasts using the LSTM encoder-decoder method.

Hourly Metric PV Calc PV HVAC
Average Load [kW] 1.186 1.186 2.199
RMSE [kW] 0.149 0314 0.701
CV(RMSE) [%] 14.89 26.5 31.8
R? 0.975 0.923 0.486
Daily Metric PV Calc PV HVAC
Average Load [kWh/day]  18.976 18.976  35.197
RMSE [kWh/day] 1.256 1.353 6.624
CV(RMSE) [%] 6.7 7.1 18.81
R? 0.958 0.947 0307

measurements. These measurements provide both initial
training data as well as future data for model refinements.

Such HVAC load forecasting were used in the BTM DR
schemes to be discussed in the next section, but also, gen-
erally, another application of this energy usage information
could be to educate the home owner for behavior change
purposes such as to reduce usage and cost. In addition, such
information can also be beneficial for grid planning, load
estimation, and analysis purposes to utilities. However, many
homes constructed or in use today are not equipped with
dedicated HVAC energy monitoring systems and, thus, the
previously described data driven LSTM model is not directly
applicable to those homes.

VOLUME 9, 2021
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FIGURE 8. The step by step procedure of the novel HVAC separation for
day ahead case (Sep FCST). Determining the temperature where the HVAC
system first does not operate (TmHVAC) and replacing the weather inputs
to be this TMHVAC and zero solar irradiance to forecast the baseload are
very important steps to the method that distinguish it from other
approaches.
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FIGURE 9. The V-type curve for the total residential energy usage of
SHINES House #1 and the outdoor temperature corresponding to the
2020 hourly power data. A linear fit of the relationship is introduced and
the TmHVAC reference variable of 18 C for the proposed method is
marked by the red star.

To address this problem, this paper proposes a novel HVAC
separation method from residential meter data. There are few
other methods for HVAC load separation that are in the cate-
gory of non-intrusive load monitoring approaches. Liang and
Ma presented a non-homogeneous Factorial Hidden Markov
Model (MN-FHMM) to dis-aggregate the HVAC load profile
and to learn a residence HVAC patterns [23]. Song et al. pro-
posed a time-frequency masking technique paired with a deep
learning model to identify the HVAC load [26]. Both of these
studies employ complex probability and frequency domain
signal analysis based calculations, which suffer from longer
computational runtimes when implemented as computer pro-
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FIGURE 10. HVAC load separated from the total measured (Sep Meas.)
and forecasted (Sep FCST) for the week of August 2, 2020 during the
daylight hours, 6am to 9pm of SHINES House #1. This week is also shown
in Fig. 4 with forecasts from measured data that outperform the
separated method.

grams; in addition, they were presented only conceptually,
without emphasis on reproducibility.

Ming Liang et al. presented a daily average separation
method based on the linear relationship between the out-
door temperature and HVAC operation as well as day type
grouping [27]. They used a base power level without HVAC
which is identified from mild day usage. It is subtracted
from the average of hot and cold days to isolate the HVAC
power, but only at the daily level without presenting a method
for a higher resolution time-series, day-ahead forecasting.
The novel method presented in this paper fills a gap in the
literature by expanding the previous approaches to include
time-series, day-ahead forecasting at the hourly resolution by
utilizing deep learning models and weather-based relation-
ships to separate the HVAC energy usage.

This method is developed using an encoder-decoder LSTM
model applied to forecasting the house total and baseload,
i.e., load from human behavior unrelated to weather. From
these predictions the HVAC is estimated via subtraction for
further use in the BTM DR schemes. The authors note that
this approach can be improved further as machine learning
technologies advance as other models can be applied to the
steps described.

Fig. 7 shows a simplified diagram that explains the math-
ematical steps of the proposed method and an example week
of HVAC separation from July 16™ to the 22" of 2020. This
example week is satisfactory but not as accurate as the HVAC
forecasts shown in Section V from the dedicated circuit based
data driven model. A step by step procedure to obtain the
day-ahead HVAC separation (Sep. FCST) shows the key steps
to predicting the baseload in detail (Fig. 8). The advantage
with this HVAC separation approach is that only a smart meter
for the home is required, resulting in reduced cost.

The HVAC separation method exploits the linear relation-
ship between the total power of a home (in [kW]) and the
outdoor ambient temperature the building experiences. This
relationship may be referred to as a ““V”’” curve with the home
power increasing towards both extremes of temperature from
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FIGURE 11. The approach to separate from the measured data (top) has
approximately 40% probability of an error between 0.35 kW and 0.5 kW
in the entire test window of over three months. The distribution shows
that the results could be further improved by adjusting the selected
TmHVAC reference variable for the baseload forecasts such that the errors
are centered around 0 kW.
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FIGURE 12. HVAC experimental data from the SHINES Home #1 for the
years 2018 and 2019. A linear regression was completed to model the
HVAC following traditional methods. This line is used in Table 2 to
compare with the novel separation method.

TABLE 2. Summary of residential HVAC separation errors and comparison
of linear model from data obtained by dedicated circuit separation
traditional approach.

Hourly Metric Sep Meas  Sep FCST LR
Average Load [kW]  2.174 2.174 2.174
RMSE [kW] 0.639 0.699 0.772
CV(RMSE) [%] 294 322 355
R? 0.445 0.335 0.189
Daily Metric Sep Meas  Sep FCST LR
Average Load 51.670 51.670 51.670
[kWh/day]

RMSE 5.728 6.957 8.481
[kWh/day]

CV(RMSE) [%] 11.1 13.5 16.25
R? 0.665 0.506 0.1548

a minimum temperature that is often found near the middle
of the curve in the more mild temperatures. It may then be
concluded that the portion of the home load that increases
with more extreme temperatures most likely corresponds to
the HVAC load component [28]. This implication provides
the basis of the cooling load separation method presented in
this section.
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The SHINES House #1 hourly temperature to total load
relationship, the “V-Curve”, over the entire year of 2020 is
shown in Fig. 9, and the temperature at which the HVAC
load is at its minimum (TmHVAC) is indicated by a red star.
It is important to note that the home is located in Florida,
which has a hot and humid climate year-round. Therefore, the
lower temperature half of this V-Curve, which corresponds to
heating, no longer needs to be considered as the HVAC does
not operate in this range.

A linear fit of the total load against the temperature is used
to model the HVAC system’s general performance as it is the
largest weather dependent load in a home. The large variation
outside the 95% confidence interval shown represents the
other loads and human behavior shaped influences. There-
fore, a comparison of different TmHVAC selections along the
HVAC linear model can be made and compared depending
on the coefficient of determination, R2. The conditions of
the minimum HVAC load for the SHINES House #1 were
determined to be at a temperature of 18 °C and a solar
irradiance of 0 W/m?.

For the data set from FL, this condition occurred naturally
only at night. This observation is important as it provides
insight on the level of influence for solar irradiance on the
HVAC load, which may or may not contribute to the total
house load. It is clear that, for times when the HVAC system
does not operate, the total load of the home is comprised of
other typical residential appliances and equipment, excluding
the HVAC. The total load in this scenario is considered to
be the “baseload” of the house for the proposed HVAC
separation method.

Following the diagram in Fig. 7, after the value of TmH-
VAC is determined, the LSTM encoder-decoder model is
employed to predict the baseload for the house. First, the
LSTM model is trained normally on the total power for
the home. Then, the temperature and irradiance inputs are
replaced in the input file to the model during forecasting
with the TmHVAC and 0 W /m? irradiance as if it were night
and the HVAC system did not operate. With these modified
inputs, the LSTM produces the “baseload”. Finally, to sep-
arate the HVAC load, the baseload is subtracted from the
known total power of the home. For HVAC load predictions,
the forecasted baseload can be subtracted from a day-ahead
forecast for the entire total load, which may also be obtained
from the LSTM model. This can serve in place of a forecast
from an HVAC data driven model as it can be obtained
24 hours before the time of interest from smart meter data
alone.

Both exercises were completed for the SHINES home
(Fig. 10) and provided satisfactory results according to the
ASHRAE building modeling standards of less than 35%
CV (RMSE) at the hourly level and less than 10% at the daily
resolution as described in the previous section (Table 2.)

In Table 2, a comparison is also provided against a linear
regression model based on the increase of the HVAC load
per degree of outdoor temperature in the summer, for which
the data is shown in Fig. 12. This method is the traditional
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FIGURE 13. Flow diagram for the proposed HEM control. The HVAC control is planned one day ahead based on the forecasting results. Additionally, the
BESS is controlled real time via the HEMS to meet the control target and compensate for total load, based on measured and forecasted data, as needed.

approach as a machine learning benchmark model for HVAC
demand forecasting based on the use of dedicated equipment
to separate the load [16].

Further analysis of the results show that over the summer,
the probability distribution of the HVAC separation error is
shifted to the left by a factor of 0.5 kW (Fig. 11). This indi-
cates that, while the temperature selected is suitable, a more
detailed investigation into the TmHVAC selection from the
V-curve using a regression model may yield improved results.
The HVAC separated load resulting from the forecasted total
load (Sep FCST) does not experience any shifting from the
center, which is due to the total load forecasts having an error
distribution that varies between being both too high and too
low.

Although the forecasts are satisfactory with an hourly and
daily CV (RMSE) of 32.2% and 13.5%, respectively, they do
not capture more irregular spikes caused by human behavior
as well as measured data (Sep Meas.) which yields better
results of an hourly CV(RMSE) of 29.4% and daily of 11.1%.
The Sep FCST results yield great value however as they actu-
ally have slightly better accuracy than predicting the HVAC
from the data obtained through dedicated measurement as
presented in Section V, with an RMSE o0f.639 as opposed
to 0.701 kW. This indicates that the added cost of dedicated
circuit equipment is not supported by this study as opposed
to the novel separation method presented which is sufficient
from smart meter data alone.

VII. BEHIND-THE-METER CONTROLS AND CASE STUDIES
FOR A NZE HOUSE

The presented BTM demand response controls, which may be
deployed through HEMS, are enabled by the HVAC and PV
energy forecasting methods proposed previously. The BTM
control schemes target modern net zero energy (NZE) smart
homes due to their increasing popularity, and it is assumed
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FIGURE 14. Calculated equivalent thermal resistance based on daytime
data from June to September 2018—2020. Only data points with a
difference greater than or equal to 12 °C between outside and inside
ambient temperature were considered to correspond to a typical mid-day
circumstance in which controls should be applied.

that such smart homes have a combined BES and PV system
that is capable of storing and generating enough energy to
maintain NZE status.

Because the SHINES experimental smart House #1 was
not designed as a NZE home, both the measured data and
the forecasts for the PV generation are scaled by a factor of
2.353 to make the actual, annual energy generated by the PV
installation, 5705.961 kWh, equal to the total annual energy
used by the home, 13426.607 kWh.

A general block diagram of the proposed BTM control
approach is shown in Fig. 13. It includes five main com-
ponents: processing of the experimental data, forecasting,
HVAC control, real time HEM, and monitoring. The raw
data is processed before it can be used as the input to the
LSTM model. This pre-processing is responsible for cleaning
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and normalization. The forecasting component from Fig. 13
uses LSTM models to forecast the residential load and PV
generation for the next day. Its output is employed by the
HVAC control component to schedule the HVAC operation
via adjustments of the thermostat setpoint. For example, on a
typical summer day, when there is surplus PV generation, the
setpoint is set lower such that the HVAC system operates as
energy storage. When the house power demand is high, the
setpoint is increased in order to reduce the residential power.
The HEM target is set when scheduling the HVAC operation
based on the forecasting. A Battery Energy Storage (BES)
system is incorporated in the real time HEM to eliminate
variations caused by the difference between forecasting and
real time data.

The proposed control approach uses a thermodynamic
model. The HVAC thermal model parameters and the equiva-
lent thermal resistance for the house of 4°C/kW (see Fig. 14)
were calculated using the experimental data from June to
September of 2018, 2019, and 2020 of the SHINES House
#1. Moreover, only the data corresponding to outdoor tem-
peratures higher than 33°C were considered since DR control
is mostly likely to be employed only in such cases.

The HEMS operates under the assumption that homeown-
ers may opt into HVAC load dispatch controls on any given
day. Under this assumption, the homeowner is presented with
the optimized schedule for day-ahead HVAC load that mini-
mizes the electricity cost. The impact of the HVAC setpoint
control and battery usage on the total energy purchased from
the grid is analyzed using a cost-calculation based on time-
of-use pricing (TOU) from [29]. In this scheme, the most
expensive time of day to use electricity is 4pm-9pm at $0.43
instead of $0.27 per kWh outside this time-frame.

In the remainder of this section, two computational case
studies of HVAC controls implemented as described in
Fig. 13 are presented in order to assess the impact of HVAC
control on the net power flow of a modern NZE smart home
equipped with PV solar generation and batteries with dif-
ferent sizes. The LSTM based models presented in previous
sections are used to forecast the HVAC load and PV genera-
tion. These predictions, together with the measured data (used
for comparison purposes), are used as an input into the Py,
equation for HVAC demand response under two scenarios:
Scenario 1, where one battery is used and Scenario 2, where
two batteries are used. Battery sizes and power ratings are
assumed to be similar to common industrial batteries such
as the Tesla Powerwall with 13.5kWh of usable capacity and
S5kW power rating [30].

Furthermore, to reduce the cost to the user in both scenar-
ios, the batteries are assumed to be charged at the start of the
day and began its operation at 6am to hold the house’s net
power flow at OkW. In this approach, the battery discharges
and recharges by the excess generation in the middle of the
day as shown in Fig. 16. The setpoint is also selected as lower
than the 21°C from the reference case to use the available PV
generation and pre-cool the home, which relies on the home’s
thermal inertia to reduce necessary cooling later in the day.
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FIGURE 15. Representative plots for SHINES House #1 on July 12, 2020.
The house is transformed into a NZE house via scaling with a factor of
2.353 for the annual PV generation and total energy use.
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FIGURE 16. Battery SOC over both Scenario 1 and Scenario 2. The
batteries discharge in the early morning and recharge during times of
excess PV generation.

For example, the plots in Fig. 15 show the measured HVAC
power, PV generation, and NZE net power flow along with
the outdoor and indoor temperatures on July 11, 2020, as a
typical summer day in Pensacola, FL (location of SHINES
House #1). In this reference case, the indoor temperature
was considered to be constant at 21°C. The HVAC power is
consistently high during the afternoon and peaks around Spm
with the outdoor temperature. In this uncontrolled state, the
user needed to pay higher prices during the evening to cool
their house, and their total cost of electricity from TOU prices
was $5.73.

The proposed control approach was applied in Scenario 1
to House #1 equipped with one battery of 13.75 kWh capacity.
The plots from Fig.17 show the power flows for a represen-
tative summer day, where the measured data resulted in a net
zero power flow for the day. The forecasted variables indi-
cated that the battery would start discharging in the evening
slightly earlier and would, thus, deplete its charge before
the entire evening load was negated. This load scheduling
comparison shows that even very good forecasts can cause
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TABLE 3. Consumer Benefit Comparison for Scenario 1 and 2.

Scenario 1 Daily Changes Measured  Forecasted
Cost Savings [$] 2.85 2.22
HVAC Energy Increase [kW] 4.968 4.968
Total Energy Purchased (4-9pm) [kW]  0.000 1.401
Scenario 2 Daily Changes Measured  Forecasted
Cost Savings [$] 2.77 2.40
HVAC Energy Increase [kW] 4.744 4.744
Total Energy Purchased (4-9pm) [kW]  0.000 0.000
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FIGURE 17. Scenario 1: day-ahead load shifting schedule for HVAC based
on PV generation (measured top, forecasted bottom) with 13.5 kWh of
battery capacity. The forecast of PV ends slightly earlier than the
measured data thus causing the positive net power flow at night.
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FIGURE 18. Scenario 2: Both the measured PV (top) and forecasted

PV (bottom) based HVAC controls result in 0 kWh purchased from the grid
during the day with a 27 kWh battery. The only demand-related cost to
the user in a 24 hour period is for recharging the battery at night when
ToU rates are cheaper.

small discrepancies in day-ahead load scheduling and cost
predictions.

In Scenario 2, where the house is equipped with 27 kWh
battery capacity (achieved through two separate batteries of
capacity as in Scenario 1), the HVAC dispatch control based
HEMS can maintain a net zero power flow through the entire
high cost period of the day from 4-9pm in both the forecasted
and measured cases (Fig. 18). However, the additional battery
capacity is not fully utilized, as the battery has more than 60%
capacity remaining. Also, because of its higher capacity, the
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battery incurs a higher cost to charge to full capacity (during
night time), which, in turn, results in fewer savings. There-
fore, there is less incentive for the homeowner to purchase an
additional battery. However, a larger battery capacity could
be utilized as additional backup supply for days with poor
PV generation, e.g., cloudy days.

Both scenarios indicate that shifting the HVAC setpoint
to a value such that the home pre-cools when the user is
assumed to be absent from the home can save the homeowner
more than $2 per day as reported in Table 3. The proposed
HVAC control scheme - which operates the system to act as
a load bank for otherwise unused PV generation - increases
the total amount of energy used for air conditioning, but, the
environmental impact is lessened by the reduced need for
electricity from the grid, which often heavily relies on fossil
fuels.

VIIl. CONCLUSION

An encoder-decoder LSTM ML model was developed for
hourly, day-ahead forecasts of residential HVAC usage and
PV generation based on previous load usage and future
weather inputs in place of a weather forecasts. These predic-
tions utilize experimental 15-minute resolution data aggre-
gated to the 1 hr timestep. The respective goodness of fit for
the PV and HVAC models were 0.975 and 0.486 at the hourly
level.

The presented method for the forecast of the residential
building total load and separation of the HVAC load, which is
typically a residence’s largest load component, offers a signif-
icant advantage in that it does not require a dedicated circuit
for HVAC monitoring. The technique only requires data that
is made available from smart meters and a weather forecast,
which makes it suitable for large scale field deployment.

Furthermore, the method utilizes non-intrusive load mon-
itoring with smart meters at the house level that can enable
advanced BTM controls for HVAC systems, which is an espe-
cially notable achievement. It was shown that the encoder-
decoder LSTM-based HVAC separation method produced
excellent results when compared to the ASHRAE build-
ing model standards as applied to HVAC systems. A daily
CV(RMSE) of 11.1% and 13.5% were found by employing
measured and forecasted total load data, respectively.

The technique for separation is also versatile as other
machine learning models that have been optimized, in addi-
tion to the LSTM model encoder-decoder model, may be
applied to improve the results of separation even further.
Future research will include further validation of the proposed
techniques by considering a wide variety of house types,
climate zones, occupancy, and load patterns, i.e., occupant
behavior.

Case studies were also performed in this paper to illustrate
the application of the day-ahead forecasts in a BTM control
approach with the objective of operating a smart house such
that it is considered NZE. The proposed control approach was
also utilized to conduct a BTM user-centric cost analysis that
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indicated the possibility of cost savings under realistic TOU
pricing.
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