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ABSTRACT Advanced control techniques may be used to establish a virtual power plant to regulate the
operation of electric water heaters, which may be regarded as a ‘‘uni-directional battery’’ and a major
component of a hybrid residential energy storage system. In order to estimate the potential of regulating water
heaters at the aggregated level, factors including user behavior, number of water heaters, and types of water
heaters must be considered. This study develops generic water heater load curves based on the data retrieved
from large experimental projects for resistive electric water heaters (EWHs) and heat pump water heaters
(HPWHs). A community-level digital twin with scalability has been developed to capture the aggregated hot
water flow and average hot temperature in the tank. The results in this paper also include the ‘‘energy take’’ in
line with the CTA-2045 standard and Energy Star specification. The data from the experiments demonstrated
that changing from an EWH to an HPWH reduces electricity usage by approximately 70%. The case study
showed that daily electricity usage could be shifted by approximately 14% and 17% by EWH and HPWHs,
respectively, compared to their corresponding average power. Another case study showed that both EHWs
and HPWHs, coordinated with PV to reduce morning and evening peaks, could shift approximately 22% of
the daily electricity.

INDEX TERMS Electric water heater (EWH), heat pump water heater (HPWH), digital twin, generic curve,
load profile, aggregated community load, CTA-2045, energy storage, energy take, demand response (DR),
distributed energy resources (DER), virtual power plant (VPP), smart home, smart grid.

I. INTRODUCTION
The ubiquity of electric water heaters (EWHs) make them
one of the most advantageous appliances for participation
in the virtual power plant (VPP) operation for residential
buildings. The EWHs have large thermal masses of water
in their tanks and can be regarded as both heat reservoirs
and energy sinks. Their effective tank insulation gives high
equivalent thermal resistance compared to pipes, resulting
in less energy loss associated with water heater tanks than
distribution systems [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alon Kuperman .

These properties allow EWHs to, for a short period of
time, be turned OFF for load shedding while maintaining
the water temperature at the reference temperature. Further-
more, EWHs can be used to absorb surplus PV generation.
As PV penetration keeps rising, there are multiple benefits of
incorporating EWHs into home energy management. Recent
research indicates that battery capacity may be reduced by
up to 30% when batteries are coordinated with EHW, which
were regarded as ‘‘uni-directional’’ energy storage [2].

The electric water heater accounts for a substantial portion
of a typical house electric power consumption [3]. However,
the unpredictability of customer behavior makes quantify-
ing the benefits of controlling EWHs difficult. Demand
response (DR) implementations must carefully balance the
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water temperature in the tank to provide the maximum grid
benefit between two bounds, i.e., it must be kept high enough
to meet the user demand while not exceeding the stipulated
safety reference. Fortunately, technologies such as mixing
valves may be used to allow the water to be safely stored up
to 145F and still meet safety requirements [4], [5].

The power profile of water heaters is largely decided by
user behavior. In previous studies, the hot water draws for
48 representative days were evaluated based on measured
data from California homes [6]. The proposed schedules are
used in the California Building Energy Code Compliance
for Residential buildings (CBECC-Res) [7]. In another study,
the aggregated EWH load was calculated by analyzing the
hot water usage schedules [8]. A typical aggregated load for
EWHs has a morning and evening peak, as shown in the study
involving 50 water heaters [9]. The aggregated load curve for
the resistive EWHs was proposed in a previous conference
paper by the same group of authors [10].

Residential water heaters have large thermal masses
and can provide ancillary services with relatively low-cost
[11], [12]. These services could improve the reliability of
the grid and provide monetary benefits to both the grid and
residences while maintaining user comfort [13]–[17]. The
potential regulation capacity of water heaters is impacted by
factors including ambient temperature, hot water usage, and
setpoint [18]–[21].

An internet-based survey involving 1,600 members found
that approximately 70% of the residential participants would
allow the utility to control their switches or thermostats
when proper incentives were provided [22]. The potential
of water heater related technologies was widely appreci-
ated in the annual conference of Hot Water Forum held
by the American Council for an Energy-Efficient Economy
(ACEEE) [23]. Topics including the EWH modeling, opti-
mization, and related market investigations for the benefit of
industry, utilities, and research institutes were addressed in
the forum.

A universal port for smart products, including water
heaters, was designed by the Consumer Technology Asso-
ciation (CTA) and well known as CTA-2045 standard
[24], [25]. The CTA-2045 standard can potentially meet
the challenges in the large employment of smart devices,
including differences between products across manufacturers
and data streaming. In principle, the Energy Star [26] and
CTA-2045 standard define a set of functional requirements
such as ‘‘normal operation’’, ‘‘shed’’, ‘‘load up’’, etc., and a
set of specifications and concepts such as ‘‘energy capacity’’,
‘‘energy content’’, and ‘‘energy take’’. Those specifications
and functional requirements can be extended to any energy
storage device, enabling a unified approach at the system
level. For EWH, success has been reported at the individual
residential and utility aggregated levels [12], [27].

Major research gaps remain and a representative power
profile for aggregated water heater load that can be scaled to
any number is yet to be developed. This is essential to estimat-
ing the potential of DR at the power system level. Also, EWHs

FIGURE 1. The illustrative parts of A.O.Smith ‘‘Energy Smart’’ model and
CTA-2045 standard port. The ‘‘Energy Smart’’ controller is smart grid ready
and implements standardized communications for demand response.

and HPWHs have very different characteristics so they need
to be analyzed separately. While inlet and outlet temperatures
are easy to measure, they do not represent stored energy well
as the temperature inside the water tank is stratified [27].

The major contributions of this paper include: (1) the
development of generic load curves for daily electricity usage
of EWH and HPWH based on data retrieved from two large
scale projects, respectively; (2) a community level digital
twin for water heaters with scalability to any number, which
involves the hot water flow, water temperature in the tank,
and ‘‘energy take’’; (3) quantification of the potential of load
shifting for both EWH and HPWH under different scenarios.

Following the Introduction: the large-scale experi-
mental studies for EWH and HPWH are presented in
Section II and III, respectively. The digital twin water heater
model is proposed in Section IV. In Section V, the DR
example is carried out for constant power. The DR case
for harvesting the energy capacity of the water heater is
presented In Section VI. The conclusions are provided in the
last section.

II. LARGE SCALE EXPERIMENTAL STUDY FOR
ELECTRIC WATER HEATER
A smart EWH that allows users to control the setpoint,
the operating mode and receive alerts based on the device
operation was developed by A.O. Smith. Approximately
800 anonymized units with the ‘‘Energy Smart’’ EWH con-
troller were analyzed in the program, in which appliance
usage datawere retrieved and evaluated. The ‘‘Energy Smart’’
controller can be plugged into the EWH and enables the
monitoring, remote control, alarming, and creating custom
heating schedules [28]. The EWH heater models optionally
include a CTA-2045 port adapter and utility communica-
tion module to enable smart communication with energy
providers (Fig. 1).

Over a two-year period from 2018 to 2020, the data ana-
lyzed witnessed a growing number of participants, peak-
ing at nearly 500 electric water heaters recorded per day
in early 2019 (Fig. 2). Based on the data retrieved, up to
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FIGURE 2. Daily number of EWH in service. Approximately
800 participants were analyzed as part of the program and an increase
from 2018 till early 2019 can be observed before the gradual decline.

FIGURE 3. Participant engagement over the duration of the
research. Reduction in the number of participants in some cases were
attributed to changes in internet settings and monitoring hardware
devices being disconnected.

TABLE 1. The p.u. value of average EWH power.

100 participants opted out of the program at inception and
140 EWHs participated through the entire length of the
project (Fig. 3). During the project span, approximately
350 EWHs were reporting their instantaneous power online.

The daily power profile for EWHs is determined by the
user-influenced parameters such as hot water usage and the
hot water temperature set point. The power profile for EWHs
is also influenced by other factors including the ambient
temperature, inlet water temperature, and the insulation of
domestic water pipes. Hence, there is variation in the power
curve from one EWH unit to the other. A typical residential
EWH would normally have two or three short heating cycles
daily, leading to sharp power differences throughout the day.
Onlywhen the number of EWHs being analyzed is fairly large
is the aggregated EWH power relatively smooth with distinct
trends.

The experimental data was reported in Coordinated Uni-
versal Time (UTC) but the location of the EWH was not
recorded. This is because all the user information had been
anonymized in order to protect privacy. As the data was
collected within the entire continental USA, the time zone for
the experimental data is regarded as UTC-06:30, i.e., between
the CST and MST.

At each minute, the aggregated EWH load was calculated
by summing all the selected power together. The base power,
which is used to calculate the per unit value, is defined as
follows:

Pbase =
E · N
T

, (1)

where, E is the average daily electricity usage; N, the total
number of EWHs; and T, representing the number of hours
to be averaged over. In this paper, E is fixed to 12.5kWh as
the typical daily electricity usage for EWH and T is fixed
to 24, for the number of hours in one day. In the case of
HPWHs, E is also 12.5kWh so the per-unit load values for
both EWH and HPWH are comparable. The actual energy
produced by EWHs and HPWHs is assumed to be the same.
For the HPWH, the Coefficient Of Performance (COP) is
defined as the ratio between the power drawn out of the
HPWH and the power supplied to the compressor. Due to the
COP of HPWH, the electricity usage of EWH and HPWH are
different.

The per unit value for the aggregated water heater load
power is calculated as:

Ppu(t) =
PA(t)
Pbase

, (2)

where PA is the aggregated water heater power acquired from
the measurements at time t .

The measured power profiles were used to develop an
aggregated generic load profile to represent the typical power
flow for multiple EWHs. The generic EWH load profile was
defined by 8 data points for which the mathematical deriva-
tive of the load curve, i.e. ramping rate, changes drastically.
The data point for hour 24 is not shown because hour 0 and
hour 24 have the same value (Table 1). The values between
those points were interpolated linearly with user defined
resolution. The time step of 1-minute was used throughout
this paper if not mentioned otherwise. The generic curve
captured the major characteristics of the experimental data,
as the peaks, ramping rates, and the power values for different
time periods were almost the same (Fig. 4). The aggregated
EWH load curves shown in Fig. 4 include the per unit value
and an example for 1,000 EWHs for which the base power
has been calculated with (1) to be equal to 521kW.

Another experimental study, of a smaller scale with only
50 EWH, has been conducted by the researchers from the
Oak Ridge National Laboratory (ORNL) [9]. The results
shown in Fig. 5 confirm the typical timing of the morning
and evening peaks, which shows the similar trend compared
with the generic curve.When comparing data and considering
scaling between Figs. 4 and 5, it should be kept in mind that
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FIGURE 4. Example daily aggregated power transfer for EWH. The
aggregated generic profile was developed based on data retrieved from
the two-year long project.

FIGURE 5. Experimental aggregated data based on a smaller scale study
that included only 50 water heaters [9]. The morning and the evening
peaks are approximately timed in line with expectations, as compared
with the example generic curve of Fig. 4, and the power values illustrate
the community dependent variability.

the smaller scale study illustrates the variability due to the
day of the week, which can be substantial, and also includes
larger power variations possibly due to community/location
specifics and the low number of EWH considered. Obtaining
substantially large local data for the utility might be a chal-
lenge and the corresponding aggregated load based on the
limited data might have large variation. On the other hand,
the generic curved proposed in Fig. 4 is artificially aggregated
in time and space throughout the entire continental US, which
spans four time zones, i.e., UTC-05:00 to UTC-08:00. There-
fore, the aggregated load was able to represent the national
trend, but needed adjustment when employed to a specific
location. The learnings from the two studies can be combined
with other locally based statistics to establish a specific load
curve for electric power utility DR planning.

III. LARGE SCALE EXPERIMENTAL STUDY OF
HEAT PUMP WATER HEATER
The Bonneville Power Administration (BPA) has spent the
recent years developing the capability to use the CTA-2045
enabled water heaters for both traditional demand response
and everyday applications such as renewable generation inte-
gration. The project, which delivered the experimental data
used by this paper, deployed 300 CTA-2045 enabled HPWHs

FIGURE 6. The distribution for the instances of selected power values.
Two clusters stand for the compressor power only and the instances
which include the resistance element, which are approximately 94% and
6%, respectively.

FIGURE 7. The generic power curve created based on the BPA data for
Spring, Summer, and Winter for the year of 2018. The annual curve, which
includes the data from the three seasons, is used to generate the generic
HPWH curve.

in the Pacific Northwest (PNW) over one year. The data
has a resolution of 1-minute and covers January through
August of 2018 [29].

The data includes multiple columns, among which
the timestap, alias, curr_curtail_type, curr_
watts were used to generate the generic load curve for
the HPWH. The alias records the device name and
distinguishes the type of water heater. This was used in
this paper to select only the data from HPWHs. The
curr_curtail_type records the demand control signal.
In this paper, only the days having a signal of End
Shed/Run Normal = 8 for the entire day were selected.
Therefore, for the selected days, all their 1,440 records of col-
umn curr_curtail_type must be 8. The timestamp
and curr_watts record the timestamp and the instanta-
neous watt reported by the water heaters. Additionally, only
the business days were selected as user behavior differs on
holidays and weekends.

Approximately 10,000 daily HPWH schedules were
selected and each schedule had 1,440 recorded power
instances. The distribution for the values of the selected
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FIGURE 8. The experimental and generic curve of the daily HPWH power
profile. The experimental curve is based on the same data as the annual
curve shown in Fig. 7.

TABLE 2. The p.u. value of average HPWH power.

instantaneous power shown in Fig. 6 does not include times
without a power draw. When the HPWHs were ON in End
Shed/Run Normal mode all day long, the compressors
were operating alone 94% of the time and, for the other 6%
of the time, the resistance element was ON.

The data was provided for three seasons separately,
i.e., Winter: Jan-Apr, Spring: Apr-June, and Summer:
June-Aug. The annual curve was calculated by using the
data from all three seasons together. It is observed that, even
though the peak values differ, all the daily load curves have
two peaks at approximately 8am and 9pm, as shown in Fig. 7.

The generic HPWH load curve was created based on the
annual load curve presented in Fig. 7 and was defined by
8 data points as in the Table 2. The data for hour 24 is not
shown because, as at the end of the day, the value is the same
as the beginning. The generic curve based on the annual data
is shown in Fig. 8 in both per unit value and the value for
1,000 HPWH.

The experimental data and generic curves for both EWHs
and HPWHs are presented together in Fig. 9. The peak
value for EWHs is approximately 3 times the peak value for
HPWHs. It is observed that the peak for HPWH comes later
for both morning and evening. Unless otherwise mentioned,
the studies in the rest of this paper are all based on the generic
curves.

The per unit value for energy usage is deduced by integrat-
ing both side of (2) with respect to time:∫

Ppu(t)dt =
∫

PA(t)
Pbase

dt ⇒ Epu(t) =
EA(t)
Pbase

, (3)

whereEA(t) is themeasured aggregated energy usage. In a per
unit system, the base and the actual value have the same unit.
Based on (3), the base value for the aggregated energy (MWh)

FIGURE 9. The experimental and generic curves for both EWHs (indicated
with I) and HPWHs (indicated with ©) in the same scale.

FIGURE 10. The accumulated electricity usage for the EWH and HPWH
based on the generic load curves. The daily electricity usage for EWH and
HPWH are 21.4 p.u. and 6.3 p.u., respectively.

has the same magnitude as Pbase (|Ebase| = |Pbase|). The
cumulative electricity usage based on the generic load curves
for EWH and HPWH are shown in Fig. 10. At the end of the
day, the aggregated electricity usage for EWH and HPWH
are 21.4 p.u. and 6.3 p.u., respectively. Given 1,000 water
heaters, the daily electricity usage for an all EWH community
and an all HPWH community are 11,146kWh and 3,281kWh,
respectively. For a community changing from all EWH to all
HPWH, the daily saving on electricity is approximately 70%.

IV. EQUIVALENT EWH AND POSSIBLE MODEL
FOR DIGITAL TWIN
One simplification and two assumptions have been made
in this paper to facilitate the study. The water temperature
in the tank was simplified to be uniform instead of strati-
fied. Simulation results (Fig. 11) based on the simplification
are satisfactory when compared with the experimental data.
Other models, including the ‘‘WaterHeater:Mixed’’ in Energ-
Plus [30] and the model used for International Energy Con-
servation Code (IECC) by the Department of Energy (DOE)
and Pacific Northwest National Laboratory (PNNL) [31] all
consider uniform temperature tanks appropriate. The models
developed by Ecotope [32] consider vertical stratification
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FIGURE 11. Simulation results obtained based on (4). The data compares
satisfactorily with the experimental results from the NREL test published
in the EPRI report [27].

of the water tanks and have accurate results at the cost of
performance. In this paper, the uniform temperature in the
water tank was considered as it is sufficient for the evaluation
of the energy balance in the water tank.

The first assumption is that COP of the HPWH was con-
stant for the calculation of the daily profile. COP will not
change drastically when the ambient environment remains
stable, which is the common case for most of residential
users. The second assumption is that the average water tem-
perature for all the EWHs whose power was used to generate
the generic curve (Fig. 4) was constant when there was no DR
control. This assumption was based on basic aggregation, that
for a given point in time, some water heaters have high tem-
perature while others have low. Based on these assumptions,
the hot water usage and the temperature in the tank for the
water heaters can be calculated.

An equivalent thermal model is used to calculate the
daily hot water usage based on the generic load. Typically,
thewater temperature in the tank is stratified. In this paper, the
average water temperature is considered sufficient for the
estimation of the energy storage capacity of the water heater.
Therefore, the thermodynamic of the water heater is repre-
sented in a single-nodal model:

C
dθT (t)
dt
= S(t)PH (t)−

1
R
[θT (t)− θA]

−ρcpW (t)
[
θT (t)− θW ,C

]
. (4)

The three terms on the RHS consider the effect of the input
electric power, the standby heat loss, and the hot water draw
activities, respectively. C and S(t) are the equivalent thermal
capacitance and ON/OFF status, defined respectively, as:

C = V · ρ · cp. (5)

S(t) =


0, if S(t − 1) = 1 & θT (t) ≥ θH (t)
1, if S(t − 1) = 0 & θT (t) ≤ θL(t)
S(t − 1), otherwise,

(6)

where θL and θH are the lower and upper band of the water
tank temperature. The definitions of other parameters are

TABLE 3. Parameters for the equivalent EWH model.

listed in Table 3. It is worth noting that the water heater
heating rate PH , the water temperature in the tank θT and the
hot water draw W have only their units listed in the table.
Also important is that the water heater heating rate PH for
the HPWH should consider its COP.

The performance test of a CTA-2045 equippedA. O. Smith
water heater was conducted by National Renewable Energy
Laboratory (NREL) and reported by the Electric Power
Research Institute (EPRI) [27]. The case of ‘‘normal oper-
ation’’ from the report was used for the validation of the
parameter values listed in Table 3, where the water heater
heating rate, PH , was set to 5.5kW only for this validation.
The simulation results, which were plotted in the same style
as the report, show satisfactory results (Fig. 11). The term
‘‘energy take’’ reflects the temperature of the water tank.

The proposed single-nodal model is scalable with its
parameters represented in the per unit system. Dividing both
sides of (4) by Pbase|N=1 yields:

C
Pbase|N=1

dθT (t)
dt
= S(t)

PH (t)
Pbase|N=1

−
1

RPbase|N=1
[θT (t)− θA]

−ρcp
W (t)

Pbase|N=1

[
θT (t)− θW ,C

]
. (7)

When there is only one water heater, the aggregated power
is the power of the single water heater:

PA(t) = PH (t), (8)

and the per unit value for the aggregated water heater power
in (2) becomes:

Ppu =
PH (t)

Pbase|N=1
, (9)

as Pbase|N=1 = E
T , (7) is rewritten as:

CT
E

dθT (t)
dt
= S(t)Ppu(t)−

1
RE/T

[θT (t)− θA]

−ρcp
W (t)T
E

[
θT (t)− θW ,C

]
. (10)
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FIGURE 12. The calculated aggregated daily hot water flow. The total
daily hot water usage was 112 p.u. Given 1,000 water heaters, total daily
hot water usage was 58,507 gallons.

Defining the per unit values as: Cpu =
∣∣C ·T
E

∣∣ ,Rpu =∣∣R·E
T

∣∣ ,Wpu =
∣∣W ·T
E

∣∣, the heat transfer function of a water
heater is represented as:

Cpu
dθT (t)
dt
= S(t)Ppu(t)−

1
Rpu

[θT (t)− θA]

−ρcpWpu(t)
[
θT (t)− θW ,C

]
. (11)

The heat transfer function (4) holds for single water heater,
therefore, it holds for the average values of C,PH (t),R,
and W (t):

C
dθT (t)
dt
= S(t)PH (t)−

1

R
[θT (t)− θA]

−ρcpW (t)
[
θT (t)− θW ,C

]
. (12)

Rewriting (12) as:

Cpu
Cbase
N

dθT (t)
dt
= S(t)Ppu(t)

Pbase
N
−

1

Rpu
Rbase
N

[θT (t)− θA]

−ρcpWpu(t)
Wbase

N

[
θT (t)− θW ,C

]
.

(13)

Compared with (11), the equation (13) holds when∣∣∣CbaseN

∣∣∣ = ∣∣∣PbaseN

∣∣∣ = ∣∣∣ 1
Rbase/N

∣∣∣ = ∣∣∣Wbase
N

∣∣∣. Therefore, the base

values are defined as: |Cbase| = |Wbase| = |Pbase|,
|Rbase| = |N 2/Pbase|.
In the study, it is assumed that the average temperature of

all the EWHs was constant at θT (t) = 125F due to their
fast recovery rate relative to HPWHs. Therefore, (11) can be
re-written to calculate the per unit hot water usage:

Wpu(t) =
S(t)Ppu(t)− 1

Rpu
[θT (t)− θA]

ρcp
[
θT (t)− θW ,C

] . (14)

The generic load for EWHs is used to calculate the aggre-
gated hot water draw, i.e., the item ‘‘S(t)Ppu(t)’’ is replaced
by the value of the generic load of the EWH at each time
point. The calculated generic hot water flow shown in Fig. 12
stands for the representative user behavior and does not

FIGURE 13. The average temperature for EWH and HPWH, which were
calculated using the same hot water flow and the corresponding generic
loads. The constant average temperature value for EWH indicates the
instant reaction of the resistance element. The variation in average
temperature for HPWH shows the deferring nature of the compressor.

change when the water heater is HPWH or the DR is imple-
mented. In this study, the hot water flow has the time res-
olution of 1-minute and is presented in per unit value as
well as gallon per minute (GPM). The daily hot water draw
is calculated by integrating the hot water flow with respect
to minute, and the results, i.e., the area between x-axis and
the curve in Fig. 12 are 112 p.u., and 58,507 gallons for the
1,000 water heater example.

The generic hot water draw and the generic load curves
are used to calculate the average tank temperature using (11).
As shown in Fig. 13, the average tank temperature for EWH
is constant as expected. The variation in the average temper-
ature for HPWH reflects its latent nature.

The equivalent water heater model may be thought of
as a digital twin for three reasons. First, all the I/O can
be real-time if the data is available. Second, the model
can stream data complying to the communication proto-
col approved by CTA-2045 standard. Third, the model is
exchangeable with the hardware in a co-simulation circum-
stance where the EWH is involved as one of the smart compo-
nents. Example applications can be found in the Distributed
Energy Resources (DER) integration testbed developed by
EPRI [33]. This paper focuses on the computational parts of
the EWH model while the data packing and communication
will be introduced in future work.

V. CONSTANT POWER OPERATION USING
LOAD SHIFTING
In the ideal case, the aggregated water heater loads can be
kept constant by shifting the peaks, as illustrated in Fig. 14.
The electricity used at peak load period, which is above the
average power and marked with ‘‘•’’ can be shifted to the
time when the power is low, as the areas marked with ‘‘N’’.
In this study, for the EWH, 3.1 p.u. of energy, which was 14%
of daily electricity usage, could be shifted with the reference
to the average power. For HPWH, the numbers are 1.1 p.u.
and 17%.
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FIGURE 14. The illustration for shifting the water heater load to operate
on the average power. The COP = 3.4 is calculated based on of the two
average powers. With the reference to the average power, the EWH and
HPWH could shift approximately 14% and 17% of their corresponding
daily electricity usage, respectively.

FIGURE 15. The relative values of EWH and HPWH generic load power
compared with their corresponding average value. The HPWH has larger
variation.

By preheating and shedding, both EWH and HPWH can
work on the constant powers, which are the average powers.
It is assumed that both EWH and HPWH have the same
amount of input energy for water heating. Therefore, the por-
tion between the two average powers is regarded as the COP
for the aggregated HPWH, which is 3.4.

The absolute power of the aggregated HPWHs is lower
in general when the numbers of EWHs and HPWHs are
the same. However, further inspection reveals that the power
profile of HPWHs has a larger variation with the reference to
the average power (Fig. 15). In communities where HPWHs
arewidely installed, shifting thewater heater loads can reduce
the peak power demand significantly.

The water heater digital twins were used to calculate the
average water temperature in the tank and monitor the user
comfort. The hot water flow remains unchanged as the user
behavior will not change. The preheating and shedding proce-
dures change the hot water temperature in the tank. When the
aggregated water heater powers were constant, the average
water temperatures in the tank were calculated according to
(11) and presented in Fig. 16. For both EWHs and HPWHs,

FIGURE 16. The average temperature for EWH and HPWH, which were
calculated using the same water draw and the corresponding constant
power. The input energy for EWH and HPWH were the same all the time.
After the starting point, the HPWH always had lower tank temperature
because of higher heat loss.

FIGURE 17. The energy take for EWHs and HPWHs for the same water
draw and the corresponding average power. The energy take for HPWHs
was more than that of EWHs when they had the same amount of input
energy due to higher heat loss. The HPWHs use less electricity to heat the
water because of their COP.

the tank temperatures were above the minimum required
115F when the aggregated heating power was constant. Due
to the COP, the input energy for heating the water were the
same for both EWH and HPWH at any moment even the
HPWHused less electricity. The average tank temperature for
HPWHwas always lower because of higher standby losses to
ambient. It is worth noting that even the HPWHs have higher
standby losses to ambient, their overall efficiency is much
higher than that of the EHWs due to the COP.

Measuring the temperature in the water tank requires
sophisticated techniques as water with different temperature
is stratified and is not mixed evenly. Water heaters that are
CTA-2045 ready can monitor the devices with the readable
quantities related to energy. According to the Energy Star
specification, the ‘‘energy content of the stored water’’ for
water heater, EW , is calculated as:

EW (t) = VρcpθT (t), (15)

where θT is the water temperature, and other parameters are
listed in the Table 3. The energy take between two time points
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FIGURE 18. Example demand response for aggregated EWH based on the
generic load. This approach demonstrates how the peak demand of
aggregated EWH load at the morning and evening peaks can be shifted to
midday, when solar generation is relatively high.

FIGURE 19. Example demand response for aggregated HPWH based on
the generic load. The shedding periods for the HPWH were selected as
the same as that of the EWH case for comparison.

is calculated as:

ETW (t1 − t2) = EW (t1)− EW (t2). (16)

In this paper, the energy take at one time point was defined
as the difference between the ‘‘energy content of the stored
water’’ in that time point and that of the zero (0) time point.

The energy take for EWHs and HPWHs under constant
power is shown in Fig. 17. The negative values in the early
morning indicate the preheating procedure, during which
energy was put into the water tank instead of being taken out.
The energy take for HPWHs was higher due to higher heat
loss. Because of the COP, the corresponding electricity for
HPWHs had a much lower value, as presented in Fig. 17.

VI. DEMAND RESPONSE STUDY FOR
MORNING AND EVENING
The objective of demand response is to shed the EWH load
at critical time, and recover during the midday, as follows:

PD(t) =

{
PT , if t ∈ TD
PO(t)+ PR(t), if t ∈ TR,

(17)

FIGURE 20. Accumulated electricity usage of the aggregated EWH. Both
cases used the same amount of total electricity at the end of the day,
which was 21.4 p.u. In the DR case, the electricity usage remained
unchanged during the morning and evening peak shedding period. The
electricity usage for the DR case increased fast in the afternoon due to
the shifted electricity.

FIGURE 21. Accumulated electricity usage of the aggregated HPWH.
During the morning and evening peak shedding period, the used
electricity remained unchanged in the DR case. More electricity was used
in the afternoon due to the load shifting. Both cases used the same
amount of electricity at the end of the day, which was 6.3 p.u..

wherePD is the aggregated EWH loadwith DR;PT , the target
aggregated power; PO, the original aggregated EWH load
without DR; PR, the shifted power; TD, the set of time
when DR is required; TR, the set of time when the power is
shifted to.

CTA-2045 provides energy take as an alternative to tem-
perature control. The most useful value, i.e., the amount of
energy that can be stored, is provided to the utility, and details
of temperature control can be avoided. Adjusting the temper-
ature bounds of the water heater can maximize the energy
storage capability. However, for the concerns regarding safety
and user comfort, the residences are not encouraged to
change the set points, which are defined by the manufacturers
with specific knowledge of tank geometry and sensor read-
ings [34]. The case studies in this paper represent the utility-
controlled DR load type, instead of consumer-incentive DR
control. Similar to industrial shedding, an extreme scenario
was carried in this paper to evaluate the potential of energy
storage capacity of EWHs and HPWHs.
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FIGURE 22. The aggregated power for EWH and HPWH with DR control.
The morning and evening peaks for both EWH and HPWH were shifted to
the afternoon when the PV had surplus generation.

In this study, the generalized characteristics of residential
PV was considered and the EWH and HPWH reserved the
energy storage capacity for the afternoon. The aggregated
power for an example demand response with TD = [5 : 30,
7 : 00]

⋃
[18 : 00, 20 : 00], TR = [9 : 00, 16 : 00] and

PT = 0 for EWH is shown in Fig. 18. In this extreme example
case, the loads at morning and evening peaks were entirely
shifted to the afternoon. The same shedding periods were
selected for HPWH for comparison and results are shown
in Fig. 19.

The electricity usage for both EHW and HPWH are shown
in Fig. 20 and 21, respectively. For both EWH and HPWH,
during the shedding periods, the electricity usage remained
unchanged. In the DR case, the electricity usage increased
faster due to the shifted load starting from 9am. For both with
and without DR case, the total electricity usage was the same
at the end of the day.

The aggregated power profiles for EWH and HPWH under
DR control are shown together in Fig. 22. The fixed hot
water flow from Fig. 12 was used for the DR study for
both EWH and HPWH. During the shedding period in the
morning, which stands for the maximum load reduction case
scenario, the water temperature in the tank dropped sig-
nificantly, as shown in Fig. 23. The water temperature for
HPWH dropped even below the minimum 115F under the
extreme shedding case. A practical home energymanagement
would put the customer comfort as priority and avoid the tank
temperature being too low. The high water temperature in the
afternoon was feasible due to the implementation of mixing
valve technology.

The corresponding energy take is shown in Fig. 24
for the demand response case. For both EWHs and HPWHs,
the shedding in the morning led to high energy take, leaving
large reserved energy capacity for absorbing the surplus PV
generation. The energy take went negative in the afternoon,
indicating that the water was heated by the shifted load. The
peak-to-peak values of the energy take in this example were
4.8 p.u. and 1.4 p.u., for EWH and HPWH, respectively.
Given that the daily electricity usage for EWHs and HPWHs

FIGURE 23. The average hot water temperature in the tank for both EWH
and HPWH with DR control. The example shows a significant reduction in
tank temperature in the early hours for the extreme condition when all
the water heaters were turned OFF. The recovery around midday means
the water heaters can be used as storage for surplus PV generation.

FIGURE 24. The energy take for both EWHs and HPWHs with DR control.
The energy take was high during the shedding periods because there was
no energy input. In the afternoon, the energy take was negative,
indicating the preheating process and higher water temperature in the
tank. The corresponding electricity usage for HPWHs was lower due to
the COP. The reserved capacities for both EWHs and HPWHs were
approximately 22% of the corresponding daily electricity usage.

are 21.4 and 6.3, the reserved electric energy capacity for
both EWHs and HPWHs were approximately 22% of their
daily electricity usage. For a community with 1,000 EWHs,
a total 2,500kWh energy can be stored in the water heaters
in the example DR case. If the water heaters are all HPWHs,
the number is approximately 730kWh.

VII. CONCLUSION
The proposed aggregated generic curves for residential water
heaters, which use a minimal amount of data points, are
the first of its kind to the best of the authors’ knowledge.
The aggregated generic curves for EWH and HPWH were
obtained based on large-scale projects. The experimental data
for EWH generic curve was collected from approximately
800 users during a period of two years by the industrial
collaborator, A.O. Smith. The experimental data for HPWH
generic curve was provided by the BPA from the project
involving 300 heat pump CTA-2045 enabled water heaters in
the pacific northwest.
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The experimental data was artificially aggregated in time
and space and results show that the aggregated HPWH load
had its daily power peak appear later than that of EWHs
in both the morning and evening. The peak power for the
aggregated EWH load was approximately 3 times that of the
HPWH. The daily electricity usage of the aggregated EWH
was approximately 3.4 times that of the HPWH.

The digital twin models for EWH and HPWHwere created
with the ability to calculate the water heating power, hot
water flow, water temperature in the tank, and energy take
for any number of water heaters. Case study results show
that when referring to the average power, approximately 14%
daily electricity usage for EWH could be shifted. Changing
all EWH to HPWH reduces the daily electricity usage by
approximately 70%. TheHPWH still maintained the opportu-
nity to shift approximately 17% of the daily electricity usage.

The potential of EWH and HPWH as energy storage was
evaluated. The EWH could reserve the energy storage capac-
ity equal to 22% of its daily electricity usage in the case study.
Changing to HPWHs reduces the electric storage capacity
because HPWHs use less electricity than EHWs in general.
However, HPWHs still reserved capacity equal to 22% of
their daily electricity usage when the peaks were shifted to
the afternoon.

ACKNOWLEDGMENT
The support of A.O. Smith Corporation and of University of
Kentucky, the L. Stanley Pigman endowment, is gratefully
acknowledged.

REFERENCES
[1] C. C. Hiller, ‘‘Comparing water heater vs. hot water distribution system

energy losses,’’ ASHRAE Trans., vol. 111, p. 407, Oct. 2005.
[2] H. Gong, V. Rallabandi, D. M. Ionel, D. Colliver, S. Duerr, and C. Ababei,

‘‘Dynamic modeling and optimal design for net zero energy houses includ-
ing hybrid electric and thermal energy storage,’’ IEEE Trans. Ind. Appl.,
vol. 56, no. 4, pp. 4102–4113, Jul./Aug. 2020.

[3] Y. Liu, ‘‘Open-source high-fidelity aggregate composite load models of
emerging load behaviors for large-sale analysis,’’ Pacific Northwest Nat.
Lab., Richland, WA, USA, Tech. Rep., 2020.

[4] N. Carew, B. Larson, L. Piepmeier, and M. Logsdon, Heat Pump Water
Heater Electric Load Shifting: A Modeling Study. Seattle, WA, USA:
Ecotope, 2018.

[5] Residential Water Heater Training. Accessed: Oct. 27, 2020. [Online].
Available: http://university.hotwater.com/wp-content/uploads/sites/
2/2015/02/un-branded-Residential-Training-Manual-1-5-16.pdf

[6] N. Kruis, P. Bruce Wilcox, J. Lutz, and C. Barnaby, ‘‘Development
of realistic water draw profiles for California residential water heating
energy estimation,’’ in Proc. 15th IBPSA Conf., San Francisco, CA, USA,
Aug. 2017, pp. 1–9.

[7] CBECC-Res Compliance Software Project. Accessed: Aug. 4, 2020.
[Online]. Available: http://www.bwilcox.com/BEES/cbecc2019.html

[8] Q. Shi, C.-F. Chen, A. Mammoli, and F. Li, ‘‘Estimating the profile of
incentive-based demand response (IBDR) by integrating technical models
and social-behavioral factors,’’ IEEE Trans. Smart Grid, vol. 11, no. 1,
pp. 171–183, Jan. 2020.

[9] B. Cui, J. Joe, J. Munk, J. Sun, and T. Kuruganti, ‘‘Load flexibility analysis
of residential hvac and water heating and commercial refrigeration,’’ Oak
Ridge Nat. Lab., Oak Ridge, TN, USA, Tech. Rep., 2019.

[10] H. Gong, O. M. Akeyo, T. Rooney, B. Branecky, and D. M. Ionel,
‘‘Aggregated generic load curve for residential electric water heaters,’’
in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), Oct. 2021,
pp. 1–5.

[11] H. Gong, V. Rallabandi, M. L. McIntyre, E. Hossain, and D. M. Ionel,
‘‘Peak reduction and long term load forecasting for large residential com-
munities including smart Homeswith energy storage,’’ IEEEAccess, vol. 9,
pp. 19345–19355, 2021.

[12] CTA-2045 Water Heater Demonstration Report Including a Business Case
for CTA-2045 Market Transformation, Bonneville Power Administration,
Portland, OR, USA, 2018.

[13] T. Clarke, T. Slay, C. Eustis, and R. B. Bass, ‘‘Aggregation of residential
water heaters for peak shifting and frequency response services,’’ IEEE
Open Access J. Power Energy, vol. 7, pp. 22–30, 2020.

[14] A. Doäan and M. Alç, ‘‘Real-time demand response of thermostatic
load with active control,’’ Electr. Eng., vol. 100, no. 4, pp. 2649–2658,
Dec. 2018.

[15] M.A. Z. Alvarez, K. Agbossou, A. Cardenas, S. Kelouwani, and L. Boulon,
‘‘Demand response strategy applied to residential electric water heaters
using dynamic programming and K-means clustering,’’ IEEE Trans. Sus-
tain. Energy, vol. 11, no. 1, pp. 524–533, Jan. 2020.

[16] T. Peirelinck, C. Hermans, F. Spiessens, and G. Deconinck,
‘‘Domain randomization for demand response of an electric water
heater,’’ IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1370–1379,
Mar. 2021.

[17] O. E. Bosaletsi and P. W. Cronje, ‘‘Decentralized control scheme applied
to domestic electric water heaters to minimize frequency deviations: Ini-
tial results,’’ in Proc. Southern Afr. Univ. Power Eng. Conf., Jan. 2021,
pp. 1–6.

[18] J. Wang, H. Zhang, Y. Zhou, J. Sun, and D. Wang, ‘‘Evaluation of the
potential regulation capacity of water heater loads,’’ in Proc. 5th Int. Conf.
Power Electron. Syst. Appl. (PESA), 2013, pp. 1–5.

[19] G. C. Heffner, C. A. Goldman, andM.M.Moezzi, ‘‘Innovative approaches
to verifying demand response of water heater load control,’’ IEEE Trans.
Power Del., vol. 21, no. 1, pp. 388–397, Jan. 2006.

[20] J. Kondoh, N. Lu, and D. J. Hammerstrom, ‘‘An evaluation of the water
heater load potential for providing regulation service,’’ in Proc. IEEE
Power Energy Soc. Gen. Meeting, Dec. 2011, pp. 1–8.

[21] V. Lakshmanan, H. Säle, and M. Z. Degefa, ‘‘Electric water heater
flexibility potential and activation impact in system operator perspective—
Norwegian scenario case study,’’ Energy, vol. 236, Dec. 2021,
Art. no. 121490.

[22] X. Xu, C.-F. Chen, X. Zhu, and Q. Hu, ‘‘Promoting acceptance of direct
load control programs in the united states: Financial incentive versus
control option,’’ Energy, vol. 147, pp. 1278–1287, Mar. 2018.

[23] American Council for an Energy-Efficient Economy (ACEEE):
Hot Water Forum. Accessed: Aug. 12, 2021. [Online]. Available:
https://www.aceee.org/2021-hot-water-forum

[24] CTA Standard: Modular Communications Interface for Energy Manage-
ment, Consumer Technology Association (CTA), Arlington, VA, USA,
2020.

[25] X. C. Katherine Dayem, ‘‘Standardized communications for demand
response: An overview of the CTA-2045 standard and early field demon-
strations,’’ Nat. Rural Electr. Cooperat. Assoc. (NRECA), Arlington, VA,
USA, Tech. Rep., 2018.

[26] Energy Star Water Heaters—Test Method to Validate Demand Response.
Accessed: Aug. 12, 2021. [Online]. Available: https://www.energystar.
gov/products/spec/residential_water_heaters_specification_version_3
_0_pd

[27] C. Thomas, ‘‘Performance test results: CTA-2045 water heater,’’ Electr.
Power Res. Inst., Washington, DC, USA, Tech. Rep. 3002011760,
2017.

[28] Energy Smart Electric Water Heater Controller: Installation, Oper-
ation and Troubleshoooting Instructions. Accessed: Aug. 12, 2021.
[Online]. Available: https://www.lowes.com/pdf/Energy_Smart_Electric
_Water_Heater_Controller.pdf

[29] Reginal Study of CTA-2045 Enabled Water Heaters. Accessed:
Jun. 24, 2021. [Online]. Available: https://www.bpa.gov/EE/
Technology/demand-response/Pages/CTA2045-DataShare.aspx

[30] Energy Plus Documentation: Engineering Reference. Accessed:
May 9, 2021. [Online]. Available: https://energyplus.net/assets/
nrel_custom/pdfs/pdfs_v9.5.0/EngineeringReference.pdf

[31] V. R. Salcido, Y. Chen, Y. Xie, and Z. T. Taylor, ‘‘Energy savings analysis:
2021 IECC for residential buildings,’’ Pacific Northwest National Labora-
tory (PNNL), Richland, WA, USA, Tech. Rep., 2021.

[32] Ecotope Research: HPWHsim. Accessed: Aug. 9, 2021. [Online].
Available: https://github.com/EcotopeResearch/HPWHsim

VOLUME 9, 2021 141243



H. Gong et al.: Equivalent Electric and HPWH Models for Aggregated Community-Level DR VPP Controls

[33] H. Gong, E. S. Jones, A. H. M. Jakaria, A. Huque, A. Renjit, and
D. M. Ionel, ‘‘Generalized energy storage model-in-the-loop suitable for
energy star and CTA-2045 control types,’’ in Proc. IEEE Energy Convers.
Congr. Expo. (ECCE), Dec. 2021, pp. 1–5.

[34] American Council for an Energy-Efficient Economy (ACEEE): Hot
Water Forum Program. Accessed: Dec. 8, 2021. [Online]. Avail-
able: https://www.aceee.org/sites/default/files/pdfs/hwf21-final_program-
3.8.pdf

HUANGJIE GONG (Student Member, IEEE)
received the B.Eng. degree in automation from
Harbin Engineering University, Harbin, China, in
2013, and the M.S. degree in control theory and
control engineering from Southwest Jiaotong Uni-
versity, Chengdu, China, in 2016. He is currently
pursuing the Ph.D. degree with the SPARK Labo-
ratory, ECE Department, University of Kentucky,
Lexington, KY, USA, where he has been working
on research projects sponsored by DOE, NSF, the

Electric Power Research Institute (EPRI), industry, and utilities. He is the
main developer of a large-scale co-simulation software framework for energy
in buildings and power flow in electric distribution systems. In 2021, he was
a graduate student intern with the National Renewable Energy Laboratory
(NREL). His research interests include renewable energy integration, mod-
eling and control of energy storage, batteries, water heaters, HVAC systems,
EV, net zero energy (NZE) buildings, and microgrids. He is an executive
committee member for the joint student chapter at U.K., and a member of
PES renewable energy generation subcommittee.

TIM ROONEY received the B.S. degree in
mechanical engineering and the M.S. degree in
engineering from the University of Wisconsin–
Milwaukee, Milwaukee, WI, USA, in 2017 and
2019, respectively. He is currently employed as
a Senior Project Engineer at A. O. Smith Cor-
porate Technology Center, Milwaukee, where he
is focused on the areas of data acquisition, data
analysis, and optimization through water heater
performance modeling and simulation.

OLUWASEUN M. AKEYO (Member, IEEE)
received the B.Eng. degree in electrical and
electronics engineering from Abubakar Tafawa
Balewa University (ATBU), Bauchi, Nigeria,
in 2014, and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of Kentucky,
Lexington, KY, USA, in 2017 and 2020, respec-
tively. He is currently a Senior Associate Engi-
neer with Sargent & Lundy, where he focuses on
renewable system integration and transmission and

distribution system analysis. He has published more than 15 peer-reviewed
journal articles and conference proceedings, which include one that received
the Best Poster/Paper Award at the 2016 IEEE International Conference
on Renewable Energy Research and Applications (ICRERA), Birmingham,
England, and the 2020 IEEE Industry Applications Society RES Commit-
tee Transactions Paper Award—Third Prize for integration studies of large
battery energy storage systems into multi-MW grid connected PV systems.

BRIAN T. BRANECKY (Member, IEEE) received
the B.S. degree in electrical engineering from
Texas Tech University, in 1986, and the M.S.
degree in electrical engineering from the Uni-
versity of Wisconsin–Milwaukee, in 1998. He is
presently employed as an Engineering Fellow at
A. O. Smith Corporate Technology Center, where
his main areas of interests include thermal energy
management, system modeling, and internet con-
nected appliances. He has several patents related

to water heater controls enrolled in utility demand response programs.

DAN M. IONEL (Fellow, IEEE) received the
M.Eng. and Ph.D. degrees in electrical engi-
neering from the Polytechnic University of
Bucharest, Bucharest, Romania. His doctoral pro-
gram included a Leverhulme Visiting Fellowship
with the University of Bath, Bath, U.K., and
he later was a Postdoctoral Researcher with the
SPEED Laboratory, University of Glasgow, Glas-
gow, U.K.

He is currently a Professor of electrical engi-
neering and the L. Stanley Pigman Chair in Power with the University
of Kentucky, Lexington, KY, USA, where he is also the Director of the
Power and Energy Institute of Kentucky and the SPARK Laboratory. He
previously worked in industry for more than 20 years. His current research
group projects on smart grid and buildings, and integration of distributed
renewable energy resources and energy storage in the electric power systems
are sponsored by NSF, DOE, industry, and utilities. He published more than
200 technical papers, including some that received IEEE awards, was granted
more than 30 patents, and is coauthor and co-editor of the book Renewable
Energy Devices and Systems with Simulations in MATLAB and ANSYS (CRC
Press).

Dr. Ionel received the IEEE PES Veinott Award, was the Inaugural Chair
of the IEEE IAS Renewable and Sustainable Energy Conversion Systems
Committee, an Editor for the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY,
and the Technical Program Chair for IEEE ECCE 2016. He is the Editor in-
Chief for the Electric Power Components and Systems Journal, and the Chair
of the Steering Committee for IEEE IEMDC.

141244 VOLUME 9, 2021


	Equivalent Electric and Heat-Pump Water Heater Models for Aggregated Community-Level Demand Response Virtual Power Plant Controls
	Repository Citation

	Equivalent Electric and Heat-Pump Water Heater Models for Aggregated Community-Level Demand Response Virtual Power Plant Controls
	Digital Object Identifier (DOI)
	Notes/Citation Information

	Equivalent Electric and Heat-Pump Water Heater Models for Aggregated Community-Level Demand Response Virtual Power Plant Controls

