University of Kentucky

UKnowledge

Epidemiology and Environmental Health Faculty Publications

Epidemiology and Environmental Health

1-31-2019

A PheWAS Study of a Large Observational Epidemiological Cohort of African Americans from the REGARDS Study

Xueyan Zhao The University of Alabama at Birmingham

Xin Geng BGI-Shenzhen, China

Vinodh Srinivasasainagendra The University of Alabama at Birmingham

Ninad Chaudhary The University of Alabama at Birmingham

Suzanne Judd

The University of Alabama at Birmingham Follow this and additional works at: https://uknowledge.uky.edu/epidemiology_facpub

Part of the African American Studies Commons, Epidemiology Commons, and the Genomics See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Zhao, Xueyan; Geng, Xin; Srinivasasainagendra, Vinodh; Chaudhary, Ninad; Judd, Suzanne; Wadley, Virginia; Gutiérrez, Orlando M.; Wang, Henry; Lange, Ethan M.; Lange, Leslie A.; Woo, Daniel; Unverzagt, Frederick W.; Safford, Monika; Cushman, Mary; Limdi, Nita; Quarells, Rakale; Arnett, Donna K.; Irvin, Marguerite R.; and Zhi, Degui, "A PheWAS Study of a Large Observational Epidemiological Cohort of African Americans from the REGARDS Study" (2019). *Epidemiology and Environmental Health Faculty Publications*. 54.

https://uknowledge.uky.edu/epidemiology_facpub/54

This Article is brought to you for free and open access by the Epidemiology and Environmental Health at UKnowledge. It has been accepted for inclusion in Epidemiology and Environmental Health Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

A PheWAS Study of a Large Observational Epidemiological Cohort of African Americans from the REGARDS Study

Digital Object Identifier (DOI) https://doi.org/10.1186/s12920-018-0462-7

Notes/Citation Information

Published in BMC Medical Genomics, v. 12, suppl 1, article no. 26, p. 167-177.

© The Author(s). 2019

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors

Xueyan Zhao, Xin Geng, Vinodh Srinivasasainagendra, Ninad Chaudhary, Suzanne Judd, Virginia Wadley, Orlando M. Gutiérrez, Henry Wang, Ethan M. Lange, Leslie A. Lange, Daniel Woo, Frederick W. Unverzagt, Monika Safford, Mary Cushman, Nita Limdi, Rakale Quarells, Donna K. Arnett, Marguerite R. Irvin, and Degui Zhi

RESEARCH Open Access

A PheWAS study of a large observational epidemiological cohort of African Americans from the REGARDS study

Xueyan Zhao^{1†}, Xin Geng^{2,3†}, Vinodh Srinivasasainagendra¹, Ninad Chaudhary⁴, Suzanne Judd¹, Virginia Wadley⁵, Orlando M. Gutiérrez^{4,5}, Henry Wang⁶, Ethan M. Lange⁷, Leslie A. Lange⁷, Daniel Woo⁸, Frederick W. Unverzagt⁹, Monika Safford¹⁰, Mary Cushman¹¹, Nita Limdi¹², Rakale Quarells¹³, Donna K. Arnett¹⁴, Marguerite R. Irvin^{4*} and Degui Zhi^{3,15*}

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2018 Los Angeles, CA, USA. 10-12 June 2018

Abstract

Background: Cardiovascular disease, diabetes, and kidney disease are among the leading causes of death and disability worldwide. However, knowledge of genetic determinants of those diseases in African Americans remains limited

Results: In our study, associations between 4956 GWAS catalog reported SNPs and 67 traits were examined among 7726 African Americans from the REasons for Geographic and Racial Differences in Stroke (REGARDS) study, which is focused on identifying factors that increase stroke risk. The prevalent and incident phenotypes studied included inflammation, kidney traits, cardiovascular traits and cognition. Our results validated 29 known associations, of which eight associations were reported for the first time in African Americans.

Conclusion: Our cross-racial validation of GWAS findings provide additional evidence for the important roles of these loci in the disease process and may help identify genes especially important for future functional validation.

Keywords: PheWAS, African Americans, Genetics, Cardiovascular disease

Background

Genome Wide Association Studies (GWASs) have provided a powerful approach for identifying association between genetic variants and a single phenotype. An alternative and complementary approach to query genotype-phenotype associations is the Phenome-Wide Association Study (PheWAS) [1]. With PheWAS, associations between a specific genetic variant and a wide range of phenotypes can be explored. They are well suited to facilitate the identification of new associations

between SNPs and phenotypes as well as SNPs with pleiotropy [2–4]. The PheWAS approach was mainly pioneered by investigators at Vanderbilt University [1] and flourished in various hospital-based cohorts by scanning phenomic data in electronic medical records for genetic associations [1, 4–6] as well as by meta-analyzing data collected in observational cohort studies like the Population Architecture using Genomics and Epidemiology (PAGE) study [2].

As of January 2017, GWASs have identified ~ 44,000 SNPs important for various human phenotypes as summarized in the GWAS catalog [7], which makes it possible to reveal pleiotropic effects and genetic mechanisms shared by different traits. Conducting PheWASs using SNPs which were reported to be associated with one or more traits is an efficient method for replication

Full list of author information is available at the end of the article

^{*} Correspondence: irvinr@uab.edu; Degui.zhi@uth.tmc.edu

[†]Xueyan Zhao and Xin Geng contributed equally to this work.

⁴Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA

³School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA

of previous results and identification of pleiotropic effects.

In this study, we used the REasons for Geographic And Racial Differences in Stroke (REGARDS) Study to examine 4956 GWAS catalog SNPs (Additional file 1) that are included on the Infinium HumanExome-12v1-2_A (exome chip) array from Illumina with a rich collection of phenotypes. The REGARDS study is a population-based, longitudinal study including 30,000 participants (~40% African Americans), sampled from the continental US [8]. Among 12,000 African American participants, 7726 were genotyped with the exome chip. Since most PheWAS

studies have considered individuals of European ancestry and cross-sectional phenotypes, REGARDS is an excellent resource for both cross-racial validation and identifying pleiotropic effects.

Results

We tested for association between 4956 GWAS catalog SNPs and 67 phenotypes. Genomic inflation factors (λ) generated from including all SNPs for a given phenotype showed good fitting of all models with λ range from 0.95 to 1.12. Table 1 summarizes 29 significant associations passing the significance threshold with P value less than

Table 1 Summary of identified significant associations in REGARDS study

SNP ID	Phenotype	Minor allele (effect allele)	Major Allele	Beta or OR	P-value	MAF	First reported in AAs
Matched phe	notype						
rs10096633	Triglycerides	Т	C	- 0.020	4.88E-10	0.4226	
rs1173727	Height	Т	C	0.297	9.89E-08	0.2032	yes
rs12110693	Heart rate	G	Α	-1.302	4.28E-11	0.4984	
rs12740374	LDL Cholesterol	Т	G	-4.314	1.64E-10	0.2615	
rs173539	HDL Cholesterol	Т	C	2.337	1.21E-19	0.3647	yes
rs1800775	HDL Cholesterol	C	Α	-2.843	1.53E-29	0.4272	yes
rs247616	HDL Cholesterol	Т	C	4.309	4.88E-52	0.2528	yes
rs2794520	C reactive protein	Т	C	-0.125	3.92E-34	0.2146	
rs326	Triglycerides	A	G	0.019	8.20E-09	0.4436	
rs3764261	HDL Cholesterol	A	C	3.050	1.84E-30	0.3165	
rs6511720	LDL Cholesterol	Т	G	-5.624	1.19E-10	0.1337	
rs6511720	Total Cholesterol	Т	G	-6.143	3.14E-10	0.1337	
rs7412	LDL Cholesterol	Т	C	-15.870	2.17E-65	0.1114	
rs7499892	HDL Cholesterol	Т	C	-2.351	1.38E-19	0.3677	yes
rs7553007	C reactive protein	A	G	-0.122	6.61E-34	0.2258	
rs876537	C reactive protein	Т	C	-0.124	7.99E-33	0.2083	
rs9398652	Heart rate	C	Α	-1.339	1.19E-11	0.4956	
Related phen	otype						
rs12740374	Dyslipidemia	Т	G	0.783	1.08E-10	0.2615	
rs12740374	Total Cholesterol	Т	G	-4.152	3.24E-08	0.2615	
rs247616	Fram_CHD	Т	C	-0.041	3.78E-09	0.2528	yes
rs629301	Dyslipidemia	G	Т	0.827	4.32E-08	0.3633	
rs646776	Dyslipidemia	C	Т	0.827	4.41E-08	0.3622	yes
rs6511720	Dyslipidemia	Т	G	0.737	4.45E-10	0.1337	
rs7412	Fram_CHD	Т	C	-0.066	3.03E-12	0.1114	
rs7412	Ideal7	Т	C	0.210	3.35E-14	0.1114	
rs7412	Dyslipidemia	Т	C	0.525	6.16E-33	0.1114	
rs7412	Total Cholesterol	Т	C	-13.330	2.90E-37	0.1114	
rs7903146	Diabetes	Т	C	1.306	2.30E-12	0.2919	
rs911119	Cystatin C	C	Т	-0.012	6.17E-08	0.356	yes

Beta coefficients were showed for continuous variables and odd ratios (OR) were showed for binary variables. MAF: minor allele frequency. Matched phenotype means the same phenotype and SNP associations have been showed in previous published studies; if similar or related associations have been published before, they are defined as "related phenotype". If this is the first time that an association was shown in Africa American population, "Yes" was given in the column" First reported in AAs "

1.5E-7. S2 compares results extracted from the GWAS catalog on significant PheWAS SNPs to the REGARDS results. The significant associations are in several major phenotype groups: C reactive protein, lipid profile, diabetes, cystatin C, heart event risk, heart rate, and height. We classified the significant SNPs in two ways: 1. the SNP was associated to a phenotype matching previous publications 2. the SNP was associated to a phenotype related to the previously reported phenotype (Additional file 2).

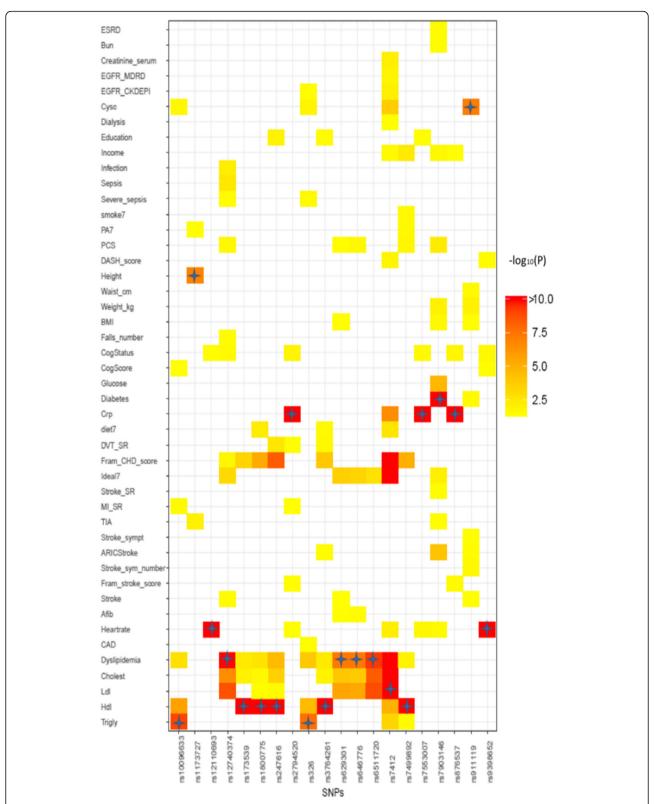
Validation of known genetic associations of phenotypes

Among the 29 significant genotype and phenotype associations, 17 have been previously reported for the same phenotype (Table 1 and Additional file 2). The effect directions of the 17 associations were the same as those in the previous reports. For eight of these phenotype genotype associations, our study represents the first validation in an African American population (see section below). These replications validated the reliability of our PheWAS analysis approaches. We confirmed that C reactive protein level was related to rs2794520 (P = 3.9E-34), rs7553007 (P = 6.6E-34) and rs876537 (P = 8.0E-33), which are located near the CRP gene (Table 1). Five SNPs located near the *CETP* gene were associated with HDL cholesterol including rs173539 (*P* = 1.2E-19), rs1800775 (*P* = 1.5E-29), rs247616 (P = 4.9E-19), rs3764261 (P = 1.8E-30), and rs7499892 (P = 1.4E-19). Two SNPs were significantly associated with heart rate: rs12110693 near LOC644502 gene (P = 4.3E-11) and rs9398652 near GJA1 gene (P =1.2E-11). We also reproduced the association between rs1173727 near the *NPR3* gene and height with P = 9.9E-8. Three SNPs were significantly associated with LDL cholesterol including rs12740374 in the SORT1/ PSRC1/ CELSR2 cluster (P = 1.6E-10), rs6511720 in LDLR (P = 1.6E-10) 1.2E-10), and rs7412 in APOE (P = 2.2E-65). Rs10096633 in the LPL gene (P = 4.9E-10) and rs326 in the C8orf35/SLC18A1/LPL cluster (P = 8.2E-9) were associated with total cholesterol. Apart from 17 reported associations, the other 12 SNPs were associated with phenotypes that are closely related to previously published associations indexed in the GWAS catalog (Table 1 and Additional file 2).

Cross-racial validation

Eight of our findings were reported in other races previously but not in African Americans. Observed associations of rs173539, rs1800775, rs247616, and rs7499892 with HDL had not been previously reported in African Americans. The other new cross-ethnic validations from our study included rs1173727 with height, rs911119 with cystatin C, rs247616 with the Framingham risk score, and rs646776 with dyslipidemia (Table 1 and Additional file 2). Interestingly, we saw even more significant results for the association between rs247616 and HDL with P = 4.88E-52 and beta value = 4.3 (mg/dL) in REGARDS,

compared to P = 9.7E-24 and beta value = 3.0 (mg/dL) in the GWAS catalog report [9] (Additional file 2).


SNPs associated with multiple traits

The 29 significant genotype and phenotype associations involved 20 SNPs, and 11 of these were associated with multiple traits (P-value < 1.0E-7 for the first trait and P < 3.7E-5 for the second trait) (Additional file 3). We also listed the genome-wide significant SNPs for one trait which were suggestively associated with another trait with nominal P < 0.05 in Additional file 3. Figure 1 listed those 11 SNPs and another 8 SNPs which were significantly associated with the first trait (P-value < 1.0E-7) and nominally associated with another trait (P < 0.05). Generally, the pleotropic effects were caused by one SNP associated with multiple correlated phenotypes. In the conditional analysis, the associations were not significant between the second top traits and the corresponding SNPs after including the top traits as the covariate. For example, rs7412 was associated with LDL (P = 7.64E-62) and Cystatin C (P = 1.80E-04) due to a significant association between these two phenotypes (P = 6.48E-06).

Discussion

Our PheWAS presented association of 4956 SNPs with 67 phenotypes using a subset of African Americans from the REGARDS study. Our study validated 29 previous GWAS associations, of which eight associations were reported for the first time in African Americans (AAs). Among many of our findings, 11 SNPs were associated with multiple traits.

We identified 29 significant genotype and phenotype associations. 17 of these have been reported previously. The phenotypes of the other 12 associations were related with those previously reported but not exactly the same. For instance, rs911119 located in the CST3/CST4/CST9 gene cluster was reported previously associated with chronic kidney disease in a European population [10]. Our current study found that in African Americans allele C of rs911119 was negatively associated with the level of cystatin C, which is a biomarker for kidney function (P = 6.2E-8). Rs7903146 in TCF7L2 gene was reported associated with type 2 diabetes in several different populations [11], which agrees with our current results (P = 2.3E-12). Rs247616 in the CETP gene was significantly associated with the Framingham CHD Hard Event Risk Score (Fram_CHD: Risk of Coronary Death or MI over 10 Years) with P = 3.8E-9. While this SNP has not been previously associated with the Framingham risk score, it has been associated with its components as well as related phenotypes including blood metabolite levels, cardiovascular disease risk factors, and lipoprotein-associated phospholipase A2 mass and activity only in Europeans

Fig. 1 Heatmap shows the $-\log_{10}P$ for association between SNPs with different traits. Shown in colors are the association P values of SNPs which are associated with first trait with P < 1.00E-7 and second trait with P < 0.05. The stars indicate the primary trait associated with the SNPs

[9, 12, 13]. Rs7412 in the APOE gene was associated with Fram_CHD (P = 3.0E-12), total cholesterol (P = 2.9E-37), lipidemia (P = 6.2E-33) and Ideal7 (the American Heart Association's "Life's Simple Seven" score, i.e., total number of ideal risk behaviors or metrics for each of the seven) (P = 3.3E-14). Our findings were consistent with previous studies, which showed that rs7412 was associated with several lipid related phenotypes including LDL cholesterol, lipid metabolism phenotypes, lipid traits, and response to statin therapy [14-17]. Here, we also found that rs629301 (in CELSR2, PSRC1 and SORT1), rs646776 (in CELSR2, PSRC1 and SORT1) and rs6511720 (in LDLR) are associated with dyslipidemia. This is in alignment with previously findings: associations of rs629301 with total cholesterol and LDL cholesterol [18]; associations of rs646776 with total cholesterol, LDL cholesterol, lipid metabolism phenotypes, coronary artery disease, myocardial infarction (early onset), and response to statin therapy in Europeans [19, 20]; associations of rs6511720 with total cholesterol, LDL cholesterol, lipid metabolism phenotypes, lipoprotein-associated phospholipase A2 activity and mass, and cardiovascular disease risk factors [18]. Rs12740374 in CELSR2/PSRC1/ SORT1 cluster was associated with two lipid traits: total cholesterol and dyslipidemia in our study, which is closely related with previously reported associations with LDL cholesterol and lipoprotein-associated phospholipase A2 activity and mass [21, 22].

We validated eight associations in AAs for the first time. Due to the difference of genetic variants between African Americans and the other races [23], it is interesting to check whether the associated variants reported in other races are associated with the same traits in AAs or not. When SNPs replicate across diverse populations, the gene's importance in the disease process is emphasized, and consistency of findings may indicate genes that are especially important for future functional validation. Importantly, the effects of eight variants in AAs were of the same directions as in the other reported races.

Conclusions

In this study, we leveraged the rich phenotype collection and the exome chip data in 7726 REGARDS AA participants, and examined the associations between 4956 GWAS catalog SNPs and 67 phenotypes. We validated 29 previous GWAS associations, of which eight associations were reported for the first time in AAs.

Methods

Study population and design

The REGARDS Study is a prospective, longitudinal population-based cohort study [8] of European American and African American adults aged 45 and older. Detailed description of the objectives and design of this

study has been published [8]. The baseline telephone interview and separate in-home visit were conducted between 2003 to 2007 [24]. Baseline data collection resulted in a broad range of demographic, diet, and clinical information as well as banked biospecimens which were used to extract DNA and assess multiple clinical measurements [8]. Participants continue to be contacted every 6 months by telephone to identify stroke events and other incident outcomes [8]. The REGARDS study protocol was approved by the institutional review boards of each participating institution, and written informed consents were obtained from all participants. This current study examined phenotypes available in REGARDS participants to explore their association with exome-chip SNP genotypes. A total of 7726 self-reported African Americans with exome chip data were included in our study. The average age of participants was 64.6 years old (standard deviation = 9.0), and 4770 (61.7%) were female.

SNP selection and genotyping

Genotyping was conducted using the Infinium HumanExome-12v1-2_A from Illumina (San Diego, CA, USA). The Illumina exome chip provides genotype data on > 240,000 putative functional variants selected based on over 12,000 individual exome and whole-genome sequences derived from individuals of European, African, Chinese, and Hispanic ancestry (http://genome.sph.umich.edu/wiki/Exome_Chip_Design). Raw genotyping data were called by GenomeStudio (version 2.0). The variant quality control included removing SNPs with call rate < 95%, monoallelic SNPs, multiallelic SNPs, and SNPs that had mapping errors. After further removing first and second degree relatives, samples with technical issues, and samples with mismatched sex, 7726 samples were available for analysis. In total, 4956 autosomal SNPs with minor allele frequency > 0.05 aligned to the GRCh37 reference sequence were matched to GWAS published SNPs catalog V1.0.1, which were reported to be associated with at least one trait with P < 1.0E-5 (Additional file 1) [7, 25].

Phenotypes

Lists of phenotypes included in this study are shown in Table 2 and Table 3. The phenotypes included both baseline and incident events among the 7726 African Americans. Baseline information included medical history, personal history, demographic data, socioeconomic status, cognitive screening, laboratory assays, urine, height, weight, waist circumference, blood pressure, pulse, electrocardiography, and medications in the past 2 weeks [8]. Follow-up events included stroke, coronary heart disease (CHD), myocardial infarction, infection, sepsis, end-stage renal disease, and death. All the

Table 2 List of binary phenotypes

Short name	Category	Full description	Number of "yes"	Number of samples	Frequency of "yes" (%)
Prevalent Phenotypes					
CogStatus [26, 27]	Aging	Cognitive Status: Normal: defined as cogscore> 4, Impaired: defined as cogscore <=4	744	6195	12.01
Falls [28]	Aging	Self-reported fall in the past year	1166	7704	15.13
Afib [29, 30]	CVD related	Atrial Fibrillation (self-report or ECG evidence)	573	7526	7.61
CAD [31]	CVD related	History of Heart Disease (self-reported MI, CABG, bypass, angioplasty, or stenting OR evidence of MI via ECG	1186	7582	15.64
DVT [32]	CVD related	Self-reported deep vein thrombosis	371	7699	4.82
Hypertension [33, 34]	CVD related	Hypertensive if SBP > =140 or DBP > =90 or self- reported current medication use to control blood pressure	5622	7714	72.88
Dyslipidemia [35]	CVD related	Dyslipidemia: if TC $>$ =240 or LDL $>$ =160 or HDL $<$ =40 or on medication	4171	7604	54.85
MI_SR [31]	CVD related	History of Myocardial Infarction (MI) (self-reported MI OR evidence of MI via ECG	891	7588	11.74
PAD_amputation [36]	CVD related	History of leg amputation	40	7725	0.52
PAD_surgery [36]	CVD related	Self-reported procedure to fix the arteries in legs	162	7709	2.1
Stroke_SR [37, 38]	CVD related	Participant reported stroke at baseline	597	7701	7.75
Stroke_Sympt [39, 40]	CVD related	Presence of stroke symptoms at baseline	1632	7134	22.88
TIA [29, 37]	CVD related	Participant reported Transient ischemic attack at baseline	257	7102	3.62
Diabetes [41]	Diabetes related	Diabetic if fasting glucose> = 126/non-fasting glucose> = 200 or pills or insulin	2335	7639	30.57
Cancer [42]	Other	Have you ever been diagnosed with cancer	526	4895	10.75
Orthopnea [29]	Other	Require more than one pillow to sleep at night	1076	7702	13.97
Dialysis [43]	Renal	Self-reported dialysis	45	7670	0.59
KidneyFailure [43]	Renal	Self-reported kidney failure	164	7670	2.14
Incident Phenotypes					
CHD [44]	CVD related	Incidence of coronary heart disease until 2012	436	7726	5.64
MI [44]	CVD related	Incidence of myocardial infarction until 2012	284	7726	3.68
Stroke [45]	CVD related	Incidence of Stroke until 20,150,401	287	7726	3.71
Death [46]	Other	Incidence of Death until 20,150,401	1494	7726	19.34
Infection [47, 48]	Other	Incidence of infection	548	7726	7.09
Sepsis [47, 48]	Other	Incidence of sepsis	307	7726	3.97
Severe_sepsis [47, 48]	Other	Incidence of severe sepsis	243	7726	3.15
ESRD [49]	Renal	Incidence of end stage renal disease until 2012	238	7726	3.08

phenotypes were binary or continuous variables (See Tables 2-3). Totally, 26 binary and 41 continuous phenotypes were included for current study [26–68]. The binary variables follow a binomial distribution and their frequencies for each category were calculated. Most of the continuous variables followed normal distribution. For variables with large skewness or kurtosis, a logarithm or square root transformation was performed. Obvious outliers with values at more than 10 standard deviations away from the mean were redefined as missing.

Statistical methods

Single SNP linear or logistic regressions were performed by PLINK for continuous or binary phenotypes respectively using an additive genetic model. The top 10 principal components determined by EIGENSTRAT [69], age, and gender were used as covariates for all phenotypes. Additional covariates were used for cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride, glucose, and insulin. Those covariates included whether the participants were fasted under

Table 3 The list of continuous phenotypes of this study

Short name	Category	Full description	Data transformation	Number of samples	Mean	Standard deviation
CogScore [26, 27]	Aging	Computed cognitive score		6195	5.45	0.85
Falls_number [28]	Aging	Number of times fallen in the past year	log10(x + 1)	1182	0.42	0.2
MCS [50]	Aging	The mental component of the short-form 12 health survey: Mental		7352	53.46	9.02
BMI [51]	Body size	Body Mass Index - kg/m2		7657	30.84	6.73
Height [51]	Body size	Height		7702	66.4	3.88
Waist_cm [51]	Body size	Waist circumference (cm)		7673	98.43	15.42
Weight_kg [51]	Body size	Weight (kg)		7694	87.99	20.54
ARICStroke	CVD related	ARIC Stroke Risk Score: 10 Year Probability of Ischemic Scroke (%)	log10	6791	0.83	0.47
Cholest [52]	CVD related	Total Cholesterol (mg/dL)		7676	193.1	40.9
Crp [53]	CVD related	C reactive protein (mg/L)	log10	7597	0.46	0.52
DBP [54, 55]	CVD related	Diastolic blood pressure - average of two measures (mmHg)		7703	78.58	10.11
Fram_CHD_score [56]	CVD related	Framingham CHD Hard Event Risk Score: Risk of Coronary Death or MI over 10 Years (among those free of CHD at baseline)	log10	6381	0.86	0.4
Fram_stroke_score [57]	CVD related	Framingham Stroke Risk Score: 10 Year Probability of Stroke (%) (among those who self-reported never having a stroke at baseline)	log10	6694	0.88	0.39
Hdl [52]	CVD related	HDL Cholesterol (mg/dL)		7622	53.46	15.9
Heartrate [58]	CVD related	Heart rate (beats per minute)		7627	68.48	11.95
ldeal7 [59]	CVD related	American Heart Association Life simple seven, total number of ideal for each of the seven		7726	2.12	1.08
Ldl [52]	CVD related	LDL Cholesterol (mg/dL)		7566	116.81	36.42
SBP [54, 55]	CVD related	Systolic blood pressure - average of two measures (mmHg)		7703	131.41	17.29
SLFS [60]	CVD related	Family risk score for stroke		4293	-0.48	0.33
Stroke_Sym_Number [39, 40]	CVD related	Number of stroke symptoms		7134	0.39	0.87
Trigly [52]	CVD related	Triglycerides (mg/dL)	log10	7673	2.01	0.2
Glucose [41]	Diatetes related	Glucose (mg/dL from labs formerly from fromVermont)	sqrt	7676	10.38	1.78
Insulin [41]	Diatetes related	Endogenous Insulin uU/mL	log10	5619	1.09	0.35
CESD [61]	Other	Center for Epidemiologic Studies Depression Scale		7670	1.39	2.21
DASH_Score [62]	Other	DASH style diet score		4592	23.11	4.25
Diet7 [59]	Other	Life simple seven, diet score		4592	1.17	0.37
Education [63]	Other	1 = 'Less than high school'; 2 = 'High school graduate'; 3 = 'Some college'; 4 = 'College graduate and above'; missing = -9 .		7718	2.57	1.08
Income [63]	Other	Income		6763	5.7	2.13
MedDietScore [64]	Other	Mediterranean diet score		4483	4.43	1.64
PA7 [59]	Other	Life simple seven, physical activity		7618	1.89	0.79
PCS [50]	Other	PCS-12: SF-12 Physical	square root	7325	4.55	1.1
Smoke7	Other	Life simple seven, smoking		7726	2.63	0.76
TV [65]	Other	watching TV time. 0 = 'None'; 1 = '1-6 h/wk'; 2 = '1 h/day'; 3 = '2 h/day'; 4 = '3 h/day'; 5 = '4+ hrs/day'; missing = -9.		5408	3.81	1.39

Table 3 The list of continuous phenotypes of this study (*Continued*)

Short name	Category	Full description	Data transformation	Number of samples	Mean	Standard deviation
ACR [66]	Rental	Urinary Albumin/Creatinine ratio (mg/g)	log10	7421	1.09	0.62
Albumin_urine [66]	Rental	Urinary albumin (mg/L)	log10	7423	1.2	0.63
BUN [66]	Rental	Blood-urea-nitrogen (mg/dL)	log10	5472	1.18	0.16
Creatinine_serum [67]	Rental	IDMS Calibrated Creatinine (mg/dL)	log10(x + 1)	7674	0.29	0.09
Creatinine_urine [66]	Rental	Urinary creatinine (mg/dL)		7437	152.1	84.59
Cysc [67]	Rental	Cystatin C (mg/L)	log10	7597	0	0.14
EGFR_CKDEPI [68]	Rental	estimated GFR from the CKD-Epi equation		7674	87.52	23.67
EGFR_MDRD [68]	Rental	Glomerular Filtration Rate (mL/min/1.73 square meters) using IDMS calibrated creatinine and MDRD equation		7674	89.36	27.15

examination, whether they had self-reported diabetes and took insulin/glucose lowering pills, and whether they had self-reported dyslipidemia and took lipid lowering medication.

The threshold of significance level for PheWASs is not straightforward and multiple approaches have been used in other PheWAS studies [2-4]. The PAGE study used five population-based studies representing major racial/ ethnic groups, and their threshold is "P<0.01 observed in two or more PAGE studies for the same SNP, phenotype class, and race/ethnicity, and consistent direction of effect" [2]. The Environmental Architecture for Genes Linked to Environment (EAGLE) study used similar threshold with an additional condition for allele freguency > 0.01 and sample size > 200 [4]. The Norfolk Island study performed a principal component analysis of phenotypes and used principal components as the final phenotypes. A P value of 1.84E-7 was considered the threshold for a significant association between a component and SNP [3]. In our study, the criteria for a significant association between a single SNP and a single phenotype with Bonferroni correction was defined as P value = $\frac{0.05}{4956*67}$ =1.5E-7. In our study, significant genotype and phenotype associations involved 20 SNPs. Therefore, the significance threshold for a second trait of the pleiotropic effect is P = 0.05/(67*20) = 3.7E-5.

Additional files

Additional file 1: List of 4956 SNPs included in the association tests. (XLS 3240 kb)

Additional file 2: Title: Matching of Regard significant associations with Published GWAS catalog (XLSX 85 kb)

Additional file 3: SNPs associated with multiple traits (XLSX 45 kb)

Abbreviations

GWAS: Genome-Wide Association Study; HDL: High-Density lipoprotein; LDL: Low-Density Lipoprotein; PAGE: Population Architecture using Genomics and Epidemiology; PheWAS: Phenome-Wide Association Study;

REGARDS: REasons for Geographic and Racial Differences in Stroke; SNP: single nucleotide polymorphism

Acknowledgements

The authors thank the other investigators, the staff, and the participants of the REGARDS study for their valuable contributions. A full list of participating REGARDS investigators and institutions can be found at http://www.regardsstudy.org.

Funding

The REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort is supported by a cooperative agreement U01 NS041588 from the National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Service. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health. Representatives of the funding agency have been involved in the review of the manuscript but not directly involved in the collection, management, analysis or interpretation of the data. X.Z is supported by University of Alabama at Birmingham Statistical Genetics Post-Doctoral Training Grant (NIH T32HL072757). X.G. and D.Z. are partially supported by Agriculture and Food Research Initiative Competitive Grant no. 2015-67015-22975 from the USDA National Institute of Food and Agriculture (NIFA), and USDA Aquaculture Research Program Competitive Grant no. 2014–70007-22395. This work was also supported by 1RC4MD005964. Publication charges for this article have been funded by NIH R01HG010086.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

About this supplement

This article has been published as part of BMC Medical Genomics Volume 12 Supplement 1, 2019: Selected articles from the International Conference on Intelligent Biology and Medicine (ICIBM) 2018: medical genomics. The full contents of the supplement are available online at https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-12-supplement-1.

Authors' contributions

MI, DA, and DZ designed the study. XZ, XG, VS, and DZ analyzed data. XZ, XG, NC, MI, and DZ wrote the manuscript. All the authors have participated in data interpretation, and read and approved the final manuscript.

Ethics approval and consent to participate

Our study has been approved by the appropriate internal review boards at the University of Texas Health Science Center at Houston and all other participating institutions, and it abides by the Declaration of Helsinki principles.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

¹Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35233, USA. ²BGI-Shenzhen, Shenzhen 518083, China. ³School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. ⁴Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA. ⁵Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA. ⁶Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA. ⁷Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA. ⁸Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA. 9Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA. ¹⁰Division of General Internal Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA. 11 Department of Medicine and Pathology, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA. ¹²Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA. 13 Cardiovascular Research Institute, Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA. 14College of Public Health, University of Kentucky, Lexington, KY 40506, USA. ¹⁵School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Published: 31 January 2019

References

- Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, Masys DR, Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26(9):1205–10.
- Pendergrass SA, Brown-Gentry K, Dudek S, Frase A, Torstenson ES, Goodloe R, Ambite JL, Avery CL, Buyske S, Buzkova P, et al. Phenome-wide association study (PheWAS) for detection of pleiotropy within the population architecture using genomics and epidemiology (PAGE) network. PLoS Genet. 2013;9(1):e1003087.
- Benton MC, Lea RA, Macartney-Coxson D, Hanna M, Eccles DA, Carless MA, Chambers GK, Bellis C, Goring HH, Curran JE, et al. A Phenomic scan of the Norfolk Island genetic isolate identifies a major pleiotropic effect locus associated with metabolic and renal disorder markers. PLoS Genet. 2015; 11(10):e1005593.
- Hall MA, Verma A, Brown-Gentry KD, Goodloe R, Boston J, Wilson S, McClellan B, Sutcliffe C, Dilks HH, Gillani NB, et al. Detection of pleiotropy through a phenome-wide association study (PheWAS) of epidemiologic data as part of the environmental architecture for genes linked to environment (EAGLE) study. PLoS Genet. 2014;10(12):e1004678.
- Pendergrass SA, Brown-Gentry K, Dudek SM, Torstenson ES, Ambite JL, Avery CL, Buyske S, Cai C, Fesinmeyer MD, Haiman C, et al. The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet Epidemiol. 2011;35(5):410–22.
- Namjou B, Marsolo K, Caroll RJ, Denny JC, Ritchie MD, Verma SS, Lingren T, Porollo A, Cobb BL, Perry C, et al. Phenome-wide association study (PheWAS) in EMR-linked pediatric cohorts, genetically links PLCL1 to speech language development and IL5-IL13 to eosinophilic esophagitis. Front Genet. 2014;5:401.
- Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6.

- Howard VJ, Cushman M, Pulley L, Gomez CR, Go RC, Prineas RJ, Graham A, Moy CS, Howard G. The reasons for geographic and racial differences in stroke study: objectives and design. Neuroepidemiology. 2005;25(3):135–43.
- Smith EN, Chen W, Kähönen M, Kettunen J, Lehtimäki T, Peltonen L, Raitakari OT, Salem RM, Schork NJ, Shaw M. Longitudinal genome-wide association of cardiovascular disease risk factors in the Bogalusa heart study. PLoS Genet. 2010;6(9):e1001094.
- Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010;42(5):376–84.
- Ng MC, Shriner D, Chen BH, Li J, Chen W-M, Guo X, Liu J, Bielinski SJ, Yanek LR, Nalls MA. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10(8):e1004517.
- Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, Arnold M, Erte I, Forgetta V, Yang T-P. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–50.
- Grallert H, Dupuis J, Bis JC, Dehghan A, Barbalic M, Baumert J, Lu C, Smith NL, Uitterlinden AG, Roberts R. Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association studies from five community-based studies. Eur Heart J. 2012;33(2):238–51.
- Kettunen J, Tukiainen T, Sarin A-P, Ortega-Alonso A, Tikkanen E, Lyytikäinen L-P, Kangas AJ, Soininen P, Würtz P, Silander K. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012;44(3):269–76.
- Rasmussen-Torvik LJ, Pacheco JA, Wilke RA, Thompson WK, Ritchie MD, Kho AN, Muthalagu A, Hayes MG, Armstrong LL, Scheftner DA. High density GWAS for LDL cholesterol in African Americans using electronic medical records reveals a strong protective variant in APOE. Clin Transl Sci. 2012;5(5):394–9.
- Wu Y, Marvelle AF, Li J, Croteau-Chonka DC, Feranil AB, Kuzawa CW, Li Y, Adair LS, Mohlke KL. Genetic association with lipids in CLHNS: waist circumference modifies an APOA5 effect on triglyceride levels. *J Lipid Res*. 2013; ilr. P042077.
- 17. Chasman. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the justification for the use of statins in prevention: an intervention trial evaluating Rosuvastatin (JUPITER) trial (vol 5, pg 257, 2012). Circ Cardiovasc Genet. 2012;5(3):E27–7.
- Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83.
- Surakka I, Horikoshi M, Mägi R, Sarin A-P, Mahajan A, Lagou V, Marullo L, Ferreira T, Miraglio B, Timonen S. The impact of low-frequency and rare variants on lipid levels. Nat Genet. 2015;47(6):589–97.
- Chasman DI, Pare G, Mora S, Hopewell JC, Peloso G, Clarke R, Cupples LA, Hamsten A, Kathiresan S, Mälarstig A. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genomewide analysis. PLoS Genet. 2009;5(11):e1000730.
- Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, Benjamin EJ, Bennett F, Bowden DW, Chakravarti A, Dreisbach A. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe project. PLoS Genet. 2011;7(2):e1001300.
- Chu AY, Guilianini F, Grallert H, Dupuis J, Ballantyne CM, Barratt BJ, Nyberg F, Chasman DI, Ridker PM. Genome-Wide Association Study Evaluating Lp-PLA2 Mass and Activity at Baseline and Following Rosuvastatin Therapy. Circ Cardiovasc Genet. 2012; CIRCGENETICS. 112.963314.
- 23. Jorde LB, Wooding SP. Genetic variation, classification and 'race'. Nat Genet. 2004;36:S28–33.
- Tamura MK, Wadley V, Yaffe K, McClure LA, Howard G, Go R, Allman RM, Warnock DG, McClellan W. Kidney function and cognitive impairment in US adults: the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Am J Kidney Dis. 2008;52(2):227–234.
- The NHGRI-EBI Catalog of published genome-wide association studies. [http://www.ebi.ac.uk/gwas] 2016.
- Thacker EL, Gillett SR, Wadley VG, Unverzagt FW, Judd SE, McClure LA, Howard VJ, Cushman M. The American Heart Association Life's simple 7 and incident cognitive impairment: the REasons for geographic and racial differences in stroke (REGARDS) study. J Am Heart Assoc. 2014;3(3):e000635.
- Wadley VG, Unverzagt FW, McGuire LC, Moy CS, Go R, Kissela B, McClure LA, Crowe M, Howard VJ, Howard G. Incident cognitive impairment is elevated in the stroke belt: the REGARDS study. Ann Neurol. 2011;70(2):229–36.

- 28. O'Neal WT, Qureshi WT, Judd SE, Bowling CB, Howard VJ, Howard G, Soliman EZ. Effect of falls on frequency of atrial fibrillation and mortality risk (from the REasons for geographic and racial differences in stroke study). Am J Cardiol. 2015;116(8):1213–8.
- Meschia JF, Merrill P, Soliman EZ, Howard VJ, Barrett KM, Zakai NA, Kleindorfer D, Safford M, Howard G. Racial disparities in awareness and treatment of atrial fibrillation: the REasons for geographic and racial differences in stroke (REGARDS) study. Stroke. 2010;41(4):581.
- Prineas RJ, Soliman EZ, Howard G, Howard VJ, Cushman M, Zhang Z-M, Moy CS. The sensitivity of the method used to detect atrial fibrillation in population studies affects group-specific prevalence estimates: ethnic and regional distribution of atrial fibrillation in the REGARDS study. J Epidemiol. 2009;19(4):177–81.
- Safford MM, Brown TM, Muntner PM, Durant RW, Glasser S, Halanych JH, Shikany JM, Prineas RJ, Samdarshi T, Bittner VA, et al. Association of race and sex with risk of incident acute coronary heart disease events. JAMA. 2012; 308(17):1768–74.
- Zakai NA, McClure LA, Judd SE, Safford MM, Folsom AR, Lutsey PL, Cushman M. Racial and regional differences in venous thromboembolism in the United States in 3 cohorts. Circulation. 2014;129(14):1502.
- Howard G, Prineas R, Moy C, Cushman M, Kellum M, Temple E, Graham A, Howard V. Racial and geographic differences in awareness, treatment, and control of hypertension: the REasons for geographic and racial differences in stroke study. Stroke. 2006;37(5):1171–8.
- Safford MM, Halanych JH, Lewis CE, Levine D, Houser S, Howard G. Understanding racial disparities in hypertension control: intensity of hypertension medication treatment in the REGARDS study. Ethn Dis. 2007; 17(3):421–6.
- Zweifler RM, McClure LA, Howard VJ, Cushman M, Hovater MK, Safford MM, Howard G, Goff DC. Racial and geographic differences in prevalence, awareness, treatment and control of dyslipidemia: the reasons for geographic and racial differences in stroke (REGARDS) study. Neuroepidemiology. 2011;37(1):39–44.
- Wang HE, Shapiro NI, Griffin R, Safford MM, Judd S, Howard G. Chronic medical conditions and risk of sepsis. PLoS One. 2012;7(10):e48307.
- Judd SE, Kleindorfer DO, McClure LA, Rhodes JD, Howard G, Cushman M, Howard VJ. Self-report of stroke, transient ischemic attack, or stroke symptoms and risk of future stroke in the REasons for geographic and racial differences in stroke (REGARDS) study. Stroke. 2013;44(1):55.
- Howard G, McClure LA, Moy CS, Howard VJ, Judd SE, Yuan Y, Long DL, Muntner P, Safford MM, Kleindorfer DO. Self-reported stroke risk stratification: reasons for geographic and racial differences in stroke study. Stroke. 2017;48(7):1737–43.
- Gao L, Meschia JF, Judd SE, Muntner P, McClure LA, Howard VJ, Rhodes JD, Cushman M, Safford MM, Soliman EZ, et al. What stroke symptoms tell us: association of risk factors and individual stroke symptoms in the REasons for geographic and racial differences in stroke (REGARDS) study. J Stroke Cerebrovasc Dis. 2012;21(5):411–6.
- Howard G, Safford MM, Meschia JF, Moy CS, Howard VJ, Pulley L, Gomez CR, Crowther M. Stroke symptoms in individuals reporting no prior stroke or transient ischemic attack are associated with a decrease in indices of mental and physical functioning. Stroke. 2007;38(9):2446–52.
- Carson AP, Muntner P, Kissela BM, Kleindorfer DO, Howard VJ, Meschia JF, Williams LS, Prineas RJ, Howard G, Safford MM. Association of prediabetes and diabetes with stroke symptoms: the REasons for geographic and racial differences in stroke (REGARDS) study. Diabetes Care. 2012;35(9):112140.
- O'Neal WT, Lakoski SG, Qureshi W, Judd SE, Howard G, Howard VJ, Cushman M, Soliman EZ. Relation between cancer and atrial fibrillation (from the REasons for geographic and racial differences in stroke study). Am J Cardiol. 2015;115(8):1090–4.
- McClellan WM, Warnock DG, Judd S, Muntner P, Patzer RE, Bradbury BD, McClure LA, Newsome BB, Howard G. Association of family history of ESRD, prevalent albuminuria, and reduced GFR with incident ESRD. Am J Kidney Dis. 2012;59(1):25–31.
- 44. Moise N, Khodneva Y, Richman J, Shimbo D, Kronish I, Safford MM. Elucidating the association between depressive symptoms, coronary heart disease, and stroke in black and white adults: the REasons for geographic and racial differences in stroke (REGARDS) study. J Am Heart Assoc. 2016;5(8):e003767.
- Howard VJ, McClure LA, Kleindorfer DO, Cunningham SA, Thrift AG, Diez Roux AV, Howard G. Neighborhood socioeconomic index and stroke incidence in a national cohort of blacks and whites. Neurology. 2016;87(22):10.1212.

- Whalen KA, Judd S, McCullough ML, Flanders WD, Hartman TJ, Bostick RM. Paleolithic and Mediterranean diet pattern scores are inversely associated with all-cause and cause-specific mortality in adults. J Nutr. 2017:1217–26.
- Chaudhary NS, Donnelly JP, Moore JX, Baddley JW, Safford MM, Wang HE. Association of baseline steroid use with long-term rates of infection and sepsis in the REGARDS cohort. Crit Care. 2017;21(1):185.
- Wang HE, Addis DR, Donnelly JP, Shapiro NI, Griffin RL, Safford MM, Baddley JW. Discharge diagnoses versus medical record review in the identification of community-acquired sepsis. Crit Care. 2015;19:42.
- O'Neal WT, Tanner RM, Efird JT, Baber U, Alonso A, Howard VJ, Howard G, Muntner P, Soliman EZ. Atrial fibrillation and incident end-stage renal disease: the REasons for geographic and racial differences in stroke (REGARDS) study. Int J Cardiol. 2015;185:219–23.
- Haley WE, Roth DL, Kissela B, Perkins M, Howard G. Quality of life after stroke: a prospective longitudinal study. Qual Life Res. 2011;20(6):799–806.
- 51. Kramer H, Gutiérrez OM, Judd SE, Muntner P, Warnock DG, Tanner RM, Panwar B, Shoham DA, McClellan W. Waist circumference, body mass index, and ESRD in the REGARDS (reasons for geographic and racial differences in stroke) study. Am J Kidney Dis. 2016;67(1):62–9.
- Booth JN, Colantonio LD, Howard G, Safford MM, Banach M, Reynolds K, Cushman M, Muntner P. Healthy lifestyle factors and incident heart disease and mortality in candidates for primary prevention with statin therapy. Int J Cardiol. 2016;207:196–202.
- Dawood FZ, Judd S, Howard VJ, Limdi NA, Meschia JF, Cushman M, Howard G, Herrington DM, Soliman EZ. High-sensitivity C-reactive protein and risk of stroke in atrial fibrillation (from the reasons for geographic and racial differences in stroke study). Am J Cardiol. 2016;118(12):1826–30.
- Howard G, Lackland DT, Kleindorfer DO, Kissela BM, Moy CS, Judd SE, Safford MM, Cushman M, Glasser SP, Howard VJ. Racial differences in the impact of elevated systolic blood pressure on stroke risk. JAMA Intern Med. 2013;173(1):46–51.
- Glasser SP, Halberg DL, Sands C, Gamboa CM, Muntner P, Safford M. Is pulse pressure an independent risk factor for incident acute coronary heart disease events? The REGARDS study. Am J Hypertens. 2014;27(4):555–63.
- Safford MM, Gamboa CM, Durant RW, Brown TM, Glasser SP, Shikany JM, Zweifler RM, Howard G, Muntner P. Race-sex differences in the management of hyperlipidemia: the REasons for geographic and racial differences in stroke study. Am J Prev Med. 2015;48(5):520–7.
- McClure LA, Kleindorfer DO, Kissela BM, Cushman M, Soliman EZ, Howard G. Assessing the performance of the Framingham stroke risk score in the reasons for geographic and racial differences in stroke cohort. Stroke. 2014; 45(6):1716.
- O'Neal WT, Qureshi WT, Judd SE, Meschia JF, Howard VJ, Howard G, Soliman EZ. Heart rate and ischemic stroke: the REasons for geographic and racial differences in stroke (REGARDS) study. Int J Stroke. 2015;10(8):1229–35.
- Kulshreshtha A, Vaccarino V, Judd SE, Howard VJ, McClellan WM, Muntner P, Hong Y, Safford MM, Goyal A, Cushman M: Life's Simple 7 and risk of incident stroke: the reasons for geographic and racial differences in stroke study. Stroke 2013, 44(7): doi: https://doi.org/10.1161/STROKEAHA.111.000352.
- Kennedy RE, Howard G, Go RC, Rothwell PM, Tiwari HK, Feng R, McClure LA, Prineas RJ, Banerjee A, Arnett DK. Association between family risk of stroke and myocardial infarction with prevalent risk factors and coexisting diseases. Stroke. 2012;43(4):974.
- Kronish IM, Carson AP, Davidson KW, Muntner P, Safford MM. Depressive symptoms and cardiovascular health by the American Heart Association's definition in the reasons for geographic and racial differences in stroke (REGARDS) study. PLoS One. 2012;7(12):e52771.
- Shimbo D, Levitan EB, Booth JN, Calhoun DA, Judd SE, Lackland DT, Safford MM, Oparil S, Muntner P. The contributions of unhealthy lifestyle factors to apparent resistant hypertension: findings from the Reasons for Geographic And Racial Differences in Stroke (REGARDS) study. J Hypertens. 2013;31(2). https://doi.org/10.1097/HJH.06013e32835b6be7
- 63. Lewis MW, Khodneva Y, Redmond N, Durant RW, Judd SE, Wilkinson LL, Howard VJ, Safford MM. The impact of the combination of income and education on the incidence of coronary heart disease in the prospective reasons for geographic and racial differences in stroke (REGARDS) cohort study. BMC Public Health. 2015;15:1312.
- Tsivgoulis G, Judd S, Letter AJ, Alexandrov AV, Howard G, Nahab F, Unverzagt FW, Moy C, Howard VJ, Kissela B, et al. Adherence to a Mediterranean diet and risk of incident cognitive impairment. Neurology. 2013;80(18):1684–92.

- McDonnell MN, Hillier SL, Judd SE, Yuan Y, Hooker SP, Howard VJ.
 Association between television viewing time and risk of incident stroke in a general population: results from the REGARDS study. Prev Med. 2016;87:1–5.
- Warnock DG, Muntner P, McCullough PA, Zhang X, McClure LA, Zakai N, Cushman M, Newsome BB, Kewalramani R, Steffes MW, et al. Kidney function, albuminuria, and all-cause mortality in the REGARDS (reasons for geographic and racial differences in stroke) study. Am J Kidney Dis. 2010; 56(5):861–71.
- 67. Colantonio LD, Tanner RM, Warnock DG, Gutiérrez OM, Judd S, Muntner P, Bowling CB. The role of cystatin-C in the confirmation of reduced glomerular filtration rate among the oldest old. Arch Med Sci. 2016;12(1):55.
- Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, Polkinghorne KR, Shankar A, Smith DH, Tonelli M, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012;307(18):1941–51.
- Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

