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DISSERTATION ABSTRACT 
 

MYELIN, CPLA2, AND AZITHROMYCIN: MODULATION OF MACROPHAGE 
ACTIVATION IN SPINAL CORD INJURY INFLAMMATION 

 
Spinal cord injury (SCI) produces a chronic inflammatory state primarily 

mediated by macrophages consisting of resident microglia and infiltrating 
monocytes. These chronically activated SCI macrophages adopt a pro-
inflammatory, pathological state that continues to cause additional damage after 
the initial injury and inhibits recovery. While the roles of macrophages in SCI 
pathophysiology are well documented, the factors contributing to this 
maladaptive response are poorly understood. Here, we identify the detrimental 
effects of myelin debris on macrophage physiology and demonstrate a novel, 
activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin-
mediated potentiation of pro-inflammatory macrophage activation. Macrophage-
mediated inflammatory responses are promising therapeutic targets; however, 
there are very few therapeutic options to treat SCI and none that target 
macrophages. Here, we provide evidence that treatment with the 
immunomodulatory antibiotic azithromycin (AZM), initiated after SCI, improves 
recovery by targeting macrophage activation. There is an urgent need for the 
development of new therapies for the treatment of SCI. Macrophage-targeted 
therapies hold great promise; however, these treatment candidates require 
additional development before they can advance towards clinical use. Here we 
discuss the continued development of cPLA2 as a therapeutic target, the steps 
necessary to advance AZM towards clinical use, and lastly, we review additional 
macrophage-targeted therapies currently in development. Collectively this body 
of work identifies key mechanisms driving macrophage pathophysiology after SCI 
and identifies macrophage-targeted therapies that reduce this neuroinflammation 
to improve recovery after SCI. 
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Neurotrauma 
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Chapter 1: Introduction 

 

1- i. Spinal Cord Injury 

A spinal cord injury (SCI) is a severe condition in which damage to the 

spinal cord produces impairments to spinal functions. The initial damage that 

occurs is largely irreversible, with current medical interventions primarily seeking 

to stabilize the individual and prevent further damage. Unfortunately, in the initial 

days following SCI, the damage to the spinal cord spreads, causing additional 

impairments by a process called secondary injury. While the causes of 

secondary injury are multifaceted, a primary mechanism is the robust 

neuroinflammatory response mediated by infiltrating macrophages and resident 

microglia. Given the immense medical challenge of mending the spinal cord 

damage, the current body of work aims to understand the underlying 

mechanisms driving this detrimental cellular activity and examines therapeutics 

that could intervene and improve recovery after SCI. 

SCI induces a robust cellular inflammatory response in which resident 

cells such as microglia and astrocytes become activated. In the hours and days 

after injury, neutrophils, monocytes, lymphocytes, and other cells infiltrate into 

the damaged tissue creating a unique neuroinflammatory environment not seen 

in typical bodily injuries (Donnelly and Popovich, 2008). There are protective or 

reparative events occurring in these cellular populations; however, collectively, 

this inflammation causes further damage. Macrophages and microglia, in 

particular, are capable of producing reparative or adverse responses depending 
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on their activation state. Indeed, macrophages can facilitate repair by increasing 

axon growth, stem cell differentiation, and revascularization (Gensel and Zhang, 

2015; Kigerl et al., 2009); however, in SCI these, cells predominantly adopt a 

pro-inflammatory activation state. Pro-inflammatory macrophages and microglia 

contribute to pathology through secondary injury processes involving reactive 

oxygen species (ROS), neurotoxin, and pro-inflammatory cytokines release, as 

well as by causing axon retraction and dieback (Gensel and Zhang, 2015; Horn 

et al., 2008). Further, pro-inflammatory macrophages and microglia remain in the 

SCI lesion indefinitely and are thus thought to impair other repair mechanisms. 

Here, we seek to examine some of the underlying mechanisms causing this 

maladaptive macrophage response and develop therapeutics that may reduce 

pro-inflammatory macrophage activation. 

To examine the underlying mechanisms underlying the pro-inflammatory 

macrophage response, we utilize an in vitro model using bone marrow-derived 

macrophages (BMDMs). As described previously (Kopper et al., 2021), BMDMs 

are predictive of monocyte-derived macrophage responses in vivo in the injured 

spinal cord. This has been observed at transcription (Longbrake et al., 2007) and 

functional levels (Gensel et al., 2009), as well as in response to therapeutic 

interventions (Gensel et al., 2017). In vitro, we reproduce the pro-inflammatory 

macrophage activation state with an “M1” stimulus (LPS and IFN-γ) and the anti-

inflammatory reparative macrophage activation state with an “M2” stimulus (IL-4). 

We also utilize naïve “CTL” or “M0” macrophages that are grown to maturity but 

are not given an activation state stimulus. Using this system, we can add 



 3 

additional stimulants, chemical inhibitors, or therapeutics to investigate cellular 

mechanisms and screen potential therapeutics. 

 

1- ii. Myelin as an Inflammatory Mediator  

This section is adapted from (Kopper and Gensel, 2017) 

Myelin as an Inflammatory Mediator Summary: 

Spinal cord injury (SCI) triggers chronic intraspinal inflammation consisting 

of activated resident and infiltrating immune cells (especially 

microglia/macrophages). The environmental factors contributing to this protracted 

inflammation are not well understood; however, myelin lipid debris is a hallmark 

of SCI. Myelin is also a potent macrophage stimuli and target of complement-

mediated clearance and inflammation. The downstream effects of these neuro-

immune interactions have the potential to contribute to ongoing pathology or 

facilitate repair. This depends in large part on whether myelin drives pathological 

or reparative macrophage activation states, commonly referred to as M1 (pro-

inflammatory) or M2 (alternatively) macrophages, respectively. Here we review 

the processes by which myelin debris may be cleared through macrophage 

surface receptors and the complement system, how this differentially influences 

macrophage and microglial activation states, and how the cellular functions of 

these myelin macrophages and complement proteins contribute to chronic 

inflammation and secondary injury after SCI. 
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Myelin as an Inflammatory Mediator 

Spinal cord injury (SCI) triggers a complex cross-talk between resident 

cells of the central nervous system (CNS) and infiltrating immune cells. These 

neuro-immune interactions can mediate recovery but also inhibit regeneration. 

Activated macrophages, consisting of resident microglia and recruited 

monocytes, contribute to this dichotomous response. Indeed, macrophages 

facilitate repair by increasing axon growth, stem cell differentiation, and 

revascularization. However, macrophages can also contribute to pathology 

through reactive oxygen species (ROS), neurotoxin, and pro-inflammatory 

cytokines release, as well as, by causing axon retraction and dieback. The extent 

to which macrophages are polarized toward reparative (also called M2 or 

alternative) or pathological (also called M1 or pro-inflammatory) phenotypes 

depends in large part on the stimuli present in the injured spinal cord. 

While numerous studies examine how macrophage activation states affect 

recovery after SCI (for a review see (Gensel and Zhang, 2015)), less is 

understood about how the lesion environment contributes to macrophage 

polarization. It is well-established that myelin debris generated after SCI inhibits 

axonal regeneration and remyelination (McKerracher et al., 1994); however, 

myelin can also act as an inflammatory stimulus (Kroner et al., 2014; Wang et al., 

2014; Williams et al., 1994). Lipid-laden myelin debris is taken up and processed 

by inflammatory cells, including neutrophils and macrophages. Myelin then 

becomes highly concentrated in these phagocytes, persisting in macrophages for 

weeks after SCI (Greenhalgh and David, 2014; Vargas and Barres, 2007; Wang 
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et al., 2014). In addition, myelin initiates complement-mediated inflammatory 

pathways with downstream effects on macrophage activation. Here we examine 

the myelin-macrophage and complement neuro-immune interactions after SCI. 

Since myelin is ubiquitously present in the acute and chronically injured spinal 

cord, we will explore the mechanisms of myelin debris clearance and its 

downstream inflammatory effects. 

 

Spinal Cord Injury Causes Myelin Breakdown and Immune Cell Activation. 

Acute spinal cord trauma ruptures vasculature leading to tissue ischemia 

and blood brain barrier breakdown and generates neuron and myelin debris. 

Myelin damage specifically occurs at the time of injury, and cellular debris is 

present in areas of white matter damage within 24hrs (Buss et al.; Ek et al., 

2012; Imai et al., 2008). Debris increases within the first week of SCI and persists 

in the chronically injured spinal cord (Ek et al., 2012; Kozlowski et al., 2014). 

While damaged myelin is cleared within weeks of peripheral nerve injury, myelin 

fragments are present for the first year after SCI (Becerra et al., 1995; Vargas 

and Barres, 2007). Indeed, myelin debris is not cleared from the chronically 

injured spinal cord until years after injury (Becerra et al., 1995). This time course 

of acute myelin debris with protracted but eventual removal after SCI occurs 

across a range of mammalian models and in humans (Wang et al., 2014). The 

sustained presence of myelin debris inhibits axon regeneration, oligodendrocyte 

differentiation, and remyelination. 
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Immune cell activation follows a similar time course (Gensel and Zhang, 

2015). Neutrophils and complement proteins (discussed below) enter the injury 

site within the first days after SCI. Microglia are activated at the time of injury, 

with peak activation within the first week of injury. Monocyte-derived 

macrophages infiltrate the injured spinal cord within days and peak 1–2 weeks 

after injury. Over time, neutrophils and complement proteins subside, but 

microglia and macrophages persist. Phagocytosis markers are present on these 

chronically activated cells (Fleming et al., 2006). It is therefore likely that myelin 

lipids are actively processed by macrophages and are environmental stimuli 

influencing chronic spinal cord inflammation. Indeed, in areas of Wallerian 

degeneration, macrophages disappear from the chronically injured spinal cord 

concomitant with myelin debris clearance (Becerra et al., 1995). 

 

Macrophage Receptor-Mediated Myelin Removal 

Receptor-mediated phagocytic myelin removal requires binding of 

damaged myelin to surface receptors and subsequent phagocytosis. These 

receptors have the potential to bind to myelin directly or to opsonized myelin 

particles. Both opsonized and non-opsonized myelin removal by 

macrophages/microglia has been reviewed extensively and will only be 

mentioned here briefly (Hirata and Kawabuchi, 2002; Neumann et al., 2009; 

Reichert and Rotshenker, 2003). Complement-mediated receptor binding, 

primarily through the pattern recognition receptor (PRR), complement receptor 3 

(CR3/CD11b/MAC-1), is a commonly studied mechanism of opsonized myelin 
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clearance. Complement proteins (e.g., complement protein 3) and/or antibodies 

bind degenerated myelin facilitating CR3 binding and phagocytosis. This 

process, and the process of non-opsonized myelin clearance, is regulated in part 

through carbohydrate-lectin receptors, including the MAC-2/Galectin-3 receptor 

among others. The receptor-mediated internalization of myelin, and myelin-

receptor binding itself, potentially alters the functional phenotype of the 

phagocyte. The downstream effects of complement and receptor-mediated 

myelin removal on macrophage/microglia phenotypes will be discussed below. 

It is also well-documented that scavenger receptor AI/II (SRAI/II) 

participates in macrophage-mediated myelin clearance, for a review, see 

(Rotshenker, 2009). This PRR is capable of binding a variety of lipids and 

polyanionic ligands. SRAI/II, in combination with CR3, facilitates myelin 

phagocytosis by microglia and macrophages (da Costa et al., 1997; Reichert and 

Rotshenker, 2003). Additionally, SRAI/II is implicated as a primary mediator of 

oxidized lipoprotein uptake in atherosclerosis and leads to the development of 

foam cells (Greaves and Gordon, 2008). Emerging transcriptional evidence 

indicates that SCI macrophages increase lipid catabolism after injury and adopt 

transcription profiles closely resembling foam cells (Zhu et al., 2017). Lipoprotein 

receptors have been implicated in the foam cell transition, but whether SRAI/II 

facilities this transition in SCI has yet to be determined. This may be challenging 

considering that SCI results in significant free radical generation and lipid 

peroxidation (Hall, 2011). It is possible that these oxidative alterations to myelin 

lipids may alter the receptor pathways through which they are cleared, and this 
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caveat is important to consider when modeling myelin clearance in-vitro and 

interpreting experimental results. 

Another potential mechanism of receptor-mediated myelin clearance is 

through the macrophage receptor with a collagenous structure (MARCO). 

MARCO is a scavenger receptor related to SRAI/II. Both contain collagenous and 

scavenger receptor cysteine-rich domains in their extracellular portions giving 

them similar ligand binding repertoires (Elomaa et al., 1995; Jozefowski et al., 

2005). Thus, it is likely that MARCO can bind myelin lipids effectively. Although it 

has not been identified as a myelin receptor in SCI, we recently observed that 

macrophages upregulate MARCO in response to pro-inflammatory stimuli and 

express MARCO in the injured spinal cord (Gensel et al., 2017; Orr et al., 2017). 

MARCO activation, therefore, may be a potential mechanism for pro-

inflammatory macrophage-mediated myelin removal in SCI. 

Triggering receptor expressed on myeloid cells 2 (TREM2) facilitates microglial 

phagocytic activity (Takahashi et al., 2005). TREM2 is a sensor for lipid 

components of damaged myelin and is required for debris clearance in the 

cuprizone model of demyelination (Daws et al., 2003; Poliani et al., 2015). 

TREM2 binds polyanionic ligands, such as dextran sulphate, bacterial 

lipooligosaccharides, and various phospholipids (Cannon et al., 2011). In the 

case of myelin, the likely ligands include phosphatidylethanolamine, 

phosphatidylserine, and cardiolipin found in myelin membranes (Cannon et al., 

2011). Individuals with TREM2 mutations or deficiencies are at higher risk for 

developing amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s 
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disease (Lill et al., 2015). Notably, individuals with mutations in TREM2 or 

DAP12, a key-signaling component of TREM2, develop lethal and progressive 

Nasu-Hakola disease characterized by early onset dementia and demyelinating 

brain lesions (Paloneva et al., 2002; Verloes et al., 1997). Therefore, TREM2 

may be involved in removing damaged myelin following SCI, MS and other 

conditions. Indeed, microglial TREM2 senses lipid components of myelin debris 

and is important in regulating transcriptional programs essential for myelin debris 

clearance (Cantoni et al., 2015; Poliani et al., 2015; Siddiqui et al., 2016). 

Additional work is needed to examine TREM2 within the context of the myelin-

macrophage interactions in SCI. Likewise, TREM2 is part of a large family of 

TREM and TREM-like receptors with similar ligand binding repertoires that are 

also unstudied in the context of myelin uptake after SCI (Cannon et al., 2011). 

 

Myelin-Macrophage Interactions 

Some of the first studies to examine macrophage-mediated myelin debris 

clearance in the CNS emerged from the multiple sclerosis (MS) field. Electron 

microscopy studies revealed myelin debris phagocytosis in active lesions and 

identified macrophages as facilitators of continued demyelination (Prineas, 1975; 

Prineas and Connell, 1978). These catalyzed further studies largely concerned 

with the roles of anti-myelin antibodies, complement, and other pathways in 

relation to the chronic demyelination observed in MS. A 1994 publication by 

Williams et al. in the Journal of Neuroscience Research identified an 

inflammatory role for myelin debris (Williams et al., 1994). Specifically, they 
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reported microglial activation with increased pro-inflammatory cytokine and ROS 

production with myelin phagocytosis (Williams et al., 1994). These observations 

indicate that myelin debris may be an inflammatory stimulus for pro-inflammatory 

microglia/macrophage activation. 

An 1990’s, work by Brück and Friede and van der Laan et al. demonstrated the 

importance of macrophage CR3 in mediating myelin uptake. They observed that 

myelin induced production of tumor necrosis factor-alpha (TNF-α) and nitric oxide 

(van der Laan et al., 1996a). These effects were enhanced through complement 

opsonization of myelin and blocked through antibody-mediated inhibition of CR3 

(Brück and Friede, 1990; 1991; van der Laan et al., 1996b). This work is 

supported by a more recent study in an SCI model which reported myelin 

invoked pro-inflammatory macrophage responses in vivo (Sun et al., 2010). In 

that paper, CR3-mediated uptake of myelin and downstream activation of 

FAK/PI3K/Akt/NF-κβ signaling pathways increased pro-inflammatory, M1-like 

cytokine release and decreased M2 cytokine release (Sun et al., 2010). 

Collectively, these data highlight that receptor-mediated myelin removal can alter 

macrophage phenotypes and that removal through CR3 drives pro-inflammatory 

macrophage activation in SCI. 

While these studies implicate myelin as a pro-inflammatory macrophage 

stimulus in SCI, the role of myelin and lipid processing on M1/M2 macrophage 

polarization in vivo is controversial. Specifically, myelin-laden “foamy” cells 

express a wide variety of anti-inflammatory molecules with some intermediate 

M1–M2 phenotypes in MS (Boven, 2005; Vogel et al., 2013). In atherosclerosis, 
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foam cell formation is associated with a downregulation of pro-inflammatory gene 

expression (Spann et al., 2012). In contrast, in SCI, foam cell formation and 

macrophage lipid accumulation is associated with decreased M2 activation 

(Wang et al., 2014). Further, M1 macrophage polarization predominates in SCI 

despite the large presence of myelin debris (Kroner et al., 2014). Interestingly, 

the relative expression of pro- and anti-inflammatory markers appears to depend 

on the lesion or tissue microenvironment. For example, in active MS lesions, anti-

inflammatory marker expression predominates on foam cell macrophages in the 

lesion center and inner rim while pro-inflammatory marker expression is more 

widespread (Boven, 2005; Vogel et al., 2013). Similarly, a more recent evaluation 

of foam cells within the context of the M1/M2 macrophage paradigm observed a 

full range of M1–M2 foam cell activation states depending upon the 

microenvironments from which the cells were isolated (Thomas et al., 2015a; 

2015b). In the case of SCI, two environmental cues that may promote M1 

polarization in the presence of myelin are TNF and intracellular iron, perhaps 

reflective of the increased hemorrhage in SCI lesions relative to those in MS 

(Kroner et al., 2014). 

To better elucidate the role myelin plays in macrophage polarization, 

researchers often stimulate macrophages with myelin in vitro. However, despite 

using fairly similar stimulation paradigms, there are contrasting reports that 

implicate myelin as both a pro-inflammatory and anti-inflammatory stimulus. To 

better understand how to reconcile these conflicting reports, we examined the 

myelin stimulations in detail. A few common themes emerged that may account 
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for the conflicting results. First, in several of these in-vitro paradigms, 

researchers load macrophages with myelin prior to applying inflammatory stimuli. 

In response to pro-inflammatory stimuli, these myelin-laden macrophages almost 

invariably express anti-inflammatory mediators and/or stop responding to the pro-

inflammatory stimuli (Bogie et al., 2013; 2012; Boven, 2005). Second, myelin 

stimulation in isolation invokes either no phenotypic activation or causes the 

release of reactive oxygen species and pro-inflammatory cytokines with a few 

reports of subtle M2-like activation in a cell-type specific manner (Sun et al., 

2010; van der Laan et al., 1996b; van Rossum et al., 1999; Wang et al., 2014; 

Williams et al., 1994). Third, when myelin is delivered to macrophages already 

stimulated to be either M1 or M2, or when myelin and other stimuli are presented 

at the same time, a range of responses has been reported. For example, pre-

stimulation with M1 or M2 stimuli results in a myelin-induced potentiation of M1 

activation (Siddiqui et al., 2016; Wang et al., 2014). Myelin co-administration with 

pro-inflammatory stimuli can invoke further M1 activation, albeit in a time-

dependent manner with increased M2 activation over time (Liu et al., 2006). A 

subtlety distinct protocol added myelin to M1 polarized macrophages following 

the removal of the inflammatory stimuli and observed anti-inflammatory effects 

(Kroner et al., 2014). Notably, in that study, if pro-inflammatory stimuli are 

present during myelin activation, M1 polarization was observed (Kroner et al., 

2014). It is also important to note that researchers utilize various cell types, 

including bone marrow-derived macrophages, primary microglia, cell lines, 

peritoneal macrophages, and blood monocytes, among others for in vitro models. 
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All of these cell types have subtle differences in their basal activation state and 

their ability to take up and respond to myelin (Durafourt et al., 2012; van Rossum 

et al., 2008). Collectively, these myelin-macrophage studies in vitro indicate that: 

1) myelin dampens the macrophage response to subsequent stimuli; 2) in 

isolation, myelin may act as a pro-inflammatory stimulus that drives M1 type-

activation; and 3) when combined with other stimuli, initially myelin facilitates M1 

polarization but this response varies over time. 

The results of these in vitro studies indicate that myelin is capable of 

producing downstream effects on macrophages that vary under different cellular 

and environmental conditions. This highlights the impact that stimulation type and 

timing, relative to myelin application, has on myelin-induced shifts in macrophage 

phenotype. Microglia and macrophages in the injured spinal cord would likely be 

exposed to inflammatory stimuli before or concurrent with the clearance of myelin 

debris. Macrophages also encounter distinct stimuli in the SCI vs. MS lesion 

environment. It is therefore possible that different macrophage activation states 

during myelin processing lead to varied inflammatory responses in SCI and MS. 

Until the molecular mechanisms through which myelin exerts its effects are better 

understood, it remains unclear how myelin and inflammatory stimuli synergize to 

produce different cellular responses. 

In addition, the macrophage response to myelin uptake varies depending 

upon the receptors mediating phagocytosis (Figure 1.1). In traditional responses 

to infection and damage, macrophage PRRs often share redundancies in the 

molecular structures they target. It has been proposed that collective 
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engagement of different PRRs can influence the cellular response to an 

inflammatory insult (Jozefowski et al., 2005; Mukhopadhyay et al., 2004). Indeed, 

in SCI, the collaborative engagement of PRRs vs. activation in isolation yields 

distinct reparative or pathological functions (Gensel et al., 2015). Notably, the 

PRRs capable of recognizing and clearing myelin, as discussed above, appear to 

mediate contrasting cellular responses along the spectrum of macrophage 

activation states. This suggests that the specific combination of myelin clearance 

receptors utilized after injury may influence the inflammatory effects of myelin 

debris. For example, in-vitro, MARCO is important in mediating pro-inflammatory 

IL-12 production in response to inflammatory stimuli (Jozefowski et al., 2005). 

Similarly, it is well documented that macrophages increase IL-12 release with 

myelin stimulation (Sun et al., 2010; Wang et al., 2014). Given that MARCO is 

present on macrophages after SCI (Gensel et al., 2017), it is possible that 

MARCO-mediated myelin clearance may influence the M1-like polarization 

observed in SCI. Conversely, SRAI/II has been implicated in the inhibition of IL-

12 production (Jozefowski, 2004; Jozefowski et al., 2005). Whether the 

differential function and regulation of these macrophage receptors are of similar 

importance in the context of myelin debris clearance after SCI is unknown 

(Figure 1.1). 

Following SCI or other neurological conditions, myelin clearance is likely 

influenced simultaneously by multiple receptors. This receptor cross-talk could be 

additive, synergistic, or antagonistic in terms of intracellular signaling depending 

on which receptors are present and activated during clearance (Lee and Kim, 
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2007; Natarajan et al., 2006). Interestingly, certain bacterial strains have evolved 

to manipulate this PRR crosstalk by CR3, MARCO, TLRs, and C5aR (discussed 

below) to block the production of IL-12 and IFN-γ thereby impairing macrophage 

bacterial clearance (Hajishengallis and Lambris, 2011). Although, whether a 

similar approach could be harnessed to manipulate myelin-mediated 

inflammatory responses after SCI has yet to be studied. Additionally, TREM2 

plays a role in myelin clearance and integrity. As discussed above, it is important 

in regulating the transcriptional programs essential for myelin phagocytosis 

(Cantoni et al., 2015; Poliani et al., 2015; Siddiqui et al., 2016). Further, TREM2 

signaling facilitates the production of tropic factors important in oligodendrocyte 

differentiation, survival, and remyelination (Poliani et al., 2015). Interestingly, 

overexpression of TREM2 increases the efficiency of non-inflammatory 

phagocytosis (Takahashi et al., 2005; 2007). TREM2 overexpression in 

macrophages also induces an M2 phenotype and M2 activation is inhibited in 

TREM2 KO macrophages (Seno et al., 2009; Takahashi et al., 2005). In an 

experimental model of MS, TREM2 facilitated myelin removal while increasing 

anti-inflammatory cytokine production (Takahashi et al., 2007). Whether TREM2 

drives M2 macrophage activation is the context of SCI is unknown but these 

studies suggest that it may be a pro-reparative pathway for myelin debris 

clearance. 

CD36 (a class B scavenger receptor) is also implicated in macrophage-

mediated myelin clearance after SCI. Recently, (Zhu et al., 2017), examined 

shifts in macrophage transcriptional profiles from 3 to 7 days post injury (dpi). 
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They observed a significant shift from genes controlling cytokine signaling and 

cellular migration at 3dpi to a profile dominated by lipid catabolism at 7dpi 

through the liver X and retinoid X receptor (LXR/RXR) and peroxisome 

proliferator-activated receptors (PPAR)/RXR canonical pathways (Zhu et al., 

2017). Further, they targeted the most enriched lipid receptor identified, CD36, 

and found that its genetic deletion reduced lipid accumulation in macrophages 

and improved functional outcomes after SCI (Zhu et al., 2017). Interestingly, the 

RXR signaling pathways are similar to those activated by foam cells within 

atherosclerotic lesions. 

Independent of the receptor mediating myelin clearance, a previous study 

of foamy macrophages in SCI showed that myelin stimulation shifted the balance 

of macrophage activation towards M1 activation. Specifically, myelin stimulation 

increased pro-inflammatory NF-κβ/STAT1 signaling and decreased M2-

associated STAT3/STAT6 signaling (Wang et al., 2014). Further, while myelin 

increased lipid efflux and activated ATP-binding cassette transporter A1 (ABCA1) 

in macrophages, in foamy cells, myelin decreased the phagocytic capacity for 

necrotic neutrophils (Wang et al., 2014). Since foamy macrophages are present 

in SCI, they proposed that these spent, but non-phagocytosed, neutrophils 

released toxins and contribute to secondary injury after SCI. This is a novel 

potential mechanism through which foam-like, myelin-laden macrophages may 

contribute to secondary injury processes (Wang et al., 2014). Given the 

extensive lipid debris accumulating within SCI macrophages, additional 
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comparisons to foam cells and atherosclerosis may lead to new therapeutic 

targets. 

Another important factor that likely regulates the myelin-macrophage 

neuro-immune interaction in SCI is the phagocytic cell origin. Microglia have the 

phagocytic capacity to remove damaged myelin and are the predominant 

phagocyte to clear debris in the acutely injured spinal cord (Greenhalgh and 

David, 2014). However, by three days post injury, this role is largely taken over 

by infiltrating macrophages (Greenhalgh and David, 2014). Specifically, in the 

first weeks after SCI, MAC-2 positive bone marrow-derived macrophages enter 

the lesion site and are positive for myelin debris (Wang et al., 2014). These 

infiltrating macrophages accumulate in the lesion over time and contain lipid 

debris for at least 42dpi (Greenhalgh and David, 2014). In contrast, 

CX3CR1high resident microglia are primarily found along the periphery of the 

lesion/lipid plaque in areas of less concentrated myelin debris (Wang et al., 

2014). The downstream effects of this differential distribution of macrophages 

and microglia relative to lipid debris has been discussed previously (Zhou et al., 

2014) but it is interesting to consider how cell-specific receptor expression may 

mediate myelin polarization in SCI. For example, MARCO is primarily expressed 

by infiltrating and not resident myeloid cells (Getts et al., 2014). Similarly, MAC-2 

expression is specific to monocyte derived macrophages after SCI (Wang et al., 

2014). TREM2, however, is predominantly expressed by microglia (Schmid et al., 

2002). As discussed above, these receptors have different propensities for pro-

inflammatory or anti-inflammatory cytokine release in response to myelin 
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stimulation (Figure 1.1). It is therefore possible that varied receptor expression 

on microglia and monocyte-derived macrophages predisposes these cells for 

different inflammatory responses to SCI myelin debris. Determining the relative 

contribution of microglia vs. macrophages on myelin-mediated SCI inflammation 

will be challenging, however, based upon the observation that macrophage 

myelin phagocytosis varies depending upon the inflammatory cues driving 

recruitment to the site of injury (Slobodov et al., 2001). 

Relative to the injured spinal cord, myelin may induce deleterious pro-

inflammatory macrophage activation (Kroner et al., 2014; Wang et al., 2014). 

Myelin and myelin phagocytosis likely potentiate signaling pathways and 

polarization states in macrophage and function as direct inflammatory stimuli 

(Figure 1.1). Determining the mechanisms and environmental conditions through 

which myelin can induce these effects in immune cells could lead to novel 

therapies for SCI and other neuroinflammatory disorders. 

 

Complement Mediated Myelin Clearance 

In addition to macrophages, the complement system is a key inflammatory 

mediator of myelin debris removal. The detailed pathways and diverse roles of 

complement have been reviewed in the context of SCI (Peterson and Anderson, 

2014). Here we discuss the contributions of complement to myelin clearance and 

how this may influence inflammatory pathways after SCI. Within the complement 

system, there are numerous proteins in the plasma that enzymatically mark 

pathogens for destruction. Specifically, proteins of the complement cascade 
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selectively recognize pathogen associated molecular patterns (PAMPs) or 

damaged associated molecular patterns (DAMPs) and opsonize, or tag these 

PAMPs or DAMPs for removal. Complement component 3 proteins, most notably 

C3b, act as opsonizing agents. Opsonized pathogens are targets for removal 

through complement receptors on phagocytes (such as CR3 discussed above) or 

through secondary complement pathways. Regardless of which complement 

pathway is initiated (classical, alternative, or lectin), a secondary complement 

membrane attack complex is formed, creating large holes in the target 

membrane and ultimately causing pathogen lysis (Parham, 2009). Complement 

proteins opsonize myelin debris in the CNS and thus, the complement system is 

a critical initiator of myelin invoked inflammatory responses to SCI in addition to 

its other direct functions (Peterson and Anderson, 2014; Sun et al., 2010; van der 

Laan et al., 1996b). Further, the activation of this immune pathway through 

myelin interactions, DAMPs, or other means can directly damage intact myelin, 

oligodendrocytes, and neurons, thereby driving inflammation by increasing 

myelin and cellular debris or other inflammatory mediators. 

The primary source of complement is the liver. It produces substantial 

quantities of inactive complement. This complement is stored in the plasma until 

it is activated in response to infection or damage. After SCI, disruption of the 

blood brain barrier allows complement proteins to enter the lesion site. Indeed, 

complement increases in the injured spinal cord within 1 day of SCI in both rats 

and humans (Nguyen et al., 2008). SCI-induced inflammatory cytokines may also 

increase complement serum levels at these acute time points (Rebhun and 
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Botvin, 1980). While plasma-derived complement is likely the main initiator of 

early myelin clearance after SCI, complement is present in the chronically injured 

spinal cord (Anderson et al., 2004). Many cells of the immune and nervous 

systems are capable of producing complement proteins, including 

macrophages/monocytes, lymphocytes, and neutrophils, all of which enter the 

lesion after SCI, and resident astrocytes, neurons, and microglia within the CNS 

(Barnum, 2016; Beck et al., 2010; Peterson and Anderson, 2014). These 

endogenous sources of complement in the SCI microenvironment are largely 

unstudied but could be critical in complement-mediated reactions and myelin 

clearance after injury. 

Many factors within the SCI lesion environment potentially activate the 

complement cascade with downstream effects on myelin clearance (Figure 1.2). 

For example, binding of complement protein C1q to oligodendrocyte myelin 

glycoprotein (OMgp) drives myelin opsonization and clearance (Johns and 

Bernard, 1997). OMgp contains an amino acid motif that shares homology with 

C1q binding sites on PAMPs/DAMPs (Johns and Bernard, 1997). OMgp and C1q 

levels increase after SCI (Anderson et al., 2004; Dou et al., 2009). Since C1q 

binding to OMgp initiates complement activation, it is likely that C1q mediates 

myelin debris clearance and inflammation after SCI (Figure 1.2). Indeed, C1q 

knockout mice have improved SCI recovery and tissue sparing and altered 

macrophage activation compared to wild-type SCI controls (Galvan et al., 2008). 

Another potentially important complement protein in myelin-immune 

interactions after SCI is C5. Studies conducted primarily in models of MS and 
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Alzheimer’s disease demonstrate that formation of the C5b-9 membrane attack 

complex on oligodendrocytes leads to extensive demyelination and 

oligodendrocyte cell death (Bradt et al., 1998; Liu et al., 1983; Rus et al., 2009). 

This lytic attack requires the proteolytic cleavage of complement into bioactive 

proteins including C5a among others (Figure 1.2). While not well understood 

within the CNS, in the periphery C5a binds to receptors on mast cells and 

basophils ultimately inducing degranulation and release of vasoactive 

substances. These substances, such as histamine, increase blood vessel 

permeability (Parham, 2009). Further, C5a is a potent chemoattractant for 

monocytes and neutrophils (Marder et al., 1985). C5a can therefore drive 

inflammation by increasing recruitment and efflux of immune cells from the blood 

to sites of cellular debris (Miller and Stella, 2009). In the context of myelin debris 

induced complement activation after SCI, increased C5a could act as an ongoing 

recruitment signal and mediator of macrophages entry into the injury site. A 

recent study demonstrated that loss of C5aR, the receptor for C5a, reduces 

macrophage recruitment and inflammatory cytokine production early after SCI 

(Brennan et al., 2015). Further, C5a has direct apoptotic effects on neurons that 

may contribute to secondary injury, thereby increasing cellular debris (Farkas et 

al., 1998; Humayun et al., 2009). It is therefore feasible that complement-

mediated myelin debris clearance results in pro-inflammatory macrophage 

activation, increased demyelination, and further complement activation (Figure 

1.2). Collectively, complement, myelin, and macrophage interactions may form a 
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positive feedback cycle maintaining a chronic inflammatory state in the injured 

spinal cord. 

 

Targeting Myelin as an Inflammatory Mediator in SCI 

Spinal cord injuries and other neuroinflammatory conditions inevitably 

result in tissue destruction and the generation of cellular and myelin debris. While 

debris must be cleared to begin recovery, it has direct effects on the cells that 

clear it, namely macrophages and microglia. The mechanisms contributing to the 

failed debris clearance in SCI by phagocytes remain unclear, as do the myelin-

mediated pathways invoking inflammatory responses, including myelin-driven 

complement-mediated inflammation. Myelin is not inherently pro-inflammatory in 

all scenarios but is capable of producing detrimental outcomes when cleared and 

processed under specific cellular and environmental conditions. This indicates 

that the pathological effects of myelin may be receptor or activation state 

dependent. Targeting these pathways and receptors opens the possibility for 

therapeutic interventions to improve recovery after SCI. Further, given myelin’s 

ubiquitous presence in the CNS, the development of new therapies will likely 

impact a variety of disorders in which complement, myelin, and macrophage 

interactions contribute to persistent inflammation. 
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1- iii. Cytosolic Phospholipase A2 as an Inflammatory Mediator  

 

Cytosolic Phospholipase A2 as an Inflammatory Mediator Summary 

 cPLA2 enzymatically releases arachidonic acid (AA) from cellular 

membranes in response to inflammatory stimuli. AA is then converted into 

dozens of lipid signaling molecules in the eicosanoid signaling family with 

diverse, albeit largely pro-inflammatory, roles in inflammation. cPLA2 is implicated 

in the vast majority of conditions involving significant inflammatory responses, 

including SCI. While cPLA2 is generally pro-inflammatory, it also capable of 

inducing protective anti-inflammatory lipids under certain cellular conditions. As a 

result, we seek to specifically target pro-inflammatory cPLA2 activity in myelin-

laden macrophages. To this aim, in this body of work, we detail the pathological 

roles of cPLA2 in chronically pro-inflammatory myelin-laden macrophages in 

chapter 2 and propose alternative approaches to specifically target cPLA2 in 

macrophages after SCI in chapters 4 and 5. 

 

Cytosolic Phospholipase A2 as an Inflammatory Mediator  

Cytosolic phospholipase A2 (cPLA2) is a major mechanism initiating and 

regulating inflammatory responses in various cell types, including macrophages 

(Dennis and Norris, 2015; Gijón and Leslie, 1999). Arachidonic acid is stored at 

the sn-2 position of membrane phospholipids, where it is largely inactive. 

Enzymes from the lipid-cleaving phospholipase A2 family can release AA from 

the membrane, of which cPLA2 is the most ubiquitous and widely studied due to 
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its role in the targeted release of AA in response to a variety of agonists (Gijón 

and Leslie, 1999). Basal cPLA2 expression is increased in response to growth 

factors and inflammation in various cell types, notably macrophages. Enzymatic 

activity of cPLA2 is activated by phosphorylation of its serine 505 site by mitogen-

activated protein kinase (MAPK) in response to increased intracellular calcium, 

inflammatory stimuli, or reactive oxygen species, many of which are substantially 

elevated after SCI (van Rossum et al., 1999). The amount of AA released by 

activated cPLA2 is then largely dependent on substrate availability, that is, the 

amount of AA present in the membranes of the endoplasmic reticulum. 

Additionally, the oxidation of lipids in the membrane by ROS alters its viscosity, 

further increasing AA availability to cPLA2 (van Rossum et al., 1999).  

 Upon its release, AA serves as the primary precursor to the eicosanoid 

family of inflammatory mediators produced through three synthesis pathways. 

The cyclooxygenase (COX) pathways produce prostaglandins, thromboxanes, 

and prostacyclins, the lipoxygenase (LOX) pathways produce leukotrienes, 

hydroxy fatty acids, lipoxins, and hepoxilins, and finally, the cytochrome P-450 

pathway produces fatty acid epoxides and hydroxy fatty acids. These 

eicosanoids have diverse, albeit largely pro-inflammatory functions, including the 

activation of the inflammatory NF-kB signaling cascade, increasing edema 

through vasodilation, and the chemoattraction of immune cells (Brash, 2001; 

Cubero and Nieto, 2012; Morcos and Ouf, 1986; Sung et al., 2007). The 

synthesis of eicosanoids is regulated predominately by the amount of free AA 

available and the activation state of the oxygenases. Together these lipid 



 25 

mediators are primary drivers of the initiation and resolution of inflammation 

(Farooqui, 2012; Farooqui et al., 2007; 2010). In macrophages, eicosanoids have 

influential roles in regulating phagocytic activity and their microbial defenses 

(Bailie et al., 1996; Coffey et al., 1998; Knapp and Melly, 1986; Wirth and 

Kierszenbaum, 1985; Yong et al., 1994). The specific role of each eicosanoid on 

macrophage physiology is poorly understood in the context of SCI inflammation. 

General extrapolation from the cPLA2 literature would suggest a predominantly 

pro-inflammatory, detrimental role for eicosanoids in macrophage activation 

during SCI inflammation (Dennis and Norris, 2015). 

 cPLA2 has long been investigated as a mediator of inflammation. Early 

studies recognized PLA2 enzymes as key mediators of inflammation, notably in 

venoms from reptiles and wasps (Fairbairn, 1948). Later work identified the role 

of calcium in regulating PLA2 activity, preempting the recognition of calcium-

dependent phospholipase A2 (cPLA2) (Hülsmann, 1983). In the coming decades, 

the role of cPLA2 in inflammatory responses was widely implicated in numerous 

disease models, including brain injury, Alzheimer’s disease, ultraviolet skin 

damage, kidney diseases, periodontitis, arthritis, programmed cell death in 

response to chemotherapy in melanomas, and cervical dilation in pregnancy 

(Cybulsky et al., 1995; Gresham et al., 1996; Kramer et al., 1996; Liu et al., 2019; 

Shinohara et al., 1992; Stephenson et al., 1996; Voelkel-Johnson et al., 1996). 

cPLA2 is a key mediator of inflammation throughout the body. As a result, cPLA2 

is nearly ubiquitously involved in nearly every disorder in which inflammation is a 

major contributor, including SCI (Liu et al., 2006). 
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 When cPLA2 is widely activated from a large stimulus, such as a major 

injury, the eicosanoid storm is initiated (Dennis and Norris, 2015). Within minutes 

of an SCI, there are rapid spikes in the production of specific eicosanoids 

downstream of AA. Some like 5-HETE are elevated within 5 minutes of injury and 

remain elevated for days; others like LTC4 peak within 10 minutes and dissipate 

with the hour (Jacobs et al., 1987; Mitsuhashi et al., 1994). Similarly, other 

eicosanoids like TXB2 and 6-keto-PGF1 rise after injury and remain elevated 

long after injury (Jacobs et al., 1987). There are dozens of these AA-derived 

eicosanoids produced after injury; however, the cellular specific production, 

activity, and duration of these mediators are poorly understood in the context of 

SCI. While most eicosanoids are generally pro-inflammatory, some can mediate 

regeneration and the resolution of inflammation (Dennis and Norris, 2015). 

Studies that target cPLA2 in SCI are thereby nonspecifically blocking all 

eicosanoid activities downstream of AA. 

 Interestingly, myelin membranes contain high concentrations of AA, stored 

in its inactive esterified state; however, whether cPLA2 can act on these lipids 

remains unknown. In theory, myelin could contribute substantial quantities of AA 

to cellular stores in the membranes of the endoplasmic reticulum, nuclear 

envelope, and other potential sites (Gijón and Leslie, 1999; Schievella et al., 

1995). In this body of work, we examine the activity of cPLA2 across macrophage 

activation states and Identify cPLA2 as a key mediator of myelin's effects on the 

macrophage inflammatory response. 



 27 

cPLA2 has been targeted in SCI with differential results. In a transgenic mouse 

study, cPLA2-/- mice were found to have improved recovery after SCI highlighting 

cPLA2 as a novel therapeutic target for SCI therapeutics and found pathological 

roles for related phospholipases (Lopez-Vales et al., 2008). We hypothesize that 

this dichotomy is a byproduct of blocking both beneficial and detrimental 

eicosanoids downstream of AA. Lopez et al. did not observe detrimental effects 

of cPLA2 ablation until two weeks after injury. It is possible that blocking some of 

the anti-inflammatory eicosanoids typically produced later in the inflammatory 

response could have contributed. To this aim, in this body of work, we detail the 

pathological roles of cPLA2 in chronically pro-inflammatory macrophages in 

chapter 2 and propose alternative approaches to specifically target cPLA2 in 

macrophages after SCI in chapters 4 and 5. 

 

1- iv. Azithromycin as an Immunomodulatory Antibiotic  

 

Azithromycin as an Immunomodulatory Antibiotic Summary 

 Azithromycin is a promising therapeutic for the treatment of SCI. First, it is 

already FDA-approved, thereby bypassing many of the regulatory challenges of 

new therapeutics. Next, the concept that azithromycin drives beneficial 

macrophage activation states has been well established in other disease models. 

In SCI, our previous pre-clinical studies demonstrated AZM’s ability to shift 

macrophage phenotype, thereby improving recovery. In this body of work, we 

build upon our prior AZM studies in chapter 3 by delaying the initiation of AZM 
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administration until minutes and hours after the injury. This subtle alteration in 

experimental design is a critical step in AZM's development as a therapeutic for 

SCI as it better reflects the clinical reality of therapeutic administration. Lastly, we 

discuss the remaining challenges in advancing AZM towards clinical use. 

 

Azithromycin as an Immunomodulatory Antibiotic  

While the role of the macrophage inflammatory response in SCI 

pathophysiology has been well characterized through basic research, there is no 

therapeutic available to target this pathway in humans. Further, the use of the 

only therapeutic available for SCI, methylprednisolone, has diminished due to 

potential side effects (Evaniew et al., 2015). This has created an urgent need for 

the development of additional therapeutics to improve SCI recovery in humans. 

To this aim, our prior works have investigated the FDA-approved 

immunomodulatory antibiotic, Azithromycin (AZM), as a therapeutic in a pre-

clinical mouse model of SCI (Gensel et al., 2017; Zhang et al., 2015b).  

In these proof of concept studies, we found that “AZM drives alternative 

macrophage activation and improves recovery and tissue sparing in contusion 

spinal cord injury” (Zhang et al., 2015b). These results were consistent with 

studies from other disease models such as stroke and lung infections with 

Pseudomonas aeruginosa, where AZM exerted therapeutic effects through its 

ability to modulate macrophage phenotype (Amantea et al., 2016b; Feola et al., 

2010a). Specifically, AZM inhibits the STAT1 and NF-κB signaling pathways in 
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macrophages, thereby promoting the anti-inflammatory activation state (Haydar 

et al., 2019). 

In our first proof of concept study (Zhang et al., 2015b), we administered 

AZM via oral gavage to three-month-old female mice daily starting three days 

prior to injury and then daily for up to seven days. In FACS-sorted macrophages 

isolated from the SCI lesion, we observed a significant increase in anti-

inflammatory (M2) markers (Arginase-1 and CD206) and a significant decrease 

in CD86, which is associated with pro-inflammatory (M1) macrophages. Similarly, 

at 3dpi, AZM induced a significant increase in CD206 in microglia. Histologically 

at 28dpi, AZM significantly increased tissue sparing relative to vehicle. When 

examined in an open field during the course of 28dpi we observed significantly 

improved locomotion in AZM treated animals as measured by the Basso Mouse 

Scale (BMS). Similarly, AZM significantly improved proprioceptive locomotor 

function determined by the relative number of hindlimb footfalls with a Gridwalk 

apparatus at 28dpi. Lastly, in vitro, supernatant from pro-inflammatory “M1” 

macrophages was applied to a Neuro2A neuron culture. Supernatants from 

macrophages treated with AZM were significantly less toxic to neurons. 

Collectively, this work established the proof of concept that AZM improved SCI 

recovery by driving alternative macrophage activation. 

In our next study developing AZM as an SCI therapeutic, we sought to 

better understand exactly how AZM was altering macrophage activation after 

SCI. To this aim, we first utilized our BMDM in vitro system to thoroughly 

examine the gene expression profiles of pro-inflammatory “M1” and anti-
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inflammatory “M2” macrophages (Gensel et al., 2017). This identified a series of 

gene targets that are differentially expressed in M1 and M2 macrophages. Next, 

we administered AZM doses of 10, 40, or 160mg/kg to four-month-old female 

mice at the time of injury and then daily for the rest of the survival period (3 or 7 

days). We then isolated macrophages from the injury site at the time of 

euthanasia and subjected them to the same gene panel utilized on our BMDM 

samples. Using this data, we were then able to detect which M1/M2 gene targets 

were suppressed or elevated by AZM in each dosing paradigm. Lastly, in a 

separate cohort of animals processed for histological analyses (160 mg/kg 

dosage), we examined protein expression of a series of M1 and M2 markers at 3 

and 7dpi. At 3dpi, AZM significantly increased M2-associated markers CD206 

and Arg-1 and decreased M1-associated markers MARCO and CD86. Similarly, 

at 7dpi, AZM significantly decreased M1-associated markers MARCO and CD86; 

however, at this timepoint CD206 and Arg-1 were unaffected. Collectively, this 

work demonstrated a dose-dependent immunomodulatory shift in macrophage 

activation following SCI (Gensel et al., 2017). 

In this body of work, we build upon our prior AZM studies in chapter 3 by 

delaying the initiation of AZM administration until minutes and hours after the 

injury. This subtle alteration in experimental design is a critical step in AZM's 

development as a therapeutic for SCI as it better reflects the clinical reality of 

therapeutic administration. Lastly, we discuss the challenges in advancing AZM 

towards clinical use and address the required steps to continue its development.  
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Azithromycin Dosing Strategies  

 A major limitation of our early study is that we used a pre-injury and post-

injury dosing paradigm because it was shown to be effective in another disease 

model (Feola et al., 2010b). Indeed, this approach resulted in clear therapeutic 

benefits by successfully shifting macrophage activation states (Zhang et al., 

2015b); however, this dosing paradigm is not clinically relevant. In our second 

study, we administered AZM beginning 30 minutes after injury; however, we did 

not examine long-term functional recovery. This dosing paradigm, while 

improved, would still present great challenges for clinical translation. In the 

second and third National Acute Spinal Cord Injury Randomized Controlled Trials 

(NASCIS) of methylprednisolone for the treatment of SCI, many patients were 

unable to begin treatment until several hours after their injury (Bracken et al., 

1991; 1997). Given that AZM is widely regarded as safe even when taken for 

extended periods (Uzun et al., 2014) and is already widely prescribed (Durkin et 

al., 2018), it is possible that AZM may be administered much faster than 

methylprednisolone; however, 30 minutes from injury to administration would 

remain a clinical challenge for many patients. In this body of work, we address 

this by examining the therapeutic effectiveness of AZM when administered 

starting 30-minutes, 3-hours, and 24 hours after SCI throughout a 

comprehensive 28 day recovery period. 
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1- v. Macrophage-Targeted Therapies for the Treatment of SCI and Other 

Neurological Conditions.  

Macrophages dominate the SCI lesion environment mediating both 

destructive and reparative responses after injury (Kigerl et al., 2009). Generally, 

however, SCI macrophages predominately adopt a pro-inflammatory activation 

state thought to impair recovery (Gensel et al., 2017; Kigerl et al., 2009). These 

macrophages have thus become critical therapeutic targets to improve recovery 

after SCI. Specifically, macrophage-targeted therapies generally seek to reduce 

pro-inflammatory activation. This could reduce macrophage production of toxic 

mediators, including reactive oxygen species (ROS), nitric oxide, and pro-

inflammatory cytokines and eicosanoids, thereby reducing excessive cellular 

damage and death. Conversely, macrophage-targeted therapies often aim to 

increase anti-inflammatory, pro-reparative macrophage activation states. This 

could promote the resolution of inflammation and induce an environment more 

supportive of healing and repair. Macrophages exist along a spectrum of 

activation states; macrophage-targeted therapies seek to shift the general 

activation characteristics of these cells to minimize damage and promote repair. 

As discussed previously, AZM is a promising immunomodulatory antibiotic 

capable of shifting macrophage activation states to improve recovery after SCI 

(Gensel et al., 2017; Zhang et al., 2015b). Similarly, cPLA2 is a key mediator of 

pro-inflammatory macrophage activation and detrimental cellular activities. As 

such, AZM and cPLA2 inhibitors are promising macrophage-targeted therapies to 

improve recovery after SCI. In this body of work, we continue to build pre-clinical 
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data developing these macrophage-targeted therapies into therapeutics for SCI. 

Additionally, in chapter 4 we continue to develop additional strategies to target 

macrophages after SCI, including transgenic manipulation of cPLA2, AZM 

derivative pharmaceuticals with altered immunomodulatory profiles, and the 

immunomodulatory cytokine leukemia inhibitory factor (LIF). Lastly, we cover the 

remaining macrophage-targeted therapies currently and previously in 

development in the SCI research field. 
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Figure 1.1. Macrophage receptors potentially mediating myelin clearance 

and inflammatory activity after spinal cord injury 

In addition to activating a number of different receptors, in the context of SCI, 

myelin also drives downstream pathways (Stat1) associated with pro-

inflammatory (M1) macrophage activation. References can be found in the main 

text. 
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Figure 1.2. Complement system in myelin clearance and macrophage 

recruitment after spinal cord injury.  

Numerous complement pathways are initiated by myelin debris after SCI. (A) 

C1q binds directly to myelin oligodendrocyte myelin glycoprotein (OMgp) or to an 

antibody intermediate as depicted. (B) C1q binding initiates the formation of a C3 

convertase capable of cleaving C3. (C) The C3b cleavage fragment opsonizes 

myelin debris and binds to macrophage complement receptor 3 (CR3) initiating 

the phagocytosis of myelin debris. (D) C3b can also induce the formation of a C5 

convertase. (E) The C5 convertase initiates the cleavage of C5 and the 

subsequent recruitment of C6-9 creating the C5b-9 membrane attack complex 

capable of rupturing myelin membrane debris or intact oligodendrocytes. (F) The 

C5a fragment released during this process acts as both a potent recruitment 

signal for macrophages to the site of complement opsonization, through the C5 

receptor (C5aR) and as a pro-inflammatory, vasoactive stimulus on a variety of 

other cell types. References can be found in the main text. 
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Chapter 2: The Effects of Myelin on Macrophage Activation are Phenotypic 

Specific via cPLA2 in the Context of Spinal Cord Injury Inflammation 

This chapter is adapted from Kopper et al. 2021  

2- i. Chapter Summary 

Spinal cord injury (SCI) produces chronic, pro-inflammatory macrophage 

activation that impairs recovery. The mechanisms driving this chronic 

inflammation are not well understood. Here, we detail the effects of myelin debris 

on macrophage physiology and demonstrate a novel, activation state-dependent 

role for cytosolic phospholipase-A2 (cPLA2) in myelin-mediated potentiation of 

pro-inflammatory macrophage activation. We hypothesized that cPLA2 and 

myelin debris are key mediators of persistent pro-inflammatory macrophage 

responses after SCI. To test this, we examined spinal cord tissue 28-days after 

thoracic contusion SCI in 3-month-old female mice and observed both cPLA2 

activation and intracellular accumulation of lipid-rich myelin debris in 

macrophages. In vitro, we utilized bone marrow-derived macrophages to 

determine myelin’s effects across a spectrum of activation states. We observed 

phenotype-specific responses with myelin potentiating only pro-inflammatory 

(LPS+INF-γ; M1) macrophage activation, whereas myelin did not induce pro-

inflammatory responses in unstimulated or anti-inflammatory (IL-4; M2) 

macrophages. Specifically, myelin increased levels of pro-inflammatory 

cytokines, reactive oxygen species, and nitric oxide production in M1 

macrophages as well as M1-mediated neurotoxicity. PACOCF3 (cPLA2 inhibitor) 
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blocked myelin’s detrimental effects. Collectively, we provide novel 

spatiotemporal evidence that myelin and cPLA2 play an important role in the 

pathophysiology of SCI inflammation and the phenotype-specific response to 

myelin implicate diverse roles of myelin in neuroinflammatory conditions. 

 

Keywords: Neuroinflammation, Foamy, Neurotrauma, Secondary Injury, 

Eicosanoid, Brain, IL-10, Foam cell, Arachidonic acid, M1/M2. 

 
 
2- ii. Background:  

Spinal cord injury (SCI) triggers a complex neuroinflammatory response 

that mediates tissue repair but also potentiates secondary injury processes. 

Activated macrophages, consisting of resident microglia and infiltrating 

monocytes, contribute to this dichotomous response. Macrophages facilitate 

repair by increasing axon growth, stem cell differentiation, and revascularization 

(Gensel and Zhang, 2015; Kigerl et al., 2009), however, macrophages can also 

contribute to pathology through secondary injury processes involving reactive 

oxygen species (ROS), neurotoxins, and pro-inflammatory cytokine release as 

well as by causing axon retraction and dieback (Gensel and Zhang, 2015; Horn 

et al., 2008). The extent to which macrophages are polarized toward reparative 

(also called M2 or anti-inflammatory) or pathological (also called M1 or pro-

inflammatory) phenotypes largely depends on the stimuli present in the injured 

spinal cord. 
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One notable distinction between SCI and self-resolving peripheral nerve 

injuries is the sustained presence of myelin debris. Lipid-laden myelin debris is 

taken up and processed predominantly by infiltrating macrophages, rather than 

endogenous microglia, after SCI (Wang et al., 2014). Phagocytic markers are 

present on these chronically activated macrophages, which become visibly laden 

with debris (Fleming et al., 2006; Greenhalgh and David, 2014; Kroner et al., 

2014; Vargas and Barres, 2007; Wang et al., 2014). It is therefore likely that 

myelin lipids are actively processed by macrophages and are environmental 

stimuli that drive chronic spinal cord inflammation. Indeed, in areas of Wallerian 

degeneration, macrophages disappear from the chronically injured spinal cord 

concomitant with myelin debris clearance (Becerra et al., 1995; Greenhalgh and 

David, 2014; Vargas and Barres, 2007; Wang et al., 2014). The accumulation of 

lipid debris in the days and weeks after injury also closely aligns with the 

temporal shift in macrophage phenotype, ending with persistent pro-inflammatory 

activation by 28 dpi (Kigerl et al., 2009; Wang et al., 2014). Evidence also 

suggests that myelin acts as an inflammatory stimulus on macrophages in vitro, 

implicating a key link between myelin debris accumulation and the grievous shift 

in macrophage phenotype which impairs regeneration after SCI (Kopper and 

Gensel, 2017; Kroner et al., 2014; Wang et al., 2014; Williams et al., 1994). 

While myelin debris is implicated in macrophage activation state and 

recovery after SCI (Kroner et al., 2014; Wang et al., 2014; Zhu et al., 2017), the 

intracellular mechanisms mediating myelin’s effects remain unclear. Cytosolic 

phospholipase A2 (cPLA2) facilitates arachidonic acid (AA) release from cellular 
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membranes following inflammatory stimuli and is largely unstudied in SCI 

macrophage responses. Interestingly, myelin membranes contain high 

concentrations of AA, stored in its inactive esterified state; however, whether 

cPLA2 can act on these lipids remains unknown. cPLA2-mediated breakdown of 

AA initiates an eicosanoid storm in which a wide variety of bioactive lipids are 

released including prostaglandins, leukotrienes, and thromboxanes. Eicosanoids 

have diverse albeit largely pro-inflammatory functions including activating the 

inflammatory NF-kB signaling cascade and increasing edema as well as 

potentiating immune cell chemoattraction, fibrosis, and inflammatory responses. 

The role of cPLA2 in macrophage physiology has been detailed in other systems; 

however, it is unknown if cPLA2 has any differential effects in macrophages 

polarized along the spectrum of activation states in the presence of myelin, or if it 

is a contributor to prolonged pro-inflammatory activation of macrophages after 

SCI. cPLA2 activation is induced by inflammatory stimuli such as LPS/IFN-γ, also 

known as the M1, pro-inflammatory paradigm in vitro, and is likely induced by the 

complex inflammatory environment observed after SCI (Dennis and Norris, 2015; 

Liu et al., 2006; 2014). This is the basis of our hypothesis that cPLA2 activity in 

myelin-laden macrophages after SCI aggravates tissue damage and 

contributes to chronic inflammation. Here we establish these mechanisms in 

vitro, and provide the proof-of-concept that these pathways may play an 

important role in vivo after SCI. 
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2- iii. Methods:  

Animals 

As described previously (Kopper et al., 2019; Zhang et al., 2015b), in vitro 

experiments were performed using 2–4-month-old female C57BL/6 mice 

(Jackson Laboratory, Bar Harbor, Maine). In vivo experiments were performed 

using 4-month-old female C57BL/6 mice, weighing 20.7 g ± 1.3 g (Jackson 

Laboratory, Bar Harbor, ME, USA). Animals were housed in IVC cages with ad 

libitum access to food and water. All procedures were performed in accordance 

with the guidelines and protocols of the Office of Research Integrity and with 

approval of the Institutional Animal Care and Use Committee at the University of 

Kentucky. All experiments were carried out in compliance with the ARRIVE 

guidelines (Kilkenny et al., 2010).  

 

Cell Culture 

Bone marrow-derived macrophages (BMDMs) were extracted from the 

femur and tibia of female C57BL/6 mice at 2–4 months old as previously reported 

(Gensel et al., 2009; 2015) and were plated at 0.8–1 × 106 cells/mL in 

differentiation media containing Roswell Park Memorial Institute medium (RPMI, 

Thermo Fisher Scientific, #21870-092) supplemented with 1% 

penicillin/streptomycin (P/S, Thermo Fisher Scientific, #5140122), 1% HEPES 

(Sigma-Aldrich, #83264-100ML-F), 1% GlutaMAX 0.001 (Thermo Fisher 

Scientific, #35050061) 0.001% β-mercaptoethanol (Thermo Fisher Scientific, 

#21985023), 10% FBS (Life technologies, #10082147), and 20% supernatant 
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from sL929 cells (a generous gift from Phillip Popovich, The Ohio State 

University). Supernatant collected from sL929 cells contains macrophage colony-

stimulating factor, which helps to promote bone marrow cells’ differentiation into 

macrophages(Burgess et al., 1985). The BMDMs were allowed to differentiate for 

7 days in culture, and cells were then replated on day 7 at a density of 

1 × 106 cells/mL in 12-well plates in RPMI, containing 1% P/S, 1% GlutaMAX and 

10% FBS. On day 8, cells were stimulated for 24 h to be either M1 using LPS 

(50 ng/mL, Invivogen, #tlrl-eblps, standard preparation) plus IFN-γ (20 ng/ml, 

eBioscience #14-8311-63) diluted in N2A growth medium (described below), M2 

using IL-4 (20 ng/ml, R&D systems, #404-ML-010), or Control/Unstimulated 

(CTL) using fresh media without any stimulants. At the time of stimulation cells 

were immediately treated with myelin debris (50 µL/mL, preparation described 

below), 50 µM PACOCF3 (inhibitor of cPLA2, Tocris Bioscience, CAS 141022-99-

3), or PBS/DMSO vehicles to equalize volume and drug solvent concentrations 

across groups. 24 h after stimulation the supernatants were removed, centrifuged 

at 13,000 RPM (Fisher Scientific accuSpin Micro R centrifuge), and then this 

macrophage conditioned media (MCM) was either applied directly to N2A cells to 

measure cytotoxicity, or stored at − 80 °C prior to testing for IL-12p40 levels 

using standard ELISA kits (Thermo Fisher Scientific, Rockford, IL # EMIL12P40), 

Nitric Oxide with the Griess Reagent Kit (Thermo Fisher Scientific # G-7921), and 

phenol red-free RPMI, or a mulit-plex ELISA system measuring protein levels of 

TNF-alpha, IL-1Beta, IL-6, CX3CL1, and IL-10 (Meso Scale Diagnostics). 

BMDMs for coverslip stains were treated as above, except at a lower plating 
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density of 3 × 105 cells/mL. Coverslips were fixed in cold 2% PFA for 30 min, 

washed in PBS and stored at 4 °C until staining. 

Moderate purity myelin (> 95% myelin, with small contributions from 

axolemma and other cellular membranes) was prepared as follows (adapted from 

Larocca et al. (Larocca and Norton, 2001)): brains were collected from C57BL/6 

mice at the time of BMDM isolation and stored at − 80 °C prior to myelin isolation. 

The brains were rinsed and suspended in cold PBS with 1% P/S and placed in a 

Dounce homogenizer (DWK Life Science, #357544) under sterile conditions and 

blended with the loose and tight pestles. The solution was transferred to a 15 mL 

tube and pelleted at 2000 RPM (Thermo Scientific Legend XTR centrifuge) prior 

to discarding the soluble supernatant fraction. The pellet was resuspended in the 

PBS/P/S, and then 5mLs of a 30% Percoll solution (Sigma-Aldrich, #P1644-

500ML) was gently underlaid below the myelin solution for density gradient 

centrifugation. The layers were then centrifuged at 2000 RPM for 15 min at 4 °C 

under gentle acceleration/deceleration, generating three distinct layers (soluble 

on top, myelin in middle, and Percoll/cell pellet on bottom). After removing the 

soluble fraction, the myelin was transferred to a fresh tube and resuspended in 

10 mL distilled water with 1% P/S and incubated for 10 min (hypoosmotic shock) 

to separate membranes at 4 °C. The myelin was then re-pelleted at 2000 RPM, 

suspended in PBS/1% P/S and separated a second time by density gradient 

centrifugation as described above. The myelin was then suspended and pelleted 

twice in PBS/1% P/S to remove residual Percoll and water-soluble contaminants, 

and then aliquoted before storage at − 80 °C. The final protein concentration of 
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the myelin stock solutions produced by this protocol were 10.23 mg/mL with a 

standard deviation of 0.282 mg/mL as determined by a BCA Protein Assay Kit 

(Thermo Fisher Scientific #23225). With the application of myelin debris to 

BMDMs at 50 µL/mL, cells had a mean dosage of 0.51 mg/mL. Lastly, to ensure 

our results were not due to endotoxin contamination in our myelin preparations, 

we tested aliquots from each batch of myelin stimulant (Thermo Fisher Scientific 

#88282). 

A mouse neuroblastoma cell line (Neuro-2a or N2A, a gift from Chris 

Richards, University of Kentucky) was maintained in N2A growth medium 

containing 45% DMEM, 45% OPTI-MEM reduced-serum medium, 10% fetal 

bovine serum (FBS), and 1% penicillin/streptomycin. N2A were plated at a 

density of 1 × 105 cells/mL in 96-well tissue culture plates and allowed to 

proliferate for 48 h. The neurotoxicity of MCM was evaluated as reported 

previously using a MTT-based cell growth determination kit according to the 

manufacturer’s instructions (Sigma-Aldrich CGD1-1KT) (Zhang et al., 2019). 

Briefly, 24 h before testing, N2A growth media was replaced with serum-free N2A 

media to induce differentiation. The day of testing this media was replaced by 

fresh MCM, and the N2A cells were incubated in MCM for 24 h before thiazolyl 

blue tetrazolium bromide (MTT (5 mg/ml), 20 μl per well) was added to each well 

and the cells further incubated for 2 h. The tetrazolium ring of MTT can be 

cleaved by mitochondrial dehydrogenases of viable cells, yielding purple 

formazan crystals, which were then dissolved in acidified isopropanol solvent. 

The resulting purple solution was spectro-photometrically measured at 570 nm 
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Epoch microplate reader (BioTek Instruments, Inc., Winooski, VT) using 690 nm 

as a background absorbance. This data is normalized to the non-toxic CTL 

values to generate proportional decrease in viability values and presented 

inversely as increased toxicity relative to CTL. 

Macrophage reactive oxygen species (ROS) production was measured 

using CM-H2DCFDA (Invitrogen #C6827). In short, BMDMs were cultured and 

stimulated as described above except in a 96 well plate (1 × 106 cells/mL). 

Following the 24-h stimulation the supernatants were removed and replaced with 

a 5 µM solution of CM-H2DCFDA in phenol red-free RPMI with 1% GlutaMAX 

and penicillin/streptomycin and incubated at 37 °C for 25 min. ROS mediates the 

conversion of this compound to fluorescent DCF which was then detected by an 

Epoch microplate reader (BioTek instruments, Inc., Winooski, VT) at the 

compound’s Excitation/Emission spectra of approx. 492–495/517–527 nm. 

Macrophage cPLA2 activity was measured using a Cytosolic 

Phospholipase A2 Assay Kit (Abcam #ab133090). In short, cells were cultured as 

described above except in six well culture dishes (1 × 106 cells/mL). Cells were 

lysed and briefly sonicated on ice in TBS-T (0.4% Triton-X) with a protease 

inhibitor (Sigma-Aldrich #11836170001) before proceeding directly into the 

manufacturer’s protocol. 

 

Spinal Cord Injury 

As described previously (Kopper et al., 2019; Zhang et al., 2015b) , 

animals were anesthetized via intraperitoneal (i.p.) injections of ketamine 
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(100 mg/kg) and xylazine (10 mg/kg). Following a T9 laminectomy, a moderate-

severe thoracic SCI was produced using the Infinite Horizon (IH) injury device 

(75-kdyn displacement; Precision Systems and Instrumentation). Any animals 

receiving SCI with abnormalities in the force vs. time curve generated by the IH 

device were excluded from analysis. These abnormalities are indicative of bone 

hits or instability in the spinal cord at the time of injury and occurred < 10% of the 

time. After injury, muscle and skin incisions were closed using monofilament 

suture. After surgery, animals received one subcutaneous injection of 

buprenorphine-SR (1 mg/kg) and antibiotic (5 mg/kg, enroloxacin 2.27%: 

Norbrook Inc., Lenexa, KS) in 2 mL of saline and were housed in warming cages 

overnight. Animals continued to receive antibiotic subcutaneously in 1 mL saline 

for 5 days. Food and water intake and the incision site were monitored 

throughout the course of the study. Bladder expression was performed on injured 

mice twice daily. Mice were sacrificed at 7 and 28 days post-injury (n = 8 and 10, 

respectively) to generate spinal cord sections for histological analyses. 

 

Tissue processing and immunohistochemistry 

As described previously (Kopper et al., 2019; Zhang et al., 2015b) , mice 

were anesthetized and then transcardially perfused with cold PBS (0.1 M, pH 

7.4), followed by perfusion with cold 4% paraformaldehyde (PFA). Dissected 

spinal cords (1 cm) were post-fixed for another 2 h in 4% PFA and subsequently 

rinsed and stored in cold phosphate buffer (0.2 M, pH 7.4) overnight at 4 °C. On 

the following day, tissues were cryoprotected in 30% sucrose for 3 days at 4 °C, 
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followed by rapidly freezing and blocking in optimal cutting temperature (OCT) 

compound (SakuraFinetek USA, Inc.) on dry ice. Tissue blocks were cut in serial 

coronal sections (10 μm) and mounted onto Colorfrost plus slides (Fisher #12-

550-17). 

Spinal cord sections were stained with Eriochrome Cyanine (myelin) and 

anti-Neurofilament (1:1000, Aves labs, NFH) to visualize damage and thereby 

identify the epicenter of each lesion, as defined as the point where spared tissue 

constitutes the smallest proportion of spinal cord volume (Kopper et al., 2019). 

Immunohistochemistry on tissue sections and BMDM coverslips was performed 

to stain for phosphylated-cPLA2 (p-cPLA2; rabbit, 1:500, Cell Signaling 

Technology #2831S), BODIPY (2 µM 30 min, Thermo Fisher Scientific #D3922), 

biotinylated tomato lectin (TomL) (Sigma-Aldrich L0651-1MG, and DAPI (Sigma-

Aldrich #D9542-10MG) overnight at 4 °C. Secondary antibodies were applied at 

1:1000 for 1 h at RT: Alexa Fluor 546 goat anti-rabbit (Life Technologies 

#11010), and Streptavidin Alexa Fluor 647 conjugate (Thermo Fisher Scientific 

#S-21374). Antigen retrieval was performed to improve signal: 10 min in sodium 

citrate buffer (10 mM Sodium citrate, 0.05% Tween 20, pH 6.0) at 90 °C. 

BODIPY is specific to neutral lipids from the breakdown of myelin and cellular 

membranes. TomL binds to poly-N-acetyl lactosamine on macrophages and 

microglia. TomL also binds to large blood vessels which were excluded from 

analysis when possible based on their large tubular morphology (Schmid et al., 

2002; Villacampa et al., 2013). Imaging was performed at or within 100 µm of 

lesion epicenter due to tissue loss during antigen retrieval. All images were taken 
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using a C2+ laser scanning confocal microscope (Nikon Instruments Inc., 

Melville, NY, USA). Images were quantified using using the MetaMorph analysis 

program (Molecular Devices, Sunnyvale, CA, USA). 

 

Statistical Analysis: 

As described previously (Kopper et al., 2019; Zhang et al., 

2015b) statistical analyses were completed using GraphPad Prism 6.0 

(GraphPad Software). Data were analyzed using one- or two-way ANOVA 

followed by Dunnett’s test for multiple comparisons. Results were considered 

statistically significant at p ≤ 0.05. All data are presented as mean ± SEM unless 

otherwise noted. All in vitro measurements were done in triplicates, and at least 

three independent experiments were carried out. Imaging and quantification were 

performed by investigators fully blinded to all experimental conditions. In vitro 

experiments were not fully blinded during experimental procedures (due to the 

obvious presence of myelin in some conditions); however, all analyses were 

confirmed by an investigator blinded to experimental conditions. Figures were 

prepared using Adobe Photoshop CS6 (Adobe Systems) and Prism 6.0. 

 

2- iv. Results: 

Myelin-Laden Macrophages Contain Active cPLA2 After SCI  

In order to determine the extent to which cPLA2 may be contributing to 

myelin processing by macrophages after SCI, we examined inflammation within 

the injured spinal cord 4 weeks after mouse contusion SCI. As reported 
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previously (Wang et al., 2014), we observed that SCI generated extensive 

infiltration of monocyte derived macrophages and activation of resident microglia 

(Figure 2.1A,F,K). Similarly, we observed presumptive myelin debris, i.e. neutral 

lipid droplets detected by BODIPY staining inside TomL+ macrophages 

throughout the injury epicenter (Figure 2.1B,G,L). Extracellular lipid droplets not 

clearly contained within macrophages were also present (Figure 2.1B,G,L). 

Next, we sought to determine whether the cPLA2 system is active 

(phosphorylation indicates activation) in these chronically activated macrophages 

within the injured spinal cord. As indicated in Figure 2.1C,H,M, cPLA2 is widely 

activated (p-cPLA2) throughout the lesion epicenter images of macrophages, and 

critically is observed within macrophages containing lipid debris at 28 days after 

injury (dpi). Similar observations were also seen at 7 dpi (Supplemental Figure 

2.1). Lastly, uninjured tissue from sham surgery animals contained TomL+ 

macrophage/microglia populations but no appreciable lipid debris, and minimal 

cPLA2 activation (Figure 2.1P-T). Collectively this provides spatiotemporal 

evidence that macrophages are chronically present in the injured spinal cord, 

loaded with substantial myelin-derived lipid debris, and can contain activated 

cPLA2. Furthermore, these results provide the proof-of-concept that myelin and 

cPLA2 may play a key role in the prolonged pro-inflammatory macrophage 

activation thought to impede semi-acute and chronic recovery after SCI. 
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Myelin Potentiates Pro-inflammatory Macrophage Activation in an Activation 

State Dependent Manner 

To determine the role of myelin in the activation of macrophages we 

developed an in vitro model of SCI inflammation. BMDMs are predictive of 

monocyte-derived macrophage responses in vivo in the injured spinal cord. This 

have been observed at transcription (Longbrake et al., 2007) and functional 

levels (Gensel et al., 2015), as well as in response to therapeutic interventions 

(Gensel et al., 2017). Further, BMDMs are the primary myeloid cells 

phagocytizing myelin after SCI (Wang et al., 2014). Specifically, we used an M1 

stimuli (LPS + IFN-γ) to model the detrimental pro-inflammatory activation state, 

M2 (IL-4) to model the reparative anti-inflammatory activation state, and CTL 

(unstimulated control or M0) to model a mature, yet naïve macrophage. Myelin 

stimulation was generated from mouse CNS tissue to model the myelin debris 

“stimulant” generated after SCI in vivo. Using this system, we observe both 

myelin up-take across activation states and increased cPLA2 activation under M1 

conditions (p<0.001) (Supplementary Figure 2.2). Interestingly, we observed 

that many of myelin’s effects on macrophage physiology were activation state 

dependent, with differential effects when applied in the M1, M2, or CTL activation 

states. In Figure 2.2A pro-inflammatory (M1) macrophages had increased 

production of the pro-inflammatory cytokine IL-12 compared to unstimulated 

(CTL) or anti-inflammatory (M2) macrophages, as would be expected (p<0.001). 

Upon the concurrent addition of myelin to these groups, however, the M1 

production of IL-12 rises substantially (p<0.01), whereas CTL and M2 cells were 
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not significantly affected. In Figures 2.2B and 2.2C we performed additional 

stimulations and measured the production of reactive oxygen species (ROS) and 

nitric oxide, two toxic macrophage byproducts thought to contribute to cell death 

and SCI pathogenesis. With this, we observed a similar phenotype-specific effect 

in which only pro-inflammatory M1 cells were significantly potentiated by the 

addition of myelin, whereas CTL and M2 cells were not significantly affected. 

Specifically, M1 stimulation significantly increased levels of ROS (p<0.001), and 

nitric oxide relative to unstimulated (CTL) cells, as would be expected. Critically, 

each of these M1 mediated increases were significantly increased with the 

application of myelin alongside the M1 stimulation, indicating that myelin 

potentiates pro-inflammatory responses (p<0.001 and p<0.001 respectively). 

Interestingly, this novel phenomenon occurred despite observing similar degrees 

of myelin debris uptake across all treatment groups (Supplemental Fig 2.2), 

suggesting that differences in phagocytosis is not a contributing factor. The 

mechanisms through which the myelin was taken up under each phenotype, 

however, was not evaluated. To test the effects of myelin on an anti-inflammatory 

associated functional outcome we examined the activity of the arginase-1 

enzyme in cell lysates from each of our stimulations (Figure 2.2D). As would be 

expected M2 macrophages had higher arginase activity relative to M1 and CTL 

(p<0.001 and p<0.0001 respectively). The addition of myelin, however, did not 

alter arginase activity in any of the stimulations tested. Lastly, the myelin 

stimulants did not contain any endotoxin contamination that would confound our 

results (Supplemental Figure 2.3). Collectively, this suggests that the pro-
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inflammatory effects of myelin on macrophage activation states are phenotype-

specific. 

Next, we sought to determine the cellular implications of these shifts in 

macrophage polarization states by applying BMDM conditioned media from these 

cells to a neuronal cell line (N2A) to determine the relative neurotoxicity of each 

stimulation. In Figure 2.2E, we observed that M1 neurotoxicity was again 

significantly potentiated by the addition of myelin, whereas CTL and M2 cell 

toxicity was unaffected by the addition of myelin. 

 

cPLA2 Inhibition Blocks Myelin’s Pro-inflammatory Potentiation of M1 

Macrophages  

The activation of cPLA2 by inflammatory stimuli is thought of as the 

primary rate-limiting step in the release of AA and the initiation of the production 

of various eicosanoids during the onset of inflammation. Given that we observed 

significant effects of myelin in macrophages in the presence of pro-inflammatory 

stimuli (LPS and IFN-γ), we hypothesized that cPLA2 activation in M1 

macrophages may be a key mediator of myelin’s cellular effects. To test this 

hypothesis, we targeted cPLA2 in our in vitro model using the chemical inhibitor 

Palmityl trifluoromethylketone (PACOCF3) as used previously (Schaeffer et al., 

2005). As in our initial studies, we found myelin induced significant increases in 

ROS, nitric oxide, and neurotoxicity when applied with an M1 stimulus, 

potentiating the M1 pro-inflammatory response (Figure 2.3). Critically, 

application of the cPLA2 inhibitor, PACOCF3, significantly reduced the myelin-



 52 

mediated increases of ROS, nitric oxide, and neurotoxicity, indicating an 

important role for cPLA2 in this system (Figure 2.3). Interestingly, PACOCF3 did 

not influence arginase activity in any of the stimulations tested (Figure 2.3D and 

Supplemental Figure 2.4D and 2.4H), suggesting that cPLA2 is not linked to 

cellular arginase activity. Given that myelin did not previously affect ROS, nitric 

oxide, neurotoxicity, or arginase in the context of CTL or M2 stimulation, we 

would not expect cPLA2 to influence these outcomes. Indeed, PACOCF3 had no 

significant effects on CTL or M2 simulations groups (Supplemental Figure 2.4). 

Collectively these data suggest that cPLA2 may play a key role in mediating 

myelin’s effects on pro-inflammatory macrophage activation. 

 

Macrophage Cytokine Profiles Indicate a Mixed Neuroinflammatory Phenotype. 

Macrophages exist along a spectrum of activation states commonly 

simplified to pro- vs. anti-inflammatory states in vivo, or M1/M2 in vitro. While 

these terms are used for practical purposes, macrophages are further 

characterized by many factors including morphology, surface markers, secreted 

cytokines, byproducts and functional outcomes. Our measures of neurotoxicity, 

IL-12, nitric oxide and ROS indicate a pathological phenotype; however, these 

are not comprehensive phenotypic indicators. To begin to address this complex 

phenotypic analysis we sought to measure additional inflammatory cytokines 

using a multiplex ELISA in our in vitro myelin/cPLA2 system. In line with our 

previous observations, M1 macrophages had significantly increased production 

of the pro-inflammatory cytokines TNFα (p>0.001) and CX3CL1 (p>0.001) upon 
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the addition of myelin (Figure 2.4A, 2.4C), and for TNFα, cPLA2 inhibition 

blunted this effect (p<0.01) (Figure 2.4B). Similarly, myelin significantly reduced 

the production of anti-inflammatory IL-10 in M1 cells, exacerbating their pro-

inflammatory phenotype (p<0.001) (Figure 2.4E). Conversely, the pro-

inflammatory cytokine IL-1β was significantly decreased in M1 cells following the 

addition of myelin (p<0.001) (Figure 2.4G). For the pro-inflammatory cytokine, IL-

6, M1 cells were unaffected by the addition of myelin. Interestingly, for CX3CL1, 

myelin induced a small but significant increase in cytokine levels in CTL and M2 

cells (Figure 2.4C); IL-10 and IL-6 had similar trends in this regard, however, 

they were not statistically significant. Lastly, in some instances the cPLA2 

inhibitor (PACOCF3) alone induces significant cytokine shifts, decreasing 

CX3CL1 (p<0.01) and increasing anti-inflammatory IL-10 (p<0.001) (Figures 

2.4D, 2.4F), suggesting that cPLA2 inhibition has anti-inflammatory effects 

outside the context of myelin stimulation. Interestingly, when examining the 

effects of myelin and cPLA2 inhibition specifically within CTL and M2 stimulation 

we observed statistically significant but biologically small, relative to M1, 

increases in both pro (TNF-alpha, CX3CL1, IL-6) and anti-inflammatory (IL-10) 

cytokines suggesting myelin can induce a limited mixed phenotype in M2 and 

CTL groups (Supplemental Figure 2.5). Collectively, these data indicate that 

myelin induces a mixed neuroinflammatory cytokine profile.  
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Myelin Increases cPLA2 Activity in an Activation State Dependent Manner. 

 Myelin has long been proposed as an inflammatory stimulus in CNS 

models of neuroinflammation (Williams et al., 1994). Similarly, cPLA2’s activation 

in response to a wide variety of chemokines and inflammatory signal has been 

well documented (Gijón and Leslie, 1999). Despite this, the formal hypothesis of 

whether myelin can directly increase macrophage cPLA2 activation has not been 

directly tested. To this aim we performed a PLA2 activity assay on cell lysates 

from CTL, M1, and M2 treated cells with or without myelin. Myelin increased 

PLA2 activity in an activation state dependent manner, with M1 cells containing 

active PLA2, which was further increased (* p<0.05) with the addition of myelin 

(Figures 2.5A-C). Conversely, PLA2 activity in CTL and M2 cells was below the 

detection limit of the assay with or without the addition of myelin. To distinguish 

cPLA2 activity from iPLA2, cell lysates were incubated in Bromoenol Lactone to 

inhibit iPLAs. iPLA2 inhibition did not significantly reduce total PLA2 activity in any 

of the groups tested indicating cPLA2 is likely the primary source of this 

enzymatic activity (Figures 2.5A-C).  

 

2- v. Discussion: 

The continual inflammatory response observed after spinal cord injury 

(SCI) is a primary mechanism impairing recovery, however, the factors 

contributing to this maladaptive response are poorly understood. One unique 

aspect of the CNS injury environment not present in peripheral injuries is the 

accumulation of large volumes of myelin debris within phagocytes at the lesion 
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epicenter. Indeed, recent literature suggests that myelin may drive pro-

inflammatory macrophage activation, supporting the notion that myelin 

accumulation within macrophages may be a key driver of the persistent pro-

inflammatory macrophage response observed after injury (van der Laan et al., 

1996c; Wang et al., 2014; Williams et al., 1994). However, there are conflicting 

reports regarding the role of myelin on macrophage activation (Boven, 2005; 

Kroner et al., 2014) and the mechanisms governing these discrepancies are not 

well understood. In this study we provided the proof of concept that myelin and 

cPLA2 may play a key role in the prolonged pro-inflammatory macrophage 

activation thought to impede semi-acute and chronic recovery after SCI. 

Specifically, we found that myelin potentiates macrophage polarization in an 

activation state-dependent manner. The addition of myelin alongside a pro-

inflammatory M1 macrophage stimulus (LPS and IFN-γ) further polarized pro-

inflammatory activation as indicated by increased IL-12 production. Conversely, 

myelin had minimal effects on anti-inflammatory M2 (IL-4 stimulated) or control 

(unstimulated) macrophages. Similar patterns emerged when examining ROS, 

nitric oxide, arginase activity (indicative of M2 activation), and the neurotoxic 

potential of the macrophage supernatants. Inhibition of cPLA2 significantly 

blunted these harmful effects while arginase activity was unaffected. In vivo we 

observed ubiquitous myelin debris in, and around, macrophages expressing 

active cPLA2, providing the key spatiotemporal evidence that cPLA2 may also 

mediate the detrimental effects of myelin in macrophages after SCI. 
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Myelin and cPLA2’s pro-inflammatory activities appear to be largely 

exclusive to the M1 phenotype as M2 and CTL cells were unresponsive to myelin 

in most outcome measures. This interesting observation becomes clearer upon 

closer examination of cPLA2 biology. AA is stored at the sn-2 position of 

membrane phospholipids where it is largely inactive. Enzymes from the lipid-

cleaving phospholipase A2 family can release AA from the membranes, of which 

cPLA2 is the most ubiquitous and widely studied due to its role in the targeted 

release of AA in response to a variety of agonists (Brash, 2001; Gijón and Leslie, 

1999). Here, we demonstrate that myelin itself can induce increased 

cPLA2 activity. Once activated, cPLA2 translocates from the cytosol to the 

membranes of the endoplasmic reticulum and nuclear envelope. These are the 

primary sites of cPLA2 activity under homeostatic conditions, however, any 

alterations in cPLA2 activity within the myelin-laden macrophage is currently 

unknown (Schievella et al., 1995). It remains uncertain if myelin’s AA rich lipids 

could be a direct substrate for cPLA2 or if these lipids could be trafficked within 

the cell to the endoplasmic reticulum and other membranes and be targeted. For 

each AA molecule released by cPLA2, lysophosphatidylcholine is also produced, 

which is known to cause further demyelination and thus could contribute to the 

prolonged myelin debris production observed after SCI (Lopez-Vales et al., 

2008). Basal cPLA2 expression is increased in response to growth factors and 

inflammation in a variety of cell types, notably macrophages. cPLA2 is activated 

by mitogen-activated protein kinase (MAPK) phosphorylation of its serine 505 

sites in response to increased intracellular calcium, inflammatory stimuli, or ROS, 
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many of which are substantially elevated after SCI (or in our in vitro model LPS 

and IFN-γ) (Liu et al., 2006; van Rossum et al., 1999). The amount of AA 

released by activated cPLA2 is then largely dependent on substrate availability, 

of which myelin could contribute substantial quantities to cellular stores in the 

membranes of the endoplasmic reticulum, nuclear envelope and other potential 

sites. Further, the oxidation of lipids in the membrane by ROS alters its viscosity 

further increasing AA availability to cPLA2 (van Rossum et al., 1999). Collectively, 

this suggests that the detrimental effects of myelin are restricted to the M1 

phenotype, as only under these conditions could cPLA2 become robustly 

activated and release AA. 

Given the influential roles cPLA2 activation and subsequent eicosanoid 

storms play in the initiation and resolution of inflammation, it is perhaps 

unsurprising that cPLA2 has been previously studied in the context of SCI. 

Indeed, following SCI there is a substantial acute and sustained production of AA 

derived inflammatory mediators (Hanada et al., 2012; Mitsuhashi et al., 1994; 

Murphy et al., 1994). One such study by NK Liu et al. found that 

pharmacologically or genetically targeting cPLA2 improved locomotor and 

anatomical recovery after SCI. Conversely, López-Vales et al. found cPLA2 to 

have protective functions after SCI. Given the immensely diverse factors 

controlling cPLA2 activation, AA release, and the downstream production of 

inflammatory mediators, it is quite possible that cPLA2 has differential effects 

depending on the treatment paradigm or cell type (i.e. toxic mediators produced 

by M1 macrophages as in our in vitro model, and anti-inflammatory mediators in 
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other cell types with different enzymatic processing of AA released by cPLA2). 

Indeed, in the spinal cord after injury, in addition to macrophages, we observed 

appreciable cPLA2 activity in many non-macrophage cell types within the lesion 

epicenter. Given the great heterogeneity of lipid signaling molecules downstream 

of cPLA2, and differential capacities of each cell type to produce these mediators, 

it is uncertain whether cPLA2 is mediating detrimental or beneficial effects in 

these other non-macrophage cell types. Prior studies targeting cPLA2 have used 

a global approach to target cPLA2 either genetically or with chemical inhibitors 

with conflicting results (Liu et al., 2006; Lopez-Vales et al., 2011). Our results 

suggest that cPLA2 plays a clear detrimental role in macrophage physiological 

responses to myelin, and thus future studies specifically targeting macrophage 

cPLA2 in vivo may hold more therapeutic potential than the previous systemic 

approaches in which both detrimental and beneficial mechanisms are likely being 

affected. One important caveat to consider when using therapeutics targeting 

cPLA2 is that many chemical inhibitors are cross-reactive with closely related 

phospholipases. In this study our cPLA2 inhibitor of choice PACOCF3, for 

example, can also inhibit a related enzyme calcium-independent phospholipase 

A2 (iPLA2). While our data suggests that iPLA2 is not contributing significantly to 

total PLA2 activity at 24-h post-stimulation, it’s activities prior to cell lysis were not 

examined. Consequently, the influence of iPLA2 cannot be ruled out in this study. 

Similarly, previous work has demonstrated that inhibiting cPLA2 can influence the 

breakdown and phagocytosis of myelin during Wallerian degeneration (De et al., 
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2003). Continued work is needed to determine if such a mechanism could be 

occurring in the SCI Myelin-macrophage and our in vitro model. 

Our results are consistent with a number of previous observations. 

Specifically, a 1994 publication by Williams et al. demonstrated that the treatment 

of microglia with myelin debris increased microglial activation as indicated by 

increased pro-inflammatory cytokine and ROS production (Williams et al., 1994). 

Next, Van der laan et al. demonstrated that myelin increases TNF-alpha and 

nitric oxide when applied to peritoneal macrophages. Lastly, Wang et al. (2014), 

observed similar increases in pro-inflammatory macrophage activation with 

myelin application to bone marrow-derived macrophages, and demonstrated the 

key role that this infiltrating macrophage population plays in clearing myelin 

debris in vivo after SCI (Wang et al., 2014). 

While these papers support a mechanism linking myelin phagocytosis to 

the pro-inflammatory macrophage response observed after SCI, our results 

conflict with other data reporting anti-inflammatory actions of myelin in in vitro 

models of various CNS disorders (Boven, 2005; Kroner et al., 2014). This 

suggests that the effects myelin has on macrophage activation may depend on 

the type of macrophage, stimulation timing, myelin source, dosage, and the CNS 

condition being modeled as discussed previously (Kopper and Gensel, 2017). 

Similarly, others have observed pro-inflammatory effects of myelin without an M1 

co-stimulus (Wang et al., 2014). Our data presented here indicate that the effect 

of myelin is phenotype specific, which may further account for these differences. 

For example, Kroner et al., utilized a sequential approach: applying an M1 
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stimulus to the BMDMs, washed thoroughly, and then applied bovine-derived 

myelin (Kroner et al., 2014). While this approach is certainly appropriate for some 

studies, it may not capture our phenotype-specific cPLA2 mediated inflammation, 

as cPLA2 could need sustained LPS/IFN-γ to remain activated and exert its 

effects with myelin. Specifically, cPLA2 activity is regulated by both a rapid 

transient calcium influx induced by inflammatory stimuli and its phosphorylation 

state allowing for complex regulation of either brief or sustained activation (Lee et 

al., 2015; Leslie, 1997). Given this, sequential or simultaneous application of 

myelin and LPS/IFN-γ could induce cPLA2 to activate and interact with myelin 

under very different regulatory conditions; however, further studies are needed to 

better understand how phenotype, cPLA2 regulation, and methodological 

variation such as this synergize to produce differential responses to myelin. In 

doing so we could better understand the immune dysregulation leading to chronic 

inflammation after human SCI. 

Our model utilized in this work has its own strengths and limitations in 

modeling the complex SCI inflammatory response. First, we chose to use BMDM 

as our cell choice as recent literature has implicated this monocyte derived 

population as the primary mediator of myelin clearance, and as being more 

detrimental to recovery relative to microglia (Bellver-Landete et al., 2019; Wang 

et al., 2014). Second, we utilized a high dose of myelin which was not overtly 

toxic yet provided excess myelin to overwhelm the cell’s phagocytic capacity over 

the 24-h stimulation window similar to what occurs after SCI (Becerra et al., 

1995; Greenhalgh and David, 2014; Vargas and Barres, 2007; Wang et al., 
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2014). Lower doses may be better suited to shorter duration stimulations or 

studies investigating the effects of myelin upon binding to extracellular receptors. 

Third, our myelin preparations are from the same species and strain as the mice 

from which we collected the BMDMs (i.e. mouse myelin on mouse cells, and 

when feasible, myelin derived from the same mouse sacrificed for BMDM 

isolation). This was done to minimize any unintended cross-species immune 

effects. A limitation here, however, is that we used myelin derived from both brain 

and spinal cord tissue to yield sufficient myelin for our studies, it is possible that 

subtle differences in myelin composition between these sites could have 

differential effects. Similarly, the protein and lipid composition of CNS and PNS 

myelin differs and was not evaluated in this study (Quarles et al.). Fourth, we 

utilized a prolonged 24-h stimulation paradigm to allow for complete lipid loading 

of the cells as occurs in vivo. It is certainly possible that the results could be 

different at earlier time points. Similarly, studies interested in true chronic effects 

could adapt these protocols using cell lines to overcome the short lifespan of 

BMDMs. Fifth, we applied the myelin and stimulants at the same time and for the 

entire stimulation, as this is what likely occurs after SCI. Lastly, we applied 

myelin with multiple types of stimulates to begin to capture how myelin may affect 

macrophages across the spectrum of phenotypic states. An important caveat to 

this, however, is that we primarily investigated pathological BMDM features 

associated with impaired SCI recovery. There are likely other effects of myelin on 

CTL and M2 macrophage physiology not captured in this study. 
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While in many ways our macrophage model closely replicates the cellular 

populations found after SCI (Gensel et al., 2017), there are certainly other factors 

not utilized here in our model. Notably, TNF and iron are implicated as key 

environmental mediators of detrimental macrophage activation (Kroner et al., 

2014). Similarly, in vivo after SCI there are numerous other factors that can 

influence macrophage activation, including cross talk between macrophages and 

microglia, T-cell responses, and damage associated molecular patterns released 

by necrotic tissue (Greenhalgh et al., 2018; Wynn and Vannella, 2016). While not 

investigated here, these are all likely important factors contributing to pro-

inflammatory macrophage activation in myelin-laden macrophages and represent 

an important caveat in extrapolating our results to the human SCI condition. 

Similarly, while the data presented here implicate cPLA2 as an important 

regulator of myelin’s activity, other cellular mechanisms are certainly involved. 

Myelin uptake/phagocytosis, for example, is clearly a key step prior to any 

intracellular mechanism. Injection of myelin directly into the spinal cord previously 

by Sun and colleagues was found to induce leukocyte chemoattraction, however, 

this effect was lost in CR3 KO animals with deficient phagocytic capacity. Next, 

they implicated the FAK/Akt/NF-κB signaling cascade as a mediator of myelin’s 

activity (Sun et al., 2010). These observations are certainly compatible with our 

current observations as the NF-κB signaling cascade is activated by similar 

stimuli as the cPLA2 signaling cascade including our LPS in-vitro stimulant. 

Interestingly, activation of NF-κB by myelin may even drive increased 

cPLA2 expression, further demonstrating the intertwined nature of many 
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proposed mechanisms (Lee et al., 2011). Collectively, this demonstrates the 

need for continued investigation of these pathways to identify a clinically viable 

treatment for SCI in the human condition. 

Our in vitro data suggest that myelin debris potentiates pro-inflammatory 

functions specifically within the M1 macrophage population. Intriguingly, the time 

course of peripheral macrophage infiltration and initial clearance of myelin debris 

between 3 and 7 days post-SCI correlates with the peak presence of M2 

macrophage activation markers, which then progressively drop as the cells shift 

to a pronounced and prolonged M1 activation state (Gensel and Zhang, 2015; 

Kigerl et al., 2009). By chronic time points only M1 markers can be detected, 

indicative of the prolonged pro-inflammatory macrophage activation thought to 

impede recovery (Becerra et al., 1995; Vargas and Barres, 2007; Wang et al., 

2014). Here we demonstrate that cPLA2 is present within myelin-laden 

macrophages well into chronic time points. Together with our in vitro data, this 

provides the proof of concept that myelin and cPLA2 may play a key role in the 

prolonged pro-inflammatory macrophage activation thought to impede semi-

acute and chronic recovery after SCI. Collectively this highlights macrophage 

cPLA2activity as a potential key mediator of the neuroinflammatory response 

after SCI and thereby warrants continued investigation as a therapeutic target. 

 

Conclusions: 

Spinal cord injury (SCI) produces chronic intraspinal inflammation 

consisting of resident microglia and infiltrating monocytes. These chronically 
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activated SCI macrophages adopt a persistent pro-inflammatory, pathological 

state that potentiates secondary damage and impairs SCI recovery (Gensel and 

Zhang, 2015; Horn et al., 2008). The mechanisms driving chronic macrophage 

activation in SCI are poorly understood. Here we implicate myelin debris and 

cPLA2 as key mediators of pathological macrophage activation. In vitro we found 

that the effects of myelin on macrophage activation are phenotype-specific, with 

myelin potentiating only pro-inflammatory (LPS + INF-γ; M1) macrophage 

activation, whereas myelin had no pro-inflammatory effect on unstimulated or 

anti-inflammatory (IL-4; M2) macrophages. Inhibition of cPLA2  significantly 

reduced the detrimental effects of myelin on M1 macrophages, implicating cPLA2 

as a key regulator of maladaptive macrophage activation. In vivo we observed 

ubiquitous myelin debris in, and around, macrophages expressing active cPLA2 

providing the key spatiotemporal evidence that cPLA2 may also mediate the 

detrimental effects of myelin in macrophages after SCI. Collectively, this 

establishes a novel mechanism driving detrimental macrophage activation and 

provides key evidence identifying macrophage cPLA2 activity as a therapeutic 

target to improve recovery after SCI. 
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Figure 2.1. Macrophages can contain both myelin-derived lipids and active 

cPLA2 28 days after spinal cord injury (SCI).  

 
Ten adult, 4-month-old C57/b female mice received a T9 75kdyn infinite horizons 

(IH) contusion SCI. A-E) Representative example of TomL positive macrophages 

(blue) in injured white matter containing both lipid debris (green, Bodipy, staining 

for neutral lipids) and active p-cPLA2 (red) (imaged area is represented by box 

within spinal cord diagram). DAPI (white) was excluded from merged images. F-

J) Example of TomL positive macrophages (blue) in injured grey matter 

containing both lipid debris (green, Bodipy, staining for neutral lipids) and active 

p-cPLA2 (red). K-O) Example of TomL positive macrophages (blue) in injured 

grey matter in the core of the injury epicenter containing both lipid debris (green, 

Bodipy, staining for neutral lipids) and active p-cPLA2 (red). P-T) Example of 
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TomL positive macrophages (blue) in uninjured tissue from sham animals with 

minimal lipid debris or active p-cPLA2 (red). Boxes indicate examples of triple 

positive cells. Maximum intensity projection confocal images. Scale bar in image 

P=50µm.  
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Figure 2.2. Myelin potentiates pro-inflammatory macrophage activation in 
vitro.  
 

Bone marrow derived macrophages (BMDMs) were utilized to determine the 

function outcomes resulting from myelin debris application under three distinct 

activation states: M1 (IFN-γ and LPS), M2 (IL-4), or CTL (media, i.e. 

unstimulated). A) Myelin stimulation significantly increased pro-inflammatory IL-

12 cytokine levels relative to M1 alone (*** p<0.001), however myelin did not 

increase IL-12 in CTL or M2 treated cells. M1 stimulations had increased IL-12 

relative to CTL or M2 (### p<0.001). B) Following the stimulation BMDMs were 

washed and treated with 2 µM H2DCFDA for 25 min. Myelin stimulation 
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increased ROS relative to M1 alone (*** p<0.001), however myelin did not 

increase ROS in CTL or M2 treated cells. M1 stimulations had increased ROS 

relative to CTL or M2 (### p<0.001). C) Nitric oxide levels in treated 

supernatants were examined using the Griess assay of nitrite accumulation. 

Myelin stimulation increased nitric oxide relative to M1 alone (*** p<0.001), 

however myelin did not increase nitric oxide in CTL or M2 treated cells. M1 

stimulations had increased nitric oxide relative to CTL or M2 (### p<0.001). D) 

Cell lysates were tested for arginase enzymatic activity. M2 macrophages had 

higher arginase activity relative to M1 and CTL (p<0.001 and p<0.0001 

respectively). The addition of myelin however did not significantly alter arginase 

activity in any of stimulations tested. E) Supernatants were applied to a neuron 

culture (N2A cells) for 24 hours to determine supernatant toxicity. Myelin 

stimulation increased neurotoxicity relative to M1 alone (* p<0.05), however 

myelin did not increase neurotoxicity in CTL or M2 treated cells. M1 stimulations 

had increased ROS relative to CTL or M2 (### p<0.001). Representative of 3 

independent biological replications of both BMDMs and myelin source. * p<0.05, 

** p<0.01, *** p<0.001, # p<0.05, ## p<0.01, ### p<0.001 mean ± SEM. 
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Figure 2.3. Inhibition of cPLA2 with PACOCF3 reduces the pro-inflammatory 

effects of myelin on M1 macrophages.  

 
BMDMs were grown and stimulated as in Figure 2, with or without the addition of 

cPLA2 inhibitor, PACOCF3 (50 µM). A) cPLA2 inhibition reduced myelin mediated 

ROS increases in M1 (IFN-γ and LPS) macrophages. B) cPLA2 inhibition reduced 

myelin mediated Nitric oxide production. C) cPLA2 inhibition reduced the 

neurotoxic potential of M1 macrophages treated with myelin as determined by an 

MTT assay measurement of N2a cell viability. D) cPLA2 inhibition did not 

significantly alter arginase activity. Representative of 3 biological replications of 

both BMDMs and myelin source. *p<0.05, ** p<0.01, *** p<0.001 mean ± SEM. 
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Figure 2.4. Macrophage cytokine profiles indicate a mixed 

neuroinflammatory phenotype.  

Supernatants from treated BMDMs were collected to measure pro- and anti-

inflammatory cytokine production in response to phenotype, myelin stimulation, 

and cPLA2 inhibition with PACOCF3. A-B) Myelin significanty increases the 

production of TNF-alpha in M1 cells, but has no effect on CTL and M2 cells. 

cPLA2 inhibition significantly reduced myelin potentiation of M1 TNF-alpha 
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production. C-D) Myelin increases CX3CL1 in CTL, M1, and M2 cells. cPLA2 

inhibition significantly reduced this effect in M1 cells, but not under M1 and 

Myelin co-stimulation. E-F) Myelin significantly decreased IL-10 production in M1 

cells, but this effect was not reversed with cPLA2 inhibition. cPLA2 inhibition alone 

increased IL-10 production in M1 cells. G-H) Myelin significantly reduced pro-

inflammatory IL-1beta production in M1 cells, whereas CTL and M2 cells were 

unaffected. cPLA2 inhibition did not alter this effect. I-J) Pro-inflammatory IL-6 

was not significantly altered by myelin or cPLA2 inhibition. Refer to 

Supplementary Figure 5 for CTL and M2 cPLA2 inhibition data. Representative of 

3 biological replications. *p<0.05 ** p<0.01, *** p<0.001 mean ± SEM. 
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Figure 2.5. Myelin increases cPLA2 activity in an activation state dependent 

manner.  

 

Cell lysates were collected from BMDM cultures to measure cPLA2 activity 

following stimulation into CTL, M1, and M2 cells with or without myelin. Samples 

containing Bromoenol Lactone, an inhibitor of iPLA2 were used to exclude the 

possibility of iPLA2 contributing to enzymatic activity. A) CTL treated cells had no 

discernable activity with or without myelin and Bromoenol Lactone. B) M1 treated 

cells had a mean enzymatic activity of 4.88nmol/min/ml. Addition of myelin 

significantly increased cPLA2 enzymatic activity (*p<0.05). Addition of Bromoenol 

Lactone did not significantly alter enzyme activity. C) M2 treated cells had no 

discernable activity with or without myelin and Bromoenol Lactone. 

Representative of 3 biological replications. *p<0.05 ** p<0.01, *** p<0.001 mean 

± SEM. 
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Supplemental Figure 2.1. Macrophages can contain both myelin-derived 

lipids and active cPLA2 7 days after spinal cord injury (SCI).  

 
Eight adult, 4-month-old C57/b female mice received a T9 75kdyn infinite 

horizons (IH) contusion SCI. A-E) Representative examples of TomL positive 

macrophages (blue) in injured white matter containing both lipid debris (green, 

Bodipy, staining for neutral lipids) and active p-cPLA2 (red). DAPI (white) was 

excluded from merged images. Imaged area is represented by box within spinal 

cord diagram. Boxes on image indicate examples of triple positive cells. 

Maximum intensity projection confocal images. Scale bar in image A=25µm 
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Supplemental Figure 2.2. In Vitro modeling of cPLA2 activity in myelin 

loaded macrophages.  

 
Coverslip plated BMDMs were stained for TomL (macrophage marker, blue), 

Bodipy  (myelin derived lipids, green) and active p-cPLA2 (red). Myelin uptake 

was quantified as the threshold area ratio of Bodipy or p-cPLA2 to TomL positive 

stain. A-F) Representative images of CTL, M1, and M2 BMDMs treated with or 

without myelin debris. G) CTL, M1, and M2 BMDMs treated with myelin 

contained significantly more neutral lipids (Bodipy) than each of their respective 

untreated counterpart (### p<0.001); however, there were no significant 

differences between groups treated with myelin. H) M1 stimulated BMDMS has 

significantly higher p-cPLA2 immunoreactivity than either M1 or M2 (### 
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p<0.001); however, myelin was not found to alter p-cPLA2 immunoreactivity in 

any of the groups tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 76 

 

Supplemental Figure 2.3. Myelin stimulants did not contain detectable 

endotoxin contamination.  

 
Aliquots from each myelin isolation were stored at -80 °C prior to testing. Myelin 

stimulants and negative control (1x sterile PBS) had endotoxin levels below the 

level of detection (<.055 EU/mL). The positive control (LPS 50 ng/mL) exceeded 

the detection limit (>1.045 EU/mL). mean ± SEM. 
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Supplemental Figure 2.4. cPLA2 inhibition has no effects on CTL or M2 

stimulated cells.  

 
Cells were grown and stimulated as detailed in Figures 2 and 3. A-D) cPLA2 

inhibition did not significantly change levels of reactive oxygen species (ROS), 

nitric oxide, supernatant neurotoxicity, or arginase activity in CTL (unstimulated) 

cells with or without the addition of myelin. E-H) cPLA2 inhibition did not 
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significantly change levels of reactive oxygen species (ROS), nitric oxide, 

supernatant neurotoxicity, or arginase activity in M2 (IL-4) cells with or without 

the addition of myelin. Representative of 3 biological replications of both BMDMs 

and myelin source n.s.=non-significant, p>0.05, mean ± SEM. 
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Supplemental Figure 2.5. Macrophage cytokine profiles indicate a mixed 

neuroinflammatory phenotype in CTL and M2 stimulated cells in response 

to myelin and inhibition of cPLA2 with PACOCF3.  

 
Supernatants from treated BMDMs were collected to measure pro and anti-

inflammatory cytokine production in response to phenotype, myelin stimulation, 
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and cPLA2 inhibition with PACOCF3. A-J) Myelin significantly increases the 

production of pro and anti-inflammatory cytokines TNF-alpha, CX3CL1, IL-10 and 

IL-6. IL-1Beta was unaffected. cPLA2 inhibition induced small but statistically 

significant adjustments in cytokine levels in myelin treated CTL and M2 cells. 

Representative of 3 biological replications. *p<0.05 ** p<0.01, *** p<0.001 mean 

± SEM. 
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Chapter 3: Delayed Azithromycin Treatment Improves Recovery After 

Mouse Spinal Cord Injury 

This chapter is adapted from Kopper et al., 2019 

 

3- i. Chapter Summary 

After spinal cord injury (SCI), macrophages infiltrate into the lesion and 

can adopt a wide spectrum of activation states. However, the pro-inflammatory, 

pathological macrophage activation state predominates and contributes to 

progressive neurodegeneration. Azithromycin (AZM), an FDA approved 

macrolide antibiotic, has been demonstrated to have immunomodulatory 

properties in a variety of inflammatory conditions. Indeed, we previously 

observed that post-SCI AZM treatment reduces pro-inflammatory macrophage 

activation. Further, a combined pre- and post-injury treatment paradigm improved 

functional recovery from SCI. Therefore, for the current study, we hypothesize 

that post-injury AZM treatment will improve recovery from SCI. To test this 

hypothesis, we examined the therapeutic potential of delayed AZM treatment on 

locomotor, sensory, and anatomical recovery. We administered AZM beginning 

30-min, 3-h, or 24-h following contusion SCI in female mice, and then daily for 7 

days. AZM administration beginning 30-min and 3-h post-injury improved 

locomotor recovery with increased stepping function relative to vehicle controls. 

Further, delaying treatment for 30-min after SCI significantly reduced lesion 

pathology. Initiating AZM treatment 24-h post-injury was not therapeutically 

effective. Regardless of the timing of the initial treatment, AZM did not statistically 
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reduce the development of neuropathic pain (mechanical allodynia) nor increase 

neuron survival. Collectively, these results add to a growing body of evidence 

supporting AZM’s translational potential as a therapeutic agent for SCI and other 

neuroinflammatory conditions in which patients currently have very few options. 

This chapter was adapted from Kopper et. Al 2019 

 

3- ii. Background 

Spinal cord injury (SCI) induces a complex heterogeneous inflammatory 

response largely mediated by resident microglia and infiltrating monocyte-derived 

macrophages. While these cells are capable of adopting a wide spectrum of 

beneficial and detrimental functions, the acute SCI microenvironment promotes 

pro-inflammatory macrophage activation (Kigerl et al., 2009). Pro-inflammatory 

macrophages and microglia are widely believed to be major contributors to the 

continued neurodegeneration and tissue loss observed following the initial 

mechanical SCI. Targeting macrophage activation acutely is, therefore, a 

promising therapeutic approach to improve recovery. However, to date there are 

no FDA approved drugs to target these pathways after SCI. 

Azithromycin (AZM) is a widely prescribed, FDA-approved, antibiotic with 

a well-established safety record. AZM has significant anti-inflammatory and 

immunomodulatory actions across a wide array of disease states (Amantea et 

al., 2016a; Banjanac et al., 2012; Barks et al., 2019; Feola et al., 2010b; Gensel 

et al., 2017; Ivetić Tkalčević et al., 2011; Murphy et al., 2008; 2010; Nujić et al., 

2012a; Osman et al., 2017; Polancec et al., 2012; Varano et al., 2017; Vrancic et 
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al., 2012; Zhang et al., 2015b). Specifically, AZM promotes anti-inflammatory 

activation by inhibiting macrophage STAT1 and NF-κB signaling pathways 

(Haydar et al., 2019). Emerging evidence supports the use of AZM as a 

treatment for neurological conditions including stroke, retinal ischemia, spinal 

muscular atrophy, and neonatal hypoxic–ischemic brain injury (Amantea et al., 

2016a; 2019; Barks et al., 2019; Osman et al., 2017; Varano et al., 2017). 

Previously, we demonstrated that AZM improves tissue sparing and locomotor 

recovery in a mouse model of contusion SCI when dosing is initiated 3 days prior 

to injury (Zhang et al., 2015b). In our previous work, the neuroprotective effects 

of AZM were coincident with increased anti-inflammatory and decreased pro-

inflammatory macrophage activation (Zhang et al., 2015b). More recently, we 

established that delaying treatment for 30 min post-injury substantially decreases 

markers associated with pro-inflammatory (M1) macrophage activation while 

significantly increasing anti-inflammatory (M2) macrophage markers(Gensel et 

al., 2017). Further, we recently found that AZM decreases neurotoxic, pro-

inflammatory macrophage activation independent of its antibiotic properties 

(Zhang et al., 2019). Collectively, these findings highlight AZM as a promising 

SCI immunomodulatory therapeutic; however, the long-term effects of delayed 

AZM treatment are unknown. For the current study, we hypothesized that post-

injury AZM treatment improves recovery from SCI. Specifically, we evaluated the 

therapeutic efficacy of post-SCI AZM treatment on long-term locomotor, sensory, 

and anatomical recovery. Initial treatment was delayed 30 min, 3-h, or 24 h post-

injury and recovery evaluated for 4 weeks after injury. 
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3- iii. Methods 

Experimental Design: 

The current data includes the combined results of three independent 

studies. 

Study One  

Mice (n = 10/group) were treated with vehicle (initiated at 30 min post-

injury) or AZM (160 mg/kg/day) by oral gavage beginning 30 min, 3 h, or 24 h 

after a moderate-severe (75 kdyn) T9 contusion SCI. Drug and vehicle 

administration was continued daily for 7 days post-injury (dpi). Locomotor 

function of all animals, as determined by the Basso Mouse Scale (BMS), was 

assessed prior to injury and again at 1, 3, 7, 14, 21 and 28 dpi. At 28 dpi, all the 

animals were sacrificed for the generation of spinal cord sections for histological 

analyses of tissue sparing, lesion length, and neuron survival. One mouse was 

euthanized due to surgical complications. Three mice were excluded based upon 

a prior exclusion criteria for abnormal impactor parameters reported by the 

Infinite Horizons (IH) SCI device (indicative of a bone hit or spinal cord 

movement during injury; n = 2) and abnormally high functioning locomotor 

behavior at 1 dpi (BMS >3) indicative of incomplete injury (n = 1). 

 

Studies Two and Three  

Mice (n = 10/group/study) were injured and treated as study one except 

that the 24 h delayed treatment group was discontinued due to clear therapeutic 

ineffectiveness in study one (Figures 3.1A,B; p > 0.98 for all outcomes). In 
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addition, horizontal ladder performance and measures of neuropathic pain (Von 

Frey, mechanical allodynia) were collected prior to injury and at 26 and 27 dpi, 

respectively. Group sizes for studies two and three (n = 10) were calculated 

based upon a priori power analysis of the BMS behavior data collected in study 

one. Specifically, we estimated that with a significance of α = 0.05, a power of 1-

β = 0.80, and expected levels of animal attrition, that we would need an 

additional 20 animals per group. Two mice in study two and three mice in study 

three were excluded based upon a priori impact or behavioral criteria for 

incomplete/abnormal injuries. Rostral-caudal neuronal survival was only 

assessed in studies two and three because unknown temperature 

inconsistencies during study one tissue processing and sectioning caused tissue 

folding and tissue loss, making histological analysis impossible. Discrepancies 

between n’s in behavioral vs. histological analyses are due to the fact that mice 

without an obvious and fully intact injury epicenter (due to tissue processing 

complications) were not included for histological analyses. Final animal numbers 

are reported in the figure legends and/or results. 

 

Animals 

Experiments were performed using 4-month-old female C57BL/6 mice 

(Jackson Laboratory, Bar Harbor, ME, USA). Animals were housed in IVC cages 

with ad libitum access to food (Teklad Irradiated Global 18% Protein Rodent Diet) 

and purified water. Housing is set to maintain a 14 h light/10 h dark cycle, at 70°F 

and 50% humidity. All experimental procedures were conducted during the light 
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cycle and were performed in accordance with the guidelines and protocols of the 

Office of Research Integrity and with approval of the Institutional Animal Care 

and Use Committee at the University of Kentucky. 

 

Spinal Cord Injury 

Animals were anesthetized via intraperitoneal (i.p.) injections of ketamine 

(100 mg/kg) and xylazine (10 mg/kg). Following a T9 laminectomy, a moderate-

severe thoracic SCI was produced using the IH injury device (75-kdyn; Precision 

Systems and Instrumentation; (Scheff et al., 2004)). Any animals receiving SCI 

with abnormalities in the force vs. time curve generated by the IH device were 

excluded from analysis. These abnormalities are indicative of bone hits or 

instability in the spinal cord at the time of injury and occurred <10% of the time. 

After injury, muscle and skin incisions were closed using monofilament suture. 

Post-surgery, animals received one subcutaneous injection of buprenorphine-SR 

(1 mg/kg) and one injection of antibiotic (5 mg/kg, enrofloxacin 2.27%: Norbrook 

Inc., Lenexa, KS, USA) in 2 ml of saline and were housed in warming cages 

overnight. Animals continued to receive antibiotic subcutaneously in 1 ml saline 

for 5 days. AZM (160 mg/kg) or vehicle (1% methylcellulose) was delivered in 

0.1-ml volume via oral gavage daily beginning 30 min, 3 h or 24 h after injury and 

again daily for 7 days post-injury. Animal health and the incision site were 

monitored throughout the course of the study. Bladder expression was performed 

on injured mice twice daily. 
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Behavioral Analysis 

All experimental animals were assessed using the BMS to score hindlimb 

function as previously described (Basso et al., 2006). Mice were tested in an 

open field for 4 min before surgery and at 1, 3, 7, 14, 21, and 28 days post-injury 

(dpi). Each hindlimb was scored separately based on movement (e.g., ankle 

placement and stepping) and whole-body coordination and trunk stability were 

also scored; the average of both hindlimb scores was used to generate a single 

score for each animal. A score of 0 indicated complete paralysis and a score of 9 

indicated normal locomotion. Animals receiving a score of 3 or higher at 1 dpi, or 

less than 2 at 28 dpi were excluded from the study based on a priori statistical 

assessment of over 450 prior 75 kdyn mouse SCI surgeries. These scores are 

rare (greater than 2 standard deviations from mean BMS score) and are 

indicative of surgical/injury abnormalities (bone hit, low/high impact force, etc.). 

 

Mechanical Allodynia Testing 

Mechanical allodynia was measured using the manual up-down approach 

with von Frey monofilaments as described previously (Chaplan et al., 1994). 

Animals were first acclimated to the testing apparatus consisting of a wire mesh 

floor within an acrylic enclosure. A monofilament was pressed perpendicularly 

against the plantar surface of the hindlimb until bent, beginning with the 1.4 g 

monofilaments and ranging from the 0.4 g to 6.0 g monofilaments. Fifty 

percentage withdrawal threshold was calculated and reported as the average of 

both hind paws at each time point (Chaplan et al., 1994). Positive responses 
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include rapid paw withdrawal, paw shaking and/or paw licking. Paw movement 

due to normal locomotor activity and responses occurring after the removal of the 

filament were not considered positive responses and were excluded from 

analysis. 

 

Tissue Processing and Immunohistochemistry 

At 28 dpi, mice were anesthetized then transcardially perfused with cold 

PBS (0.1 M, pH 7.4), followed by perfusion with cold 4% paraformaldehyde 

(PFA). Dissected spinal cords (1 cm) were post-fixed for another 2 h in 4% PFA 

and subsequently rinsed and stored in cold phosphate buffer (0.2 M, pH 7.4) 

overnight at 4°C. On the following day, tissues were cryoprotected in 30% 

sucrose for 3 days at 4°C, followed by rapidly freezing and blocking in optimal 

cutting temperature (OCT) compound (Sakura Finetek USA Inc., Torrance, CA, 

USA) on dry ice. Tissue was systematically randomized into blocks (each block 

contained spinal cords from four subjects) with equal group distribution to ensure 

uniformity of staining across groups and blocked tissue was stored at −80°C 

before sectioning. Tissue blocks were cut in serial coronal sections (10 μm) and 

mounted onto Colorfrost plus slides (Fisher #12-550-17). 

Spinal cord sections were stained with Eriochrome Cyanine (myelin) and anti-

Neurofilament (1:1,000, Aves labs: NF-H) to visualize damage and thereby 

identify the epicenter and length of each lesion as described previously (Zhang et 

al., 2015b). To examine the epicenter in greater detail, slides were stained with 

glial fibrillary acidic protein (GFAP; 1:500, Aves: GFAP) and macrophage marker 
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F4/80 (1:1,500, AbD serotec, MCA497) primary antibodies overnight at 4°C, 

followed by Alexa Fluor 488 goat anti-chicken (1:1,000, Life Technologies 

A11039) and goat anti-rat Alexa Fluor 633 (1:1,000, Thermo Fisher Scientific: A-

21094) secondary antibodies for 1 h at room temperature. To assess neuron 

survival, slides were subjected to antigen retrieval for 5 min in hot citrate buffer 

pH 6, incubated with rabbit anti-NeuN (1:4,000, Novus Biologicals NBP1-77686) 

primary antibody overnight at room temperature, then biotinylated goat anti-rabbit 

(1:500, Vector BA-1000) secondary antibody for 2 h at room temperature, then 

elite-ABC (prepared according to manufacturer’s instructions, Vector PK-6100) 

for 2 h at room temperature, and finally DAB (prepared according to 

manufacturer’s instructions, Vector SK-4100) with nickel additives for 5 min at 

room temperature. Slides were cover-slipped with Permount mounting medium 

(Fisher Scientific, Hampton, NH, USA) or Immu-Mount (Thermo Scientific, 

Waltham, MA, USA) for brightfield and fluorescent stains, respectively. 

Images were taken using a C2+ laser scanning confocal microscope 

(Nikon Instruments Inc., Melville, NY, USA) or a ZEISS Axio Scan.Z1 (Munich, 

Germany), then analyzed using the MetaMorph analysis program (Molecular 

Devices, Sunnyvale, CA, USA) or HALO Image Analysis Platform (Indica Labs, 

Albuquerque, NM, USA). To identify the rostral-caudal lesion length, Eriochrome 

Cyanine and Neurofilament (EC/NF) stained tissue sections were examined at 

100 μm intervals rostral and caudal from the lesion epicenter until damage 

became entirely localized to the dorsal column totaling less than 2% of the total 

spinal cord area. To quantify tissue sparing at the lesion epicenter (i.e., the tissue 
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section with the least amount of intact EC/NF stained tissue) the regions of 

dense GFAP positive staining were outlined and measured using the MetaMorph 

analysis program (Molecular Devices, Sunnyvale, CA, USA) or HALO. These 

spared areas as defined by the GFAP+ glial scar closely align with areas of 

Neurofilament positive axons as determined previously (Freria et al., 2017; 

Zhang et al., 2015b). Lesion area, intact tissue area, and overall spinal cord size 

were used to calculate the percentage of spared tissue at the lesion epicenter. 

While not quantified directly, F4/80 positive macrophages were used as a 

secondary tracing guide in any areas of ambiguity as they densely accumulate 

within the core of the lesion as described previously (Wang et al., 2014). To 

quantify neurons, NeuN-stained cells within the gray matter were quantified using 

HALO software. Spinal cross-sections at 100 μm intervals from the epicenter 

were analyzed, and average values were calculated from equidistant 

rostral/caudal sections. Folded or torn sections were excluded from analysis. 

 

Statistical Analysis 

Investigators blinded to experimental conditions performed all data 

acquisition and analysis. Statistical analyses were completed using GraphPad 

Prism 6.0 (GraphPad Software). Data were analyzed using one- or two-way 

ANOVA followed by Dunnett’s or Holms–Sidak post hoc tests for multiple 

comparisons to the vehicle groups. Chi square and independent-sample t-tests 

were used when appropriate. Results were considered statistically significant 

at p ≤ 0.05. All data are presented as mean ± SEM unless otherwise noted. 
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Figures were prepared using Adobe Photoshop CC 2014 (Adobe Systems) and 

Prism 6.0. 

 

3- iv. Results 

Post-injury Administration of Azithromycin Improves Locomotor Recovery After 

SCI: 

As described previously, initiating AZM treatment 30 min after SCI, 

followed by repeated daily doses for 7 days, mediates an immunomodulatory 

shift in macrophage phenotype resulting in the downregulation of markers 

associated with pro-inflammatory M1 macrophage activation and upregulation of 

anti-inflammatory M2 markers (Gensel et al., 2017). Because this type of 

macrophage phenotypic transition is often associated with an increase in 

reparative functions after SCI, we sought to determine whether post-injury 

administration of AZM led to long-lasting locomotor improvement up to 28 days 

after injury. AZM was administered beginning 30 min, 3 h, or 24 h post-injury and 

then daily for 7 days in three compiled studies. The 24 h delayed treatment group 

was discontinued due to clear therapeutic ineffectiveness in study one (Figures 

3.1A,B; p > 0.98 for all outcomes). The 30 min and 3 h administration groups, 

however, displayed improved locomotor recovery relative to vehicle. Specifically, 

overall locomotor recovery out to 28 dpi, as measured by the BMS, varied as a 

function of treatment (p = 0.008 main effect of treatment; time × treatment 

interaction p = 0.02). Locomotor recovery significantly improved when AZM was 

administered at 30-min relative to vehicle (p = 0.004 main effect; Figure 3.2A). 
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This treatment effect was significant beginning at 14 dpi (p = 0.005; Figure 

3.2A). Delaying the initial dose for 3-h after SCI improved recovery relative to 

vehicle (p = 0.058 vs. vehicle, main effect) with significant improvements by 28 

dpi (p= 0.0004). 

By 28 dpi, delaying AZM treatment by either 30 min or 3 h after SCI 

significantly improved locomotor function vs. vehicle with an average BMS score 

of ~5 for AZM groups vs. ~4 for the vehicle-treated group (Figure 3.2A). A 

transition from a score of 4–5 is largely dependent on the mouse’s ability to fully 

support its body weight on its hind legs while stepping. Because we observed 

this group-dependent separation along the 4/5 score of the BMS scale, we 

further quantified stepping ability. As seen in Figure 3.2B; a significantly greater 

proportion of mice treated with AZM beginning at either 30 min or 3 h post-injury 

recovered frequent plantar stepping function vs. vehicle controls (Chi-

squared, p = 0.001 and p = 0.04, respectively). We also evaluated proprioceptive 

hindlimb stepping function with the horizontal ladder task. There were no 

differences among groups prior to SCI (p = 0.99, one-way ANOVA, data not 

shown). However, since few animals in the vehicle group recovered stepping 

function and were able to perform the horizontal ladder task, results of this test 

were not compared among groups after SCI. 

 

Azithromycin and Neuropathic Pain: 

We recently reported that AZM is an analgesic that alleviates chronic SCI 

pain when dosed 30 min prior to measuring heat-induced hyperalgesia (Gensel 
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et al., 2019). Here, we expanded upon this by testing whether AZM limits the 

development of neuropathic pain (mechanical allodynia) after SCI. As seen 

in Figure 3.3, SCI induced allodynia (p < 0.0001), however, AZM administration 

beginning 30 min and 3 h following injury did not significantly reduce long-term 

pain responses (mechanical allodynia) relative to vehicle-treated animals at 27 

dpi (p = 0.89). 

 

The Effect of Post-SCI Azithromycin Treatment on Tissue Pathology: 

Previously, we observed improved locomotor recovery along with 

increased tissue preservation using a combined pre- and post-SCI dosing 

paradigm for AZM (Zhang et al., 2015b). As seen in Figures 3.4A–E, the effect 

post-SCI AZM treatment on tissue sparing at the lesion epicenter did not reach 

statistical significance for either the 30 min or 3 h treatment groups in the current 

studies (p = 0.07 and 0.54, respectively). AZM administration significantly 

reduced the mean rostral-caudal lesion length when given 30 min after injury (p = 

0.03; Figures 3.5A,B); the 3-h delivery timepoint was not statistically significant 

(p= 0.55; Figure 3.5). Given that pro-inflammatory macrophages are neurotoxic 

and that AZM limits this activation in vitro we sought to quantify whether post-SCI 

AZM treatment improved the number of surviving neurons at 28 dpi (Zhang et al., 

2015b; 2019). However, AZM treatment did not affect neuron sparing throughout 

the rostral-caudal extent of the lesion (ANOVA main effect of treatment p = 

0.26; Figures 3.6A,B) or total neuron sparing according to area under the 

neuron by distance curve (ANOVA p = 0.98; Figure 3.6C). 
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3- v. Discussion 

The clinical use of methylprednisolone, the only FDA-approved drug to 

complete phase three clinical trials for SCI to date, has fallen substantially in 

recent years with concerns that its side effects may out-weigh its clinical benefits. 

As a result of this decline, many individuals with a SCI have been left with no 

pharmacological treatments for their injuries. Here, we provide evidence that 

azithromycin (AZM) treatment, initiated after SCI, improves recovery. Specifically, 

delaying treatment for 30 min or 3 h post-injury significantly increased locomotor 

recovery in mice. We observed therapeutic effects even when delayed for 3 h, 

although less robust than our 30-min timepoint. When delayed 24 h after injury 

AZM administration had no discernable therapeutic effect. Azithromycin is 

routinely given to SCI individuals with limited side effects (Evans et al., 2013) and 

our results here demonstrate that AZM may have a viable therapeutic window as 

a neuroprotective treatment for SCI. 

Clinically, AZM is widely used for its antibiotic properties, however, 

increasing evidence indicates that the neuroprotective effects are a result of a 

distinct cellular mechanism. Specifically, AZM has a remarkable ability to 

accumulate within cells, in particular, within phagocytes such as macrophages 

(Zimmermann et al., 2018). Subsequently, AZM appears to inhibit the activation 

of the NF-κB signaling cascade, a potent regulator of macrophage activation 

states (Aghai et al., 2007; Cigana et al., 2007; Feola et al., 2010b; Haydar et al., 

2019). In support of the concept that the immunomodulatory effects of AZM are 

independent of its antibacterial actions, we recently developed a library of AZM 
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derivatives with reduced antibiotic properties. Indeed, even compounds with 

reduced antibiotic activity retained the ability to blunt pro-inflammatory 

macrophage activation and macrophage-mediated toxic effects on neurons 

(Zhang et al., 2019). Similarly, investigators in other disease models have utilized 

AZM as an immunomodulatory agent and have attributed its efficacy to its anti-

inflammatory effects on macrophage physiology (Amantea et al., 2016b; Feola et 

al., 2010b; Kitsiouli et al., 2015). We have identified a similar mechanism of 

action for AZM in SCI previously (Gensel et al., 2017; Zhang et al., 2015b; 2019). 

Specifically, we found that AZM administration 30 min post-injury at doses of 10, 

40, or 160 mg/kg decreased pro-inflammatory M1 macrophage gene expression 

at 3 dpi while the lowest (10 mg/kg) and highest (160 mg/kg) doses increased 

anti-inflammatory M2 macrophage gene expression at 7 dpi (Gensel et al., 2017). 

One small caveat to this, and the current study, is that all of the mice receive 

prophylactic antibiotic (enrofloxacin) during surgical recovery. It is thereby 

possible that there is a drug interaction effect, although their intended 

antimicrobial mechanisms have distinct cellular targets. Collectively, increasing 

evidence demonstrates that AZM accumulates in macrophages and improves 

outcomes by driving a shift in macrophages from pro-inflammatory and 

pathological M1 phenotypes to more reparative, anti-inflammatory M2 

phenotypes. These AZM mediated shifts in macrophage activation states are 

thereby likely to be important factors mediating the long-term therapeutic benefits 

detailed in the current study, however, we did not specifically evaluate the impact 

of treatment timing on macrophage phenotype. 
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Our observations are consistent with reports of AZM being neuroprotective 

in other neurological conditions through the promotion of anti-inflammatory 

macrophage polarization. For example, Amantea et al. demonstrated that 

administration of AZM is neuroprotective in a transient middle cerebral artery 

occlusion model of stroke. Importantly, they attributed AZM’s protective effects to 

its ability to drive macrophages to an anti-inflammatory M2 phenotype (Amantea 

et al., 2016b). Similarly, Varano et al. utilized AZM to target CNS inflammation in 

a rat model of retinal ischemia/reperfusion injury (Varano et al., 2017) (pathology 

associated with glaucoma, diabetic retinopathy, and anterior ischemic 

neuropathy; (Zheng et al., 2007). In that study, a single dose of AZM (150 mg/kg, 

i.p.) given after 50 min of ischemia, increased retinal ganglion cells survival by 

reducing the excitotoxicity and propagation of the macrophage response (Varano 

et al., 2017). Together with our prior observation of AZM decreasing M1 

activation and increasing M2 macrophage in vivo after SCI (Gensel et al., 2017; 

Zhang et al., 2015b) these studies suggest that AZM could have important 

therapeutic implications across many neurological conditions. In particular, CNS 

disorders such as traumatic brain injury, Alzheimer’s disease, and multiple 

sclerosis are known to be heavily influenced by inflammatory pathways. 

However, the efficacy AZM in these models remains to be determined. In many 

CNS disorders there is the added complexity of having both bone marrow 

derived monocytes/macrophages and microglial derived macrophage 

populations. While emerging evidence suggests that microglia may be more 

neuroprotective than monocyte-derived macrophages, we do not yet know 
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through which population AZM exerts its therapeutic effects (Bellver-Landete et 

al., 2019; Greenhalgh et al., 2018). Our prior work using a combined pre- and 

post-injury AZM administration paradigm demonstrated that both microglia (in 

vivo) and macrophages (in vitro) are affected by AZM (Gensel et al., 2017; Zhang 

et al., 2015b). The relative contribution of microglia vs. monocyte-derived 

macrophages to the therapeutic effects of AZM observed in the current study, 

however, remains unclear. To address these uncertainties, we are currently 

developing small molecule labeling techniques to track AZM after administration 

and methods to separate and analyze microglia and monocyte populations 

individually after SCI. 

One limitation of the current study is that only one AZM dosing paradigm 

(160 mg/kg/day) was tested. Using typical interspecies allometric scaling, this 

dose may translate to a high, but still clinically relevant dose in humans (Anroop 

B Nair, 2016)However, additional dose-response studies or alternative 

formulations may improve the neuroprotective potential or therapeutic window of 

AZM. Indeed, we previously observed that AZM retains its ability to modulate 

macrophage phenotype even at substantially lower doses (10 and 40 mg/kg) 

when administration begins 30 min post-SCI (Gensel et al., 2017). Similarly, 

using alternative dosing strategies, Amantea et al. (Amantea et al., 2016a) 

demonstrated that both intravenous and intraperitoneal administrations of AZM 

were neuroprotective in a rodent model of stroke. In the case of intraperitoneal 

administration, AZM remained neuroprotective after stroke at doses from 150 

mg/kg down to as low as 1.5 mg/kg, suggesting that alternative administration 
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routes may offer greater effectiveness with reduced doses (Amantea et al., 

2016b). We have also begun modifying AZM structure through medicinal 

chemistry to produce derivatives that lack antibiotic activity yet maintain their 

immunomodulatory effects on macrophages (Zhang et al., 2019). Ongoing work 

seeks to identify a derivative with enhanced anti-inflammatory activity, which may 

allow for further reductions in dosages prior to clinical translation. 

The therapeutic efficacy of AZM in the current study decreased with the 

timing of the first oral dose after SCI with the 30-min time point being the most 

effective, 3-h being moderately effective, and no efficacy when the first treatment 

was delayed 24 h. It may be possible to extend this treatment window. For 

example, here we administered AZM by oral gavage, whereas faster and more 

direct methods such as intravenous administration may allow for more robust 

effects and a more flexible dosing window. In the treatment of stroke, 

intraperitoneal administration of AZM was effective when administered out to 4.5 

h post-injury suggesting that alternative dosing approaches may be able to 

extend AZM’s dosing window post-SCI (Amantea et al., 2016b; 2019). 

Collectively, while the data showed here demonstrate that early oral 

administration of AZM is therapeutically effective, there are ample opportunities 

to both improve its efficacy and minimize any associated risks. 

In our current dosing paradigm, we dosed for 7 days after injury, yet our 

most robust behavioral improvements are seen from days 14–28 post-injury. This 

delayed response is consistent with observations in humans and may be due in 

part to AZM’s ability to accumulate within macrophages. Indeed, in human 
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patients treated with AZM for 3 days, AZM accumulation in monocytes is still 

evident by 14 days with minimal depletion (Wildfeuer et al., 1996). Presumably, 

there is a similarly prolonged presence of AZM within macrophages after SCI 

contributing to the neuroprotective effects well into chronic time points. We 

observed a similar response in using a pre-treatment dosing strategy in that we 

only saw significant behavioral differences relative to vehicle starting at 14 dpi 

(Zhang et al., 2015b). This suggests that AZM accumulation in macrophages 

after SCI is sufficient to facilitate long-term improvements. Therefore, methods to 

enhance AZM’s targeted delivery to macrophages, such as with liposome-based 

drug delivery systems may facilitate greater therapeutic efficacy. 

In the weeks and months following SCI, animals develop neuropathic pain 

with both hyperalgesia (increased pain from a stimulus that normally provokes 

pain) and allodynia (pain due to a stimulus that does not normally provoke pain; 

(Deuis et al., 2017). Previously we demonstrated that AZM has analgesic 

properties when given to these chronically injured animals 30 min prior to pain 

testing (Gensel et al., 2019). This is in contrast with the current study in which 

AZM had no analgesic effects. The two key differences are that in the current 

study we dosed with AZM for 7 days, stopping 3 weeks prior to pain testing and 

we evaluated pain using a mechanical withdrawal (allodynia) test instead of 

thermal-induced pain test (allodynia and hyperalgesia). It is possible that the 

analgesic properties of AZM are modality-specific and AZM could block the 

development of heat but not mechanically induced pain responses. The results of 

the current study, however, suggest that AZM has no effect on the overall 
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development of mechanical allodynia after SCI, but maintains promise as a pain 

relief alternative to opioid and non-steroidal anti-inflammatory based 

therapeutics. Further, it has become increasingly important to include tests for 

the affective components of pain in animal models when identifying new drugs to 

treat SCI (Kramer et al., 2017). It is possible that future studies evaluating the 

effects of AZM treatment on affective pain may reveal additional benefits of 

treatment. 

In the current study, we administered AZM through oral gavage after SCI 

and detected modest, yet significant therapeutic benefits. It is possible that 

alternate dosages and routes of delivery could broaden AZM’s treatment window 

and increase its therapeutic effects. Despite these challenges, AZM holds great 

promise in the treatment of SCI and a broad variety of other inflammatory 

disorders. Fortunately, AZM’s excellent safety history, and wide availability at 

essentially all healthcare centers would greatly reduce barriers preventing rapid 

use after injury (Trifirò et al., 2017; Uzun et al., 2014). The results of the current 

study add to a growing body of evidence supporting AZM’s translational potential 

as a neuroprotective agent for SCI and other neuroinflammatory conditions in 

which patients currently have very few options. 
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Figure 3.1. Azithromycin (AZM) administration beginning 24 h after injury is 

not therapeutically effective.  

 
Adult (4-month-old) female mice received a moderate-severe thoracic T9 

contusion spinal cord injury (SCI; 75-kdyn). AZM was first administered at 24-h 

post-injury and then daily for 7 days (160 mg/kg/day). Functional recovery was 

assessed before injury and at 1, 3, 7, 14, 21, and 28 dpi. (A,B) Initiating AZM 

treatment 24-h after SCI did not improve locomotor recovery relative to vehicle 

control (p = 0.99, n = 9–10) or improve tissue sparing [as defined by glial fibrillary 

acidic protein (GFAP) reactivity] at the lesion epicenter at 28 dpi relative to 

vehicle (n.s. = not significant, p = 0.98, n = 7–8). Mean ± SEM. 
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Figure 3.2. Early AZM administration improves locomotor recovery in SCI 

mice. 

 
Adult (4-month-old) female mice received a moderate-severe thoracic T9 

contusion SCI (75-kdyn). AZM was first administered at 30-min or 3-h post-injury 

and then daily for 7 days (160 mg/kg/day). Functional recovery was assessed 

before injury and at 1, 3, 7, 14, 21, and 28 dpi. (A) Mice treated with AZM 

beginning 30-min post-injury displayed significantly improved locomotor recovery 

relative to vehicle (main effect of treatment vehicle vs. 30 min, p = 0.004) with 

significant improvement from 14 to 28 dpi (**,***p < 0.05 30 min vs. vehicle, 

Holms–Sidak’s post hoc). Mice first treated at 3 h post-injury had increased 

recovery relative to vehicle (p = 0.06 main effect of treatment vehicle vs. 3 h) with 

significant improvements at 28 dpi (##p < 0.05 vs. vehicle Holms–Sidak’s post 

hoc). (B) Mice treated at 30-min recovered significantly improved frequent plantar 

stepping frequency than vehicle controls (58% and 17% respectively, Chi-

squared, p = 0.001). Similarly, mice treated at 3-h recovered significantly more 
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frequent plantar stepping relative to vehicle (37% and 17%, respectively, Chi-

squared, p = 0.04). n = 24–29, mean ± SEM. *p < 0.05. 
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Figure 3.3. AZM administration does not alter the development of 

mechanical allodynia in mice after SCI.  

 
Gram-force withdrawal threshold to Von Frey filaments stimuli decreased after 

SCI, relative to baseline, indicative of the development of allodynia after SCI 

(***p > 0.0001). However, AZM did not alter the development of allodynia at 27 

dpi relative to vehicle (n.s. = not significant, p = 0.89). There were no baseline 

differences in withdrawal threshold prior to injury (p = 0.29). n = 15–20, mean ± 

SEM. 
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Figure 3.4. AZM does not significantly increase long-term, 28-day tissue 

sparing at lesion epicenter.  

 
Tissue sections representative of the mean values for (A) vehicle or AZM 

beginning (B) 30 min or (C) 3 h post-SCI. (D)Quantification of tissue sparing at 

28 days post-injury based on GFAP reactivity did not demonstrate any 

statistically significant differences across groups, however, the mean tissue 

sparring was higher in the 30-min group (56%) than the vehicle-treated group 

(49%; p = 0.07). (E) The injury displacement values were equal across groups 

(p = 0.69) indicative of comparable injury severities prior to treatment 

administration. n = 19–25, mean ± SEM. Scale bar: 500 μM. n.s = not significant. 
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Figure 3.5. Post-SCI treatment with AZM reduces rostral-caudal lesion 

length.  

 
(A) Representative images of EC/NF stained sections 28 days after SCI detailing 

the lesion characteristics for vehicle, 30-min AZM, and 3-h AZM administration 

paradigms. (B) AZM administration beginning 30 min post-injury reduced overall 

rostral-caudal lesion length to an average of 1.9 mm relative to the 2.4 mm 

average in vehicle-treated animals (p = 0.03). This is evident in (A) by the 

relatively intact spinal cord at 0.8 mm rostral and caudal to the epicenter in the 30 

min AZM vs. vehicle. group. Mice with treatment beginning at 3-h post-injury had 

a slightly lower average lesion length at 2.2 mm, however this was not 
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statistically significant (p = 0.55). n = 23–29, mean ± SEM. Scale bar: 500 μM. 

* p< 0.05; n.s = not significant. 
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Chapter 4: Advancing macrophage-targeted therapies into successful 

treatments 

 for SCI  

 

4- i. Summary: 

Chapter Summary 

 There is an urgent need for the development of new therapies for the 

treatment of SCI. While AZM and cPLA2 inhibitors are promising macrophage-

targeted therapy candidates, there are numerous other approaches to target 

macrophages being developed. In this Chapter we examine: 1) A transgenic 

approach to target cPLA2 in vitro. 2) The immunomodulatory properties of 

macrolide derivatives of AZM. 3) The shift in pro-inflammatory macrophage 

cytokine profiles in response to leukemia inhibitory factor (LIF). Lastly, we cover 

a general discussion of these approaches and of additional macrophage-targeted 

therapies currently in development. Respective topics are indicated by section 

headings. 

 

Summary: Transgenic Targeting of cPLA2 In Vitro 

 We previously targeted cPLA2 using a chemical inhibitor, PACOCF3. Here 

we build on these prior studies using a transgenic approach. We isolated BMDMs 

from cPLA2-/- (KO) and cPLA2+/+ (WT) and examined the impact of cPLA2 ablation 

on ROS, nitric oxide, neurotoxicity, and arginase enzymatic activity during myelin 

exposure. cPLA2 reduced myelin induced ROS, nitric oxide, and neurotoxicity 
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relative to WT BMDMs, although arginase enzymatic activity was not affected. 

This is additional evidence indicating a key role of cPLA2 in mediating the myelin 

induced potentiation of pro-inflammatory macrophage activation. 

 

Summary: AZM Derivatives 

This section is adapted, in part, from Zhang et al. 2019. All excluded content can 

be found in the original source material. 

Azithromycin (AZM) and other macrolide antibiotics are applied as 

immunomodulatory treatments for CNS disorders. The immunomodulatory and 

antibiotic properties of AZM are purportedly independent. To improve the efficacy 

and reduce antibiotic resistance risk of AZM-based therapies, we evaluated the 

immunomodulatory and neuroprotective properties of novel AZM derivatives. We 

semisynthetically prepared derivatives by altering sugar moieties established as 

important for inhibiting bacterial protein synthesis. Bone marrow-derived 

macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli 

(LPS + INF-gamma) with and without derivative costimulation. Pro- and anti-

inflammatory cytokine production, IL-12 and IL-10, respectively, was quantified 

using ELISA. Neuron culture treatment with BMDM supernatant was used to 

assess derivative neuroprotective potential. Azithromycin and some derivatives 

increased IL-10 and reduced IL-12 production of M1 macrophages. IL-10/IL-12 

cytokine shifts closely correlated with the ability of AZM and derivatives to 

mitigate macrophage neurotoxicity. Sugar moieties that bind bacterial ribosomal 

complexes can be modified in a manner that retains AZM immunomodulation and 
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neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS 

macrophage responses, our results open new therapeutic avenues for managing 

maladaptive CNS inflammation and support utilization of IL-10/12 cytokine 

profiles as indicators of macrophage polarization and neurotoxicity. 

 

Summary: LIF  

Leukemia inhibitory factor (LIF) was previously implicated in promoting 

oligodendrocyte survival and reducing demyelination following SCI. Here, we 

examine the role of LIF in our in vitro model of SCI inflammation previously 

shown to be predictive of monocyte-derived macrophage responses in vivo in the 

injured spinal cord. Application of LIF to pro-inflammatory “M1” macrophages 

resulted in reduced production of the pro-inflammatory cytokine IL-12, and 

increased production of the anti-inflammatory cytokine IL-10. This suggests that 

LIF exerts its protective effects at least in part by driving a shift in macrophage 

activation state towards an anti-inflammatory phenotype. 

 

4- ii. Background:  

 There is only one therapeutic, methylprednisolone, that is available to 

improve neurological recovery after SCI (Hall, 2011). Unfortunately, due to the 

risk of side effects and a modest therapeutic benefit, many physicians no longer 

give methylprednisolone to their SCI patients (Evaniew et al., 2015). This means 

that many individuals who sustain an SCI do not receive any therapeutics to 

improve their recovery, highlighting the urgent need to develop new therapeutics 
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to treat SCI. Macrophages are key mediators of the complex neuroinflammatory 

response observed after SCI contributing to the secondary injury process, and 

thus macrophages are promising targets for therapies to treat SCI. While AZM 

and cPLA2 inhibitors are promising macrophage-targeted therapy candidates, 

there are numerous other macrophage-targets therapies being developed. These 

include strategies to reduce macrophage infiltration into the injury site and 

additional methods to shift macrophage activation towards a pro-reparative state.  

 The macrophage inflammatory response is a key component of the 

pathophysiology of numerous disorders, including SCI. In addition to AZM, and 

cPLA2 inhibition discussed previously, there have been additional approaches to 

modulate macrophage activation states. cPLA2 inhibition, for example, is a simple 

approach to target cPLA2; however, it comes with the major caveat of off target 

effects on related phospholipases. Here, we build upon this work by repeating 

our previous observations in transgenic mice. Complete genetic ablation of 

cPLA2 allows for clear comparisons without the caveats of cPLA2 inhibitors. 

Similarly, AZM is a macrolide antibiotic developed through chemical 

modifications to erythromycin to improve efficacy; it was not developed with 

immunomodulatory activities intentionally. Because of this, we hypothesized that 

additional chemical modifications through medicinal chemistry could allow for 

further enhancement of its immunomodulatory activity. Here we examine the 

therapeutic efficacy of these AZM derivatives in our in vitro model of SCI 

neuroinflammation. Next, we examine the ability of the cytokine leukemia 

inhibitory factor (LIF) to improve pro-inflammatory macrophage cytokine 
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production profiles. Lastly, we discuss some of the other approaches utilized to 

target macrophage inflammatory responses in SCI inflammation.  

With continued development, macrophage-targeted therapies hold great 

promise in the treatment of SCI and related neuroinflammatory conditions for 

which patients currently have very few therapeutic options. 

 

Transgenic Targeting of cPLA2 In Vitro 

 cPLA2 selectively releases arachidonic acid (AA) from cellular membranes 

where it is stored in its inactive state. Once released it is rapidly converted into 

numerous eicosanoids by enzymes such as the LOX and COX families of 

enzymes. These eicosanoids have diverse, albeit largely pro-inflammatory 

functions. Previous work has sought to target cPLA2 in rodent models of SCI with 

conflicting results (Liu et al., 2006; Lopez-Vales et al., 2008). We hypothesized 

that specifically targeting macrophage cPLA2 activity may be more beneficial as it 

would target detrimental cPLA2 activity while leaving other beneficial cPLA2 intact. 

To this aim, we previously investigated the role of cPLA2 in myelin induced 

potentiation of pro-inflammatory macrophage activation using the chemical 

inhibitor of cPLA2 PACOCF3 (Kopper et al., 2021). This approach includes many 

known and unknown caveats including off target effects on other phospholipases 

and the inclusion of solvents like DMSO to suspend the chemical. Here we 

repeat these previous studies using BMDMs derived from cPLA2-/- (KO) 

transgenic mice and their cPLA2+/+  (WT) littermates. This approach allows us to 

confirm our previous observations without the previous caveats of PACOCF3. 
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AZM Derivatives 

This section is adapted, in part, from Zhang et al. 2019. All excluded content can 

be found in the original source material. 

The management of maladaptive inflammation is an emerging therapeutic 

target for many neuropathologies. Different macrophage phenotypes have been 

identified in the injured central nervous system (CNS) in conditions such as 

ischemic brain damage, spinal cord injury, and traumatic brain injury. After spinal 

cord injury, for example, there is a heterogeneous neuroinflammatory response 

mediated by resident microglia and infiltrating macrophages. Classically activated 

macrophages (M1) secrete proinflammatory cytokines and chemokines and 

contribute to continued cell death and a persistent inflammatory 

microenvironment within the injured spinal cord (Gensel and Zhang, 2015; Kigerl 

et al., 2009). In contrast, alternatively activated macrophages (M2) release anti-

inflammatory cytokines and facilitate tissue repair (Kigerl et al., 

2009). Increasingly, clinicians and researchers are testing the therapeutic 

potential of drugs that polarize macrophage activation toward reparative 

phenotypes in a variety of CNS disorders. 

Macrolide antibiotics are a class of natural products consisting of a highly 

substituted macrocyclic 14-, 15-, or 16-membered lactone ring. Azithromycin 

(AZM) is a 15-membered, second generation, synthetic derivative of 

erythromycin with improved pharmacokinetic properties and a broad antimicrobial 

spectrum (Parnham et al., 2014). Azithromycin is well tolerated and commonly 
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prescribed. Moreover, AZM becomes highly concentrated in macrophages and 

other phagocytes (Miossec-Bartoli et al.; Wilms et al., 2006). Across a variety of 

inflammatory conditions, AZM attenuates proinflammatory cytokine production by 

macrophages and other immune cells (Murphy et al., 2008). 

Azithromycin and other macrolide antibiotics are now being tested as 

immunomodulatory agents for CNS disorders. Specifically, we and others 

observed immunomodulatory effects and improved recovery with AZM treatment 

in spinal cord injury, stroke, and retinal ischemia/reperfusion injury (Amantea et 

al., 2016a; 2016b; Gensel et al., 2017; Petrelli et al., 2016; Varano et al., 2017; 

Zhang et al., 2015b). 

The neuroprotective properties of AZM in these models are associated 

with direct effects on macrophages (Amantea et al., 2016b; Gensel and Zhang, 

2015; Gensel et al., 2017). We have shown that in vitro application of AZM to 

proinflammatory M1 bone marrow-derived macrophages (BMDMs) dampens the 

release of proinflammatory cytokines, increases M2-associated anti-inflammatory 

cytokines, and reduces the neurotoxicity of M1 macrophage-conditioned medium 

(Gensel and Zhang, 2015).  

In efforts to improve efficacy and/or reduce the risk of increasing antibiotic 

resistance, researchers are evaluating the immunomodulatory potential of AZM 

derivatives and other macrolide derivatives with the goal of separating the 

antibiotic from immunomodulatory properties. As a result, some macrolide 

derivatives have been shown to retain immunomodulatory properties in models of 

lung inflammation, inflammatory bowel diseases, arthritis, and skin inflammation 
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(Balloy et al., 2014; Bosnar et al., 2012; Hodge et al., 2017; Mencarelli et al., 

2011; Rodriguez-Cerdeira et al., 2012; Sugawara et al., 2012). The ability of 

macrolide derivatives to reduce macrophage-mediated neurotoxicity, however, is 

unknown. With the increased use of AZM as an immunomodulatory agent for 

macrophage-mediated neurotoxicity in CNS pathologies, our goal in the present 

study was to determine whether macrolide derivatives retain neuroprotective 

properties. Using a semisynthetic approach to target modification of the sugar 

moieties of AZM, we generated a small library of derivatives, some of which 

lacked the cladinose found in the parent. We then tested the cytokine profiles 

and neurotoxicity of M1-stimulated BMDMs treated with derivatives and observed 

that unique derivatives reduce M1-macrophage activation and subsequent 

neuron death. Previously we determined that the effect of BMDMs in vitro is 

predictive of macrophage responses in the injured CNS (Gensel et al., 2009; 

2015; 2017); therefore, the results of the current study open new therapeutic 

avenues for the management of maladaptive inflammation in CNS disorders. 

 

LIF 

Leukemia inhibitory factor (LIF) is an IL-6 class cytokine with numerous 

functions depending on cell type. In the nervous system LIF has been shown to 

be neuroprotective in models of stroke (Rowe et al., 2014; Suzuki et al., 2005), 

multiple sclerosis (Butzkueven et al., 2006; Linker et al., 2008), amyotrophic 

lateral sclerosis (Azari et al., 2001), and SCI (Azari et al.; Kerr and Patterson, 

2005). In SCI, LIF was found to increase oligodendrocyte survival during the 
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secondary injury process (Kerr and Patterson, 2005). Interestingly, this was not 

thought to be a direct effect of LIF on oligodendrocytes, but instead through  

LIF’s actions on an ancillary cell population (Kerr and Patterson, 2005). While not 

specified here, macrophages could be a possible mediator in this process. A 

similar work demonstrated LIF’s role in arresting oligodendrocyte death and 

demyelination (Azari et al.). Here we examine the effects of BMDM in our pro-

inflammatory in vitro model of neuroinflammation. As described previously 

(Kopper et al., 2021), BMDMs are predictive of monocyte-derived macrophage 

responses in vivo in the injured spinal cord. This has been observed at 

transcription (Longbrake et al., 2007) and functional levels (Gensel et al., 2009), 

as well as in response to therapeutic interventions (Gensel et al., 2017) as 

described previously (Kopper et al., 2021). These data were collected in 

collaboration in a study examining the role of LIF in modulating the peripheral 

immune response in a rat stroke model of emergent large vessel occlusion 

(Davis et al., 2018). 

 

4- iii. Methods: 

Transgenic Targeting of cPLA2 In Vitro: 

As described previously (Kopper et al., 2021), bone marrow-derived 

macrophages (BMDMs) were extracted from the femur and tibia of female 

C57BL/6 mice as, previously reported (Gensel et al., 2009; 2015), from both 

cPLA2-/- (KO) and cPLA2+/+ (WT) mic developed previously (Bonventre, 1999). 

Mice were generated from breeding pairs kindly provided by Dr. Xiao-Ming Xu at 
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the Indiana University School of Medicine. BMDMs were plated at 0.8–

1 × 106 cells/mL in differentiation media containing Roswell Park Memorial 

Institute medium (RPMI, Thermo Fisher Scientific, #21870-092) supplemented 

with 1% penicillin/streptomycin (P/S, Thermo Fisher Scientific, #5140122), 1% 

HEPES (Sigma-Aldrich, #83264-100ML-F), 1% GlutaMAX 0.001 (Thermo Fisher 

Scientific, #35050061) 0.001% β-mercaptoethanol (Thermo Fisher Scientific, 

#21985023), 10% FBS (Life technologies, #10082147), and 20% supernatant 

from sL929 cells (a generous gift from Phillip Popovich, The Ohio State 

University). Supernatant collected from sL929 cells contains macrophage colony-

stimulating factor, which helps to promote bone marrow cells’ differentiation into 

macrophages (Burgess et al., 1985). The BMDMs were allowed to differentiate 

for 7 days in culture, and KO or WT cells were then replated on day 7 at a 

density of 1 × 106 cells/mL in 12-well plates in RPMI, containing 1% P/S, 1% 

GlutaMAX and 10% FBS. On day 8, cells were stimulated for 24 h to be “M1” 

cells using LPS (50 ng/mL, Invivogen, #tlrl-eblps, standard preparation) plus IFN-

γ (20 ng/ml, eBioscience #14-8311-63) diluted in N2A growth medium (described 

below). At the time of stimulation cells were immediately treated with myelin 

debris (50 µL/mL, preparation described below), 24 h after stimulation the 

supernatants were removed, centrifuged at 13,000 RPM (Fisher Scientific 

accuSpin Micro R centrifuge), and then this macrophage conditioned media 

(MCM) was either applied directly to N2A cells to measure cytotoxicity, or stored 

at − 80 °C prior to testing for Nitric Oxide with the Griess Reagent Kit (Thermo 

Fisher Scientific # G-7921). 
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Moderate purity myelin (> 95% myelin, with small contributions from 

axolemma and other cellular membranes) was prepared as follows (adapted from 

Larocca et al. (Larocca and Norton, 2001)): brains were collected from C57BL/6 

mice and stored at − 80 °C prior to myelin isolation. The brains were rinsed and 

suspended in cold PBS with 1% P/S and placed in a Dounce homogenizer (DWK 

Life Science, #357544) under sterile conditions and blended with the loose and 

tight pestles. The solution was transferred to a 15 mL tube and pelleted at 2000 

RPM (Thermo Scientific Legend XTR centrifuge) prior to discarding the soluble 

supernatant fraction. The pellet was resuspended in the PBS/P/S, and then 5mLs 

of a 30% Percoll solution (Sigma-Aldrich, #P1644-500ML) was gently underlaid 

below the myelin solution for density gradient centrifugation. The layers were 

then centrifuged at 2000 RPM for 15 min at 4 °C under gentle 

acceleration/deceleration, generating three distinct layers (soluble on top, myelin 

in middle, and Percoll/cell pellet on bottom). After removing the soluble fraction, 

the myelin was transferred to a fresh tube and resuspended in 10 mL distilled 

water with 1% P/S and incubated for 10 min (hypoosmotic shock) to separate 

membranes at 4 °C. The myelin was then re-pelleted at 2000 RPM, suspended in 

PBS/1% P/S and separated a second time by density gradient centrifugation as 

described above. The myelin was then suspended and pelleted twice in PBS/1% 

P/S to remove residual Percoll and water-soluble contaminants, and then 

aliquoted before storage at − 80 °C. The final protein concentration of the myelin 

stock solutions produced by this protocol were 10.23 mg/mL with a standard 

deviation of 0.282 mg/mL as determined by a BCA Protein Assay Kit (Thermo 
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Fisher Scientific #23225). With the application of myelin debris to BMDMs at 

50 µL/mL, cells had a mean dosage of 0.51 mg/mL. Lastly, to ensure our results 

were not due to endotoxin contamination in our myelin preparations, we tested 

aliquots from each batch of myelin stimulant (Thermo Fisher Scientific #88282). 

A mouse neuroblastoma cell line (Neuro-2a or N2A, a gift from Chris 

Richards, University of Kentucky) was maintained in N2A growth medium 

containing 45% DMEM, 45% OPTI-MEM reduced-serum medium, 10% fetal 

bovine serum (FBS), and 1% penicillin/streptomycin. N2A were plated at a 

density of 1 × 105 cells/mL in 96-well tissue culture plates and allowed to 

proliferate for 48 h. The neurotoxicity of MCM was evaluated as reported 

previously using a MTT-based cell growth determination kit according to the 

manufacturer’s instructions (Sigma-Aldrich CGD1-1KT) (Zhang et al., 2019). 

Briefly, 24 h before testing, N2A growth media was replaced with serum-free N2A 

media to induce differentiation. The day of testing this media was replaced by 

fresh MCM, and the N2A cells were incubated in MCM for 24 h before thiazolyl 

blue tetrazolium bromide (MTT (5 mg/ml), 20 μl per well) was added to each well 

and the cells further incubated for 2 h. The tetrazolium ring of MTT can be 

cleaved by mitochondrial dehydrogenases of viable cells, yielding purple 

formazan crystals, which were then dissolved in acidified isopropanol solvent. 

The resulting purple solution was spectro-photometrically measured at 570 nm 

Epoch microplate reader (BioTek Instruments, Inc., Winooski, VT) using 690 nm 

as a background absorbance. This data is normalized to the non-toxic CTL 
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values to generate proportional decrease in viability values and presented 

inversely as increased toxicity relative to CTL. 

As described previously (Kopper et al., 2021), Macrophage reactive 

oxygen species (ROS) production was measured using CM-H2DCFDA 

(Invitrogen #C6827). In short, BMDMs were cultured and stimulated as described 

above except in a 96 well plate (1 × 106 cells/mL). Following the 24-h stimulation 

the supernatants were removed and replaced with a 5 µM solution of CM-

H2DCFDA in phenol red-free RPMI with 1% GlutaMAX and 

penicillin/streptomycin and incubated at 37 °C for 25 min. ROS mediates the 

conversion of this compound to fluorescent DCF which was then detected by an 

Epoch microplate reader (BioTek instruments, Inc., Winooski, VT) at the 

compound’s Excitation/Emission spectra of approx. 492–495/517–527 nm. 

Macrophage cPLA2 activity was measured using a Cytosolic 

Phospholipase A2 Assay Kit (Abcam #ab133090). In short, cells were cultured as 

described above except in six well culture dishes (1 × 106 cells/mL). Cells were 

lysed and briefly sonicated on ice in TBS-T (0.4% Triton-X) with a protease 

inhibitor (Sigma-Aldrich #11836170001) before proceeding directly into the 

manufacturer’s protocol. 

 

Statistical analyses: 

As described previously (Kopper et al., 2021), results are expressed as 

mean ± standad error od the mean (SEM) and analyzed using GraphPad Prism 

6.0 (GraphPad Software). Data were compared by one-way analysis of variance 
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(ANOVA) among groups followed by Dunnett's multiple comparison tests. 

Differences were determined to be statistically significant at P value ≤0.05. 

 

AZM Derivatives: 

This section is adapted from Zhang et al. 2019 

Semisynthesis of AZM derivatives: 

The semisynthesis of AZM derivatives and detection of antibiotic activity 

was performed in collaboration with  Xiaodong Liu,  Zheng Cui,  and Steven G. 

Van Lanen in the College of Pharmacy, University of Kentucky, Lexington, 

Kentucky as detailed in Zhang et al. 2019. Table 4.1 summarizes the 

modifications made to each derivative of AZM. 

 

Preparation of bone marrow-derived macrophages (BMDMs) and macrophage-

conditioned medium (MCM): 

BMDMs were isolated from the femurs and tibias of C57BL/6 mice at 10-

16 weeks of age. In a tissue culture hood, the bones were flushed with a syringe 

filled with cold washing media (RPMI 1640 supplemented with 10% FBS and 1% 

penicillin/streptomycin) to extrude bone marrow into a sterile falcon tube. The 

bone marrow was then triturated three times using syringes fit with 18 gauge 

needles and then centrifuged at 1000 rpm for 5 minutes at 4°C. After removing 

supernatant, red blood cells were lysed in lysis buffer (0.15 mol/L NH4Cl, 

10 mmol/L KHCO3, and 0.1 mmol/L Na2EDTA, pH 7.4) for 3 min. The remaining 

cells were washed once in washing media and then centrifuged at 212 g for 
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5 minutes at 4°C. The resulting cell pellet was resuspended in BMDM culture 

media (RPMI 1640 supplemented with 1% penicillin/streptomycin, 1% HEPES, 

0.001% β-mercaptoethanol, 10% FBS, and 20% supernatant from sL929 cells) 

and then plated in T75 flasks at a density of 1 × 106 cells/mL. The sL929 cell 

supernatant (cells, a generous gift from Phillip Popovich at The Ohio State 

University) contains macrophage colony stimulating factor, which is needed to 

promote differentiation of bone marrow cells into macrophages (Burgess et al., 

1985). Cell culture media was changed on days 2, 4, and 6, and then, cells were 

replated at the density of 1 × 106 cells/mL on day 7 for designated stimulation 

and/or azithromycin (AZM) treatment. The following day, BMDMs were 

stimulated to be M1 using LPS (50 ng/mL; Invivogen) plus IFN-gamma 

(20 ng/mL; eBioscience) diluted in N2A growth medium as previously described 

(Zhang et al., 2015b). AZM (Sigma PHR1088) or AZM derivatives were diluted to 

the concentrations of 1, 5, 25, and 125 μmol/L and then added to the BMDMs at 

the time of stimulation. Unstimulated BMDMs maintained in N2A growth medium 

were used as control. Six hours following incubation, the supernatant of the 

stimulated macrophages (macrophage-conditioned media (MCM)) was collected 

and centrifuged to remove the cell debris. The resulting media was either applied 

to Neuro-2a cells for the measurement of neurotoxicity or tested for IL-10 and IL-

12p40 levels using standard ELISA kits (Thermo Scientific, Rockford, IL). 
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Assessment of macrophage viability: 

BMDMs seeded in 96-well plates (1 × 106 cells/mL) were treated with a 

range of concentrations (1-125 μmol/L) of AZM or AZM derivatives for 24 hours. 

Cells were cultured in N2a growth media, which contains 45% DMEM and 45% 

Opti-MEM Reduced-Serum Medium (Life Technologies) supplemented with 10% 

FBS and 1% penicillin/streptomycin (Wendy M Dlakic and Bessen, 2007). 

 

Assessment of Neuron viability: 

   Assessment of neuron viability was performed by Bei Zhang. These 

methods can be found in full in Zhang et al. 2019 and described above  

 

Statistical analyses: 

Results are expressed as mean ± standard deviation (SD) and analyzed 

using GraphPad Prism 6.0 (GraphPad Software). Data were compared by one-

way analysis of variance (ANOVA) among groups followed by Dunnett's or 

Holmes-Sidak multiple comparison tests. Differences were determined to be 

statistically significant at P value ≤0.05. 

 

LIF 

Adapted from Davis et al. 2018 

Cell Culture 

Bone marrow-derived macrophages (BMDMs) were isolated from 

C57BL/6 mice (3 months of age) as described previously and above (Gensel et 
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al., 2009; Zhang et al., 2015b). On the day of BMDM stimulation, a classically 

activated phenotype (M1) was induced using N2A medium containing LPS 

(50 ng/ml) and IFNγ (20 ng/ml). LIF (20 ng/ml) or PBS was co-administered with 

the LPS and IFNγ. Macrophage-conditioned media was collected 24 h after 

stimulation and centrifuged at 13,000 rpm at 4 °C for 10 min prior to 

measurement of IL-12 p40 and IL-10 via ELISA (Kigerl et al., 2009). 

 

4- iv. Results:  

Transgenic Targeting of cPLA2 In Vitro 

Previously we targeted cPLA2 in vitro with the inhibitor PACOCF3 (Kopper et al., 

2021), here, we repeated these studies using bone marrow derived 

macrophages from cPLA2-/- (KO) or cPLA2+/+ (WT) mice (Figure 4.1). Under M1 

conditions KO macrophages produced less reactive oxygen species (ROS), and 

nitric oxide in response to myelin compared to WT cells (Figures 4.1a, and 

4.1b). Similarly, BMDM supernatants from myelin treated KO M1 macrophages 

were less toxic to neurons compared to myelin treated WT M1 macrophages 

(Figures 4.1c). Arginase enzymatic activity was unaffected by myelin treatment 

or genetic ablation of cPLA2 (Figure 4.1c).  

 

AZM Derivatives  

This section is adapted, in part, from Zhang et al. 2019. All excluded content can 

be found in the original source material. 
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Assessment of Macrophage Viability 

We chose to use primary bone marrow-derived macrophages (BMDMs) 

for our studies as BMDM responses in vitro are predictive of CNS macrophage 

response in vivo. When stimulated with LPS+IFN-gamma), BMDMs model 

proinflammatory macrophages found in neuropathologies (Gensel et al., 2009; 

2017; Kigerl et al., 2009). No doses of AZM or its derivatives were toxic to 

BMDMs when applied directly to the cells for 24 hours (Figure 4.2) Interestingly, 

this prolonged stimulation of BMDMs with high doses of AZM and its derivatives 

resulted in increased readouts on the MTT assay indicative of increased BMDM 

proliferation or increased metabolic activity (Figure 4.2). This effect was not as 

robust after 6 hours of stimulation (Supplemental Figure 4.1), and therefore, a 

6-hr stimulation time point was used for subsequent assays. 

 

Macrophage IL-12/IL-10 Levels with Derivatives 

The relative expression of IL-10 and IL-12 is a defining feature of M1 and 

M2 macrophages (Mantovani et al., 2004) with M2 macrophages producing high 

levels of IL 10 and low levels of IL-12. Conversely, M1 macrophages produce 

substantial amounts of IL-12 and minimal IL-10. These cytokine profiles are also 

predictive of the neurotoxic potential of stimulated macrophages with toxic 

potential decreasing with increased IL-10 and reduced IL-12 production (Gensel 

and Zhang, 2015; Zhang et al., 2015a). Similar to previous observations (Zhang 

et al., 2015b), AZM reduced production of the proinflammatory cytokine, IL-12, 

and elevated the secretion of the anti-inflammatory cytokine IL-10 in M1 
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macrophages in a dose-dependent manner 6 hours after stimulation. Compared 

to M1-stimulated macrophages, costimulation of M1 stimulant (LPS +IFN-

gamma) with either 25 or 125 μmol/L AZM significantly decreased IL-12 

(P < 0.01 and <0.001, respectively) and increased IL-10 (P < 0.01 and <0.0001, 

respectively; (Figure 4.3). 

To determine the immunomodulatory properties of our azithromycin 

derivatives, we examined IL-10 and IL-12 production in BMDMs costimulated 

with derivatives and M1 stimulants (LPS + INF-gamma). We detected 

significantly decreased IL-12 production with 125 μmol/L cotreatment 

concentrations for derivatives 4 (P < 0.001) and 7 (P < 0.05) relative to M1 

stimulation alone (Figure 4.3). Derivative 5 had significantly reduced IL-12 

production with 25 μmol/L (P < 0.01) and 125 μmol/L (P < 0.0001) 

concentrations. There was no significant effect on IL-12 with derivative 1. We 

observed reciprocal significant increases in IL-10 with all derivatives at the 

highest dose of 125 μmol/L (P < 0.05, Figure 4.3). In addition, the 25 μmol/L 

stimulation with derivative 5 significantly increased production of IL-10 relative to 

M1 (P < 0.001; Figure 4.3). RT-PCR analyses of select genes associated with 

M1 or M2 macrophage phenotypes (ie, IL-6, IL-1b, TNF-a, and TGF-b) 

demonstrated similar immunomodulatory effects between AZM and derivatives 4 

and 7 (Supplementary Figure 4.2).Collectively, these data demonstrate that 

altering the bacterial binding residues of AZM does not reduce its 

immunomodulatory properties with AZM5 having similar dose-response 

properties as the parent compound. 



 127 

 

Macrophage-Mediated Neurotoxicity with Derivatives 

Assessment of neuron viability was performed by Bei Zhang. These 

results can be found in full in Zhang et al. 2019 and described above.  

 

LIF 

Other strategies to target macrophage inflammatory responses typical to 

aim to modulate macrophage activation states including AZM and cPLA2 ablation 

discussed previously. Another method we’ve utilized to reduce pro-inflammatory 

macrophage activation in vitro is with leukemia inhibitory factor (LIF), a cytokine 

important in cellular differentiation. When given to pro-inflammatory “M1” BMDMs 

(LPS + IFN-γ) LIF significantly decreased the production of pro-inflammatory IL-

12, and significantly increased the production of anti-inflammatory IL-10 (Figure 

4.4, adapted from Davis et al. 2018). 

 

4- v. Discussion:  

Transgenic Targeting of cPLA2 In Vitro 

The gold standard in defining biological mechanisms in biomedical 

research is through the use of transgenic rodent models. In the case of cPLA2, 

genetic ablation of this enzyme was found to improve locomotor recovery and 

reduce tissue damage after SCI (Liu et al., 2014) suggesting a detrimental role 

for cPLA2 in SCI pathogenesis. Conversely, in sciatic nerve injury models, 

genetic ablation of cPLA2 resulted in fewer regenerating axons and reduced 
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macrophage recruitment (Lopez-Vales et al., 2008). Similarly, chemical inhibition 

of cPLA2 with AX059 after SCI was found to impair locomotor recovery 

suggesting a protective role for cPLA2 (Lopez-Vales et al., 2011). Here, we 

demonstrate a clear pathological role of cPLA2 in macrophage inflammatory 

responses. Specifically, we observed that macrophage inflammatory responses 

under pro-inflammatory “M1” conditions were significantly potentiated by the 

addition of myelin. When cPLA2 is ablated, however, this potentiation in 

macrophage inflammation is significantly abated. Given that macrophages after 

SCI are largely pro-inflammatory and contain myelin, these results implicate 

cPLA2 as a major contributor to detrimental macrophage activities after SCI. This 

highlights the need to develop safe therapeutics to target cPLA2 in the human 

condition. 

 

AZM Derivatives  

This section is adapted, in part, from Zhang et al. 2019. All excluded content can 

be found in the original source material. 

In this study, we demonstrate the retention of immunomodulatory activity 

in AZM derivatives with altered sugar moieties using our in vitro model of 

macrophage CNS inflammation. This model accurately predicts the 

macrophage/microglial response in the injured CNS (Gensel et al., 2009; 2015; 

2017b; Zhang et al., 2015b). Specifically, we demonstrate that these derivatives, 

like the AZM parent compound, have no negative toxic effects on macrophage 

viability, retain the ability to polarize M1 macrophages toward the M2 phenotype 
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as determined by IL-10/12 cytokine profiles, and are equally effective in reducing 

the neurotoxic effects of M1 macrophage supernatants on neuronal cultures. In 

these studies, the ability of the derivatives to shift IL-10/12 cytokine profiles 

closely correlated with their ability to mitigate M1 supernatant toxicity to neurons. 

This supports our notion of utilizing IL-10/12 cytokine profiles as an indicator of 

M1/M2 macrophage polarization and neurotoxicity. Recent literature 

demonstrates that AZM increases reparative macrophage activation in rodent 

models of spinal cord injury, stroke, lung infection, skin inflammation, and in 

humans with cystic fibrosis (Amantea et al., 2016a; 2016b; Čulić et al., 2001; 

Feola et al., 2010b; Gensel et al., 2017; Murphy et al., 2010; Petrelli et al., 2016; 

Varano et al., 2017; Zhang et al., 2015b). This anti-inflammatory mechanism, 

potentially unrelated to AZM's antibacterial properties, holds great promise in the 

treatment of these diverse inflammatory conditions.  

Further, this relatively unexplored therapeutic approach could likely be 

exploited more effectively with continued optimization of therapeutics such as 

AZM and related macrolides. In particular, one major obstacle in the clinical 

development of anti-inflammatory macrolide antibiotics, such as AZM, is the 

concern that increased use of these drugs for their secondary anti-inflammatory 

effects may inadvertently promote bacterial resistance to this antibiotic in the 

treatment of a variety of infections. In the spinal cord injury patient population, for 

example, AZM is the antibiotic of choice for treating recurrent respiratory 

infections and pneumonia (Evans et al., 2013), a leading cause of death following 

spinal cord injury; thus, antibiotic resistance is a major concern. Fortunately, 
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recent studies have indicated that macrolides modified to remove their 

antibacterial activity retain beneficial anti-inflammatory effects in models of 

inflammatory skin disorders and chronic lung diseases (Hodge et al., 2017; 

Rodriguez-Cerdeira et al., 2012).  

Collectively, we demonstrate that AZM derivatives with altered sugar 

moieties retain immunomodulatory properties. We did not, however, observe 

uniform immunomodulatory and neuroprotective properties with all derivatives 

tested. AZM7, which had the most extensive chemical modifications 

(diacetylation and the removal of the cladinose moiety), invoked modest 

immunomodulatory effects exclusively at the highest concentration tested. 

Interestingly, however, AZM7 did not retain any antistaphylococcal activity. 

Similarly, AZM4, which also lacks the cladinose that is replaced by a carbonyl, 

had modest yet significant immunomodulatory effects with minimal 

antistaphylococcal activity. Although AZM1 at the concentration of 125 μmol/L 

significantly increases IL-10 level, it has no effect in reducing IL-12 production. 

Interestingly, AZM1 also induced significant but small changes, relative to AZM, 

in BMDM metabolic activity at this high dose. AZM5, which was the only 

derivative tested without the cladinose removed, closely mimicked or slightly 

exceeded AZM's activity at all concentrations tested including the BMDM MTT 

assay. Unfortunately, the acetylation of both sugars in AZM5 did not abolish the 

antistaphylococcal activity as desired. This may suggest, however, that chemical 

modifications to substitute the cladinose with functional variants may be an 

effective approach in developing subsequent generations of derivatives. Future 
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studies that systematically alter each of these components may better clarify 

which of these modifications are beneficial or detrimental in retaining/improving 

AZM's immunomodulatory activity. 

We demonstrated the clear anti-inflammatory activity of these AZM 

derivatives in vitro; however, related studies utilizing derivatives of AZM and 

other macrolides suggest that these drug candidates likely hold great potential for 

treating inflammatory disorders of the CNS in vivo. For example, Sugawara et. al 

(2012) developed a series of anti-inflammatory nonantibiotic macrolide 

derivatives in vitro and then successfully used these derivatives in an in vivo 

model of inflammatory bowel disease (Sugawara et al., 2012). Together with our 

prior work demonstrating the predictive nature of our in vitro model (Gensel et al., 

2009; 2015; 2017a; Zhang et al., 2015b), these results suggest that our 

compounds hold great promise in treating the detrimental neuroinflammatory 

conditions. Given that there are extremely few treatment options for most 

neurological disorders, our current findings clearly demonstrate the importance of 

these drugs and support their continued development into novel therapeutics to 

treat CNS inflammation. 

While the current study and related publications show encouraging 

therapeutic outcomes following stimulations with derivatives of AZM and other 

macrolides, the exact mechanisms of action remain uncertain. Much of the work 

in this regard has converged in identifying the NF-κB signaling cascade as the 

core regulator of the observed shifts in cytokine profiles following macrolide 

treatment (Aghai et al., 2007; Cigana et al., 2007; Feola et al., 2010b; Vrancic et 
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al., 2012). While this is clearly important, the molecular target upstream of the 

NF-κB cascade on which these drugs act remains unclear (Nujić et al., 2012b). In 

vitro studies show that AZM accumulates in macrophage lysosomes, where it 

increases the pH, interacts with membrane lipids, induces phospholipidosis, and 

alters vesicular trafficking which may affect endocytosis and phagocytosis 

(MuniÄ et al., 2011; Nujić et al., 2012a). Other suggested mechanisms indicate 

that AZM may alter cellular autophagy, or alter the TLR4 signaling pathways by 

changing endosome trafficking (Nujić et al., 2012a). Further, it remains unknown 

whether these findings remain valid in vivo or whether derivatives of AZM retain 

the same mechanism of action. While complicated, continued work in these 

areas is essential as it could lead to new therapeutics, such as the compounds 

described here, or provide novel therapeutic targets for future drug development. 

One interesting finding in the current study was the fairly pronounced 

increase in macrophage viability when treated with the highest dose of AZM or 

derivative for 24 hours (widely used time point for measuring drug toxicity in 

vitro). This assay measures the conversion of tetrazolium dye MTT 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to formazan by NAD(P)H-

dependent cellular oxidoreductase enzymes, and this measure of metabolic 

activity is routinely used to quantify changes in cell number or vitality. How AZM 

and its derivatives induce this effect at high concentrations, and how this may 

alter inflammatory activities remains unclear, however, it is unlikely that this is 

directly related to our observed shifts in cytokine profiles and neurotoxicity across 

drug concentrations. If the observed increases in IL-10 following AZM 
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stimulations were simply a result of cellular proliferation, then IL-12 would also be 

expected to rise, instead, however, IL-12 levels fell dramatically. Similarly, 

measurements of cellular proliferation/metabolism at the 6-hour time point, when 

we measure IL-10/12 levels, displayed more modest increases in 

proliferation/metabolism and are thus less likely to influence our cytokine profiles. 

In conclusion, we have identified AZM derivatives that retain key 

immunomodulatory functions in our in vitro model of CNS inflammation. While the 

antiinfective properties of the derivatives were associated with neuroprotection, 

we also observed that some derivatives with greatly reduced antiinfective 

characteristics retained neuroprotective and anti-inflammatory functions. 

Although a limited sample size of derivatives was created and tested, this 

indicates that the antibiotic properties of AZM may not be required for 

immunomodulatory-mediated neuroprotection. With continued development, 

these compounds could become viable clinical neuroprotectants and 

immunomodulatory treatments for neuropathologies. Additionally, given the 

usage of AZM's anti-inflammatory properties across disciplines, these drugs hold 

great potential in treating a wide variety of inflammation-based human disorders. 

 

LIF  

 LIF’s effects on BMDM cytokine production profiles indicate that it holds 

immunomodulatory properties. This and previous evidence indicating therapeutic 

effects in rodent models of SCI suggest that LIF is a promising therapy to 

improve recovery after SCI. Importantly, LIF has already been investigated in US 
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clinical trials to prevent chemotherapy-induced peripheral neuropathy. In the 

phase I study recombinant human LIF was observed to have a biological effect in 

hemopoietic recovery after chemotherapy without any appreciable safety 

concerns (Gunawardana et al., 2003). Unfortunately, in a phase II study LIF was 

not successful in reducing chemotherapy-induced peripheral neuropathy (Davis 

et al., 2005). Nonetheless, these studies provide promising evidence that LIF can 

be safely administers to humans. With continued work LIF thus holds significant 

promise in improving recovery after SCI and other neurological conditions.  

  

Conclusions 

 Many individuals who sustain an SCI do not receive any pharmacological 

agent to improve their functional recovery. This highlights the critical need to 

develop new therapeutics to treat SCI. Macrophages are significant mediators of 

SCI pathophysiology and are thus important therapeutic targets. There are 

numerous approaches to target macrophages after SCI; however, there are 

important considerations as these therapies continue to develop. 

 Macrophages are known to contribute to pathological inflammation in 

numerous conditions including stroke, SCI, lung infections, myocardial infarction, 

and many others (Al-Darraji et al., 2018; Amantea et al., 2016b; Feola et al., 

2010b; Zhang et al., 2015b). As a result, there have been several strategies 

developed to target these cellular populations. The two general approaches are 

those that seek utilize a therapeutic or therapeutic target to alter macrophage 
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activation (such as AZM and cPLA2 ablation), while others target macrophages to 

prevent them from reaching sites of inflammation. 

 One frequent strategy used to target macrophages relies on their innate 

propensity to phagocytose debris and foreign material. A rapidly developing use 

of this approach is with carefully engineered liposomes. These spherical lipid 

structures can be engineered to be preferentially engineered to be phagocytose 

by macrophages and monocytes through manipulations of lipid composition, size, 

charge, and membrane proteins (Kelly et al., 2010). These liposomes can then 

be loaded with clodronate resulting in the selection depletion of macrophages. 

This has been used to prevent macrophages from reaching the site of injury after 

SCI, thereby improving recovery (Popovich et al., 1999). A similar strategy has 

been developed using immune-modifying microparticles, derived from 

microdiamonds, poly(lactic-co-glycolic) acid, or polystyrene. Uptake of these 

particles by macrophages causes these cells to sequester in the spleen instead 

of migrating into sites of inflammation (Getts et al., 2014). These cells are then 

cleared through apoptotic pathways (Getts et al., 2014) 

 Others have utilized the macrophage targeted liposomes strategy 

differently, by instead loading them with a therapeutic, allowing for a relatively 

specific delivery to macrophages. For example, this strategy has recently been 

employed to delivery AZM to macrophages in a rodent model of myocardial 

infarction and was shown to improve recovery (Al-Darraji et al., 2020). Similarly, 

another group developed vessels engineered from M1 and M2 macrophages 

creating nanocarriers capable of modulating macrophage phenotype (Neupane 
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et al., 2021). Intriguingly, another group has investigated using macrophages 

themselves as drug carriers across the blood brain barrier using “cellular 

backpacks” loaded with pharmaceuticals attached to the macrophage cell 

surface (Klyachko et al., 2017).  

To date, there has been one macrophage-targeted therapy to reach 

clinical trials. This therapy was derived from pre-clinical studies in which 

macrophages were isolated from blood and stimulated with nerve tissue or skin 

tissue to stimulate the cells into a pro-reparative phenotype (Bomstein et al., 

2003; Rapalino et al., 1998). These cells were then injected into transected 

spinal cords, resulting in partial recovery of paraplegic rats as determined by 

open field examination, electrophysiological recordings from hind limb muscles, 

or histological analysis. The phase I clinical trial indicated that the procedure was 

safely tolerated by the participants (Knoller et al., 2005); however, phase II trials 

failed to show any therapeutic benefits (Lammertse et al., 2012). While 

disappointing, there are numerous reasons why this macrophage-target therapy 

failed to improve neurological recovery. First, the time to treatment from the time 

of injury was a average of 12.93 days, with most patients clustered towards the 

maximum 14-day post-injury inclusion criteria limit (Lammertse et al., 2012). 

Considering many key events of SCI pathophysiology occur soon after injury, it is 

possible the injection delay was too late to impart significant therapeutic effects. 

While the procedure itself took at least 36 hours to collect cells, stimulate them, 

and surgically inject the cells into the injury site, any future iteration of this study 

should consider earlier injection criteria. Second, macrophages are highly plastic 
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cells that can shift between activation states depending on their environment. 

Given the predominantly pro-inflammatory environment observed after SCI, it is 

possible that the macrophages that were “trained” to be reparative with nerve or 

skin tissue simply reverted to a pro-inflammatory state. There is a strong 

precedent for this in pre-clinical research. When M2 macrophages were injected 

into naïve spinal cords or an SCI lesion at 7dpi, the cells in the lesion quickly lost 

indicators of M2 activation states (Kigerl et al., 2009). In this regard, future 

iterations of this study should consider this strategy for chronic injury where 

inflammation has subsided or investigate methods to reduce macrophage 

plasticity before injection. Lastly, like many therapies, differential responses to 

therapeutics in rodents and humans are common, so this strategy may simply be 

ineffective in humans. Collectively, this is an interesting macrophage-targeted 

therapy; however, additional work is needed before this can be successfully 

implemented.   

 The most consequential decision impacting the success of novel 

therapeutics is likely the route and timing of administration. First, macrophages 

can be targeted through a systemic administration or through macrophage-

specific approaches. This selection will likely have a significant impact on dosing 

and potential side effects. With AZM, for example, we utilized a systemic 

administration and successfully improved functional outcomes (Kopper et al., 

2019). Others, however, have enhanced the therapeutic benefits of AZM by 

loading AZM into liposomes targeting macrophages (Al-Darraji et al., 2020). 

Similarly, others have found that liposomal delivery can increase drug 
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concentrations at the site of inflammation while reducing the ED 50 of the drug, 

presumably from a reduction in off-target effects (Rose, 2005). While promising, 

whether a targeted or systemic approach results in increased efficacy is likely 

drug-specific. cPLA2, for example, is expressed in numerous cell types with likely 

differential functions. While we hypothesize that a macrophage-targeted delivery 

may improve efficacy, others have shown significant improvement from a 

systemic approach (Liu et al., 2006). Whether the targeting of additional cell 

types improves or decreases therapeutic efficacy will likely differ for each 

therapy. Similarly, as discussed previously (Gensel et al., 2017; Kopper and 

Gensel, 2021; Kopper et al., 2019), the selection of dosage, dose timing, and 

route of administration are critical factors in therapeutic efficacy. 

 The macrophage population after SCI is predominantly composed of 

infiltrating myeloid-derived macrophages and resident microglia. Historically 

these cell types were used interchangeably; however, growing evidence has 

suggested they may have differential roles in inflammation, myelin clearance, 

and recovery (Bellver-Landete et al., 2019; Greenhalgh et al., 2018; Wang et al., 

2014). Specifically, microglia may hold more protective roles than previously 

thought, as microglia depletion further impairs locomotor recovery and neuronal 

survival (Bellver-Landete et al., 2019). Conversely, infiltrating monocyte populate 

the core of the lesion and appear to be the primary cell type taking up myelin 

(Wang et al., 2014). Lastly, growing evidence suggests that microglia and 

peripherally derived macrophages may communicate within the lesion and 

differentially regulate each other’s cellular activities (Greenhalgh and David, 
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2014). Continued work is needed to better understand the differential roles of 

microglia and monocyte-derived macrophages. Targeting a specific macrophage 

population is an important consideration when selecting routes and timing of 

administration, as each may have a distinct impact on each population. For 

example, intravenously injected liposomes may disproportionately affect 

circulating monocytes vs. tissue-resident microglia. Similarly, direct spinal 

injections may be required to target both cellular populations, particularly after 

the closure of the blood-brain barrier post-SCI.   

 While there is a critical need for therapeutics to treat acute SCI, there is 

also an existing population of over 250,00 individuals in the United States living 

with an SCI. This is an important consideration when advancing therapeutics 

towards clinical use. Pro-inflammatory macrophages are present in the 

chronically injured spinal cord and are likely a continuous barrier to recovery 

(Horn et al., 2008). Thus, it is especially important to evaluate macrophage-

targeted therapies at chronic timepoints. While locomotor and histological 

recovery are common outcomes in animal research, the SCI population generally 

prioritize improvements to their bowel, bladder, and sexual health (Anderson, 

2004). Because of this, it is essential to include these outcome measures when 

examining macrophage-targeted therapies in chronic injuries. 

 Macrophage-targeted therapies hold great promise in the treatment of 

SCI; however, various degrees of development are needed to advance these 

therapies towards clinical use. As an FDA-approved antibiotic with an excellent 

safety history, AZM could, in theory, be rapidly deployed into the clinic. 
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Realistically, however, we need additional basic research to maximize its modest 

effects (Kopper et al., 2019) and gain preliminary clinical before it could be widely 

deployed. Conversely, cPLA2 displays robust effectiveness as a therapeutic 

target in pre-clinical studies in vitro (Kopper et al., 2021); however, it will require 

fairly extensive pre-clinical work before it can be targeted in patients. Similarly, 

numerous alternative therapies in development to target macrophages, which, 

while promising, also need significant development to advance them toward 

clinical use. Given the current pharmacological gap in our ability to treat 

individuals with SCI, it is imperative that new SCI therapies, including those 

discussed here, are thoroughly investigated.  

Collectively, these studies highlight the critical role macrophages play in 

pathogenic inflammation and the urgent need to develop an immunomodulatory 

macrophage therapy towards FDA approval. 
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Figure 4.1. cPLA2 KO macrophages exhibit reduced reactivity to myelin 

under pro-inflammatory conditions relative to cPLA2 WT macrophages.  

 
BMDMs were isolated from cPLA2-/- (KO) or cPLA2+/+ (WT) mice and stimulated 

as in Fig 2.3. (A) Genetic ablation of cPLA2 reduced myelin mediated ROS 

increases in M1 (IFN-γ and LPS) macrophages. (B) Genetic ablation of 

cPLA2  reduced myelin mediated nitric oxide production. (C) Genetic ablation of 

cPLA2 reduced the neurotoxic potential of M1 macrophages treated with myelin 

as determined by an MTT assay measurement of N2a cell viability. (D) Genetic 

ablation of cPLA2  did not significantly alter arginase activity. Representative of 3 

biological replications of both BMDMs and myelin source. *p < 0.05, **p < 0.01, 

***p < 0.001 mean ± SEM. 
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Figure 4.2. Altering the antibiotic properties of azithromycin does not 

decrease macrophage viability.  

 
Bone marrow-derived macrophages (BMDMs) were isolated from adult mice and 

were treated with AZM, AZM1, AZM4, AZM5, and AZM7 at concentrations of 1, 

5, 25, and 125 μmol/L for 24 h Cell viability was measured by using MTT assay. 

AZM or AZM derivatives exhibited no cytotoxicity at any tested concentration as 

compared to unstimulated, nontreated BMDM control (dotted line). Moreover, 

AZM and AZM derivatives at 25 and/or 125 μmol/L significantly increased 

proliferation of BMDMs as compared to unstimulated controls at *p < 0.05, **p < 

0.01, ***p < 0.001. Data are mean ±SD and representative of three independent 

biological replicate experiments 
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Figure 4.3. Nonantibiotic macrolides polarize proinflammatory 

macrophages to an anti-inflammatory phenotype.  

 
BMDMs were polarized to be M1 macrophages by stimulating with LPS +INF-

gamma. AZM, AZM1, AZM4, AZM5, and AZM7 were coapplied to M1 cells at 

concentrations of 1, 5, 25, and 125 μmol/L for 6 h Protein levels of IL-12 (A) and 

IL-10 (B) in cell culture medium were analyzed by ELISA and expressed as fold 

change over M1 of mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 vs M1. Data 
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are representative of three independent biological replicate experiments. Each 

experiment was performed in triplicates per treatment group. (A) AZM and AZM 5 

at the concentrations of 25 and 125 μmol/L significantly decreased 

proinflammatory cytokine IL-12, while AZM4 and AZM7 significantly reduced IL-

12 level only at the concentration of 125 μmol/L. AZM 1 showed no effect in 

changing IL-12 secretion. (B) The anti-inflammatory cytokine IL-10 level was 

significantly increased in M1 macrophages coincubated with AZM and AZM 5 at 

the concentrations of 25 and 125 μmol/L; While AZM1, AZM4, and AZM7 

significantly increased IL-10 expression only at the highest tested concentration 

of 125 μmol/L. 
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Table 4.1: Structure, molecular weight, and antibiotic properties of 

derivatives. 
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Figure 4.4. LIF treatment decreases IL-12 p40 release and increases IL-10 

release in pro-inflammatory BMDMs.  

 
A pro-inflammatory (M1) phenotype was induced in BMDMs via stimulation with 

IFNγ and LPS. LIF or PBS were co-administered with stimulants. At 24 h after 

stimulation, macrophage-conditioned media from M1 cells treated with LIF had 

significantly lower IL-12 p40 release compared to media from M1 cells treated 

with PBS (**p < 0.01). b IL-10 release in macrophage-conditioned media from M1 

cells treated with LIF compared to M1 cells treated with PBS (*p < 0.05). c The 

average ratio of IL-12 p40/IL-10 in the macrophage-conditioned media from LIF-

treated M1 cells was significantly lower than the IL-12 p40/IL-10 ratio in the PBS-

treated M1 cells (**p < 0.01). n = 3 wells per treatment group 
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Supplemental Figure 4.1: Altering the antibiotic properties of AZM does not 

decrease macrophage viability at the time of protein and RNA isolation.  

Bone marrow-derived macrophages (BMDMs) were isolated from adult mice and 

were treated with AZM, AZM1, AZM4, AZM5, and AZM7 at concentrations of 1, 

5, 25, and 125 μM for 6 hrs (timepoint at which samples are collected for protein, 

RNA, and neurotoxicity assays). Cell viability was measured by using MTT 

assay. AZM or AZM derivatives exhibited no cytotoxicity at any tested 

concentration as compared to unstimulated, non-treated BMDM control (dotted 

line). Moreover, AZM and AZM derivatives 1, and, 4 at 125 μM significantly 

increased proliferation of BMDMs as compared to unstimulated controls at 

*p<0.05, **p < 0.01, ***p < 0.001, however this effect was less robust than the 

24hr drug toxicity timepoint in Figure 4.2. Data is mean ± SD and representative 

of three independent biological replicate experiments.  

Methods: Performed as in Figure 4.2, utilizing a 6hr timepoint.  
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Supplemental Figure 4.2: AZM and AZM derivatives decrease pro-

inflammatory macrophage activation. The pro- inflammatory cytokine, IL-1-

beta, was down regulated by AZM, AZM 4, and AZM 7. Similarly, the pro- 

inflammatory cytokine, IL-6 was, down regulated by AZM and AZM 7. Shifts in 

the anti-inflammatory cytokine TGF-Beta and the pro-inflammatory cytokine TNF-

alpha were not statistically significant. Results indicative of 2 independent 

biological replications. *p<0.05, **p < 0.01, ***p < 0.001  

 

Methods: BMDMs were polarized to be M1 macrophages by stimulating with LPS 

+ IFN-gamma. AZM, AZM1, AZM4, AZM5, and AZM7 were co-applied to M1 

cells at concentrations of 1, 5, 25, and 125 μM for 6 hr. 300μL TRIzol LS reagent 

(Life Technologies) was added to each well (500,000 cells) to isolate RNA. Total 

RNA was isolated based on the manufacturer’s protocol, with an additional phase 

separation using BCP, precipitation with isopropanol (Sigma-Aldrich, St. Louis, 
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MO), and wash of the isolated RNA in 70 % ethanol. Then, 1 μg RNA was 

reverse-transcribed using the high- capacity complementary (cDNA) reverse 

transcription kit (Life Technologies). Real-time PCR amplification was performed 

on the mixture of 100 ng cDNA sample, Taqman Universal PCR Master Mix, and 

Taqman Probes (Life Technologies) using the Applied Biosystems Step One Plus 

Real-Time PCR System. Expression of genes was normalized to 18S mRNA for 

each sample, and reported values were calculated as 2-ΔΔCT.  
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Chapter 5: Conclusions and Future Directions 

 

5- i. Chapter Summary: 

 Macrophages are influential mediators of the inflammatory environment 

thought to propagate secondary injury processes and impair recovery after SCI. 

Macrophage phenotype is a critical determinant on whether the macrophage 

response supports reparative vs. destructive functions after SCI (Kigerl et al., 

2009). The pro-inflammatory macrophage activation state predominates after 

SCI; however, the underlying mechanisms of this prolonged destructive process 

are poorly understood. Here we examine the role of myelin debris in propagating 

macrophage inflammatory responses under the spectrum of macrophage 

activation states. We then seek to target these macrophages and shift their 

activation state as a strategy to improve recovery in mouse models of SCI. 

Specifically, we identify cPLA2 as a key mediator of myelin’s pathological effect 

on macrophage and utilize the immunomodulatory antibiotic AZM as a means to 

shift macrophage activation state and improve SCI recovery. Lastly, we aim to 

develop cPLA2 inhibitors, AZM, AZM derivatives, and related therapeutics as 

macrophage-targeted therapeutics for use in human SCIs for which there is an 

urgent clinical need. 

 

5- ii. Review of Major Findings: 

As detailed in chapter 2, myelin debris is an important environmental 

factor contributing to the pathological macrophage response after SCI. In vitro, 
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myelin robustly potentiates pro-inflammatory macrophages. Pro-inflammatory 

“M1” treated with myelin increased production of reactive oxygen species, nitric 

oxide, IL-12, and had increased neurotoxicity toxicity. Anti-inflammatory “M2” 

macrophages and unstimulated macrophages were largely unaffected by myelin, 

indicating that the effects of myelin are specific to the “M1” phenotype. In vivo 

after SCI, macrophages contain extensive myelin debris and are predominantly 

in a pro-inflammatory activation state, implicating myelin as a contributing factor 

to the prolonged destructive macrophage response after SCI. 

We then found that inhibition of the enzyme cPLA2 significantly reduced 

myelin’s ability to potentiate pro-inflammatory macrophage responses. This 

reduction implicates cPLA2 as a key mechanism in the macrophage myelin 

response and thus as an important therapeutic target. In vivo after SCI, myelin-

loaded macrophages express active cPLA2 providing the key spatiotemporal 

evidence for cPLA2’s role in pathological SCI inflammation. 

We previously targeted macrophage-mediated inflammatory responses 

with the immunomodulatory antibiotic AZM (Gensel et al., 2017; Zhang et al., 

2015b). Here in chapter 3, we expand on these prior works by administering AZM 

beginning 30-minutes, 3-hours, or 24-hours following SCI, and then daily for 

seven days. The 30-minute and 3-hour timepoints improved locomotor recovery 

(BMS scale) and increased stepping frequency. The 30-minute timepoint also 

exhibited histological improvements with a reduced lesion length. The 24-hour 

timepoint was therapeutically ineffective in this model. Lastly, in chapter 4 we 

continue to develop additional strategies to target macrophages after SCI, 
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including transgenic manipulation of cPLA2, AZM derivative pharmaceuticals with 

altered immunomodulatory profiles, and the immunomodulatory cytokine 

leukemia inhibitory factor (LIF). 

There are few treatment options to improve SCI recovery in humans. Here 

we review the steps to advance macrophage-targeted therapies towards use in 

humans. While cPLA2 is a promising therapeutic target, there are no established 

therapies to target it in humans. Because of this, there are substantial stages of 

basic research required to prove efficacy and safety in animal models of SCI. 

Conversely, AZM is an FDA-approved antibiotic with widespread clinical use; 

however, its effects are modest. Because of this, we need to optimize routes of 

delivery and develop non-invasive methods to collect data on patients prescribed 

AZM near the time of their injury. Lastly, given the urgent clinical need for SCI 

therapeutics, all potential therapeutics need to be investigated. These include 

macrophage-targeted therapies, including AZM derivatives, LIF, and liposome-

based therapies. 

Collectively we identify an underlying mechanism for maladaptive 

macrophage activation and investigate macrophage-targeted therapies to 

improve recovery after SCI. 
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5- iii. Continued Development of Macrophage cPLA2 as a Therapeutic 

Target for the Treatment of Spinal Cord Injury and Other Neurological 

Conditions 

 Macrophage cPLA2 activity has been identified as a novel therapeutic 

target to improve recovery after SCI; however, additional preclinical research is 

required to develop these concepts. First, we need definitive In vivo data showing 

therapeutic benefits from targeting macrophage cPLA2 activity after SCI. Next, 

we need to identify a chemical cPLA2 inhibitor most likely to be safely tolerated in 

humans from the numerous compounds used in the literature. Lastly, we need to 

continue to develop methods to deliver therapeutics specifically to macrophages. 

Arachidonic acid, released by cPLA2 activity, can be processed into a vast 

collection of lipid mediators of inflammation with diverse functions. Further, this 

process is differentially regulated in numerous cell types. Given this, it is possible 

that cPLA2 can possess both protective and detrimental roles depending on cell 

type and environmental conditions. The next step in developing macrophage 

cPLA2 activity as a therapeutic target is to specifically target only macrophage 

cPLA2 activity. Unfortunately, no macrophage-specific transgenic mouse line has 

been developed. Instead, to determine the role of cPLA2 specifically in infiltrating 

macrophages following SCI, we will use a bone marrow chimera KO approach as 

detailed in Figure 5.1. Specifically, wild-type (WT) C57BL/6 will be irradiated to 

deplete bone marrow and peripheral macrophages and then injected with bone 

marrow cells isolated from WT or cPLA2-/- mice. These mice will then be housed 

for approximately two months to allow for complete bone marrow reconstitution 
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(Fenn et al., 2014). This approach will create a controlled scenario in which 

cPLA2 can be studied exclusively in myeloid-derived cells, notably infiltrating 

macrophages following SCI, leaving cPLA2’s other diverse physiological 

functions intact. Functional recovery will be regularly monitored throughout using 

the Basso mouse scale (BMS); a gridwalk, and an activity box monitoring 

generativity and rearing  (Basso et al., 2006; Zhang et al., 2015b). Lastly, we will 

assess measures of neuropathic pain (Von Frey, mechanical allodynia) prior to 

injury and at 27 dpi. Including pain outcomes is important as many eicosanoids 

downstream of cPLA2 are known mediators of pain (Dennis and Norris, 2015; 

Deuis et al., 2017). The animals should be sacrificed at 3, 7, and 28 days to 

capture acute, peak, and chronic cPLA2 activity (Liu et al., 2006; 2014). The 

effect of cPLA2 depletion from infiltrating macrophage on white matter tissue 

sparing, total and macrophage-specific ROS production, and acute and chronic 

macrophage polarization states will be determined using histology as in (Zhang 

et al., 2015a; 2016). Collectively, these studies will provide key evidence on the 

impact of cPLA2 on SCI pathogenesis. This data is essential to justify the 

continued effort to develop macrophage cPLA2 as a therapeutic target for treating 

spinal cord injury and other neurological conditions. 

 cPLA2 (and related phospholipases) has previously been targeted in 

rodent and in vitro models of SCI using a variety of chemical inhibitors, including 

PACOCF3, AACOCF3, AX059, AX115, and FKGK2 (Kopper et al., 2021; Liu et 

al., 2014; Lopez-Vales et al., 2011). Further, there are additional cPLA2 inhibitor 

candidates, such as AVX001, which treats psoriasis (Ashcroft et al., 2020). In this 
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case, AVX001 even demonstrated efficacy against plaque psoriasis in a phase 

I/IIa clinical trial when used topically (Omland et al., 2017); however, to date, no 

known cPLA2 inhibitor is available for clinical use in humans. Fingolimod 

(FTY720), an FDA-approved immunomodulatory sphingosine-1-phosphate 

agonist, which sequesters lymphocytes to treat multiple sclerosis (Chun and 

Hartung, 2010), has also been suggested to inhibit cPLA2 (Payne et al., 2007); 

however, whether it could be utilized to inhibit macrophage cPLA2 activity 

remains unknown. Interestingly, it has been separately investigated as an SCI 

therapeutic in mice with observed improvements in locomotor function 

(Norimatsu et al., 2012). Lastly, there are numerous other proposed cPLA2 

inhibitors that are commercially available that have not been widely tested. In 

order to reach the ultimate goal of targeting cPLA2 in human SCI, a drug will need 

to be selected/developed that can be safely administered and pass all FDA 

requirements. Current drug candidates to inhibit the PLA2 family of enzymes are 

summarized in Table 5.1. Continued work is necessary to screen these 

pharmaceutical candidates for cPLA2 inhibition efficacy, relative PLA2 specificity, 

and cellular toxicity. Additional collaboration with medicinal chemists could help 

screen out candidates unfit for further investigation into human use. 

 Before any macrophage cPLA2 inhibitor could be developed for human 

use, we must first optimize existing methods to target drug delivery specifically to 

macrophages. This would likely be achieved by methods designed to target 

phagocytes through the use of liposomes or related engineered vesicles (Al-

Darraji et al., 2020; Kelly et al., 2010; Neupane et al., 2021). The ability to 
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package drugs into lipid vessels is highly dependent on the drug’s chemical 

structure, so this would be an additional consideration when selecting cPLA2 

inhibitor candidates (Sercombe et al., 2015). Once these technicalities are 

addressed, these inhibitor-vesicles would need to be tested for efficacy in rodent 

models of SCI at multiple doses or dosing paradigms. If successful, these 

experiments would then need to be replicated in a larger species (rat and/or pig). 

Lastly, in preparation for any potential use in human patients, investigations to 

screen for possible side effects and general toxicity (LD50s) would need to be 

performed (Mosedale, 2018).  

 Macrophage cPLA2 activity is a potent regulator of inflammatory reactions 

and thus is a promising therapeutic target. While the observed data is 

encouraging, there are still significant challenges and continued work needed to 

turn a cPLA2 inhibitor into a successful macrophage-targeted therapy for the 

treatment of SCI (Figure 5.2).  

 

5- iv. Continued Development of Azithromycin as a Neuroprotective 

Therapeutic for the Treatment of Spinal Cord Injury and other Neurological 

Conditions  

This section was adapted from Kopper and Gensel 2021 

Spinal cord injury (SCI) induces a robust inflammatory response largely 

mediated by resident microglia and infiltrating macrophages across the blood-

brain barrier. While these cell populations are capable of promoting repair and 

regenerative responses, in the days and weeks after SCI they predominately 
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adopt pro-inflammatory profiles known to inhibit recovery and potentiate 

secondary injury pathways. Continued work is needed to develop clinically viable 

immunomodulatory therapeutics and promote pro-reparative macrophage 

responses. Recently we published on the therapeutic benefits of the macrolide 

antibiotic azithromycin (AZM), which improves locomotor and histological 

recovery after SCI in 3-month-old female mice (Kopper et al., 2019). Specifically, 

we initiated AZM beginning 30 minutes, 3, or 24 hours after injury and then daily 

for 7 days. AZM administration initiated at 30 minutes and 3 hours post-injury 

improved locomotor function as detected by an open field locomotor scale and 

significantly improved stepping frequency. The 24- hour time point, however, was 

ineffective suggesting the importance of early administration. Histologically we 

observed modest improvements with the 30-minute treatment time point with 

significantly reduced lesion length and evidence of slight increases in tissue 

sparing at the lesion epicenter. Previously, we observed that the same AZM 

dosing strategy after SCI reduces pro-inflammatory microglia and macrophage 

activation as determined by a diverse panel of inflammatory markers (Gensel et 

al., 2017). These neuroprotective findings are consistent with recent studies 

finding AZM to be therapeutically effective in multiple stroke models (Amantea et 

al., 2016b, 2019) a rat model of retinal ischemia/reperfusion injury (Zheng et al., 

2007), and in a rat neonatal hypoxic-ischemic brain injury model (Barks et al., 

2019). AZM is the most commonly prescribed antibiotic due in part to its safety 

profile and large therapeutic index (Durkin et al., 2018). Collectively, these 

studies highlight the potential for AZM to be developed into a safe, 
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neuroprotective treatment for SCI and other neurological conditions. Here, we 

highlight additional areas of study that will facilitate the translation of AZM as a 

neuroprotective agent.  

Extending the therapeutic window of AZM treatment would maximize its 

therapeutic development. Based upon studies in animal models of stroke and 

SCI, AZM remains effective if the initial dose is delayed up to 3 (oral) or 4.5 

(intraperitoneal) hours after SCI and stroke, respectively, with earlier 

administration time points being most effective (Amantea et al., 2016a; Kopper et 

al., 2019). This may present a challenge for implementation in SCI. Indeed, the 

average time of acute methylprednisolone administration in a previous SCI 

clinical trial was between 8–9 hours after injury (Bracken et al., 1990). An 

extended therapeutic window may be achieved by investigating alternative routes 

of administration (e.g., intravenous or intrathecal-we used oral administration in 

our studies); improving dosing paradigms (initiation time point, concentrations, 

frequency, and duration) or developing more targeted delivery approaches (i.e., 

liposomal formations for targeted macrophage delivery). Similarly, continued 

work in medicinal chemistry holds the potential to improve AZM’s therapeutic 

benefits and/or pharmacokinetics. In our previous work, we were able to 

introduce a series of changes to the molecular structure of AZM in which its 

antibiotic activity was reduced but the newly generated derivatives retained their 

immunomodulatory and neuroprotective effects (Zhang et al., 2019). Continued 

work in this area could identify a closely related drug with improved therapeutic 

efficacy. Collectively, given AZM’s large therapeutic index and safety profile is it 
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likely that optimization of AZM administration in animal models can be achieved 

to fully develop AZM as an effective therapeutic in SCI and other neurological 

conditions.  

Insight into AZM’s therapeutic mechanisms of action will further facilitate 

translation. For example, in our recent work we found that AZM did not prevent 

the overall development of neuropathic pain over the course of 28 days (Kopper 

et al., 2019), however, previously we found that AZM has analgesic properties 

when administered 30 minutes prior to pain testing at chronic time points when 

neuropathic pain (heat hypersensitivity) is already established (Gensel et al., 

2019). Microglial activation in the lumbar spinal cord is implicated in chronic pain 

after SCI yet acute monocyte- derived macrophage infiltration after injury is 

postulated to contribute to neurodegeneration. The current body of in vivo 

literature has utilized systemic administrations of AZM targeting both microglia, 

infiltrating macrophages, and likely other cell types yet to be examined. Currently, 

the relative contribution of each of these cell populations to the therapeutic 

effects of AZM is unknown, however, it is possible that AZM’s effects are 

localized to one population. Further investigations into the cell-specific effects of 

AZM may improve therapeutic strategies and the relatively recent introduction of 

microglia- specific antibodies provides new tools to probe these questions.  

As we continue to optimize immunomodulatory therapies for SCI, it is 

important that we prepare for the logistical challenges of clinical implementation. 

AZM has a unique benefit among the many promising drug candidates for SCI in 

that AZM is already Food and Drug Administration approved and heavily utilized 
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by the general population (Durkin et al., 2018). While these properties ease the 

barrier for human treatment, discontinuities in outcome measures of efficacy in 

animals models and humans may confound our ability to determine the 

therapeutic properties of AZM treatment in a clinical setting. In a clinical 

application there are uncertainties as to what would be the best marker of 

efficacy in humans. Analyses targeting blood or cerebrospinal fluid would 

presumably be the first choices given their clinical availability and non-invasive 

nature, however, the best analyte or cellular outcome to detect efficacy is 

unknown. Similarly, imaging techniques such as MRI are frequently utilized after 

SCI, and thus could be a useful tool in quantifying any therapeutic effects. As 

such, ongoing animal studies involving AZM should begin to test and incorporate 

blood, cerebrospinal fluid, and/or live animal imaging in order to determine the 

best approaches to detect AZM’s therapeutic efficacy in humans. Fortunately, 

new SCIs are relatively rare in the United States; however, this may produce a 

logistical problem in the optimization of biomarkers of efficacy. In this scenario, 

the SCI research community could benefit from collaborating with the larger 

stroke field when determining the most useful therapeutic indicators. Once 

collected, any data indicating therapeutic and anti-inflammatory activities in the 

patient population would then serve as the final push likely needed to initiate full- 

scale clinical trials in humans.  

Initial clinical studies utilizing AZM should certainly investigate potential 

improvements in the American Spinal Injury Association Impairment Scale 

impairment scale, however, this outcome would likely prove to be a difficult 
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threshold to detect efficacy. Given the modest effects of AZM treatment, patient 

and injury variability during this early stage of investigation would likely make a 

statistically significant shift in American Spinal Injury Association Impairment 

Scale grades unlikely. Even in a larger-scale clinical trial, this may still prove to 

be too demanding of a therapeutic threshold to detect efficacy. In contrast, rodent 

models of SCI research regularly utilize locomotor recovery as a primary 

outcome using highly consistent injuries and optimized testing paradigms 

capable of detecting treatments with smaller effect sizes. The discontinuities 

between animal and clinical research were recently highlighted at “SCI 2020: 

Launching a Decade for Disruption in Spinal Cord Injury Research”, a meeting 

hosted by the National Institute of Neurological Disorders and Stroke. Clinicians, 

individuals with SCI, and researchers at the meeting emphasized the importance 

of incorporating clinically relevant outcomes such as bladder, bowel, and sexual 

function, as well as, neuropathic pain and autonomic dysreflexia both into basic 

research and when determining therapeutic efficacy in the clinic. In our recent 

works, we investigated the ability of AZM to either prevent or suppress 

neuropathic pain (Gensel et al., 2019; Kopper et al., 2019), however, AZM’s 

impacts on these other important clinical outcomes are currently unknown. 

Therefore, continued research into AZM’s impact on other key outcomes in 

animal models could highlight specific measures to consider when designing 

clinical studies.  

As a Food and Drug Administration (FDA) approved drug with an excellent 

safety history, AZM holds great promise as a therapeutic to treat SCI and other 
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neuroinflammatory conditions. Although the current research in animal models of 

neurological conditions is promising, the clinical variability in the human 

population and AZM’s relatively modest effect size will likely become a challenge 

in detecting efficacy. To address this, as summarized in Figure 5.3, we need to 

better understand AZM’s underlying mechanisms, improve its efficacy by 

optimizing dosing paradigms, and begin developing approaches to detect 

therapeutic effects non-invasively in humans. Once these challenges are 

overcome AZM will have greatly improved chances of moving towards successful 

clinical implementation as a neuroprotective treatment.  

 

 

5- v. Limitations and Alternative Approaches: 

 Macrophage cPLA2 is a promising therapeutic in vitro; however, it has 

never been specifically manipulated in vivo. The genetic cPLA2 chimeric 

approach described here, while promising, has several limitations. First, all 

hematopoietic cells will be affected. While this is significantly more specific than a 

systemic drug injection, it could certainly induce unknown effects in other cell 

types such as leukocytes. Similarly, microglia, a significant macrophage 

population in the SCI lesion environment, would be unaffected. While infiltrating 

macrophages are the primary cell type mediating long-term myelin clearance, the 

importance of macrophage vs. microglial cPLA2 activity is unknown. Alternative 

approaches to improve specificity could include direct injections of a cPLA2 
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inhibitor into the CNS or incorporated them into macrophage-targeted liposomes. 

While interesting, each of these approached have unique limitations. 

 cPLA2 is expressed in many cell types, and eicosanoids downstream of 

AA release are commonly exchanged between cells (Dennis and Norris, 2015). 

Because of this, despite complete genetic ablation of cPLA2, macrophages could 

still produce eicosanoids with AA or downstream products released from other 

cell types. While this would presumably be a significant reduction, the extent of 

this process is unknown. Use of exogenously released AA in macrophages could 

be reduced by using combinatorial approaches with multiple inhibitors of both 

cPLA2 and the other major LOX/COX enzymes downstream of cPLA2. This 

limitation is less of a concern in less specific approaches to target cPLA2. 

 The genetic cPLA2 chimeric approach described here is not fully specific to 

macrophages, but it is the closest approach currently available. While technically 

challenging, macrophage-specific conditional KO mice have been developed in 

the past for other gene targets using the Cre-LoxP recombination system (Haydar 

et al., 2021; Shi et al., 2018). With continued work, a conditional KO could be 

developed to target cPLA2 in macrophages; however, a cPLA2-LoxP mouse line 

would first need to be created. While more macrophage-specific than myeloid 

genetic chimeras, additional myeloid cells, notably neutrophils, are also affected 

under the LysM gene. Similarly, conditional KOs often allow for residual gene 

expression compared to a global KO. Each approach has its own set of strengths 

and caveats to consider in future studies targeting cPLA2. 
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 A significant limitation in macrophage-targeted therapies is that they are 

specific. The immune response is clearly more complicated than solely 

macrophage-induced inflammation. Because of this, it is possible that strategies 

that solely target macrophages may not be capable of producing robust 

improvements in the complex post-SCI inflammatory environment. Because of 

this, it is important to design outcomes that are sensitive to modest 

improvements. Given the severe gap in therapeutic options for patients, any drug 

with any proven benefits would be a significant improvement. With time, 

combinatorial therapies could be developed to improve therapeutic efficacy 

further. 

 While cPLA2 is often considered the most important PLA2 isoform, as it is 

critical in the initiation and modulation of inflammatory responses and specifically 

targets phospholipids containing AA acyl groups, other PLA2 enzymes, notably 

iPLA2, can also release AA non-specifically. These isoforms have even been 

shown play pathological roles following SCI (Lopez-Vales et al., 2011). 

Therefore, it is possible that our cPLA2 deficient macrophages isolated from the 

SCI lesion may still release free AA capable of being synthesized into various 

eicosanoids. Although unlikely, if AA levels in KO’s were substantial relative to 

the WT chimeric control, we could perform preliminary studies utilizing other 

commercially available PLA2 deficient mice such as iPLA2-/- mice to define the 

novel role of additional PLA2s in myelin macrophages in-vitro. This would then be 

followed by a repetition of our chimeric mice approach targeting an alternative 

PLA2 isoform. 
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 We performed these studies predominantly on young female mice. Given 

that the human SCI population is predominantly male, with an increasing average 

age of injury occurrence (National Spinal Cord InjuryStatistical Center, 2014), the 

use of young female mice is a major limitation. Sex and age are important 

biological variables where therapeutics frequently have differential effects. 

Macrophage and microglial inflammatory gene profiles examining, activation, 

redox, and debris metabolism/clearance, differ in response to sex and age 

(Stewart et al., 2021). It is possible that cPLA2, AZM, and the other therapeutics 

discussed here have differential roles across these variables not captured in the 

current data. In Stewart et al. 2021, cPLA2 did not have notable differences 

across age and sex; however, there was higher cPLA2 in microglia relative to 

monocyte-derived macrophages. Examining sex and age as biological variable is 

an important consideration as we continue to develop macrophage-targeted 

therapies. Similarly, going forward studies need to incorporate outcome 

measures important to the SCI community, including sexual, bowel, and bladder 

health (Anderson, 2004). This is important as therapies without notable benefits 

to locomotor recovery could induce sensory recovery which could be missed 

when only observing the traditional set of outcome measures. 

 

5. vi. Interactions of Azithromycin and cPLA2  

Initial evidence suggests that intracellular membranes, the site of cPLA2 

activity, may be a target of macrolide antibiotics, including AZM (Banjanac et al., 

2012; Tyteca et al., 2003). Interestingly, AZM can reduce AA release from the 
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J774A.1 macrophage cell line, with similar reductions in eicosanoid profiles as a 

cPLA2 inhibitor (Banjanac et al., 2012). Similarly, in human leukocytes, AZM was 

found to reduce expression of cPLA2 as well as cyclooxygenase (COX)-1 and 

COX-2 (enzymes downstream of cPLA2 in AA processing) (Miyazaki et al., 2003). 

This resulted in reduced LPS-induced prostaglandin E2 synthesis (Miyazaki et 

al., 2003). These data suggest that AZM may reduce the release of AA by cPLA2 

either through direct inhibition or indirectly through downregulation of cPLA2. 

Given that substrate availability is a major regulator of LOX/COX activity, 

reducing AA release would reduce the total level of eicosanoids produced. 

Recent work has shown that AZM has significant antihyperalgesic properties in 

treating neuropathic pain after SCI in mice (Gensel et al., 2019). Because 

eicosanoids have an established role in pain mechanisms (Dennis and Norris, 

2015), it is possible that AZM exerts these effects through its iterations with the 

cPLA2, COX-1, and COX-2 (Miyazaki et al., 2003)  

While the majority of these lipid metabolites of AA have pro-inflammatory 

functions largely detrimental after SCI, under certain conditions, AA can be 

synthesized into the potent anti-inflammatory eicosanoid Lipoxin A4. The 

synthesis of lipoxins requires the concerted transcellular activity of 12/15 

Lipoxygenase (LOX) in macrophages and 5-LOX in other cell types. In 

macrophages, these enzymes are expressed in response to the M2 macrophage 

cytokine IL-13 stimulation (Mabalirajan et al., 2013; Nassar et al., 1994). Given 

our published data showing Azithromycin’s (AZM) ability to polarize toward the 

M2 phenotype after SCI (Gensel et al., 2017; Zhang et al., 2015b), I hypothesize 
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that AZM treatment will allow for increased Lipoxin A4 production from myelin 

derived free AA. This would almost certainly be beneficial after SCI as Lipoxin 

A4, and its direct precursors have been found to be neuroprotective and 

beneficial when added exogenously after SCI (Liu et al., 2015; Martini et al., 

2014; 2016). Further Lipoxin A4 has been implicating in activating the PPAR-γ 

pathway which is strongly associated with polarization to the M2 phenotype 

(Bouhlel et al., 2007; Sobrado et al., 2009).  

Together after SCI, AZM would decrease the total amount of myelin 

derived bioactive AA released from the membrane and promote the conversion 

of any free AA present into the anti-inflammatory eicosanoid Lipoxin A4 thereby 

promoting the resolution of inflammation and reducing secondary damage after 

SCI. Importantly, myelin’s prolonged persistence in these lipid-laden 

macrophages drives the hypothesis that the chronic pro-inflammatory 

macrophage activation observed months after SCI is a product of persistent AA 

release. AZM’s mechanisms of action could interrupt this pathway, specifically 

within macrophages, likely even at chronic injury timepoints for which there is a 

significant lack of treatment options. While intriguing, additional work is needed to 

validate these observations and determine if AZM can be used to interfere with 

cPLA2 mediated pathophysiology after SCI. 

 

5- vii. Significance 

 Myelin is an integral part of the CNS, carefully maintained by 

oligodendrocytes around many types of neurons. In SCI, however, the 
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homeostatic balance in the spinal cord is severely disrupted through physical 

damage and the massive infiltration of immune cells, blood, and inflammation. 

Myelin sheaths soon constitute the bulk of cellular debris as the neurons they 

encapsulate begin to die at the site of injury. Macrophages attempt to clear the 

extensive debris during which they become loaded with myelin-derived lipids 

nearly indefinitely, adopt pro-inflammatory activities, and begin to cause further 

damage (Gensel et al., 2009; Horn et al., 2008; Kigerl et al., 2009; Wang et al., 

2014). This process, while critically important, is poorly understood. Here we 

examine in detail how macrophage activation affects myelin uptake, how myelin 

uptake affects macrophage polarization, and the mechanisms through which 

myelin impacts macrophage physiology. This evidence provides meaningful 

improvements in our understanding of how macrophages develop from a well-

intended immune cell into a destructive, pro-inflammatory, and long-lasting 

presence in the core of the SCI lesion.  

An SCI is a life-changing, often permanent, event impacting an individual’s 

physical and mental health. Unfortunately, despite great advances in our 

understanding of SCI pathophysiology, most individuals who sustain an SCI have 

few or no therapeutic options to help their recovery. Here we identify cPLA2 as an 

important therapeutic target mediating detrimental macrophage activation. Next, 

we provide continued evidence that the immunomodulatory antibiotic AZM has 

neuroprotective effects in a mouse model of SCI. Lastly, we examine the steps 

needed to continue to develop macrophage-targeted therapies towards clinical 

use. Given the clinical lack of a therapeutic standard of care for SCI, continued 
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work towards new therapeutics and combinatorial therapies is critical (Emerich et 

al., 2012; Hall and Springer, 2004; Hurlbert, 2000). With continued development, 

a macrophage-targeted therapy could eventually promote recovery in patients 

who currently have very few treatment options available (Emerich et al., 2012; 

Hurlbert, 2000). 
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Table 5.1. Chemical inhibitors of the PLA2 family 

PLA2 Inhibitor Structure Name PLA2 
Specificity 

 

PACOCF3 
 
 

cPLA2 
iPLA2 

 

AACOCF3 
 
 

cPLA2 
iPLA2 

 

AX059 
 

cPLA2 

 

FKGK11 iPLA2 
cPLA2 (partial) 
sPLA2 (partial) 

 

AK115 cPLA2 
iPLA2 
sPLA2 

 
FKGK22 

 
 

cPLA2 
iPLA2 
sPLA2 

 

Bromoenol 
lactone 

 

iPLA2 

 
 

 

AVX001 cPLA2 
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Figure 5.1. Targeting macrophage cPLA2 with transgenic mouse chimeras.  

 
Wild-type cPLA2+/+ (WT) C57BL/6 will be irradiated to deplete bone marrow and 

peripheral macrophages and then injected with bone marrow cells isolated from 

WT or cPLA2-/-  (KO) mice. These mice will then be housed for approximately two 

months to allow for complete bone marrow reconstitution (Fenn et al., 2014). This 

approach will create a controlled scenario in which cPLA2 can be studied 

exclusively in myeloid-derived cells, notably infiltrating macrophages following 

SCI. Following SCI, the animals will be evaluated for locomotor, sensory, and 

histological recovery.  
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Figure 5.2. Important steps in developing macrophage cPLA2 as a 

therapeutic target for spinal cord Injury.  

 
To advance cPLA2 as a therapeutic target for the treatment of SCI we need to 

complete several stages of pre-clinical research. First, we must establish 

Macrophage cPLA2’s pathological role in SCI through mechanistic studies using 

cPLA2 transgenic studies in mice. Next, a suitable cPLA2 inhibitor candidate 

needs to be selected and screened for suitability for human use. Lastly, this final 

drug candidate would likely require replicate studies in higher order species 

before it could progress towards clinical trials and human use. 
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Figure 5.3. Important steps in repurposing of AZM as a neurotherapeutic 
agent. 
 

Additional work in animal models is needed to both improve AZM’s efficacy and 

develop outcome measures feasible for use in non-invasive human studies. 

Application of these outcome measures in the patient population already taking 

AZM near time of injury could provide key evidence for the transition of AZM into 

clinical trials and use as a therapeutic for SCI. AZM: Azithromycin; SCI: spinal 

cord injury.  
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Appendix: List of abbreviations 
 
AA: Arachidonic acid 

ABCA1: ATP-binding cassette transporter A1 

ANOVA: Analysis of variance 

Arg-1: Arginase-1 

AZM: Azithromycin 

BODIPY: Dipyrrometheneboron difluoride (Neutral lipid stain) 

BMDM: Bone marrow-derived macrophage 

BMS: Basso Mouse Scale 

CNS: Central nervous system 

COX: Cyclooxygenase 

cPLA2: cytosolic phospholipase A2 

CR3/CD11b/MAC-1: complement receptor 3 

CTL: Control 

DAMP: Damage associate molecular pattern 

DAPI: 4′,6-diamidino-2-phenylindole (DNA stain) 

DCF: 2', 7' –dichlorofluorescein (Fluorescent ROS indicator) 

DMEM: Dulbecco's Modified Eagle Medium 

Dpi: Days post injury 

EC/NF Eriochrome cyanine and neurofilament 

ELISA: Enzyme-linked immunosorbent assay 

FACS: Fluorescence-activated cell sorting 

FBS: Fetal bovine serum 
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FDA: Food and drug administration 

GFAP: Glial fibrillary acidic protein 

HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (buffer) 

IFN: Interferon 

IL: Interleukin 

IH: Infinite Horizons impactor device 

iPLA2: Calcium-independent phospholipase A2 

Kdyn: Kilodyne force 

KO: Knock out 

LD50: median lethal dose 

LIF: Leukemia inhibitory factor 

LOX: Lipoxygenase 

LPS: Lipopolysaccharide 

LXR/RXR: Liver X and retinoid X receptor  

MAC-2: Galectin-3 (activated macrophage) 

MAPK: Mitogen-activated protein kinase 

MARCO: Macrophage receptor with a collagenous structure 

MCM: Macrophage conditioned media 

MIC: Minimum Inhibitory Concentration 

MRI: Magnetic resonance imaging 

MS: Multiple sclerosis 

MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NASCIS: National Acute Spinal Cord Injury Study 
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NF-κB: Nuclear factor kappa B  

NIH: National Institutes of Health 

NINDS: National Institute of Neurological Disorders and Stroke 

n.s: Not significant 

N2a: Neuro-2a 

OCT: Optimal cutting temperature compound 

OMgp: oligodendrocyte myelin glycoprotein  

Opti-MEM: Reduced-Serum Medium is an improved Minimal Essential Medium 

PBS: Phosphate-buffered saline  

p-cPLA2: phosphorylated cytosolic phospholipase A2 (activated) 

PFA: Paraformaldehyde 

PNS: Peripheral nervous system 

ROS: Reactive oxygen species 

RPM: Rotations per minute 

PPAR/RXR: peroxisome proliferator-activated receptors  

RPMI: Roswell Park Memorial Institute medium 

PRR: Pattern recognition receptor 

P/S: penicillin/ streptomycin 

SCI: spinal cord injury 

SD: Standard deviation 

SEM: standard error of the mean 

sPLA2: Secretory phospholipase A2 

SRAI/II: Scavenger receptor AI/II 
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TLR: Toll like receptor 

TNF: Tumor Necrosis Factor 

TomL: Tomato lectin 

TREM2: Triggering receptor expressed on myeloid cells 2 

VCP: Valosin-containing protein 

WT: Wild type 
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