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ABSTRACT OF DISSERTATION 

 

 
THERAPEUTIC TARGETING OF LEUKEMIA STEM CELLS TO 

PREVENT T-CELL ACUTE LYMPHOBLASTIC LEUKEMIA RELAPSE 
 

The survival rate of T-cell Acute Lymphoblastic Leukemia (T-ALL) relapse is a 
dismal 10% of affected adults and 30% of children, largely due to the relapsed disease 
being more aggressive and treatment resistant than the initial disease. Relapse is thought 
to occur because conventional chemotherapies are unable to reliably eliminate a unique 
cell type known as leukemia stem (or propagating) cells (LSCs). LSCs are the only cells 
within the leukemia with the ability to self-renew and remake or replenish the ALL from 
a single cell. Currently, the pathways governing self-renewal in LSCs are largely 
unknown, precluding our ability to successfully and selectively target this important cell 
type with anti-cancer drugs. More research is needed to identify targetable pathways and 
develop new technologies for studying LSCs.  

Here, I determined that the oncogenic phosphatase of regenerating liver 3 (PRL-3) 
plays a role in leukemia progression, migration, and self-renewal of LSCs in T-ALL in 
vivo in a zebrafish Myc-induced T-ALL model, while inhibition of PRL-3 reduced LSC 
numbers in vivo and in vitro. RNA sequencing and GSEA of patient T-ALL samples 
revealed that PRL-3’s role in self-renewal is at least partly due to activation of Wnt 
pathway signaling, a known driver of LSC function in T-ALL. While the Wnt pathway 
seems an ideal target for LSCs, Wnt signaling is critical for many normal and 
developmental processes. Clinical trials for Wnt inhibitors have shown undesirable 
toxicity and these drugs are not practical for use in children with T-ALL due to 
developmental concerns. Thus, a major gap in knowledge concerning leukemia stem cells 
in T-ALL is the identification of regulators of Wnt signaling, like PRL-3, that are 
uniquely expressed by leukemia cells and easily targeted with small molecules. To 
expand my research beyond PRL-3, I have developed a novel zebrafish T-ALL model 
where Wnt expressing cells fluorescently labeled. These animals can be used as a model 
for studying LSC function and identifying novel drugs that can target Wnt-expressing T-
ALL cells in vivo. 

 I have also developed novel translational technologies that may be used to predict 
LSC driven relapse in T-ALL. I have optimized a zebrafish larval xenograft model for 
transplant and rapid drug screening of human T-ALL cell lines and patient samples to 
gain insight into tumor progression and resistance to chemotherapy. I have also 
developed a novel pipeline for using cell-free circulating tumor DNA (ctDNA) as a 
biomarker of disease relapse in patients with ALL, enabling tracking of disease course, 
assessment of minimal residual disease, and as a potential predictor of patient relapse. 

Taken together, my research has established PRL-3 as a potential therapeutic 
target in T-ALL,  and provided new insight into the role of a PRL-3/Wnt signaling axis in 
regulating LSC self-renewal. Additionally, the new models and techniques that I have 
developed are useful tools in analyzing LSC function, targeting self-renewal, and 
predicting ALL relapse.  
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1.1 Clinical Features of T-cell Acute Lymphoblastic Leukemia (T-ALL) 

In the United States, there are approximately 16,000 cases of pediatric cancer 

diagnosed per year, which equates to 43 children diagnosed with cancer each day (data 

from Alex’s Lemonade Stand Foundation). T-cell acute lymphoblastic leukemia (T-ALL) 

is an aggressive subset of the most common pediatric malignancy, acute lymphoblastic 

leukemia (ALL). ALL makes up about 1/3 of pediatric malignancies and is characterized 

by an abnormal proliferation of leukocytes. T-ALL is characterized by an abnormal 

proliferation of thymocytes and makes up 15-25% of all pediatric leukemias 1,2. A great 

deal of progress has been made towards improving outcomes in leukemia patients, yet 

outcomes for T-ALL are far inferior to those for B-cell acute lymphoblastic leukemia (B-

ALL) 3. T-ALL is also plagued by a high relapse rate, nearing 20% of patients, which is 

characterized by an aggressive and often treatment-resistant form of disease from which 

only 10% of adults and 30% of children will recover 4.  

Clinically, T-ALL occurs most commonly in adolescent children, with a median age 

of onset of 9 years, and has a three-fold higher incidence in males than in females 5. T-ALL 

can present acutely or symptoms can come on over a duration of months. Patients often 

present with constitutional symptoms, including fever, weight loss, and fatigue. Additional 

symptoms include joint and bone pain, adenopathy, recurrent infection, mucosal bleeding, 

paleness, and hepatosplenomegaly. T-ALL also commonly has central nervous system 

(CNS) involvement which can present as headache, visual impairment, and nausea. 

When ALL is suspected, clinicians will order a complete blood count (CBC) which 

will show an elevated white blood cell (WBC) count, consistent with a leukemia diagnosis. 

However, a bone marrow biopsy is required for a true ALL diagnosis, showing >25% 
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leukemic blasts, or immature white blood cells. An anterior mediastinal mass is also seen 

in by radiography in 2/3 of T-ALL patients and represents an enlargement of the thymus. 

CNS involvement can been seen by magnetic resonance imaging (MRI). Finally, 

immunophenotyping must be done to distinguish T-ALL from other acute leukemias and 

genetic testing is run for risk-stratification. 

Assays to measure the genetic subgroups and immunophenotypes of T-ALL are still 

somewhat controversial in terms of prognostic implications, and most differentiation stage 

subgroups are still not formally included in the classification of T-ALL 6. Current standards 

for ALL diagnosis and characterization integrate cell morphology, immunophenotype, and 

genetics/cytogenetics based on the guidelines established by the World Health 

Organization (WHO) classification of solid tumors and leukemias/lymphomas. There are 

five recognized immunophenotype subgroups of T-ALL, characterized by the 2008 update 

to the WHO classification, that can delineate when the block in differentiation occurred 

and what stage of maturation the leukemic blasts are in 7. The first stage of differentiation 

is pro-T which is cytoplasmic CD3+ (cCD3+), CD7+, CD2-, CD1a-, and CD34+/-. Next 

is pre-T which is cCD3+, CD7+, and CD5/CD2+, CD1a-, and CD34+/-. Precursor T-ALL 

makes up about 15% of childhood T-ALL with a variable clinical onset and a 5-year event-

free survival of about 75% 8. Cortical T is cCD3+, CD7+, CD2+, Cd1a+, and CD34-. 

Finally, mature or medullary T is cCD3+, CD7+, CD2+, CD1a-, CD34- and surface CD3+ 

(sCD3+) 9. Cases of pro- and pre- T-ALL tend to have a worse outcome than cortical or 

mature T-ALL as the cells are less differentiated and often more aggressive. A new 

subgroup recently characterized in the 2016 WHO classification update is early-T 

precursor ALL (ETP-ALL) which is CD1a-, CD8-, weakly CD5+ and shows expression of 
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at least one myeloid and/or stem cell marker 6. This type of T-ALL was originally thought 

of as being more aggressive, however with more aggressive treatment the prognosis is now 

the same as other types of T-ALL 6,10.  

Cytogenetics also play a major role in characterizing and stratifying T-ALL based 

on prognosis. One important cytogenetic abnormality associated with good prognosis in T-

ALL is t(10;14)(q24;q11) 7. The most frequent abnormalities in T-ALL involve 14q11 

breakpoints such as t(10;14)(q24;q11), t(11;14)(p13;q11), or others. The presence of 

t(8;14) with breakpoints at q24;q11 in T-ALL is associated with a lymphomatous, 

aggressive presentation 11,12. However, despite some cytogenetic characterization in T-

ALL, this information rarely correlates with risk stratification or differences in treatment 

regimens. 

Finally, since the onset of next generation sequencing, T-ALL can be further 

characterized based on gene mutations and aberrant gene expression, yet this has still not 

translated to changes in clinical practice. In T-ALL, aberrations in the T-cell receptor 

(TCR) gene, NOTCH1, MYC, LMO2, FBW7, BCL11B, JAK1, PTPN2, IL7R, and PHF6 

are the most common 7. NOTCH1 is the most commonly mutated gene in pediatric T-ALL 

with >60% of pediatric T-ALL patients containing an activating mutation in NOTCH1 13,14. 

Chromosomal rearrangements can also lead to in-frame fusion genes encoding chimeric 

proteins such as PICALM-MLLT10, NUP214-ABL1, EML-ABL1, SET-NUP214, and 

MLL gene rearrangements with oncogenic properties 7. However, the prognostic features 

of these mutations and gene rearrangements have not been well characterized as there is 

such a wide variety of mutations and rearrangements from patient to patient, unlike other 

adult cancers which have more concordance in mutations between patients. 
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1.2 Treatment of T-ALL 

Because T-ALL has a higher rate of treatment resistance and tends to have earlier 

and more frequent relapse than B-ALL, it is often treated with similar, but more aggressive 

treatment regimens than B-ALL 3. Treatment for T-ALL consists of three phases spanning 

multiple years: induction, consolidation, and maintenance phases. In each of these phases, 

patients are treated with different cocktails of chemotherapies. Prior to treatment, patients 

are stratified into low, intermediate, or high-risk sub-groups which determines their course 

of treatment as well. However, one unique feature of T-ALL compared to B-ALL is that 

age and presenting white blood cell (WBC) count are not necessarily independently 

prognostic in T-ALL patients, so more research is needed to better risk stratify T-ALL 

patients prior to treatment 2. Furthermore, although there are standard of care therapies for 

treating T-ALL, many patients are enrolled in clinical trials, most of which are run by the 

Children’s Oncology Group, to compare new treatment regimens to each other or study the 

effect of newer therapies for T-ALL treatment.  

The induction phase of treatment for T-ALL typically lasts 4-6 weeks and is the 

initial phase of treatment in patients, with the goal being to induce remission by the end of 

induction therapy. This phase consists of treatment with a cocktail of chemotherapies, 

including: vincristine, glucocorticoids, L-asparaginase, an anthracycline (often 

danorubicin) and sometimes cyclophosphamide 15. Patients who fail to achieve remission 

and still have detectable residual disease by bone marrow biopsy at the end of induction 

therapy may have to undergo re-induction depending on their risk stratification and 

prognostic factors. 
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The consolidation phase of treatment lasts 6-8 months and is made up of intensive 

combination chemotherapy treatment. Chemotherapies used during consolidation therapy 

are often a cocktail of the same drugs that are used during induction phase, as well as Ara-

C, etoposide, methotrexate, and 6-mercaptopurine. This phase tends to be very taxing on 

patients, and they often require multiple hospitalizations, fluid resuscitation, blood 

transfusions, and management of opportunistic infections.  

The maintenance phase is the final phase of treatment, lasts 18-24 months, and is 

characterized by lower intensity, anti-metabolite-based chemotherapy. Chemotherapy 

during this phase is often given orally and treatment with methotrexate and 6-

mercaptopurine are common. This phase is often better tolerated by patients, and they can 

start returning to their normal life at this time. 

Because involvement of the central nervous system (CNS) is not uncommon in T-

ALL, patients will receive intrathecal chemotherapy of methotrexate, cytarabine, or 

hydrocortisone as a prophylactic treatment. This is routinely given in 6 or more doses over 

the course of treatment for prophylaxis and usually occurs within the first 2-4 months of 

treatment. If CNS involvement is detected, patients will then be subjected to further 

intrathecal chemotherapy treatment and cranial radiation.  

Another treatment option in ALL that is sometimes, but not frequently, utilized in 

high-risk T-ALL patients is hematopoietic stem cell transplantation. Cytogenetics is the 

most common risk factor in predicting which patients should go on to have a stem cell 

transplant, and this treatment is not often curative. Patients who undergo stem cell 

transplantation still have a very high rate of disease relapse and often maintain a poor 

prognosis after transplant. While treatment with chemotherapy and stem cell transplant 
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have significantly improved patient survival, they do not come without significant 

toxicities and sequelae that patients have to endure, making research necessary to develop 

more targeted therapies with less long-term side effects. 

There are very few targeted therapies available for T-ALL patients, and this field is 

lacking far behind other diseases. However, one class of targeted therapies that are used in 

T-ALL treatment is imatinib or dasatinib, which are tyrosine kinase receptor inhibitors that 

are used in conjunction with other more traditional chemotherapies in patients with 

Philadelphia chromosome positive T-ALL. Development of other targeted therapies is still 

a work in progress and clinical or pre-clinical trials are undergoing utilizing inhibitors of 

many common cancer signaling pathways as therapeutic targets including: Notch 

inhibitors, PI3K/AKT/mTOR inhibitors, JAK/STAT inhibitors, MAPK inhibitors, In 

addition, cell cycle inhibitors and proteasome inhibitors are in clinical trials for T-ALL 

treatment. Finally, epigenetic agents and immunotherapies are under development for T-

ALL, including monoclonal antibody and BiTE/CAR immunotherapies 2. 

1.3 Patients with T-ALL Relapse have a Poor Overall Prognosis 

The cure rate for T-ALL has drastically improved in recent years, with 5-year event-

free and overall survival rates over 70% and 80%, respectively 5,16. However, relapse is 

relatively common in T-ALL, with approximately 25% of children diagnosed with T-ALL 

experiencing disease relapse. Both extramedullary relapse and induction failure are more 

common in T-ALL than in B-ALL, and the prognosis of relapse is very poor, with only a 

30-50% survival rate 16,17.  
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Currently, strong predictors for disease relapse are lacking, yet some factors are 

known to put patients at a higher risk of disease relapse. Relapse typically occurs within 2 

years of initial diagnosis and most often occurs during the maintenance phase of treatment 

2. Relapse can be characterized by clonal evolution and selection of resistant genetic 

variants, with the dominant clone at relapse often being a minor clone at diagnosis 2,16.  

At the present time, the best indicator of a high risk of relapse is having a high 

minimal residual disease (MRD) at the end of induction therapy and end of consolidation 

therapy 2,16. MRD is defined as the persistence of leukemic cells after therapy, which are 

often tracked by molecular methods or flow cytometry throughout the course of treatment. 

More sensitive methods using quantitative polymerase chain reaction (qPCR) to assess for 

fusion transcripts or T-cell receptor (TCR) rearrangements is starting to become the 

dominant method for MRD tracking 5,18,19. 

Additionally, the presence of certain mutations have been associated with relapse as 

well. For example, cytosolic 5’-nucleotidase II (NT5C2) mutations are found in 20% of T-

ALL relapses and transcription factor Dp family member 3 (TFDP3) mutations are highly 

associated with chemoresistance 20,21. Relapsed clones are also enriched for additional 

chemoresistance genes such as mutS homolog 6 (MSH6) or mutations in the mitogen-

activated protein kinase (MAPK) gene leading to resistance to glucocorticoid treatment 2. 

Treatment for T-ALL relapse involves re-induction chemotherapy, where patients 

cycle back and re-start induction therapy until they are able to achieve remission without 

detectable MRD at the end of induction. The re-induction remission rate for relapsed T-

ALL is only 30-40%. Other treatments are being studied for use in T-ALL relapse such as 

bortezomib, which is a proteasome inhibitor that shows some promise. Eventually, most 
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relapsed patients undergo stem cell transplantation, which can have undesirable side effects 

and risks to the patient 2. 

1.4 Targeted Therapies Remain a Challenge in T-ALL Treatment 

Despite the significant amount of progress that has been made in improving 

treatment regimens and outcomes for patients with T-ALL, there are still many challenges 

that remain. First, treatment with intensive chemotherapy over the course of multiple years 

does not come without significant toxicities and side effects. Patients end up severely 

immunocompromised and hospitalized with opportunistic infections. Each chemotherapy 

drug also has associated toxicities, such as nephrotoxicity, ototoxicity, cardiotoxicity, 

along with common side effects such as loss of hair, nausea, and fatigue.  

Treatment with chemotherapy or radiation can also increase the likelihood of 

patients developing secondary cancers from their treatment regimens. For example, 

alkylating agents (cyclophosphamide) and anthracyclines (danorubicin) which are part of 

standard of care treatment for T-ALL have been linked to an increased risk of developing 

acute myeloid leukemia (AML) secondary to treatment. Radiation, depending on the site 

of treatment, can lead to secondary cancers of the skin, breast, thyroid gland, bones, spine, 

or brain 22.  

CNS prophylaxis or treatment of CNS disease with intrathecal chemotherapy or 

cranial radiation can induce debilitating toxicities and disabilities in patients. Many 

chemotherapies are neurotoxic and can induce side effects such as headaches, dizziness, 

fatigue, blurred vision or loss of balance. Long-term effects of intrathecal chemotherapy 

include but are not limited to: seizures, impaired executive function, cognitive deficits, 
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brain abnormalities, and leukoencephalopathy 23,24. Cranial irradiation has many of the 

same toxicities as intrathecal chemotherapy, however these toxicities are more commonly 

observed and tend to be more severe than with chemotherapy. One additional side effect 

seen with cranial irradiation is brain tissue necrosis, which is devastating to patients 25. 

Physicians are consciously limiting the amount of cranial irradiation done in patients with 

ALL, especially as a prophylactic measure, due to the long term cognitive effects and 

toxicities that are detrimental to patient quality of life. 

The shift towards using more targeted therapies would significantly reduce 

toxicities and long-term sequelae seen in patients after treatment. Unfortunately, the use of 

target therapies and immunotherapies in T-ALL is lagging significantly behind other 

leukemias. This is due to both a lack of knowledge of specific oncogenic targets as well as 

major challenges in utilizing T-cell based immunotherapies in T-ALL 26. While chimeric 

antigen receptor (CAR) T-cells have completely revolutionized the treatment regimens in 

B-ALL, engineering CAR T-cells from leukemic cells has many barriers, including T-cell 

fratricide by T-cell targeted clones and risk of severe immunodeficiency secondary to 

elimination of normal T-cells 3,26. Recent studies using monoclonal antibody 

immunotherapy, such as antibodies targeting IL-7Rα, have shown promise in pre-clinical 

trials in the treatment of T-ALL 27. The development of targeted therapies towards 

oncogenic mutations common in T-ALL, such as NOTCH and PI3K/AKT/mTOR 

pathways, and immunotherapies utilizing monoclonal antibodies are underway, they have 

yet to show major success in clinical trials in T-ALL 3. 

In total, the major clinical concern regarding T-ALL is the disproportionately high 

rate of relapse in this disease compared to other acute leukemias. Not only is the relapse 
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rate higher, but the prognosis of relapsed patients is worse for T-ALL than in any other 

type of acute leukemia. More research is needed to better understand the causes of T-ALL 

relapse and identify better treatment regimens to improve the outcome of patients with 

relapsed T-ALL.   
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2.1 Cancer Stem Cells Drive Cancer Progression and Relapse 

The idea of cancer stem cells (CSCs) is not a novel concept, despite the recent 

resurgence in research interest in cancer stem cells. The concept first came about in 1937 

when it was demonstrated that a single cell from a mouse tumor could form a new tumor 

in a recipient mouse 28. In the decades following, further transplantation studies validated 

that solid tumors were able to re-form in mouse recipients from a very small population of 

initial tumor cells, ranging from 103 to 107 cells 29–31. In the late 1960s and 1970s, stem-

like cells were first reported in hematologic malignancies 31–35. However, the discovery of 

oncogenes and tumor suppressor genes in the 1970s shifted the focus of cancer research 

away from cancer stem cells for decades to follow 32.  

In 1994, a resurgence of cancer stem cell research began when John Dick’s group 

identified a sub-population of tumor-initiating cells in acute myeloid leukemia (AML) 

upon transplantation into immune-compromised mice 36. CSCs behave much like normal 

tissue stem cells and it is thought that they may arise from normal adult stem cells or 

precursor cells. CSCs have been identified in a wide variety of both hematologic 

malignancies and solid tumors, including but not limited to, leukemia, breast cancer, colon 

cancer, liver cancer, pancreatic cancer, lung cancer, prostate cancer, melanoma, and brain 

cancer 37–39. 

Current research in the field suggests that cancer stem cells make up a small 

minority of a bulk tumor and these cells are long-lasting, chemotherapy and radiation 

resistant, and are capable of undergoing self-renewal and differentiation, both reproducing 

themselves and repopulating the tumor, causing relapse in patients or tumor re-growth upon 

transplantation into mice 39. The bulk of the tumor is then made up of non-CSCs that are 
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fully-differentiated and only capable of transient, rapid proliferation and do not contribute 

to long-term growth and maintenance of the tumor 32. However, some groups have 

identified tumors in which CSCs are both abundant and rapidly proliferating 40. It is likely 

that different tumors types and even individual tumors of the same type have significant 

variations in CSC frequency and properties. 

Self-renewal, a defining characteristic of CSCs, is a process by which stem cells, 

including CSCs, undergo division to repopulate the undifferentiated stem cell population 

41. Adding layers of complexity to the CSC phenotype, the cancer stem cell/self-renewing 

state may not be hard-wired in specific cells, and instead be a state that any tumor cell 

could transition in and out of, a concept known as CSC plasticity. Yet many people believe 

it is an intrinsic property of CSCs that can be regulated by either intrinsic or extrinsic 

signals from the CSC niche 40,41. Some cancer types, such as colorectal cancer, seem to 

have more plasticity in their cancer stem cells compared to more hierarchical, 

unidirectional organization of CSCs found in other cancers such as glioblastoma and AML 

40. Cancers with CSC plasticity will present their own unique challenges for targeting CSCs 

therapeutically, as targeting a transient state is very difficult. 

Another defining feature of CSCs is resistance to standard cytotoxic chemotherapy 

regimens. Treatment resistance in CSCs is due to a combination of mechanisms, including: 

upregulation of drug efflux pumps, ability to adopt a quiescent state, cell plasticity, 

increased DNA-repair capacity, anti-apoptotic protein expression and protection against 

reactive oxygen species 32,40,42. Current cancer treatment eliminates rapidly dividing cells 

and therefore favors the selection of dormant, quiescent clones that then have the potential 

to become dominant after treatment 43. This adaptation of a dormant state can be via gene 
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expression changes or epigenetic changes from selection pressure induced by cancer 

treatment 40. 

Studying CSCs and their properties has also proved challenging. Oftentimes, CSCs 

are selected for or enriched for by cell surface markers, however this introduces bias and 

often misses critical CSC biology 39,44. Identifying CSC-specific cell surface markers is a 

major area of research focus currently and is required to be able to isolate, study, and target 

CSCs in the future. The gold standard of CSC experimentation remains limiting dilution 

transplantation assessing self-renewal potential with regeneration of a tumor resembling 

the original tumor that the cancer stem cell was derived from 39. Another method for 

studying CSCs is by lineage-tracing, which may be a more appropriate method for better 

understanding CSC fate because it allows for following specific cells and tracking their 

behavior over time 40. However, the lack of pre-clinical models available for studying and 

tracking CSCs in vivo and in primary tumors is a major limitation in CSC research and 

development of new models is imperative 32,45. 

 Despite all the different theories and unknowns surrounding cancer stem cells, 

cancer relapse has been demonstrated to be enriched in cancer stem cells, likely due to 

selection pressures towards resistant cells during cancer treatment, and targeting these 

CSCs in relapse is going to be critical to improving outcomes in relapsed patients 46–49. 

Local recurrence of disease is inevitable in patients treated with only cytotoxic 

chemotherapy and radiation treatment due to the presence of cancer stem cells that are 

inherently resistant to these types of therapies 32. 
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2.2 Leukemia Stem Cells Self-Renew and are Treatment Resistant 

The first evidence of leukemia stem cell clonal origin in acute myeloid leukemia 

(AML) was in 1974 and since then, AML has served as a model disease for both leukemia 

and cancer stem cell research 50. In 1992, evidence of LSCs in long-term co-culture models 

was published and in 1994, a small sub-population of AML-initiating cells was identified 

and characterized after transplantation into immune compromised mice 36,51. These 

leukemia-initiating cells were found to be CD34+/CD38- with a LSC frequency of one in 

one-million cells was a LSC 36. Expanded clonal populations of pre-leukemic HSCs have 

been identified in AML patient samples and in myeloid leukemias, LSCs and pre-leukemic 

LSCs, for the most part, arise directly from mutations in HSCs or hematopoietic progenitor 

cells 52–55. Clinically, LSCs are treatment resistant and responsible for relapse in patients, 

with residual LSCs evading chemotherapy, undergoing clonal expansion, and causing 

patient relapse 56–58. 

The CD34+/CD38- phenotype was the first LSC immunophenotype identified and 

widely accepted 36,59,60. Since then, AML LSCs have been identified in both CD34+ and 

CD34- cell populations and there is a lack of consensus in the field on consistent markers 

for LSCs in leukemias 61–64. Some believe that non-CD34+/CD38- LSCs arise from more 

mature myeloid cells compared to CD34+/CD38- LSCs which are thought to arise from 

hematopoietic stem cells (HSCs) 65. More than 15 different cell surface markers have been 

identified as LSC markers in chronic myelogenous leukemia (CML) and AML 65. Due the 

wide variety and lack of consensus in LSC-specific cell-surface markers, engraftment into 

immune compromised mice remains the gold-standard of identifying LSCs in patient AML 

samples 65. However, many CML samples fail to engraft into xenograft models, making 
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studying CML LSCs more complicated and these cells may have compromised self-

renewal potential 51,65. The advent of single cell analysis and cell barcoding will likely help 

to identify newer, more consistent, and more specific LSC markers in the future that can 

be capitalized on as therapeutic targets. 

Despite the high degree of plasticity and reversibility observed in many different 

solid tumor CSCs, LSCs in AML were found to follow a hierarchical pattern 60. 

Additionally, functional hierarchies and heterogeneity may even be present within LSC 

populations from a single patient. LSCs are non-cycling cells and are located in the 

endosteal bone marrow region 66. They are further characterized by their resistance to 

treatment, and even demonstrate resistance against targeted therapies, such as imatinib in 

CML 67. LSC quiescence and self-renewal, much like CSC self-renewal in general, has 

been attributed to signaling through growth factors, microRNAs and other regulatory 

pathways 65. LSCs can also be reversibly quiescent and can be driven into cell cycling, 

which can be taken advantage of as a therapeutic strategy 66,68,69. 

A large number of signaling pathways have been implicated in the maintenance and 

leukemia-initiating properties of LSCs. Many of the same pathways critical to CSC 

maintenance and self-renewal are important in LSC self-renewal and maintenance. Wnt, 

NOTCH, Hedgehog, and bone morphogenic protein signaling are commonly de-regulated 

in LSCs 70,71. Other pathways such as PI3K/AKT/mTOR and JAK/STAT are also important 

in LSC maintenance. Finally, signaling from the bone marrow niche of LSCs in myeloid 

malignancies via CXCR4, HIF, SCF and VEGF is essential to LSC maintenance as well 

72. 
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Epigenetics also plays a role in LSCs, with the first evidence of altered epigenomes 

in LSCs arising in 2011 73. LSCs in AML display an epigenetic and mRNA signature that 

is similar to HSCs or hematopoietic progenitor cells, yet are still distinct from this 

population 62,74–76. Methylation patterns and regulation of epigenetic markers are often 

unique in LSCs 75,77,78. 

Finally, metabolism has recently become an emerging are of focus in LSC research 

and is critical to LSC survival. In 2013 it was published that LSCs are dependent on 

oxidative phosphorylation and inhibition of this process can specifically target LSCs 79. 

Recent studies have looked at sorting for the presence of reactive oxygen species (ROS) as 

a marker of LSCs 80. Yet even this is inconsistent, as CML LSCs show high levels of ROS 

and AML LSCs show low ROS levels compared to bulk tumor cells 79,81–83. 

2.3 Targeting Cancer Stem Cells 

Current chemotherapies target rapidly proliferating cells, which do not impact 

slow-dividing, often quiescent, cancer stem cells. Furthermore, bias is introduced in pre-

clinical testing for cancer therapeutics as the end-point of these studies is often shrinking 

of the bulk tumor, selecting for drugs that likely target bulk tumor cells and not complete 

elimination of cancer stem cells (Figure 2.1). Research is being done on treatments that 

target CSCs specifically via a variety of mechanisms. It is likely that combination treatment 

targeting both CSCs and the bulk tumor will be necessary to both eliminate CSCs and bulk 

tumor cells.  
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Figure 2.1 Cancer Stem Cells Drive Patient Relapse 

Cancer or leukemia stem cells (yellow) make up a small minority of bulk cancer 
tumors. These cancer stem cells are chemotherapy and radiation therapy resistant, 
can undergo self-renewal and differentiation, and re-populate a tumor, causing 
cancer relapse in patients. With LSC or CSC targeted therapies, CSCs would be 
eliminated or forced to terminally differentiate, and when combined with 
traditional chemotherapy and radiation therapy, would both shrink the tumor and 
prevent tumor regeneration, eliminating relapse potential.  

 

One current limitation is that a lack of correlation remains between the proportion 

of CSCs in a patient’s tumor and prediction of clinical outcomes, preventing translational 

applications of cancer stem cell research and therapies 39. Additionally, there is a large 

degree of patient-to-patient variability in CSCs and the CSC frequency between patients is 

highly inconsistent 45. Yet despite the challenges, recent efforts have devised a variety of 

strategies to specifically target LSCs or CSCs, some of which have had more success than 

others. There are two main strategies for targeting CSCs: forcing differentiation to increase 

susceptibility to chemotherapy, or preventing activation or differentiation of quiescent 

cells, preventing them from ever forming cancer relapse 39,45,84. Both of these strategies are 
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being tested in combination with an array of different types of therapy aimed at preventing 

or better treating patient relapse in vivo.  

The most obvious way to target CSCs is to target signaling pathways that are critical 

in maintaining CSCs or that are involved in CSC self-renewal. Research is ongoing on the 

potential of targeting cell-cycle checkpoints and DNA-damage repair pathways in CSCs 

45. Drugs aimed at developmental pathways have been developed and many are in clinical 

trials, including Wnt pathway inhibitors, which are described in detail in Chapter 4. 

Antibodies against Notch signaling components, such as delta like ligand 4 (DLL4) 

decreased tumor cell proliferation and CSC function in a colon cancer mouse model and 

eliminated tumor initiating cells in neuroendocrine cancer 85,86. Signal transducer and 

activator of transcription 3 (STAT3) inhibitors are also in clinical trials and seem promising 

for targeting LSCs in AML 84,87. 

Another way to target CSCs is by identifying and targeting unique cell-surface 

markers, making identification of CSC-specific markers imperative. A monoclonal 

antibody against the interleukin-3 receptor alpha chain (CD123) decreases LSCs in a 

mouse model of AML 88. Targeting of the receptor for interleukin-8 (CXCR1) on the cell 

surface of breast cancer cells in combination with traditional chemotherapy eliminated 

breast cancer bulk tumor and cancer stem cells in a xenograft mouse model 89,90. Antibody-

drug conjugates directed against CD33+ leukemic stem cells showed success in clinical 

trials in AML, but ultimately displayed too high of a degree of toxicities 91. 

Epigenetic manipulation of CSCs is an additional strategy being studied as a CSC 

therapeutic. Clinical trials are ongoing using epigenetic regulators of CSCs in AML and 

solid tumors. The most popular epigenetic targets currently are: bromodomain and 
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extraterminal domain (BET) proteins, histone deacetylases (HDACs), lysine-specific 

histone demethylase 1A (LSD1), and isocitrate dehydrogenases (IDH1/IDH2) 40. The most 

promising of these epigenetic regulators seem to be HDAC inhibitors, which are FDA-

approved in multiple malignancies. 

Finally, targeting interactions with the CSC niche holds promise. The cancer stem 

cell niche is made up of the extracellular matrix and a variety of cell types, including 

fibroblasts, neutrophils, macrophages, and stromal cells. Targeting of each of these cell 

types are currently being studied as therapeutic options 92–94. Additionally, targeting of the 

extracellular matrix components and interactions with cancer stem cells, such as disruption 

of matrix metalloproteinases (MMPs), integrins, collagenase, and hyaluronidase have 

shown potential 95–97. 

A major success story and proof of principle for CSC-targeted therapy is in acute 

promyelocytic leukemia (APML). In this disease, leukemic cells are blocked in an 

undifferentiated state, acting similar to undifferentiated LSCs 98. The use of all-trans 

retinoic acid (ATRA) and arsenic trioxide, which has been used in the treatment of APL 

clinically for decades, induces terminal differentiation of APML stem-like cells, leading to 

eradication of this disease 99–102. When combined with traditional chemotherapy, these 

leukemic cells are forced to terminally differentiate and are eliminated by traditional 

chemotherapy, improving outcomes even further 103,104. These studies provide proof of 

principle for therapies that strive to induce differentiation of CSCs in clinical practice.  

Overall, there are a wide variety of strategies that are being studied as CSC 

therapeutics, many of which hold promise in pre-clinical or clinical trials. Yet with these 

successes, there are challenges that remain in targeting CSCs, including: CSC plasticity, 
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potential damage to normal stem cell populations, a lack of CSC-specific markers, and a 

lack of experimental models to perform high-throughput drug screens for efficacy against 

CSCs in vivo. Despite these challenges, therapeutic targeting of CSCs holds promise and 

the first successes in CSC based therapies are starting to emerge. 

2.4 LSCs in ALL are Responsible for Disease Relapse 

In ALL, LSCs are not as well characterized as they are in myeloid leukemias. 

Leukemia stem cells have been identified in B-ALL with a wide variety of cell-surface 

markers. CD34+/CD38- cells are enriched for LSCs in B-ALL as they are in myeloid 

leukemias 105. This is likely due to the fact that B-ALL is derived from the bone marrow 

progenitor cells similar to AML. Yet additional cell populations have been identified as 

enriched for LSCs in B-ALL, including: CD34+/CD19-, CD34+/CD19+, 

CD34+/CD38+/CD19+, CD34+/CD38-/CD19+, and CD34-/CD19+ 106–111. Despite a lack of 

consensus markers of LSCs in B-ALL, there is a consensus that there are leukemia-

initiating cells present in B-ALL that are capable of self-renewal, differentiation, and tumor 

formation in vivo. 

In T-ALL, disease origin is unique, as leukemic T-cells are not derived from the 

bone marrow as in other leukemias, but from immature T-cells located in the thymus driven 

by T-cell receptor (TCR) rearrangements 112. There is a great deal of evidence that LSCs 

exist in T-ALL, derived from immature thymocytes, that are capable of de novo tumor 

formation, self-renewal, and quiescence. LSCs in T-ALL that form leukemias upon 

transplantation have been identified in zebrafish models, mouse models, and patient 

samples 106,113–128. In T-ALL patients, LSCs are present throughout the course of initial 
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disease and relapse and were found to persist even after treatment with dexamethasone in 

high-risk T-ALL 117.  

In normal T-cell differentiation, early thymocytes can acquire stemness features, 

self-renew, and can repopulate the full T-cell repertoire 112,129,130. This happens via Notch 

signaling, leading to activation of TCF7 and GATA3 which then leads to activation of 

BCL11B and LEF1 131. These changes cause transcriptional silencing of TAL1 and LMO2, 

leading to a loss of stem and progenitor cell potential. In addition, RAG1, RAG2, and 

PTCRA are upregulated and function in TCR recombination 112. Dysregulation of these 

proteins, such as Notch, TAL1, and LMO2 are drivers of T-ALL disease formation and 

promote a more immature, stem-like phenotype. 

As in B-ALL, there is a lack of consensus on stem cell-specific cell surface markers 

in T-ALL. CD34+/CD4-, CD34+/CD7-, and CD34+/CD7+ cell populations have all been 

shown to have leukemia-initiating capacity and engraftment capabilities 113,115. 

CD7+/CD1a- cells are also enriched in LSCs and demonstrate glucocorticoid resistance 117. 

CKitmid/CD3+ cells with Myc over-expression act as LSCs in a Pten null mouse model of 

T-ALL and can be targeted by inhibition of PI3K and Myc simultaneously 114,132. ROSlow 

and ROSlowCD44+ cell populations are enriched for T-ALL LSCs, implicating a role for 

metabolism in T-ALL LSCs 119. Finally, IL7R+ has been used as a cell-surface marker for 

isolating LSCs in T-ALL 124. 

Signaling pathways critical in T-ALL have a significant amount of overlap with 

CSC signaling pathways in general. Even though T-ALL LSCs are not derived from the 

bone marrow, it appears that a HSC-like transcriptional signature is induced in T-ALL 

LSCs 112. Notch signaling is essential for normal T-cell precursor development via Hes1 
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and Myc expression, and Notch inhibition abolished leukemia-initiating potential in a 

mouse T-ALL model 14,116. In a zebrafish T-ALL model, AKT/mTORC1 activation was 

identified as a driver of LSC self-renewal 128. Another protein enriched in LSCs in T-ALL 

is CXCR4, which modulates interaction with the microenvironment 126,127. Beta-catenin 

and HIF1α are also crucial to LSC self-renewal and maintenance in a mouse T-ALL model 

133. Further research will help to clarify signaling pathways important in T-ALL LSCs and 

characterize cross-talk between those pathways that have already been identified. 

2.5 Targeting LSCs in T-ALL 

A wide range of strategies have been suggested for targeting LSCs in T-ALL, yet 

none have become clinical realities. These strategies for targeted T-ALL LSC therapy are 

outlined in (Table 2.1) below. The most studied and most common strategy remains 

chemical inhibition of LSC signaling pathways, such as Notch, IGF, PI3K/AKT/mTOR, 

or Wnt/beta-catenin signaling 40,116,119,128,133,134. These strategies have shown promise, with 

targeting of Notch and Wnt/beta-catenin signaling demonstrating inhibition of LSCs in T-

ALL mouse models 116,133. Antibody therapies, cell-surface targeted therapies and cell 

cycle regulators are additional strategies for targeting LSCs135–143. More recently, data has 

emerged demonstrating epigenetic regulators and niche modulators may target LSCs in T-

ALL as well 126,127,144–150. Two major challenges with all of these methods is that there is 

overlap between normal stem cell and LSC signaling pathways, leading to depletion of 

normal stem cell populations with LSC-targeted therapies and LSC plasticity 151.  

The most promising strategy to eliminate LSCs with the least amount of side effects 

and without depletion of normal stem cell populations would be targeting of LSC-specific 
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cell-surface markers; however these markers have yet to be discovered. Identification of 

cell surface markers that are widely expressed on T-ALL LSCs and specific to LSCs is 

critical to the development of improved LSC-targeted therapies. The advent of LSC-

targeted therapies in T-ALL treatment, eliminating LSCs, would decrease patient relapse 

and dramatically improve T-ALL survival. Therefore, there is a major need in the field to 

define mechanisms of self-renewal in order to identify molecular targets for therapeutic 

targeting of T-ALL LSCs. 

Overall, the work in this dissertation examines leukemia stem cell biology and 

function and also looks at biomarkers or predictors of patient relapse and poor prognosis 

in ALL. Part 2 outlines a novel role for the oncogenic phosphatase of regenerating liver-3 

(PRL-3) in leukemia stem cell self-renewal (Chapter 3), at least in part, through the Wnt/β-

catenin signaling pathway (Chapter 4). While Part 3 outlines novel technologies and 

techniques used to detect and prevent ALL patient relapse and improve patient outcomes. 

Chapter 5 describes a novel LSC reporter zebrafish line that can be used to study LSC 

behavior and response to drug treatment in vivo. Chapter 6 focuses on utilization of 

zebrafish as a xenograft model for patient-derived cancer cells to predict patient response 

to drug treatment and the effect that different temperature and injection sites have on cancer 

cell behavior and metabolism. Finally, Chapter 7 outlines the use of cell-free DNA as a 

potential biomarker of residual disease in ALL. The work detailed in this dissertation both 

identifies a possible novel therapeutic target in T-ALL LSCs and describes new techniques 

developed for study of LSCs and disease relapse in a zebrafish model and in ALL patients. 
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TABLE 2.1 STRATEGIES FOR THERAPEUTIC TARGETING OF LEUKEMIA STEM CELLS 
Strategy Examples Mechanism Challenges References 

Chemical inhibition 
of stem-cell 
signaling pathways 

Notch, IGF, 
PI3K/AKT/mTOR, 
Wnt/beta-catenin pathway 
inhibition 

Inhibition of critical stem-cell 
pathways to block self-renewal 
or promote differentiation 

Toxicities against normal stem 
cells, lack of signaling pathways 
specific to cancer stem cells, 
LSC plasticity causes changes in 
signaling pathways 

40, 116, 
119, 128, 
133-134 

Antibody therapies 

Anti-LMO2 intracellular 
antibody, antibodies 
against cell surface 
markers 

Antibody-dependent cell 
cytotoxicity or disruption of 
protein complex formation 

Lack of specific targets, 
depletion of normal stem cells 135-137 

Targeting cell 
surface proteins 

CAR-T cells or antibodies 
against CD5, CD1a, or 
CD7 

Target proteins expressed 
specifically on the surface of 
LSCs leading to LSC 
elimination 

Lack of LSC-specific cell-
surface markers in T-ALL,  138-141 

Cell cycle 
regulation CDK7 inhibitors 

Modulate cell-cycle critical to 
LSC self-renewal and 
differentiation 

Quiescence impairs sensitivity to 
cell-cycle directed therapies 142-143 

Epigenetic 
regulators 

bromodomain inhibitors 
(BET4, JQ1), EZH2 
inhibitors, HDAC 
inhibitors 

Epigenetic modulation of 
expression of genes involved 
in self-renewal or 
differentiation 

Acquired resistance, toxicities, 
identification of epigenetic 
modulators 

144-150 

Niche modulators CXCR4/CXCL12 
inhibition 

Disrupt interaction with 
stromal cells 

Disruption of normal stem-cell 
niche interactions 126-127 
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PART 2. THE ROLE OF THE PROTEIN TYROSINE PHOSPHATASE PRL-3 IN T-ALL SELF-
RENEWAL 
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CHAPTER 3. PRL-3 ACCELERATES ALL PROGRESSION AND INCREASES LSC 
FREQUENCY 

Partially taken from: Protein tyrosine phosphatase 4A3 (PTP4A3/PRL-3) drives 
migration and progression of T-cell acute lymphoblastic leukemia in vitro and in vivo.  

Min Wei, Meghan Haney, Dylan Rivas, Jessica Blackburn. Oncogenesis, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

3.1 Introduction 

3.1.1 PRL-3 Identified as a Driver of Self-Renewal in T-ALL 

Preliminary data from an unbiased serial limiting dilution transplantation screen for 

drivers of self-renewal in a Myc-induced zebrafish T-ALL models suggested that PRL-3 

may play a role in leukemogenesis. Serial limiting dilution transplantation was done with 

tumors isolated from single leukemia clones to identify drivers of self-renewal in T-ALL. 

While most of the tumors maintained approximately the same LSC frequency with each 

passage, a subset (6 of 47) clonal leukemias developed an increase in LSC frequency with 

each serial transplantation 128. Microarray-based comparative genomic hybridization 

(aCGH) was done comparing low-self renewal tumors, or tumors with a low LSC 

frequency, with high self-renewal tumors with a high LSC frequency. aCGH showed 16 

recurrent amplifications at the genomic level in the tumors that evolved high self-renewal, 

one of which was PRL-3. PRL-3 expression was elevated in 13 of 36 leukemia clones that 

had high self-renewal at the initial limiting dilution transplantation and in 90% of clones 

that evolved high self-renewal over time with serial passaging (Blackburn and Langenau, 

unpublished). 

Based on this preliminary data indicating that PRL-3 plays a role in T-ALL, our lab 

began interrogating the role of PRL-3 in leukemia. We found that over-expression of PRL-

3 in leukemia cell lines increases migration capabilities and this phenotype is reversed by 

PRL-3 knock-down with shRNAs, without any effect on cell proliferation or apoptosis. 

This migration effect is due to activation of the Src kinase pathway signaling cascade. 

Overall, this publication demonstrated a clear role for PRL-3 in T-ALL migration and 

progression in vitro via Src kinase pathway signaling 152. 
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3.1.2 PRL-3 is a Dual-Specificity Protein Tyrosine Phosphatase 

Protein tyrosine phosphatase 4A3 (PTP4A3) or phosphatase of regenerating liver-

3 (PRL-3) is a cysteine-based dual-specificity protein tyrosine phosphatase. PTPs remove 

phosphate groups that are attached to tyrosine residues on their substrates. This class of 

phosphatases is made up of four different sub-families, characterized based on their 

catalytic domains and amino acid sequences. The first class of PTPs is the largest class and 

is known as the type-I cysteine-based PTPs. This class can then be further divided into the 

classical PTPs and the dual specificity PTPs (DUSPs). The phosphatase of regenerating 

liver (PRL) family is a subset of the DUSP family. The DUSP family, which PRL-3 

belongs to, is made up of 7 different subfamilies: Slingshots, PRLs, CDC14s, PTENs, 

Myotubularins, MKPs, and atypical DUSPs. The defining feature of DUSPs is that they 

are able to dephosphorylate both tyrosine and serine/threonine residues within one 

substrate 153. 

PRL-3 is a member of the PRL family of DUSPs. PRL-1 was the first protein 

identified in the PRL family in 1991 and was identified as one of the genes upregulated 

early in regenerating livers after partial hepatectomy 154. PRL-2 and PRL-3, the other two 

PRL family members, were later identified based on sequence homology in mice to PRL-

1 155. PRL-1 and PRL-2 are most similar in amino acid sequence, with PRL-3 being the 

most unique, yet still having 79% and 76% homology to PRL-1 and PRL-2 respectively 

156,157. The PRL proteins have a small molecular weight, at 22 kDa, and sequence alignment 

of PRL-1, 2, and 3 reveals a conserved catalytic PTP motif (also known as a P loop), a 

tryptophan-proline-phenylalanine-aspartate-aspartate (WPFDD) loop, a polybasic region 

and a cysteine-aliphatic amino acid- (any amino acid) (CAAX) prenylation motif (Figure 
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3.1) 156,158. Mutation of C104S in the P-loop region, and D72A in the WPFDD loop region 

yields a phosphatase dead mutant form of PRL-3. C104S mutation has been shown to lead 

to a loss of PRL-3 phosphatase activity in vivo and a loss of metastasis in a mouse xenograft 

model 159,160. Mutation of D72A has been reported to further decrease PRL enzymatic 

activity 161,162.  

The prenylation motif is unique to the PRL family of phosphatases and allows for 

anchoring of the protein into the cell membrane 158. The CAAX prenylation motif in PRL-

3 plays a role in subcellular localization, and PRL-3 has been demonstrated to shuttle 

between the cell membrane and nucleus during different phases of the cell cycle 162–165. 

Mutation of C170S in this prenylation motif disrupts the ability of PRL-3 to interact with 

negatively charged phospholipids in the membrane, inhibiting PRL-3 localization in the 

membrane 166,167. Deletion of the C-terminal prenylation motif of PRL-3 promotes nuclear 

accumulation yet the functional significance of this has not been well characterized 162. In 

addition to the prenylation motif, PRL-3 has a predicted nuclear localization sequence and 

may traffic predominately to the nucleus when the prenylation motif is disturbed and may 

play a role in functional regulation of PRL-3 162. 
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Figure 3.1 PRL-3 Protein Structure 
The cysteine residue in the P-loop (C104) acts as a nucleophile during 
phosphorylation and is critical for PRL-3 phosphatase activity. The aspartate 
residue in the WPFDD loop (D72A) acts as a proton donor and promotes 
formation and hydrolysis of the enzyme intermediate and is also critical for PRL-
3 phosphatase activity. The CAAX motif at the C-terminus is unique to the PRL 
family of PTPs and facilitates membrane binding (Adapted from Wei et al 2018 
158). 

 

In addition to acting as a phosphatase, PRL-3 has been demonstrated to have a non-

phosphatase dependent function as well. PRL-3 binds the a family of magnesium 

transporters, the cyclin M (CNNM) family, increasing intracellular magnesium 

concentrations 160. This increase can contribute to tumorigenesis and cancer progression 

both in vitro and in vivo 168. Interestingly, the phosphorylation binding site of PRL-3 is 

required for its role in binding to the magnesium transporter, even though it is not via a 

phosphorylation-dependent mechanism 160. These studies demonstrated a role for PRL-3 

in cancer that is not dependent on its function as a phosphatase, leading to the hypothesis 
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by some that PRL-3 may actually function as more of a pseudophosphatase than a true 

phosphatase. 

The normal cellular functions of PRLs have not yet been identified; however, 

expression of the PRLs has been shown to follow a magnesium-dependent circadian pattern 

and may play a role in circadian control of behavior and metabolism 169. Recently, animal 

knockout models of PRLs have shed some insight into their physiologic roles, but the 

knockout phenotypes are likely masked by the redundancy of PRL-1, 2, and 3. Two groups 

have created PRL-3 conditional knock-out mice with very different results. One group 

showed no phenotype in PRL-3 knock-out mice, while the other group showed sex-

dependent decreases in body weight and BMI, suggesting PRL-3 may be involved in 

metabolism in a sex-dependent manner 170,171. PRL-3 mRNA expression can be detected 

primarily in the heart, skeletal muscle, vasculature and brain 155. Further research needs to 

be done to identify the physiologic and oncogenic roles of PRL-3 and other PRLs. 

3.1.3 PRL-3 Acts as an Oncogenic Driver in Solid Tumors 

The mammalian protein tyrosine phosphatase (PTP) family has been implicated in 

many different diseases, such as cancer, immunodeficiencies, and diabetes 172. PRL-3 has 

been known and studied as an oncogenic driver in solid tumors for the last two decades. In 

2001, PRL-3 was first identified as an oncogene when it was found to be upregulated in 

liver metastases compared to primary colorectal cancer tumors or normal colon epithelium. 

Interestingly, PRL-3 was the only molecule that was consistently elevated amongst all of 

the metastatic samples in that study 173. Since then, PRL-3 has been studied extensively as 

a driver of progression and metastasis in colon cancer and high PRL-3 expression correlates 

with increased colorectal cancer progression and metastasis 174–178. 
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In 2006, PRL-3 was found to be upregulated in breast cancer and was correlated 

with a decrease in disease free survival and an increase in distant metastases 179,180. Since 

then, PRL-3 elevation has been reported in many other solid tumors. In gastric cancer, 

PRL-3 expression in primary tumors correlates with later occurrence of metastases and it 

is elevated in primary gastric cancer samples compared to normal tissue 181,182. 

Additionally, PRL-3 is elevated in ovarian cancer and higher PRL-3 expression is 

correlated with later stage primary tumors and also with local tumor invasion 183.  

Since the early 2000s, PRL-3 has not only been recognized as a driver of solid 

tumor progression and metastases, but has also been identified as a possible biomarker or 

prognostic marker in colorectal cancer, breast cancer, gastric cancer, and other solid tumors 

166. PRL-3 expression is elevated in a wide variety of solid and liquid tumors, including 

those mentioned above, and prostate cancer, lung cancer, AML, and B-ALL 184–188. In B-

ALL, PRL-3 was found to regulate cell migration and adhesion through Src pathway 

signaling 188. Furthermore, PRL-3 is associated with poor prognosis in both solid tumors 

and hematologic malignancies. Finally, more recently PRL-3 has been implicated in 

angiogenesis and tumor initiation 171,178,189. 

Based on previous studies, the oncogenic role of PRL-3 occurs via a wide variety 

of mechanisms and signaling pathways. PRL-3 has been implicated in many major 

signaling pathways, including p53, PTEN/PI3K/Akt, Src/ERK1/2, Rho family GTPases 

and adhesion proteins including integrin, E-cadherin, and MMPs 157,190. While PRL-3 has 

been implicated in many different signaling pathways, there are challenges with studying 

and targeting PRL-3. Few studies have identified direct binding partners of PRL-3 as it has 

a very shallow binding pocket and is thought to have transient interactions with substrates. 
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This makes it both challenging to study PRL-3 direct substrates and challenging to directly 

target PRL-3. One strategy to target PRL-3 is with small molecule inhibitors. 

Theinopyridone and derivatives of theinopyridone have been identified as possible small 

molecule inhibitors of PRL-3 in vitro and in vivo 191,192. Additionally, monoclonal 

antibodies against PRL-3, such as PRL3-zumab, which has shown promise in mouse 

studies against liver cancer 193. The oncogenic role for PRL-3 has been well-characterized 

in solid tumors, yet there is a lack of knowledge about the role of PRL-3 in leukemias, and 

more specifically in T-ALL. 

3.1.4 Hypothesis and Specific Aims 

While the role that PRL-3 plays in T-ALL migration and progression in vitro has 

been clearly established, the role of PRL-3 in vivo in leukemia progression and migration 

has not yet been demonstrated. Additionally, PRL-3 was initially identified as a possible 

driver of self-renewal of LSCs in a Myc-induced zebrafish T-ALL model, yet its’ function 

in LSCs has yet to be elucidated. Given this preliminary data, I hypothesized that PRL-3 

plays an important role in leukemia progression, migration and LSC self-renewal in vivo 

in T-ALL. To test this hypothesis, the following specific aims were developed: 1) To 

determine the role of PRL-3 in leukemia migration and progression in vivo, and; 2) To 

characterize the function of PRL-3 on LSC self-renewal. 

3.2 Results 

3.2.1 PRL-3 is Upregulated in Human T-ALL Samples 

Our lab has previously shown that protein levels of PRL-3 are significantly elevated 

in human T-ALL cell lines and primary patient T-ALL samples compared to healthy 
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peripheral blood mononuclear cells (PBMCs) 152. Additionally, microarray data from 

publicly available T-ALL patient bone marrow samples (GSE13159) shows significantly 

increased expression of PRL-3 mRNA compared to healthy control bone marrow (Figure 

3.2). This data set included microarray gene enrichment data from over 200 samples 194,195. 

 
Figure 3.2 Microarray Data Reveals PRL-3 Expression Increased in T-ALL 

Microarray gene enrichment data of GSE13159 comparing samples from healthy 
donors (n=72) to T-ALL patients (n=174). PRL-3 expression is increased in T-

ALL compared to healthy controls (p=8.3x10-18). 

 

3.2.2 PRL-3 Accelerates T-ALL Progression in a Zebrafish Model 

The elevated expression of PRL-3 in T-ALL patient samples and its role in 

promoting migration in T-ALL cell lines suggests it may play an oncogenic role in T-ALL. 

I wanted to know if PRL-3 expression had any in vivo effects on T-ALL progression or 

self-renewal. I used a zebrafish Myc-induced T-ALL model to assess the role of PRL-3 in 

T-ALL onset and progression 196–198. Zebrafish prl-3 has 88% homology to human PRL-3 

with conservation of critical domains 199. One-cell stage zebrafish embryos were injected 

with plasmids containing rag2:Myc with rag2:mCherry, and with or without rag2:prl-3. 

The rag2 promoter drives gene expression in lymphocytes. T-ALL developed in zebrafish 

from the thymus and expanded into local tissues before entering the circulation. Fish were 
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monitored for leukemia growth by quantifying the percent mCherry-positive cells within 

the body of the animal; >70% mCherry-positive was considered leukemic. Zebrafish T-

ALL that expressed prl-3 consistently expanded from the thymus into surrounding tissues 

earlier than T-ALLs expressing Myc alone (Figure 3.3A) and there was a significant 

difference in the leukemia progression, measured by time to full leukemia onset between 

the groups (Figure 3.3B).  

 

Figure 3.3 PRL-3 over-expression accelerates T-ALL progression. 
(A) Representative images of transient transgenic zebrafish expressing 
rag2:Myc+rag2:mCherry (n=13) or rag2:Myc+rag2:mCherry+rag2:prl-3 (n=9) 
at 34 days post-fertilization (dpf). (B) Kaplan-Meier analysis of time (days) 
versus percent survival (>70% of the animal is mCherry-positive) for Myc control 
tumors compared to PRL-3 over-expressing tumors. *p=0.0412. (Figure adapted 
from Wei et al, 2020 152). 

 

The lymphoblasts were morphologically similar between groups (Figure 3.4A), 

and there was no significant difference in Myc expression between Myc and Myc+prl-3 T-

ALL samples (Figure 3.4B). Gene expression analyses indicated that both the rag2:Myc 

and rag2:Myc+rag2:prl-3 leukemias expressed the lymphocyte specific genes rag1 and 

rag2 and the T-cell genes lck and tcrB, but not B-cell related genes igD or igM, indicating 

all leukemias generated were of T-cell origin. I verified that the rag2:Myc+rag2:prl-3 
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leukemias expressed >10-fold higher levels of PRL-3 than the Myc control group (Figure 

3.4C). Interestingly, endogenous prl-3 expression was also significantly higher in the 

rag2:myc T-ALLs than normal blood, suggesting that PRL-3 may be an important 

collaborating oncogene in T-ALL development. 

 

Figure 3.4 Characterization of Myc and PRL-3 Over-Expressing T-ALLs 
(A) Representative images of May-Grunwald Giemsa staining of blood samples 
from fish from each leukemia type. Scale bar=100μm. (B) Realtime RT-PCR 
analysis of Myc expression between rag2:Myc+rag2:mCherry (n=11) and 
rag2:Myc+rag2:mCherry+rag2:prl-3 (n=8). Each point represents one fish 
sample. NS=not significant. (C) Real-time RT-PCR analysis of lymphocyte, T-
cell, and B-cell specific genes. Bars are the average expression of >8 samples per 
group. Rag2 RT-PCR is the average of three samples per group. Whole blood is 
the average of two samples. (Adapted from Wei et al, 2020 152) 
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PRL-3 over-expression leads to an increase in T-ALL progression in vivo; however 

the mechanism by which PRL-3 is working to do this is unclear. As mentioned above, 

PRL-3 has a conserved phosphatase domain and a prenylation domain. In order to see if 

PRL-3 phosphatase activity or prenylation were crucial to the role of PRL-3 in T-ALL 

progression, I studied the effects of PRL-3 mutant over-expression on T-ALL onset. One-

cell stage zebrafish embryos were injected with plasmids containing rag2:Myc with 

rag2:mCherry, and with or without rag2:prl-3 DM (C104S and D72A mutations) or 

rag2:prl-3 C170S. PRL-3 DM is the phosphatase impaired mutant, and PRL-3 C170S is 

the prenylation impaired mutant, so PRL-3 is unable to localize to the membrane. As in 

previous studies, T-ALL developed in zebrafish from the thymus and expanded into local 

tissues before entering the circulation. Fish were monitored for leukemia growth by 

quantifying the percent mCherry-positive cells within the body of the animal; >70% 

mCherry-positive was considered leukemic. Zebrafish T-ALL that expressed PRL-3 

C170S did not show any differences in progression from PRL-3 WT expressing T-ALL. 

PRL-3 DM expressing T-ALL progressed significantly slower than PRL-3 WT and tracked 

more closely with the pattern of progression of Myc-only control fish, measured by time 

to full leukemia onset between groups (Figure 3.5). The lack of difference in T-ALL 

progression with the C170S mutant compared to the PRL-3 WT leukemias suggests that 

the role of PRL-3 in T-ALL progression is not dependent on prenylation of PRL-3. The 

significantly slowed progression in PRL-3 DM mutant leukemias compared to PRL-3 WT, 

almost to the level of Myc-only control leukemias, suggests that the phosphatase domain 

and/or activity of PRL-3 may be critical to its’ function as a driver of T-ALL progression. 
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Figure 3.5 Mutation of the PRL-3 Phosphorylation Domain Affects T-ALL Progression 
(A) Representative images of transient transgenic zebrafish expressing 
rag2:Myc+rag2:mCherry+rag2:prl-3 DM (n=11) or rag2:Myc+rag2:mCherry+ 
rag2:prl-3 C170S (n=13) at 34 or 37 dpf, respectively. (B) Kaplan-Meier analysis 
of time (days) versus percent survival (>70% of the animal is mCherry-positive) 
for Myc control tumors compared to PRL-3 WT and mutant tumors. *p=0.0412 
comparing PRL-3 WT to Myc control. *p=0.011 comparing PRL-3 WT to PRL-3 
DM leukemias. 

  

Characterization of PRL-3 mutant leukemias revealed that again, there was no 

significant difference in mMyc expression between Myc control, PRL-3 WT, or either of 

the PRL-3 mutant leukemia samples (Figure 3.6A). Gene expression analysis by RT-PCR 

demonstrated that all of the leukemias expressed a lymphocyte marker, rag1, and T-cell 

genes lck and tcrB. While none of the leukemias expressed B-cell related genes IgD or 

IgM, indicating that all of the PRL-3 mutant leukemias were also of T-cell origin. 

Additionally, the PRL-3 mutant leukemias were verified to express PRL-3 levels similar 

to that of the PRL-3 WT T-ALLs (Figure 3.6B). 
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Figure 3.6 Characterization of PRL-3 Mutant T-ALLs 

(A) Realtime RT-PCR analysis of Myc expression between rag2:Myc+ 
rag2:mCherry (n=11), rag2:Myc+rag2:mCherry+ rag2:prl-3 (n=8), rag2:Myc+ 
rag2:mCherry+rag2:prl-3 C170S (n=12), and rag2:Myc+rag2:mCherry+ 
rag2:prl-3 DM (n=8). Each point represents one fish sample. NS=not significant. 
(B) Real-time RT-PCR analysis of lymphocyte, T-cell, and B-cell specific genes. 
Bars are the average expression of >8 samples per group. Whole blood is the 
average of two samples. 

 

3.2.3 PRL-3 Promotes T-ALL Cell Migration in a Zebrafish Model 

Because the T-ALL cells were fluorescently labeled and can be monitored in living 

animals, I was also able to determine the time at which leukemia cells begin to circulate by 

visualizing cells within the vasculature in the tail fin (Figure 3.7A). While more than half 

of animals with T-ALL in the Myc-expressing group never developed circulating disease 

by >100d, more than 80% of the Myc+prl-3 expressing T-ALLs were circulating at a 

median time point of 42d, p=0.047 (Figure 3.7B). 

Taken together, these data suggest that PRL-3 can play an important role in T-ALL 

onset and progression in vivo, likely by enhancing migration into local tissues and 

contributing to the ability of the cells to enter circulation. 
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Figure 3.7 PRL-3 Promotes T-ALL Migration in a Zebrafish Model 
(C) Representative rag2:Myc+rag2:mCherry+rag2:prl-3 animal, showing 
circulating mCherry+ leukemia cells within the tail fin. (D) Kaplan-Meier 
analysis of time (days) for each T-ALL to be visualized in circulation, * p=0.047. 
(Figure adapted from Wei et al, 2020 152). 

 

3.2.4 Over-Expression of PRL-3 Increases LSC Frequency in a Zebrafish 

Model 

The PRL family has been shown to be involved in stem cell self-renewal, division, 

and cell cycle in various types of stem cells 200–202. More specifically, PRL-3 has been 

identified to play a role in inducing a sub-population of ovarian cancer stem cells via a 

phosphatase-independent mechanism 202. However, a functional role for PRL-3 in 

leukemia stem cells has not yet been demonstrated.  

As described above, zebrafish were injected with rag2:Myc with or without 

rag2:PRL-3, leading to formation of Myc-induced zebrafish T-ALL tumors with or without 

PRL-3 overexpression. These primary tumors were then harvested when the fish developed 

>70% leukemic burden, and limiting dilution transplantation was performed to determine 

the LSC frequency of each tumor. Each limiting dilution transplantation used 36 recipient 
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zebrafish to estimate LSC frequency using extreme limiting dilution analysis (ELDA) 203. 

I found that over-expression of PRL-3 leads to an average 4.5 fold increase in LSC 

frequency (p=0.010) compared to Myc alone (Figure 3.8). Interestingly, the Myc control 

tumor with the highest LSC frequency also had the highest expression of endogenous z-

prl-3, although still significantly lower than expression levels in the PRL-3 over-expressed 

groups. 

 

Figure 3.8 LSC Frequency Increases with PRL-3 Over-Expression 
% LSC frequency of rag2:Myc+rag2:mCherry+rag2:prl-3 compared to 
rag2:Myc+rag2:mCherry alone. Each data point represents the % LSC by 
limiting dilution transplantation into 36 recipient animals of each primary 
zebrafish T-ALL tumor. *p=0.010. 

 

While limiting dilution transplantation is the gold standard for determining 

functional LSC frequency, there are still additional factors that may affect the ability of 

tumors to form in recipient animals. To ensure that the changes in LSC frequency were due 

to actual changes in rates of LCS self-renewal function LSC frequency, I compared 

apoptosis and proliferation of rag2:Myc+rag2:mCherry secondary tumors to 

rag2:Myc+rag2:mCherry+rag2:prl-3 secondary tumors. Leukemia cells were harvested 

and stained with Annexin V conjugated to fluorescein isothiocyanate (FITC) and 4′,6-
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diamidino-2-phenylindole (DAPI) to determine the percent of apoptotic cells in each 

tumor. The same was done with 5’-ethynyl-2’-deoxyuridine (EdU) uptake using ClickIT 

EdU conjugated to Alexa Fluor 488 and DAPI to determine the percent of actively 

proliferating cells in each tumor. Three secondary tumors were harvested and stained for 

each primary tumor and analyzed by flow cytometry. The data demonstrated that there was 

no overall difference in apoptosis or proliferation between the tumors from the two groups, 

indicating that the differences in tumor formation upon limiting dilution transplantation 

can be attributed to differences in LSC frequency (Figure 3.9). 

 

Figure 3.9 PRL-3 Over-Expression Does Not Affect Apoptosis or Proliferation 
(A) Percent apoptosis of rag2:Myc+rag2:mCherry and rag2:Myc+ 
rag2:mCherry+rag2:prl-3 tumors by Annexin V-FITC staining. (B) 
Representative flow cytometry analysis for a rag2:Myc+rag2:mCherry and a 
rag2:Myc+rag2:mCherry+rag2:prl-3 tumor. (C) Percent proliferation (EdU 
positive cells) of rag2:Myc+rag2:mCherry and rag2:Myc+ 
rag2:mCherry+rag2:prl-3 tumors by EdU Alexa Fluor 488 uptake. (D) 
Representative flow cytometry analysis for a rag2:Myc+rag2:mCherry and a 
rag2:Myc+rag2:mCherry+rag2:prl-3 tumor. NS = not significant. 
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Since it is debated in the field whether PRL-3 works as a phosphatase or via non-

phosphatase dependent activity, I next studied the effect of over-expression of PRL-3 

mutants on LSC frequency. As described above, the PRL-3 double mutant (DM) contains 

a C104S and D72A mutation, abolishing phosphatase activity of PRL-3. The C170S mutant 

PRL-3 interrupts the prenylation motif. I over-expressed both PRL-3 mutant forms in our 

Myc-induced T-ALL and performed limiting dilution transplantation of the primary tumors 

into 36 recipient zebrafish per primary tumor to determine the LSC frequency to gain 

insight into how PRL-3 was working to increase LSC frequency in vivo. Over-expression 

of PRL-3 DM did not change the LSC frequency, suggesting that the role of PRL-3 in LSC 

self-renewal is likely not dependent on its’ phosphatase activity, opposite from what was 

found with the role of PRL-3 in T-ALL progression (Figure 3.10). Over-expression of 

PRL-3 C170S showed an increase in LSC frequency that was significantly higher than the 

Myc alone control group. Additionally, while not significant, the overall trend of over-

expression of the PRL-3 C170S mutant showed an increase in LSC frequency with 

mutation of the prenylation motif of PRL-3 compared to PRL-3 WT over-expression 

(Figure 3.10). This suggests that a change in PRL-3 subcellular localization, possibly with 

increased trafficking to the nucleus, may contribute to the role of PRL-3 in LSC self-

renewal. However, there was a great deal of variation in LSC frequency between primary 

tumors in this group, so in order to draw any true conclusions about the loss of prenylation 

contributing to the role of PRL-3 in LSC self-renewal further studies need to be conducted. 
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Figure 3.10 Over-expression of PRL-3 Mutants does not Significantly Change LSC 
Frequency 

% LSC frequency of rag2:Myc+rag2:mCherry compared to rag2:Myc+ 
rag2:mCherry+rag2:prl-3 WT, C170S, or DM. Each data point represents the % 
LSC by limiting dilution transplantation of each primary zebrafish T-ALL tumor 
into 36 recipient zebrafish. *p=0.010 and **p=0.0059. 

  

As described above, PRL-3 DM and C170S mutant tumors were stained with 

Annexin V and EdU to compare rates of apoptosis and proliferation between PRL-3 mutant 

tumors as was done for Myc control and PRL-3 WT over-expression tumors. Again, there 

was no significant difference in percent apoptosis or in percent of proliferating cells in the 

PRL-3 mutant tumors compared to each other or compared to the Myc control tumors or 

the PRL-3 WT over-expressing tumors (Figure 3.11). 
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Figure 3.11 PRL-3 Mutant Over-Expression Does Not Affect Proliferation or Apoptosis 
(A) Percent apoptosis of rag2:Myc+rag2:mCherry or rag2:Myc+rag2:mCherry+ 
rag2:prl-3 WT, C170S, or DM mutant tumors by Annexin V-FITC staining. (B) Percent 
proliferation (EdU positive cells) of rag2:Myc+rag2:mCherry and rag2:Myc+ 
rag2:mCherry+rag2:prl-3 WT, C170S or DM mutant tumors by EdU Alexa Fluor 488 
uptake. NS = not significant. 

 

3.2.5 Inhibition of PRL-3 Decreases LSC Frequency In Vivo 

In order for PRL-3 to be a possible drug target for leukemia stem cells, inhibition 

of PRL-3 must cause a decrease in LSC frequency. Currently, there are no specific PRL-3 

chemical inhibitors available; however, there are a few chemical inhibitors that have been 

shown to block activity of the PRL family of proteins. PRL-3 Inhibitor I (Sigma-Aldrich) 

is a rhodanine derivative that non-specifically inhibits PRL family activity with minimal 

activity against other phosphatases 204. JMS-053 (iminothienopyridinedione 13) is a 

derivative of theinopyridone that is the most specific PRL-3 inhibitor available, but still 

non-specifically inhibits the entire PRL family 192. JMS-053 is the first small-molecule 

PRL-3 inhibitor to be used in vivo, where it inhibited ovarian cancer cell growth, however 

it has poor stability and it’s toxicity profile has yet to be determined.  
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Treatment of a high-self renewal clonal leukemia from Blackburn et al 2014, with 

the Sigma PRL-3 inhibitor (PRLi) for 8 hours ex vivo before limiting dilution 

transplantation revealed an 11.9 fold decrease in LSC frequency (p<0.001), providing 

preliminary evidence that inhibition of PRL-3 may be a suitable drug target to decrease 

LSC frequency 128. Treatment of that same tumor with JMS-053, a more specific inhibitor 

for PRL-3, for 48 hours ex vivo before limiting dilution transplantation led to a 7.8 fold 

reduction in LSC frequency (p<0.01). Finally, treatment with one of the high self-renewal 

rag2:Myc+rag2:mCherry tumors that also expressed high levels of zebrafish prl-3 (Myc 

#8) with JMS-053 for 6 hours ex vivo before limiting dilution transplantation in media 

containing drug or DMSO as a vehicle control revealed a 17 fold decrease in LSC 

frequency (p<0.01) (Figure 3.12). Taken together, this data provides preliminary data that 

inhibition of PRL-3 is a potential target for decreasing LSCs in vivo.  

 

Figure 3.12 Chemical Inhibition of PRL-3 Decreases LSC Frequency 
Table showing LSC frequency (% LSC) and fold change in LSC frequency of a 
clonal high self-renewal tumor (13.1) and a heterogenous high self-renewal 
rag2:Myc+ rag2:mCherry tumor (Myc #8) treated with the PRL-3 inhibitors 
PRLi or JMS-053. LSC frequency, upper and lower confidence intervals (CI), and 
p-values were determined by extreme limiting dilution analysis (ELDA) 203. 
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Although these tumors showed a significant decrease in LSC frequency after 

chemical inhibition of PRL-3, two other clonal high self-renewal tumors tested did not 

show the same decrease in LSC frequency. One showed a 3-fold decrease in LSC 

frequency, yet this decrease was not statistically significant and the other showed no 

change in LSC frequency (data not shown). This provides evidence that different leukemia 

clones may respond differently to drug treatment targeting LSCs and there may not be one 

universal pathway or molecule that can be targeted to eliminate LSCs in patient tumors. 

Furthermore, additional data is required to demonstrate that pathways downstream of PRL-

3 are affected by drug treatment of cells, confirming that the drugs are acting via inhibition 

of PRL-3, yet these precise pathways remain unknown. 

3.2.6 Knock-down of PRL-3 Decreases LSC Frequency In Vitro 

Data to this point has demonstrated that PRL-3 plays a role in T-ALL progression 

and is an important driver in LSC self-renewal in vivo in a Myc-induced zebrafish T-ALL 

model. Furthermore, chemical inhibition of PRL-3 in high self-renewal leukemias shows a 

decrease in LSC frequency in vivo, signifying PRL-3 may be a potential drug target for 

LSCs. However, all of this data was collected in a zebrafish model. Despite evidence 

showing that PRL-3 is elevated in human T-ALL samples, studying LSC biology or 

function in human leukemia cells, or even mouse models, has many challenges and 

limitations. Currently, colony formation assays are accepted as a measure of stemness or 

stem-like potential in human leukemia cells in vitro. To measure the effect of PRL-3 on 

stemness in human leukemia cells, Jurkat cells, a human T-ALL cell line, were used for 

colony formation assays.  
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Jurkat cells, which have high endogenous PRL-3 expression, were transfected with 

short-hairpin RNAs (shRNA) targeting PRL-3 or scrambled (SCR) control shRNA. Cells 

were checked for knock-down of PRL-3 by western blot analysis four days post-infection 

with Lentivirus shRNA constructs. PRL-3 knock-down cells were then plated in 

methylcellulose-containing media and monitored for colony formation for one week before 

counting colonies. I found that PRL-3 knock-down in Jurkat cells significantly decreased 

colony formation (p<0.05) compared to SCR control (Figure 3.13). This data indicates that 

PRL-3 is a driver of leukemia cell stemness not only in our zebrafish model, but also in 

vitro in human T-ALL cells. 

 

Figure 3.13 Knock-down of PRL-3 Decreases Human Leukemia Cell Stemness 
(A) Representative western blot showing PRL-3 protein expression in Jurkat T-
ALL cells 4 days post-infection with lentivirus carrying shRNA. Numbers 
represent relative expression of PRL-3 protein, normalized to total protein loaded, 
and compared to scrambled shRNA control. (B) Colony formation of PRL-3 
knock-down Jurkat cells (shPRL-3) compared to scrambled control (SCR). Cells 
were plated in methylcellulose containing media for one week before colonies 
were counted. *p=0.013. 

3.3 Discussion 

While the prognosis for children diagnosed with leukemia has improved drastically, 

relapse remains a major clinical concern. The relapse rate in T-ALL is even higher than in 
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other leukemia subtypes and is associated with a far inferior prognosis. This relapse is due 

to LSCs that are chemotherapy resistant and capable of undergoing self-renewal and rapid 

proliferation, driving tumor relapse. Gaining insight into signaling pathways important in 

LSCs and identifying drivers of LSC self-renewal is critical to decreasing relapse rates in 

patients and identifying ways to target LSCs during cancer treatment. 

Our lab previously found that PRL-3 was highly expressed in T-ALL patient 

samples and cell lines, consistent with studies reporting PRL-3 upregulation in solid tumors 

and B-ALL 152,188,205. I also demonstrated that over-expression of PRL-3 resulted in an 

increase in T-ALL progression and migration in vivo in our zebrafish model. In zebrafish, 

PRL-3 expression enhanced the spread of T-ALL cells from the thymus into surrounding 

tissues and promoted their rapid entry into circulation. Furthermore, utilizing PRL-3 

mutants, our data suggests that this increase in progression is likely due to its function as a 

phosphatase. Additionally, I established a role for PRL-3 in self-renewal of LSCs in T-

ALL. Our data shows both that over-expression of PRL-3 results in an increase in LSC 

frequency and that chemical inhibition of PRL-3 is able to decrease the LSC frequency in 

vivo in our zebrafish model. Over-expression of PRL-3 mutants suggested that the role of 

PRL-3 in self-renewal may not be dependent on its activity as a phosphatase, and may in 

fact be affected by cellular localization of PRL-3. Finally, I have shown that PRL-3 knock-

down in a human leukemia cell line leads to a decrease in colony formation, which serves 

as a measure of stemness in vitro.  

Overall, our data suggests that PRL-3 functions in T-ALL as both a driver of 

leukemia progression and migration, and as a driver of LSC self-renewal. However, the 

role of PRL-3 in both of these processes may be via different mechanisms. Our lab has 
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previously demonstrated that PRL-3 enhances migration in T-ALL through the Src 

signaling pathway 152. While our data clearly shows a functional role for PRL-3 in LSC 

self-renewal in T-ALL, the mechanism of this has yet to be elucidated. Uncovering drivers 

of self-renewal in T-ALL and their mechanisms of action is crucial to gaining a better 

understanding of LSC biology and coming closer to targeted therapies towards LSCs in 

patient care to prevent relapse. 

3.3.1 Future Directions 

While a functional role for PRL-3 in T-ALL LSC self-renewal has been established, 

further work is needed to characterize the role of PRL-3 in this process. Preliminary studies 

have been done to study whether PRL-3 works in a phosphatase or prenylation-dependent 

manner to increase LSC frequency, but further studies need to be done to assess the 

mechanism of action specifically of PRL-3 in LSC biology. Additionally, I am currently 

expanding our studies that show PRL-3 chemical inhibition can decrease LSC frequency 

from zebrafish genetic models to patient derived xenograft (PDX) models in mice. 

Experiments are currently underway with PDX samples that are being expanded in mice, 

harvested, and treated with PRL-3 chemical inhibition or transient PRL-3 knock-down 

before performing colony formation assays as a measure of stemness. Our hope is that 

PRL-3 knock-down or chemical inhibition will decrease stemness and target LSCs in PDX 

samples, demonstrating direct translational relevance of our findings from our zebrafish 

studies. 
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3.4 Methods 

3.4.1 Zebrafish Husbandry 

Use and handling of zebrafish was approved by the University of Kentucky’s 

Institutional Animal Care and Use Committee (IACUC), protocol 2015-2225. CG1 strain 

syngeneic zebrafish were used for these studies 206. Fish were kept at a temperature of 28°C 

with a light/dark cycle of 14:10 hours in compliance with IACUC animal care regulations. 

Eggs were collected into 1X E3 media (14.6g of 5.0mM NaCl, 0.65g of 0.17mM KCl, 

2.20g of 0.33mM CaCl, and 4.05g of 0.33mM MgSO4 per liter of 50X stock) with 200µL/L 

of methylene blue. 

3.4.2 Zebrafish T-ALL Models 

Microinjections of 15ng/μL rag2:Myc + 45ng/μL rag2:mCherry or 15ng/μL 

rag2:Myc + 15ng/μL rag2:prl-3 + 30ng/μL rag2:mCherry were used to generate zebrafish 

T-ALL in CG1 strain zebrafish as previously described, and number of animals used in 

each group were chosen based on previous experiments 196,197,207. PRL-3 mutant T-ALL 

tumors were made by injection of 15ng/μL rag2:Myc + 15ng/μL rag2:prl-3 DM or C170S 

+ 30ng/μL rag2:mCherry. Zebrafish were monitored for leukemia onset and progression 

starting at 21 days post-fertilization (dpf) and every 3 days onwards by analyzing percent 

of the body expressing mCherry-positive leukemia cells using a Nikon fluorescence-

equipped SMZ25 microscope. Circulating mCherry-positive T-ALL was noted by 

examining the vessels within the tail vasculature. Animals were monitored until 90 dpf or 

until they had to be sacrificed due to leukemia burden. Animals that died before the end of 

the monitoring period without leukemia progression outside the thymus were excluded. 
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Zebrafish leukemias were harvested and cytospin and May-Grunwald Giemsa 

staining were performed as previously described before imaging on a BioTek Lionheart 

FX microscope 196,207. To assess gene expression, RNA was isolated from the leukemia 

cells using Zymo Research Quick-RNA kit (R1054, Irvine, CA, USA). Total RNA was 

reverse transcribed (BioRad iSCRIPT, 1708891) and real time PCR performed using iTaq 

Universal SYBR Green Supermix (Biorad, 1725120) with primer sequences available in 

Table 3.2. Data were normalized to ef1a expression and fold change was calculated using 

the 2-∆∆Cq method.   

TABLE 3.2 REALTIME RT-PCR PRIMER SEQUENCES 
Gene Forward Primer Reverse Primer Purpose 

z-ptp4a3 GGTGTCACGACAGTGGTCAG TCAATCAAGGCCACAGCCAC   

z-rag1 AGCAATGATGCAAGGCAGAG TGTGCAGGGGCTGGAATATC Lymphocytes 

z-rag2 AGCTCTCAGATTTCGGAGTACAC ACAAGGCTGCCACAATTCAC Lymphocytes 

z-lck AGAAGATCTCGATGGTTTGTCTGT CGCAGTTCCCCATGTTTACG T-cell 

z-tcr β-c2 ATTCACCTGCACTGTCCGAT AGCTTCAATCCCTTCGGCTT T-cell 

z-pax5 AAGGCAGTTACTCCACACCC ACCGTACTCCTGCTGAAACAC B-cell 

z-IgD GACACATTAGCCCATCAGCA CTGGAGAGCAGCAAAAGGAT B-cell 

z-IgM GAAGCCTCCAATTCTGTTGG CCGGGCTAAACACATGAAG B-cell 

m-cMyc AGCGACTCTGAAGAAGAGCAA GCACCTCTTGAGGACCAGTG   

z-eef1a1 ATGGCACGGTGACAACATGCT CCACATTACCACGACGGATG normalizing 

 

3.4.3 Limiting Dilution Transplantation 

Limiting dilution transplantation of primary zebrafish tumors was performed as 

previously described 197. Briefly, primary tumors were harvested by maceration of the 
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zebrafish, filtered and fluorescent leukemia cells counted using a Countess automated cell 

counter (Invitrogen). From there, different cell doses ranging from 10 cells/animal to 

25,000 cells/animal were transplanted into recipient adult zebrafish in a volume of 5μl per 

animal into a total of 36 recipient zebrafish per primary tumor. Zebrafish were screened 

weekly for tumor growth for 90 days post-transplantation. Any zebrafish who died before 

any tumors developed in that cohort were removed from analysis. 

For drug treatment studies, cells were harvested as described above and plated at a 

density of 1x106 cells/well in a 6-well dish containing RPMI 1640 (ThermoFisher 

11875119) supplemented with 10% heat-inactivated fetal bovine serum (Atlanta 

Biologicals, S11150H, Lot M17161, Flowery Branch, GA, USA), Penicillin/Streptomycin 

1:100 dilution (Gibco 10378-016) and gentamycin (Amresco E737-20ML) at a final 

concentration of 50 µg/mL. Cells were cultured in media containing either DMSO control, 

PRL-3 inhibitor I (Sigma-Aldrich P0108-5MG) or JMS-053 (a gift from Dave Lazo, UVA) 

at a final concentration of 40 µM or 10 µM respectively. Cells were treated at timepoints 

ranging from 6 hours to 48 hours ex vivo, depending on the experiment. After drug 

treatment, cells were again counted on the Countess automated cell counter (Invitrogen), 

confirmed that cell viability was >90% by trypan blue staining, and prepared for limiting 

dilution transplantation as described above. For one experiment, cells were resuspended in 

RPMI + 10% FBS media containing 10 µM JMS-053 or DMSO prior to transplantation 

and transplanted into recipient animals in drug-containing media. 
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3.4.4 Apoptosis Assay 

Zebrafish cells were harvested as described above. Apoptosis was quantified by 

staining cells with Annexin V FITC (Life Technologies V13242) according to the 

manufacturers protocol in the presence of DAPI (0.1μg/ml) (ThermoFisher 62248). Cells 

were analyzed by flow cytometry on the CytoFLEX benchtop flow cytometer (Beckman 

Coulter). 

3.4.5 Proliferation Assay 

Zebrafish cells were harvested as described above. Cell cycle was analyzed by 

quantifying 5’-ethynyl-2’-deoxyuridine (EdU) uptake using ClickIT EdU Alexa Fluor 488 

(Thermo Fisher Scientific, C10635) according to the manufacturer’s protocol. DAPI 

(0.1μg/ml) was also used to stain the DNA. Cells were analyzed by flow cytometry on the 

CytoFLEX benchtop flow cytometer (Beckman Coulter). 

3.4.6 T-ALL Cell Culture 

All of the human T-ALL cell lines used in the study were authenticated by short 

tandem repeat (STR) DNA profiling and tested for mycoplasma contamination prior to 

experimentation. Cells were grown in RPMI 1640 (ThermoFisher 11875119) 

supplemented with 10% heat-inactivated fetal bovine serum (Atlanta Biologicals, 

S11150H, Lot M17161, Flowery Branch, GA, USA). Cells were cultured at 37°C in a 

humidified atmosphere with 5% CO2. 
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3.4.7 Generation of T-ALL Knock-Down Cells by Lentivirus Infection 

PRL-3 knock-down was performed as previously described 152. Lentivirus was 

produced in 293T cells using TransIT-LT1 (Mirus Bio MR2300, Madison, WI, USA), 

according to the manufacturer’s instructions using scrambled or shPRL-3 plasmids. For T-

ALL cell infection, 2.5mL virus with 10μg/mL polybrene (Thermo Fisher Scientific TR-

1003-G) was added to 5x105 cells and centrifuged at 2250 rpm for 90 minutes. Virus was 

washed out with PBS after 24h, and cells were selected in culture media with 5μg/mL 

puromycin for 48h before experiments. PRL-3 knock-down was confirmed by western blot 

prior to using cells for experiments. 

3.4.8 Colony Formation Assay 

After confirmation of PRL-3 knock-down by Western blot, Jurkat cells were plated 

in triplicate in 24-well plates at a density of 1,000 cells per well. Cells were strained using 

a 25 μm filter to obtain a single cell suspension prior to plating. Cells were plated in a 

methylcellulose-based media (Methocult H4100, Stem Cell Technologies, Cat #04100) 

supplemented with 20% BSA substitute + 5 μg/mL puromycin for selection of knock-down 

cells. Colonies were counted 14 days after plating. 

3.4.9 Statistical Analysis 

Results are shown as mean ± standard deviation. Statistical analyses were 

performed using GraphPad Prism 7 (San Diego, CA, USA), combining data from all 

samples across all replicates. Two-tailed t-tests were performed to compare two groups 

with similar distribution, and Analysis of Variance with Tukey’s multiple comparisons was 

used to compare more than two groups. Kaplan-Meier analyses were performed using a 
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Log-rank (Mantel-Cox) test. Analyses of limiting dilution transplantation data and 

calculation of 95% confidence intervals were performed using Extreme Limiting Dilution 

Analysis (ELDA) software 203. 
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CHAPTER 4.  PRL-3 MODULATES BETA-CATENIN SIGNALING IN T-ALL LSCS 
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4.1 Introduction 

4.1.1 Beta-Catenin/Wnt Signaling Maintains LSC Self-Renewal 

As described in Chapter 2, Wnt/beta-catenin signaling is a critical pathway in the 

growth, maintenance, and self-renewal of both normal and cancer stem cells 208. Wnt 

ligands bind to their receptors, frizzled (FZD) and LRP5/6 complex, on the cell surface. 

This causes sequestration of the destruction complex by phosphorylated LRP and 

accumulation of β-catenin. β-catenin then translocates into the nucleus, binding TCF/LEF 

transcription factors, inducing transcription of target genes. Most Wnt target genes are 

tissue and developmental stage specific. Without Wnt ligand present, β-catenin is bound to 

the destruction complex, phosphorylated, ubiquitinated, and targeted for degradation 208. 

The Wnt/β-catenin pathway has recently been implicated in the maintenance of 

LSCs in T-ALL and other leukemias 133,209–211. For example, constitutive activation of β-

catenin, a downstream effector of Wnt signaling, can induce T-ALL in mouse models 212, 

and blockade of Wnt signaling leads to a decrease of LSC frequency in mice 133. LSCs in 

T-ALL have elevated expression of β-catenin in human cells and mouse models 

114,132,133,212,213. Finally, XAV939, which is a tankyrase inhibitor that stabilizes the 

destruction complex, leading to β-catenin degradation, showed promise against T-ALL cell 

lines in vitro and xenograft models 133. 

In a large-scale serial limiting dilution transplantation screen in our Myc-induced 

zebrafish T-ALL model, Wnt pathway signaling was identified as a potential driver of LSC 

self-renewal 128. Bulk RNA sequencing data showed that T-ALL clones with high self-

renewal had high expression of Wnt related genes compared to those with low self-renewal. 

This was validated by over-expression of a constitutively active form of β-catenin (S33Y) 
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in our zebrafish T-ALL model, which demonstrated that constitutive activation of β-catenin 

enhances LSC self-renewal ~10-fold, in agreement with what others have found in mouse 

models (Figure 4.1). Additionally, treatment of high self-renewal clones with XAV939 

decreased LSC frequency in vivo (Figure 4.2). Together, these data suggest that the Wnt/β-

catenin pathway may be an attractive drug target to differentiate LSCs in ALL.  

 

Figure 4.1 Constitutively Active β-Catenin Over-Expression Increases LSC Frequency In 
Vivo 

% LSC frequency of rag2:Myc+rag2:mCherry+rag2:CTNN S33Y compared to 
rag2:Myc+rag2:mCherry alone. Each data point represents the % LSC by 
limiting dilution transplantation into 36 recipient animals of each primary 
zebrafish T-ALL tumor. ***p=0.0004. 

 

 

 

 



63 
 

 
Figure 4.2 XAV939 Treatment of High Self-Renewal T-ALL Decreases LSC Frequency 

Table showing LSC frequency (% LSC) and fold change in LSC frequency of two 
clonal high self-renewal tumors (13.1 and 14.1) treated with the Wnt pathway 
signaling inhibitor XAV939. LSC frequency, upper and lower confidence 
intervals (CI), and p-values were determined by extreme limiting dilution analysis 
(ELDA) 203. 

 

However, Wnt signaling is essential in a variety of tissues and developmental 

processes, and targeted inhibition of the Wnt pathway remains challenging in all types of 

cancer, due to intolerable toxicities, with major concerns regarding the use of Wnt 

inhibitors in pediatric patients 214. Current strategies for Wnt pathway inhibition include: 

inhibition of Wnt ligand production, Wnt antagonists, tankyrase inhibitors to stabilize the 

destruction complex interaction with beta-catenin, and inhibitors of TCF/LEF mediated 

transcription 134,215. Targeting regulators of Wnt signaling that are mis-expressed uniquely 

by T-ALL cells could be an effective strategy to block abnormal Wnt/Beta-catenin activity 

specifically in LSCs without the associated toxicities. 

4.1.2 Hypothesis and Specific Aims 

As demonstrated above, PRL-3 plays a role as a driver of self-renewal in T-ALL 

LSCs in vivo, yet the mechanism by which it is working has yet to be elucidated. Recent 

research suggests that there may be a link between PRL-3 and β-catenin signaling pathways 

in AML, with PRL-3 over-expressing AML cells showing an increase in active β-catenin 
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accumulation in the nucleus and transcription of downstream Wnt target genes 216–219. 

However, the molecular mechanisms by which PRL-3 modulates Wnt signaling, and a 

PRL-3/Wnt signaling effect on LSCs in vivo are unknown. Our preliminary data also hinted 

that PRL-3 may be working through Wnt pathway signaling to enhance LSC signaling in 

leukemias. Given this preliminary data, I hypothesized that PRL-3 directly intersects with 

the Wnt signaling cascade to enhance self-renewal of LSCs in T-ALL, and disruption of 

this PRL3/Wnt signaling axis by inhibition of PRL-3 will block LSC self-renewal. To test 

this hypothesis, the following specific aims were developed: 1) To define the role of PRL-

3 in modulating Wnt pathway signaling in vitro, and; 2) To determine if PRL-3 inhibition 

can modulate β-catenin signaling in vivo. 

4.2 Results 

4.2.1 β-Catenin is Highly Expressed in PRL-3 Over-Expressing T-ALL 

As described above, a role for PRL-3 in regulation of β-catenin signaling has been 

demonstrated in AML 216,217,219. To explore if PRL-3 played a role in β-catenin signaling 

in T-ALL, I first confirmed that β-catenin expression was enriched in PRL-3 high T-ALL 

samples. Patient samples from a publicly available microarray expression analysis study 

(GSE13159) were analyzed by gene set enrichment analysis and showed that T-ALL 

samples in the top quartile of PRL-3 expression were enriched for both β-catenin signaling 

and embryonic stem cell signaling compared to T-ALL samples in the bottom quartile of 

PRL-3 expression (Figure 4.3). This suggests that there is a correlation between PRL-3 

expression and β-catenin signaling in human T-ALL. 
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Figure 4.3 GSEA Analysis Reveals Pathways Enriched in PRL-3 High Patient T-ALL 

Samples 
(A) Microarray expression analysis of GSE13159 comparing samples from 
healthy donors (n=72) to T-ALL patients (n=174). Red dotted circle represents 
top 25% of PRL-3 expressing T-ALL samples. Blue dotted circle represents 
bottom 25% of PRL-3 expressing T-ALL samples. (B and C) Gene set enrichment 
analysis (GSEA) of T-ALL patient samples that were in the top (red) or bottom 
(blue) quartile of PRL-3 expression in GSE13159. High PRL-3 samples were 
enriched for Beta-catenin signaling (B) and embryonic stem cell signaling (C) 
pathways. 

 

 After confirming that high PRL-3 expression is correlated with β-catenin signaling 

in human T-ALL, I next examined rag2:Myc and rag2:Myc+prl-3 zebrafish leukemia for 

an association between PRL-3 and β-catenin signaling. I first performed a western blot 

comparing rag2:Myc+rag2:mCherry control samples to PRL-3 over-expressing, 

rag2:Myc+ rag2:mCherry+rag2:prl-3, leukemias and confirmed that PRL-3 protein was 

indeed over-expressed in the PRL-3 over-expressing leukemias. Further, I found that β-

catenin protein expression was only detectable in the PRL-3 over-expressing leukemias 

and not detectable in the Myc control leukemias (Figure 4.4). This suggested that PRL-3 

can induce β-catenin expression and signaling in the zebrafish T-ALL model.  



66 
 

 
Figure 4.4 Beta-Catenin is Highly Expressed in PRL-3 Over-Expressing Zebrafish T-ALL 

Samples 
Western blot showing PRL-3 over-expressing zebrafish leukemias (rag2:Myc+ 
rag2:prl-3) have elevated expression of PRL-3 (Genetex antibody, GTX89930) 
compared to rag2:Myc control zebrafish tumors. Only rag2:Myc+rag2:prl-3 
leukemias express β-catenin (Abcam antibody, ab16051) and not rag2:Myc 
control leukemias. Representative band of total protein gel shown for 
normalization. 

 

To examine the mechanism by which PRL-3 may be working through β-catenin to 

increase LSC frequency in vivo, I used RT-PCR to quantify relative mRNA expression 

levels of Wnt target genes in our zebrafish leukemia samples. This experiment 

demonstrated that zebrafish myc a (z-myca), which is the zebrafish ortholog to the human 

oncogene c-myc, expression was significantly elevated in two out of three PRL-3 over-

expressing leukemias compared to Myc control leukemias (Figure 4.5). Interestingly, the 

PRL-3 over-expressing leukemia with the highest z-myca expression was also one that was 

a significant outlier for the highest LSC frequency, suggesting that PRL-3 may be driving 

β-catenin induced expression of z-myca, increasing LSC frequency in T-ALL. This is 

important because it has been shown that activation of the c-Myc oncogene alone can be 

enough to activate stem-cell-like programming and increase cancer-initiating cells in 

human keratinocytes 220. More importantly, c-Myc inhibition targets LSCs in a T-ALL 

mouse model 221. 
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Figure 4.5 PRL-3 Over-Expression Induces z-myca Expression In Vivo 

RT-PCR analysis of rag2:Myc zebrafish T-ALL samples (n=3) and 
rag2:Myc+rag2:prl-3 samples (n=3) for z-myca which is the zebrafish ortholog to 
the oncogene c-myc. ***p<0.001. 

 

RNA sequencing between Myc control leukemias and PRL-3 over-expressing 

zebrafish leukemias was done to gain a better understanding of gene expression changes 

that were causing PRL-3 to have an effect on LSC frequency in vivo. Sequencing was done 

first at the University of Louisville on three Myc control leukemias and 3 PRL-3 over-

expressing leukemias. At a later timepoint, two additional Myc control tumors and three 

PRL-3 over-expressing leukemias were sequenced using a third party company, Genewiz. 

RNA sequencing demonstrated upregulation of notch1a in the PRL-3 over-expression 

group, which is a central driver of leukemia initiation in human leukemias. It also showed 

upregulation of Casein kinase 1 epsilon (CSNK1E), which is involved in regulation of Wnt 

pathway signaling (Figure 4.6). Csnk1ε is responsible for phosphorylation of disheveled, 

which leads to activation of Wnt signaling through the β-catenin/TCF/LEF complex 222,223. 

Over-expression of Csnk1ε can also directly regulate β-catenin phosphorylation and 

regulation 223. 
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Figure 4.6 RNAseq Analysis of Myc and PRL-3 Over-Expression Fish Tumors 

RNA sequencing of rag2:Myc+rag2:mCherry leukemias compared to rag2:Myc+ 
rag2:mCherry+rag2:prl-3 zebrafish leukemias. (A) Heat map showing PRL-3 
over-expressing leukemias cluster independently from Myc control leukemias. 
(B) Volcano plot showing significantly upregulated or downregulated expressed 
genes. (C) Waterfall plot showing genes that were up- or down-regulated in both 
rounds of RNA sequencing in the PRL-3 over-expressing leukemias compared to 
Myc control leukemias. 

 

4.2.2 PRL-3 Modulates Beta-Catenin Signaling in Vitro 

To determine if PRL-3 can modulate β-catenin signaling in human cells in vitro, 

the TopFlash beta-catenin/TCF/LEF reporter system was used 224,225. Briefly, repeats of the 

TCF and LEF binding sites were coupled with a firefly luciferase reporter to make up the 

TopFlash plasmid. This plasmid was co-transfected with a Renilla luciferase plasmid that 

controls for transfection efficiency. A stable human cell line expressing both the TopFlash 
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and Renilla plasmids, which will be referred to as TopFlash cells from here forward, was 

used for all TopFlash experiments. TopFlash cells are then transfected with constructs of 

interest before stimulation with Wnt conditioned media and measurement of the ratio of 

firefly to Renilla luciferase. Over-expression of CMV:PRL-3 in TopFlash cells led to an 

average of a 4.5 fold increase in luminescence compared to pMax-GFP control, suggesting 

that PRL-3 over-expression augments β-catenin signaling (Figure 4.7A). Additionally 

knock-down of PRL-3 with three different shRNA constructs led to a decrease in 

luminescence, indicating that PRL-3 knock-down decreases β-catenin signaling in vitro 

(Figure 4.7B). Furthermore, treatment of TopFlash cells with the PRL inhibitor JMS-053 

decreased the luminescence to the levels detected in the unstimulated DMSO treated cells 

(Figure 4.7C). This indicates that chemical inhibition of PRL-3 can almost complete 

abolish Wnt/β-catenin signaling in vitro. Finally, over-expression of CMV:PRL-3(C170S) 

and CMV:PRL-3(C104S) mutants induce β-catenin activity in a similar manner as 

CMV:PRL-3 wild-type over-expression. While this data may suggest that PRL-3 

localization and phosphatase activity do not play a role in PRL-3 activation of β-catenin, 

there was a significant amount of variation between experiments in these assays, making it 

difficult to draw any definitive conclusions (Figure 4.7D). Taken together, the TopFlash 

experiments demonstrate that PRL-3 plays a role in modulating β-catenin signaling in 

human cells in vitro. 
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Figure 4.7 TopFlash Assay Reveals PRL-3 Modulates Wnt/Beta-catenin Signaling In Vitro 
TopFlash assay for studying effect on Wnt/beta-catenin signaling (A) Over-
expression of wild-type CMV PRL-3 compared to pMax GFP control. Results 
depicted as fold change in relative light units (RLU). (B) PRL-3 knock-down in 
TopFlash cells with three different shRNA constructs compared to SCR control. 
(C) JMS-053 treatment in TopFlash cells at increasing doses from 1 to 10 µM 
compared to DMSO control with and without stimulation with Wnt conditioned 
media. (D) Over-expression of CMV PRL-3 C104S and C170S mutants compared 
to wild-type CMV PRL-3 over-expression and pMax GFP. 

 

 While I demonstrated that PRL-3 can modulate β-catenin signaling in vitro in 

human cells with the TopFlash assays, it was yet to be determined whether PRL-3 was able 

to modulate β-catenin target genes in human leukemia cell lines. Jurkat T-ALL stable cell 

lines over-expressing wild-type PRL-3 or GFP control were stimulated with Wnt 
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conditioned media for 4 or 6 hours before they were collected and RNA was isolated. RT-

PCR for β-catenin target genes revealed that the oncogene c-MYC was significantly 

elevated after Wnt stimulation in the PRL-3 over-expressing T-ALL cells compared to GFP 

control expressing cells (Figure 4.8A). PRL-3 over-expression was also confirmed by RT-

PCR and showed significant up-regulation compared to GFP control Jurkat cells (Figure 

4.8B). This data suggests that PRL-3 can modulate β-catenin to enhance c-MYC expression 

in human leukemia cells, likely contributing to leukemia initiation. 

 
Figure 4.8 PRL-3 Over-Expression Induces c-Myc Expression Upon Wnt Stimulation 

Jurkat cells stably expressing wild-type PRL-3 or GFP control were stimulated 
with Wnt conditioned media for 4 or 6 hours. RT-PCR was performed for fold 
change in (A) c-myc and (B) PRL-3 expression in PRL-3 over-expressing T-ALL 
compared to GFP control. **p<0.01, ***p<0.001, and ****p<0.0001. 

 

 To determine if other target genes downstream of β-catenin signaling were 

differentially regulated as a result of PRL-3 over-expression in human leukemia cell lines, 

a RT profiler array was performed. The Wnt signaling targets RT profiler array (Qiagen) 

was done on Jurkat PRL-3 over-expressing cells compared to Jurkat GFP expressing 

control cells. Results from this array identified several Wnt target genes that were 

differentially expressed in Jurkat PRL-3 cells compared to Jurkat GFP cells (Figure 4.9A). 

These differentially expressed genes included LEF1, RUNX2, MMP9, ANGPTL4, 
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CEBPD, and ID2 (Figure 4.9B). This data is encouraging, as lymphoid enhancer binding 

factor 1 (LEF1), inhibitor of DNA binding 2 (ID2), and RUNX family transcription factor 

2 (RUNX2) have both been implicated in leukemogenesis 226–228. Matrix metallopeptidase 

9 (MMP9) and CCAAT enhancer binding protein delta (CEBPD) have also been 

implicated in leukemia 229,230. Finally, angiopoietin-like 4 (ANGPTL4) expression is 

induced by hypoxia initiating factor 1 alpha (HIF1α) which is known to be critical to LSCs 

in T-ALL 133,231.  

 

 
Figure 4.9 PRL-3 Over-Expression Increases Wnt Target Gene Expression In Vitro 

RT-PCR profiler array of Wnt pathway signaling targets on Jurkat-GFP control 
cells compared to Jurkat-PRL-3 WT cells. (A) Plot showing fold change of PRL-3 
WT compared to GFP control of all genes tested. Middle line represents no 
change, outside lines represent 2 fold change in either direction. Data points 
above the upper line are upregulated genes and below the lower line are 
downregulated genes. (B) Fold change in expression of genes that were up- or 
down-regulated greater than 2 fold. 

 

 To determine if PRL-3 was playing a role in modulation of Wnt/β-catenin pathway 

signaling via direct activation of β-catenin, I treated cells with the PRL-3 inhibitor, JMS-

053, and then probed for phosphorylated-β-catenin by Western blot. In the absence of Wnt 

signaling, β-catenin is phosphorylated at serine 33, serine 37, and threonine 41 by GSK3β, 
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leading to β-catenin ubiquitination and proteasomal degradation. Inhibition of the 

proteasome with MG-132 in Jurkat T-ALL cells led to an increase in phospho-β-catenin, 

as it was allowed to accumulate in the cytoplasm of cells without being degraded. 

Interestingly, treatment with JMS-053, with or without MG-132, resulted in an increase in 

phospho-β-catenin, suggesting that inhibition of PRL-3 may result in an increase in beta-

catenin phosphorylation and degradation (Figure 4.10).  

 
Figure 4.10 Inhibition of PRL-3 Modulates Beta-Catenin Phosphorylation 

Western blot of Jurkat leukemia cells treated with proteasome inhibitor (MG-132) at 
increasing doses from 10 µM to 50 µM and at 10 µM for a time course ranging from 30 

to 90 minutes. Cells were also treated with a PRL-3 inhibitor JMS-053 (10 µM). Western 
blot was probed with anti-phospho-beta-catenin (Ser33/37/Thr41, Cell Signaling 

Technology). Fold change in expression is quantified in red compared to untreated Jurkat 
cells. 

 

4.2.3 PRL-3 Modulates Beta-Catenin Signaling in Vivo 

While a role for PRL-3 in modulation of β-catenin signaling has been established 

in vitro, via TopFlash assays and expression of Wnt pathway target genes, I wanted to 

confirm that PRL-3 is able to modulate Wnt/β-catenin signaling in vivo. A 

Tg(6xTCF/LEF:miniP-dGFP) transgenic wnt pathway reporter zebrafish line was used to 
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determine the effect of PRL-3 chemical inhibition on β-catenin signaling. In this transgenic 

zebrafish line, repeats of the TCF/LEF transcription factor binding sites are upstream of a 

GFP reporter gene with a minimal promoter 232. When beta-catenin is active, TCF/LEF 

transcription factor binding leads to expression of GFP. In this model, Wnt signaling is 

expressed during normal early development in both the head and tail region (Figure 

4.11A). When fish are treated with XAV939, a Wnt inhibitor, GFP fluorescence in the tail 

region decreases; treatment with BIO, a Wnt activator, causes an increase in GFP 

fluorescence (Figure 4.11D and E). Chemical inhibition of PRL-3 with PRL3-inhibitor I 

(Sigma), decreases GFP expression, or Wnt/beta-catenin signaling in a dose-dependent 

manner, to the level of XAV939, demonstrating that PRL-3 chemical inhibition is capable 

of modulating beta-catenin signaling in vivo (Figure 4.11C and F). 
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Figure 4.10 PRL-3 Chemical Inhibition Decreases Beta-catenin Signaling In Vivo 

(A) 6xTCF/LEF-miniP:dGFP zebrafish at 48 hpf; GFP fluorescence is an 
indicator of Wnt signaling during normal development. There is extensive 
TCF/LEF-driven GFP expression in the head and tail regions. The white box 
shows the tail area imaged for drug screen in (B-E). (B) DMSO (vehicle) control 
fish showing normal pattern of GFP expression in the tail. Post-drug treatment tail 
images were taken at 72 hpf. (C) Chemical inhibition of PRL-3 with PRL3-
inhibitor I (PRLi, Sigma) decreases GFP fluorescence. (D) Treatment with the 
Wnt pathway activator BIO leads to an increase in GFP fluorescence in the tail. 
(E) Treatment with the Wnt inhibitor XAV939 leads to a decrease or complete 
loss of GFP fluorescence in the tail. (F) Quantification of fold change in GFP 
expression compared to DMSO control. *p<0.05. 

4.3 Discussion 

Here I found that high PRL-3 expression in both patient samples and our zebrafish 

T-ALL model correlates with elevated beta-catenin expression. In vitro, PRL-3 modulates 

β-catenin signaling as demonstrated by over-expression, knock-down, and chemical 

inhibition assays in a TopFlash β-catenin reporter system. Further, PRL-3 chemical 

inhibition modulates β-catenin signaling in vivo in a transgenic β-catenin reporter zebrafish 

line. In both human T-ALL cell lines and our zebrafish T-ALL I saw elevation of c-Myc 

expression, a down-stream target gene of β-catenin. RNA sequencing comparing PRL-3 

over-expressing leukemias to Myc-induced control leukemias demonstrated elevation of 

CSNK1ε, another protein involved in Wnt pathway signaling. 
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Overall, these data suggest that PRL-3 plays a role in modulation of β-catenin 

signaling both in vitro and in vivo. This is likely at least in part responsible for the increase 

in LSC frequency seen in PRL-3 over-expressing zebrafish T-ALL. β-catenin involvement 

in CSCs in general, and more specifically in T-ALL LSCs, has been well documented. A 

role for PRL-3 in modulation of β-catenin signaling further strengthens evidence that PRL-

3 is serving as a driver of self-renewal in LSCs in T-ALL in vivo. Small molecule inhibition 

of PRL-3 may be able to modulate Wnt pathway signaling without directly targeting Wnt 

pathway components. As PRL-3 is not ubiquitously expressed, targeting of PRL-3 is not 

expected to have the widespread side effects that come with direct inhibition of Wnt 

pathway signaling. Therapeutic targeting of PRL-3 in T-ALL LSCs may therefore be a 

novel strategy for LSC inhibition. 

4.3.1 Future Directions 

Further studies are required for determining the mechanism by which PRL-3 is 

modulating Wnt pathway signaling. Further analysis and validation of RNA sequencing 

results from additional tumor samples is ongoing. Additionally, investigation of Wnt 

pathway protein expression in zebrafish leukemia samples is underway and will help to 

reveal the mechanism by which PRL-3 is activating down-stream β-catenin targets and 

instigating an increase in LSC self-renewal. 

4.4 Methods 

4.4.1 Gene Set Enrichment Analysis (GSEA) 

GSEA was done using GSEA 4.0.0. The data set GSE13159 was downloaded and 

phenotype labeling was done using PRL-3 expression levels from Affymetrix probes 
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209695_at and 206574_at. Enrichment was calculated using MsigDB collection C6 

(oncogenic gene sets). Gene set enrichment was considered significant if it had a nominal 

p-value <0.05. 

4.4.2 RNAseq 

Total RNA was isolated from leukemia cells using Zymo Research Quick-RNA kit 

(R1054, Irvine, CA, USA). RNA concentration was quantified using a NanoDrop 

spectrophotometer. RNA quality and RNA library preparation were performed by 

Genewiz, Inc. (South Plainfield, NJ). RNA sequencing was done with 2 biological 

replicates in the Myc control group and three biological replicates in the PRL-3 over-

expression group. RNA sequencing was done by Genewiz using an Illumina HiSeq and 

sequenced reads were mapped to the reference genome. Differential expression analysis 

and data quality control were also performed by Genewiz. The list of differentially 

expressed genes was then compared with those that resulted from earlier RNA sequencing 

performed in the same manner by the University of Louisville sequencing facility that were 

analyzed using Basepair online software. This prior experiment was done using three 

biological replicates for the Myc control group and three for the PRL-3 WT group. Any 

genes that were differentially regulated by both RNA sequencing experiments were 

reported. 

4.4.3 RT-PCR 

To assess gene expression, RNA was isolated from leukemia cells using Zymo 

Research Quick-RNA kit (R1054, Irvine, CA, USA). Total RNA was reverse transcribed 

(BioRad iSCRIPT, 1708891) and real time PCR performed using iTaq Universal SYBR 
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Green Supermix (Biorad, 1725120) with primer sequences available in (Table 4.1). Data 

were normalized to ef1a expression and fold change was calculated using the 2-∆∆Cq 

method.   

TABLE 4.1 REALTIME RT-PCR PRIMER SEQUENCES 
Gene Forward Primer Reverse Primer 

z-myca TATGCTGCAAGTGACCGGAG TCACCGGCATTTTGACACTTG 

h-prl-3 AAAGGCCCCCAAGGTAGTTA GCACAAGAGTTCCGTAGCTG 

h-c-Myc AGAAGTACGGGGCTACCACT TCAAACGGCCAGTCCACAAC 

h-
GAPDH CGACAGTCAGCCGCATCTT CCCCATGGTGTCTGAGCG 

z-eef1a1 ATGGCACGGTGACAACATGCT CCACATTACCACGACGGATG 

 

4.4.4 Western Blot 

To assess protein expression, western blot analysis was performed using Bio-Rad 

stain-free gels, allowing for the use of total protein as the loading control for normalization 

purposes 233. Gels were transferred using the Bio-Rad Trans-Blot Turbo system according 

to the manufacturer’s instructions. Blots were blocked in 5% milk in 1% TBST. Anti-

PTP4A3 (PRL-3) antibody (Genetex, GTX89930) was used at a 1:1000 dilution in 5% milk 

in 1% TBST. Anti-beta-catenin antibody (Abcam, 16051) was used at a 1:1000 dilution in 

5% milk in 1% TBST. 

4.4.5 Cell Culture 

Cells were cultured at 37°C in a humidified atmosphere with 5% CO2. Cell lines 

were authenticated by short tandem repeat (STR) DNA profiling and tested for 

mycoplasma contamination prior to experimentation. T-cell acute lymphoblastic leukemia 
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(Jurkat) cells were grown in RPMI 1640 (ThermoFisher 11875119) supplemented with 

10% heat-inactivated fetal bovine serum (FBS) (Atlanta Biologicals, S11150H, Lot 

M17161, Flowery Branch, GA, USA). 

4.4.6 TopFlash Assay 

Stable TopFlash expressing cells and Wnt3A producing cells were a generous gift 

from Dr. Tianyan Gao (University of Kentucky). Wnt3A conditioned media was made by 

collecting media from Wnt3A producing cells at 90% confluency and again two days later. 

Wnt3A conditioned media was assayed for Wnt activity with each experiment. TopFlash 

cells stably express the TopFlash reporter plasmid and a Renilla luciferase control plasmid 

224,225. For over-expression experiments, these cells were transfected with pMax-GFP 

control plasmid, CMV-PRL-3 WT, CMV-PRL-3 C170S or CMV-PRL-3 C104S plasmids. 

For knock-down experiments transfections were done with scrambled (SCR) control 

shRNA or shRNA O, P, or R against PRL-3. All transfections were done using 

Lipofectamine 3000 (Life Technologies, L3000015) according to the manufacturers 

protocol. For drug treatment experiments, cells were treated with DMSO control or JMS-

053 at doses ranging from 1-10 µM. Two days after transfection or drug treatment, cells 

were lysed and assayed for firefly and Renilla luciferase activity using Promega Dual-Glo 

luciferase assay system (Promega, E2940). Firefly luciferase expression was normalized 

to Renilla luciferase expression before calculating fold change compared to the control 

samples for each experiment. 
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4.4.7 TCF/LEF Zebrafish Experiments 

Sheer Tg(6xTCF/LEF-miniP:dGFP) zebrafish were a generous gift from Dr. Dave 

Langenau (Harvard). Drug screen was performed as previously described (Haney et al 

2021, in press, STAR Protocols). Briefly, 6xTCF/LEF-GFP embryos were screened for 

GFP fluorescence at 24 hours post fertilization (hpf), manually dechorionated, and placed 

in individual wells of a 96-well plate containing DMSO or PRL-3 Inhibitor I (Sigma-

Aldrich). After 48 hours of drug treatment, zebrafish were imaged using the vertebrate 

automated screening technology (VAST) BioImager (Union Biometrica) for GFP 

fluorescence 234–236. GFP fluorescence was quantified using FIJI ImageJ by multiplying the 

area of fluorescence by the mean fluorescence intensity. Images were normalized to DMSO 

GFP fluorescence and fold change in GFP expression was calculated for each image 

compared to DMSO control. 

4.4.8 Statistical Analysis 

Results are shown as mean ± standard deviation. Statistical analyses were 

performed using GraphPad Prism 7 (San Diego, CA, USA), combining data from all 

samples across all replicates. Two-tailed t-tests were performed to compare two groups 

with similar distribution, and Analysis of Variance with Tukey’s multiple comparisons was 

used to compare more than two groups. Statistical analysis for GSEA was done using 

GSEA 4.0.0 and enrichment was considered significant if it had a nominal p-value <0.05. 

RNA sequencing analysis was done by Genewiz and Basepair. 

 



 

81 
 

 

 

 

 

 

 

 

 

PART 3. NOVEL TECHNOLOGY/TECHNIQUES TO DETECT AND PREVENT T-ALL PATIENT 
RELAPSE AND IMPROVE OUTCOMES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5. DEVELOPMENT OF A FLUORESCENTLY TAGGED LEUKEMIA STEM CELL 
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5.1 Introduction 

The limited techniques available for studying leukemia stem cells has posed a major 

limitation in the advancement of the field. Limiting dilution transplantation assays and 

lineage tracing assays make up most experiments available for studying LSC biology and 

function in animal models. The ability to examine LSC biology in vitro is limited because, 

as has been demonstrated in hematopoietic stem cells (HSCs), the stem cell niche plays an 

critical role in stem cell biology. Technology for studying LSCs in vivo and their interaction 

with the environment have posed a major challenge.  

Zebrafish are a useful and inexpensive model for in vivo studies of cellular function. 

Transgenic lines are relatively easy to create to mark specific cell types and lineages with 

fluorescent reporters. The interaction of HSCs with their environment and the interplay 

between HSCs and the vascular system has been extensively characterized using zebrafish 

models 237. Optically clear mutant zebrafish lines are available, making high-resolution in 

vivo imaging a unique advantage of zebrafish models. Although these stem cell-niche 

interactions have been studied extensively in HSCs during development, LSCs in T-ALL 

and other acute leukemias lack LSC-specific cell surface markers or reporters that can be 

used to create LSC-tagged zebrafish lines. Having a LSC reporter line in zebrafish would 

allow for in depth study of leukemia stem cell biology in vivo and interaction of LSCs with 

their niche in T-ALL in a manner that is currently not possible. Additionally, such a line 

would be useful for large-scale drug screens, in which compounds can be examined for 

ability to target fluorescently tagged LSCs without the need for extensive limiting dilution 

transplantation. 
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5.1.1 Hypothesis 

As described above, in T-ALL, Wnt-active cells make up a very small minority of 

bulk leukemia cells. Wnt-active leukemia cells were shown to be highly enriched for LSCs 

in a mouse T-ALL model. In this study, transfection of mouse leukemia cells with a 

6xTCF/LEF reporter plasmid and sorting for cells with active β-catenin signaling 

demonstrated that T-ALL mouse LSCs could be sorted for and β-catenin negative leukemia 

cells contained virtually no LSCs 133. Since LSCs are enriched in β-catenin signaling in T-

ALL, I hypothesized that I could create a transgenic TCF/LEF reporter zebrafish T-ALL 

model in which Wnt-expressing LSCs were tagged in vivo. This line could then be used 

both for visualization of T-ALL LSCs in vivo and for higher-throughput screening of LSC 

response to drug treatment in vivo.  

5.2 Results 

Sheer Tg(6xTCF/LEF:miniP-GFP) zebrafish embryos were microinjected with 

rag2:mMyc + rag2:mCherry to make a mCherry-fluorescent T-ALL with a GFP β-catenin 

reporter. In this model, β-catenin expressing cells are GFP-fluorescent, leukemia cells are 

mCherry-fluorescent, and leukemia cells that also express β-catenin are fluorescent in both 

GFP and mCherry (Figure 5.1). Tg(6xTCF/LEF:miniP-GFP) injected embryos screened 

for GFP fluorescence at 48 hpf and any negative embryos were discarded. At 21 dpf, 

injected larvae were screened for mCherry-fluorescence in the thymus and then followed 

as the leukemia progressed. In some of the zebrafish, β-catenin expressing leukemia cells 

could be seen residing in the thymus, which is the site of leukemia initiation (Figure 5.2A). 

Confocal imaging revealed a small sub-population of β-catenin cells that could be 
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visualized in the leukemic thymus (Figure 5.2B and C). This provides preliminary 

evidence that transgenic zebrafish can be used as a reporter line to visualize LSCs in vivo. 

 
Figure 5.1 Schematic of LSC Reporter Model Generation 

Tg(6xTCF/LEF:miniP-dGFP) sheer zebrafish embryos were injected with 
rag2:Myc + rag2:mCherry inducing a mCherry fluorescent leukemia. The 
resulting LSC reporter fish is TCF/LEF-GFP and rag2:Myc-mCherry. In this 
model, β-catenin expressing cells are GFP-fluorescent, leukemia cells are 
mCherry-fluorescent, and leukemia cells that also express beta-catenin are 
fluorescent in both GFP and mCherry. 

 

 
Figure 5.2 Beta-catenin Expressing Leukemia Cells Located in Thymus 

Imaging of TCF/LEF-GFP rag2:Myc-mCherry zebrafish. (A) Leukemic mCherry 
thymus. Circle indicates an area where GFP-positive cells can be seen. (B) 
Confocal imaging of circled area from panel (A) depicting mCherry-fluorescent 
leukemic cells and double-positive (yellow) cells that are beta-catenin expressing 
leukemic cells, or potential LSCs. (C) Confocal imaging in GFP channel alone 
depicting a small subset of beta-catenin expressing cells present in the leukemic 
thymus. 
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 In addition to imaging of zebrafish LSCs, I wanted to try to isolate potential  

LSCs from leukemic zebrafish. Although this sheer Tg(6xTCF/LEF:miniP-GFP) zebrafish 

line is not a syngeneic zebrafish line and transplantation studies cannot be performed, I 

hoped to show that it was possible to isolate these potential LSCs for transplantation and 

functional studies in the future. 6xTCF/LEF:miniPGFP;rag2:Myc-mCherry leukemic 

zebrafish were monitored until their leukemia burden became about 70% of the animal’s 

body and the animals were sacrificed. Tumors were harvested, and flow cytometry was 

performed to quantify the percentage of mCherry-positive and double positive (mCherry 

and GFP) leukemic cells. This showed that the percent of beta-catenin expressing leukemic 

cells made up 0.1% to 1.78% of total cells (Figure 5.3). 

 
Figure 5.3 Beta-catenin Expressing LSCs Can Be Sorted By Flow Cytometry 

(A) Flow cytometry of leukemic TCF/LEF-GFP rag2:Myc-mCherry leukemia. 
(B) Table showing percentage of mCherry and GFP positive (double positive) 
cells. 

5.3 Discussion 

Here, I created a new zebrafish model to label Wnt/beta-catenin positive leukemia 

cells, which are potential leukemia stem cells, utilizing a 6xTCF/LEF-GFP transgenic 

zebrafish line to make mCherry fluorescent leukemias. I demonstrated that a small 
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proportion of leukemia cells are enriched for β-catenin signaling and that these cells tend 

to reside in the thymus during leukemia initiation. This model may allow for in vivo 

studying of β-catenin positive leukemia cells, their niche, and their interaction with their 

surrounding environment, as well as for high-throughput in vivo drug screening. 

5.3.1 Future Directions 

In order to confirm these β-catenin positive leukemia cells are actually enriched for 

leukemia stem cells, transplantation studies need to be done to demonstrate that the β-

catenin positive leukemia cell population is enriched for self-renewal and able to form new 

leukemias in recipient zebrafish. This would demonstrate that this model can actually serve 

as a marker of LSCs in vivo. The above model was created in a genetically diverse and 

immunologically competent zebrafish line in which cells cannot be transplanted from one 

fish to another. I created a syngeneic Tg(6xTCF/LEF:miniP-dGFP) zebrafish line in a CG1 

background that can be used for transplantation studies. T-ALL will be generated in these 

zebrafish with microinjection of rag2:mMyc and rag2:mCherry, the leukemia harvested, 

sorted into β-catenin expressing and non-β-catenin expressing leukemic cell populations, 

and then transplanted into recipient zebrafish. With these studies, I would expect to see 

engraftment upon transplantation of the β-catenin positive leukemia cells and a lack of 

engraftment in the non-β-catenin expressing cells, confirming that our model is labeling 

LSCs in vivo and could be used to study LSC in vivo biology, environment, and function 

at a level that has not been possible before. 
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5.4 Methods 

5.4.1 Generation of Model in Sheer TCF/LEF Zebrafish 

Microinjections of 60 ng/μL rag2:Myc + 60 ng/μL rag2:mCherry were used to 

generate zebrafish T-ALL in sheer Tg(6xTCF/LEF:miniP-dGFP) zebrafish as previously 

described 128,196,207. Zebrafish were screened for GFP fluorescence at 48 hpf and then 

monitored for leukemia onset and progression starting at 21 days post-fertilization (dpf) 

and every 3 days onwards by analyzing percent of the body expressing mCherry-positive 

leukemia cells using a Nikon fluorescence-equipped SMZ25 microscope. Animals were 

monitored until they had to be sacrificed due to leukemia burden at approximately 70% 

leukemic burden.  

 

5.4.2 Generation of TCF/LEF CG1 Transgenic Line 

Microinjections of 60 ng/μL of a tol2:6xTCF/LEF-GFP reporter plasmid were used 

to generate a transgenic TCF/LEF-GFP reporter zebrafish line in CG1 syngeneic zebrafish. 

Zebrafish were screened for GFP fluorescence at 48 hpf using a Nikon fluorescence-

equipped SMZ25 microscope and grown on the nursery for two months until they were 

capable of breeding. This F0 generation was then outcrossed to CG1 zebrafish and embryos 

were again screened for GFP fluorescence at 48 hpf to make the F1 generation. This F1 

generation was then incrossed and screened for GFP fluorescence to make the F2 

generation. The line was then maintained by incross of the F2 generation or later before use 

for further studies. 
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For the LSC reporter model in CG1 Tg(6xTCF/LEF:miniP-GFP) zebrafish 

microinjections of 30 ng/μL rag2:Myc + 30 ng/μL rag2:mCherry were used to generate 

zebrafish T-ALL in CG1 Tg(6xTCF/LEF:miniP-dGFP) zebrafish as previously described 

128,196,207. Zebrafish were screened for GFP fluorescence at 48 hpf and then monitored for 

leukemia onset and progression starting at 21 days post-fertilization (dpf) and every 3 days 

onwards by analyzing percent of the body expressing mCherry-positive leukemia cells 

using a Nikon fluorescence-equipped SMZ25 microscope. Animals were monitored until 

they had to be sacrificed due to leukemia burden at approximately 70% leukemic burden. 

5.4.3 Flow Cytometry 

Flow cytometry experiments were performed using a iCyt-Sony Cell Sorter 

System. Cells were stained for viability using DAPI at a final concentration of 1 mg/mL. 

Gating was drawn to include live cells and exclude doublets. Fluorescence thresholds were 

set with single positive controls in each channel.  

5.4.4 Microscopy 

Confocal microscopy of the zebrafish thymus was done with the help of Dr. Jakub 

Famulski. Zebrafish were anesthetized with Tricaine-S prior to imaging on a Nikon C2 

confocal microscope. 
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CHAPTER 6. ZEBRAFISH AS A XENOGRAFT MODEL 

Taken from: Drug Screening of Primary Patient Derived Tumor Xenografts in Zebrafish.  
Meghan Haney, Henry Moore, and Jessica Blackburn. JoVE, 2020; and Suitability of 
Zebrafish as a Recipient of Mammalian Xenografts in Translational Cancer Research. 

Meghan Haney et al. In submission to Cancers, 2021. 
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6.1 Introduction 

Xenografting of human cell lines and primary tumor cells into model organisms has 

become a widespread practice, particularly for validating response of tumor cells to novel 

drug therapies 238,239. Historically, immune compromised mice have been used as the most 

common xenograft model; however, using mice is costly and impractical for large scale 

drug screening. Zebrafish have emerged as an alternative to mouse models. The zebrafish’s 

advantages in xenografts lie primarily in their cost-effectiveness. Zebrafish have a large 

brood size, quick generation time and low-cost upkeep. These factors have moved the 

zebrafish forward as an ideal candidate for high-throughput experiments.  

Considering all the advantages of the zebrafish model, it is compelling to think that 

they could provide a platform for a cost-effective approach to personalized medicine where 

xenografted patient tumors undergo drug susceptibility testing prior to clinical treatment 

240,241. With this model, small amounts of cancerous cells could be taken from patients, 

injected into a large number of zebrafish larvae, and subjected to large-scale high-

throughput drug screening, determining responsiveness of individual patient tumors to a 

wide variety of drugs within a matter of days to a week 240–243. This information could then 

be used for predicting patient response to a variety of treatments, including targeted 

therapies, stratifying patients into clinical trials, or identifying treatment-resistant cells 

within a tumor that could be responsible for relapse later on. 

Typically, quantification of xenografted cells after drug screening is measured by 

one of two ways: dissociation of xenografted fish into single cell suspensions and 

quantification of remaining, fluorescently-labeled tumor cells 244,245 or by semi-automated 

imaging methods where fixed larval fish are imaged in 96-well plates using an inverted 
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fluorescent microscope before realignment of composite images and quantification of 

tumor cell foci 246. Our lab and others have previously published on the use of the 

Vertebrate Automated Screening Technology (VAST) Bioimager and Large Particle (LP) 

Sampler 235,236(Union Biometrica) which has opened the door for an even more high-

throughput method of drug screening of zebrafish 247.  

Despite the advantages and opportunities with zebrafish xenograft models, there 

are several considerations that may be limiting their wide-spread use. First, xenografting 

tumor cells into larval zebrafish is technically challenging, with different labs adopting 

their own approaches for this technique. This lack of consensus leads to inconsistencies 

from one group to the next in how the models are created. Another challenge to consider 

is that zebrafish are normally housed at 28°C, much cooler than the 37°C body temperature 

of humans and other mammalian model organisms. As a compromise between the two, 

xenografted fish are typically kept at 34°C to try to maintain both zebrafish and human cell 

survival; however, there is a lack of knowledge on how this temperature change affects 

normal fish and cancer cell physiology. Finally, using larval zebrafish for xenografts is 

merely a short-term model that does not permit the study of long-term drug response, tumor 

recurrence, or late stage tumor-host interactions, since the fish start to develop an immune 

system around 7dpf 248. 

To begin to address these issues, I have reconciled some of the variation in 

xenograft methodology used between research groups. I also address the lack of consensus 

between the best site for injection of xenografted human cells into larval zebrafish and 

compared the metabolism of different injection sites in the fish and how these changes 

could affect downstream assays. I developed a streamlined workflow for xenografting 



93 
 

primary patient leukemia cells into zebrafish and performing high-throughput drug screens 

with automated imaging and quantification, which can be applied to any other primary 

patient tumor cells or cancer cell line. Our studies in this chapter address the concerns over 

suitability of zebrafish as a xenograft model. 

6.2 Results 

6.2.1 Optimization of Xenograft Injection Site and Cell Number 

A major inconsistency between published xenograft studies is the site of 

mammalian cell injection and number of cells injected per animal to achieve optimized and 

reliable engraftment while still maintaining high survival rates. In order to determine if 

there is an optimal engraftment location and cell density I stained cells with DiI and 

injected into dechorionated zebrafish larvae at 48 hpf at 7 different injection sites: yolk, 

pericardium, brain, caudal vein, duct of Cuvier, periorbital space, and perivitelline space 

(Figure 6.1A-H). Survival rates of each site were reported, showing that there was no 

major difference in survival between injection sites at 1 day post-transplant (dpt) (Figure 

6.1I). However, there was a difference in engraftment rates at different sites and in the loss 

of engrafted fish from 1 to 5 dpt (Figure 6.1J). I found that the pericardium, duct of Cuvier, 

and yolk injection sites provided the most reliable results with the highest percentage of 

engrafted fish still alive at 5 dpt.  
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Figure 6.1 Recipient Survival Post-Xenograft Varies by Injection Site 
(A) Depiction of seven injection sites tested in 48 hpf zebrafish larvae. 
Representative images of zebrafish larvae at 24 hours post injection (hpi) injected 
with DiI stained cells at 48 hpf at each of seven injection sites, brain (B), peri-
orbital space (C), perivitelline space (D), pericardium (E), duct of Cuvier (F), yolk 
(G) and caudal vein (H). Images were taken with the VAST BioImager. Scale bar 
represents 250 µm. (I) Percent survival of injected fish after 1 day post-transplant 
(dpt). Mammalian cancer cell lines were injected at the 7 injection sites listed 
above in groups of 30, with a minimum of 3 replicates per group. NS = not 
significant. (J) Comparison of percent of larvae alive and engrafted at 1 and 5 dpt. 
**** p-value <0.0001, *** p-value <0.001, ** p-value <0.01. 
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 Another important consideration is ease of injection which played a major 

role in efficiency of being able to practically use zebrafish as a xenograft model for drug 

screening, with caudal vein and retro-orbital injections taking approximately twice as long 

as other injection sites (data not shown). Cells can be seen circulating when injected into 

the caudal vein, duct of Cuvier, peri-orbital space, pericardium, or perivitelline space. Since 

there was no major difference in survival and the yolk and pericardium were the fastest and 

most consistent injection sites to have cells in the correct anatomic location, these sites 

were chosen going forward for further studies.    

 In collaboration with Dr. Ramon Sun’s lab, we decided to characterize the 

metabolic changes that occur in zebrafish xenograft models. Zebrafish larvae are yolk-

dependent organisms and feed off of their yolk for about 5-7 dpf without any external food 

source. Contrary to the rest of the embryo, the yolk is devoid of cells and made up mostly 

of stored lipids and proteins 249. This nutrient-rich area is also the most common injection 

site for xenograft models in zebrafish. Since yolk composition differs compared to the 

soma it may have different metabolic activity that can impact how xenografted cells behave 

and respond to drug treatment. We were interested in the metabolites present in the 

zebrafish yolk to predict the effect this would have on cells xenografted into this location 

compared to the body of larval zebrafish. Zebrafish were manually de-yolked at 6 dpf and 

the metabolites were analyzed by mass spectrometry in the fish that still had an intact yolk 

compared to de-yolked zebrafish (Figure 6.2A). PCA analysis showed that whole fish 

clustered independently from de-yolked fish based on relative metabolite abundance 

(Figure 6.2B). Additionally, many metabolites were enriched in the body alone, compared 

to the body plus yolk (Figure 6.2C). 
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Figure 6.2 Zebrafish Metabolites Vary Between Body and Yolk Injection Sites 
(A) Schematic of workflow for GC-MS metabolic analysis of whole zebrafish 
larvae and de-yolked zebrafish larvae. (B) PCA showing that whole (body + yolk) 
zebrafish larvae (blue) cluster independently from de-yolked (body) zebrafish 
larvae (orange) based on metabolites present. (C) Volcano plot of enriched and 
depleted metabolites from whole (body + yolk, orange) and de-yolked (body, 
blue) zebrafish larvae. 

 

I also compared injection cell density of 100, 250, 500, and 1,000 cells per zebrafish 

larvae both in the yolk and in the body of the fish. I was able to see consistent engraftment 

of the cells at 1 dpi in the yolk above 100 cells injected, but in the pericardium I was unable 

to reliably visualize and quantify engrafted cells when less then 500 cells were injected 

(Figure 6.3A). When I examined the survival between the groups, I found that there was a 

higher survival in the 500 cell group than in the 1,000 cell group and this difference was 
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significant in the yolk injected fish, with a p-value of 0.0396 (Figure 6.3B). I chose to 

continue forward using 500 cells injected per zebrafish as this had the highest survival and 

allowed for consistent engraftment and quantification of engrafted cells for drug-screening 

applications. 

 
Figure 6.3 Optimization of Cell Number for Injection 

DiI stained cells were injected into the pericardium or yolk of dechorionated 
zebrafish larvae at 48hpf at concentrations of 100, 250, 500, or 1,000 cells per 
injection. (A) Images were taken at 1 dpi with VAST Bioimager. (B) Injected fish 
were screened at days 1, 3, and 5 post-injection for the number of fish that 
remained alive and engrafted with DiI stained cells. Three independent 
experiments with n=30 zebrafish per experiment were done for each site and cell 
number. Plots show mean with error bars representing standard deviation. * = p < 
0.05 between the percent survival and engraftment of the 500 and 1,000 cell 
groups at 5 dpi in the yolk. 
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6.2.2 Temperature Affects Zebrafish Survival and Metabolism 

Another challenge that has arisen with zebrafish as a model for cancer cell 

xenografts is the difference in optimal growth temperature between zebrafish and human 

cancer cells. Zebrafish are normally housed at 28°C, while normal human body 

temperature is 37°C. Different groups have reported using a range of temperatures between 

28°C and 37°C for generation and maintenance of zebrafish xenografts 250,251. Temperature 

has a significant impact on zebrafish early growth and development and the effect this 

change has on xenograft survival and biology has not been addressed 252,253. To asses 

increased housing temperature on larval survival I first tracked the translucent Casper 

zebrafish larvae over three different temperatures and found that although the survival was 

highest at 28°C with 95% survival, the survival rate after 5 days at 34°C and 37°C was still 

80% and 67% respectively (Figure 6.4A). Gross morphologic changes were noted in the 

zebrafish when the temperature increased from 28°C to 34°C and 37°C, with the size of 

the yolk sac decreasing with increasing temperature and the fish looking smaller in size 

and less active at higher temperatures (Figure 6.4B). 
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Figure 6.4 Optimization of Temperature for Xenograft Maintenance 

Survival of zebrafish larvae at 28°C, 34°C, and 37°C. Fish were dechorionated at 
48 hpf and incubated at the designated temperature for 5 days. P-values 
comparing temperatures at each time point shown above the graph. (B) 
Representative images of zebrafish larvae grown at 28°C, 34°C, or 37°C for 5 
days. Images taken on VAST Bioimager at 7 dpf. * indicates yolk size, which 
decreases with increasing temperature. **** p-value <0.0001, *** p-value 
<0.001, ** p-value <0.01, * p-value <0.05. 

 

While both cell lines and zebrafish are able to survive at 34°C, it is known that 

temperature plays a role in metabolism, so I was interested in the metabolic changes that 

occur with changes in temperature. Zebrafish at 2 days post fertilization (dpf) were housed 

at 28°C, 34°C, or 37°C for 48 hours and then collected in triplicate for carbohydrate 

metabolism analysis by mass spectrometry. In general, almost every carbohydrate 

metabolite analyzed increased when the temperature was increased from 28°C to 34°C and 

PLS-DA plotting showed zebrafish larvae grown at 28°C, 34°C or 37°C cluster 

independently (Figure 6.5). This demonstrates that zebrafish maintained at non-

physiologic temperatures for xenograft experiments experience metabolic changes. As a 

whole, it is important to keep in mind that variations in temperature can change the 
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metabolism of the entire organism, which in turn can affect the nutrient availability and 

microenvironment of xenografted cells, and that should be taken into consideration when 

utilizing zebrafish as a xenograft model.  

 
Figure 6.5 Temperature Affects Zebrafish Metabolism 

PLS-DA plot showing zebrafish larvae grown at 28°C, 34°C or 37°C cluster 
independently. (B) Heat map showing main differences contributing to PLS-DA 
clustering of 28°C, 34°C and 37°C groups. 

 

6.2.3 Temperature Affects Xenografted Cell Survival and Metabolism 

I next studied the effect of temperature on cancer cell growth in vitro. I first tracked 

the growth of Jurkat, HSB2, or HBP-ALL cells over 5 days at 34°C or 37°C. Cells were 

counted every other day and I found that cells grew at both 34 and 37°C, with a faster rate 

of growth at 37°C (Figure 6.6A). Cells did not grow at 28°C so this temperature was 

eliminated from further experiments. I next used EdU uptake as a marker of cell cycle in 

Jurkat cells grown at both 34 and 37°C, finding that significantly more cells were in G0/G1 

stage of the cell cycle and significantly less in S phase, or actively replicating, in cells 

A B 
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maintained at 34°C compared to 37°C (Figure 6.6B). Staining of human leukemia cell 

lines grown at 34 and 37°C with Annexin V to quantify the amount of apoptosis in cells 

grown at each temperature revealed that Jurkat and HBP-ALL leukemia cell lines had 

significantly increased apoptosis at 34°C compared to 37°C (Figure 6.6C). Combining this 

data with the zebrafish survival data from Figure 6.4, I found 34°C to be the optimal 

compromise to attain the highest survival of both zebrafish larvae and mammalian cancer 

cells. 

 
Figure 6.6 Effect of Temperature on Cancer Cell Lines 

Growth curves of three human leukemia cell lines (Jurkat, HBP-ALL and HSB2) 
at 34 (blue) and 37°C (yellow). Data represents an average of 3 biological 
replicates with at least n=3 technical replicates per experiment. (B) Percent of 
Jurkat cells in each phase of the cell cycle determined by EdU uptake at 34°C and 
37°C. (C) Percent apoptosis in three human leukemia cell lines determined by 
Annexin V staining at 34°C and 37°C. Data for EdU and Annexin staining 
represents an average of n=3 replicates done per temperature and ** p-value 
<0.01, * p-value <0.05. 
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Finally, I evaluated how metabolic activity changed in leukemia cell lines grown in 

sub-optimal temperatures. Jurkat cells cultured at 34 and 37°C were prepped and analyzed 

in triplicate for metabolites via mass spectrometry. This data showed minor changes in 

metabolites in the glycolysis pathway with variation in temperature (Figure 6.7B). 

Interestingly, cells maintained at 34 and 37°C clustered independently by principal 

component analysis (PCA) based on relative abundance of metabolites (Figure 6.7C). I 

also used the Agilent Seahorse Xfe96 to further compare metabolism changes in Jurkat and 

HSB2 cells maintained at 34 and 37°C. Cells were plated in Cell-Tak coated plates and 

assayed for mitochondrial stress and glycolytic rate. This data showed that at 34°C there is 

a significant increase in ATP production rate and coupling efficiency in both cell lines 

compared to 37°C (Figure 6.7D and E). Again, these metabolic changes in mammalian 

cells maintained at non-physiologic temperatures may have an impact on results of drug 

screening or cancer cell engraftment or behavior in zebrafish xenograft models.   
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Figure 6.7 Temperature Affects Mammalian Cell Metabolism 
(A) Schematic of Krebs cycle. (B) Heat map of relative abundance of Krebs cycle 
metabolites present in Jurkat cells grown at 34 or 37°C quantified by GC-MS. 
n=3 independent replicates were done for each temperature. Data was normalized 
to L-norvaline standard and adjusted to protein input. (C) PLS-DA showing Jurkat 
cells grown at 34°C cluster independently from those grown at 37°C based on 
metabolites present. Seahorse analysis performed on Jurkat and HSB2 cells shows 
an increase in ATP production rate (D) and coupling efficiency (E) at 34°C 
compared to 37°C. Data represents average of >10 replicates per group with error 
bars representing standard deviation and **** p-value <0.0001. 

 

6.2.4 Primary Patient Samples Can Be Xenografted into Larval Zebrafish 

After optimization of injection site, temperature, and cell number, I optimized a 

workflow for xenografting of patient samples for performing high-throughput drug 

screening with automated imaging. Zebrafish were xenografted in the yolk and pericardium 

with primary patient peripheral blood mononuclear cells (PBMCs) that were originally 

isolated from a T-cell Acute Lymphoblastic Leukemia (T-ALL) patient at diagnosis and 

banked as a viable, frozen sample. At 48 hpi, xenografted fish were screened for 
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fluorescently labeled tumor cells (Figure 6.8) and treated with chemotherapy 

(dexamethasone or vincristine) or DMSO. Fish were imaged at 7 dpi, after 3 days on drug 

treatment using a fluorescence microscope equipped imaging unit and automated sampler 

unit (Figure 6.9). 

 
Figure 6.8 Injection Site and Representative Images of Screening Xenografted Fish 

Images of microinjector needle at time of injection into either the yolk (A) or 
pericardium (B) of 2 dpf zebrafish larvae. Representative images of screening at 2 
dpi depict selection of zebrafish for drug screen (C and D). Zebrafish with similar 
engraftment (1-3 and 1’-3’) should be selected, un-engrafted zebrafish (5 and 5’) 
should be removed. For yolk injected fish, remove fish where borders of the yolk 
cannot be seen around engrafted cell mass (4) as it makes quantification difficult. 
For pericardium injected fish, remove fish where injected cell mass encroaches 
into yolk sac (4’). Scale bars represent 0.5 mm. 
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Figure 6.9 Xenograft Drug Screen and Imaging Workflow 

Schematic of workflow of xenografting zebrafish larvae and performing drug 
screen, including imaging on a fluorescence microscope equipped imaging unit 
and automated sampler unit. 

 

The fluorescent area/tumor burden was measured for each fish imaged using 

ImageJ and compared between the different drug treatment groups and DMSO (Figure 

6.10A). Overall, xenografted fish treated with vincristine showed the largest and most 

consistent decrease in xenografted cell mass compared to DMSO treated fish. 

Dexamethasone treated fish showed about half the reduction in tumor area compared to 

vincristine, but still showed a reduction in tumor area compared to DMSO (Figure 6.10B). 

This mimicked what was seen in the patient, as their leukemia rapidly responded to therapy 

with a combination of dexamethasone and vincristine. These results demonstrate the ability 

of zebrafish xenograft models to be amenable to drug screening and automated imaging 



106 
 

and quantification, providing a platform for testing various patient samples or cell lines 

with different drugs or drug combinations. 

 

Figure 6.10 Drug Treatment Can Reduce Xenografted Tumor Area In Vivo 
Representative images of zebrafish injected in the pericardium or yolk after 3 
days of treatment with DMSO or drugs, either vincristine or dexamethasone. Area 
of engrafted tumor mass was quantified by setting a fluorescence threshold using 
ImageJ, selecting all pixels above the set threshold, and measuring the area and 
mean fluorescence of the selected regions. Pixels above the selected threshold 
appear in black, while pixels below the threshold appear in white. Pixels were 
measured in both the yolk and pericardium injected zebrafish images (A). 
Treatment with vincristine led to a decrease in engrafted tumor area compared to 
DMSO control with n=4 fish treated per group (B). SD = standard deviation. 
Scale bar represents 250 µm. 
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6.2.5 Zebrafish Xenograft Model Shows Inconsistencies in Drug Screening 

of Cell Lines 

In order to perform high-throughput, large scale drug screens on patient samples, 

cells are stained with membrane-labeling dyes so their response to drug can be visualized 

after engraftment. I followed a staining protocol used by many other zebrafish labs 244 

utilizing Vybrant DiI Cell-Labeling Solution to stain human leukemia cell lines before 

xenografting. However, I noticed these cell lines were not consistently responding to a 

range of drug treatments as expected and cell masses were not disappearing despite 

treatment with high-dose chemotherapy that they should have been responding to. I 

performed Annexin and EdU staining of cells immediately after DiI staining, before 

injection into the zebrafish, and found that the cells were still actively proliferating and not 

undergoing apoptosis at an abnormally high rate (data not shown). I performed BrdU 

staining on DiI stained cells engrafted into zebrafish and we imaged with confocal 

microscopy to quantify cell proliferation, finding that DiI stained cells were not actively 

proliferating at all in the yolk. There was inconsistent and infrequent proliferation 

occurring in cells xenografted into the pericardium at 37°C and almost no proliferation 

seen in the pericardium at 34°C (Figure 6.11). Furthermore, there was a large amount of 

DiI labeled debris present and many fish did not have discernable nuclei present in 

engrafted cells, despite appearing as if cells were engrafted normally by DiI fluorescence. 
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Figure 6.11 BrdU Staining of DiI Stained Cell Lines 

BrdU staining for proliferation of DiI stained Jurkat leukemia cells xenografted 
into the pericardium or yolk of larval zebrafish and kept at 34 or 37°C. 

 

Due to the unexpected appearance and behavior of DiI stained cells, I injected 

zebrafish with GFP-labeled human leukemia cell lines (Jurkat or HSB2) and performed 

BrdU and TUNEL staining to quantify proliferation and apoptosis, respectively, of 

engrafted cells. I found that in some cell lines (HSB2) xenografted into the pericardium 

there is more proliferation occurring at 37°C than there is at 34°C, while in other cell lines 

(Jurkat) there is a decrease in proliferation at 37°C compared to 34°C (Figure 6.12). 

Similar to the DiI stained cells, I saw virtually no proliferation occurring in cell lines 

xenografted into the yolk at either temperature. There was also significantly less apoptosis 

in Jurkat cells engrafted into the pericardium at 37°C compared to 34°C but no significant 

change in apoptosis of HSB2 cells xenografted into the pericardium between the two 

temperatures. Finally, there was also a lack of apoptosis seen in cells xenografted into the 

yolk at either temperature, meaning these cells are not actively dividing or undergoing 

apoptosis (Figure 6.12). This demonstrates that cells do not grow and thrive equally when 

they are maintained at 34°C compared to their physiologic temperatures, which is required 

to increase survival and decrease stress on zebrafish larvae. 
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Figure 6.12 Xenografted Mammalian Cell Growth is Affected By Injection Site and 

Temperature 
BrdU staining for proliferation of GFP expressing leukemia cell lines (Jurkat and 
HSB2) xenografted into the pericardium or yolk of larval zebrafish and kept at 34 
or 37°C. Quantification of percent BrdU positive xenografted cells in the 
pericardium (dark bar) or yolk (light bar) at 34°C (blue) or 37°C (yellow) 
showing significant proliferation in the cells xenografted into the pericardium and 
almost none in yolk injected cells. (C) TUNEL staining for apoptosis of GFP 
expressing leukemia cell lines (Jurkat and HSB2) xenografted into the 
pericardium or yolk of larval zebrafish and kept at 34 or 37°C. Quantification of 
percent TUNEL positive xenografted cells in the pericardium (dark bar) or yolk 
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(light bar) at 34°C (blue) or 37°C (yellow) showing a significant decrease in 
apoptosis when xenografted fish were kept at 37°C compared to 34°C and a lack 
of apoptosis occurring in yolk engrafted cells. ** p-value <0.01. 

 

Another major consideration with xenograft models in zebrafish is the difference 

in effectiveness of drug at different temperatures. Since drugs are designed to work on 

human cells, they are developed and tested at 37°C and their effectiveness at non-

physiologic temperatures is not normally studied. To determine if cellular response to drug 

treatment changes at different temperatures I treated Jurkat and HSB2 cells with four 

different chemotherapies (Cytarabine, Dexamethasone, Methotrexate or Vincristine) for 72 

hours at 34 and 37°C and quantified cell viability by Cell Titer Glo. Here, I found that 

Jurkat cells were more resistant to Methotrexate at 34°C compared to 37°C and the opposite 

pattern was seen for Dexamethasone, with increased resistance at 37°C compared to 34°C. 

While the dose response curves for some drugs were drastically different between 

temperatures in Jurkat cells, temperature showed little effect on the effectiveness of other 

drugs: Cytarabine and Vincristine (Figure 6.13A). Furthermore, in another human 

leukemia cell line, HSB2, there was very little difference in dose response curves of any of 

the chemotherapies tested between temperatures (Figure 6.13B). This highlights the 

possibility that drugs may having varying effectiveness in different cell lines at 

temperatures outside physiologic temperatures at which they were designed to work at. 
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Figure 6.13 Temperature Affects Response of Mammalian Cell Lines to Drug Treatment 

Jurkat (A) and HSB2 (C) human leukemia cell lines were cultured at 34 (blue) or 
37°C (yellow) and treated with increasing concentrations of the following drugs: 
Cytarabine, Dexamethasone, Methotrexate, or Vincristine. Cell viability was 
measured by CellTiter-Glo after 72 hours of drug treatment and normalized to 
DMSO vehicle control. Experiments were performed in triplicate with n=3 
replicates per experiment. Error bars represent standard deviation. 

 

Zebrafish are a widely accepted model for performing large scale drug toxicity and 

efficacy screens 240,241,243. However, the pharmacokinetics of drug uptake into zebrafish 

larvae has not been well characterized. With this being said, it is not well known how 

engraftment of mammalian cell lines into different anatomical locations in zebrafish larvae 

will affect consistency of drug screen results. I xenografted GFP-expressing Jurkat cells 

into the pericardium and yolk of zebrafish larvae at 2 dpf and then subjected them to drug 

treatment with Dexamethasone or Vincristine for 48 hours starting at 1 dpt at 34 or 37°C. 

After drug treatment, larvae were fixed and TUNEL staining was done to quantify the 
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amount of apoptosis induced by drug treatment as a readout of drug response. I found that 

in the pericardium xenografted cells, TUNEL + staining was not observed in the DMSO or 

Dexamethasone treated cells at either temperature. However, Dexamethasone did induce 

apoptosis in yolk xenografted cells in one larval zebrafish at 34°C and two at 37°C. 

Vincristine induced some apoptosis in pericardium xenografted cells at 34°C and even 

more at 37°C, however failed to induce any apoptosis in yolk xenografted cells at 34°C 

and only induced apoptosis in cells from two yolk xenografted zebrafish larvae at 37°C 

(Figure 6.14). These inconsistencies seen in response of xenografted cells to drug 

treatment with variations in injection site or temperature the larval fish are maintained for 

the duration of the drug screen pose major challenges for implementation of zebrafish as a 

reliable model for mammalian cell xenografting and large scale drug screening. 
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Figure 6.14 Drug Treatment Produces Inconsistent Results with Variations in Xenograft 

Site or Temperature 
GFP expressing Jurkat cells were xenografted into the pericardium or yolk of 
zebrafish larvae and subjected to drug treatment with 10µM Dexamethasone, 
Vincristine, or DMSO vehicle control for 2 days post-injection (dpi) at 34 or 
37°C. Drug-treated larvae were then fixed and stained with TUNEL for apoptosis. 
Percent TUNEL positive xenografted cells were quantified for each group, 
showing inconsistent responses of xenografted cells to drug treatment with 
changes in injection site or temperature. 
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6.3 Discussion 

Although zebrafish are a robust model, their application for xenografts is relatively 

new. As with all novel applications, certain challenges and barriers must be addressed and 

overcome before that technology can move from seldom to widespread use. I set out to 

resolve some of the irregularities and incongruities currently in place for this model such 

as; lack of agreement for optimal injections sites and holding temperatures and shortage of 

data on metabolic and physiologic behavior of both host and xenografted cells post-

transplant.   

I first optimized injection sites and conditions, finding that the yolk and pericardium 

produced the most consistent engraftment and survival of engrafted zebrafish larvae while 

still being time efficient and practical for large scale applications. I also demonstrated a 

standardized method for thawing and injection of primary patient leukemia cells into 

zebrafish as a xenograft model and established a protocol for high-throughput drug 

screening of xenografted zebrafish using a fluorescence microscope equipped imaging unit 

and automated sampler unit. Although this approach is more automated and efficient than 

previously reported workflows, this is still a labor-intensive and technically challenging 

protocol for anyone without prior experience in microinjecting zebrafish.  

The variation in response of xenografted mammalian cells to drug with changes in 

injection site or housing temperature is a major barrier to widespread acceptability of the 

use of zebrafish as a xenograft model. FDA-approved drugs have undergone all of their in 

vitro, pre-clinical, and clinical testing at mammalian body temperature of 37°C. It is 

possible that these drugs do not have optimal stability or do not perform optimally at 34°C 

as well and this should be taken into consideration when preparing for drug screening. 



115 
 

Additionally, although I found both fish and mammalian cells can be maintained at 34°C 

without much effect on their survival, I did find that metabolic effects of growing both 

zebrafish and cancer cells at non-physiologic temperatures are not insignificant.  

Despite the above caveats, zebrafish xenografts can be a useful bridge between in 

vitro cell culture and mouse xenograft models. They allow researchers to assess whole 

animal response to small molecules of interest, while still being more cost-efficient than 

mice for larger scale in vivo drug screens. Additionally, zebrafish xenografts require far 

fewer cells for injection than mouse models, so a small amount of patient sample can be 

spread amongst hundreds to thousands of zebrafish, allowing for drug screens with large 

sample numbers. With fluorescent labeling, tumor cells can be monitored from the moment 

they are xenografted into the larval zebrafish, providing some standardization between the 

animals used in drug screens. 

Overall, I developed a pipeline for xenografting primary patient leukemia samples 

into larval xenografts and performing automated drug screening and analysis. While there 

were challenges that arose with drug screening of leukemia cell lines, in primary patient 

samples I saw results that were more consistent with what was seen in the patient tumor, 

with resistance to one drug and sensitivity to another. This opens the doors for being able 

to take primary cancer cells, xenograft them into zebrafish larvae, and study response to 

treatment, identifying cell populations that may be resistant to certain types of 

chemotherapy or targeted therapies with potential for relapse in patients.  
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6.4 Methods 

6.4.1 IRB/Collection of Patient Samples 

Patient samples were collected under University of Kentucky’s Institutional 

Review Board (protocol 44672). Patient Bone Marrow Aspirate (BMA) and peripheral 

blood samples were collected and diluted with an equal volume of room temperature 2% 

FBS in PBS. The sample was slowly added to a 50mL Sepmate tube (cat. # 85450), 

containing 15mL of Ficol Density gradient, centrifuged at 1,200xg for 10 mins and the top 

layer was quickly poured into a new 50mL tube. The volume was brought up to 50mL with 

RPMI and spun for 15 mins at 1,400 rpm at 4°C. Cells were counted and then washed in 

50mL of RPMI and centrifuged for 10 mins at 1,400 rpm at 4°C. The supernatant was 

removed, and cells were resuspended in 1mL of RPMI + 10% FBS + 10% DMSO per 107 

cells and added to a cryovial for storage at -80°C. 

6.4.2 Cell Line Experiments 

All cells were cultured at 37°C in a humidified atmosphere with 5% CO2. Cell lines 

were authenticated by short tandem repeat (STR) DNA profiling and tested for 

mycoplasma contamination prior to experimentation. T-cell acute lymphoblastic leukemia 

(Jurkat) cells were grown in RPMI 1640 (ThermoFisher 11875119) supplemented with 

10% heat-inactivated fetal bovine serum (FBS) (Atlanta Biologicals, S11150H, Lot 

M17161, Flowery Branch, GA, USA).  

For temperature experiments, cells at 60% confluency were incubated at either 

28°C, 34°C, or 37°C in a humidified atmosphere with 5% CO2 for 24 hours before samples 

were prepared for mass spectrometry analysis.  
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For cell growth assay, cells were counted on a Vi-Cell XR cell viability analyzer 

(Beckman Coulter) and 50,000 cells were plated per well of a 12 well plate in triplicate 

wells. Cells were incubated at either 28°C, 34°C, or 37°C in a humidified atmosphere with 

5% CO2 for 72 hours. Viable cells were counted on the Vi-Cell XR cell viability analyzer 

at days 1, 3 and 5 after plating. 

To determine IC50 of the drugs for T-ALL cells at 37°C and 34°C, 50 μL of 

HBPALL/HSB2 (2×105 cells/ml) or Jurkat (1×105 cells) were seeded in triplicate wells 

and then 50 μL of 2X drug solution diluted in cell culture medium or DMSO control was 

added to corresponding well. Then the cells were cultured at 37°C or 34°C in a humidified 

atmosphere with 5% CO2 for 72 hours. CellTiter-Glo Luminescent Cell Viability Assay 

(Promega, G7570) was used to measure cell survival according to the manufacturer's 

instructions. A Synergy LX BioTek multi-mode plate reader was used to read luminescent 

signal. 

To compare apoptosis of T-ALL cells at 37°C and 34°C, 500 μL of HBPALL/HSB2 

(1×105 cells/ml) or Jurkat (5×104 cells) cells were seeded in the 24-well cell culture plate 

and then cultured at 37°C or 34°C in a humidified atmosphere with 5% CO2 for 72 hours. 

The cells were harvested and apoptosis was quantified by staining cells with Annexin V 

APC (ThermoFisher 88-8007-74) according to the manufacturers protocol in the presence 

of DAPI (0.05μg/ml). 

6.4.3 Xenograft Experiments 

Prior to cell staining, cells were counted using a Countess® Automated Cell 

Counter (Invitrogen # C10227). Cells were stained immediately prior to injection using 
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Vybrant DiI Cell-Labeling Solution (Invitrogen #V22885). DiI was diluted to a final 

concentration of 4μg/mL in 5mL room-temperature, 1X phosphate-buffered saline (PBS, 

Caisson Labs #PBL06-6X500ML). Cells were centrifuged at 1200 rpm for 5minutes, 

resuspended in the 5mL DiI + 1X PBS solution, incubated at 37°C for 10 minutes in the 

dark, then washed 3x using 5mL of a RPMI + 10% FBS solution that was pre-warmed to 

37°C, with centrifugation at 1200 rpm for 5 minutes for each wash. Finally, the stained 

cells were resuspended in the pre-warmed RPMI + 10% FBS solution to a concentration 

that would deliver 500 cells in a 2nL injection volume. For cell number studies, cells were 

resuspended at varying concentrations to deliver 100, 250, 500or 1,000 cells per 2nL 

injection volume. 

Zebrafish larvae were manually dechorionated with forceps at 48 hours post-

fertilization (hpf) prior to injection. Injections for all cancer cell types were performed 

using non-filament borosilicate glass capillaries (Sutter Instrument Company #B100-50-

10). Capillaries were heated and pulled into needlepoints using a Flaming/Brown 

micropipette puller (Sutter Instrument #P-87). Needlepoints were cut to a bevel using a 

sterile razor. Droplet size was measured to 2nL (~.15mm diameter) using a micrometer and 

kept at a constant volume throughout injection. Xenograft injections were performed using 

an air-pressure driven system as previously described in Haney et al, 2020 247. Post-

injection, embryos were kept in 1X E3 media and incubated at 28°C for a 1-hour recovery 

time then moved to either 34°C or 37°C. Fish were anesthetized prior to microinjection 

using 4mg/mL Tricaine-S (Pentair Aquatic #NC0342409). If clumping of cells in the 

needle occurred, stained cells were pushed through a sterile 40µm cell strainer and needles 

were chilled on ice prior to loading with cells.  
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Embryos were screened at 1, 3, and 5 days post injection (dpi) for survival studies. 

Initial screening for cancer cell engraftment was performed using a Nikon SMZ18 

fluorescence microscope. Dead embryos and embryos without engrafted cancer cells were 

removed. 

6.4.4 Zebrafish Immunofluorescence and Imaging Experiments 

For TUNEL staining, embryos were fixed in 4% PFA overnight followed by graded 

MeOH fixation. Fixed embryos were rehydrated back to PBS and permeabilized in 0.1% 

Sodium Citrate, 0.1% TritonX, 20ug/ml ProteinaseK for 30 min at room temperature then 

washed extensively in PBS. TUNEL solution was mixed as per manufacturer’s interactions 

using either the TMR or Fluorescein kit (SIGMA cat# 11684795910 and 12156792910) 

and added to embryos for 1hr in the dark followed by five PBS washes and staining with 

1:1000 Hoechst 33342 (Thermo #H3570). 

For BrdU staining, embryos were treated with 10mM BrdU for 24hrs post xenograft 

followed by fixation in 4% PFA and gradual dehydration to 100% Methanol. After 

rehydrating back to PBS tissues were permeabilized in 20ug/ml Proteinase K solution for 

1hr and denatured in 2N HCl for 1hr. Blocking was done in 2% BSA. Anti-BrdU (BD 

cat#A11001) at 1:200 with a mixture of 1:1000 Hoechst stain.  

All imaging was carried out on the A1 inverted confocal using NIS elements 

software. Embryos were mounted and cover slipped on glass slides in 3% Methylcellulose. 

All exposure settings were first adjusted to negative controls. 
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6.4.5 Thawing of Patient Samples 

Primary patient samples were gradually warmed to 37°C in a 37°C water bath until 

a small ice pellet remained. Thaw media (25% FBS in IMDM) pre-warmed to 37°C was 

added drop-wise and the volume brought to 10 mL in a 15 mL conical tube (approximately 

2–3 seconds per ml).  Cells were centrifuged at 1,000 rpm for 10 minutes and media was 

aspirated. Addition of thaw media, centrifugation and aspiration was repeated again to 

remove residual DMSO. Cells were washed once in PBS and counted. 

6.4.6 Drug Screening 

For drug screen with panel of different chemotherapies, xenografted larvae that 

were injected with either Jurkat or HSB2 cells were screened for consistent cell 

engraftment then treated with DMSO (Sigma-Aldrich, D8418-50ML) control or the 

following drugs all at a 10uM concentration in E3 media: Cytarabine (Selleck Chemicals, 

S1648), Cyclophosphamide (Sigma-Aldrich, PHR1404-1G), Dexamethasone (VWR, 

89157-624), Doxorubicin (Selleck Chemicals, S1208), Methotrexate (Sigma-Aldrich, 

A6770-10MG), and Vincristine (Selleck Chemicals, S1241). This drug screen was setup 

as described in Haney et al 247 with the only differences being that, in this experiment, drug 

treatment began at 24 hours post injection (hpi) with the total treatment lasting 48 hours. 

 For maximum tolerated dose experiments, zebrafish larvae were injected with 

either Jurkat or HSB2 cells at 2dpf and were screened for consistent cell engraftment at 24 

hpi before treatment. Larvae were treated with either Dexamethasone or Vincristine at 24 

hpi at 0uM (DMSO control), 10uM, 25uM, 50uM, and 100uM concentrations in E3 media. 

Larvae were treated for 48 hours before imaging. All DMSO and drug-treated fish were 
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imaged at 72hpi, after 48 hours of drug treatment using the VAST BioImager (Union 

Biometrica) 234,235. 

6.4.7 Metabolism Experiments 

For temperature studies, zebrafish were manually dechorionated at 2 dpf and placed 

at either 28°C, 34°C, or 37°C with 30 embryos per 10 cm2 dish in E3 media for 24 hours. 

After 24 hours, zebrafish were sacrificed by putting on ice, collected, and processed for 

MS analysis as described below. For drug metabolism studies, zebrafish larvae at 4 dpf 

were treated with either 25 µM vincristine or 10 µM dexamethasone in E3 media in 10 

cm2 dishes with 30 embryos per dish for 48 hours at 34°C. A total of about 100 mg of 

tissue was needed for metabolomic analysis which required about 120 zebrafish larvae per 

sample, with each sample done in triplicate. After 48 hours, zebrafish were sacrificed by 

putting on ice, collected, and processed for MS analysis as described below. 

 Zebrafish larvae were collected into 1.5 mL tubes, the E3 media was removed, and 

fish were washed with 1 mL of ice-cold PBS+4%BSA to wash. To de-yolk zebrafish, fish 

were pipetted up and down with a P200 pipette tip approximately 20 times in 200 µL of 

ice-cold PBS+4%BSA until yolks were removed and supernatant was cloudy. The 

supernatant was then removed and fish were washed 2 more times with 1 mL of ice-cold 

PBS+4%BSA. A quick spin was done to pellet larvae, all supernatant was removed using 

a Kim wipe or q-tip to dry the inside of the tube and samples were flash frozen in liquid 

nitrogen. 

 Fish pellets were removed from cryostorage and transferred to a microvial set 

(6757) for a Freezer/Mill Cryogenic Grinder (SPEX SamplePrep model 6875D). Fish were 
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pulverized to pulverized to 5 μm particles. Metabolites were extracted directly from the 

microvial by the addition of 1ml of 50% methanol containing 20uM L-norvaline 

(procedural, internal control) and separated into polar (aqueous layer) and insoluble pellet 

(protein/DNA/RNA/glycogen) by centrifugation at 4°C, 15,000rpm for 10 minutes. The 

pellet was subsequently washed four times with 50% methanol and once with 100% 

methanol to remove polar contaminants. The polar fraction was dried at 10-3 mBar using 

a SpeedVac (Thermo) followed by derivatization. The insoluble pellet was hydrolyzed 

similar to the technique described in Andres et al., 2020 254. 

Dried polar and insoluble samples were derivatized by the addition of 20mg/ml 

methoxyamine hydrochloride in pyridine and incubated for 1.5hrs at 30°C. Sequential 

addition of N-methyl-trimethylsilyl-trifluoroacetamide (MSTFA) followed with an 

incubation time of 30 minutes at 37°C with thorough mixing between addition of solvents. 

The mixture was then transferred to a v-shaped amber glass chromatography vial and 

analyzed by GCMS. 

An Agilent 7800B gas-chromatography coupled to a 5977B mass spectrometry 

(GCMS) detector was used for this study. GCMS protocols were similar to those described 

previously 255,256 except a modified temperature gradient was used for GC: Initial 

temperature was 130°C, held for 4 minutes, rising at 6°C/minutes to 243°C, rising at 

60°C/minutes to 280°C, held for 2 minutes. The electron ionization (EI) energy was set to 

70 eV. Scan (m/z:50-800) and full scan mode were used for metabolomics analysis. Mass 

spectra were translated to relative metabolite abundance using the Automated Mass 

Spectral Deconvolution and Identification System (AMDIS) software matched to the 

FiehnLib metabolomics library (available through Agilent) for retention time and 
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fragmentation pattern matching 256,257. Quantitation was performed using the software Data 

Extraction for Stable Isotope-labelled metabolites (DExSI) 258. Relative abundance was 

corrected for recovery using the L-norvaline standard and adjusted to protein input. 

6.4.8 Seahorse Experiments 

Cells were cultured overnight at 34°C or 37°C in a humidified atmosphere with 5% 

CO2. Seahorse Xfe96 PDL Miniplate was coated fresh with Cell-Tak Cell and Tissue 

Adhesive (Corning, Cat # 354240) at a dilution factor of 79.5 in 0.1M sodium bicarbonate 

and washed twice with distilled water. This coating and wash process was repeated a 

second time. Cells were then plated at a cell density of 70,000 cells/well for Jurkat cells or 

100,000 cells/well for HSB2 cells in RPMI 1640 supplemented with 10% heat-inactivated 

FBS, allowed to incubate for 5 minutes at room temperature, and spun down at 200xg for 

1 minute with zero brake. The plate was then incubated at 34°C or 37°C for 30 mins before 

media was replaced with assay media (below). 

All OCR and ECAR analyses were performed with a minimum of 6–8 technical 

replicates for each treatment or assay. All cells were incubated for 60 min in a non-CO2 

incubator before plate calibration was performed and mitochondria and glycolytic rate test 

experiments were initiated at corresponding temperature conditions. 

The Seahorse XFe96 (Agilent Technologies) was used to measure oxygen 

consumption rates (OCR) or extracellular acidification rates (ECAR) of cells. One hour 

prior to assay, growth media was replaced with XF RPMI assay media supplemented with 

2mM L-glutamine, 1mM pyruvate, and 10mM glucose (assay media and all supplements 

from Agilent Technologies). Cells were then placed in the non-CO2, 34°C or 37°C Bioteck 
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Cytation 1 for degassing and brightfield image scanning. The Seahorse XFe96 sensor 

cartridge was calibrated and the degassed microplate was then placed in the Seahorse 

XFe96. For mitochondrial stress assays baseline OCR and ECAR measurements were 

followed by acute injections of oligomycin (1uM), FCCP (0.6uM), and a combination of 

antimycin A (1uM) and rotenone (1uM). For glycolytic rate assays baseline PER 

measurements were followed by acute injections of a combination of antimycin A (1uM) 

and rotenone (1uM) followed by 50mM 2DG. The Seahorse data was viewed with Wave 

2.6.0. 

6.4.9 Statistical Analysis 

Statistical analyses were carried out using GraphPad Prism. One-way ANOVA with 

Tukey’s test for comparison of means was used for comparison of day 5 values of % 

survival and cell growth studies. All metabolic numerical data are presented as mean ± SE. 

A P-value less than 0.05 using a student t-test was considered statistically significant. 

Clustering heatmap and partial least squares discriminant analysis (PLS-DA) were 

performed using the MetaboAnalyst package for R (available through MetaboAnalyst, 

https://www.metaboanalyst.ca/) 257,259. For PLS-DA and heatmap analysis log-transformed 

metabolomics data were used, and unit variance scaling was employed for row numbers 

and SVD with imputation for PLS-DA clustering. Correlation and tightest cluster first 

options were used for heatmap visualization 257,259. All available metabolomics data points 

were used for multivariant analysis. 
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CHAPTER 7. CIRCULATING TUMOR DNA AS A BIOMARKER IN ACUTE LYMPHOBLASTIC 
LEUKEMIA 

Partially taken from: Cell free DNA as a Biomarker to Identify Clonal IGH 
Rearrangements in Acute Lymphoblastic Leukemia using Nanopore Sequencing. Shilpa 

Sampathi, Yelena Chernyavskaya, Meghan Haney, et al. In submission to Journal of 
Clinical Oncology. 
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7.1 Introduction 

A major clinical concern when dealing with relapse is predicting which patients are 

more likely to relapse than others. As described above, relapse is due to leukemia stem 

cells that undergo self-renewal and differentiation and form a new leukemia in patients. 

We do not currently have good markers for determining the proportion of LSCs present in 

a patient’s tumor to study as a potential biomarker for relapse. While determining exact 

LSC frequency of patient tumors is not feasible, research is ongoing to identify better 

predictors to stratify patients risk status and potential for relapse. Utilizing cell-free 

circulating tumor DNA as a biomarker in ALL has the potential to risk stratify patients and 

predict patient relapse better than current methods. 

Despite cure rates approaching 90%, relapsed ALL remains the second leading 

cause of cancer related death in the pediatric population. Response to therapy as measured 

by the detection of minimal residual disease of >0.01% at the end of reduction remains the 

most powerful prognostic indicator of outcome 9. A vast majority of patients are cleared of 

blasts in their bone marrow and CNS during initial treatment. A subset of patients will have 

a positive MRD and are upstaged and receive more intensive chemotherapy and more 

frequent monitoring of disease progression. Patients are monitored for relapse by regular 

CBC and evaluation of the CSF for the presence of lymphoblasts. These methods do not 

detect low levels of disease and relapse in the bone marrow and CNS disease often occurs 

in children who are clinically cleared of blasts, measured by FACS of bone marrow and 

CSF, collected by biopsy and lumbar puncture, respectively. It is possible that leukemic 

cells remain at levels too low to be detected by standard clinical diagnostic procedures. 

Accurate, non-invasive methods for continuously monitoring for the presence of low level 



127 
 

disease may allow for interventions directed against a single chemo resistant clone. A more 

sensitive, less invasive assay, like quantification of ctDNA from routine blood draw, could 

predict the emergence of relapse and help clinicians better classify patients into a high-risk 

status. As the use of adoptive immunotherapy strategies expands, early identification of 

low levels of leukemia cells resistant to cytotoxic chemotherapy will likely become 

increasingly important in the search for resistant clone-specific targets.  

The infrequent collection of samples to assess disease status also makes it difficult 

to gauge the extent of ALL response to treatment throughout therapy. While collection of 

bone marrow samples before and after treatment is sufficient for current care of ALL 

patients, this presents challenges in the development of new, more targeted therapies for 

ALL, which could decrease adverse side-effects seen with the current cytotoxic 

chemotherapy regimen. When 95% of blasts are normally cleared from the bone marrow 

by the end of consolidation, it is difficult to determine if a new therapy has had any effect 

on ALL response rate. Having a method to track disease response more frequently using 

ctDNA in the peripheral blood would allow detection of differences in treatment response 

at early stages, which may aid in the development of less toxic drugs for ALL patients. 

Furthermore, chimeric antigen receptor T-cell (CAR-T) therapy is becoming 

increasingly popular in the field of pediatric oncology, but requires a >30 day lead time for 

patient specific CAR-T production. Early experiences with CAR-T therapy indicate that a 

higher disease burden at the time of treatment is associated with increased incidence of 

cytokine release syndrome and neurotoxic events 260; identifying patients that need CAR-

T as early as possible may reduce immunotherapy related toxicity. This outlines a critical 
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need for improvements in technologies that can be used to develop more sensitive and less 

invasive assays to assess ALL response to therapy and relapse.         

7.1.1 Cell Free DNA Serves as a Biomarker in Cancer 

Circulating cell-free DNA (cfDNA) molecules were first identified over 50 years 

ago in patients’ blood and have been found to be present at higher levels in patients with 

cancer 261–263. cfDNA is currently used clinically to detect fetal diseases in pregnant 

mothers. Cancer cells release cell-free DNA that circulates in the blood of patients. This 

circulating tumor DNA (ctDNA) can be detected and quantified by digital droplet PCR 

(ddPCR), which is currently the most sensitive PCR system available 264. ctDNA 

quantification is emerging as an important and sensitive biomarker of solid tumor 

progression and metastasis in pre-clinical testing but has not been looked at extensively in 

hematologic malignancies 265,266.  

In order to assess ctDNA, a marker must be identified that is present in the cancer 

cells, but not in normal cells, which has proven challenging in ALL, one of the cancers 

with the lowest number of mutations. All T and B cells undergo VDJ recombination to 

generate functional B and T cell receptors, and the specific sequence of the rearrangement 

in the receptor is unique to an individual B or T cell. ALL results from the abnormal 

expansion of typically 1-5 T or B cell clones, which can be identified based on a major 

expansion of that particular B and T cell receptor sequence 267,268. Recent studies have 

shown that detection of clonal rearrangements of T- and B-cell receptors in ctDNA of a 

leukemia will persist in the peripheral blood longer than circulating blasts, making it a 

useful test for following response to treatment and determining MRD status 269–271. 
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Importantly, in hematologic malignancies, ctDNA assays diagnosed relapse 30 days earlier 

than the clinical, FACS based diagnosis 271.  

Utilizing Next Generation Sequencing (NGS) of T- and B-cell rearrangements to 

monitor clonality for MRD has shown success in B-ALL 272, however repeated deep 

sequencing via Illumina sequencing looking for reappearance of leukemic clones is time 

consuming and costly. The development of the MinION sequencer (Nanopore Oxford 

Technologies), which is a portable, real-time benchtop sequencer that is more user friendly 

and cost-effective than Illumina sequencing has made clonality tracking in leukemia 

samples more practical 273. Large scale, rapid sequencing can be performed within the lab 

in a matter of hours, base-called, and analyzed easily via a web-based Nanopipe server 274. 

This opens the door for clonality tracking utilizing ctDNA, which provides a more sensitive 

and less invasive way to closely monitor leukemia patients for response to therapy and 

development of relapse. 

7.1.2 Cancer-Specific Methylation Signatures are Present in Hematologic 
Malignancies 

Although detection of leukemia clones from ctDNA based on T- and B-cell receptor 

rearrangements may prove useful in predicting relapse status, and provide the diagnostic 

lead time required for manufacturing CAR-T cell therapy, this workflow is fairly labor-

intensive, time-consuming, and requires a significant amount of knowledge for data 

interpretation. For this reason, it would be advantageous to design a more universal assay 

for identifying ALL ctDNA that does not depend on patient specific clonal rearrangements. 

Solid tumors typically utilize PCR primers specific to a panel of common mutations to 

detect ctDNA by droplet digital PCR (ddPCR), yet there aren’t enough common mutations 
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in pediatric ALL to develop a similar universal primer set for ctDNA in ALL 275–277. 

Methylation status has been studied as a possible biomarker in AML and lymphoma 

previously. Hypermethylation of a cell-cycle regulator and cyclin dependent kinase 

inhibitor, CDKN2B, has been correlated with decreased survival rate in Acute Myeloid 

Leukemia (AML) 278. In a study on Non-Hodgkin’s Lymphoma (NHL), methylation 

changes were frequently identified in 3 different promoter regions and more recent data 

shows that one of these promoter regions, Spartin (SPG20), is completely or highly 

methylated in all NHL cell lines tested, and is able to distinguish normal B lymphocytes 

from lymphoma cells 279. Development of primer sets that can be used across many patient 

samples will be more practical for routine clinical use.  

7.1.3 Hypothesis 

ctDNA has been used in combination with next generation sequencing to 

successfully detect MRD in B-ALL based on B-cell receptor rearrangements unique to the 

leukemia, and has been used in combination with ddPCR to detect clonal response to 

therapy in CLL. I predict that disease progression and response of specific clones to 

treatment in ALL can be studied using a Nanopore MinION sequencer and yield results 

that are cheaper, less invasive, and as accurate at tracking leukemia clonality as current 

methods. Additionally, I am hopeful that sequencing a significant number of primary 

patient ALL samples will identify methylation changes that are present across ALL 

samples that are not present in normal lymphocytes, and could be used to detect ctDNA in 

place of using patient specific T and B cell clonal rearrangements for identifying leukemic 

clones. I predict that hyper- or hypo- methylation profiles can be detected in ALL, and used 

to develop a universal ddPCR assay to quantify ctDNA.  
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7.2 Results 

7.2.1 Clonality Tracking in ctDNA using MinION Sequencing 

I developed a novel workflow for identifying VDJ rearrangements in leukemia cells 

and tracking their presence in cfDNA. I collected bone marrow and peripheral blood 

samples from newly diagnosed ALL patients, and cfDNA was isolated from peripheral 

blood samples at diagnosis and throughout treatment. Invivoscribe Lymphotrack PCR 

assays combined with MinION (Oxford Nanopore Technologies) sequencing were used to 

identify the VDJ sequence of the immunoglobulin (B-ALL) or T-cell receptor (T-ALL) 

rearrangements of leukemic clones in genomic DNA. These sequences can then be mapped 

back to the genome for identification of major clones present at the time of diagnosis and 

throughout treatment (Figure 7.1). 
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Figure 7.1 Workflow for MinION Sequencing of IgH Variable Regions 

Schematic of the workflow for sequencing of IgH variable regions on MinION nanopore 
sequencer. Total pipeline from collection of patient samples to completion of analysis can 

be performed in a single day. 

 

 Traditionally, next generation sequencing, commonly Illumina MiSeq, is used for 

sequencing of IgH variable regions to study leukemic cell clonality in bone marrow 

samples. However, performing MiSeq on every patient is time consuming, extremely 
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expensive, and difficult to perform the data analysis. Our workflow using Nanopore 

MinION sequencing is relatively quick, significantly less expensive, and provides an easy-

to use analysis pipeline. We are able to get sufficient coverage using the bench-top 

Nanopore MinION sequencer to sequence patient samples. For preliminary studies, I 

performed IgH PCR and sequenced genomic DNA (gDNA) from bone marrow biopsy 

samples from two patients at diagnosis. I also did PCR and sequencing on the cell-free 

DNA samples isolated at diagnosis and six months to a year into treatment. Each sample 

was given a unique barcode prior to running on the MinION sequencer. Total reads for 

each sample were reported and more than 70 percent of reads mapped to chromosome 14, 

where the IgH variable region is located (Figure 7.2). 

 

 
Figure 7.2 MinION Library Run Statistics 

Library run statistics from Nanopore MinION. IgH variable regions from two 
patient samples (004 and 010) were amplified by PCR and sequenced using the 
MinION sequencer. gDNA and cell-free DNA isolated from the plasma (cfp) at 
diagnosis (Dx) and 6 months to a year after treatment (Cpf13). The total reads and 
percentage of reads that mapped to chromosome 14, where the IgH variable 
region is located are reported. 
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 The PCRs from the IgH variable region were run on a gel to see amplification of 

this region. Products were in a range of sizes as many different variable regions were 

amplified (Figure 7.3A). After successful PCR was confirmed, individual clones were 

identified from the MinION sequencing data. The most prominent clones from each sample 

at diagnosis were tracked over time in each patient. In both subject 004 and 010, major 

clones present at diagnosis decreased in abundance or were completely undetectable after 

treatment. Additionally, the major clones present in the cell-free DNA at diagnosis matched 

the major clones present in the gDNA isolated from bone marrow biopsy at the time of 

diagnosis (Figure 7.3B and C). This provided preliminary data that major clones from 

patient leukemia samples can be tracked from either bone marrow biopsies or cell-free 

DNA samples over time using the MinION sequencer and seem to correlate with what is 

being seen clinically.  



135 
 

 
Figure 7.3 MinION Clonality Tracking 

(A) Gel of Invivoscribe PCRs. Clonality tracking by IgH variable region of patient AAL-
004 (B) and AAL-010 (C) shows abundance of cell-free DNA or genomic DNA (gDNA) 

derived from two different leukemic clones in each sample at diagnosis and post-
treatment (CFP13). 
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7.2.2 ctDNA Methylation as a Biomarker in ALL 

As described above, we know that tracking patient clonality is a great way to study 

disease progression, specific leukemia cell populations, and how different clones respond 

to chemotherapy, hinting at resistance mechanisms. However, using clonality as a 

biomarker for disease progression and relapse is somewhat complicated and coming up 

with more universal biomarkers that do not require sequencing and analysis would be 

advantageous. We performed methylation sequencing on seven patient ALL samples and 

three healthy PBMC samples to identify sites that are differentially methylated in ALL 

compared to healthy controls. This sequencing data revealed that the ALL samples 

clustered independently from the healthy PBMC samples based on their methylation profile 

(Figure 7.4).   

 
Figure 7.4 Leukemia Samples Cluster Independently From Healthy Based on Methylation 

Profile 
Methylation sequencing of seven ALL samples and 3 healthy PBMC controls 
revealed that the leukemia samples clustered independently from the healthy 
controls based on their methylation profiles. 
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From this data, we were able to identify a large number of sites and regions that 

were consistently hyper- or hypomethylated compared to healthy PBMCs (Figure 7.5A). 

There was approximately the same percentage of regions that were hypermethylated as 

there were hypomethylated regions (Figure 7.5B). Additionally, this methylation is spread 

throughout the chromosomes with both hyper- and hypomethylation observed on each 

chromosome (Figure 7.5C). These differentially methylated regions were mapped to 

which genomic regions they were located and the vast majority were located in intronic 

regions, followed by exons, then promoters, then finally intergenic regions (Figure 7.6). 

Finally, these differentially methylated sites and regions were compared with publicly 

available datasets of methylation-based arrays identifying differentially methylated sites or 

regions in pediatric leukemias. This analysis included 865 ALL and 79 healthy samples 

and yielded 55 regions and 19 specific methylation sites that were uniquely present in ALL 

samples from our own methylation sequencing and prior methylation datasets and not in 

healthy controls. After validation of these sites and regions, I will have designed a panel of 

uniquely methylated sites and regions in ALL that have the potential to be used as 

biomarkers of disease progression and relapse in patients.  
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Figure 7.5 Methylation Sequencing Results 

Methylation sequencing of 7 ALL patients and 3 healthy PBMCs revealed 
differentially methylated regions. (A) Volcano plot showing the percent of 
differential methylation of hyper (red) and hypo (blue) methylated regions. (B) 
Percent of differentially methylated regions that were hypermethylated versus 
hypomethylated. (C) Percentage of hyper- and hypomethylated regions located on 
each chromosome. 
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Figure 7.6 Genomic Location of Differentially Methylated Regions 

Percentage of differentially methylated regions that were located in introns, 
exons, promoters, and intergenic regions from methylation sequencing data. 

7.3 Discussion 

Overall, I developed a novel workflow for identifying VDJ rearrangements in 

leukemia cells and tracking their presence in cfDNA. I collected bone marrow, blood, and 

CSF samples from newly diagnosed patients, and cfDNA was isolated from blood and CSF 

samples throughout treatment. Invivoscribe Lymphotrack PCR assays combined with 

MinION (Oxford Nanopore Technologies) sequencing were used to identify the VDJ 

sequence of the immunoglobulin rearrangements of leukemic clones in genomic DNA. The 

MinION workflow was used to follow leukemic cfDNA throughout the course of 

treatment, and performed equivalent or better at detecting leukemic clones compared to 

MiSeq and droplet digital polymerase chain reaction (ddPCR), and is faster and less 
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expensive than traditional Illumina sequencing. This is important because it provides more 

frequent and less invasive clinical monitoring of patient disease progression than current 

methods. This information can then be used to increase lead time required for 

manufacturing CAR-T cells or switching patients that show early resistance to 

chemotherapy over to more targeted therapies. 

One downside of tracking disease progression and relapse potential by leukemia 

cell clonality is that is relies on patient-specific sequencing. To evade this issue, I am also 

in the process of developing a universal assay that utilizes recurrent methylation changes 

in ALL to identify leukemic cfDNA in patient samples. Methylation sequencing of our 

patient samples compared to publicly available datasets identified 55 regions and 19 

specific methylation sites that were uniquely present in ALL samples. I am validating these 

sites by ddPCR to establish a panel of biomarkers to track ALL over time via cfDNA.  

In total, I have provided proof-of-principle studies, setting up the framework for 

tracking disease progression and predicting patient relapse. The end goal of this study is to 

provide a more sensitive and less invasive method for tracking MRD, the best predictor of 

patient relapse currently, than current approaches. Results will ultimately be correlated 

with patient response to therapy, the presence of relapse or CNS disease, and overall 

outcomes determined by standard clinical diagnostic procedures. 

 
7.3.1 Future Directions 

While I have begun the preliminary studies for working out a pipeline for MRD 

prediction using both clonality and methylation as biomarkers, there is still work to be done 

before these assays can be utilized. For the clonality experiments, we have run Illumina 
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MiSeq and designed ddPCR primers for the prominent clones, to compare our assays to. 

So far, our MinION pipeline performs equivalent to MiSeq and better than ddPCR at 

detecting clones present in patient samples, yet this still needs to be validated on more 

patient samples. Additionally, I am running our workflow on patient genomic and cell-free 

DNA samples from diagnosis, mid-induction, end of induction, and end of consolidation 

timepoints to see how our data compares to clinical determinants of MRD. If we can come 

up with a less invasive method than bone marrow biopsy for determining MRD, that would 

save patients from having to go through multiple painful and expensive procedures when 

the risk stratification from this procedure is not a completely accurate predictor of future 

relapse anyways.  

For methylation assays, I am in the process of validating the differentially 

methylated regions and sites that were identified by comparing our methylation sequencing 

data with publicly available databases. These will be verified by RT-PCR and ddPCR. 

Once I have narrowed down to a few sites that are consistently differentially methylated in 

leukemic but not healthy samples, I will design a panel of ddPCR primers for these sites 

and run them on patient gDNA and cfDNA from diagnosis and throughout treatment. This 

will then be compared with clinical data from the patient to determine if methylation 

changes can be used as a biomarker of disease progression and relapse in patients in the 

future. 
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7.4 Methods 

7.4.1 Collection of Patient Samples 

Patient samples were collected under University of Kentucky’s Institutional 

Review Board (protocol 44672). Patient Bone Marrow Aspirate (BMA) and peripheral 

blood samples were collected and diluted with an equal volume of room temperature 2% 

FBS in PBS. The sample was slowly added to a 50mL Sepmate tube (cat. # 85450), 

containing 15mL of Ficol Density gradient, centrifuged at 1,200xg for 10 mins and the top 

layer was quickly poured into a new 50mL tube. The volume was brought up to 50mL with 

RPMI and spun for 15 mins at 1,400 rpm at 4°C. Cells were counted and then washed in 

50mL of RPMI and centrifuged for 10 mins at 1,400 rpm at 4°C. The supernatant was 

removed, and cells were resuspended in 1mL of RPMI + 10% FBS + 10% DMSO per 107 

cells and added to a cryovial for storage at -80°C. 

7.4.2 Isolation of genomic DNA from Patient Samples 

gDNA was isolated from patient bone marrow aspirate collected at the time of 

diagnosis. Frozen buffy coat layer cells isolated from bone marrow aspirates at time of 

diagnosis were gradually warmed to 37°C and transferred to a sterile 15 mL conical tube. 

Dropwise 10 mL of pre-warmed, 25% fetal bovine serum (FBS) in Iscove's Modified 

Dulbecco's Media (IMDM) was added to the cells at a rate of approximately 2-3 

seconds/mL. Cells were centrifuged at 1,000 rpm for 10 minutes and supernatant was 

gently aspirated. Addition of media, centrifugation and removal of supernatant was 

repeated again. Cells were then washed once in phosphate buffered saline (PBS) and 

counted before proceeding to gDNA isolation. gDNA was isolated using the Qiagen 
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Puregene Blood Core Kit B (catalog #158467), following manufacturer’s protocol ‘DNA 

Purification from Buffy Coat Using the Gentra Puregene Blood Kit.  

7.4.3 Isolation of Cell-Free DNA from Plasma and CSF 

ctDNA was isolated from patient blood and cerebrospinal fluid (CSF). Samples 

were collected into cell-free DNA collection tubes (Streck, 218962). Upon collection, all 

samples were centrifuged at room temperature for 10 minutes at 1,600xg.  

After initial spin of patient blood samples, the plasma was removed, careful not to 

disturb the buffy coat layer, and moved to a clean tube. Plasma was centrifuged again for 

10 mins at 16,000xg at room temperature and the supernatant was carefully removed, 

leaving behind a thin layer to not disturb any cell pellet. ctDNA was then isolated using 

the Qiagen QIAmp MinElute cfDNA Midi Kit (catalog #55284) as per manufacturer’s 

protocol, with the modification of heating the ultra-clean water to 56°C prior to elution.  

After initial spin of patient CSF samples, the supernatant was removed, careful not 

to disturb the any cell pellet, and moved to a clean tube. CSF was centrifuged again for 10 

mins at 16,000xg at room temperature and the supernatant was carefully removed again, 

leaving behind a thin layer to not disturb any cell pellet. Zymo Research Quick-cfDNA 

Serum and Plasma Kit (catalog #D4076) was used to isolate ctDNA from CSF using the 

manufacturer protocol ‘Purification of cell-free DNA from ≤5mL sample Vacuum 

Protocol’. The following modifications were made to the manufacturer protocol: after 

adding proteinase K to the tube the samples were incubated at 55°C for 1hr and the final 

elution step was carried out in 35ul of 56°C pre-heated nuclease free water. All gDNA and 
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ctDNA samples were quantified using a Qubit Fluorometer using the high-sensitivity DNA 

quantification kit according to the manufacturer’s instructions and stored at -20°C.  

7.4.4 Clonality PCR 

Clonality PCR was performed using Invivoscribe IGHV kit for amplification of the 

IgH variable region in patient B-ALL samples according to the manufacturer instructions.  

7.4.5 Nanopore Library Preparation and Minion Sequencing 

Following the IGHV PCR 50 ng of each sample was used as input for the PCR 

Barcoding Kit (SQK-PBK004). I adhered to the manufacturer’s protocol except for the 

following. Since amplicon was used as starting material the initial fragmentation step of 

the protocol was omitted. End-prep was performed by mixing 50ng of PCR product with 

3.5ul Ultra II End-prep buffer and 1.5ul of enzyme in a total volume of 30ul. This was 

followed by Ampure purification and Barcode Adapter (BCA) ligation. Ligated products 

were again Ampure purified and amplified for 14 cycles in order to attached barcodes 

(Barcode 1-6). Following a third Ampure purification and Qubit quantification barcoded 

libraries were pooled together at equal amounts for a total of 10ul. One microliter of RAP 

was added to the final pooled library and incubated 5 minutes. Although all 

reactions/washes prior to RAP addition were performed at half volume, I adhered strictly 

to the concentration of input DNA for each step. The full volume of the library was mixed 

with 34ul SQB, 25.5ul LB and 4.5ul nuclease-free water and loaded onto the MinION flow 

cell. Libraries were run until all barcodes had a minimum of 4K reads which averaged 

about 1-2 hours. 
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7.4.6 Methylation Sequencing 

gDNA was isolated from bone marrow aspirates from patient diagnosis or from 

PBMCs of healthy patients purchased from ZenBio using the Zymo gDNA extraction kit. 

gDNA was then sent to Diagenode for quality control, methylation sequencing, and 

analysis. 

7.4.7 Statistical Analysis 

Samples were run on the MinION sequencer and analyzed via the Nanopipe web-

based data analysis pipeline 274. Consensus sequences from reads mapped to chromosome 

14 were then aligned in IMGT, the international ImMunoGeneTics information system 280. 

Bam files were loaded into the Integrative Genomics Viewer (IGV, Broad Institute) for 

identifying total number of reads that mapped to each clone. 

Methylation sequencing data analysis was done by Diagenode and those results 

were compared to public data sets by Daheng He and Chi Wang in the University of 

Kentucky, Department of Biostatistics.  
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CHAPTER 8. FINAL CONCLUSIONS 
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This research aimed to both characterize the role of PRL-3 in LSC self-renewal and 

to develop novel tools and methods for studying LSCs and LSC driven-relapse in animal 

models and in patient samples. In Part 2 of this dissertation, I demonstrated that PRL-3 

modulates LSC self-renewal in vivo in a zebrafish T-ALL model, and in vitro in colony 

formation assays. This is in part due to the ability of PRL-3 to modulate the Wnt/beta-

catenin signaling pathway, known to be crucial to LSCs in T-ALL. Most importantly, 

inhibition of PRL-3 is able to decrease the function LSC frequency in vivo, suggesting that 

PRL-3 is a potential therapeutic target for LSC-directed therapy.  

While this research clearly illustrates that PRL-3 functions as a driver in LSCs and 

at least in part through Wnt/beta-catenin signaling, it also raises the question of exactly 

how PRL-3 is modulating Wnt signaling and if PRL-3 is increasing LSC self-renewal via 

any other signaling pathways. Future studies characterizing potential substrates of PRL-3 

in leukemia will further these conclusions of how PRL-3 functions in LSCs. Additionally, 

xenograft mouse models testing the efficacy of PRL-3 inhibition on modulating LSC 

frequency would significantly enrich the therapeutic potential of PRL-3 in LSCs. 

In addition to leukemia stem cell biology, this dissertation outlined a few different 

models and techniques for studying LSCs and disease relapse. First, I designed a model for 

labeling potential LSCs in vivo in our zebrafish T-ALL model, allowing for in depth 

imaging and characterization of LSC biology and function in vivo. I also optimized a 

zebrafish xenograft model for engrafting patient samples and predicting response to 

chemotherapy, and identified potential pitfalls with this model. Finally, I established a 

workflow for monitoring patient samples for disease relapse using cell-free DNA to track 
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leukemia cell clonality and DNA methylation changes over time in a less invasive method 

than current clinical standard of care. 

The research described in this dissertation provided preliminary data for three novel 

models or methods for studying LSCs and patient relapse and response to therapy; however 

further studies would significantly enhance the applicability of these models and methods. 

Limiting dilution transplantation studies confirming the putative LSC population in the 

Wnt reporter LSC zebrafish model would allow for this model to begin to take the place of 

limiting dilution studies for characterizing drug efficacy against LSCs. Validation and 

application of the cell-free DNA workflow for both clonality purposes and methylation 

would be the next step in this pipeline making its way into clinical practice to complement 

current methods for predicting patient response to therapy and disease relapse. 

Taken together, the work presented in this dissertation has had an impact in both 

LSC biology and function in T-ALL and in paving the way for new methods and models 

to study LSCs in ALL. This work has both identified a potential therapeutic target that has 

not yet been described to have a function in T-ALL LSCs and innovated methods for 

improving patient risk stratification and relapse prediction. In combination, these studies 

will further the field in understanding and characterizing LSC biology and function and 

their prognostic significance in patient samples in ALL. 
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