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ABSTRACT OF DISSERTATION 
 
 
 
 

THE ROLE OF MICROTUBULE-ASSOCIATED PROTEIN TAU IN NEURONAL 
EXCITABILITY AND EPILEPTOGENESIS 

 
 
 

Tauopathies, including Alzheimer’s disease (AD), are devastating diseases with an 
immense burden on society which is predicted to increase in coming decades. In addition 
to progressive loss of memory and cognitive function, patients with tauopathies have a 6-
10 fold increase in lifetime risk for seizures, and many are diagnosed with epilepsy. The 
presence of epileptiform activity on electroencephalogram (EEG) recordings from patients 
with AD predicts faster cognitive decline compared to patients without abnormal EEG 
readings. Electrophysiological measurements in murine models of AD have identified 
neuronal hyperexcitability. Furthermore, reducing tau phosphorylation or expression 
confers seizure resistance in animal epilepsy models. Although evidence suggests the 
presence of common mechanisms contributing to both tauopathy and epilepsy, more work 
is needed to understand how this interaction works and whether tau can be effectively 
targeted to improve patients’ lives. This study investigated the relationship between 
tauopathy using transgenic mice that expressed no tau protein (tau-/-) or expressed non-
mutant, human tau protein without expressing murine tau (htau). The htau mice develop 
progressive tauopathy with age. Non-transgenic C57BL/6J mice were used as controls. 
Whole-cell patch-clamp electrophysiology was used to define tau’s role in neuronal 
excitability in vivo in dentate gyrus granule cells. Both transgenic mouse strains exhibited 
a lower frequency of evoked action potentials and reduced likelihood of neurotransmitter 
release from perforant pathway inputs as measured by the paired pulse ratio compared to 
control at 1.5 months of age, but these differences were lost with age. The similarities 
between the tau-/- and htau mice suggest that hyperexcitability is related to the amount of 
normally functioning tau rather than the presence of pathological tau, and that the presence 
of normal murine tau may influence the results of other studies involving models of 
tauopathy. Furthermore, tau’s role in epileptogenesis was studied using intrahippocampal 
injection of kainate (i.ie., IHK) to induce status epilepticus, a model that induces temporal 
lobe epileptogenesis, in tau-/-, htau, and C57BL/6J mice. The process of epileptogenesis 
appeared to be modified compared to control in both transgenic strains, but did not appear 
to be prevented. Compared to either tau-/- or C57BL/6J mice, htau mice experienced 
significantly greater mortality after IHK. Modifications in tau expression, wither deletion 
or humanization, partially abrogated synaptic excitability that developed following IHK. 
In conclusion, this study showed that neuronal excitability is affected similarly by either 
deletion or humanization of tau, with the notable exception of survival after IHK. This 



     
 

study provides clearer understanding of tau’s role in acquired epilepsy and suggests novel 
therapeutics targeting tau may be effective for the treatment of epilepsy. 
 
 KEYWORDS: Microtubule associated protein tau, htau, whole-cell patch-clamp 
electrophysiology, temporal lobe epilepsy, intrahippocampal kainate, dentate granule cell 
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CHAPTER 1. INTRODUCTION 

1.1 Microtubule associated protein tau 

The microtubule-associated protein tau (MAPT, tau) is a key microtubule- binding 

protein predominantly found in neurons. Although tau is typically thought of primarily as 

a microtubule stabilizer, it serves additional key functions. Tau is extremely versatile due 

to a combination of multiple isoforms arising from alternative splicing (section 1.1.1) and 

extensive post-translational modification (section 1.1.3). This versatility allows tau to serve 

many functions in addition to stabilizing microtubules, but also allows for significant 

pathologic potential. Tauopathies are a growing list of diseases which are caused by or 

involve tau dysfunction. Although tauopathies are diverse and overall not fully understood, 

disruptions in the normal splicing and post-translational modification have been heavily 

implicated in their pathogenesis (section 1.2.1) 

 Expression and alternative splicing 

Tau is encoded by the gene MAPT on chromosome 17q21 (Neve et al., 1986). Human 

MAPT contains 16 exons which are alternatively spliced to produce 6 isoforms of tau 

protein (Andreadis et al., 1992). Eight of these exons (1, 4, 5, 7, 9, 11, 12, and 13) are 

constitutively translated in the brain, while 3 exons (2, 3, and 10, discussed below) are 

subject to alternative splicing. Three exons (4a, 6, and 8) are translated only in ganglia of 

the peripheral nervous system (Couchie et al., 1992; Goedert et al., 1992). The last two 

exons (0 and 14) are located in the 5’ and 3’ untranslated regions (Figure 1.1A).   

The isoforms of tau arise from the presence or absence of 2 inserts near the amino-

terminus coded by exons 2 and 3 (called the amino-terminal inserts) and from the inclusion  
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Figure 1.1 Structure of MAPT and microtubule associated protein tau 
(A) MAPT contains 16 exons. In neurons, 8 exons (black boxes) are constitutively 
translated and 5 exons (gray boxes) are not translated. Three exons (white boxes) are 
subject to alternative splicing. (B) Structure of 2N4R tau including demarcations between 
major domains. N1, N2, and R2 (marked in gray) are be absent in shorter isoforms of tau. 
(C) Approximate representation (not to scale) of the “paperclip” conformation adopted by 
soluble tau in solution. Dotted lines denote estimated interactions between residues 
responsible for conformation.  
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of either 3 or 4 repeat domains in the microtubule binding domain near the carboxy 

terminus. The amino-terminus may exclude both exons 2 and 3 (giving rise to 0N tau), 

include exon 2 but not exon 3 (giving rise to 1N tau), or include exons 2 and 3 (giving rise 

to 2N tau) (Goedert and Jakes, 1990). Exon 3 is not observed in the absence of exon 2 in 

the human brain (Goedert et al., 1989a). The additional isoforms arise from alternative 

splicing of exon 10, which results in either 3 (3R) or 4 (4R) repeat domains near the carboxy 

terminus (Goedert et al., 1989b; Goedert et al., 1988). The resulting isoforms range from 

352-441 residues. Unless otherwise noted, all residue numbers listed in this work will refer 

to 2N4R tau. 

The relative expression of each isoform of tau depends on developmental stage and 

brain region. In the fetal brain, 0N3R tau is the primary isoform (Goedert and Jakes, 1990; 

Goedert et al., 1989a; Goedert et al., 1989b), although 4R tau expression begins late in fetal 

development (Kosik et al., 1989). Because 4R tau has a higher affinity for microtubules 

(discussed more in section 1.1.4), the development of 4R tau may promote axon growth by 

stabilizing the abundant microtubules in the axonal growth cone (Bamburg et al., 1986). In 

the adult brain, 3R and 4R tau are normally present in roughly equal amounts (Hong et al., 

1998). This ratio can become perturbed in some disease, resulting in an excess of one 

isoform or the other depending on the disease (Chambers et al., 1999; Connell et al., 2005; 

Ishizawa et al., 2000). Pathologic changes in the ratio of 3R to 4R tau will be discussed in 

more depth in section 1.2.1. 

Tau expression within the neuron is normally concentrated in the axons (Binder et 

al., 1985). Several mechanisms have been implicated in maintaining tau’s localization. 

Unlike mRNA for MAP2 or tubulin, which localize to the neuron body or dendrites, tau 
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mRNA extends into the proximal axon (Litman et al., 1993), suggesting some degree of 

regional specificity in translation. Furthermore, biotinylated tau injected into the cell body 

of cultured neurons migrates preferentially to the axon (Hirokawa et al., 1996). Tau’s 

localization to the axons is at least partially dependent on its microtubule binding domain. 

Chimeric proteins containing the N-terminal region of MAP2 (normally found in the 

neuron body and dendrites) and microtubule binding domain of tau localize to the axon, 

whereas chimeric proteins containing the N-terminal region of tau and microtubule binding 

domain of MAP2 localize to the neuron body and dendrites (Kanai and Hirokawa, 1995). 

 Tau structure and structural domains 

Physiological tau is a “natively unfolded” protein, meaning it has little stable 

secondary or tertiary structure (Schweers et al., 1994). As a notable exception, dynamic 

interactions between tau’s amino-terminus, carboxy terminus, and repeat domains results 

in adoption of a “paperclip” superstructure in solution (Jeganathan et al., 2006). Tau’s 

naturally disordered nature was first recognized due to the protein’s resistance to 

denaturing methods that render most proteins nonfunctional (Cleveland et al., 1977). This 

general lack of higher order structure renders x-ray crystallography impractical and 

detailed structural information must be gleaned through other methods. Nuclear magnetic 

resonance (NMR) spectroscopy studies have produced single-residue resolution of tau, 

revealing a highly dynamic structure (Mukrasch et al., 2009). Overall tau is basic and 

highly hydrophilic, although these properties vary by region and post-translational 

modification. Tau consists of 3 major structural regions: the projection domain, the proline 

rich domain, and the microtubule binding domain (Figure 1.1B). 
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Tau’s projection domain comprises residues 1-151 in 2N4R tau and contains the 

amino-terminal inserts coded by exons 2 and 3 (if present). The projection domain is acidic 

and extends into the cytoplasm when tau is bound to microtubules (Hirokawa et al., 1988). 

The functions of the projection domain are not fully understood, but include interacting 

with the dynein-activator complex dynactin (Magnani et al., 2007), spacing and 

crosslinking microtubules (Chen et al., 1992; Hirokawa et al., 1988), and forming 

microtubule bundles (Gustke et al., 1994; Kanai et al., 1992). Tau’s projection domain also 

mediates interaction with cellular components other than microtubules. The projection 

domain binds to and mediates interaction with the plasma membrane (Brandt et al., 1995). 

Interactions between microtubules and the plasma membrane are especially important at 

the axonal growth cone, where microtubules concentrate during axon elongation (Bamburg 

et al., 1986). GSK3β, a key disease-related tau kinase, binds in the projection domain (Sun 

et al., 2002). As the least studied domain of tau, the projection domain may play additional 

as yet undiscovered roles. 

The proline-rich domain of tau, so called for its 7 PxxP motifs, comprises residues 

151-244 in 2N4R tau. This domain is relatively rigid, likely due to the reduced flexibility 

of proline compared to other amino acids (Mukrasch et al., 2009). The proline rich domain 

is involved in interactions with cytoskeletal fibers. Although not the primary binding 

microtubule site, this region of tau contributes significantly to microtubule binding (Brandt 

and Lee, 1993; Goode et al., 1997; Gustke et al., 1994). In particular, two short sequences 

in this domain, 215KKVAVVR221 and 225KVAVVRT231, have a critical role in microtubule 

assembly, increasing binding affinity through conformational changes and interactions 

with microtubules (Goode et al., 1997; Mukrasch et al., 2007). The proline rich domain is 
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also capable of binding actin (He et al., 2009) and the projection domain of other tau 

molecules (Rosenberg et al., 2008). In addition to containing many well-described 

phosphorylation sites (discussed more in section 1.1.3.1), the proline rich domain serves as 

a binding site for some key regulators of tau phosphorylation such as the src-family kinases 

including Fyn (Lee et al., 1998; Reynolds et al., 2008). 

Of tau’s 3 major structural domains, the microtubule binding domain has been the 

most extensively studied. It comprises residues 245-441 in 2N4R tau and contains the 

repeat segments that are the primary microtubule binding sites (Butner and Kirschner, 

1991; Gustke et al., 1994; Himmler et al., 1989; Lee et al., 1989). Tau contains up to four 

imperfectly repeated segments, encoded by exons 9-12 (Lee et al., 1989). The number of 

repeat segments depends on the alternative splicing of exon 10, which codes for the second 

of four possible repeat sequences (Andreadis et al., 1992; Goedert et al., 1989b). The 

microtubule binding domain forms transient beta-structure, leading to regions with high 

rigidity (Mukrasch et al., 2009). The major features of the microtubule binding domain are 

the repeat domains, each consisting of 31 or 32 residues (Goedert et al., 1989b). Each repeat 

domain contains a conserved PGGG and KxGS motif. The PGGG motifs form hairpin turns 

that ensure proper conformation for efficient binding (Kadavath et al., 2015b). The KxGS 

motifs, particularly the one in the first repeat, form important interactions with 

microtubules (Biernat et al., 1993; Drewes et al., 1995). In addition to microtubules, this 

region of tau contains binding sites for many other targets including protein phosphatase 

2A (Sontag et al., 1999; Xu et al., 2008), chaperone proteins including Hsc70 and Hsp90 

(Sarkar et al., 2008; Tortosa et al., 2009), α-synuclein (Jensen et al., 1999), presenillin-1 

(Takashima et al., 1998), and apolipoprotein E3 (Strittmatter et al., 1994). 
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 Post-translational modifications 

In addition to six different isoforms, tau is subject to extensive post-translational 

modification that further increases its diversity. These modifications include 

phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Although 

phosphorylation has long been the center of focus, the importance of other modifications 

has been increasingly recognized recently. Tau post-translational modification impacts its 

function in normal physiology and disease pathology by changing its microtubule binding 

affinity, aggregation potential, and degradation. In some cases, competition between 

modification mechanisms may occur at a residue. For example, some lysine residues can 

be subject to acetylation, ubiquitination, and methylation, and occurrence of one 

modification precludes the others (Morris et al., 2015; Thomas et al., 2012). Several key 

post-translational modifications will be reviewed here. 

1.1.3.1 Phosphorylation 

The longest tau isoform contains 85 potential phosphorylation sites: 44 serine 

residues, 36 threonine residues, and 5 tyrosine residues (Martin et al., 2013b). Out of these 

85 potential sites, 31 are associated with normal physiological function, 28 are disease-

specific, and 16 are found in both healthy and diseased brains (Hanger et al., 1998; Hanger 

et al., 2007; Martin et al., 2013b). Tau’s ability to bind microtubules is heavily influenced 

by phosphorylation at key residues. In general, increasing phosphorylation reduces tau’s 

binding affinity (Lindwall and Cole, 1984). Several specific phosphorylation sites have 

been studied for their associations with pathogenesis, particularly in the development of 

Alzheimer’s disease (AD). Several of these sites serve as the binding epitopes for common 

tauopathy-related antibodies (summarized in Table 1.1). 
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Table 1.1 Common tau antibodies and associated epitopes 

 
  

Antibody Name Epitope Reference 

AT8 pS202 and pT205 (Goedert et al., 1995b) 

AT100 pT212 and pS214 (Hoffmann et al., 1997) 

AT180 pT231 (Amniai et al., 2011) 

12E8 pS262 (Seubert et al., 1995) 

PHF1 pS396 and pS404 (Otvos et al., 1994) 
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The specific functional outcome has not been identified for every phosphorylation 

site on tau, but the effects of phosphorylation at some key sites has been well-characterized. 

Phosphorylation at several sites, including S214, T231, and S396, promotes detachment of 

tau from microtubules and may be involved in normal physiology and disease (Illenberger 

et al., 1998; Kadavath et al., 2018; Sengupta et al., 1998). In contrast, phosphorylation at 

some sites, particularly S262, is a key step in disease processes (Biernat et al., 1993; 

Drewes et al., 1995; Martin et al., 2013b; Sengupta et al., 1998; Trinczek et al., 1995). A 

number of kinases and phosphatases are involved in maintaining physiological 

phosphorylation of tau and involved in pathogenesis. Some critical regulators of tau 

phosphorylation associated with key disease-related phosphosites will be briefly reviewed 

here. Important disease related phosphorylation sites for each kinase or phosphatase are 

summarized in Table 1.2. 

Glycogen synthase kinase 3 (GSK3) is a key tau kinase originally discovered for 

its role in glycogen metabolism (Embi et al., 1980). Two isoforms of GSK3 (α and β) have 

been described which share 85% homology (Woodgett, 1990). The β isoform is strongly 

associated with hyperphosphorylation of tau. Overexpression of GSK3β induces tau 

hyperphosphorylation (Lucas et al., 2001), but this effect is prevented by administration of 

the GSK3β inhibitor lithium chloride (Engel et al., 2006). GSK3β activity is upregulated 

by administration of amyloid-beta (Aβ), demonstrating GSK3β can contribute to AD 

related tau hyperphosphorylation (Takashima et al., 1996; Terwel et al., 2008). GSK3β is 

a key AD-related tau kinase and phosphorylates tau at numerous disease-related 

phosphosites. Pre-phosphorylation of tau by PKA increases the GSK3β’s ability to  

phosphorylate tau (Liu et al., 2006; Liu et al., 2004b).  
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Table 1.2 Key Tau Kinases/Phosphatases and Associated Phosphorylation Sites 
Kinase/Phosphatase Key Confirmed Phosphorylation Sites References 

GSK3β S199, S202, T205, T231, S262, S404 
(Hanger et al., 2007; Liu et 
al., 2006; Reynolds et al., 
2000; Wang et al., 1998) 

CK1δ S202, T205, S262, S396, S404 
(Hanger et al., 2007; Li et 

al., 2004; Singh et al., 
1995) 

PKA S202, T205, S214, S262 
(Andorfer and Davies, 

2000; Benitez et al., 2021; 
Ko et al., 2019; Liu et al., 

2004b) 

PP2A pS199, pS202, pT205, pS262, pS396, 
pS404 

(Gong et al., 1994; Liu et 
al., 2005) 
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Casein kinase (CK) 1 and 2, which each have multiple isoforms, are involved in 

regulation of apoptosis and cell survival through regulation of β-catenin in the wnt-

signaling pathway (Liu et al., 2002a; Marin et al., 2003; Sakanaka, 2002). The delta 

isoform of CK1 is especially important in tau phosphorylation. Phosphorylation by CK1δ 

impairs tau binding to microtubules (Li et al., 2004). CK1/2 are involved in AD beyond 

their role in tau phosphorylation. Different isoforms of CK1/2 are both activated by and 

contribute to production of Aβ (Chauhan et al., 1993; Flajolet et al., 2007; Pigino et al., 

2009), phosphorylate ApoE (Raftery et al., 2005), and can activate or inhibit PP2A 

(Heriche et al., 1997; Pérez and Avila, 1999). 

Protein kinase A (PKA), also called cAMP-dependent protein kinase, contributes to 

numerous signaling cascade pathways involving a broad array of processes. PKA is known 

to phosphorylate many other kinases, contributing to many physiologic and pathologic 

processes (Embogama and Pflum, 2017; Jung et al., 2017). Tau is one of PKA’s many 

substrates (Steiner et al., 1990). Intrahippocampal injection of PKA activators results in tau 

hyperphosphorylation and memory deficits (Sun et al., 2005; Tian et al., 2009). Pre-

phosphorylation of tau by PKA primes tau for phosphorylation by GSK3β and cdk5 (Liu 

et al., 2006; Liu et al., 2004b) 

Although tau can be dephosphorylated by a number of phosphatases, one tau 

phosphatase, PP2A, stands out as the primary tau phosphatase. PP2A is the most prominent 

tau phosphatase, constituting approximately 70% of the total phosphatase activity (Goedert 

et al., 1995a; Liu et al., 2005). Treatment with PP2A dephosphorylates tau sequestered in 

insoluble deposits associated with AD (Drewes et al., 1993; Wang et al., 1995). PP2A 

activity is decreased in brains of people with AD, contributing to the accumulation of 
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hyperphosphorylated tau (Gong et al., 1995; Gong et al., 1993). In addition to directly 

dephosphorylating tau, PP2A also regulates the activity of major tau kinases (Chung and 

Brautigan, 1999; Kins et al., 2003; Liauw and Steinberg, 1996; Louis et al., 2011). 

Dysregulation of PP2A therefore contributes to tau hyperphosphorylation by multiple 

mechanisms.  

1.1.3.2 Acetylation 

Acetylation of lysine residues is an important reversible post-translational 

modification that regulates key cellular functions (Choudhary et al., 2009). Tau contains 

up to 44 lysine residues (Goedert et al., 1989a) and at least 23 of these lysine residues are 

subject to acetylation (Min et al., 2010). Tau is acetylated primarily by the closely related 

acyltransferases p300 and Creb-binding protein (CBP) (Kamah et al., 2014; Min et al., 

2010) and deacetylated primarily by HDAC6 and SIRT1 (Choi et al., 2020; Cook et al., 

2014). Tau also possess intrinsic acetyltransferase activity, using C291 and C322 as 

intermediates to transfer an acetyl group from acetyl CoA to lysine residues within tau or 

other proteins (Cohen et al., 2016; Cohen et al., 2013b). 

The importance of tau acetylation in disease is becoming increasingly recognized. 

Tau acetylation increases relatively early in tauopathies, and acetylated tau resists 

proteasome-mediated degradation (Min et al., 2010). Several specific acetylation sites have 

been identified in association with AD. In particular, acetylation at K174 slows tau turnover 

and worsens tau-mediated deficits in animal models (Min et al., 2015). Acetylation at K274 

and K281 is associated with cytoskeletal destabilization leading to memory impairment, 

reduced synaptic plasticity, and tau mislocalization (Sohn et al., 2016; Tracy et al., 2016). 

Acetylation at K280 impairs interaction with microtubules and increases the rate of tau 
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aggregation (Cohen et al., 2016; Cohen et al., 2011; Haj-Yahya and Lashuel, 2018). While 

acetylation at several sites is associated with promoting disease, acetylation of the KxGS 

motifs, especially K259, is associated with reduced aggregation of tau, likely through 

reduction in phosphorylation at S262 (Cook et al., 2014). Inhibition of HDAC6, which 

deacetylates the KxGS motifs, promotes tau clearance and may represent a novel 

therapeutic strategy (Carlomagno et al., 2017; Choi et al., 2020; Cook et al., 2014). 

1.1.3.3 Ubiquitination 

Ubiquitin is a 76 residue protein that is expressed by nearly all eukaryotic cells 

(Hershko and Ciechanover, 1998). Lysine residues on ubiquitin bind covalently to lysine 

residues on the target protein or other ubiquitin proteins, allowing chains of ubiquitin to 

develop. Ubiquitin binding is mediated through a multi-step process which culminates in 

an E3 ligase catalyzing the binding of ubiquitin to the target protein (Zheng and Shabek, 

2017). Ubiquitin contains 7 lysine residues, and the fate of the target protein depends on 

which ubiquitin lysine binds (Ikeda and Dikic, 2008). Binding via K48 or K63 marks the 

target protein for degradation via the 26S proteasome or lysosome-autophagy systems, 

respectively (Ikeda and Dikic, 2008). Three E3 ligases are capable of ubiquitinating tau. 

The C-terminus of the Hsc70-interacting protein (CHIP) ubiquitinates tau via K48 or K63, 

marking it for degradation by the proteasome or lysosome system (Petrucelli et al., 2004). 

The TNF receptor-associated factor 6 (TRAF6) ubiquitinates tau via K63, marking it for 

lysosomal degradation (Babu et al., 2005). Axotrophin, also called MARCH7, 

ubiquitinates tau’s microtubule binding domain and impairs microtubule binding, but as of 

yet this process is not well understood (Flach et al., 2014). The cysteine protease Otub1 is 
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the only deubiquitinase known to target tau, removing K48-linked ubiquitin units (Wang 

et al., 2017). 

Tau ubiquitination primarily occurs in the microtubule binding domain. Mono- or 

poly-ubiquitination occurs at K254, K257, K311, K317, and K353 in brains from patients 

with AD (Cripps et al., 2006; Morishima-Kawashima et al., 1993). Insoluble tau is 

generally ubiquitinated via K48 linage, indicating a preference for proteasome mediated 

degradation (Cripps et al., 2006). Ubiquitinated tau can be found in mature neurofibrillary 

tangles but not in pre-tangles, suggesting ubiquitination is a compensatory mechanism 

against accumulation of aggregated tau (Bancher et al., 1991; Garcia-Sierra et al., 2012; 

Iwatsubo et al., 1992; Perry et al., 1987). 

1.1.3.4 Methylation 

Protein methylation involves covalently attaching a methyl group to a residue, 

typically lysine or arginine, changing its charge and altering its interactions with other 

residues. Methylation in tau has been observed primarily on lysine residues, although some 

arginine methylation occurs (Morris et al., 2015). Lysine methylation in tau is a recently 

recognized factor contributing to pathogenesis. Tau can be methylated in vitro at up to 23 

different lysine residues (Funk et al., 2014). Tau from paired-helical filaments exhibits 

methylation at up to 7 lysine residues, while soluble tau can be methylated at 11 different 

lysine residues (Funk et al., 2014; Thomas et al., 2012). Lysine methylation occurs most 

often in the proline rich domain and micro tubule binding domains, particularly at K180 

and K267 (Thomas et al., 2012). The mechanisms of tau methylation, including specific 

the methyltransferases and demethylases involved, have not been identified. 
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Lysine methylation in tau modulates its microtubule binding and aggregation 

potential. Within the microtubule binding domain, the lysine residues in the KxGS motifs 

are subject to methylation, which will affect other modifications within these motifs (Funk 

et al., 2014). However, the specific effect of methylation on tau binding is unclear. Tau 

methylation is enriched in neurofibrillary tangles and methylation at K267 is associated 

with increased phosphorylation at S262, which drastically reduces tau’s affinity for 

microtubules (Thomas et al., 2012). However, in vitro methylation of tau has also been 

found to reduce the rate of aggregation (Funk et al., 2014). A likely explanation for the 

apparently discrepant results is the non-specific nature of the in vitro reductive methylation, 

indicating that the specific pattern of methylation is important in determining the effect. 

The specific role of tau methylation will likely become clearer as more research is 

conducted into this relatively newly recognized modification. 

1.1.3.5 Glycosylation 

Glycosylation, the addition of a carbohydrate to the side chains of residues, is the 

most common type of post-translational modification. Two broad types of glycosylation 

reactions have been identified: N-glycosylation, which attaches a carbohydrate chain to the 

side chain of an asparagine residue separated by one residue from a serine or threonine 

(NxS or NxT motifs), and O-glycosylation, which attaches a carbohydrate chain to the side 

chain of a serine or threonine residue (Haukedal and Freude, 2020). Tau can undergo N-

glycosylation at N167, N359, and N410 (Sato et al., 2001). N-glycosylated tau is only 

found in AD brains, suggesting it is a pathology-specific modification (Liu et al., 2002c; 

Wang et al., 1996). N-glycosylation stabilizes tau aggregates and promotes 

hyperphosphorylation via modulation of PKA and PP2A activity (Liu et al., 2002b; Liu et 
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al., 2002c; Wang et al., 1996). Tau can undergo O-glycosylation at T123, S208, S400, and 

either S409, S412, or S413 (Yuzwa et al., 2012; Yuzwa et al., 2011). Unlike N-

glycosylation, O-glycosylation of tau occurs in healthy brains, and O-glycosylated tau 

exhibits a reduced propensity for hyperphosphorylation and aggregation (Liu et al., 2004a; 

Yuzwa et al., 2012). O-glycosylation and phosphorylation apparently compete for residues 

on tau, and occurrence of one modification is frequently associated with a reduction of the 

other (Lefebvre et al., 2003). 

 Physiologic functions of tau 

Physiological function of tau depends on coordination between the major structural 

domains and is significantly influenced by various post-translational modifications, 

especially phosphorylation. Tau’s primary function is stabilization of microtubules. Tau 

binds longitudinally to the microtubule, at the interface between tubulin heterodimers (Al-

Bassam et al., 2002; Kadavath et al., 2015a). Tau’s binding to microtubules is significantly 

reduced by the microtubule-inhibitor vinblastine, suggesting tau and vinblastine bind the 

same site on microtubules (Kadavath et al., 2015a). The primary sites of direct interaction 

with microtubules are the repeat domains within the microtubule binding domain (Gustke 

et al., 1994; Himmler et al., 1989; Lee et al., 1989). NMR analysis of tau bound to 

microtubules has shown tau binds α-tubulin through a series of short sequence motifs 

which correspond largely, but not exclusively, with the repeat domains (Kadavath et al., 

2018; Kadavath et al., 2015a). Interestingly, the specific order of the various binding 

sequences has little overall effect on binding affinity as long as all sequences are present 

(Trinczek et al., 1995). The number of repeat domains contributes to binding affinity, with 

4R tau binding more strongly to tubulin than 3R tau (Butner and Kirschner, 1991; Goedert 
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and Jakes, 1990; Gustke et al., 1994). The increased binding affinity of 4R tau is apparently 

not simply due to the additional microtubule binding sequence, however. Rather, the 

sequence 216KVQIINK223, which falls between the first and second repeat sequences and 

is present only in 4R tau, exhibits a higher binding affinity than any of the repeat sequences 

and contributes significantly to tubulin binding in full-length tau (Goode and Feinstein, 

1994; Panda et al., 1995).  

While the repeat domains are the primary microtubule binding site, the regions 

flanking the repeats improve binding, described as a “jaws” model of binding (Gustke et 

al., 1994; Mandelkow et al., 1996; Mukrasch et al., 2007; Preuss et al., 1997). In this jaws 

model, the binding of the repeat domains is strengthened significantly by the flanking 

regions, resulting in much stronger binding than observed from the repeat domains alone. 

Specifically, the sequences 225KVAVVRT231 and 243LQTA246 in the proline rich domain 

and 370KIETHKTFREN380 in the microtubule binding domain contribute to the jaws model 

of binding (Mukrasch et al., 2007). Synthetic tau peptides composed of 4 repeat domains 

but lacking the flanking regions bind tubulin weakly, indicating these additional 

interactions are crucial to normal tau binding (Gustke et al., 1994). Additional sequences 

contribute to binding by promoting optimal conformation of tau to increase binding 

affinity. To promote binding, conformational changes mediated by the sequence 

215KKVAVVR221 in the proline rich domain and by the PGGG motifs at the end of repeats 

1 and 2 ensure the binding sequences align optimally (Goode et al., 1997; Kadavath et al., 

2015b). 

Although tau’s primary physiological function is stabilizing and promoting assembly 

of microtubules, it is involved in many additional processes. Tau’s projection domain, 
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which has a major direct role in microtubule binding, plays a key role in microtubule 

bundling, forming cross bridges with the projection domains of tau bound to nearby 

microtubules (Hirokawa et al., 1988; Kanai et al., 1992). Tau with a longer projection 

domain, as determined by the number of amino-terminal inserts, is more efficient at 

promoting formation of microtubule bundles (Kanai et al., 1992). Tau’s projection domain 

has not been studied as thoroughly as the microtubule binding domain, so it may have 

additional as yet unidentified functions. 

Tau may contribute axonal transport through modulation of the motor protein 

kinesin. Microtubule-bound tau promotes the detachment of kinesin proteins in vitro (Dixit 

et al., 2008; Vershinin et al., 2007). Taken in the context of tau’s concentration gradient 

the effect of tau on kinesin acts to promote transport toward the synapse. Kinesin more 

easily binds microtubules in the soma, where tau concentration is low, and is more likely 

to disassociate as it approaches the synapse as tau concentration rises along the axon (Dixit 

et al., 2008). However, tau’s role in axonal transport is not straightforward as axon 

transport has been found to be unaffected in retinal nerve axons of mice which lack or 

overexpress tau (Yuan et al., 2008). Although increased expression alone does not affect 

axonal transport, pathological tau has been shown to impair axonal transport (Kanaan et 

al., 2011). Tau’s role in axonal transport in vivo therefore seems to depend on several 

factors beyond normal physiology. 

Although tau is primarily located in the axon, it has some key somatic and dendritic 

functions as well. Small amounts of tau are normally found in the nucleus, where it protects 

DNA and RNA against oxidative and hyperthermic damage and may participate in 

nucleolar organization (Loomis et al., 1990; Sjoberg et al., 2006; Sultan et al., 2011; Violet 
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et al., 2014). Abnormal accumulations of nuclear tau have been identified in brains of 

patients with Huntington’s disease (HD), and mouse models of HD show improvement of 

motor abnormalities when tau is deleted, suggesting a role for nuclear tau in HD 

(Fernandez-Nogales et al., 2014). Dendritic tau has an important role in synaptic function 

and contributes a role in dysfunction associated with Alzheimer’s disease (Frandemiche et 

al., 2014; Ittner et al., 2010; Mondragon-Rodriguez et al., 2012; Tai et al., 2014). Tau’s 

functions beyond its role as a microtubule stabilizer have been increasingly recognized 

over the past 10 years, and it seems likely that future studies will continue to implicate tau 

in additional cellular processes. 

1.2 Tauopathies 

Since neurofibrillary tangles were first identified as a defining feature of Alzheimer’s 

disease, tau has implicated in a growing list of neurodegenerative diseases collectively 

called tauopathies (Alzheimer et al., 1995). Although development and presentation differ 

across tauopathies, these conditions generally share deposition of pathologic tau and 

development of dementia. Tauopathies are generally divided into two classes depending 

on the nature of tau’s role in disease pathogenesis. In primary tauopathies, which include 

Pick’s disease (PiD), progressive supranacular palsy (PSP), corticobasal degeneration 

(CBD), argyrophillic grain disease (AGT), primary age-related tauopathy (PART), and 

globular glial tauopathy (GGT), pathologic tau is the primary factor driving pathogenesis 

(Kovacs, 2015). In secondary tauopathies, including Alzheimer’s disease and Down’s 

syndrome, tau pathology develops and contributes to pathogenesis but is not thought to be 

the primary disease-causing factor (Josephs, 2017). Furthermore, tau pathology has been 

identified in other disease processes that have not traditionally been considered tauopathies 
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(Fernandez-Nogales et al., 2014; Loomis et al., 1990; Puvenna et al., 2016; Tai et al., 2016), 

but the extent to which tau pathology may contribute to these processes or merely be a 

byproduct is not clear. 

Research involving secondary tauopathies, especially Alzheimer’s disease, has been 

instrumental in revealing many mechanisms of tau pathology. A discussion of tauopathy 

would be incomplete without considering tau’s interactions with disease related proteins, 

particularly amyloid-β. However, the following section will focus on pathological tau 

itself, and additional pathological processes will only be considered as they pertain to 

development of tau pathology. 

 Tau pathophysiology 

The transition from physiological to pathological tau is diverse but can involve a 

combination of mutations, post-translational modifications, and conformational changes 

which culminates in pathology. In the course of its pathological changes, tau’s solubility 

changes, leading to the deposition of soluble tau into insoluble aggregations. Although the 

specific roles of soluble and insoluble tau in disease are not fully understood, current 

evidence suggests each form of tau has a distinct set of roles. 

1.2.1.1 MAPT mutations 

Numerous mutations in MAPT on chromosome 17 have been associated with 

development of familial frontotemporal dementia (Goedert, 2005). Diseases arising from 

mutations in MAPT were initial collectively termed “frontotemporal lobar degeneration 

with tau-immunopositive inclusions (FTLD-tau)” or “frontotemporal degeneration with 

parkinsonism linked to chromosome 17 (FTDP-17).” However, it is now recognized that 



21 
 

many of these mutation-related cases are pathologically indistinguishable from sporadic 

cases of primary tauopathies which lack a clear genetic cause, leading some to suggest 

FTLD-tau should be categorized as early-onset, familial varieties of PiD, PSP, CBD, or 

GGT rather than as a separate disease process (Forrest et al., 2019; Forrest et al., 2018; 

Josephs, 2018). To avoid confusion with previous studies, this work will use the term 

FTDP-17 to refer to cases of dementia associated with MAPT mutations, but it should be 

noted that this nomenclature may not accurately capture the relationship between these 

familial and sporadic cases of dementia. The term “frontotemporal dementia” will also be 

used when referring collectively to FTDP-17 and the sporadic tauopathies (PiD, PSP, CBD, 

etc.). 

Although tauopathies caused by an identified MAPT mutation are less common than 

sporadic cases, studying the specific mutations has elucidated important mechanistic 

aspects of tau pathophysiology. MAPT mutations associated with FTDP-17 are typically 

found throughout the microtubule-binding domain and affect splicing or alter microtubule 

binding (Goedert, 2005). Mutations which promote aggregation of tau will be discussed in 

section 1.2.1.3. Approximately half of identified MAPT mutations exhibit their effect at the 

RNA level (Goedert, 2005). 

In normal adult human brain, 3R and 4R isoforms of tau are expressed in roughly 

equal amounts (Hong et al., 1998). However, this ratio is frequently perturbed in cases of 

frontotemporal dementia (Chambers et al., 1999; Connell et al., 2005; Hong et al., 1998). 

The predominant isoform of tau in most tauopathies is 4R, although PiD is a notable 

exception characterized by 3R tau (Gotz et al., 2019). Several specific MAPT mutations 

affect tau splicing and may be at least partially responsible for the change in the ratio 
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between 3R and 4R tau. N296 plays an important role in splicing of exon 10, and mutations 

at this site can promote alternative splicing of exon 10 and increase the ratio of 4R to 3R 

tau (Grover et al., 2002; Iseki et al., 2001; Spillantini et al., 2000; Yoshida et al., 2002). 

Several other mutations (including G272V, N279K, L284L, S305N, R406W, and 

mutations in the 5’ splice site of exon 10 and the following intron) similarly increase 

splicing of exon 10, presumably by influencing the folding of mRNA and altering 

interactions with regulatory elements during post-transcriptional processing (D'Souza et 

al., 1999; Hasegawa et al., 1999; Hutton et al., 1998; Miyamoto et al., 2001; Spillantini et 

al., 1998). Although MAPT mutations affecting tau splicing typically promote alternate 

splicing of exon 10, the ΔK280 abolishes expression of 4R tau, most likely by disrupting 

the binding site of a splicing enhancer (D'Souza et al., 1999). 

In addition to altering splicing of MAPT mRNA, many mutations associated with 

FTDP-17 reduce tau’s binding affinity for microtubules. Unsurprisingly, mutations located 

in the microtubule binding domain or flanking regions greatly inhibit microtubule binding 

(Hasegawa et al., 1998). The greatest reduction in binding has been observed with 

mutations affecting N280 and P301, both within exon 10 (Barghorn et al., 2000; D'Souza 

et al., 1999; Grover et al., 2002; Rizzu et al., 1999). The relative impact of these mutations 

on tau’s microtubule binding affinity depends in part on which isoform of tau is examined. 

Several mutations (G272V, V337M, and R406W) more significantly inhibit microtubule 

binding in 3R tau than 4R tau (Hasegawa et al., 1998). Interestingly, at least two mutation 

associated with FTDP-17 (S305N and Q336R) are associated with an increased 

microtubule binding affinity, demonstrating that excessive tau binding can also be 

detrimental (Hasegawa et al., 1999). 
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1.2.1.2 Hyperphosphorylation 

Changes in the normal post-translational modification of tau, especially 

development of hyperphosphorylation, are a key steps in the development of tau 

pathogenesis. Since tau bound to microtubules may not be readily accessible for 

modification, some have suggested mutations which reduce tau’s affinity for microtubules 

promote aberrant modification of tau by increasing the pool of soluble tau (Rizzu et al., 

1999). Phosphorylation at several key residues has also been shown to strongly inhibit tau’s 

binding to microtubules. In particular, phosphorylation at S214 (Illenberger et al., 1998), 

T231 (Sengupta et al., 1998), S262 (Biernat et al., 1993; Drewes et al., 1995; Sengupta et 

al., 1998), and S396 (Kadavath et al., 2018) reduces tau’s ability to bind microtubules. 

Hyperphosphorylation is also associated with abnormal redistribution of tau to the soma 

and dendrites (Hoover et al., 2010). Phosphorylation is strongly implicated in aggregation 

of tau into insoluble paired helical filaments (PHFs), which is discussed in more detail in 

the next section (1.2.1.2). 

1.2.1.3 Aggregation and filamentous tau 

Aggregation of tau into filaments and tangles is a key step in development of 

tauopathic diseases. Tau aggregation depends on the hexapeptide sequences 275VQIINK280 

(located in the second repeat domain) and 306VQIVYK311 (located in the third repeat 

domain) which form β-sheets with adjacent tau molecules (von Bergen et al., 2000). The 

propensity to form β-sheets directly correlates with the rate of aggregation (Eckermann et 

al., 2007; Mocanu et al., 2008). Adjacent tau molecules form anti-parallel dimers which 

then assemble with other dimers to form larger sheets (Wille et al., 1992). Formation of β-
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sheets in vitro can be promoted by addition of polyanions to offset charge repulsion 

between the positively charged microtubule binding domains, suggesting these compounds 

may contribute to tau aggregation in vivo (Giustiniani et al., 2014; Goedert et al., 1996; 

Hernandez et al., 2004; Kampers et al., 1996).  

Phosphorylation at specific sites can promote aggregation, although the exact role 

and mechanism is debated. Abnormal phosphorylation of tau precedes aggregation into 

tangles (Braak et al., 1994), and dephosphorylation of tau by PP2A promotes release of tau 

from PHFs (Drewes et al., 1993; Wang et al., 1995). Aggregation requires tau to be 

disassociated from microtubules, so phosphorylation at certain epitopes commonly found 

in PHFs, including T231, S262, and S396, which reduce tau’s affinity for microtubules 

may contribute to aggregation (Biernat et al., 1993; Drewes et al., 1995). However, the 

relationship between phosphorylation and aggregation is more complicated than these 

studies might suggest. Phosphorylation at some sites associated with decreased 

microtubule affinity have been shown to inhibit aggregation (Schneider et al., 1999), and 

PHF-like phosphorylation occurs naturally and reversibly during hibernation in some 

species (Arendt et al., 2003). These studies suggest the effect of tau phosphorylation on 

aggregation may be contextual. Furthermore, phosphorylation may influence aggregation 

through by inducing conformational changes. Phosphorylation at S202/T205 or S396/S404 

(but not at both sites) loosens tau’s paperclip conformation, which may promote tau 

aggregation by exposing the repeat domains (Jeganathan et al., 2008; von Bergen et al., 

2000). Phosphorylation at S202/T205 does not impact microtubule binding affinity, 

indicating the relationship between phosphorylation and aggregation is not simply 

dependent on microtubule binding (Amniai et al., 2009). Further work is needed to better 
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understand how phosphorylation influences aggregation of tau, but the answer is likely to 

be highly context dependent. 

Several MAPT mutations (including G272V, ΔK280, ΔN296, P301L, V337M, and 

R406W) which are associated with impaired microtubule affinity also promote tau 

aggregation (Barghorn et al., 2000; Grover et al., 2002; Iseki et al., 2001; Nacharaju et al., 

1999). Decreased microtubule binding increases the amount of tau in solution (Nagiec et 

al., 2001), therefore increasing the opportunities for tau-tau binding to occur. However, 

mutations that promote aggregation likely contribute to pathology beyond simply 

increasing the amount of tau available for aggregation. Pro-aggregation mutations increase 

the rate and extent of tau aggregation, suggesting they change tau in a way that directly 

promotes aggregation beyond simply releasing it from microtubules (Gamblin et al., 2000; 

Nacharaju et al., 1999). Further supporting this idea, the P301L, G272V, and V337M 

mutations also increase heparin-filament formation (Goedert et al., 1999). Furthermore, the 

ΔK280 and P301L mutations both affect the hexapeptide sequences which are central to 

aggregation, increasing their propensity to form β-sheets (von Bergen et al., 2001). Finally, 

at least one MAPT mutation promotes aggregation without inhibiting microtubule binding. 

The mutation Q336R increases tau’s binding affinity for microtubules as well as promoting 

aggregation (Pickering-Brown et al., 2004). This mutation would ostensibly cause more 

tau to be bound to microtubules at any given time, but also leads to increased tau-tau 

interactions between unbound tau molecules. 

Although PHFs are a characteristic feature of tauopathies, some evidence suggests 

these filamentous aggregations are not lethal to neurons. Although neuron death and 

neurofibrillary tangle (NFT) formation often occur together, NFTs correlate poorly with 
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neuron death in some models of tauopathy (Andorfer et al., 2005; Spires-Jones et al., 2008). 

Neuron death exceeds NFT formation in Alzheimer’s disease, and neurons can live for 

years with stable NFTs (Gomez-Isla et al., 1997; Morsch et al., 1999). Furthermore, 

functional deficits do not correlate well with presence of NFTs and repression of tau 

expression often ameliorates deficits despite the persistence of tangles (Crimins et al., 

2012; Rocher et al., 2010; Santacruz et al., 2005; Sydow et al., 2011). Rather than NFTs, 

many now believe tau oligomers are the primary toxic species responsible for much of the 

observed pathology. Tau oligomers can form from hyperphosphorylated tau and exhibit 

toxicity at low concentrations (Tepper et al., 2014; Tian et al., 2013). Tau oligomers are 

also an early stage in the aggregation process which culminates in NFT formation, so that 

the processes shown to contribute to NFT formation also likely promote oligomerization 

(Lasagna-Reeves et al., 2012; Maeda et al., 2007).  

1.2.1.4 Trans-synaptic spread of tau 

Each distinct tauopathy typically exhibits a consistent, disease-specific pattern of 

development, usually primarily affecting the same, often interconnected brain regions. In 

cases of Alzheimer’s disease, tau pathology first develops in the entorhinal cortex before 

spreading to the hippocampus and other limbic structures, and finally to the temporal lobe 

and cortex broadly (Braak and Braak, 1991). The sequential development of tau pathology 

in anatomically connected brain areas has led some to suggest tau spreads directly from 

neuron to neuron by a variety of mechanisms. Injection of pathologic tau into the 

hippocampus of mice induces tau pathology that can spread to distant brain areas 

(Clavaguera et al., 2009; Peeraer et al., 2015). Entorhinal cortex-specific expression of 4R 

P301L tau results in development of tau pathology along the circuitry of the hippocampus, 
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suggesting synaptic transmission of pathologic tau (de Calignon et al., 2012; Liu et al., 

2012). Microfluidic experiments have further supported this idea, demonstrating that 

pathologic tau travels along axons and spreads to post-synaptic neurons (Dujardin et al., 

2014). Tau release into the synapse is associated with neuronal activity, and tau may be 

released with pre-synaptic vesicles (Pooler et al., 2013; Yamada et al., 2014). The ability 

of tau to spread across synapses is consistent with the apparent spread of pathology 

observed in clinical cases and suggests tau pathology may initially develop in specific, 

focal brain areas.  

 Mouse models of tauopathy 

Many different mouse models of tauopathy have been developed to study specific 

aspects of tau function and pathology. Broadly, these can be divided into mice that are 

deficient in or entirely lacking tau, and those that express various forms of pathological 

tau. Additionally, to better understand tau’s role in secondary tauopathies, many mouse 

models have been developed which express pathological tau alongside other types of 

disease pathology. In the following sections, several important mouse models of tauopathy 

will be discussed in detail. 

1.2.2.1 Mouse models expressing pathological tau  

Mouse models of tauopathy have been an indispensable tool in the study of 

tauopathy. These model are usually characterized by expression/overexpression of human 

tau protein, often with disease-associated mutations. The first transgenic tau mouse model 

expressed non-mutant 2N4R human and developed somatodendritic mislocalization, 

hyperphosphorylation, and additional pathology consistent with early tauopathy (Gotz and 

Nitsch, 2001; Gotz et al., 1995; Probst et al., 2000). Following the discovery of MAPT 
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mutations, additional transgenic models were developed which expressed human tau with 

the G272V (Gotz et al., 2001c), P301L (Gotz et al., 2001a; Lewis et al., 2000), P301S 

(Allen et al., 2002), V337M (Tanemura et al., 2001), K369I (Ittner et al., 2008), and 

R406W mutations (Tatebayashi et al., 2002; Zhang et al., 2004). Mice expressing the 

P301L mutation in particular have since been used in many studies of AD and FTDP-17  

(David et al., 2005; Eckert et al., 2008; Gotz et al., 2001b; Kohler et al., 2010; Pennanen 

et al., 2004; Pennanen et al., 2006). Many transgenic tau models, including all of those 

discussed here, express only a single isoform of (usually 4R) tau. One notable exception to 

this trend is the 8c mouse, which overexpresses all six isoforms of human tau without any 

mutations (Duff et al., 2000). 

Another major breakthrough in the development of transgenic tau models came 

with the development of the first regulatable transgenic model. The rTG4510 mouse model 

expresses 0N4R P301L tau under the control of a tetracycline-off promoter (Ramsden et 

al., 2005; Santacruz et al., 2005). Treatment with doxycycline suppresses tau expression, 

resulting in a rapid decrease in transgene mRNA and a halt in progression of tau pathology 

(Santacruz et al., 2005). However, any pretangle or tangle pathology that formed prior to 

doxycycline treatment usually remains stable. In addition to allowing tau expression to be 

controlled, this model allows the effects of tangle pathology to be studied independently of 

soluble tau. Although subsequent research has found that placement of the transgene 

disrupts the Fgf14 gene and may introduce pathology that is not tau-related (Gamache et 

al., 2019), the model has still been useful in demonstrating tau expression can be regulated 

in transgenic models. Additional regulatable transgenic models of tauopathy have since 

been developed (Eckermann et al., 2007; Mocanu et al., 2008; Sydow et al., 2011). 
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1.2.2.2 Tau deficient mouse models 

The first strain of tau-/- mice was developed by deleting exon 1 through the use of 

a targeting vector (Harada et al., 1994). The same approach was later used to generate 2 

additional tau-/- strains via deletion of exon 1 (Dawson et al., 2001; Fujio et al., 2007). A 

fourth strain of tau-/- mice has also been developed by inserting cDNA encoding EGFP into 

the MAPT gene to disrupt exon 1 (Tucker et al., 2001). While the effect on tau expression 

is the same in this model as in others, it has an advantage of also labeling neurons 

throughout the developing nervous system. Subsequent studies have primarily used the 

models developed by Tucker et al. and Dawson et al. to study the effects of tau deletion. 

Initial studies of tau-/- mice surprisingly found no overt phenotypic changes, 

although further testing has identified some deficits. Other microtubule associated proteins, 

particularly MAP1A, were found to be elevated in young tau-/- mice and thought to 

compensate for the loss of tau (Dawson et al., 2001; Fujio et al., 2007; Harada et al., 1994). 

Fear conditioning is impaired in tau-/- mice (Ikegami, 2000), though cognitive function is 

broadly unaffected as late as 1 year of age (Dawson et al., 2010; Ikegami, 2000; Roberson 

et al., 2007). Short term memory was impaired in a tau-/- model on a different background 

strain, indicating memory and learning may be affected differently across strains/species 

(Biundo et al., 2018). Tests of motor function have produced varied results, with deficits 

identified in some studies (Ikegami, 2000; Lei et al., 2012; Ma et al., 2014) but not others 

(Dawson et al., 2010; Li et al., 2014). These discrepancies in motor testing could indicate 

that loss of tau has subtle effects on motor function, and minor differences in testing 

conditions may contribute to the differences observed. 
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Although gross effects of tau deletion are relatively minor, the developmental and 

cellular changes are more significant. Axonal development and organization are impaired 

(Dawson et al., 2010; Dawson et al., 2001; Harada et al., 1994), and these effects are 

exacerbated if MAP1B is also absent (Takei et al., 2000). Tau deficiency also increases 

expression of BAF-57, which normally represses expression of neuron-specific genes in 

non-neuronal cells and may further contribute to developmental deficits (de Barreda et al., 

2010). Tau-/- mice exhibit EEG changes including impaired sleep and hippocampal theta 

slowing, indicating tau plays a role in synchronization of signals between brain regions 

(Cantero et al., 2010; Cantero et al., 2011). Synaptic function and neuronal excitability is 

significantly affected by loss of tau expression, and this topic will be covered in detail in 

section 1.4.6. 

1.2.2.3 The htau mouse model 

Most transgenic tau models express human tau protein in addition to endogenous 

murine tau. These models are good for studying toxic functions gained by pathological tau, 

but could potentially miss effects from the loss of tau function that can also develop in 

advanced tauopathy. The htau mouse model addresses this issue. The htau mouse was 

developed by crossing the human tau expressing 8c mouse (Duff et al., 2000) with a tau-/- 

mouse (Tucker et al., 2001) to produce a mouse that expresses six isoforms of human tau 

without endogenous murine tau. The htau mice are hemizygous for the transgene encoding 

human tau, and homozygous transgene expression is assumed to be embryonic lethal 

(Andorfer et al., 2003). To account for this, only one mouse in each breeding pair expresses 

the transgene, although both lack murine tau expression. As a result, approximately half of 

the offspring produced lack both human and murine tau, and are essentially the same as the 
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tau-/- model developed by Tucker et al. While this breeding scheme reduces the number of 

htau mice per litter, it has the advantage of also producing litter-mate tau-/- mice and is 

especially useful for comparative studies of tau function. 

These mice develop progressive tau pathology including hyperphosphorylation by 

1.5 months of age, somatodendritic distribution by 3 months of age, and tangle pathology 

by 9 months of age (Andorfer et al., 2003; Dickstein et al., 2010). They undergo a dramatic 

increase in neuronal death after 12 months of age, and exhibit dramatic atrophy and 

enlargement of the ventricles by 18 months of age (Andorfer et al., 2005). Adult 

neurogenesis is also impaired compared to non-transgenic mice, especially when 

comparing young mice (Komuro et al., 2015). No deficits in neuronal function have been 

described to date in young mice, but synaptic dysfunction develops in CA1 by 1 year of 

age (Alldred et al., 2012; Polydoro et al., 2009). In the prefrontal cortex, basal dendrite 

length is shorter and dendrite spine morphology is altered in htau mice compared to non-

transgenic mice (Dickstein et al., 2010). Cognitive, sensory, and behavioral testing is 

largely normal, although deficits in visuospatial processing and food burrowing have been 

identified (Geiszler et al., 2016; Phillips et al., 2011). 

The htau mouse model has also been used in conjunction with several other models 

of tauopathy and AD. Increasing expression of 4R isoforms of tau, which occurs in several 

tauopathies, exacerbates tau phosphorylation/aggregation and impairs nesting behavior 

(Schoch et al., 2016). This group also showed that 4R tau expression could be reduced by 

administration of an antisense oligonucleotide (ASO) to induce exon skipping, but did not 

demonstrate whether this reduction abrogates the changes observed. Models have also been 

developed which introduce AD-related pathology to the htau mouse. Crossing htau mice 
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with mice expressing AD-related mutations in the amyloid precursor protein (APP) and 

presenilin 1 (PS1) produces a triple-transgenic mouse which develops age-dependent tau 

and Aβ pathology (Guo et al., 2013). These APP/PS1/htau mice exhibit synergistic 

interaction between Aβ and tau pathology, and may better recapitulate aspects of AD than 

models that express only 1 or 2 of these genetic modifications. Interestingly, another group 

crossed the htau mouse with a different strain of APP mice, and found no evidence of 

interaction between the tau and Aβ pathology (Yetman et al., 2016). While the difference 

in results could be attributable to the different APP mutations expressed in each model, it 

is also possible that the inclusion of the PS1 mutation in the APP/PS1/htau mouse is 

necessary for interaction to occur. Given the lack of murine tau which could confound 

efforts at studying human disease, the htau mouse is a powerful tool for generating models 

of disease.  

1.3 The Dentate Gyrus of the Hippocampus 

The hippocampus has long been recognized for its crucial role in regulation of 

memory. The hippocampus receives its major inputs from the entorhinal cortex via the 

perforant pathway and sends its major outputs via the fornix to the rest of the limbic system 

(Andersen, 1975). The hippocampus is composed of the dentate gyrus and Ammon’s Horn, 

which itself is usually subdivided into three major regions (CA1, CA2, and CA3). In overly 

simple terms, information passes through the hippocampus along the “trisynaptic circuit”, 

entering from the entorhinal cortex via the perforant pathway to the synapse at the dentate 

gyrus, then to passing to CA3 via the mossy fibers, and finally passing to CA1 via the 

Schaffer collateral fibers (Andersen, 1975). In reality, the passage of information through 

the hippocampus is much more complicated, with feedback loops and additional signaling 



33 
 

pathways between different regions of the hippocampus and extrahippocampal structures. 

However, the simplified trisynaptic circuit captures the overall unidirectional flow of 

information through the hippocampus. Due to the key roles of the dentate gyrus in both 

tauopathy and epilepsy (discussed further in sections 1.2 and 1.4), the current section will 

focus primarily on the dentate gyrus granule cells and the major pathways associated with 

their function. 

 Dentate gyrus organization and major cell types 

The dentate gyrus is a V-shaped formation folded around the end of CA3 (Amaral 

et al., 2007). Grossly, the dentate gyrus is composed of two blades connected by a region 

called the crest. The portion of the dentate gyrus that projects between CA1and CA3 is the 

suprapyramidal blade, and the other portion is called the infrapyramidal blade.  It is 

separated into three principal layers: the molecular layer, the granule cell layer, and the 

polymorphic layer. The molecular layer, which is furthest away from CA3, is mostly 

acellular, composed primarily of the perforant pathway fibers and dendrites of the granule 

cells. The granule cell layer is mostly composed of tightly packed granule cells, although 

some other cell types can be found at the boundary with the polymorphic layer, a region 

called the subgranular zone. The polymorphic layer/hilus (sometimes called CA4), which 

is the closest layer to CA3, is composed of the axons from the granule cells in addition to 

a variety of additional cell types including the mossy cell. Detailed drawings originally 

produced by Ramón y Cajal can be found in published works and are valuable resources 

for understanding hippocampal anatomy (Andersen, 1975; Ramón y Cajal, 1909). 

Three principal dentate gyrus neuron types will be discussed here. Many other 

classes of neurons/interneurons have been identified, primarily in the hilus/subgranular 
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zone. These neurons will be not discussed in detail here, but they can influence 

hippocampal function in important ways and are an area of ongoing study. 

1.3.1.1 Dentate granule cells 

The dentate granule cell (DGC) is the principal neuron type in the dentate gyrus. 

Each DGC has 1-4 primary dendrites that project from the soma toward the molecular 

layer, branching to form extensive dendrite trees that extend throughout the molecular layer 

to form synapses with the perforant pathway fibers (Claiborne et al., 1990). DGCs in the 

suprapyramidal blade have longer dendrite trees than those in the infrapyramidal blade 

(Claiborne et al., 1990). DGCs are the smallest and most tightly packed neuron type in the 

hippocampus, with 8-15 rows of neurons in the granule cell layer  (West et al., 1991). 

DGCs exhibit a low basal rate of action potential firing, typically less than 0.5Hz (Jung and 

McNaughton, 1993). DGCs are also hyperpolarized compared to most neurons, with a 

resting membrane potential that is typically below -70mV (Cronin et al., 1992; Staley et 

al., 1992). The low firing rate and hyperpolarized membrane potential of DGCs is likely 

due to high degree of inhibitory signaling and diversity of GABAA subunits expressed by 

DGCs (Brooks-Kayal et al., 1998). DGCs express a specific subtype of extrasynaptic α4βδ 

GABAA receptors which have a high affinity for GABA and do not desensitize to any 

significant degree (Mtchedlishvili and Kapur, 2006; Stell and Mody, 2002; Wei et al., 

2003). These receptors respond to spillover GABA from the synapse and are thought to 

contribute to the tonic GABA inhibition tight control over firing patterns. 

DGCs are primarily glutamatergic, though they form numerous synapses with 

inhibitory neurons so that DGC activity frequently drives inhibitory signaling (Acsády et 

al., 1998; Crawford and Connor, 1973). Furthermore, DGCs can synthesize and release 
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other compounds including γ-aminobutyric acid (GABA) under specific conditions, 

leading some to challenge the glutamatergic characterization (Gutierrez, 2003; Walker et 

al., 2002). The dentate gyrus is one of the few brain regions with persistent neurogenesis 

throughout adulthood, producing new DGCs and other cell types (Altman and Das, 1965; 

Cameron and McKay, 2001; Kaplan and Hinds, 1977). 

1.3.1.2 Dentate basket cells 

The hilus and subgranular zone contain a large number of primarily inhibitory 

interneurons that modify neuronal function (Houser, 2007). Inhibitory neurons are 

particularly abundant and are crucial to maintaining tight inhibitory regulation over dentate 

gyrus function (discussed further in sections 1.3.4 and 1.4.4). One important class of 

inhibitory interneurons are the dentate basket cells. Dentate basket cells are key 

GABAergic inhibitory neurons found primarily at the border of the granule cell layer and 

polymorphic layer (Amaral, 1978). Basket cells display varied morphology, with 5 

different subtypes identified (Ribak and Seress, 1983; Seress and Pokorny, 1981). 

Although these subtypes vary in gross morphology, they share key characteristics including 

aspinous dendrites which extend through all layers of the dentate gyrus, axons which 

extend into the granule cell and molecular layers, and GABAergic signaling (Ribak and 

Seress, 1983; Ribak et al., 1986). Basket cells are far less abundant than DGCs, at a ratio 

of around 200 DGCs per basket cell in rats (Seress and Pokorny, 1981). Basket cells are 

also asymmetrically distributed throughout the hippocampus, with higher concentrations 

in the caudal hippocampus and in the infrapyramidal blade (Seress and Pokorny, 1981). 
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1.3.1.3 Mossy cells 

Mossy cells are the most common neuron type in the hilus (Amaral, 1978). Each 

mossy cell has three or more dendrites that project throughout the hilus, giving off a small 

number of side branches along the way. Most of the dendrites remain in the hilus, but a 

few extend as far as the molecular layer (Amaral, 1978). The proximal dendrites are 

covered in distinctive large spines called “thorny excrescences” which serve as termination 

sites for mossy fibers. Mossy cells are primarily glutamatergic, and form synapses with 

many neuron types, including DGCs, throughout all 3 layers of the dentate gyrus 

(Scharfman, 1995; Wenzel et al., 1997). Mossy cells are more abundant than basket cells, 

but are still about 50 fold less abundant than DGCs in rats (Amaral et al., 1990). 

 Major inputs to the dentate gyrus 

The dentate gyrus receives its primary inputs from the ipsilateral entorhinal cortex 

via the perforant pathway. The fibers of the perforant pathway originate primarily from 

stellate cells in layer II of the entorhinal cortex (Hevner and Kinney, 1996; Steward and 

Scoville, 1976; van Groen et al., 2003; Witter et al., 1989). Projections from the entorhinal 

cortex to the dentate gyrus are topographically organized. Inputs to the dorsal dentate gyrus 

arise primarily from the lateral entorhinal cortex, whereas inputs to the ventral dentate 

gyrus arise primarily from the medial entorhinal cortex (van Groen et al., 2003). The fibers 

of the perforant pathway terminate primarily in the outer two thirds of the molecular layer 

of the dentate gyrus, where they form at least 85% of the synapses in this region (Matthews 

et al., 1976). The synapses formed by perforant pathway fibers are essentially all excitatory 

in nature (Leranth et al., 1990; Matthews et al., 1976; White et al., 1977). 
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While the major inputs to the dentate gyrus originate from the entorhinal cortex, 

other brain regions also project to the dentate gyrus. The dentate gyrus receives a 

combination of cholinergic and GABAergic inputs originating in the septal nuclei. The 

cholinergic inputs, which appear to form mostly excitatory synapses, primarily terminate 

on DGCs and mossy cells (Amaral and Kurz, 1985; Lubke et al., 1997). GABAergic 

neurons in the septal nucleus also project to the dentate gyrus, forming synapses primarily 

with inhibitory neurons (Amaral and Kurz, 1985; Bilkey and Goddard, 1985; Kohler et al., 

1984). The overall effect of septal projections to the dentate gyrus is increased flow of 

information due to a net increase in excitatory signaling. 

The dentate gyrus receives hypothalamic inputs originating primarily in the 

supramammillary nucleus. Fibers originating primarily from the supramammillary nucleus 

terminate in the molecular and granule cell layers, synapsing on the somata and proximal 

dendrites of DGCs (Dent et al., 1983; Magloczky et al., 1994; Vertes, 1992). These inputs 

originate in the bilateral supramammillary nuclei, although the ipsilateral nucleus 

contributes the majority of the fibers, and they terminate in the suprapyramidal blade about 

twice as often as the infrapyramidal blade (Kiss et al., 2000; Vertes, 1992; Wyss et al., 

1979). Although the earliest work suggested these hypothalamo-hippocampal connections 

were inhibitory in nature (Segal, 1979), subsequent work has shown the synapses on DGCs 

are primarily excitatory and likely glutamatergic (Dent et al., 1983; Kiss et al., 2000; 

Magloczky et al., 1994). Activation of the supramammillary nucleus results in an increase 

in DGC activity and can influence the theta rhythm (Carre and Harley, 1991; Mizumori et 

al., 1989). 
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The final inputs to the dentate gyrus considered here originate from a few locations 

in the brainstem. The dentate gyrus receives noradrenergic input from the locus coeruleus 

and serotonergic input from the raphe nuclei. Noradrenergic fibers from the locus coeruleus 

form synapses on the somata and dendrites of DGCs and at interneurons in the hilus 

(Loughlin et al., 1986; Milner and Bacon, 1989; Pickel et al., 1974). The locus coeruleus 

fibers primarily form excitatory synapses with DGCs, whereas they form roughly equal 

number of excitatory and inhibitory synapses with interneurons (Milner and Bacon, 1989). 

Noradrenergic innervation enhances long-term potentiation (LTP) in the dentate gyrus, 

allowing the locus coeruleus to influence dentate gyrus function over time (Dahl and 

Sarvey, 1989; Izumi and Zorumski, 1999; Neuman and Harley, 1983; Walling and Harley, 

2004). 

Serotonergic inputs to the dentate gyrus originate primarily in the caudal portion of 

the dorsal raphe nucleus and peripheral part of the median raphe nucleus (Köhler and 

Steinbusch, 1982; McKenna and Vertes, 2001; Vertes et al., 1999). These fibers terminate 

throughout the molecular layer and hilus, especially targeting the subgranular zone, and 

account for nearly 75% of the serotonergic input to the hippocampus (Moore and Halaris, 

1975). Increased serotonergic input suppresses the theta rhythm and inhibits LTP (Vertes 

et al., 1994). This disruption in activity may serve to prevent encoding of irrelevant 

information into memory (Vertes and Kocsis, 1997). 

 Major outputs from the dentate gyrus 

The dentate gyrus projects primarily to CA3 via the mossy fibers, which are 

composed of the unmyelinated axons of the DGCs. Mossy fibers give rise to several 

collateral branches in the hilus before extending through CA3, terminating on pyramidal 
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cells (Blackstad et al., 1970; Claiborne et al., 1986). Mossy fibers form three different types 

of presynaptic terminals. The synapses onto CA3 pyramidal neurons are made through 

large mossy terminals, but filopodial extensions can also form from the axon end bouton 

that synapse onto interneurons through smaller terminals (Acsády et al., 1998; Claiborne 

et al., 1986). Mossy fibers can also form en passant varicosities that synapse with 

interneurons through small terminals (Acsády et al., 1998; Amaral, 1979; Frotscher et al., 

1991). The smaller filopodial and en passant terminals, which typically form synapses with 

inhibitory neurons, are far more numerous than the large terminals, so that the majority of 

mossy fiber synapses form on inhibitory neurons (Acsády et al., 1998). 

Mossy fibers synapse directly onto CA3 pyramidal neurons in addition to nearby 

inhibitory interneurons which project to the same pyramidal neurons or back to DGCs 

(Gulyas et al., 1993). This increases the complexity of the circuit between the DGC and 

CA3 pyramidal neurons since the same fibers drive excitatory and inhibitory input. Single 

stimulations from the mossy fiber activate AMPA receptors at glutamatergic synapses 

while simultaneously triggering GABA release at the GABAergic synapse via activation 

of the inhibitory interneuron (Larson and Munkacsy, 2015). The resulting excitatory post-

synaptic current (EPSC) and inhibitory post-synaptic current (IPSC) partially offset each 

other, curtailing the resulting depolarization in the CA1 pyramidal cell. However, GABA 

released at the GABAergic synapse activates presynaptic GABAB autoinhibitory receptors 

on the interneuron presynaptic terminal, inhibiting further release of GABA. Following 

repeated stimulation from the mossy fiber (which is typical during normal entorhinal 

cortex-driven DGC firing patterns), EPSCs strengthen while IPSCs diminish. With 

sufficient stimulation, long-term potentiation can occur, further strengthening the activity 
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at the glutamatergic synapse. This complexity plays an important role in shaping the flow 

of information from the dentate gyrus to CA3, improving precision of signals and 

contributing to memory formation (Henze et al., 2002; Jung and McNaughton, 1993; 

Torborg et al., 2010). 

 Local circuits in the dentate gyrus 

Dentate granule cells exhibit a low overall level of activity due largely to the high 

degree of inhibitory signals they receive and their low resting potential. The high inhibitory 

tone results in the dentate gyrus forming a “gate” of information passing through the 

hippocampus and has major implications in the development epilepsy (see section 1.4.4). 

Ironically, this inhibitory tone relies heavily on glutamatergic signals from mossy cells and 

perforant pathway fibers, in conjunction with inhibitory neurons. 

As previously discussed, mossy fibers have collateral branches that form frequent 

synapses with mossy cells and inhibitory interneurons in the hilus. These mossy cells in 

turn project back to the inner molecular layer, forming synapses with the interneurons and 

proximal dendrites of the DGCs (Buckmaster et al., 1992; Buckmaster et al., 1996; 

Frotscher et al., 1991; Scharfman, 1995; Wenzel et al., 1997). Mossy cells form 

monosynaptic connections directly to DGCs which are excitatory, but under normal 

conditions activation of mossy cells has an inhibitory effect on DGCs (Scharfman, 1995). 

The inhibitory effect is disynaptic and disappears in the presence of the GABAA antagonist 

bicuculline methiodide, indicating the involvement of an inhibitory interneuron. The result 

of this circuit is that increased DGC activity feeds back to inhibit DGCs. Interestingly, the 

inhibitory effect is relatively weak in DGCs at the same septotemporal level as the mossy 

cell, but becomes stronger in DGCs more distant along the septotemporal axis from the 
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mossy cell (Amaral and Witter, 1989). Therefore, DGC activity in one lamella of the 

dentate gyrus can influence DGC activity in nearby lamellae, allowing for local modulation 

of information as it passes through the dentate gyrus. 

Mossy cell activity has a critical role in the function of inhibitory basket cells in the 

subgranular zone. Animal models of epilepsy will be discussed in more detail in section 

1.4.5, but the effects of seizures on circuitry in the dentate gyrus reveal an important 

relationship between mossy cells, basket cells, and the tonic inhibitory input to DGCs. 

Mossy cells are highly sensitive to status epilepticus, whereas basket cells are relatively 

robust and more likely to survive (Sloviter, 1991). Despite the loss of glutamatergic 

neurons, mossy cell death is associated with increased DGC activity. Loss of mossy cells 

removes much of the excitatory drive to basket cells, causing them to fall dormant and 

removing inhibitory signals to DGCs (Sloviter et al., 2003). 

1.4 Temporal Lobe Epilepsy  

Epilepsy is one of the oldest known disorders and has been recognized in some form 

since ancient times (Wilson and Reynolds, 1990). Epilepsy affects around 1% of the global 

population, although incidence and prevalence vary significantly in different parts of the 

world (Asadi-Pooya et al., 2017; Hirtz et al., 2007; Thurman et al., 2011). Although 

epilepsy has historically been more common in children, in recent decades prevalence and 

incidence have been highest in adults older than 60 years (Sander, 2003; Sen et al., 2020). 

Epilepsy is not truly a single disorder, but rather refers to a spectrum of disorders 

characterized by recurrent seizures (Jensen, 2011). The minimum diagnostic criteria for 

epilepsy is the occurrence of 2 or more unprovoked seizures at least 24 hours apart (Fisher 
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et al., 2014). “Unprovoked” in this context is used to exclude seizures of known, discrete 

etiology that do not suggest a likelihood of recurrence, such as those associated with 

concussion, fever, or alcohol-withdrawal. An important exception are the seizures 

associated with reflex epilepsies that can be reliably provoked by specific sensory stimuli 

because these reflect a prolonged tendency toward seizures (Harding, 2004). This 

definition of epilepsy does not address the underlying etiology, however, so more 

information is needed to further classify any specific case of epilepsy. 

 Classification and description of seizures  

Given epilepsy’s long history, it’s not surprising that the terminology used to 

describe seizures and epilepsy has changed over the years. Consistent classifications are 

crucial for proper care, leading the International League Against Epilepsy (ILAE) to release 

and revise its operational classifications of seizure types (Fisher et al., 2017). The ILAE 

defines a seizure as “a transient occurrence of signs and/or symptoms due to abnormal 

excessive or synchronous neuronal activity in the brain” (Fisher et al., 2005). The most 

recent classification system recognizes 3 categories of seizures defined by onset. Focal 

seizures, formerly called partial seizures, originate within networks of one hemisphere, 

potentially originating from subcortical structures. Generalized seizures originate from and 

rapidly engage networks bilaterally (Fisher et al., 2017). Seizures can further be classified 

as unknown-onset, but this should be viewed as a place holder classification until more 

information becomes available. Further classification based on seizure characteristics is 

optional but can provide a better description of the seizure. 

Focal seizures can be further described based on awareness, defined as knowledge 

of self and environment. During focal seizures with intact awareness, formerly called 
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simple partial seizures, consciousness is maintained for the full duration of the seizure. If 

consciousness is lost for any duration during the seizure, it is classified as a focal seizure 

with impaired awareness, formerly called a complex partial seizure (Fisher et al., 2017). In 

addition to describing awareness, focal seizures are often described in terms of associated 

motor or non-motor symptoms. Motor descriptors include automatism (repetitive, 

coordinated movement usually associated with impaired awareness), atonic, clonic, 

epileptic spasm (sudden flexion, extension, or mixed extension-flexion of proximal and 

truncal muscles, lasting around 1 second; formerly called an infantile spasm), hyperkinetic, 

myoclonic, and tonic (Fisher et al., 2017). Non-motor descriptors include autonomic, 

behavioral arrest (lasting the entire seizure), cognitive (involving déjà vu, jamais vu or 

hallucinations, formerly called psychic), emotional, and sensory. Finally, the classification 

should describe whether the focal seizure evolves into a bilateral, tonic-clonic seizure. 

Classification of generalized seizures follows similar conventions as focal seizures. 

Awareness is normally impaired during generalized seizures and therefore does not need 

to be specified. Generalized motor seizures can be described with some of the same 

descriptors as focal seizures (clonic, tonic, myoclonic, atonic, epileptic spasms). Motor 

involvement associated with generalized seizures can also develop through distinct patterns 

of motor involvement, including tonic-clonic (formerly called grand mal), myoclonic-

tonic-clonic, and myoclonic-atonic (formerly called myoclonic-astatic). Generalized non-

motor seizures (also called generalized absence, formerly called petit mal) usually consist 

of sudden interruption of ongoing activities accompanied by unresponsiveness lasting up 

to a half minute with rapid recover (Fisher et al., 2017). Generalized absence seizures are 

further classified as typical or atypical based on EEG findings. Generalized absence 
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seizures can also involve rhythmic movements of the upper limbs (myoclonic absence 

seizure) or eyelid myoclonus. 

 Temporal lobe epilepsy 

Epilepsy is generally classified as focal or general depending on where the seizures 

originate. This classification is important in considering clinical management (discussed in 

section 1.4.3). Approximately 60% of epilepsy cases are focal in nature (Pascual, 2007; 

Wiebe, 2000). Cases of epilepsy are further classified into cases of primary epilepsy with 

idiopathic or cryptogenic etiology and cases of secondary epilepsy with known etiology 

(ILAE, 1989). Idiopathic epilepsy is often assumed to have a genetic etiology, whereas 

secondary epilepsy is associated with a CNS injury or disorder. Cryptogenic epilepsy is 

typically presumed to also be attributable to some injury, but does not have an identifiable 

etiology. 

The primary focus of this work will be focal epilepsy affecting the temporal lobe. 

Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy (Manford et al., 

1992; Wiebe, 2000). Since TLE is highly focal in nature and has a high tendency to be 

resistant to medical management, cases are often referred for surgery (Engel et al., 2012; 

Quarato et al., 2005). As a result, the etiology of drug-resistant TLE is frequently identified. 

Hippocampal sclerosis is the most common histopathological finding, in addition to 

neoplasm, focal malformation, and necrosis (Helmstaedter et al., 2014; Salanova et al., 

2004; Zentner et al., 1995). Many of the patients in these studies became seizure free or at 

least had significant seizure reduction (>75%), suggesting these pathologies are closely 

associated with the epileptic focus (Salanova et al., 2004). 
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 General clinical management of epilepsy 

The primary goal of epilepsy treatment is reducing/preventing occurrence of 

seizures. Epilepsy is considered “resolved” if an individual remains seizure free for at least 

10 years and off medication for at least five years or has past the applicable age for age-

dependent epilepsy syndromes (Fisher et al., 2014). The first line therapy for epilepsy is 

typically medical management with antiseizure medications (ASMs). Many studies use the 

term “antiepileptic drug (AED)” rather than ASM to refer to medications used to manage 

epilepsy. While these drugs are often very effective at controlling seizures, they should be 

viewed as symptom management rather disease modification. Calling them antiepileptic 

drugs is therefore inaccurate, leading some to call for a change in terminology (French and 

Perucca, 2020). Despite significant advances in ASMs, about one third of cases remain 

refractory to pharmacological management and require further intervention, often surgical 

resection of the epileptic focus (Cockerell et al., 1995; Engel, 1993; Kwan and Brodie, 

2000). Management of epilepsy, especially drug resistant cases, remains a significant 

global socioeconomic burden (Ali, 2018; Begley et al., 2000). 

1.4.3.1 Medical management of epilepsy 

Pharmacotherapy is effective for many patients with epilepsy, and about half of 

patients achieve seizure control with the first ASM (Kwan and Brodie, 2000). In general, 

monotherapy is preferred to polytherapy. Polytherapy increases the risks of adverse effects 

while usually providing only minor improvement to seizure control (Carpay et al., 2005; 

Liu et al., 2017a; St Louis et al., 2009). It is generally recommended, therefore, to exhaust 

options for monotherapy with first line agents before initiating polytherapy. Early seizure 
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control after diagnosis is associated with a better long-term prognosis (Elwes et al., 1984; 

Ettore Beghi et al., 1992; Kwan and Brodie, 2000). 

ASMs generally suppress seizures by inhibiting neuronal ion channels or increasing 

GABAergic signaling (White et al., 2007). Most ASMs routinely used for management of 

seizures block voltage-gated sodium (phenytoin, carbamazepine, topiramate, lamotrigine, 

valproic acid) or calcium (ethosuximide, valproic acid, gabapentin) channels, though many 

exhibit more than one mechanism of action. One notable exception which is commonly 

used as a first line therapy is levetiracetam, which suppresses seizures by modulating 

synaptic transmission via inhibition of SV2A (Lambeng et al., 2005). Benzodiazepines 

(diazepam, lorazepam, midazolam), which are agonists of the GABAA receptor, are 

recommended as first line therapy for cases of status epilepticus (Sirven and Waterhouse, 

2003). 

Most ASMs in use today have not undergone placebo-controlled studies due to the 

ethical concerns of withholding treatment. However, non-inferiority trials comparing 

several common ASMs have largely found comparable efficacy rates for different ASMs 

(Brodie et al., 2007; Costa et al., 2011; de Silva et al., 1996; Vazquez, 2004). Lamotrigine 

and valproic acid are strongly recommended as the first line therapy for newly diagnosed 

focal epilepsy and generalized epilepsy, respectively (Marson et al., 2021; Marson et al., 

2007a, b). Lamotrigine and levetiracetam are acceptable alternatives to valproic acid for 

treating generalized seizures in women who are or may become pregnant (Nevitt et al., 

2017). Ethosuximide and valproic acid demonstrate the best efficacy in treatment of 

generalized absence epilepsy in children, but ethosuximide is recommended due to its 

reduced rate of adverse effects (Brigo et al., 2021; Glauser et al., 2010). 
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Often, the selection of monotherapy ultimately depends on tolerability. The most 

common adverse effects associated with ASM therapy are fatigue/tiredness and memory 

impairment, although life threatening adverse events are possible with most ASMs (Brodie, 

2017; Carpay et al., 2005). While all ASMs are associated with teratogenicity, the risk is 

highest with valproic acid and lowest with levetiracetam (Tomson et al., 2015). The goal 

in medical management of epilepsy should be to quickly find a monotherapy which 

provides adequate seizure control with tolerable side effects. While newer ASMs are often 

associated with more favorable adverse event profiles, the trials discussed comparing 

efficacy of older and newer ASMs have largely found them to be equally effective 

(Schmidt, 2011). This demonstrates a lack of major improvement in ASM efficacy and 

underscores the need for improved therapeutics, requiring better understanding on the 

mechanisms of epilepsy. 

1.4.3.2 Surgical intervention in epilepsy 

Although most cases of epilepsy respond to medical management with ASMs, 

about one third of cases, mostly TLE, remain refractory (Engel et al., 2012). Cases of TLE 

often respond well to surgical resection of the epileptic focus (Cersosimo et al., 2011; Engel 

et al., 2012; Engel et al., 2003; Salanova et al., 2004). Most patients who undergo resection 

experience significant reduction in seizures, and around half of patients remain seizure free 

10 years after surgery (Cohen-Gadol et al., 2006; de Tisi et al., 2011; Mohan et al., 2018; 

Tellez-Zenteno et al., 2005). Early freedom from seizures predicts better long-term 

outcomes, with at least 75% of patients who are seizure free for the first two years 

remaining seizure free after 10 years (Cohen-Gadol et al., 2006; McIntosh et al., 2004). 

Presence of histopathology in the resected tissue, which may indicate a discrete epileptic 
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focus, is associated with higher probability of remaining seizure free (Zentner et al., 1995). 

In contrast, a history of tonic-clonic seizures, especially in the year preceding surgery, 

predicts a higher chance of seizure recurrence after resection (Asadi-Pooya et al., 2016). 

1.4.3.3 Other treatment options 

In addition to medical management and surgical resection, several additional 

therapeutic options are available. Given the epilepsy’s long history, it is no surprise that 

numerous herbal remedies have been used. While some of these compounds have been 

shown to have anticonvulsant properties in animal studies, they have the potential to 

interact with common ASMs and have not been shown to be effective in clinical trials 

(Tyagi and Delanty, 2003). Limited clinical data is available for some treatments such as 

melatonin and acupuncture, but suggests these are not effective for treatment of seizures or 

epilepsy (Brigo and Del Felice, 2012; Cheuk and Wong, 2006). Despite these examples of 

ineffective treatments, some alternatives to mainstream ASM therapy and surgical 

resection have been found effective for managing epilepsy, particularly cases that remain 

refractory to other treatments. In particular, ketogenic diets and vagal nerve stimulation 

can provide effective seizure control despite failure of other options, and each will be 

briefly discussed here. 

Several different types of ketogenic diets have been developed, but all consist of a 

diet that is primarily fat-based with little to no carbohydrates, which causes the body to 

begin producing ketone bodies from stored fat in a process called ketosis. The efficacy of 

the ketogenic diet for treating epilepsy was recognized in the 1920s (Barborka, 1928; 

Peterman, 1924) and recent trials have similarly found a ketogenic diet effective for 

treatment of pharmacoresistant epilepsy (Klein et al., 2010; Mady et al., 2003; Neal et al., 
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2008). To promote adherence and reduce adverse effects, a modified Atkins diet with fewer 

restrictions was developed which has also been shown to be effective at treating epilepsy 

(Kossoff et al., 2006). The exact anti-epileptogenic mechanism of a ketogenic diet has not 

been identified, but several possibilities have been suggested. Ketone bodies seem to have 

a direct anticonvulsant effect (Keith, 1933; Rho et al., 2002). Some evidence suggests 

ketones promote an increase in production of GABA from glutamate (Dahlin et al., 2005; 

Yudkoff et al., 2005), while others have suggested direct modulation of ion channels to 

reduce neuronal excitability (Ma et al., 2007; Won et al., 2013). Additionally, many studies 

have suggested the ketogenic diet works through a variety of metabolic and bioenergetics 

mechanism. In particular, animals on a ketogenic diet exhibit resistance to oxidative stress, 

a process which is commonly upregulated in epilepsy (Kim et al., 2010; Maalouf et al., 

2007; Milder et al., 2010). Finally, ketogenic diets result in significant metabolic changes 

including reduction in blood glucose, production of polyunsaturated fatty acids, and 

upregulation of the tricarboxylic acid cycle, which may contribute to the antiseizure 

potential of ketogenic diets (Fraser et al., 2003; Mantis et al., 2004; Willis et al., 2010). 

None of these individual mechanisms seems to fully account for the efficacy of ketogenic 

diets in treating refractory epilepsy, so it is likely that several of these mechanisms 

contribute to the overall antiseizure effect. 

Vagal nerve stimulation (VNS) is a relatively new treatment that can be an effective 

adjunctive therapy for reducing seizure burden. The potential of VNS as an antiseizure 

therapy was recognized by the early 1990s (Clarke et al., 1991; Penry and Dean, 1990), 

and successful clinical trials resulted in FDA approval for treatment of refractory epilepsy 

in 1997 (Handforth et al., 1998; Morris and Mueller, 1999). Efficacy of VNS improves 
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over time (DeGiorgio et al., 2000; Morris et al., 2013), and patients undergoing VNS may 

be able to reduce their ASM dose while maintaining seizure control (Tatum et al., 2001). 

Several mechanisms are thought to contribute to the antiseizure effect on VNS. Stimulation 

of the vagus nerve induces changes in many brain areas, including the solitary nucleus, 

dorsal motor nucleus of the vagus, locus coeruleus, thalamus, hypothalamus, amygdala, 

and occipital, cingulate, and temporal cortex (Ko et al., 1996; Krahl et al., 1998; Naritoku 

et al., 1995), indicating the effects of VNS are not limited to the vagal system. Stimulation 

of vagal afferent fibers can modulate EEG activity in cortical and subcortical brain regions 

(Chase et al., 1967; Chase et al., 1966), which may disrupt seizures by preventing or 

disrupting synchronized activity. Further studies have found an increase in GABAergic 

inhibitory signaling after VNS which may suppress seizure development (Di Lazzaro et 

al., 2004; Marrosu et al., 2003). VNS is generally well-tolerated, although respiratory 

symptoms and vocal changes develop commonly after stimulation (Handforth et al., 1998). 

Given the significant reduction in seizure occurrence and improvement in quality of life 

reported by patients in the same study, these adverse events do not offset the value of VNS 

in treating refractory epilepsy. 1/2 

 Potential mechanisms of epileptogenesis  

As the first step in the trisynaptic circuit of the hippocampus, the dentate gyrus 

plays an important role controlling the flow of information into the hippocampus. Since 

DGCs are normally not highly active, they effectively filter signals entering the 

hippocampus and are thought to protect hippocampal neurons downstream, forming a 

“dentate gate.” The dentate gate normally prevents epileptiform bursts from the entorhinal 

cortex from propagating to CA3, but this gating breaks down in epileptic animals (Ang et 
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al., 2006; Behr et al., 1998). DGC gating is GABA-dependent and is mediated primarily 

by extrasynaptic GABAA receptors (Iijima et al., 1996; Maguire et al., 2005). Optogenetic 

restoration of DGC gating stops spontaneous seizures in epileptic mice, further supporting 

the role of the dentate gate in epilepsy (Krook-Magnuson et al., 2015). 

Given the importance of GABA signals in the dentate gate, it is reasonable to expect 

a loss of GABAA receptors to accompany disrupted gating epileptic animals. However, 

numerous studies have found a paradoxical upregulation of GABAA receptors in TLE 

models (Nusser et al., 1998; Otis et al., 1994). Instead, a modulation of GABAA receptor 

composition occurs in DGCs from epileptic animals. The specific effects of these 

modulations have not been fully elucidated, though several important functional changes 

have been identified. DGCs from epileptic animals exhibit a downregulation in the δ-

subunit of GABA receptors, which reduces the tonic GABAA current and may contribute 

to loss of gate function (Boychuk et al., 2016; Peng et al., 2004). Modulated GABAA 

receptors are also sensitive to inhibition by zinc, which is released in large amounts from 

sprouted mossy fibers (Assaf and Chung, 1984; Buhl et al., 1996; Cohen et al., 2003; Gibbs 

et al., 1997). While exogenously applied zinc effectively inhibits these GABAA receptors, 

it seems that zinc endogenously released at excitatory synapses is unable to reach and 

inhibit GABAA receptors, so an alternate explanation is needed to support zinc-induced 

inhibition of GABAA receptors (Molnar and Nadler, 2001). Finally, GABAA receptors in 

DGCs from epileptic animals show reduced sensitivity to benzodiazepine activation, 

further suggesting functional changes (Leroy et al., 2004). While the exact mechanism is 

still not clear, changes in GABAA receptors on DGC are likely a key aspect of 

epileptogenesis. 
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Other changes in excitatory and inhibitory signaling in the dentate gyrus have been 

identified which may further contribute to the loss of gating ability. Following 

epileptogenesis, animal models frequently develop abnormal sprouting of mossy fibers. 

Sprouted fibers aberrantly extend to the inner molecular layer and form synapses with 

nearby DGCs. These synapses create recurrent excitatory circuits which promote 

synchronization of aberrant activity within dentate gyrus (Bhaskaran and Smith, 2010; 

Cronin et al., 1992; Hunt et al., 2010; Lynch and Sutula, 2000; Patrylo and Dudek, 1998; 

Winokur et al., 2004; Wuarin and Dudek, 2001). In addition, several types of inhibitory 

neurons in the dentate gyrus are susceptible to death or dysfunction following 

epileptogenesis (Buckmaster and Dudek, 1997; Butler et al., 2017; Hunt et al., 2011; 

Lowenstein et al., 1992; Sloviter, 1991; Sloviter et al., 2003). Since many hilar inhibitory 

neurons receive excitatory inputs from mossy fibers, their activity is actually increased 

after mossy fiber sprouting (Halabisky et al., 2010; Hunt et al., 2011). While this likely 

represents a compensatory mechanism to prevent excessive DGC activity, chronic over 

activation of hilar interneurons may also negatively impact their survival and contribute to 

further loss of inhibitory signals to DGCs in epileptic brains. Overall, the changes in 

excitatory and inhibitory signaling observed in animal models of TLE, taken along with 

the changes in GABAA receptor function, create an environment that favors the 

development and propagation of seizures in epileptic brains. 

 Animal models to study seizures and epilepsy  

Because epileptogenesis is a complex process affecting several interconnected 

neuron types, studying epilepsy requires complex models. Several animal models of 

seizure induction and/or acquired epilepsy have been developed for this purpose. Models 
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of seizure induction commonly used to study epileptogenesis can broadly be divided into 

chemically induced epilepsy, post-traumatic epilepsy (PTE), and kindling models. 

Electrical kindling is the classic model of induced seizures, involving repeated electrical 

stimulation of specific brain areas to induce seizures. While kindling has been replaced as 

the primary seizure model by newer, easier to implement models, it is still used in epilepsy 

research (Gorter et al., 2016). Epilepsy commonly develops as a result of traumatic brain 

injury, and several models mostly using rodents are commonly implemented to recapitulate 

aspects of PTE for study (D'Ambrosio et al., 2004; Hunt et al., 2009; Kharatishvili et al., 

2006; McIntosh et al., 1989). The focus of the rest of this section will be models involving 

the use of chemoconvulsants to induce seizures. Models involving focal or systemic 

administration of chemoconvulsant agents can be used to study the process of seizure 

induction, or to induce status epilepticus in order to study epileptogenesis. Three 

chemoconvulsant agents (kainic acid, pilocarpine, and pentylenetetrazole) are particularly 

common in models of seizures/epilepsy, and each will be discussed in some detail here. 

Kainic acid (KA), an analog of L-glutamate, was one of the earliest 

chemoconvulsant agents used to study the effects of seizures in rodents (Ben-Ari et al., 

1979; Ben-Ari et al., 1980; Nadler et al., 1978). KA activates non-NMDA ionotropic 

receptors (AMPA and kainate) at a much higher affinity than glutamate (Sharma et al., 

2007). Administration of KA and subsequent SE recapitulates the mossy fiber sprouting 

that is a key histopathological characteristic of TLE in human patients (Cronin and Dudek, 

1988; Cronin et al., 1992; Sutula et al., 1989; Tauck and Nadler, 1985). When appropriate 

doses are used, systemic administration of KA reliably induces status epilepticus in rats 

and some strains of mouse without excessive mortality (Dudek and Staley, 2017), although 
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C57BL/6 mice in particular have been shown to exhibit resistance to this model (McKhann 

et al., 2003; McLin and Steward, 2006; Schauwecker and Steward, 1997). Focal 

administration of KA directly to the hippocampus (intrahippocampal kainate, IHK) or 

amygdala (intra-amygdala kainate, IAK) increases efficacy and avoids strain-resistance, 

with rates of SE approaching 100% in C57BL/6 mice (Welzel et al., 2020). IHK in C57BL6 

mice reliably results in epileptogenesis and is associated with a short latent period to 

spontaneous seizures with EEG abnormalities apparent within days of treatment (Raedt et 

al., 2009; Welzel et al., 2020). 

Pilocarpine is a muscarinic acetylcholine agonist that was another early 

chemoconvulsant agent used in rodents (Turski et al., 1984; Turski et al., 1983). Excessive 

muscarinic activation triggers seizures by creating an imbalance between excitatory and 

inhibitory signals (Priel and Albuquerque, 2002). Pilocarpine is frequently administered 

systemically via intraperitoneal injection. To prevent excessive systemic muscarinic 

activation, animals are typically pretreated with methylscopolamine, an anticholinergic 

agent that does not readily cross the blood-brain barrier. In rats, pretreatment with lithium 

reduces drastically reduces the dose of pilocarpine needed to induce seizures while also 

reducing mortality (Clifford et al., 1987; Honchar et al., 1983). Lithium has not frequently 

been used in pilocarpine-treated mice, but the limited data available suggest lithium does 

not potentiate pilocarpine-induced seizures in mice (Muller et al., 2009). Pilocarpine-

induced status epilepticus induces mossy fiber sprouting in addition to widespread neuronal 

lesions (Turski et al., 1984; Turski et al., 1983). In contrast to systemic KA, C57BL/6 mice 

do not exhibit resistance to seizures induced by systemic pilocarpine (Shibley and Smith, 

2002). Like kainic acid, pilocarpine can also be focally administered to the hippocampus, 



55 
 

resulting in reduced mortality while reliably inducing status epilepticus and epileptogenesis 

(Furtado Mde et al., 2002). 

Pentylenetetrazole (PTZ) is a GABAA antagonist that has long been used to induce 

seizures in animal models (Squires et al., 1984). Unlike KA and pilocarpine, a single dose 

of PTZ typically triggers a single seizure. Repeated doses of PTZ gradually reduce the 

threshold required to induce seizures, making PTZ a good candidate for chemical kindling 

(Angelatou et al., 1991; Corda et al., 1991). While this makes PTZ more labor intensive in 

studies of epileptogenesis, PTZ is an ideal model for assessing seizure threshold and 

latency, and it is frequently used for this purpose (Garcia-Cabrero et al., 2013; Li et al., 

2014; Roberson et al., 2011; Roberson et al., 2007; Van Erum et al., 2020). 

 Seizures and epilepsy associated with tauopathy 

A growing body of evidence from human and animal studies suggests that tau may 

have a role in the development of seizures and epilepsy. Patients with AD have an increased 

likelihood to have unprovoked seizures, and many are diagnosed with epilepsy (Amatniek 

et al., 2006; Friedman et al., 2012; Hesdorffer et al., 1996; Horvath et al., 2018). These 

seizures are mostly non-motor focal seizures with intact awareness, making them easy to 

overlook without EEG (Horvath et al., 2018). Onset of seizures can occur at any point in 

the course of AD, but is most common early and frequently precedes AD diagnosis (Vossel 

et al., 2013). Earlier onset and severity of are correlated with a higher risk of seizures 

(Amatniek et al., 2006). Increased risk of new onset seizures is associated with AD and 

non-AD dementia, but may be more significant in cases of AD-dementia (Hesdorffer et al., 

1996; Sherzai et al., 2014). Patients with AD but no confirmed history of seizures or 



56 
 

epilepsy also exhibit epileptiform abnormalities on EEG at a higher rate compared to 

healthy controls (Lam et al., 2020; Vossel et al., 2016). 

Animal studies have supported and built upon findings from human studies. Mouse 

models expressing tau pathology commonly exhibit aberrant excitatory neuronal activity, 

particularly in the frontal cortex and hippocampus (Crimins et al., 2012; Crimins et al., 

2011; Palop et al., 2007; Rocher et al., 2010; Yoshiyama et al., 2007). In tauopathic models, 

these changes are not correlated with development of tangle pathology, suggesting soluble 

rather than aggregated tau is responsible (Rocher et al., 2010; Yoshiyama et al., 2007). To 

further support this idea, hippocampal synaptic defects in a regulatable tauopathy model 

recover over time when pathological tau expression is suppressed despite persistence of 

tangles formed prior to tau suppression (Sydow et al., 2011). These observations are 

consistent with other studies showing that soluble tau oligomers, rather than insoluble 

tangles, are likely the primary toxic species (Berger et al., 2007; Flach et al., 2012; 

Lasagna-Reeves et al., 2012; Ondrejcak et al., 2018; Puangmalai et al., 2020; Spires et al., 

2006). Given these observations, it is likely that soluble oligomers are also responsible for 

the synaptic dysfunction observed in tauopathic animal models. 

Consistent with observations from human studies, animal models of tauopathy 

exhibit increased susceptibility to seizures. Mouse models of frontotemporal dementia 

exhibit lower thresholds to induced seizures in several seizure induction models (Garcia-

Cabrero et al., 2013; Liu et al., 2017b; Van Erum et al., 2020). Increasing the expression 

of 4R tau, which increases the formation of oligomeric tau in htau mice, increases 

susceptibility to PTZ induced seizures (Schoch et al., 2016). In contrast, tau deficient mice 

have improved outcomes in some genetic epilepsy models (Gheyara et al., 2014; Holth et 
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al., 2013) and are resistant to induced seizures (DeVos et al., 2013; Liu et al., 2017b; 

Roberson et al., 2011; Roberson et al., 2007). Many animal models expressing other AD 

pathology also develop increased susceptibility to seizure induction (Chan et al., 2015; 

Miszczuk et al., 2016; Reyes-Marin and Nunez, 2017). Amyloid-β is associated with 

neuronal hyperexcitability, possibly due to impairment of inhibitory interneurons (Busche 

et al., 2008; Perez et al., 2016; Verret et al., 2012). Although neurofibrillary tangles are not 

generally found in amyloid-β animal models lacking tau modification, amyloid-β can 

induce tau hyperphosphorylation and soluble tau pathology including oligomers has been 

identified in some of these same models (Castillo-Carranza et al., 2015; Cohen et al., 

2013a; Echeverria et al., 2004; Gotz et al., 2001b; Radde et al., 2006; Shipton et al., 2011; 

Sturchler-Pierrat et al., 1997; Takashima et al., 1996). Taken together with the observation 

that tau deficient animals are protected against amyloid-β induced seizure susceptibility 

and synaptic dysfunction (Roberson et al., 2011; Roberson et al., 2007; Shipton et al., 

2011), it is likely that amyloid-β induced tau pathology is responsible for the pro-epileptic 

changes in these animal models. 

Epilepsy appears to accelerate the development of tauopathy. Patients with AD and 

epilepsy experience more rapid cognitive decline compared to patients with AD but not 

epilepsy (Volicer et al., 1995; Vossel et al., 2013). Tau hyperphosphorylation is also 

correlated with cognitive decline in patients with TLE (Tai et al., 2016). One possible 

explanation for this observation in patients with diagnosed/treated epilepsy is that ASM 

therapy, rather than tau dysfunction, accelerates cognitive decline. Although studies of the 

effect of ASM therapy on cognitive decline are limited, the existing data do not strongly 

support this idea. One study reported accelerated cognitive decline in patients with AD 
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(Fleisher et al., 2011), but this effect has not been observed in other studies (Herrmann et 

al., 2007; Porsteinsson et al., 2001; Profenno et al., 2005; Tariot et al., 2011). Still, valproic 

acid is not recommended as first line therapy in patients with AD due to the high occurrence 

of other adverse events. In contrast, treatment with levetiracetam has been associated with 

reduced rate of cognitive decline (Cumbo and Ligori, 2010). Furthermore, occurrence of 

epileptiform activity in patients with AD but no history of epilepsy is likewise associated 

with more rapid cognitive decline (Vossel et al., 2016), suggesting ASM therapy is not 

responsible.  

An alternate explanation for accelerated cognitive decline in patients with AD and 

epilepsy is that seizures promote tau pathology. Seizures have been associated with tau 

hyperphosphorylation in several human and animal models. Temporal lobe tissue resected 

as treatment for intractable epilepsy frequently exhibits tauopathy-like tau 

hyperphosphorylation decades earlier than in typical cases of tauopathy (Jones et al., 2018; 

Puvenna et al., 2016; Smith et al., 2019; Tai et al., 2016). Supporting this finding, 

hyperphosphorylated tau and increased activity of tau kinases are common findings after 

induced seizures in animal models (Alves et al., 2019; Bracey et al., 2009; Crespo-Biel et 

al., 2007; Jiang et al., 2005; Liang et al., 2009). The promotion of tau phosphorylation and 

aggregation associated with seizures may explain the accelerated cognitive decline 

observed in patients with AD and epilepsy. 

1.5 Study Aims and Significance  

This study focuses on tau’s contribution to neuronal excitability in normal and disease 

conditions. One particular strength of the current study compared to previous work is the 
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use of the htau mouse. This model was chosen specifically to avoid the potential 

confounding effects of endogenous murine tau expressed in most other models of 

tauopathy. Endogenous murine tau does not develop pathology in the same manner as 

human tau, and may continue to function normally even after the human tau has become 

pathological and ceased its physiological function. Since other studies have shown deletion 

of tau ameliorates the hyperexcitability associated with other types of pathology, it is 

important to understand the contribution of tau pathology to excitability without 

endogenous tau. 

The specific aims of this project are as follows: 

1. Determine the effect of tau modulation on neuronal excitability in the 

normally aging mice. Expression of pathological mutant tau has been associated 

with hyperexcitability in mouse models of tauopathy. Furthermore, tau deletion 

appears to abrogate hyperexcitability associated with several models of AD. 

However, two key questions have not been answered. Does pathological tau 

promote hyperexcitability in the absence of normally functioning tau? How does 

loss of tau expression affect neuronal excitability in the absence of additional 

pathological processes? To address these questions, whole-cell patch-clamp 

electrophysiology was used to assess neuronal excitability in DGCs from tau-/-, 

htau, and non-transgenic C57BL/6J mice at 1.5, 4, and 9 months of age. 

2. Determine the effect of tau modulation on induced seizures and epileptogenesis 

following intrahippocampal injection of kainic acid. Tau deficient mice have 

been shown to be resistant to PTZ-induced seizures and exhibit improved survival 

in several genetic models of epilepsy. Conversely, tauopathic model exhibit 
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reduced seizure latency, increased seizure severity, and poorer survival in several 

seizure induction models. However, it is not known whether these differences in 

seizure development are associated with changes in epileptogenesis. Furthermore, 

the propensity of pathological tau to promote seizures has not been assessed in the 

absence of endogenous murine tau. To address these questions, tau-/-, htau, and non-

transgenic C57BL/6J mice underwent intrahippocampal injection of kainate. Initial 

seizure induction and development of spontaneous seizures were observed, 

including a small cohort monitored by video-electroencephalography. Neuronal 

excitability was assessed by whole-cell patch-clamp electrophysiology 1.5-2 

months after IHK. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 Animals 

Transgenic B6.Cg-Mapttm1(EGFP)KltTg(MAPT)8cPdav/J mice (male and female; 

#005491) were produced in house from breeders obtained from The Jackson Laboratory 

(JAX; Bar Harbor, ME). This mouse line was generated previously by introducing a 

transgene encoding six isoforms of human tau without disease-associated mutations onto 

homozygous tau-/- mice (Andorfer et al., 2003). These mice lack any obvious disease 

phenotype at birth, but develop impairments in Morris Water Maze, spatial learning, and 

gross motor function (i.e. food burrowing) with age, particularly in mice older than 9 

months (Geiszler et al., 2016; Phillips et al., 2011; Polydoro et al., 2009). This mouse strain 

was originally generated on a hybrid Swiss Webster/B6D2F1 hybrid background but has 

been backcrossed to C57BL/6J for more than 10 generations. Genetic analysis of SNPs 

performed by The Jackson Laboratory (a technique they frequently use to demonstrate 

cogenicity) was consistent with a pure C57BL/6J background, which served as the control 

strain. All breeding mice were homozygous for a deletion of the murine tau gene. One 

mouse in each breeding pair was hemizygous for a transgene expressing all six isoforms of 

non-mutant human tau protein. The offspring are therefore either full tau knockout (tau-/-) 

or express only human tau (htau).  

DNA was extracted from tail snips and genotype was confirmed via PCR according 

to the protocols supplied by Jackson labs. Disruption of the endogenous murine tau gene 

was confirmed using the primer pair 5’-CGTTGTGGCTGTTGTAGTTG-3’ and 5’-

TCGTGACCACCCTGACCTAC-3’, which amplifies a fragment at 270 bp in both tau-/- 

and htau mice. Presence of the human-tau transgene was confirmed using the primer pair 
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5’-CGAAGTGATGGAAGATCACG-3’ and 5’-GTCTTGGTGCATGGTGTAGC-3’, 

which amplifies a fragment at 79 bp in htau mice. Protein expression was confirmed via 

western blot of hippocampal homogenate using the H150 antibody (1:2000; Santa Cruz 

Biotechnology). Age matched male C57BL/6J control mice were obtained from Jackson 

labs (Jax#000664) and allowed to acclimate after delivery for at least one week prior to 

any experiments. All mice were housed under a 14 hour light / 10 hour dark cycle in an 

Association for Assessment and Accreditation of Laboratory Animal Care Internal 

(AALAC) facility. Food and water were available ad libitum. The University of Kentucky 

Institutional Animal Care and Use Committee approved all procedures. 

2.2 Intrahippocampal kainate (IHK) mouse model of epilepsy 

All surgical procedures were performed under isoflurane general anesthesia with 

0.05% bupivacaine local anesthesia. Kainic acid (100 nL, 20 mM in 0.9% saline, Tocris 

Bioscience) or saline (100 nL) was injected into the left dorsal hippocampus (2.0 mm 

posterior, 1.25 mm left, and 1.6 mm ventral to bregma) between 6 and 8 weeks of age 

(Krook-Magnuson et al., 2013). The injection rate was 20 nL/minute, and the needle was 

left in place for 5 minutes before and after injection. Buprenorphine (0.05 mg/kg) and 

carprofen (10 mg/kg) were administered subcutaneously after surgery. Mice were 

transferred to a heated cage for recovery and monitored for Racine scale seizures for 2 

hours to assess development of status epilepticus (SE). SE was defined as the occurrence 

of at least 3 seizures of Racine scale 3 or higher during the observation period (Shibley and 

Smith, 2002). After 2 hours, diazepam (7.5 mg/kg) was administered intraperitoneally to 

terminate status epilepticus (SE). Video monitoring for spontaneous seizures began 2 

weeks after the IHK surgery and continued for 6 weeks. Each animal underwent 7-8 
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recording sessions (average duration 7.8 hours), averaging 56 hours of monitoring per 

animal. The videos were reviewed by a reviewer blind to genotype and treatment.  

A separate cohort of mice (n=2-4 per group) were fitted with wireless transmitters 

to allow video-electroencephalographic (vEEG) recording (Data Sciences International; 

DSI; St. Paul, MN). Kainic acid or saline was injected as described above. Screws were 

placed (1.0mm anterior and 1.0mm right to bregma and 3.0mm posterior and 3.0mm left 

to bregma) after injection. A wireless transmitter (ETA-F10, DSI) was implanted 

intraperitoneally and connected to the screws by subcutaneous wires. vEEG began 

immediately after surgery and continued for 2 hours until administration of diazepam as 

described above. EEG recordings were collected using Ponema (v6.42, DSI). Mice 

underwent a total of 5 sessions of 24 hour vEEG recording between 1 and 3 weeks after 

IHK. EEG recordings were manually reviewed for seizure-like activity, defined as 

rhythmic high amplitude (>3 fold larger than baseline), high frequency (>10Hz) activity 

lasting at least 20 seconds, using NeuroScore (v3.3.1, DSI). Potential seizures identified 

on EEG were confirmed by corresponding Racine behavior on video recorded in Open 

Broadcaster Software (v21.0.1) using a Logitech C270 HD camera. Seizure prevalence and 

average daily seizure frequency recorded via vEEG was calculated for each group. 

2.3 Hippocampal slice preparation 

Mice were deeply anesthetized via inhalation of isoflurane to effect (lack of tail 

pinch response) and decapitated while anesthetized. The brain was rapidly removed from 

the skull and immersed in ice-cold oxygenated (95% O2/5% CO2) cutting/holding artificial 

cerebrospinal fluid (aCSF). The cutting/holding aCSF contained (in mM): 85 NaCl, 75 

sucrose, 2.5 KCl, 25 glucose, 1.25 NaH2PO4·H2O, 4 MgCl2·6H2O, 0.5 CaCl2·2H2O, and 
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24 NaHCO3 (pH 7.2-7.4). Coronal sections (300 µm) were cut on a vibrating microtome 

(Vibratome Series 1000; Technical Products International, St. Louis, MO). Each slice was 

divided with a midsagittal cut and hippocampi were isolated and transferred to a holding 

chamber with warmed (30-32° C), oxygenated cutting/holding aCSF and incubated for >1 

hour before recordings. In a subset of animals, 5-8 hippocampal slices were set aside for 

protein analysis. Extrahippocampal tissue was removed from these slices. Approximately 

30mg of hippocampal tissue was collected and flash frozen in liquid nitrogen. One slice at 

a time was transferred to a chamber mounted under an upright microscope (BX51WI; 

Olympus) and was superperfused with warmed (30-32° C) oxygenated recording aCSF. 

The recording aCSF contained (in mM): 124 NaCl, 3 KCl, 2 CaCl2, 1.3 MgCl, 1.4 

NaHCO3, and 11 glucose (pH 7.2-7.4). Each slice was equilibrated in the microscope 

chamber for >10 min to allow the cutting aCSF to wash off before recording. 

2.4 Electrophysiological recordings 

Whole-cell patch-clamp recordings were obtained from hippocampal DGCs, 

identified by location and morphological characteristics. Recording pipettes were pulled 

from borosilicate glass (open tip resistance 3-5 MΩ; King Precision Glass Co.). The pipette 

recording solution contained (in mM): 126 K+-gluconate, 4 KCl, 10 HEPES, 4 MgATP, 

0.3 NaGTP, and 10 PO-creatine (pH 7.2). Electrophysiological recordings were performed 

using a Multiclamp 700B amplifier (Molecular Devices), low pass filtered at 2 kHz, 

digitized at 20 kHz (Digidata 1440A; Molecular Devices), and recorded onto a computer 

using pClamp 10.2 software (Molecular Devices). Seal resistance was typically 2-5 GΩ. 

Series resistance was <25 MΩ (mean: 10.8±0.1 MΩ) and was monitored periodically 
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during the recordings. Recordings were discontinued if series resistance changed by more 

than 20% during the recording. 

Resting membrane potential and input resistance were measured in current clamp 

mode. Current steps (-100 pA to 400 pA in 50 pA steps) were injected to record membrane 

voltage response. The input resistance was calculated from the slope of the linear portion 

of the resulting current-voltage curve. The resting membrane potential was averaged from 

the portions of recorded traces between current steps. Spontaneous and electrically-evoked 

excitatory post-synaptic currents (i.e., sEPSCs and eEPSCs) were recorded in voltage-

clamp mode at a holding potential of -70 mV. To elicit evoked EPSCs, a platinum-iridium 

concentric-bipolar electrode (125 µM diameter; FHC, Bowdoin, ME) was positioned on 

the lateral perforant pathway (Figure 2.1) and 30 pairs of current pulses (30-50 µA; 400 

µs; interpulse interval 75 ms; 5 seconds between pulse pairs) were administered to evoke 

paired eEPSCs (i.e., paired pulse response; PPr). The stimulus intensity was adjusted so 

that responses occurred after >80% of pulses. Stimulus sweeps that failed to elicit a 

response with both stimuli were excluded from analysis. 

2.5 Tissue Homogenization and Western Blot 

The hippocampal tissue from each mouse was homogenized as described 

previously (Koren et al., 2019). Tissue samples were mechanically homogenized in RIPA 

lysis buffer (VWR) with phosphatase inhibitor cocktails 2 and 3 (Sigma), cOmplete 

protease inhibitor (Sigma), and PMSF (1 mM final concentration, Roche Diagnostics). 

Homogenates were centrifuged at 4°C at 13,000 rpm for 30 minutes. The fresh supernatant 
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from each sample was divided into aliquots and stored at -80°C. Protein concentration was 

quantified using the Pierce BCA kit (Thermo Fisher, 23225). 

Sample protein concentrations were normalized with lysis buffer and denatured by 

boiling for 5 minutes in 4x Laemmli buffer (BioRad) plus 10% β-mercaptoethanol (Sigma). 

The samples were separated on a 10% tris-glycine gel (BioRad) and transferred to a 

polyvinylidene fluoride membrane (Millipore). Membranes were blocked in 6% non-fat 

dry milk (w/v) in 0.01M tris buffered saline (TBS). All antibodies were diluted in 6% non-

fat milk in TBS. Primary antibodies used are as follows: AT8 (pS202/pT205 tau; 1:2000; 

ThermoFisher), H-150 (human tau; 1:2000; Santa Cruz), GAPDH (1:5000; Cell Signaling 

Technology). Goat anti-mouse and goat anti-rabbit secondary antibodies conjugated to 

horseradish peroxidase (Southern Biotech) used were diluted in 6% non-fat dry milk in 

TBS (w/v). Images were collected on an Amersham Imager 600 (General Electric). 

2.6 Data Analysis 

All electrophysiological measures (evoked action potential frequency, resting membrane 

potential, input resistance, spontaneous EPSC frequency, and paired pulse responses) were 

analyzed with MiniAnalysis (Synaptosoft, Fort Lee, NJ). Statistical measures were 

performed with Prism (GraphPad, San Diego, CA). Data were disaggregated by sex and no 

sex-dependent differences were detected for any measure, so sexes were combined for all 

analyses. All data were tested for normality with a Shapiro Wilk test and, except where 

noted, all data were found to be normally distributed. Specific statistical tests used for each 

comparison will be described in sections 3.2.5 and 4.2.5 as appropriate. Data are presented 

as mean ± SEM and statistical significance was set to p<0.05 for all tests.  
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Figure 2.1 Approximate location of stimulating and recording electrodes 
The stimulating electrode was positioned preferentially over the lateral perforant pathway 
to reduce stimulation of the medial perforant pathway. The stimulating electrode was 
repositioned as needed to ensure recorded cells were stimulated. 
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CHAPTER 3. EFFECTS OF ALTERED TAU EXPRESSION ON DENTATE GRANULE CELL 
EXCITABILITY IN MICE 

A similar version of this chapter was published on May 21, 2021 in Experimental 
Neurology with John Koren 3rd, Jose F. Abisambra, and Bret N. Smith as additional 
authors (doi: 10.1016/j.expneurol.2021.113766). 

3.1 Introduction 

Microtubule dynamics are critical for central nervous system (CNS) function. 

Disruptions in microtubule homeostasis are associated with a variety of CNS dysfunctions 

including Alzheimer’s disease and other tauopathies, epilepsy, Parkinson’s disease, 

congenital brain malformations, psychiatric disorders, and autism spectrum disorder 

(Chang et al., 2018; Gardiner and Marc, 2010; Goncalves et al., 2018; Marchisella et al., 

2016; Pellegrini et al., 2017; Saha and Sen, 2019). The microtubule-associated protein tau 

(MAPT, tau) plays an important role in the assembly and stabilization of microtubules. To 

allow normal microtubule dynamics, phosphorylated tau has reduced affinity for 

microtubules, promoting their dismantling (Lindwall and Cole, 1984). The equilibrium of 

tau phosphorylation, which is tightly regulated under physiological conditions (Martin et 

al., 2013a; Martin et al., 2013b), becomes disrupted in Alzheimer’s disease and other 

tauopathies, to allow accumulation and aggregation of hyperphosphorylated tau (pTau) 

(Castellani and Perry, 2019). Tau solubility decreases as hyperphosphorylation increases, 

eventually forming insoluble neurofibrillary tangles, which are a hallmark of Alzheimer’s 

disease and other tauopathies (Castellani and Perry, 2019).  

Hyperphosphorylated tau promotes increased neuronal excitability. In mouse 

models expressing mutant human tau protein, principal neurons in the frontal cortex and 

hippocampus exhibit depolarized neuronal resting membrane potentials (Crimins et al., 
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2012; Crimins et al., 2011; Rocher et al., 2010), increased evoked action potential firing 

and spontaneous excitatory postsynaptic currents (sEPSCs) (Crimins et al., 2012; Crimins 

et al., 2011; Rocher et al., 2010), increased glutamate release and decreased glutamate 

reuptake (Decker et al., 2016; Hunsberger et al., 2015), and abnormal neuron morphology 

and synaptic organization (Crimins et al., 2012; Crimins et al., 2011; Rocher et al., 2010; 

Yoshiyama et al., 2007). Consistent with this increased neuronal excitability, mice 

expressing mutant human tau protein exhibit increased vulnerability to induced epilepsy 

(Garcia-Cabrero et al., 2013; Liu et al., 2017b), a finding consistent with studies 

demonstrating increased seizure prevalence in patients with Alzheimer’s disease (Pandis 

and Scarmeas, 2012; Vossel et al., 2013; Vossel et al., 2016). 

In addition to establishing a correlation between tau hyperphosphorylation and 

neuronal hyperactivity in animals, previous work has studied the effect of removing or 

reducing tau expression on seizures. Disruption of Mapt expression reduces seizure burden 

and improves survival in some genetic epilepsy models (Gheyara et al., 2014; Holth et al., 

2013), confers resistance to chemically induced seizures (DeVos et al., 2013; Li et al., 

2014), and prevents glutamate excitotoxicity in cultured neurons (Miyamoto et al., 2017). 

Furthermore, reducing tau phosphorylation by administration of the protein phosphatase 

2A (PP2A) activator, sodium selenate, reduces seizure burden and promotes survival in 

multiple seizure models (Jones et al., 2012; Liu et al., 2016). Taken together, these studies 

suggest involvement of tau hyperphosphorylation in epilepsy due to its effects on neuronal 

excitability. 

While previous studies have outlined an important role for tau in promoting 

neuronal hyperexcitability, the full impact of tau’s effect on neuronal function remains 
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unknown. Age related functional changes in tau knockout mice may impact neuronal 

activity and animal survival at later ages. Furthermore, the effect of pTau on excitability 

has been studied in mouse models that express mutant human tau, without suppressing 

endogenous mouse tau. The presence of two different tau species could thus confound 

results, since the murine tau may remain functional despite the presence of pathologic 

human tau. It is unclear whether the presence of wild-type murine tau in most tauopathy 

models modulates the pathological functions conferred by hyperphosphorylation. This 

study will address these gaps in current knowledge by measuring neuronal excitability in 

tau-/- mice and in the htau mouse model, which expresses six isoforms of non-mutant 

human tau with a concurrent deletion of endogenous murine tau (Andorfer et al., 2003). 

The htau model recapitulates features of tau pathology and cognitive deficits present in 

Alzheimer’s disease, which include appearance of hyperphosphorylated tau species as 

early as 1.5mo, deposition of late-stage tangle pathology at 9mo, and presentation of 

substantial cognitive deficits by 12mo. Given these considerations and previous data 

demonstrating profound hippocampal deficits in tauopathy models (Abisambra et al., 2010; 

Abisambra et al., 2013; Fontaine et al., 2017), we tested the hypotheses that pTau promotes 

hyperexcitability of dentate gyrus granule cells (DGCs) in the absence of functional 

endogenous tau, and that complete tau ablation reduces neuronal excitability throughout 

the life of the animal. We chose to study DGCs because they contribute to epileptogenesis 

and tauopathy-associated cognitive decline (Alcantara-Gonzalez et al., 2021; Boychuk et 

al., 2016; Hunt et al., 2010; Lee et al., 2012; Martin-Belmonte et al., 2020), and epilepsy-

related changes in the dentate gyrus were ameliorated by tau deletion (Gheyara et al 2014). 
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Despite their importance in cognition and disease processes, the electrophysiological 

effects of modifying tau expression have not been studied extensively in DGCs. 

3.2 Materials and Methods 

 Animals 

Transgenic B6.Cg-Mapttm1(EGFP)KltTg(MAPT)8cPdav/J mice (male and female) 

were produced in house from breeders obtained from The Jackson Laboratory (Jax# 

005491; Bar Harbor, ME). This mouse line was generated previously by introducing a 

transgene encoding six isoforms of human tau without disease-assocaited mutations onto 

homozygous tau-/- mice (Andorfer et al., 2003). These mice lack any obvious disease 

phenotype at birth, but develop impairments in Morris Water Maze, spatial learning, and 

food burrowing with age (Geiszler et al., 2016; Phillips et al., 2011; Polydoro et al., 2009). 

This mouse strain was originally generated on a hybrid Swiss Webster/B6D2F1 hybrid 

background but has been backcrossed to C57BL/6J for more than 10 generations. SNP 

analysis performed by The Jackson Laboratory was consistent with a pure C57BL/6J 

background, which served as the control strain. All breeding mice were homozygous for a 

disruption of the murine tau gene. One mouse in each breeding pair was hemizygous for a 

transgene expressing all six isoforms of non-mutant human tau protein. The offspring are 

therefore either full tau knockout (tau-/-) or express only human tau (htau).  

DNA was extracted from tail snips and genotype was confirmed via PCR according 

to the protocols supplied by Jackson labs. Disruption of the endogenous murine tau gene 

was confirmed using the primer pair 5’-CGTTGTGGCTGTTGTAGTTG-3’ and 5’-

TCGTGACCACCCTGACCTAC-3’, which amplifies a fragment at 270 bp in both tau-/- 
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and htau mice. Presence of the human-tau transgene was confirmed using the primer pair 

5’-CGAAGTGATGGAAGATCACG-3’ and 5’-GTCTTGGTGCATGGTGTAGC-3’, 

which amplifies a fragment at 79 bp in htau mice. Protein expression was confirmed via 

western blot of hippocampal homogenate using the H150 antibody (Figure 3.1; 1:2000; 

Santa Cruz Biotechnology). Age matched male C57BL/6J control mice were obtained from 

Jackson labs (Jax#000664) and allowed to acclimate after delivery for at least one week 

prior to any experiments. All mice were housed under a 14 hour light / 10 hour dark cycle 

in an Association for Assessment and Accreditation of Laboratory Animal Care Internal 

(AALAC) facility. Food and water were available ad libitum. The University of Kentucky 

Institutional Animal Care and Use Committee approved all procedures. 

 Hippocampal slice preparation 

Mice were deeply anesthetized via inhalation of isoflurane to effect (lack of tail 

pinch response) and decapitated while anesthetized. The brain was rapidly removed from 

the skull and immersed in ice-cold oxygenated (95% O2/5% CO2) cutting/holding artificial 

cerebrospinal fluid (aCSF). The cutting/holding aCSF contained (in mM): 85 NaCl, 75 

sucrose, 2.5 KCl, 25 glucose, 1.25 NaH2PO4·H2O, 4 MgCl2·6H2O, 0.5 CaCl2·2H2O, and 

24 NaHCO3 (pH 7.2-7.4). Coronal sections (300 µm) were cut on a vibrating microtome 

(Vibratome Series 1000; Technical Products International, St. Louis, MO). Each slice was 

divided with a midsagittal cut and hippocampi were isolated and transferred to a holding 

chamber with warmed (30-32° C), oxygenated cutting/holding aCSF and incubated for at 

least 1 hour before recordings. In a subset of animals, 5-8 hippocampal slices were set aside 

for protein analysis. Extrahippocampal tissue was removed from these slices. 

Approximately 30mg of hippocampal tissue was collected and flash frozen in liquid 

nitrogen. One slice at a time was transferred to a chamber mounted under an upright 
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microscope (BX51WI; Olympus) and was superperfused with warmed (30-32° C) 

oxygenated recording aCSF. The recording aCSF contained (in mM): 124 NaCl, 3 KCl, 2 

CaCl2, 1.3 MgCl, 1.4 NaHCO3, and 11 glucose (pH 7.2-7.4). Each slice was equilibrated 

in the microscope chamber for >10 minutes before recording. 

 Electrophysiological recordings 

Whole-cell patch-clamp recording were obtained from hippocampal DGCs, 

identified by location and morphological characteristics. Recording pipettes were pulled 

from borosilicate glass (open tip resistance 3-5 MΩ; King Precision Glass Co.). The pipette 

recording solution contained (in mM): 126 K+-gluconate, 4 KCl, 10 HEPES, 4 MgATP, 

0.3 NaGTP, and 10 PO-creatine (pH 7.2). Electrophysiological recordings were performed 

using a Multiclamp 700B amplifier (Molecular Devices), low pass filtered at 2 kHz, 

digitized at 20 kHz (Digidata 1440A; Molecular Devices), and recorded onto a computer 

using pClamp 10.2 software (Molecular Devices). Seal resistance was typically 2-5 GΩ. 

Series resistance was <25 MΩ (mean: 11.4 MΩ) and was monitored periodically during 

the recordings. Recordings were discontinued if series resistance changed by more than 

20% during the recording. 

Spontaneous excitatory post-synaptic currents (sEPSCs) were recorded in voltage-

clamp mode at a holding potential of -70 mV. Resting membrane potential and input 

resistance were measured in current clamp mode. Current steps (-100 pA to 400 pA in 50 

pA steps) were injected to record membrane voltage response. The input resistance was 

calculated from the slope of the linear portion of the resulting current-voltage curve. The 

resting membrane potential was averaged from the portions of recorded traces between 

current steps. A platinum-iridium concentric-bipolar electrode (125 µM diameter; FHC) 
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was positioned on the lateral perforant pathway of each slice. A series of 30 pairs of current 

pulses (10-60 µA; 400 µs; interpulse interval 75 ms; 5 seconds between pulse pairs) were 

administered to evoke EPSCs. The stimulus intensity was adjusted so that responses 

occurred after >80% of pulses. Stimulus sweeps that failed to elicit a response with both 

stimuli were excluded from analysis. 

 Tissue Homogenization and Western Blot 

The hippocampal tissue from each mouse was homogenized as described 

previously (Koren et al., 2019). Tissue samples were mechanically homogenized in RIPA 

lysis buffer (VWR) with phosphatase inhibitor cocktails 2 and 3 (Sigma), cOmplete 

protease inhibitor (Sigma), and PMSF (1 mM final concentration, Roche Diagnostics). 

Homogenates were centrifuged at 4°C at 13,000 rpm for 30 minutes. The fresh supernatant 

from each sample was divided into aliquots and stored at -80°C. Protein concentration was 

quantified using the Pierce BCA kit (Thermo Fisher, 23225). 

 Sample protein concentrations were normalized with lysis buffer and denatured by 

boiling for 5 minutes in 4x Laemmli buffer (BioRad) plus 10% β-mercaptoethanol (Sigma). 

The samples were separated on a 10% tris-glycine gel (BioRad) and transferred to a 

polyvinylidene fluoride (PVDF) membrane (Millipore). Membranes were blocked in 6% 

non-fat dry milk (w/v) in 0.01M tris buffered saline (TBS). All antibodies were diluted in 

6% non-fat milk in TBS. Primary antibodies used are as follows: AT8 (pS202/pT205 tau; 

1:2000; ThermoFisher), H-150 (human tau; 1:2000; Santa Cruz), GAPDH (1:5000; Cell 

Signaling Technology). Goat anti-mouse and goat anti-rabbit secondary antibodies 

conjugated to horseradish peroxidase (Southern Biotech) used were diluted in 6% non-fat 
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dry milk in TBS (w/v). Images were collected on an Amersham Imager 600 (General 

Electric). 

 Data Analysis 

All electrophysiological measures (evoked action potential frequency, resting 

membrane potential, input resistance, spontaneous EPSC frequency, and paired pulse 

responses) were analyzed with MiniAnalysis (Synaptosoft, Fort Lee, NJ). Statistical 

measures were performed with Prism (GraphPad, San Diego, CA). Data were tested for 

normality by a Shapiro-Wilk test and log-transformed where appropriate. Data were 

normally distributed except where noted. A two-way ANOVA with age and genotype as 

factors was used to compare mean values for each electrophysiological value. All data for 

each electrophysiological measurement were analyzed together. Some control data are 

presented in multiple figures for presentation clarity. Data were disaggregated by sex and 

no sex-dependent differences were detected for any measure, so sexes were combined for 

all analyses. Total cell counts for each electrophysiological measurement are summarized 

in Table 3.1. Data are presented as mean ± SEM and statistical significance was set to 

p<0.05 for all tests. 

3.3 Results 

 Resting membrane potential and input resistance in tau-/- and htau mice 

Overexpression of hyperphosphorylated tau is associated with a depolarized resting 

membrane potential in neocortical pyramidal neurons of Tg4510 mutant mice (Crimins et 

al., 2012; Crimins et al., 2011; Rocher et al., 2010), but the electrophysiological effects of 

modifying tau expression in DGCs have not been studied in detail. Additionally, the 

insertion of pathologic human tau in other models (e.g., Tg4510) may compete with  
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Table 3.1 Summary of Replicates used for Electrophysiological Measurements 

Age Genotype 
N (cells) 

Induced Action 
Potential Frequency 

Spontaneous EPSC 
Frequency Paired Pulse Ratio 

1.5 
months 

tau-/- 26 20 21 

htau 25 16 26 

control 25 13 22 

4 months 

tau-/- 24 15 17 

htau 19 11 17 

control 35 21 16 

9 months 

tau-/- 28 23 23 

htau 18 16 12 

control 30 21 19 
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endogenous mouse tau to regulate microtubule assembly and function (Alonso Adel et al., 

2006). To better understand the contribution of tau to intrinsic properties, resting  

membrane potential and input resistance were measured in DGCs from non-transgenic 

control, tau-/-, and htau mice at 1.5, 4, and 9 months of age, which represent time points in 

which early pTau species are detected, mid-stage pathological processes occur, and 

insoluble tangle pathology is evident, respectively (Andorfer et al., 2003). 

Differences in resting membrane potential and input resistance were analyzed 

between control, tau-/-, and htau mice at each age by a two-way ANOVA with age and 

genotype as factors. In DGCs from tau-/- mice, the resting membrane potential was 

depolarized compared to those from age-matched control mice at 1.5 months of age 

(F=11.83; p<0.05; Table 3.2). No difference in resting membrane potential was detected at 

4 months or 9 months of age (p>0.05; Table 3.2). No difference in resting membrane 

potential was detected between htau and control mice at any age (p>0.05). Input resistance 

was also not different between DGCs from control mice and either tau-/- or htau mice at 

any age (p>0.05; Table 3.2). With the exception of resting membrane potential differences 

in young tau-/- mice, differences in passive membrane properties were not detected across 

genotypes at any age.  

 The effect of age on resting membrane potential and input resistance was 

determined within each genotype. Resting membrane potential was hyperpolarized in 

DGCs from 9 month old tau-/- mice, relative to 1.5 and 4 month old tau-/- mice (F=11.83; 

p<0.05). Resting membrane potential was also hyperpolarized in DGCs from 9 month old 

control mice compared to 4 month old control mice (F=11.83; p<0.05). Resting membrane 

potential did not change with age in DGCs from htau mice (p>0.05), and no age-related   
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Table 3.2 Summary of Resting Membrane Potential and Input Resistance 

Age Genotype N (cells) 
Membrane 
potential 

Mean (mV) 

Input Reseistance 

Mean (MΩ) 

1.5 
months 

tau-/- 25 -68.8±1.8* 278.7±28.4MΩ 

htau 26 -71.1±1.8 288.5±27.8MΩ 

control 25 -72.1±2.1 265.6±33.1MΩ 

 

4 months 

 

tau-/- 35 -70.1±1.9 287.4±22.5MΩ 

htau 24 -70.8±1.7 278.4±32.4MΩ 

control 19 -70.3±2.1 276.9±22.1MΩ 

 

9 months 

 

tau-/- 30 -73.9±1.3tǂ 236.4±15.3MΩ tǂ 

htau 28 -73.2±1.7 227.1±17.4MΩ tǂ 

control 18 -73.8±1.7ǂ 234.1±21.5MΩ 

*significant difference versus control. 

t significant difference versus 1.5 month. 

ǂ significant difference versus 4 month. 
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difference in input resistance was detected in control mice (p>0.05). Input resistance in 

DGCs from 9 month old tau-/- mice, however, was lower compared to those from 1.5 or 4 

month old tau-/- mice (F=14.11; p<0.05). Similarly, input resistance was lower in DGCs 

from 9 month old htau mice compared to 1.5 or 4 month old htau mice (F=14.11; p<0.05). 

Thus, input resistance was lower at the oldest ages examined for DGCs in both tau-/- and 

htau mice. Input resistance was not different between DGCs from tau-/- and htau mice at 

any age (p>0.05). 

 Lower action potential firing frequency in young tau-/- and htau mice 

At 4 and 8-9 months of age, neocortical pyramidal cells from the Tg4510 tau mouse 

model exhibit a higher frequency of evoked action potentials in response to depolarizing 

current injection, relative to control mice (Crimins et al., 2012; Crimins et al., 2011; Rocher 

et al., 2010), but lower action potential threshold and reduced action potential frequency 

was reported in CA1 pyramidal cells from the same mouse strain (Hatch et al., 2017), and 

age-related effects of tau expression on intrinsic excitability of DGCs has not been 

assessed. To better understand the role of tau in determining evoked action potential 

frequency, depolarizing and hyperpolarizing currents were injected into DGCs from non-

transgenic control, tau-/-, and htau mice at 1.5, 4, and 9 months of age. 

 Dentate granule cells from 1.5 month old tau-/- mice had a lower peak action potential 

frequency relative to cells from age-matched control mice (F=7.216; p<0.05; Figure 3.1B). 

Action potential frequency response at any current injection magnitude did not differ 

between DGCs from tau-/- and control mice at 4 or 9 months (p>0.05; Figure 3.1C&D). 

DGCs from 1.5 month old htau mice also had a lower peak frequency of evoked action  
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Figure 3.1 Membrane voltage response to injected current in DGCs from tau-/- and htau 
mice compared to non-transgenic control mice.  
(A) Sample recordings showing voltage response from -100, 0, and 200pA current steps in 
DGCs from 1.5 month old tau-/-, htau, and control mice. Inset: representative Western blot 
showing absence of tau protein in tau-/- and presence of human tau protein in htau mice. 
(B) Comparison of evoked action potential frequency in response to injection of 200pA 
current. At 1.5 months, DGCs from control mice fire more actions potentials than those 
from tau-/- and htau mice. In tau-/- mice, DGCs from 9 month old mice fire more action 
potentials than at 1.5 or 4 months. *: Different from 1.5 month control (p<0.05) t: Different 
from 1.5 month tau-/- (p<0.05) ǂ: Different from 4 month tau-/- (p<0.05). Error bars indicate 
SEM. Statistical comparisons were made between all groups by two-way ANOVA with 
age and genotype as factors.  
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potentials to cells from control mice (F=7.216; p<0.05; Figure 3.1B). Action potential 

frequency in these neurons did not differ in response to any current injection between htau 

and control mice at 4 or 9 months (p>0.05). Thus, versus age-matched controls, lower 

action potential frequency was observed in DGCs at 1.5 months of age in both tau-/- and 

htau mice, but not at older ages. No differences in action potential frequency were detected 

between DGCs from tau-/- and htau mice at any age (p>0.05). 

Membrane voltage response to injected current was analyzed at different time 

points to assess the effect of aging within each genotype. In DGCs from control mice, cells 

from 4 month old mice had a lower peak frequency of evoked action potentials compared 

to 1.5 month old mice (p<0.05; Figure 3.2A). DGCs from both 9 month old tau-/- and htau 

mice had a higher peak frequency of evoked action potentials compared to 1.5 or 4 month 

old mice (F=7.216; p<0.05; Figure 3.2B,C). Thus, higher peak action potential frequency 

emerged at 9 months of age in both htau and tau-/- mice, but this was not evident in control 

mice. Together, these results suggest intrinsic properties in both tau-/- and htau mice 

develop age-related changes that are not observed in control mice. DGCs from both 

transgenic strains exhibit reduced cellular excitability compared to control early in life, but 

these differences are abrogated with age. Furthermore, the intrinsic properties of DGCs 

from tau-/- and htau mice change with age in a similar fashion. 

 Spontaneous EPSC frequency was not impacted by tau 

Excitatory synaptic input to DGCs is thought to contribute to network excitability and 

seizure generation in several models of acquired epilepsy (Butler et al., 2015; Hunt et al., 

2010; Winokur et al., 2004), and changes in sEPSC frequency related to changes in tau 

expression could contribute to the changes in seizure susceptibility observed by others 

(Garcia-Cabrero et al., 2013; Gheyara et al., 2014; Holth et al., 2013). To determine if tau   
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Figure 3.2 Membrane voltage responses change with age in DGCs. 
Same data from figure 1 re-presented to show age-related changes in evoked action 
potential frequency. (A) DGCs from 4 month old non-transgenic control mice fire fewer 
action potentials compared to DGCs from 1.5 month old control mice in response to current 
injection of 250 and 300pA. No differences in firing pattern were found between DGCs 
from 1.5 and 9 month old control mice. (B) DGCs from 9 month old tau-/- mice fire more 
action potentials compared to DGCs from 1.5 month old tau-/- mice in response to current 
injections of 200 and 250pA. DGCs from 9 month old tau-/- mice also fire more action 
potentials compared to DGCs from 4 month old tau-/- mice in response to current injection 
of 200pA and higher. No differences in firing pattern were found between DGCs from 1.5 
and 4 month old tau-/- mice. (C) DGCs from 9 month old htau mice fire more action 
potentials compared to DGCs from 1.5 month old htau mice in response to current 
injections of 250 and 300pA. DGCs from 9 month old htau mice also fire more action 
potentials compared to DGCs from 4 month old htau mice in response to current injection 
of 300 and 350pA. No differences in firing pattern were found between DGCs from 1.5 
and 4 month old htau mice. Error bars indicate SEM.  *: 1.5 month different from 4 month 
(p<0.05) t: 1.5 month different from 9 month (p<0.05) ǂ: 4 month different from 9 month 
(p<0.05). 
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expression influences overall excitatory synaptic input to DGCs, sEPSC frequency was 

measured in DGCs from tau-/-, htau, and control mice. A Shapiro-Wilk test found the data 

were not normally distributed but were positively skewed, so a log transformation was 

performed on the raw data. Log-transformed sEPSC frequencies were compared with a 

two-way ANOVA with age and genotype as factors and did not differ between groups at 

any ages (p>0.05; Figure 3.3A). Overall, there was not a strong influence of age or strain 

on sEPSC frequency. 

 Paired pulse facilitation is enhanced in young tau-/- and htau mice 

Altered probability of glutamate release can also influence DGC activity and may 

be susceptible to tau hyperphosphorylation or mutation (Yoshiyama et al., 2007). To 

determine effects of tau expression on paired pulse facilitation in the dentate gyrus, pairs 

of stimuli were administered to the lateral perforant path and evoked EPSCs were recorded 

in DGCs from tau-/-, htau, and control mice. The paired pulse ratio, which is calculated as 

the amplitude of the second evoked EPSC divided by the amplitude of the first evoked 

EPSC, is inversely proportional to the probability of neurotransmitter release from the 

presynaptic terminal (i.e. a higher paired pulse ratio indicates a lower probability of 

neurotransmitter release; Graziane and Dong, 2016). The paired pulse ratio of evoked 

EPSCs was compared between all groups with a two-way ANOVA with age and genotype 

as factors. The paired pulse ratio of evoked EPSCs was significantly greater in DGCs from 

tau-/- mice compared to age-matched control mice at 1.5 months (control: 1.27±0.10; tau-/-

: 1.56±0.16; F=6.480; p=0.002) but did not differ at 4 or 9 months (p>0.05; Figure 3.4A-

C). The paired pulse ratio was lower in DGCs from 9 month old tau-/- mice compared to 

1.5 month old tau-/- mice (1.5 month tau-/-: 1.56±0.16, 9 month tau-/-: 1.28±0.09, F=8.924;   
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Figure 3.3 Average spontaneous EPSC frequency in tau-/-, htau, and non-transgenic control 
mice. 
(A) No differences sEPSC frequency were found between DGCs from tau-/- or htau mice 
and control mice at any age. sEPSC frequency did not change with age in DGCs from  
tau-/-, htau, or control mice (p>0.05). A Shapiro-Wilk test found the data are not normally 
distributed, so raw data were log transformed prior to further analysis. Statistical 
comparisons were made between all groups by two-way ANOVA with age and genotype 
as factors. (B) Representative traces of sEPSCs in DGCs from tau-/-, htau, or control mice 
at 1.5, 4, and 9 months. Error bars indicate SEM.  
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Figure 3.4 Paired pulse ratio in tau-/- mice compared to non-transgenic control mice. 
(A) The paired pulse ratio is higher in DGCs from 1.5 month old tau-/- mice compared to 
1.5 month old control mice. *: p<0.05 (B, C) No differences in paired pulse ratio were 
found between DGCs from tau-/- and control mice at 4 (B) or 9 (C) months old. (D) The 
paired pulse ratio is lower in DGCs from 9 month old tau-/- mice compared to 1.5 month 
old tau-/- mice. The paired pulse ratio did not change with age in DGCs from control mice. 
Statistical comparisons were made between all groups by two-way ANOVA with age and 
genotype as factors. *: different from 1.5 month (p<0.05) Error bars indicate SEM. 
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Figure 3.4D). Similar to results from tau-/- mice, the paired pulse ratio was greater in DGCs 

from htau mice compared to control mice at 1.5 months (control: 1.27±0.10; htau: 

1.43±0.09; F=6.480; p=0.023) but did not differ at 4 or 9 months of age (p>0.05; Figure 

3.5A-C). The paired pulse ratio did not change with age in DGCs from htau mice (p>0.05; 

Figure 3.5D). Thus, in both transgenic mouse strains, the paired pulse ratio in DGCs after 

stimulation of the lateral perforant pathway was greater compared to those from non-

transgenic control mice at 1.5 months of age, but not later in life. The paired pulse ratio in 

DGCs after stimulation of the perforant pathway did not differ between tau-/- and htau 

animals at any age (p>0.05). The paired pulse ratio decreased with age in tau-/- mice. This 

contrasted with results from htau mice and non-transgenic control mice, in which age-

related changes in paired pulse ratio were not detected (p>0.05). The amplitudes of evoked 

EPSCs varied significantly across all cells but were not different between any groups (data 

not shown). 

3.4 Discussion 

Tau pathology is associated with greater excitability and increased susceptibility to seizures 

in epilepsy models (Garcia-Cabrero et al., 2013; Liu et al., 2017b). Similarly, loss of tau 

through genetic deletion or suppression with antisense oligonucleotides is associated with 

decreased mossy fiber sprouting in the dentate gyrus, reduced seizure burden, and 

improved cognition and survival in models of epilepsy (DeVos et al., 2013; Gheyara et al., 

2014; Holth et al., 2013) and ameliorates the increased susceptibility to seizures associated 

with some models of Alzheimer’s disease (Ittner et al., 2010; Roberson et al., 2007).  This 

study measured several intrinsic and synaptic membrane properties in tau-/- and htau mice 

to provide better understanding of tau’s role in neuronal excitability, which has been 
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Figure 3.5 Paired pulse ratio in htau mice compared to non-transgenic control mice. 
(A) The paired pulse ratio is higher in DGCs from 1.5 month old htau mice compared to 
1.5 month old control mice. *: p<0.05 (B, C) No differences in paired pulse ratio were 
found between DGCs from htau and control mice at 4 (B) or 9 (C) months old. (D) The 
paired pulse ratio did not change with age in DGCs from htau or control mice. Statistical 
comparisons were made between all groups by two-way ANOVA with age and genotype 
as factors.*: different from 1.5 month (p<0.05) Error bars indicate SEM   
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hypothesized to play a role in genetic epilepsies and, possibly, seizure disorders associated 

with neurodegeneration (Decker et al., 2016; Garcia-Cabrero et al., 2013; Gheyara et al., 

2014; Holth et al., 2013; Ittner et al., 2010; Roberson et al., 2011; Roberson et al., 2007).  

Although other studies have measured the influence of tau expression and 

hyperphosphorylation on neuronal properties, most have used forms of tau with disease-

related mutations such as P301L (Crimins et al., 2012; Crimins et al., 2011; Hatch et al., 

2017; Hunsberger et al., 2015; Liu et al., 2017b; Rocher et al., 2010), P301S (Yoshiyama 

et al., 2007), and A152T (Decker et al., 2016). In contrast, the htau mouse used in this study 

expresses six isoforms of human tau without any disease-related mutations (Andorfer et 

al., 2003). This model was selected for two reasons. First, the non-mutated human tau 

expressed in this model results in slower development of pathology that more reasonably 

resembles human aging than in more aggressive pathologic tau models. The htau mouse 

exhibits progressive tau pathology, developing pTau by 1.5 months, somatodendritic 

redistribution of tau around 3 months, and neurofibrillary tangles around 9 months 

(Andorfer et al., 2003). Additionally, the endogenous murine tau gene is deleted in the htau 

mouse, setting it apart from other commonly used tauopathy models. The deletion of 

endogenous murine tau is important because tau hyperphosphorylation leads to concurrent 

loss of normal tau function and consequently increased pathology due to the increase in 

soluble pTau. Tau hyperphosphorylation reduces the pool of functional tau available to 

stabilize microtubules, resulting in a loss of physiologic function (Lindwall and Cole, 

1984). At the same time, soluble pTau itself is neurotoxic through several mechanisms, 

including mislocalization of pathologic tau, inhibition of protein translation, and abnormal 

interaction with other cellular components (Flach et al., 2012; Fulga et al., 2007; Hoover 
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et al., 2010; Koren et al., 2019; Meier et al., 2015; Meier et al., 2016; Thies and 

Mandelkow, 2007; Tian et al., 2013). Because tauopathy results in loss of function as well 

as development of neurotoxicity, the presence of normal murine tau expression in other tau 

mouse models confounds the interpretation of outcomes based on tau 

hyperphosphorylation. Some inconsistency between the results across previous studies in 

different tau models, along with the similarities found between the htau and tau-/- animals 

in the current study, demonstrate the importance of separating the effects of removing tau 

and adding hyperphosphorylated tau in interpreting electrophysiological outcomes. 

While previous work suggests an important role for tau in the electrophysiological 

function of the neuron, the direct effects of tau deletion on neuronal excitability have not 

been extensively studied without the presence of additional pathology. Previous studies on 

the electrophysiological effects of hyperphosphorylated tau have primarily used the 

rTg4510 transgenic mouse, which expresses 4R0N human tau with the pathogenic P301L 

mutation with endogenous murine tau expression intact (Santacruz et al., 2005). The major 

effects on the intrinsic properties of frontal cortex pyramidal neurons in these studies were 

depolarized resting membrane potential and increased frequency of evoked action 

potentials (Crimins et al., 2012; Crimins et al., 2011; Rocher et al., 2010). A decrease in 

paired pulse facilitation in the hippocampus has also been reported in other transgenic tau 

models (Maeda et al., 2016; Roberson et al., 2011; Sydow et al., 2011; Yoshiyama et al., 

2007). Based on these studies, we hypothesized that similar results would be detected in 

DGCs from htau mice, but this hypothesis was not supported. Instead we found no changes 

in resting membrane potential in the htau mice, and reduced evoked action potential firing 

and increased paired pulse facilitation was detected in both htau and tau-/- mice, but only at 
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1.5 months of age. Thus, deletion of murine tau tended to reduce intrinsic and synaptic 

excitability of DGCs early, but not later in life, and replacing murine tau with human tau 

did not reinstate normal excitability.   

Our results in htau mice might be linked to pathogenic mechanisms of Alzheimer’s 

disease. Unlike rTg4510 mice, which overexpress 13x more human mutant 4R0N P301L 

tau in the forebrain, htau mice express all six splice variants of non-mutant human tau 

(Andorfer et al., 2003; Santacruz et al., 2005). The P301L mutation is associated with 

fronto-temporal dementia (Hutton et al., 1998); meanwhile, tau pathology in Alzheimer’s 

brains has accumulation of the six splice variants of non-mutant human tau. The difference 

in tau pathogenicity between the htau and rTg4510 mice may explain why no change in 

resting membrane potential was detected in DGCs from htau mice. Other factors, including 

the endogenous properties of the different neuron types studied (i.e., pyramidal cells versus 

DGCs) or the continued expression of endogenous mouse tau in the rTg4510 mice, could 

also contribute substantially to these outcomes. However, the differences in tau species, or 

even cell type examined, do not adequately explain the patterns of evoked action potentials 

or paired pulse facilitation observed in each mouse model: A difference in relative 

pathogenicity could result in a smaller magnitude of difference between these measures, 

but it does not fully explain the opposite direction of effects (i.e., action potential frequency 

decreased in htau but increased in rTg4510 and paired pulse ratio increased in htau but 

decreased in rTg4510).  

Because the htau mice lack endogenous tau, physiological tau function is likely 

reduced because the transgenically expressed human tau may not function normally. This 

notion is supported by the similar patterns of evoked action potentials observed in dentate 
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granule cells from htau and tau-/- mice early in life, when human tau may not function 

normally in the htau mouse. Similar to studies demonstrating that the pro-excitatory effects 

of amyloid-beta rely on the presence of functional tau (Roberson et al., 2011; Shipton et 

al., 2011), our results suggest that excitatory effects associated with pathologic tau in other 

models requires a pool of functional tau as well, which is not expressed in either strain used 

here. Any potential pro-excitatory effects may therefore have been abrogated by the 

absence of functional tau. 

This study found important similarities between dentate granule cell responses in 

tau-/- and htau mice, consistent with the hypothesis that the substitution of tau species in 

the htau mouse contributes to the loss of normal tau function. In both tau-/- and htau mice, 

peak evoked action potential frequency in DGCs was reduced relative to age-matched 

controls early in life, but not at later ages. Similarly, peak evoked action potential frequency 

in DGCs increased with age in both tau-/- and htau mice, becoming comparable to that seen 

in controls. These results together indicate that absence of functional tau, due to 

hyperphosphorylation and/or gene deletion, has an effect on intrinsic neuronal function 

early in life that is not evident as the animals age. Tau deletion reduces excitability in both 

young tau-/- and htau mice, but this does not persist in older mice. 

Tau’s ability to affect synaptic function, either on its own or in conjunction with 

other Alzheimer’s disease pathology, has been established in several transgenic animal 

models. The major effect of pathologic tau on synaptic function is impairment of long term 

potentiation (LTP) and a decrease in the paired pulse ratio at several hippocampal synapses  

(Decker et al., 2016; Maeda et al., 2016; Roberson et al., 2011; Shipton et al., 2011; Sydow 

et al., 2011; Yoshiyama et al., 2007). The impairment of LTP likely contributes to deficits 
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in learning and memory in these models. The decrease in paired pulse ratio suggests an 

increased probability of neurotransmitter release and may at least partially explain the 

hyperexcitability and susceptibility to seizures observed in these models. Previous studies 

have found that removal of tau rescues synaptic deficits associated with Alzheimer’s 

disease, particularly amyloid-β induced impairment of LTP (Roberson et al., 2011; Shipton 

et al., 2011). These studies reported minimal differences between tau-/- and non-transgenic 

mice in the absence of additional pathology. In the current study we measured the 

frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and found no 

differences between genotypes at any age. Conversely, changes in presynaptic release 

associated with absence of functional murine tau protein were observed in both transgenic 

strains used herein. We measured the dentate granule cell response after stimulation of the 

lateral perforant path to assess synaptic release probability, based on paired pulse response 

ratios. DGCs from both tau-/- and htau mice exhibited greater paired pulse facilitation 

compared to age-matched, non-transgenic control mice early in life, but the paired pulse 

ratio was not different from controls in either tau-/- or htau mice later in life. The paired 

pulse ratio decreased significantly with age in tau-/- mice, whereas it did not change with 

age in htau or non-transgenic mice. Our study found similar presynaptic neurotransmitter 

release in both transgenic strains, suggesting a loss of tau function in both groups.  

Taken together, the reduced frequency of evoked action potentials and increased 

paired pulse facilitation in young tau-/- mice provide a basis for the seizure resistance in 

genetic epilepsy models observed in tau-/- mice at similar ages (Gheyara et al., 2014; Holth 

et al., 2013). One limitation of those studies is the relatively young age at which the mice 

were, necessarily, assessed. The results of the present study suggest that the anti-epileptic 
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and anti-SUDEP effect of tau deletion evident in mutant mice, which express 

channelopathies that underlie seizures, may not fully translate to epilepsies with a later age 

of onset. These effects may be lost or reduced with age as excitability increases. Previous 

work found changes in expression of other microtubule-associated proteins in tau-/- mice 

(Harada et al., 1994; Ma et al., 2014). More work is required to understand how these 

changes in expression might affect electrophysiological function in tau-/- mice. 

3.5  Conclusions 

This study sheds new light on the role of tau in promoting neuronal excitability. We 

found that DGCs from mice lacking tau protein or in which endogenous mouse tau is 

replaced by human tau, which has previously been shown to become hyperphosphorylated 

early in life (Andorfer et al., 2003), exhibited reduced measures of excitability in the form 

of reduced peak evoked action frequency and increased paired pulse facilitation that were 

significant in young animals but were abrogated with age. The loss of excitability in the 

htau mouse contrasts with previous work showing a pro-excitatory role of pathologic tau 

in pyramidal neurons from other tauopathy models, but this may be due to differences in 

tau or other pathogenicity, endogenous tau expression in these models, or in the 

characteristics of the types of neurons and networks examined. Finally, our results suggest 

that, while early changes in tau expression may influence neuronal excitability and seizures 

in young mice, other compensatory mechanisms may participate in stabilizing neuronal 

circuits later in life. Identifying additional links between tau phosphorylation and neuronal 

network function may help resolve the influence of tauopathy on disease progression.  
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CHAPTER 4. LOSS OF TAU MODIFIES BUT DOES NOT PREVENT EPILEPTOGENESIS AFTER 
INTRAHIPPOCAMPAL KAINATE TREATMENT IN MICE 

A similar version of this chapter was submitted to Experimental Neurology for peer 
review with Rafael Roberts and Bret N. Smith as additional authors. 

4.1 Introduction 

Temporal lobe epilepsy (TLE) is the most common focal epilepsy and accounts for 

the majority of drug-resistant epilepsy cases (Asadi-Pooya et al., 2017; Pascual, 2007; 

Reynolds, 2000; Semah et al., 1998; Wiebe, 2000). Although drug resistant TLE with an 

identifiable focus often responds well to surgical resection (Engel, 1996; Engel et al., 2012; 

Engel et al., 2003), development of additional treatment options remains essential to reduce 

the burden of care and improve quality of life for patients with TLE. A better understanding 

of the mechanisms that drive development of TLE is crucial to developing new, specific 

therapies. One potential target that has received attention in recent years is the microtubule-

associated protein, tau. 

Hyperphosphorylated tau plays a key disease-promoting role in tauopathies 

including Alzheimer’s disease (AD) and has been associated with epilepsy in human and 

animal studies (Gheyara et al., 2014; Holth et al., 2013; Puvenna et al., 2016; Tai et al., 

2016). The relationship between tau pathology and epilepsy is complex and bidirectional. 

Brain tissue resected as treatment for intractable epilepsy shows advanced tau pathology 

much earlier in life than typical tauopathies (Gourmaud et al., 2020; Puvenna et al., 2016; 

Smith et al., 2019), and animal studies have demonstrated an increase in tau 

phosphorylation after seizure induction (Jones et al., 2012; Liu et al., 2016). Current 

evidence suggests pathological tau maybe involved in seizure susceptibility. Animal 
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models of tauopathy that express mutant forms of tau that are associated with human 

disease display increased susceptibility to seizure induction (Garcia-Cabrero et al., 2013; 

Liu et al., 2017b), and human patients with Alzheimer’s disease have an increased risk of 

having seizures and developing epilepsy (Lam et al., 2020; Pandis and Scarmeas, 2012; 

Tabuas-Pereira et al., 2019; Vossel et al., 2013). Subclinical epileptiform activity is more 

common in patients with AD but no history of clinical seizures, and predicts faster 

progression of cognitive impairment (Vossel et al., 2016). Reducing tau phosphorylation 

confers resistance to seizure induction in animal models (Jones et al., 2012; Liu et al., 

2016). Similar seizure resistance is observed in animals lacking tau expression due to 

genetic deletion or suppression with antisense oligonucleotides (DeVos et al., 2013; Li et 

al., 2014). Furthermore, loss of tau expression reduces seizure burden and improves 

survival in genetic models of epilepsy (Gheyara et al., 2014; Holth et al., 2013). The 

relationship between tau phosphorylation and seizures and epilepsy suggests that tau could 

be a target for novel treatments to modify epileptogenesis or treat seizures. 

Although many studies have demonstrated seizure resistance in animals lacking 

tau, whether this translates to resistance to epileptogenesis is not clear. Furthermore, the 

degree to which tau promotes seizures and epileptogenesis in the absence of additional 

pathology has not been adequately studied. The current experiment seeks to address these 

issues using the htau mouse model of tauopathy, which produces littermate mice that 

express either no tau of any type (i.e., tau-/- mice) or non-mutant human tau that becomes 

hyperphosphorylated by 1.5 months of age (Andorfer et al., 2003), but no murine tau (i.e., 

htau mice) . We previously showed that both htau and tau-/- mice exhibit lower neuronal 

excitability in dentate gyrus granule cells (DGCs) compared to non-transgenic control mice 
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at 1.5 months of age (Cloyd et al., 2021). In this study, we determined whether the reduced 

excitability associates with seizure resistance, modification of epilepsy development, or 

altered neuronal excitability in the intrahippocampal kainate (IHK) model of TLE. We 

tested the hypothesis that loss of native tau function confers protection against IHK induced 

epilepsy as assessed behaviorally and via 24-hour video-electroencephalogram (vEEG). 

We also assessed neuronal excitability in DGCs using whole cell patch-clamp 

electrophysiology 6-8 weeks after IHK treatment. Determining how tau expression 

influences cellular and behavioral correlates of acquired TLE provides important insight 

relevant to epileptogenesis, especially in the context of tauopathy related dementias. 

4.2 Materials and Methods 

 Animals 

Transgenic B6.Cg-Mapttm1(EGFP)KltTg(MAPT)8cPdav/J mice (male and female; 

#005491) were produced in house from breeders obtained from The Jackson Laboratory 

(JAX; Bar Harbor, ME). These mice lack any obvious disease phenotype at birth, but 

develop impairments in Morris Water Maze, spatial learning, and food burrowing with age, 

particularly in mice older than 9 months (Geiszler et al., 2016; Phillips et al., 2011; 

Polydoro et al., 2009).  The human tau becomes hyperphosphorylated by 1.5 months of age 

(Andorfer et al., 2003). This mouse strain was originally generated on a hybrid Swiss 

Webster/B6D2F1 hybrid background but has been backcrossed to C57BL/6J for more than 

10 generations. Single nucleotide polymorphism (SNP) analyses performed by JAX were 

consistent with a pure C57BL/6J background, which served as the control strain. All 

breeding mice were homozygous for a deletion of the murine tau gene. One mouse in each 

breeding pair was hemizygous for a transgene expressing all six isoforms of non-mutant, 
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human tau protein. The offspring are therefore either full tau knockout (tau-/-) or express 

only human tau (htau), and genotypes and protein expression phenotypes were confirmed 

in our recent report (Cloyd et al., 2021).  

DNA was extracted from tail snips and genotype was confirmed via PCR according 

to the protocols supplied by JAX. Disruption of the endogenous murine tau gene was 

confirmed using the primer pair 5’-CGTTGTGGCTGTTGTAGTTG-3’ and 5’-

TCGTGACCACCCTGACCTAC-3’, which amplifies a fragment at 270 bp in tau-/- and 

htau mice. Presence of the human-tau transgene was confirmed using the primer pair 5’-

CGAAGTGATGGAAGATCACG-3’ and 5’-GTCTTGGTGCATGGTGTAGC-3’, which 

amplifies a fragment at 79 bp in htau mice. Age matched male C57BL/6J control mice 

were bred in house from breeders obtained from JAX (#000664). All mice were housed 

under a 14 hr light / 10 hr dark cycle in an Association for Assessment and Accreditation 

of Laboratory Animal Care Internal (AALAC) approved facility. Food and water were 

available ad libitum. The University of Kentucky Institutional Animal Care and Use 

Committee approved all procedures. 

 Intrahippocampal kainate (IHK) mouse model of temporal lobe epilepsy 

All surgical procedures were performed under isoflurane general anesthesia with 

0.05% bupivacaine local anesthesia. Kainic acid (IHK; 100 nL, 20 mM in 0.9% saline, 

Tocris Bioscience; Minneapolis, MN) or saline (sham; 100 nL) was injected into the left 

dorsal hippocampus (2.0 mm posterior, 1.25 mm left, and 1.6 mm ventral to bregma) at 6-

8 weeks of age (Krook-Magnuson et al., 2013). The injection rate was 20 nL/minute, and 

the needle was left in place for 5 minutes before and after injection. Buprenorphine (0.05 

mg/kg) and carprofen (10 mg/kg) were administered subcutaneously after surgery. Mice 

were transferred to a heated cage for recovery and monitored for seizures for 2 hours to 
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assess development of status epilepticus (SE). SE was defined as the occurrence of at least 

3 seizures of Racine scale 3 or higher during the observation period (Racine, 1972; Shibley 

and Smith, 2002). After 2 hours, diazepam (7.5 mg/kg) was administered intraperitoneally 

to terminate SE. Video monitoring for spontaneous seizures began 2 weeks after the IHK 

surgery and continued for 6 weeks. Each animal underwent 7-8 recording sessions (average 

duration 7.8 hours), averaging 56 hours of monitoring per animal. The videos were 

reviewed at 3-4x speed by an investigator blind to genotype and treatment.  

A separate cohort of mice (n=2-4 per group) were fitted with wireless transmitters 

to allow video-electroencephalographic (vEEG) recording (Data Sciences International; 

DSI; St. Paul, MN). Kainic acid or saline was injected as described above. Screws were 

placed (1.0mm anterior and 1.0mm right to bregma and 3.0mm posterior and 3.0mm left 

to bregma) after injection. A wireless transmitter (ETA-F10, DSI) was implanted 

intraperitoneally and connected to the screws by subcutaneous wires. vEEG began 

immediately after surgery and continued for 2 hours until administration of diazepam as 

described above. EEG recordings were collected using Ponema (v6.42, DSI). Mice 

underwent a total of 5 sessions of 24 hour vEEG recording between 1 and 3 weeks after 

IHK. EEG recordings were manually reviewed for seizure-like activity, defined as 

rhythmic high amplitude (>3 fold larger than baseline), high frequency (>10Hz) activity 

lasting at least 20 seconds, using NeuroScore (v3.3.1, DSI). Potential seizures identified 

on EEG were confirmed by corresponding behavior on video recorded in Open Broadcaster 

Software (v21.0.1) with the Snaz file add-on to allow for 24 hour long recordings using a 

Logitech C270 HD camera. Seizure prevalence and average daily seizure frequency 

recorded via vEEG was calculated for each group. 
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 Hippocampal slice preparation 

Mice were sacrificed for electrophysiology 6-8 weeks after IHK or sham (i.e., saline 

injection) surgery. Mice were deeply anesthetized via inhalation of isoflurane to effect 

(lack of tail pinch response) and decapitated while anesthetized. The brain was rapidly 

removed from the skull and immersed in ice-cold oxygenated (95% O2/5% CO2) 

cutting/holding artificial cerebrospinal fluid (aCSF). The cutting/holding aCSF contained 

(in mM): 85 NaCl, 75 sucrose, 2.5 KCl, 25 glucose, 1.25 NaH2PO4·H2O, 4 MgCl2·6H2O, 

0.5 CaCl2·2H2O, and 24 NaHCO3 (pH 7.2-7.4). Coronal sections (300 µm) were cut on a 

vibrating microtome (Vibratome Series 1000; Technical Products International, St. Louis, 

MO). Each slice was divided with a midsagittal cut and hippocampi were isolated and 

transferred to a holding chamber with warmed (30-32° C), oxygenated cutting/holding 

aCSF and incubated for at least 1 hour before recordings. One slice at a time was transferred 

to a chamber mounted under an upright microscope (BX51WI; Olympus) and was 

superfused with warmed (30-32° C) oxygenated recording aCSF. The recording aCSF 

contained (in mM): 124 NaCl, 3 KCl, 2 CaCl2, 1.3 MgCl, 1.4 NaHCO3, and 11 glucose 

(pH 7.2-7.4). Each slice was perfused with recording aCSF in the microscope chamber for 

>10 minutes to allow the cutting aCSF to wash off before recording. 

 Electrophysiological recordings 

Whole-cell patch-clamp recordings were obtained from hippocampal DGCs 

identified by location and morphological characteristics. Recording pipettes were pulled 

from borosilicate glass (open tip resistance 3-5 MΩ; King Precision Glass Co. Claremont, 

CA). The pipette recording solution contained (in mM): 126 K+-gluconate, 4 KCl, 10 

HEPES, 4 MgATP, 0.3 NaGTP, and 10 PO-creatine (pH 7.2). Electrophysiological 

recordings were performed using a Multiclamp 700B amplifier (Molecular Devices, San 
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Jose, CA), low pass filtered at 2 kHz, digitized at 20 kHz (Digidata 1440A; Molecular 

Devices), and recorded onto a computer using pClamp 10.2 software (Molecular Devices). 

Seal resistance was typically 2-5 GΩ. Series resistance was <25 MΩ (mean: 10.3±0.1 MΩ) 

and was monitored periodically during the recordings. Recordings were discontinued if 

series resistance changed by more than 20% during the recording. Membrane voltage was 

not adjusted for liquid junction potential, calculated to be -15 mV. 

Resting membrane potential and input resistance were measured in current clamp 

mode. Current steps (-100 pA to 400 pA in 50 pA steps) were injected to record membrane 

voltage response. The input resistance was calculated from the slope of the linear portion 

of the resulting current-voltage curve. The resting membrane potential was averaged from 

the portions of recorded traces between current steps. Spontaneous and electrically-evoked 

excitatory post-synaptic currents (i.e., sEPSCs and eEPSCs) were recorded in voltage-

clamp mode at a holding potential of -70 mV. To elicit eEPSCs, a platinum-iridium 

concentric-bipolar electrode (125 µM diameter; FHC, Bowdoin, ME) was positioned on 

the lateral perforant pathway and 30 pairs of current pulses (30-50 µA; 400 µs; interpulse 

interval 75 ms; 5 seconds between pulse pairs) were administered to evoke paired eEPSCs 

(i.e., paired pulse response; PPr). The stimulus intensity was adjusted so that responses 

occurred after >80% of pulses. Stimulus sweeps that failed to elicit a response with both 

stimuli were excluded from analysis. 

 Data Analysis 

 All electrophysiological measures (evoked action potential frequency, resting 

membrane potential, input resistance, sEPSC frequency, and PPr) were analyzed with 

MiniAnalysis (Synaptosoft, Fort Lee, NJ). Statistical measures were performed with Prism 
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(GraphPad, San Diego, CA). Data were disaggregated by sex and no sex-dependent 

differences were detected for any measure, so sexes were combined for all analyses. Data 

were tested for normality by a Shapiro-Wilk test and non-parametric tests were used where 

appropriate. Seizure frequencies from tau-/-, htau, and control mice were compared by one-

way ANOVA. Survival curves were compared by Mantel-Cox logrank test and hazard 

ratios (HRs) were calculated between each transgenic strain and control. A 2-way ANOVA 

was used to compare action potential frequency in response to current injection at the 

current step which resulted in the highest frequency of action potentials (i.e. 200pA). An 

unpaired t-test was used to compare mean values for input resistance, RMP, and PPr from 

sham- and IHK-treated animals of each genotype. A Mann-Whitney test was used to 

compare mean values for sEPSC frequency from sham and IHK treated animals of each 

genotype. Summary data and cell counts for each electrophysiological measurement are 

presented in Table 4.1. Data are presented as mean ± SEM and statistical significance was 

set to p<0.05 for all tests. 

4.3 Results 

 Seizure induction after IHK differs in tau-/- mice 

 We previously determined that at least 3 convulsive seizures (Racine seizure scale 

3-5; Racine, 1972) after intraperitoneal pilocarpine injection constituted status epilepticus 

(SE), resulting in epileptogenesis in mice (Shibley and Smith, 2002; Winokur et al., 2004). 

Non-transgenic C57BL/6J mice reliably develop SE after IHK (Kang et al., 2021; Welzel 

et al., 2020). In the current study, 70% (7/10) of C57BL/6J mice developed SE after IHK, 

compared to 75% (9/12) of htau mice. No tau-/- mice (0/8) met the behavioral definition for 

SE. Although the tau-/- mice exhibited non-convulsive seizure-like behavior after IHK, they 
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Table 4.1 Summary of electrophysiological measurements 

   
Point Estimate ± SEM (n) 

RMP (mV) RIn (MΩ) sEPSC Frequency 
(Hz) 

Paired Pulse 
Ratio 

C57BL/6J 

Ipsilateral 
Sham -72.4 ± 1.6 (9) 291.2 ± 22.1 (9) 0.133 ± 0.045 (8) 1.51 ± 0.04 (8) 

IHK -70.2 ± 1.7 (13) 271.2 ± 13.4 (13) 0.802 ± 0.246 (11)* 1.13 ± 0.04 (11)* 

Contralateral 
Sham -71.4 ±  1.5 (8) 257.3 ± 14.2 (8) 0.152 ± 0.064 (7) 1.63 ± 0.11 (8) 

IHK -72.9 ± 0.9 (13) 217.0 ± 15.8 (13) 0.565 ± 0.117 (10)* 1.29 ± 0.07 (13)* 

tau-/- 

Ipsilateral 
Sham -74.9 ± 0.9 (11) 230.8 ± 10.7 (11) 0.265 ± 0.106 (11) 1.41 ± 0.06 (12) 

IHK -67.2 ± 1.6 (16)* 294.2 ± 18.8 (16)* 0.356 ± 0.084 (13) 1.42 ± 0.07 (16) 

Contralateral 
Sham -73.9 ± 1.4 (12) 253.6 ± 19.1 (12) 0.163 ± 0.079 (10) 1.54 ± 0.10 (12) 

IHK -69.5 ± 1.2 (18)* 254.1 ± 13.5 (18) 0.607 ± 0.239 (11)* 1.34 ± 0.10 (13) 

htau 

Ipsilateral 
Sham -72.7 ± 1.6 (9) 250.8 ± 12.1 (9) 0.167 ± 0.056 (7) 1.35 ± 0.10 (7) 

IHK -71.0 ± 1.0 (8) 205.3 ± 19.0 (8) 0.654 ± 0.230 (7)* 1.10 ± 0.03 (8) 

Contralateral 
Sham -73.5 ± 1.2 (8) 251.3 ± 17.5 (8) 0.084 ± 0.017 (7) 1.43 ± 0.16 (8) 

IHK -74.0 ± 1.7 (10) 239.1 ± 11.9 (10) 0.130 ± 0.072 (7) 1.33 ± 0.09 (7) 

*: different from sham control 
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did not reliably develop convulsive seizures. 

Video EEG recordings from tau-/-, htau, and C57BL/6J mice during the 2 hour 

period after treatment showed extensive electrographic activity in all IHK-treated mice. No 

abnormal electrographic activity was observed in any saline-treated mice.  Discrete periods 

of electrographic seizure-like activity occurred throughout the induction period in all IHK-

treated mice, regardless of whether convulsive seizure behavior was observed. 

 Prevalence and frequency of spontaneous seizures in tau-/- and htau mice 

 All mice used for electrophysiology experiments underwent an average of 56 hours 

of video-recorded behavioral observation for spontaneous seizures during the 8 week 

period between the IHK treatment and electrophysiological recordings in order to assess 

the effectiveness of IHK in inducing epileptogenesis. During these limited observations, 

convulsive seizures (Racine scale 3-5) were observed in 0% (0/7) of tau-/- mice, 50% (3/6) 

of htau mice, and 22% (2/9) of C57BL/6J mice.  

Video-EEG was performed on a subset of mice from one to three weeks (total of 5 

separate 24 hour recordings) after IHK or saline treatment. Spontaneous seizures were 

detected in mice of each genotype within 21 days of IHK treatment. Average daily seizure 

frequencies were calculated (C57BL/6J: 1.6±1.0, range 0.2-2.6; Tau-/-: 0.8±0.5, range 0-

2.2; htau: 0.6±0.4, range 0.2-1.0). Convulsive spontaneous seizure prevalence in mice that 

underwent vEEG recording was 50% (2/4) in tau-/- mice, and 100% (4/4 each) in htau and 

C57BL/6J mice. Additionally, EEG spiking was observed in all IHK treated animals of 

each genotype (Figure 4.1B). No EEG spiking or seizures were observed in any sham-

control mice (n=6). These results confirmed that IHK treatment induced epileptogenesis in 

all strains of mouse used here. 
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Figure 4.1 Daily seizure frequency recorded by vEEG 
(A) Electrographic seizures detected in C57BL/6J, tau-/-, and mice in the 21 days following 
IHK treatment. Each seizure began at the time indicated by the closed arrowhead and was 
followed by a period of post-ictal suppression (open arrowhead). (B) Interictal spiking was 
detected within the first 21 days after IHK treatment. Similar activity was detected in all 
IHK-treated mice regardless of genotype. Neither seizures not interictal spiking were 
detected in sham control mice of any genotype. 
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 All-cause mortality is greater in htau mice 

 Reduction or deletion of tau is associated with improved survival in some genetic 

models of epilepsy (Gheyara et al., 2014; Holth et al., 2013), whereas pathological tau is 

associated with increased mortality after peripheral chemoconvulsant administration 

(Garcia-Cabrero et al., 2013). In the current study, overall 40 day survival was calculated 

for tau-/-, htau, and non-transgenic C57BL/6J mice after IHK (Figure 4.2). Survival did not 

differ between tau-/- and C57BL/6J mice (HR=0.2, 95% CI 0.003 to 8.5; p>0.05). In 

contrast, mortality was significantly increased in the htau mice compared to C57BL/6J 

mice (HR=4.4, 95% CI 1.1 to 17.9; p<0.05). No sham-treated mice of any genotype died 

prematurely during the course of experiments.  

 Intrinsic membrane properties after IHK 

 We previously identified differences in intrinsic membrane properties in DGCs 

from 1.5 month old tau-/- and htau mice compared to age-matched non-transgenic 

C57BL/6J mice (Cloyd et al., 2021). To determine whether intrinsic membrane properties 

are altered after IHK, resting membrane potential (RMP), input resistance, and induced 

action potential firing were measured in DGCs from tau-/-, htau, and C57BL/6J mice at 6-

8 weeks after IHK or saline treatment. The RMP of DGCs from IHK-treated tau-/- mice 

was depolarized compared to that of DGCs from sham treated tau-/- mice, and this effect 

was observed both ipsilateral and contralateral to the injection site (Figure 4.3A; p<0.05 

for both comparisons). No differences in RMP were observed in DGCs from IHK-treated 

htau or C57BL/6J mice compared to sham (p>0.05). In tau-/- mice, DGCs ipsilateral to the 

IHK injection also had a higher input resistance compared to DGCs from sham-treated tau-

/- mice (Figure 4.3B; p<0.05), but no difference in input resistance was observed in DGCs 
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Figure 4.2 Survival after IHK in tau-/-, htau, and non-transgenic mice 
All-cause mortality within 40 days after IHK is increased in htau mice (7/13, 54%) 
compared to tau-/- (0/8, 0%) or non-transgenic mice (1/10, 10%; p<0.05).   
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Figure 4.3 Effect of IHK on resting membrane potential and input resistance in DGCs 
from tau-/-, htau, and non-transgenic mice 
(A) DGCs from tau-/- mice developed a depolarized resting membrane potential ipsilateral 
and contralateral to the injection site 6-8 weeks after IHK. No changes in resting membrane 
potential were observed in DGCs from htau or non-transgenic mice. (B) DGCs ipsilateral 
to the injection site developed an increased input resistance after IHK. No changes were 
observed in DGCs contralateral to the injection site in tau-/- mice or in DGCs from htau or 
non-transgenic mice after IHK. *: p<0.05. Error bars indicate SEM.  
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contralateral to the injection site in tau-/- mice (p>0.05). Input resistance was unaffected by 

IHK in DGCs from htau or C57BL/6J mice (p>0.05). 

 To determine how tau expression impacts epilepsy-related changes in action 

potential firing, membrane voltage responses to current injection were measured in DGCs 

from tau-/-, htau, and C57BL/6J mice (Figure 4.4). No changes in peak action potential 

frequency were detected ipsilateral to the injection site in C57BL/6J, tau-/-, or htau mice 

(Figure 4.4B; p<0.05). In non-transgenic C57BL/6J mice, IHK resulted in an increased 

peak frequency of action potentials in DGCs contralateral to the injection site relative to 

sham-treated mice (Figure 4.4C; p<0.05). Peak action potential in DGCs contralateral to 

the injection site in IHK-treated C57BL/6J mice was also increased relative to IHK-treated 

tau-/- and htau mice (Figure 4.4C; p<0.05). Overall, the effect of IHK on intrinsic properties 

in DGCs was relatively minor, affecting RMP and input resistance in DGCs from tau-/- 

mice. The impact on action potential firing was most significant contralateral to the IHK 

site in C57BL/6J mice. 

 IHK-related changes in synaptic function are abrogated in tau-/- and htau 
mice 

 Tau ablation is associated with protection against epilepsy-related excitability in 

some genetic models of epilepsy (Garcia-Cabrero et al., 2013; Gheyara et al., 2014), and 

altered synaptic excitability in the dentate gyrus is associated with TLE development 

(Cronin et al., 1992; Patrylo and Dudek, 1998; Winokur et al., 2004; Wuarin and Dudek, 

2001). To better understand how tau affects synaptic function in epileptogenesis, we 

measured sEPSCs 6-8 weeks after IHK or saline injection in DGCs from tau-/-, htau, and 

C57BL/6J mice. In IHK-treated C57BL/6J mice, sEPSC frequency in DGCs ipsilateral and 
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Figure 4.4 Effect of IHK on membrane voltage response in DGCs from tau-/-, htau, and 
non-transgenic mice 
(A) Sample membrane voltage responses in response to injection of -100, -50, and +200pA 
currents in DGCs contralateral to IHK injection. (B&C) Average peak frequency of action 
potentials in response to current injection in DGCs ipsilateral (B) and contralateral (C) to 
IHK injection. Action potential frequency was not affected by IHK in DGCs ipsilateral to 
the injection site in any genotype, but was increased in DGCs contralateral to the injection 
site in C57BL/6J mice.  *: difference between sham and IHK (p<0.05). t: different from 
C57BL/6J IHK (p<0.05). Error bars indicate SEM.  
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Figure 4.5 Effect of IHK on spontaneous EPSC frequency in DGCs from tau-/-, htau, and 
non-transgenic mice 
Sample traces and sEPSC frequencies in DGCs from non-transgenic (A), tau-/- (B), and 
htau (C) mice. (A) DGCs ipsilateral and contralateral to the injection site from non-
transgenic mice receive more sEPSCs after IHK. (B) DGCs contralateral to the injection 
site from tau-/- mice receive more sEPSCs after IHK. No change in sEPSC frequency was 
observed ipsilateral to the injection. (C) DGCs ipsilateral to the injection site from tau-/- 

mice receive more sEPSCs after IHK. No change in sEPSC frequency was observed 
contralateral to the injection.  *: p<0.05. Error bars indicate SEM.  
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contralateral to the injection site was significantly greater than in sham-treated mice 

(Figure 4.5A; p<0.05).  In IHK-treated tau-/- mice, DGCs contralateral to the injection site 

received more sEPSCs compared to sham-treated mice (Figure 4.5B; p<0.05), but no 

difference in sEPSC frequency was observed in DGCs ipsilateral to the injection site 

(p>0.05).  In IHK-treated htau mice, DGCs ipsilateral to the injection site received more 

sEPSCs compared to sham-treated mice (Figure 4.5C; p<0.05), but no difference in sEPSC 

frequency was observed in DGCs contralateral to the injection site (p>0.05). 

To assess changes in presynaptic neurotransmitter release, we measured the DGC 

response to pairs of stimuli applied to the lateral perforant pathway and calculated the 

paired pulse ratio (PPr) of evoked EPSC amplitudes. In IHK-treated C57BL/6J mice, the 

PPr was lower in DGCs both ipsilateral and contralateral to the injection site compared to 

sham-treated mice (Figure 4.6A; p<0.05). No differences in PPr were detected in DGCs 

from IHK-treated tau-/- mice compared to sham-treated control (Figure 4.6B; p>0.05). In 

IHK-treated htau mice, the PPr was lower in DGCs ipsilateral to the injection site compared 

to sham-treated mice (Figure 4.6C; p>0.05), but no difference in PPr was detected in DGCs 

contralateral to the injection site (p>0.05). DGCs from both transgenic strains exhibited 

resistance to IHK-induced changes in synaptic function compared to non-transgenic, 

C57BL/6J mice. 

4.4 Discussion 

This study measured the effects of IHK on seizures, epileptogenesis, and intrinsic 

neuronal properties and synaptic function the DGCs from tau-/- and htau mice compared to 

non-transgenic C57BL/6J controls. A lack of tau expression was associated with a 
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Figure 4.6 Effect of IHK on paired pulse ratio in DGCs from tau-/-, htau, and non-
transgenic mice 
Sample traces and paired pulse ratio in DGCs from non-transgenic (A), tau-/- (B), and htau 
(C) mice after IHK. (A) PPr was reduced in DGCs ipsilateral and contralateral to the 
injection site in non-transgenic mice. (B) No change in PPr was observed in DGCs from 
tau-/- mice. (C) PPr was reduced in DGCs ipsilateral to the injection site in htau mice. No 
change in PPr was observed in DGCs contralateral to the injection site in htau mice.  
*: p<0.05. Error bars indicate SEM. 
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significant reduction in network excitability, mortality, and seizure burden in genetic 

models of epilepsy (Gheyara et al., 2014; Holth et al., 2013) and resistance to chemically 

induced seizures (DeVos et al., 2013; Li et al., 2014). Reduced tau expression also 

contributed to an abrogation of the increased susceptibility to induced seizures or the 

reduction in frequency of spontaneous seizures that is associated with some animal models 

of AD (Roberson et al., 2011; Roberson et al., 2007). We previously reported that 

presynaptic neurotransmitter release is inhibited by the loss of murine tau early in life in 

DGCs from tau-/- and htau mice (Cloyd et al., 2021). We hypothesized that the similarities 

we found in tau-/- and htau mice were attributable to the fact that neither strain expressed 

native, functional tau. Here we tested the hypothesis that the loss of native tau, through 

deletion in tau-/- mice or htau mice, would confer protection from seizure induction and 

epileptogenesis after IHK. This hypothesis was partially supported and the results 

presented here further our understanding of tau’s role in epileptogenesis. 

We found a striking difference in the immediate seizure-inducing effects of IHK on 

tau-/- mice compared to htau mice or non-transgenic, C57BL/6J mice. C57BL/6J and htau 

mice reliably displayed convulsive seizures immediately after IHK and most (70-75%) 

developed SE during the defined two hour observation period. In contrast, very few tau-/- 

mice exhibited any behavioral seizures and none met the definition for SE that results in 

epileptogenesis after systemic pilocarpine treatment (Shibley and Smith, 2002). However, 

EEG analysis revealed extensive electrographic activity in all mice after IHK, regardless 

of genotype, which was consistent with electrographic activity during convulsive SE 

reported by others (Haussler et al., 2012). Additionally, all htau and C57BL/6J mice, and 

two of four tau-/- mice, developed epilepsy with spontaneous seizures within 3 weeks of 
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IHK treatment. Thus, partial seizures that are not associated with generalized convulsive 

behavior at the time of IHK treatment may be sufficient to induce epileptogenesis within 

three weeks in this model.  All IHK-treated mice also exhibited EEG spiking, a finding 

previously described in a posttraumatic epilepsy model (Statler et al., 2009). These results 

address an important gap in understanding of tau’s effect on epileptogenesis. Although 

numerous studies have shown seizure resistance in various tau-/- models (DeVos et al., 

2013; Li et al., 2014; Pallo et al., 2016; Roberson et al., 2011; Roberson et al., 2007; Tan 

et al., 2018), little is currently known about how this resistance affects the process of 

epileptogenesis. The results of the current study suggest tau deletion does not prevent 

development of acquired epilepsy, but may instead alter the process or rate of 

epileptogenesis after IHK treatment. Notably, EEG monitoring was not continuous during 

the observation period and seizures frequently occur in clusters (Lim et al., 2018; Williams 

et al., 2009). Furthermore, the frequency of spontaneous seizures detected in the individual 

tau-/- mice that developed epilepsy was similar to the seizure frequency in C57BL/6J mice. 

Taken together with the observation of EEG spiking in all IHK-treated animals, we cannot 

exclude the possibility that epileptogenesis occurred, even in cases where spontaneous 

behavioral seizures were not documented. Compared to mice monitored by vEEG, 

spontaneous seizure prevalence in mice that underwent monitoring for behavioral seizures 

without EEG was lower for all genotypes. It should be noted, however, that all of the 

behavioral observations occurred during the day. Approximately 75% of spontaneous 

convulsive seizures recorded by vEEG occurred at night, so these behavioral observations 

likely underestimated the actual prevalence of spontaneous seizures in the mice used for 

electrophysiology. Furthermore, electrophysiological data collected from mice that were 
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observed to have spontaneous convulsive seizures did not obviously differ from those that 

were not observed to have spontaneous convulsive seizures. 

Loss of tau expression is associated with reduced mortality in genetic epilepsy and 

induced seizure models (Gheyara et al., 2014; Holth et al., 2013; Roberson et al., 2011; 

Roberson et al., 2007), whereas expression of disease-related mutant tau is associated with 

increased mortality after pentylenetetrazole (PTZ) induced seizures (Garcia-Cabrero et al., 

2013) and may increase epilepsy-related death in some models of AD (Maeda et al., 2016). 

The results of the current study were largely consistent with previous findings. Overall 

survival in htau mice was significantly lower than in tau-/- and C57BL/6J mice. The human 

tau expressed by htau mice lacks disease related mutations common in other transgenic tau 

mice, but total tau expression and phosphorylation is elevated (Andorfer et al., 2003), a 

finding we previously confirmed (Cloyd et al., 2021). Our results indicate that disease 

related mutations are not required for tau to exacerbate epilepsy-related mortality. Rather, 

accumulation of hyperphosphorylated tau, which occurs in human patients with epilepsy 

(Puvenna et al., 2016; Tai et al., 2016), may be associated with epilepsy-related mortality. 

We did not detect a difference in survival between tau-/- and non-transgenic C57BL/6J 

mice. Previous work using IHK in C57BL/6J mice found a low rate of mortality in this 

model (Kang et al., 2021; Welzel et al., 2020), similar to our results. Due to the low 

mortality rate in both groups, it is not possible from the current data to determine whether 

tau deletion improves survival after IHK in tau-/- mice compared to C57BL/6J mice. 

Temporal lobe epilepsy results in increased and recurrent excitatory signaling in 

the dentate gyrus (Buckmaster et al., 2002; Cronin et al., 1992; Hunt et al., 2010; Winokur 

et al., 2004; Wuarin and Dudek, 2001). The current study found evidence of increased 
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excitability in DGCs from IHK-treated C57BL/6J mice that was less or absent in DGCs 

from tau-/- and htau mice. The effects on synaptic function were most apparent. DGCs from 

IHK treated C57BL/6J mice received more sEPSCs and the probability of neurotransmitter 

release after perforant pathway stimulation was also increased compared to DGCs from 

sham-control C57BL/6J mice. These effects were observed in DGCs both ipsilateral and 

contralateral to the IHK injection site, indicating widespread changes in DGC excitability. 

These effects on excitatory synaptic connectivity were partially abrogated in DGCs from 

both tau-/- and htau mice.  

DGCs contralateral, but not ipsilateral, to the IHK site exhibited an increased peak 

frequency of induced action potentials in response to current injection compared to sham-

control in C57BL/6J mice (Figure 4.4). This finding suggests that commissural inputs to 

the dentate gyrus, or the secondary generalization of seizure activity that involves both 

hemispheres, may play important roles in mediating changes in intrinsic excitability over 

time, possibly more so than local circuitry. The DGCs recorded in this study were located 

in the ventral dentate gyrus, relatively distant from the IHK site in the dorsal CA1, further 

implicating commissural connections in the induction of altered intrinsic excitability in 

DGCs. The absence of changes in peak action potential firing in IHK treated tau-/- and htau 

mice suggests that generalization of seizures may be impaired in mice lacking functional 

tau, which may be related to the protection against IHK-induced synaptic dysfunction we 

detected.  

Although increased susceptibility to seizure induced cellular excitability has been 

demonstrated in other animal models of tauopathy (Decker et al., 2016; Garcia-Cabrero et 

al., 2013; Liu et al., 2017b; Maeda et al., 2016), we found the opposite in DGCs from htau 
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mice. The htau mouse was selected for this study because, unlike other transgenic tau 

models, it lacks murine tau. We previously showed that DGCs from htau mice exhibit 

reduced excitability compared to non-transgenic mice at 1.5 months of age, the age at 

which mice were treated with IHK in the current study, suggesting that the pro-excitatory 

effects of hyperphosphorylated tau require the presence of normal murine tau (Cloyd et al., 

2021). The abrogation of IHK-induced changes in DGC excitability observed in htau 

animals further supports this notion. Interestingly, survival after IHK was significantly 

poorer in htau mice, which is more consistent with previous studies of the seizure-related 

survival in animal models of tauopathy (Garcia-Cabrero et al., 2013) and AD (Chan et al., 

2015), which develop hyperphosphorylated tau despite lacking neurofibrillary tangles 

(Castillo-Carranza et al., 2015). This suggests that tau impacts animal survival and cellular 

excitability by separate mechanisms after IHK treatment. 

4.5 Conclusions 

 Our results are inconsistent with the hypothesis that loss of tau prevents 

epileptogenesis, though we did find evidence that seizure expression, and possibly the 

process of epileptogenesis, are altered in mice lacking native tau. Tau-/- mice did not 

develop SE as conventionally defined by the occurrence of convulsive seizures, but 

exhibited electrographic activity consistent with subconvulsive seizures. Spontaneous 

generalized seizures and EEG spiking were documented 1-3 weeks after IHK treatment in 

all strains, but was not present in sham-treated animals. Although eliminating native tau 

did not prevent epilepsy in tau-/- or htau mice, it abrogated several of the IHK-related 

changes in DGC electrophysiology identified in C57BL/6J mice. The specific mechanisms 



118 
 

by which tau and/or hyperphosphorylation of tau influences epileptogenesis and epilepsy 

related mortality warrants further study.  
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CHAPTER 5. DISCUSSION 

5.1 Summary of findings 

This dissertation focused on studying the effects of tau expression on DGC 

electrophysiology in normally aging and IHK-treated tau-/- and htau mice. The principal 

findings of this work are as follows: 1) DGCs from both tau-/- and htau mice are intrinsically 

less excitable compared to non-transgenic control early in life, but this effect is lost with 

age, 2) presynaptic neurotransmitter release from perforant pathway fibers is inhibited in 

both tau-/- and htau mice, 3) aging-related changes in neuronal function depend more upon 

loss of tau expression than by development of hyperphosphorylated tau, 4) tau-/- mice 

display an altered behavioral phenotype during IHK-SE compared to htau or C57BL/6J 

mice, but reliably experience SE as measured electrographically after IHK, 5) survival after 

IHK is significantly impaired in htau mice, but appears unaffected or improved in tau-/- 

mice, 6) changes in tau expression may not significantly impact the development of 

spontaneous seizures after IHK, and 7) modulation of tau expression reduces synaptic 

dysfunction and may limit spread of seizure. This dissertation is the first direct comparison 

of the effects of complete removal of tau and introduction of mild tau pathology in the 

absence of endogenous murine tau on electrophysiological function in DGCs. This 

dissertation is also the first work to perform IHK in htau mice and compare survival, 

epileptogenesis, and DGC function in epileptic tau-/- and htau mice. 
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5.2 DGC function tau-/- and htau mice 

 Synaptic function in DGCs from tau-/- and htau mice 

Several studies have examined synaptic function in tau-/- mice (Ahmed et al., 2014; 

Biundo et al., 2018; Kimura et al., 2014) or in mouse models expressing pathological tau 

(Hoover et al., 2010; Sydow et al., 2011; Tracy et al., 2016; Yoshiyama et al., 2007). 

Several studies have also examined on the effect of tau deletion on hyperexcitability 

associated with AD pathology (Ittner et al., 2010; Roberson et al., 2011; Shipton et al., 

2011). Introduction of soluble tau oligomers (exogenously or via intracellular recording 

solution during a whole cell recording) can induce impairments in LTP (Hill et al., 2019; 

Ondrejcak et al., 2018). The majority of previous work has studied the synapse between 

Schaffer collateral fibers and CA1 pyramidal neurons, but some work has focused on the 

synapses between the perforant pathway and DGCs and between the mossy fibers and CA3 

pyramidal neurons.  

Tau-/- mice and mice expressing pathological tau both exhibit deficits in synaptic 

plasticity, particularly impairment of LTP. Impairments in LTP may be attributable in part 

to derangements in glutamate signaling and post-synaptic receptor function. Tau pathology 

promotes glutamate release and inhibits its reuptake, promoting excitotoxicity which can 

be abrogated by stimulating astrocytic reuptake of glutamate (Decker et al., 2016; 

Hunsberger et al., 2015). Tau also contributes to the organization and function of the post-

synaptic density, primarily through interactions with the Src-kinase Fyn (Ittner et al., 2010; 

Lopes et al., 2016; Miyamoto et al., 2017; Mondragon-Rodriguez et al., 2012). Although 

most evidence implicates pathological tau in NMDA receptor function, it has also been 

shown to inhibit AMPA receptor trafficking (Tracy et al., 2016). The impairment of LTP 
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associated with different tau models could therefore be due to a combination of 

derangements of post-synaptic organization and excessive glutamate signaling resulting in 

excitotoxic neuron death, which may explain why tau-/- and pathological tau models 

frequently exhibit similar deficits in synaptic plasticity. 

It is not entirely clear from the studies discussed why loss of tau expression 

improves synaptic plasticity in models expressing Aβ pathology. One explanation is that 

Aβ induces synaptic dysfunction through induction of tau pathology. This explanation is 

consistent with observations of Aβ-associated hyperexcitability (Busche et al., 2008). Aβ-

associated changes of pre- and post-synaptic function are largely consistent to those 

observed in pathological tau models (Roberson et al., 2011; Shipton et al., 2011). 

Abrogation of excitotoxicity after tau loss in these models is straightforward given 

pathological tau’s association with excessive glutamate release. However, the 

improvement in LTP after tau deletion in several studies of Aβ models is counterintuitive 

(Ittner et al., 2010; Roberson et al., 2011; Shipton et al., 2011) given that tau deficient mice 

develop LTP deficits. One explanation is that Aβ is not inherently detrimental to synaptic 

function. Supporting this idea, low dose (picomolar) infusion of Aβ enhances LTP in CA1 

pyramidal neuron (Puzzo et al., 2008). With this in mind, it is possible that in tau-/- animals 

with increased Aβ expression, there is actually an improvement in LTP. However, this 

hypothesis is largely untested and mostly speculative. The idea that Aβ-induced pathology 

is mainly tau-mediated is not novel and is supported by studies of synaptic function in  

tau-/- expressing Aβ pathology, but more work is needed to elucidate specific mechanisms 

involved. 
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In contrast to synaptic plasticity, which is affected similarly by tau deficiency or 

pathology, presynaptic function in the trisynaptic circuit is affected differently in tau-/- mice 

and mice which express pathological tau. Neurotransmitter release probability is generally 

increased in pathological tau models (Sydow et al., 2011; Yoshiyama et al., 2007), but is 

appears to be unaffected in tau-/- models (Ahmed et al., 2014; Kimura et al., 2014). 

Consistent with these observations, other studies have suggested tau does not have a major 

role in physiological presynaptic function, although the evidence is relatively sparse 

(McInnes et al., 2018; Zhou et al., 2017). The increased neurotransmitter release in 

pathological tau models is consistent with the increased glutamate release previously 

described, though the specific mechanism remains to be determined. Although the limited 

evidence of pathological tau’s role in presynaptic function suggests it impairs fusion of 

synaptic vesicles with the plasma membrane (McInnes et al., 2018; Zhou et al., 2017), these 

studies were conducted in the neuromuscular junction of Drosophila which expressed 

human 0N4R tau. While vesicle fusion is largely assumed to be conserved across different 

synapses and species, the body of evidence summarized here suggests the same cannot be 

said of tau’s role in vesicle fusion. The tau species expressed does not represent tau 

expression in human (mixture of all 6 isoforms) or mouse (3 isoforms of 4R tau). Therefore, 

the results from these studies may not be generalizable to tau’s pathologic pre-synaptic 

function. Still, taken along with studies demonstrating little effect of tau deletion on 

presynaptic function in tau-/-, these studies suggest tau does not play a major physiologic 

role in the presynaptic space. 

Despite several studies examining tau’s role in synaptic function, only one study 

was found which studied synaptic function specifically in the htau mouse. This study found 
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normal function at the synapse between Schaffer collateral fibers and CA1 pyramidal 

neurons from 4 month old htau (Polydoro et al., 2009). Synaptic function was impaired at 

1 year of age, consisting of reduced presynaptic neurotransmitter release and impaired LTP 

in response to high frequency stimulation. LTP induced by theta-burst stimulation 

functioned normally, suggesting the high-frequency LTP impairment may be related to the 

presynaptic deficit (i.e. the Schaffer collateral fibers could not adequately release 

neurotransmitter in response to high frequency stimulation). 

Most previous work into the effects of tau on synaptic function studied synapses 

onto CA1 and CA3 pyramidal neurons. In contrast, the current work studied DGCs and is 

the first to study DGC function in the htau mouse model. Despite studying different cell 

populations, the results of this study are largely consistent with previous studies. No 

difference in paired pulse ratio was detected in mice at 4 months of age and older. However, 

previous studies did not measure paired pulse ratio in younger mice. In this study, the 

paired pulse ratio was increased in both tau-/- and htau mice at 1.5 months of age compared 

to C57BL/6J mice, indicating reduced neurotransmitter release from perforant pathway 

fibers to DGCs. This reduction in presynaptic function suggests tau deletion reduces 

excitatory signaling, consistent with previous work (Decker et al., 2016; Hunsberger et al., 

2015). Furthermore, the effect waning with age is consistent with observations of tau’s role 

in neuronal development. Tau-/- neurons display impairments in development that seem to 

be partially compensated by other MAPs (Dawson et al., 2001; Harada et al., 1994). Tau 

isoform expression also varies throughout development, transitioning from 0N3R tau in 

the fetal brain to all six isoforms in the adult brain (Goedert and Jakes, 1990; Goedert et 

al., 1989a; Kosik et al., 1989). No difference in presynaptic neurotransmitter release was 
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detected at 9 months of age, the latest age studied. This may indicate a difference in the 

neurons studied, suggesting DGC function is less affected by age compared to CA1 

pyramidal neurons. Alternatively, it may suggest that function declines between 9 and 12 

months. Since this is the general age range where NFTs become increasingly prominent, 

this may suggest increased development of oligomeric tau in this timeframe (discussed 

more below). 

A notable finding from this study was the overwhelming similarity between 

synaptic function measured in tau-/- and htau mice at all ages. Based on previous studies, 

significant differences in excitability were expected between the two models. Perforant 

pathway-DGC synaptic excitability in the tau-/- mice largely met expectations, but this 

synapse in htau mice was less excitable compared to C57BL/6J mice early in life. DGCs 

from tau-/- and htau mice displayed few differences in synaptic function at any age. A 

couple of important factors may explain the difference in excitability in htau mice 

compared to tau models. The htau mouse was chosen in part because it lacks MAPT 

mutations commonly expressed in other tau models. These mutations are valuable in better 

understanding tau’s behavior in many pathologic contexts. However, they are relatively 

rare in the human population so findings in these models may not be widely generalizable. 

In contrast, the htau mouse expresses human tau lacking additional mutations. Mouse 

models that express non-mutant human tau are more resistant to tau pathology than models 

expressing mutant tau. For example, the first transgenic mouse model, which expressed 

2N4R tau, developed somatodendritic distribution of hyperphosphorylated tau but lacked 

significant NFT formation, neurodegeneration, and functional impairment (Gotz et al., 

1995). When the P301L mutation was introduced to the same model, significant pathology 
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associated with tauopathies developed (Gotz et al., 2001a). The absence of disease-related 

mutations in the htau mouse therefore likely reduces the severity of the tau pathology and 

lack of obvious synaptic deficits. Although the lack of pathogenic mutations may 

contribute to the reduced synaptic excitability in htau mice, this explanation does not fully 

account for the findings. Despite lacking disease related mutations, overall tau expression 

is increased in htau mice compared to C57BL/6J mice (Andorfer et al., 2003). 

Overexpression of endogenous murine tau alone has been shown to induce pathology 

including hyperphosphorylation and aggregation similar to that observed in the htau model, 

demonstrating that mutations or additional sources of pathology are not necessary for tau 

pathogenesis (Adams et al., 2009). Furthermore, htau mice develop tau aggregation (i.e. 

oligomers) by 2 months of age, and exhibit mature tangles by 9-12 months of age (Andorfer 

et al., 2003). Since soluble tau oligomers are likely the primary toxic tau species (Tian et 

al., 2013), and readily form from hyperphosphorylated tau without pathogenic mutations 

during the process of aggregation (Maeda et al., 2007; Tepper et al., 2014), the htau mice 

should have the same pathogenic potential as other models. Therefore, the lack of 

pathogenic mutations is unlikely to be the sole explanation for the current findings. 

The htau mouse model has a second important characteristic that sets it apart from 

most tau mouse models. Whereas most transgenic models express additional forms of tau 

with murine tau expression intact, the htau model expresses a homozygous deletion of 

murine tau in addition to the human transgene so that they only express human tau. Both 

3R and 4R tau are highly expressed in htau mice, though 3R tau is more abundant (Andorfer 

et al., 2003). In contrast, since murine tau is 4R only, intact murine tau expression greatly 

increases the ratio of 4R to 3R tau. Increasing relative 4R expression promotes aggregation 
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of tau (Schoch et al., 2016; von Bergen et al., 2000). Therefore, htau mice likely develop 

tau oligomers at a lower rate than transgenic models which co-express human and murine 

tau, especially compared to models that express pro-aggregation mutations such as P301L 

(Barghorn et al., 2000). Tau oligomer development has not been thoroughly studied in htau 

mice or directly compared between to other models, so the exact difference in oligomer 

burden is not known. Furthermore, because synaptic function has not been thoroughly 

studied in htau mice, it’s not clear how much these potential changes impact function. The 

limited data suggest some impairment to LTP develops late in life, but even then LTP in 

response the theta burst was intact (Polydoro et al., 2009) 

 Intrinsic neuronal properties in DGCs from tau-/- and htau mice 

Compared to studies of synaptic function, which typically involve extracellular 

field recordings, relatively few studies have examined the tau’s role in intrinsic neuronal 

properties. Most work has been conducted in the rTg4510 mouse, in frontal cortical 

pyramidal neurons (Crimins et al., 2012; Crimins et al., 2011; Rocher et al., 2010) or CA1 

pyramidal neurons (Hatch et al., 2017). These studies found largely different results, 

possibly reflecting the different neuron populations examined. Overall, frontal cortical 

pyramidal neurons from rTg4510 mice were more excitable than those non-transgenic 

control, exhibiting resting membrane potentials that were depolarized and firing action 

potentials at higher frequency in response to current injection (Crimins et al., 2012; Crimins 

et al., 2011; Rocher et al., 2010). The action potential firing appeared to be a consequence 

of the depolarized membrane potential, because no difference in firing was observed when 

the neurons were clamped at the same voltage. 
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In contrast to studies in frontal cortical pyramidal neurons, CA1 pyramidal neurons 

in rTg4510 mice are less excitable compared to those from non-transgenic control, 

exhibiting decreased action potential firing frequency in response to current injection 

(Hatch et al., 2017). In addition, action potential threshold and rheobase were increased, 

and action potential amplitude was decreased. Comparable responses were elicited after 

administering soluble tau oligomers via intracellular patch-pipet to the soma of CA1 

pyramidal neurons in C57BL/6J mice (Hill et al., 2019).  

No studies were found that measured the effects of tau pathology in DGCs. 

Furthermore, no studies could be found which reported whole-cell patch-clamp data from 

tau-/- animals. Therefore, this study presents the first examination of intrinsic DGC function 

in both tau-/- and htau mice.  Overall, the effects were relatively minor in both models. 

Resting membrane potential was slightly depolarized in DGCs from tau-/- mice at 1.5 

months, but this effect was not observed at later ages, and no other changes in resting 

membrane potential were observed. Peak action potential firing frequency was decreased 

in DGCs from tau-/- and htau mice compared to those from C57BL/6J at 1.5 months, and 

peak frequency increased with age in both models. Consistent with other studies of 

hippocampal neurons, the current study suggests tau does not have a major role in intrinsic 

neuronal properties. This conclusion is overall in line with tau’s normal distribution and 

function, suggesting tau’s contribution to neuronal function is focused primarily at the 

synapse. However, given the relatively sparse data available, it is possible that tau plays 

subtle roles in intrinsic function that have not be discovered. 
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 Future directions 

While this study has provided new insight into tau’s role in neuronal excitability in 

tau-/-
 and htau mice, some key questions remain to be answered. Previous studies have 

identified a significant role for tau in the post-synaptic response, specifically in the 

processes of LTP. This study did not measure LTP or any other measure of synaptic 

plasticity. Future work should assess LTP at the major hippocampal synapses to better 

understand post-synaptic function in the htau mouse. Based on existing literature, it’s 

reasonable to expect the htau mice would exhibit deficits in LTP. However, the noted 

differences between tau and the models previously studied, particularly the potential 

difference in oligomeric tau, could prevent LTP deficits in the htau mice. Assessing the 

rate of tau oligomerization in htau mice compared other tau mice would also help in 

understanding tau’s role in synaptic function, especially the potential role of murine tau 

expression in tauopathy models. A side-by-side comparison between htau and 8c mice 

would clarify many questions since these models differ primarily only by the expression 

of murine tau. A clear understanding of the potential confounding influences of murine tau 

expression in models of tau pathology is crucial to interpreting existing and future studies. 

5.3 Epileptogenesis in tau-/- and htau mice 

 Induction of SE by IHK 

Tau’s role in seizure development has been the focus of several studies involving 

tau-/- and tauopathy models. Tau-/- mice exhibit resistance (characterized by delayed onset 

and reduced severity) to seizures induced by intraperitoneal injection of PTZ (Li et al., 

2014; Roberson et al., 2007; Tan et al., 2018) and KA (Pallo et al., 2016; Roberson et al., 

2007). Comparable resistance to picrotoxin-induced seizures was achieved after ASO-
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meditated inhibition of tau expression in adult mice (DeVos et al., 2013). Tau deletion also 

abrogates the increased susceptibility to PTZ-induced seizures associated with AD 

pathology (Palop et al., 2007; Roberson et al., 2011; Roberson et al., 2007). Interestingly, 

the seizure resistance is not limited to a single model, but has been demonstrated in several 

distinct tau-/- models (Dawson et al., 2001; Tan et al., 2018; Tucker et al., 2001), including 

several which had been crossed with other mouse models (Gotz et al., 2001a; Mucke et al., 

2000; Sturchler-Pierrat et al., 1997), demonstrating the effect is not unique to any single 

model. Furthermore, reducing tau phosphorylation through activation of PP2A in rats with 

normal tau expression similarly confers resistance to PTZ-induced seizures (Jones et al., 

2012). In contrast to tau-/- mice, mice expressing pathologic tau exhibit increased 

susceptibility to PTZ-induced seizures (Garcia-Cabrero et al., 2013). 

A few studies have investigated tau’s influence on kindling or SE models. One 

study found rTg4510 mice are more susceptible to amygdala kindling, but found no 

difference in kindling response between tau-/- and C57BL/6J mice (Liu et al., 2017b). 

Similarly, Tg2576 mice, an Aβ model which develops oligomeric tau pathology, showed 

similar susceptibility to kindling (Castillo-Carranza et al., 2015; Chan et al., 2015). 

Consistent with previous work, reducing tau phosphorylation by activating PP2A in rats 

with normal tau expression confers resistance to amygdala kindling and SE induced by 

repeated low dose KA (Liu et al., 2016). 

In the current work, tau-/- and htau mice underwent IHK treatment to determine how 

tau influences development of SE. Although htau mice developed generalized convulsive 

seizures after IHK in a manner largely similar to C57BL/6J mice, tau-/- mice did not exhibit 

convulsive seizures. This seemed to suggest that tau deficiency prevented IHK-induced 
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SE. However, EEG monitoring of tau-/-
 mice after IHK found extensive non-convulsive 

seizure activity consistent with that observed in htau and C57BL/6J mice as well as other 

reports of IHK-induced SE (Haussler et al., 2012). This study showed that tau deficiency 

modifies IHK-SE, but does not prevent it outright. This finding has important ramifications 

for any study inducing seizures or SE in tau-/- animals. Considering the shift from 

convulsive to non-convulsive seizures, apparent absence of seizures should be confirmed 

via EEG before concluding that tau deficiency confers protection in these models. 

 Survival after SE 

Consistent with the effect on seizure induction, tau expression is correlated with 

survival in seizure and epilepsy models. Expression of pathological tau is associated with 

poorer survival following PTZ-induced seizures (Garcia-Cabrero et al., 2013) and 

electrical kindling (Chan et al., 2015). In contrast, tau-/- animals exhibit improved survival 

in several models of seizure induction and epilepsy. Genetic models of epilepsy are often 

associated with sudden unexpected death in epilepsy (SUDEP). Tau deficient mice exhibit 

a dose dependent (tau-/- > tau+/- > tau +/+) reduction in mortality associated with some 

genetic models of epilepsy (Gheyara et al., 2014; Holth et al., 2013). 

The results of the current study are consistent with previous work. Mortality in htau 

mice (55% mortality overall, 35% SUDEP) was increased compared to C57BL/6J mice 

(14% SUDEP). Tau-/- mice may have exhibited reduced mortality compared to C57BL/6J 

(8% SUDEP), but the sample size was insufficient to draw this conclusion. Overall, the 

results of this study confirmed previous results demonstrating a correlation between tau 

expression and seizure/epilepsy related death. Impaired survival in htau mice demonstrates 

that the reduced synaptic excitability previously described at a similar age did not confer 
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protection against mortality. The increased rate of SUDEP may indicate involvement of 

extrahippocampal circuits, particularly the nucleus tractus solitarius (NTS) which has been 

implicated in SUDEP after pilocarpine-induced SE (Derera et al., 2017; Derera et al., 

2019). 

 Development of spontaneous seizures after SE 

Relatively few studies have examined tau’s role in spontaneous seizures. Tau 

deletion reduces the frequency of spontaneous seizures in some genetic models of epilepsy 

(Gheyara et al., 2014; Holth et al., 2013). Similarly, tau deletion improves the epileptic 

phenotype associated with at least one AD mouse model. The hAPPJ9/Fyn mouse double 

transgenic model overexpresses Fyn alongside human amyloid precursor protein with two 

disease-related mutations, and develops spontaneous convulsive seizures (Roberson et al., 

2011). Tau reduction resulted in a dose-dependent reduction in spontaneous epileptiform 

activity and shifted seizure phenotype to less severe, nonconvulsive seizures. Targeting tau 

phosphorylation by activation of PP2A in rats reduced the frequency of spontaneous 

seizures after amygdala kindling, fluid percussion injury, and KA-induced SE (Liu et al., 

2017b). 

The results of this study suggest a reduction in prevalence and frequency of 

spontaneous seizures, but lacked the statistical power to find a difference. C57BL/6J mice 

monitored by vEEG (two 24 hour recordings per week) all developed spontaneous 

convulsive seizures 1-3 weeks after IHK, mostly at a higher frequency than tau-/- or htau 

mice. Two out of four tau-/- mice were not observed to have a convulsive seizure or vEEG 

correlate, but seizure frequency in the other tau-/- mice was similar to C57BL/6J mice. 

Interestingly, although all htau mice were observed to have spontaneous seizures, the 
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frequency was lower than observed in C57BL/6J or tau-/- mice. All IHK-treated mice 

exhibited spiking on EEG regardless of whether convulsive seizures were observed. This 

spiking was not observed in any sham-treated mice. 

The study of spontaneous seizures in the IHK-treated mice reveals two major 

points. First, convulsive seizure prevalence determined by 24 hour vEEG monitoring 

differed dramatically from prevalence determined by behavior monitoring. Whereas 

convulsive seizures were observed in 50-100% of vEEG monitored mice, convulsive 

seizure prevalence assessed by video monitoring of behavior in tau-/-, htau, and C57BL/6J 

mice was 0%, 50%, and 22%, respectively. Notably, 75% of seizures observed on vEEG 

occurred at night while the animals were most active, whereas all behavioral monitoring 

occurred during the day. Therefore, studies which only monitor for seizures during the day 

likely underrepresent actual seizure prevalence.  

Additionally, although htau mice experienced a high mortality rate after IHK, they 

were observed to develop fewer spontaneous seizures compared to C57BL/6J mice or  

tau-/- mice that developed spontaneous seizures. This finding suggests tau affects survival 

and epileptogenesis by different mechanisms. IHK treatment occurred at 1.5-2 months of 

age, when htau mice exhibit reduced excitability at the perforant pathway-DGC synapse. 

Although this reduction in excitability did not improve overall survival, it may have 

contributed to the apparent reduction in seizure frequency. It is not known whether other 

hippocampal synapses exhibit similar patterns of excitability at this age. Reduced synaptic 

excitability throughout the hippocampus would likely inhibit seizure propagation and could 

underlie the reduced frequency of convulsive seizures in htau mice. However, the 

frequency of spontaneous seizures in tau-/- complicate this picture. Tau-/- mice exhibited 
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similar synaptic activity described in htau mice. Spontaneous seizures were not observed 

in two of four tau-/- mice during 24 hour vEEG after IHK, but the frequency of seizures in 

the other two tau-/- did not differ from C57BL/6J mice. One possible conclusion is that tau 

deficiency inhibits epileptogenesis, but has little effect on seizures in animals that do 

become epileptic. This conclusion is not fully supported from the current data, however, 

because EEG spikes were present in all IHK treated mice. Although not conclusive, this 

observation raises the possibility that the mice without observed seizures had become 

epileptic. Since seizures often develop in clusters (Lim et al., 2018; Williams et al., 2009) 

and EEG monitoring was not continuous throughout the observation period, it is possible 

that these two mice had seizures between vEEG recordings. 

 Future directions 

While the current study provides new insight on tau’s role in epileptogenesis, more 

work is needed to clearly define this role. The data presented here suggest a reduction in 

epileptogenesis in tau-/- mice, but limitations in monitoring could be responsible for this 

finding. Longer term, continuous vEEG monitoring would provide a better assessment of 

epileptogenesis after IHK. Furthermore, IHK in the current study was performed at 1.5-2 

months of age, corresponding with reduced excitability at the perforant pathway-mossy 

fiber synapse as previously discussed. It is not clear from the current data whether this 

reduced excitability influenced development of SE or epileptogenesis. However, since this 

synapse exhibited normal excitability later in life, performing IHK at later ages could 

clarify this question. A small cohort of older tau-/- and htau mice displayed no obvious 

differences after IHK compared to the current study, but full investigation is warranted 
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before making any conclusions. Given the increased rate of SUDEP in htau mice, NTS 

function should be assessed after IHK in tau-/- and htau mice. 

5.4 Dentate granule cell excitability after IHK in tau-/- and htau 

 Electrophysiology in IHK treated mice 

Epilepsy is associated with extensive changes in DGC function. Mossy fibers form 

aberrant synapses with DGCs, resulting in recurrent excitatory circuits (Butler et al., 2015; 

Hunt et al., 2010; Winokur et al., 2004). Animal models of epilepsy also frequently develop 

inhibitory neuron dysfunction (Butler et al., 2017; Hunt et al., 2011; Kang et al., 2021) and 

alterations to GABAA receptor function (Boychuk et al., 2016; Peng et al., 2004). Although 

C57BL/6J mice exhibit resistance to epileptogenesis after SE induced by systemic KA 

administration (McKhann et al., 2003; McLin and Steward, 2006; Schauwecker and 

Steward, 1997), IHK reliably induces epileptogenic changes (Kang et al., 2021; Welzel et 

al., 2020). 

This study describes the first application of IHK in tau-/- and htau mice. DGC 

excitability was measured 6-8 weeks after IHK. In IHK-treated C57BL/6J mice, the 

perforant pathway-DGC synapse exhibited increased excitability compared to sham 

control, demonstrated by increased neurotransmitter release and more frequent sEPSCs. 

These changes were detected both contralateral and ipsilateral to the injection. 

Additionally, peak evoked action potential frequency was increased in DGCs contralateral, 

but not ipsilateral, to the injection. These changes were largely abrogated in tau-/- and htau 

mice. Synaptic hyperexcitability was reduced, but not entirely prevented, in both transgenic 
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strains. Evoked action potential frequency was not affected in DGCs from tau-/- and htau 

mice after IHK. 

The difference in functional changes after IHK in tau-/- and htau mice compared to 

C57BL/6J mice suggest the altered tau expression affected the process of epileptogenesis 

after IHK. DGCs contralateral to the injection in C57BL/6J mice exhibited increased 

intrinsic excitability. However, this effect was not observed ipsilateral to the injection. 

Kainate was injected into the dorsal CA1, whereas the DGCs studied were in the ventral 

dentate gyrus. The absence of changes in intrinsic excitability in DGCs ipsilateral to the 

injection suggests that seizures did not readily propagate along the septotemporal axis 

within the hippocampus. Changes in DGCs contralateral to the injection suggests 

involvement of the commissural inputs or secondary generalization of seizures in driving 

changes during epileptogenesis. This notion is supported by the increased synaptic 

excitability observed in DGCs from IHK-treated C57BL/6J mice. If synaptic 

hyperexcitability develops generally in IHK-treated mice, then epileptiform discharges 

could spread more easily, promoting widespread propagation of seizures. 

The assessment of excitability in DGCs from tau-/- and htau mice is consistent with 

and may explain, in part, the potentially reduced seizure prevalence/frequency previously 

discussed. Synaptic hyperexcitability was reduced, though not entirely abrogated, in DGCs 

from both transgenic strains, consistent with the reduction in seizure prevalence in tau-/- 

and seizure frequency in htau mice suggested here. If increased synaptic transmission could 

promote seizure propagation, then it stands to reason that preventing this hyperexcitability 

could inhibit seizure development. Furthermore, the incomplete prevention of 
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hyperexcitable changes observed is consistent with the modification, but not prevention, 

of epileptogenesis described previously. 

 Future directions 

The results of this study suggest tau contributes to IHK-induced changes in 

electrophysiological function. However, this study only investigated intrinsic and synaptic 

function in the DGCs. Although DGCs play a critical role in epileptogenesis, several 

additional cells, including hilar interneurons, are also involved in epileptogenesis. Further 

studies are needed to determine whether changes in tau expression modifies epileptogenic 

changes in other neuron populations. The current study also only investigated broad 

electrophysiological function in DGCs. More detailed investigation is needed to determine 

which specific processes involved in epileptogenesis might be influenced by tau. 

Furthermore, changes in excitability may occur throughout the trisynaptic circuit and 

should be investigated. 

5.5 Final conclusions 

This dissertation presented new insights regarding tau’s role in DGC function and 

IHK-induced epileptogenesis. The results presented here largely agreed with those of 

previous studies, but with a few important exceptions. Most notably, these results indicate 

that persistent expression of murine tau in most models of tauopathy may confound results 

by exacerbating pathology. The htau mice studied here did not display the same 

dysfunction described in other models. Although it is not entirely clear why these 

differences occurred, the potential for murine tau to interact with the various forms of 

human expressed in other animal tauopathy models should be considered and avoided 
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where feasible. The existing body of literature studying tau’s role in neuronal and synaptic 

excitability using specific electrophysiological techniques is sparse. More studies 

employing whole-cell recordings are needed to better understand the specific effects of tau 

deletion or hyperphosphorylation on neuronal function. While the current study was 

intended to address this paucity of information, it only measured broad 

electrophysiological function and should be considered a starting point for further research. 

Still, the insights gained here have identified several avenues for future research. 

Furthermore, studies of pathological tau have largely focused on hyperphosphorylation. 

Recent studies have identified key roles for other pathogenic tau modifications which 

should be further investigated.  

Numerous studies of tau’s role in several pathologic processes suggest tau’s 

involvement in disease may be even more significant than currently recognized. In addition 

to tauopathies, tau plays an increasingly recognized role in epilepsy. While the majority of 

the studies showing involvement of tau in epilepsy present correlative data, a growing body 

of evidence, including this dissertation, suggest the role may be more active. Tau deficient 

animal models exhibit improved survival in different models of epilepsy and induced 

seizures. However, improved survival in tau deficient animals is not unique to epilepsy. 

Tau deletion is also associated with reduced mortality associated with models of AD (Ittner 

et al., 2010; Roberson et al., 2011; Roberson et al., 2007), Huntington’s disease 

(Fernandez-Nogales et al., 2014), and amyotrophic lateral sclerosis (Roberson 2011). 

Improved survival associated with tau reduction is often dose dependent. Viewed broadly, 

this body of literature suggests tau may act as a mediator of neurological dysfunction not 

limited to primary tauopathies. Furthermore, tau reduction does not appear to be associated 
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with impaired survival (Li et al., 2014), although other adverse consequences have been 

identified. Although reduction of tau at the genome level is unlikely to be a viable option 

for novel therapeutics, ASO-mediated reduction of tau expression shows promise. 

Selectively modifying tau in the adult nervous system should avoid the negative effects on 

neuronal structure and development observed in tau-/- mice while still having disease-

modifying potential. Since tau’s toxic potential seems to be related to soluble oligomers, 

this approach may even be capable of reversing some neurological diseases. While 

development of such approaches is still at an early stage, research is underway. At the time 

of writing this, one phase 1 trial is recruiting patients to begin testing an ASO therapy 

directed at progressive supranacular palsy. This is unlikely to be last such trial and may 

open the door to development of disease-modifying therapies for other neurological 

diseases. 

With relevance to this dissertation, ASOs may represent an option to modify tau after 

the initiation of epileptogenesis. This approach is more realistic in terms of novel 

therapeutics than modifications at the genome level. While the limited data available 

suggest tau ASOs are effective at reducing tau expression in vivo, it remains to be 

determined whether this approach could interrupt or reverse epileptogenesis. Although the 

current study suggests such an approach may not be entirely preventative or curative, it 

does suggest that it may provide meaningful disease modification that goes beyond 

symptomatic control. 



 
 

APPENDICES 

APPENDIX 1 ELECTROPHYSIOLOGY RECORDING SETUP 
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APPENDIX 2 SOLUTIONS USED FOR ELECTROPHYSIOLOGY 

A2.1 Cutting/holding solution 

Compound Molecular weight (g) Concentration (mM) Grams for 1L (5X) 

NaCl 58.4 85 24.82 

Sucrose 342.3 75 128.36 

KCl 74.6 2.5 0.9325 

Glucose 180.2 25 22.525 

NaH2PO4·H2O 137.99 1.25 0.862 

MgCl2·6H2O 203.3 4 4/066 

CaCl2·2H2O 147 0.5 0.3675 

NaHCO3 84.01 24 10.081 

 

A2.2 Recording solution 

Compound Molecular weight (g) Concentration (mM) Grams for 1L 

NaCl 58.4 124 24.82 

NaHCO3 84.01 26 10.081 

NaH2PO4 119.98 1.4 22.525 

Glucose 180.2 11 22.525 
 

Solution Concentration (mM) Milliliters for 1L 

1M KCl 3 3 

2M MgCl2 1.3 2.6 

2M CaCl2 1.3-2 2.6-4 
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A2.3 Electrode internal solution 

Compound Molecular weight (g) Concentration (mM) Grams for 25mL 

K-gluconate 234.2 126 737.7 

KCl 74.6 4 7.5 

HEPES 238.3 10 59.6 

MgATP 507.2 4 50.7 

NaATP 523.2 0.3 3.9 

PO-Creatine 255.1 10 63.8 

• Adjust to pH7.2 by adding 1N KOH 
• Adjust osmolality to 290-295 by adding small amounts of MilliQ water 
• Aliquot to 50-100µL and store at -20°C. Sonicate at least 5 minutes before use 



 
 

REFERENCES  

Abisambra, J.F., Blair, L.J., Hill, S.E., Jones, J.R., Kraft, C., Rogers, J., Koren, J., 3rd, 
Jinwal, U.K., Lawson, L., Johnson, A.G., Wilcock, D., O'Leary, J.C., Jansen-West, 
K., Muschol, M., Golde, T.E., Weeber, E.J., Banko, J., Dickey, C.A., 2010. 
Phosphorylation dynamics regulate Hsp27-mediated rescue of neuronal plasticity 
deficits in tau transgenic mice. J Neurosci 30, 15374-15382. 

Abisambra, J.F., Jinwal, U.K., Blair, L.J., O'Leary, J.C., 3rd, Li, Q., Brady, S., Wang, L., 
Guidi, C.E., Zhang, B., Nordhues, B.A., Cockman, M., Suntharalingham, A., Li, 
P., Jin, Y., Atkins, C.A., Dickey, C.A., 2013. Tau accumulation activates the 
unfolded protein response by impairing endoplasmic reticulum-associated 
degradation. J Neurosci 33, 9498-9507. 

Acsády, L., Kamondi, A., Sı́k, A., Freund, T., Buzsáki, G., 1998. GABAergic Cells Are 
the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus. The 
Journal of Neuroscience 18, 3386-3403. 

Adams, S.J., Crook, R.J., Deture, M., Randle, S.J., Innes, A.E., Yu, X.Z., Lin, W.L., 
Dugger, B.N., McBride, M., Hutton, M., Dickson, D.W., McGowan, E., 2009. 
Overexpression of wild-type murine tau results in progressive tauopathy and 
neurodegeneration. Am J Pathol 175, 1598-1609. 

Ahmed, T., Van der Jeugd, A., Blum, D., Galas, M.C., D'Hooge, R., Buee, L., Balschun, 
D., 2014. Cognition and hippocampal synaptic plasticity in mice with a 
homozygous tau deletion. Neurobiol Aging 35, 2474-2478. 

Al-Bassam, J., Ozer, R.S., Safer, D., Halpain, S., Milligan, R.A., 2002. MAP2 and tau bind 
longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol 157, 
1187-1196. 

Alcantara-Gonzalez, D., Chartampila, E., Criscuolo, C., Scharfman, H.E., 2021. Early 
changes in synaptic and intrinsic properties of dentate gyrus granule cells in a 
mouse model of Alzheimer's disease neuropathology and atypical effects of the 
cholinergic antagonist atropine. Neurobiol Dis, 105274. 

Ali, A., 2018. Global Health: Epilepsy. Semin Neurol 38, 191-199. 
Alldred, M.J., Duff, K.E., Ginsberg, S.D., 2012. Microarray analysis of CA1 pyramidal 

neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction. 
Neurobiol Dis 45, 751-762. 

Allen, B., Ingram, E., Takao, M., Smith, M.J., Jakes, R., Virdee, K., Yoshida, H., Holzer, 
M., Craxton, M., Emson, P.C., Atzori, C., Migheli, A., Crowther, R.A., Ghetti, B., 
Spillantini, M.G., Goedert, M., 2002. Abundant Tau Filaments and Nonapoptotic 
Neurodegeneration in Transgenic Mice Expressing Human P301S Tau Protein. The 
Journal of Neuroscience 22, 9340-9351. 

Alonso Adel, C., Li, B., Grundke-Iqbal, I., Iqbal, K., 2006. Polymerization of 
hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl 
Acad Sci U S A 103, 8864-8869. 

Altman, J., Das, G.D., 1965. Autoradiographic and histological evidence of postnatal 
hippocampal neurogenesis in rats. J Comp Neurol 124, 319-335. 

Alves, M., Kenny, A., de Leo, G., Beamer, E.H., Engel, T., 2019. Tau Phosphorylation in 
a Mouse Model of Temporal Lobe Epilepsy. Front Aging Neurosci 11, 308. 



143 
 

Alzheimer, A., Stelzmann, R.A., Schnitzlein, H.N., Murtagh, F.R., 1995. An English 
translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der 
Hirnrinde". Clin Anat 8, 429-431. 

Amaral, D.G., 1978. A Golgi study of cell types in the hilar region of the hippocampus in 
the rat. J Comp Neurol 182, 851-914. 

Amaral, D.G., 1979. Synaptic extensions from the mossy fibers of the fascia dentata. Anat 
Embryol (Berl) 155, 241-251. 

Amaral, D.G., Ishizuka, N., Claiborne, B., 1990. Chapter 1 Chapter Neurons, numbers and 
the hippocampal network.  83, 1-11. 

Amaral, D.G., Kurz, J., 1985. An analysis of the origins of the cholinergic and 
noncholinergic septal projections to the hippocampal formation of the rat. J Comp 
Neurol 240, 37-59. 

Amaral, D.G., Scharfman, H.E., Lavenex, P., 2007. The dentate gyrus: fundamental 
neuroanatomical organization (dentate gyrus for dummies).  163, 3-790. 

Amaral, D.G., Witter, M.P., 1989. The three-dimensional organization of the hippocampal 
formation: a review of anatomical data. Neuroscience 31, 571-591. 

Amatniek, J.C., Hauser, W.A., DelCastillo-Castaneda, C., Jacobs, D.M., Marder, K., Bell, 
K., Albert, M., Brandt, J., Stern, Y., 2006. Incidence and predictors of seizures in 
patients with Alzheimer's disease. Epilepsia 47, 867-872. 

Amniai, L., Barbier, P., Sillen, A., Wieruszeski, J.M., Peyrot, V., Lippens, G., Landrieu, 
I., 2009. Alzheimer disease specific phosphoepitopes of Tau interfere with 
assembly of tubulin but not binding to microtubules. FASEB J 23, 1146-1152. 

Amniai, L., Lippens, G., Landrieu, I., 2011. Characterization of the AT180 epitope of 
phosphorylated Tau protein by a combined nuclear magnetic resonance and 
fluorescence spectroscopy approach. Biochem Biophys Res Commun 412, 743-
746. 

Andersen, P., 1975. Organization of Hippocampal Neurons and Their Interconnections, in: 
Isaacson, R.L., Pribram, K.H. (Eds.), The Hippocampus: Volume 1: Structure and 
Development. Springer US, Boston, MA, pp. 155-175. 

Andorfer, C., Acker, C.M., Kress, Y., Hof, P.R., Duff, K., Davies, P., 2005. Cell-cycle 
reentry and cell death in transgenic mice expressing nonmutant human tau 
isoforms. J Neurosci 25, 5446-5454. 

Andorfer, C., Kress, Y., Espinoza, M., De Silva, R., Tucker, K.L., Barde, Y.-A., Duff, K., 
Davies, P., 2003. Hyperphosphorylation and aggregation of tau in mice expressing 
normal human tau isoforms. Journal of Neurochemistry 86, 582-590. 

Andorfer, C.A., Davies, P., 2000. PKA phosphorylations on tau: developmental studies in 
the mouse. Dev Neurosci 22, 303-309. 

Andreadis, A., Brown, W.M., Kosik, K.S., 1992. Structure and novel exons of the human 
tau gene. Biochemistry 31, 10626-10633. 

Ang, C.W., Carlson, G.C., Coulter, D.A., 2006. Massive and specific dysregulation of 
direct cortical input to the hippocampus in temporal lobe epilepsy. J Neurosci 26, 
11850-11856. 

Angelatou, F., Pagonopoulou, O., Kostopoulos, G., 1991. Changes in seizure latency 
correlate with alterations in A1 adenosine receptor binding during daily repeated 
pentylentetrazol-induced convulsions in different mouse brain areas. Neuroscience 
Letters 132, 203-206. 



144 
 

Arendt, T., Stieler, J., Strijkstra, A.M., Hut, R.A., Rüdiger, J., Van der Zee, E.A., Harkany, 
T., Holzer, M., Härtig, W., 2003. Reversible Paired Helical Filament-Like 
Phosphorylation of Tau Is an Adaptive Process Associated with Neuronal Plasticity 
in Hibernating Animals. The Journal of Neuroscience 23, 6972-6981. 

Asadi-Pooya, A.A., Nei, M., Sharan, A., Sperling, M.R., 2016. Historical Risk Factors 
Associated with Seizure Outcome After Surgery for Drug-Resistant Mesial 
Temporal Lobe Epilepsy. World Neurosurg 89, 78-83. 

Asadi-Pooya, A.A., Stewart, G.R., Abrams, D.J., Sharan, A., 2017. Prevalence and 
Incidence of Drug-Resistant Mesial Temporal Lobe Epilepsy in the United States. 
World Neurosurg 99, 662-666. 

Assaf, S.Y., Chung, S.H., 1984. Release of endogenous Zn2+ from brain tissue during 
activity. Nature 308, 734-736. 

Babu, J.R., Geetha, T., Wooten, M.W., 2005. Sequestosome 1/p62 shuttles 
polyubiquitinated tau for proteasomal degradation. J Neurochem 94, 192-203. 

Bamburg, J.R., Bray, D., Chapman, K., 1986. Assembly of microtubules at the tip of 
growing axons. Nature 321, 788-790. 

Bancher, C., Grundke-Iqbal, I., Iqbal, K., Fried, V.A., Smith, H.T., Wisniewski, H.M., 
1991. Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary 
pathology of Alzheimer disease. Brain Research 539, 11-18. 

Barborka, C.J., 1928. Ketogenic Diet Treatment of Epilepsy in Adults. Journal of the 
American Medical Association 91, 73. 

Barghorn, S., Zheng-Fischhofer, Q., Ackmann, M., Biernat, J., von Bergen, M., 
Mandelkow, E.M., Mandelkow, E., 2000. Structure, microtubule interactions, and 
paired helical filament aggregation by tau mutants of frontotemporal dementias. 
Biochemistry 39, 11714-11721. 

Begley, C.E., Famulari, M., Annegers, J.F., Lairson, D.R., Reynolds, T.F., Coan, S., 
Dubinsky, S., Newmark, M.E., Leibson, C., So, E.L., Rocca, W.A., 2000. The cost 
of epilepsy in the United States: an estimate from population-based clinical and 
survey data. Epilepsia 41, 342-351. 

Behr, J., Lyson, K.J., Mody, I., 1998. Enhanced propagation of epileptiform activity 
through the kindled dentate gyrus. J Neurophysiol 79, 1726-1732. 

Ben-Ari, Y., Lagowska, J., Tremblay, E., Le Gal La Salle, G., 1979. A new model of focal 
status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive 
secondarily generalized convulsive seizures. Brain Research 163, 176-179. 

Ben-Ari, Y., Tremblay, E., Ottersen, O.P., 1980. Injections of kainic acid into the 
amygdaloid complex of the rat: An electrographic, clinical and histological study 
in relation to the pathology of epilepsy. Neuroscience 5, 515-528. 

Benitez, M.J., Cuadros, R., Jimenez, J.S., 2021. Phosphorylation and Dephosphorylation 
of Tau Protein by the Catalytic Subunit of PKA, as Probed by Electrophoretic 
Mobility Retard. J Alzheimers Dis 79, 1143-1156. 

Berger, Z., Roder, H., Hanna, A., Carlson, A., Rangachari, V., Yue, M., Wszolek, Z., Ashe, 
K., Knight, J., Dickson, D., Andorfer, C., Rosenberry, T.L., Lewis, J., Hutton, M., 
Janus, C., 2007. Accumulation of pathological tau species and memory loss in a 
conditional model of tauopathy. J Neurosci 27, 3650-3662. 



145 
 

Bhaskaran, M.D., Smith, B.N., 2010. Cannabinoid-mediated inhibition of recurrent 
excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. 
PLoS One 5, e10683. 

Biernat, J., Gustke, N., Drewes, G., Mandelkow, E., Mandelkow, E., 1993. 
Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: 
Distinction between PHF-like immunoreactivity and microtubule binding. Neuron 
11, 153-163. 

Bilkey, D.K., Goddard, G.V., 1985. Medial septal facilitation of hippocampal granule cell 
activity is mediated by inhibition of inhibitory interneurones. Brain Research 361, 
99-106. 

Binder, L.I., Frankfurter, A., Rebhun, L.I., 1985. The distribution of tau in the mammalian 
central nervous system. J Cell Biol 101, 1371-1378. 

Biundo, F., Del Prete, D., Zhang, H., Arancio, O., D'Adamio, L., 2018. A role for tau in 
learning, memory and synaptic plasticity. Sci Rep 8, 3184. 

Blackstad, T.W., Brink, K., Hem, J., Jeune, B., 1970. Distribution of hippocampal mossy 
fibers in the rat. An experimental study with silver impregnation methods. J Comp 
Neurol 138, 433-449. 

Boychuk, J.A., Butler, C.R., Halmos, K.C., Smith, B.N., 2016. Enduring changes in tonic 
GABAA receptor signaling in dentate granule cells after controlled cortical impact 
brain injury in mice. Exp Neurol 277, 178-189. 

Braak, E., Braak, H., Mandelkow, E.M., 1994. A sequence of cytoskeleton changes related 
to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 
87, 554-567. 

Braak, H., Braak, E., 1991. Neuropathological stageing of Alzheimer-related changes. Acta 
Neuropathol 82, 239-259. 

Bracey, J.M., Kurz, J.E., Low, B., Churn, S.B., 2009. Prolonged seizure activity leads to 
increased Protein Kinase A activation in the rat pilocarpine model of status 
epilepticus. Brain Res 1283, 167-176. 

Brandt, R., Lee, G., 1993. Functional organization of microtubule-associated protein tau. 
Identification of regions which affect microtubule growth, nucleation, and bundle 
formation in vitro. Journal of Biological Chemistry 268, 3414-3419. 

Brandt, R., Leger, J., Lee, G., 1995. Interaction of tau with the neural plasma membrane 
mediated by tau's amino-terminal projection domain. J Cell Biol 131, 1327-1340. 

Brigo, F., Del Felice, A., 2012. Melatonin as add-on treatment for epilepsy. Cochrane 
Database Syst Rev, CD006967. 

Brigo, F., Igwe, S.C., Lattanzi, S., 2021. Ethosuximide, sodium valproate or lamotrigine 
for absence seizures in children and adolescents. Cochrane Database Syst Rev 1, 
CD003032. 

Brodie, M.J., 2017. Tolerability and Safety of Commonly Used Antiepileptic Drugs in 
Adolescents and Adults: A Clinician's Overview. CNS Drugs 31, 135-147. 

Brodie, M.J., Perucca, E., Ryvlin, P., Ben-Menachem, E., Meencke, H.J., Levetiracetam 
Monotherapy Study, G., 2007. Comparison of levetiracetam and controlled-release 
carbamazepine in newly diagnosed epilepsy. Neurology 68, 402-408. 

Brooks-Kayal, A.R., Shumate, M.D., Jin, H., Rikhter, T.Y., Coulter, D.A., 1998. Selective 
changes in single cell GABA(A) receptor subunit expression and function in 
temporal lobe epilepsy. Nat Med 4, 1166-1172. 



146 
 

Buckmaster, P.S., Dudek, F.E., 1997. Neuron loss, granule cell axon reorganization, and 
functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp 
Neurol 385, 385-404. 

Buckmaster, P.S., Strowbridge, B.W., Kunkel, D.D., Schmiege, D.L., Schwartzkroin, P.A., 
1992. Mossy cell axonal projections to the dentate gyrus molecular layer in the rat 
hippocampal slice. Hippocampus 2, 349-362. 

Buckmaster, P.S., Wenzel, H.J., Kunkel, D.D., Schwartzkroin, P.A., 1996. Axon arbors 
and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp 
Neurol 366, 271-292. 

Buckmaster, P.S., Zhang, G.F., Yamawaki, R., 2002. Axon Sprouting in a Model of 
Temporal Lobe Epilepsy Creates a Predominantly Excitatory Feedback Circuit. 
The Journal of Neuroscience 22, 6650-6658. 

Buhl, E.H., Otis, T.S., Mody, I., 1996. Zinc-induced collapse of augmented inhibition by 
GABA in a temporal lobe epilepsy model. Science 271, 369-373. 

Busche, M.A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K.H., Haass, 
C., Staufenbiel, M., Konnerth, A., Garaschuk, O., 2008. Clusters of hyperactive 
neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 
321, 1686-1689. 

Butler, C.R., Boychuk, J.A., Smith, B.N., 2015. Effects of Rapamycin Treatment on 
Neurogenesis and Synaptic Reorganization in the Dentate Gyrus after Controlled 
Cortical Impact Injury in Mice. Front Syst Neurosci 9, 163. 

Butler, C.R., Boychuk, J.A., Smith, B.N., 2017. Brain Injury-Induced Synaptic 
Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by 
Rapamycin. eNeuro 4. 

Butner, K.A., Kirschner, M.W., 1991. Tau protein binds to microtubules through a flexible 
array of distributed weak sites. J Cell Biol 115, 717-730. 

Cameron, H.A., McKay, R.D., 2001. Adult neurogenesis produces a large pool of new 
granule cells in the dentate gyrus. J Comp Neurol 435, 406-417. 

Cantero, J.L., Hita-Yanez, E., Moreno-Lopez, B., Portillo, F., Rubio, A., Avila, J., 2010. 
Tau protein role in sleep-wake cycle. J Alzheimers Dis 21, 411-421. 

Cantero, J.L., Moreno-Lopez, B., Portillo, F., Rubio, A., Hita-Yanez, E., Avila, J., 2011. 
Role of tau protein on neocortical and hippocampal oscillatory patterns. 
Hippocampus 21, 827-834. 

Carlomagno, Y., Chung, D.C., Yue, M., Castanedes-Casey, M., Madden, B.J., Dunmore, 
J., Tong, J., DeTure, M., Dickson, D.W., Petrucelli, L., Cook, C., 2017. An 
acetylation-phosphorylation switch that regulates tau aggregation propensity and 
function. J Biol Chem 292, 15277-15286. 

Carpay, J.A., Aldenkamp, A.P., van Donselaar, C.A., 2005. Complaints associated with 
the use of antiepileptic drugs: results from a community-based study. Seizure 14, 
198-206. 

Carre, G.P., Harley, C.W., 1991. Population spike facilitation in the dentate gyrus 
following glutamate to the lateral supramammillary nucleus. Brain Research 568, 
307-310. 

Castellani, R.J., Perry, G., 2019. Tau Biology, Tauopathy, Traumatic Brain Injury, and 
Diagnostic Challenges. J Alzheimers Dis 67, 447-467. 



147 
 

Castillo-Carranza, D.L., Guerrero-Munoz, M.J., Sengupta, U., Hernandez, C., Barrett, 
A.D., Dineley, K., Kayed, R., 2015. Tau immunotherapy modulates both 
pathological tau and upstream amyloid pathology in an Alzheimer's disease mouse 
model. J Neurosci 35, 4857-4868. 

Cersosimo, R., Flesler, S., Bartuluchi, M., Soprano, A.M., Pomata, H., Caraballo, R., 2011. 
Mesial temporal lobe epilepsy with hippocampal sclerosis: study of 42 children. 
Seizure 20, 131-137. 

Chambers, C.B., Lee, J.M., Troncoso, J.C., Reich, S., Muma, N.A., 1999. Overexpression 
of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in 
Alzheimer's disease. Annals of Neurology 46, 325-332. 

Chan, J., Jones, N.C., Bush, A.I., O'Brien, T.J., Kwan, P., 2015. A mouse model of 
Alzheimer's disease displays increased susceptibility to kindling and seizure-
associated death. Epilepsia 56, e73-77. 

Chang, Q., Yang, H., Wang, M., Wei, H., Hu, F., 2018. Role of Microtubule-Associated 
Protein in Autism Spectrum Disorder. Neurosci Bull 34, 1119-1126. 

Chase, M.H., Nakamura, Y., Clemente, C.D., Sterman, M.B., 1967. Afferent vagal 
stimulation: Neurographic correlates of induced eeg synchronization and 
desynchronization. Brain Research 5, 236-249. 

Chase, M.H., Sterman, M.B., Clemente, C.D., 1966. Cortical and subcortical patterns of 
response to afferent vagal stimulation. Experimental Neurology 16, 36-49. 

Chauhan, A., Chauhan, V.P.S., Murakami, N., Brockerhoff, H., Wisniewski, H.M., 1993. 
Amyloid β-protein stimulates casein kinase I and casein kinase II activities. Brain 
Research 629, 47-52. 

Chen, J., Kanai, Y., Cowan, N.J., Hirokawa, N., 1992. Projection domains of MAP2 and 
tau determine spacings between microtubules in dendrites and axons. Nature 360, 
674-677. 

Cheuk, D.K., Wong, V., 2006. Acupuncture for epilepsy. Cochrane Database Syst Rev, 
CD005062. 

Choi, H., Kim, H.J., Yang, J., Chae, S., Lee, W., Chung, S., Kim, J., Choi, H., Song, H., 
Lee, C.K., Jun, J.H., Lee, Y.J., Lee, K., Kim, S., Sim, H.R., Choi, Y.I., Ryu, K.H., 
Park, J.C., Lee, D., Han, S.H., Hwang, D., Kyung, J., Mook-Jung, I., 2020. 
Acetylation changes tau interactome to degrade tau in Alzheimer's disease animal 
and organoid models. Aging Cell 19, e13081. 

Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, 
J.V., Mann, M., 2009. Lysine acetylation targets protein complexes and co-
regulates major cellular functions. Science 325, 834-840. 

Chung, H., Brautigan, D.L., 1999. Protein Phosphatase 2A Suppresses MAP Kinase 
Signalling and Ectopic Protein Expression. Cellular Signalling 11, 575-580. 

Claiborne, B.J., Amaral, D.G., Cowan, W.M., 1986. A light and electron microscopic 
analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246, 435-458. 

Claiborne, B.J., Amaral, D.G., Cowan, W.M., 1990. Quantitative, three-dimensional 
analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302, 206-
219. 

Clarke, B.M., Upton, A., Griffin, H., Hudoba, P., 1991. Balance and cognitive impairment 
in two epileptic patients before and after vagal nerve stimulation. Pacing Clin 
Electrophysiol 14, 77-85. 



148 
 

Clavaguera, F., Bolmont, T., Crowther, R.A., Abramowski, D., Frank, S., Probst, A., 
Fraser, G., Stalder, A.K., Beibel, M., Staufenbiel, M., Jucker, M., Goedert, M., 
Tolnay, M., 2009. Transmission and spreading of tauopathy in transgenic mouse 
brain. Nat Cell Biol 11, 909-913. 

Cleveland, D.W., Hwo, S.-Y., Kirschner, M.W., 1977. Physical and chemical properties of 
purified tau factor and the role of tau in microtubule assembly. Journal of Molecular 
Biology 116, 227-247. 

Clifford, D.B., Olney, J.W., Maniotis, A., Collins, R.C., Zorumski, C.F., 1987. The 
functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine 
seizures. Neuroscience 23, 953-968. 

Cloyd, R.A., Koren, J., Abisambra, J.F., Smith, B.N., 2021. Effects of altered tau 
expression on dentate granule cell excitability in mice. Experimental Neurology, 
113766. 

Cockerell, O.C., Sander, J.W.A.S., Hart, Y.M., Shorvon, S.D., Johnson, A.L., 1995. 
Remission of epilepsy: results from the National General Practice Study of 
Epilepsy. The Lancet 346, 140-144. 

Cohen-Gadol, A.A., Wilhelmi, B.G., Collignon, F., White, J.B., Britton, J.W., Cambier, 
D.M., Christianson, T.J., Marsh, W.R., Meyer, F.B., Cascino, G.D., 2006. Long-
term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci 
including mesial temporal lobe sclerosis. J Neurosurg 104, 513-524. 

Cohen, A.S., Lin, D.D., Quirk, G.L., Coulter, D.A., 2003. Dentate granule cell GABA(A) 
receptors in epileptic hippocampus: enhanced synaptic efficacy and altered 
pharmacology. Eur J Neurosci 17, 1607-1616. 

Cohen, R.M., Rezai-Zadeh, K., Weitz, T.M., Rentsendorj, A., Gate, D., Spivak, I., Bholat, 
Y., Vasilevko, V., Glabe, C.G., Breunig, J.J., Rakic, P., Davtyan, H., Agadjanyan, 
M.G., Kepe, V., Barrio, J.R., Bannykh, S., Szekely, C.A., Pechnick, R.N., Town, 
T., 2013a. A transgenic Alzheimer rat with plaques, tau pathology, behavioral 
impairment, oligomeric abeta, and frank neuronal loss. J Neurosci 33, 6245-6256. 

Cohen, T.J., Constance, B.H., Hwang, A.W., James, M., Yuan, C.X., 2016. Intrinsic Tau 
Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation. PLoS One 11, 
e0158470. 

Cohen, T.J., Friedmann, D., Hwang, A.W., Marmorstein, R., Lee, V.M., 2013b. The 
microtubule-associated tau protein has intrinsic acetyltransferase activity. Nat 
Struct Mol Biol 20, 756-762. 

Cohen, T.J., Guo, J.L., Hurtado, D.E., Kwong, L.K., Mills, I.P., Trojanowski, J.Q., Lee, 
V.M., 2011. The acetylation of tau inhibits its function and promotes pathological 
tau aggregation. Nat Commun 2, 252. 

Connell, J.W., Rodriguez-Martin, T., Gibb, G.M., Kahn, N.M., Grierson, A.J., Hanger, 
D.P., Revesz, T., Lantos, P.L., Anderton, B.H., Gallo, J.M., 2005. Quantitative 
analysis of tau isoform transcripts in sporadic tauopathies. Brain Res Mol Brain 
Res 137, 104-109. 

Cook, C., Carlomagno, Y., Gendron, T.F., Dunmore, J., Scheffel, K., Stetler, C., Davis, 
M., Dickson, D., Jarpe, M., DeTure, M., Petrucelli, L., 2014. Acetylation of the 
KXGS motifs in tau is a critical determinant in modulation of tau aggregation and 
clearance. Hum Mol Genet 23, 104-116. 



149 
 

Corda, M.G., Orlandi, M., Lecca, D., Carboni, G., Frau, V., Giorgi, O., 1991. 
Pentylenetetrazol-induced kindling in rats: Effect of GABA function inhibitors. 
Pharmacology Biochemistry and Behavior 40, 329-333. 

Costa, J., Fareleira, F., Ascencao, R., Borges, M., Sampaio, C., Vaz-Carneiro, A., 2011. 
Clinical comparability of the new antiepileptic drugs in refractory partial epilepsy: 
a systematic review and meta-analysis. Epilepsia 52, 1280-1291. 

Couchie, D., Mavilia, C., Georgieff, I.S., Liem, R.K., Shelanski, M.L., Nunez, J., 1992. 
Primary structure of high molecular weight tau present in the peripheral nervous 
system. Proc Natl Acad Sci U S A 89, 4378-4381. 

Crawford, I.L., Connor, J.D., 1973. Localization and release of glutamic acid in relation to 
the hippocampal mossy fibre pathway. Nature 244, 442-443. 

Crespo-Biel, N., Canudas, A.M., Camins, A., Pallas, M., 2007. Kainate induces AKT, ERK 
and cdk5/GSK3beta pathway deregulation, phosphorylates tau protein in mouse 
hippocampus. Neurochem Int 50, 435-442. 

Crimins, J.L., Rocher, A.B., Luebke, J.I., 2012. Electrophysiological changes precede 
morphological changes to frontal cortical pyramidal neurons in the rTg4510 mouse 
model of progressive tauopathy. Acta Neuropathol 124, 777-795. 

Crimins, J.L., Rocher, A.B., Peters, A., Shultz, P., Lewis, J., Luebke, J.I., 2011. 
Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative 
tauopathy. Acta Neuropathol 122, 551-564. 

Cripps, D., Thomas, S.N., Jeng, Y., Yang, F., Davies, P., Yang, A.J., 2006. Alzheimer 
disease-specific conformation of hyperphosphorylated paired helical filament-Tau 
is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J 
Biol Chem 281, 10825-10838. 

Cronin, J., Dudek, F.E., 1988. Chronic seizures and collateral sprouting of dentate mossy 
fibers after kainic acid treatment in rats. Brain Research 474, 181-184. 

Cronin, J., Obenaus, A., Houser, C.R., Edward Dudek, F., 1992. Electrophysiology of 
dentate granule cells after kainate-induced synaptic reorganization of the mossy 
fibers. Brain Research 573, 305-310. 

Cumbo, E., Ligori, L.D., 2010. Levetiracetam, lamotrigine, and phenobarbital in patients 
with epileptic seizures and Alzheimer's disease. Epilepsy Behav 17, 461-466. 

D'Ambrosio, R., Fairbanks, J.P., Fender, J.S., Born, D.E., Doyle, D.L., Miller, J.W., 2004. 
Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 127, 304-
314. 

D'Souza, I., Poorkaj, P., Hong, M., Nochlin, D., Lee, V.M., Bird, T.D., Schellenberg, G.D., 
1999. Missense and silent tau gene mutations cause frontotemporal dementia with 
parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing 
regulatory elements. Proc Natl Acad Sci U S A 96, 5598-5603. 

Dahl, D., Sarvey, J.M., 1989. Norepinephrine induces pathway-specific long-lasting 
potentiation and depression in the hippocampal dentate gyrus. Proc Natl Acad Sci 
U S A 86, 4776-4780. 

Dahlin, M., Elfving, A., Ungerstedt, U., Amark, P., 2005. The ketogenic diet influences 
the levels of excitatory and inhibitory amino acids in the CSF in children with 
refractory epilepsy. Epilepsy Res 64, 115-125. 

David, D.C., Hauptmann, S., Scherping, I., Schuessel, K., Keil, U., Rizzu, P., Ravid, R., 
Drose, S., Brandt, U., Muller, W.E., Eckert, A., Gotz, J., 2005. Proteomic and 



150 
 

functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic 
mice. J Biol Chem 280, 23802-23814. 

Dawson, H.N., Cantillana, V., Jansen, M., Wang, H., Vitek, M.P., Wilcock, D.M., Lynch, 
J.R., Laskowitz, D.T., 2010. Loss of tau elicits axonal degeneration in a mouse 
model of Alzheimer's disease. Neuroscience 169, 516-531. 

Dawson, H.N., Ferreira, A., Eyster, M.V., Ghoshal, N., Binder, L.I., Vitek, M.P., 2001. 
Inhibition of neuronal maturation in primary hippocampal neurons from tau 
deficient mice. J Cell Sci 114, 1179-1187. 

de Barreda, E.G., Dawson, H.N., Vitek, M.P., Avila, J., 2010. Tau deficiency leads to the 
upregulation of BAF-57, a protein involved in neuron-specific gene repression. 
FEBS Lett 584, 2265-2270. 

de Calignon, A., Polydoro, M., Suarez-Calvet, M., William, C., Adamowicz, D.H., 
Kopeikina, K.J., Pitstick, R., Sahara, N., Ashe, K.H., Carlson, G.A., Spires-Jones, 
T.L., Hyman, B.T., 2012. Propagation of tau pathology in a model of early 
Alzheimer's disease. Neuron 73, 685-697. 

de Silva, M., MacArdle, B., McGowan, M., Hughes, E., Stewart, J., Reynolds, E.H., 
Hughes, E., Neville, B.G.R., Johnson, A.L., 1996. Randomised comparative 
monotherapy trial of phenobarbitone, phenytoin, carbamazepine, or sodium 
valproate for newly diagnosed childhood epilepsy. The Lancet 347, 709-713. 

de Tisi, J., Bell, G.S., Peacock, J.L., McEvoy, A.W., Harkness, W.F.J., Sander, J.W., 
Duncan, J.S., 2011. The long-term outcome of adult epilepsy surgery, patterns of 
seizure remission, and relapse: a cohort study. The Lancet 378, 1388-1395. 

Decker, J.M., Kruger, L., Sydow, A., Dennissen, F.J., Siskova, Z., Mandelkow, E., 
Mandelkow, E.M., 2016. The Tau/A152T mutation, a risk factor for 
frontotemporal-spectrum disorders, leads to NR2B receptor-mediated 
excitotoxicity. EMBO Rep 17, 552-569. 

DeGiorgio, C.M., Schachter, S.C., Handforth, A., Salinsky, M., Thompson, J., Uthman, B., 
Reed, R., Collins, S., Tecoma, E., Morris, G.L., Vaughn, B., Naritoku, D.K., Henry, 
T., Labar, D., Gilmartin, R., Labiner, D., Osorio, I., Ristanovic, R., Jones, J., 
Murphy, J., Ney, G., Wheless, J., Lewis, P., Heck, C., 2000. Prospective long-term 
study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia 
41, 1195-1200. 

Dent, J.A., Galvin, N.J., Stanfield, B.B., Cowan, W.M., 1983. The mode of termination of 
the hypothalamic projection to the dentate gyrus: An EM autoradiographic study. 
Brain Research 258, 1-10. 

Derera, I.D., Delisle, B.P., Smith, B.N., 2017. Functional Neuroplasticity in the Nucleus 
Tractus Solitarius and Increased Risk of Sudden Death in Mice with Acquired 
Temporal Lobe Epilepsy. eNeuro 4. 

Derera, I.D., Smith, K.C., Smith, B.N., 2019. Altered A-type potassium channel function 
in the nucleus tractus solitarii in acquired temporal lobe epilepsy. J Neurophysiol 
121, 177-187. 

DeVos, S.L., Goncharoff, D.K., Chen, G., Kebodeaux, C.S., Yamada, K., Stewart, F.R., 
Schuler, D.R., Maloney, S.E., Wozniak, D.F., Rigo, F., Bennett, C.F., Cirrito, J.R., 
Holtzman, D.M., Miller, T.M., 2013. Antisense reduction of tau in adult mice 
protects against seizures. J Neurosci 33, 12887-12897. 



151 
 

Di Lazzaro, V., Oliviero, A., Pilato, F., Saturno, E., Dileone, M., Meglio, M., Colicchio, 
G., Barba, C., Papacci, F., Tonali, P.A., 2004. Effects of vagus nerve stimulation 
on cortical excitability in epileptic patients. Neurology 62, 2310-2312. 

Dickstein, D.L., Brautigam, H., Stockton, S.D., Jr., Schmeidler, J., Hof, P.R., 2010. 
Changes in dendritic complexity and spine morphology in transgenic mice 
expressing human wild-type tau. Brain Struct Funct 214, 161-179. 

Dixit, R., Ross, J.L., Goldman, Y.E., Holzbaur, E.L., 2008. Differential regulation of 
dynein and kinesin motor proteins by tau. Science 319, 1086-1089. 

Drewes, G., Mandelkow, E.M., Baumann, K., Goris, J., Merlevede, W., Mandelkow, E., 
1993. Dephosphorylation of tau protein and Alzheimer paired helical filaments by 
calcineurin and phosphatase-2A. FEBS Lett 336, 425-432. 

Drewes, G., Trinczek, B., Illenberger, S., Biernat, J., Schmitt-Ulms, G., Meyer, H.E., 
Mandelkow, E.M., Mandelkow, E., 1995. Microtubule-associated 
protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase 
that regulates tau-microtubule interactions and dynamic instability by 
phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270, 7679-
7688. 

Dudek, F.E., Staley, K.J., 2017. Post-Status Epilepticus Models: Systemic Kainic Acid. 
599-610. 

Duff, K., Knight, H., Refolo, L.M., Sanders, S., Yu, X., Picciano, M., Malester, B., Hutton, 
M., Adamson, J., Goedert, M., Burki, K., Davies, P., 2000. Characterization of 
pathology in transgenic mice over-expressing human genomic and cDNA tau 
transgenes. Neurobiol Dis 7, 87-98. 

Dujardin, S., Lecolle, K., Caillierez, R., Begard, S., Zommer, N., Lachaud, C., Carrier, S., 
Dufour, N., Auregan, G., Winderickx, J., Hantraye, P., Deglon, N., Colin, M., Buee, 
L., 2014. Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic 
mechanism: relevance to sporadic tauopathies. Acta Neuropathol Commun 2, 14. 

Echeverria, V., Ducatenzeiler, A., Dowd, E., Janne, J., Grant, S.M., Szyf, M., Wandosell, 
F., Avila, J., Grimm, H., Dunnett, S.B., Hartmann, T., Alhonen, L., Cuello, A.C., 
2004. Altered mitogen-activated protein kinase signaling, tau 
hyperphosphorylation and mild spatial learning dysfunction in transgenic rats 
expressing the beta-amyloid peptide intracellularly in hippocampal and cortical 
neurons. Neuroscience 129, 583-592. 

Eckermann, K., Mocanu, M.M., Khlistunova, I., Biernat, J., Nissen, A., Hofmann, A., 
Schonig, K., Bujard, H., Haemisch, A., Mandelkow, E., Zhou, L., Rune, G., 
Mandelkow, E.M., 2007. The beta-propensity of Tau determines aggregation and 
synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282, 31755-
31765. 

Eckert, A., Hauptmann, S., Scherping, I., Rhein, V., Muller-Spahn, F., Gotz, J., Muller, 
W.E., 2008. Soluble beta-amyloid leads to mitochondrial defects in amyloid 
precursor protein and tau transgenic mice. Neurodegener Dis 5, 157-159. 

Elwes, R.D., Johnson, A.L., Shorvon, S.D., Reynolds, E.H., 1984. The prognosis for 
seizure control in newly diagnosed epilepsy. N Engl J Med 311, 944-947. 

Embi, N., Rylatt, D.B., Cohen, P., 1980. Glycogen synthase kinase-3 from rabbit skeletal 
muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase 
kinase. Eur J Biochem 107, 519-527. 



152 
 

Embogama, D.M., Pflum, M.K., 2017. K-BILDS: A Kinase Substrate Discovery Tool. 
Chembiochem 18, 136-141. 

Engel, J., 1996. Introduction to temporal lobe epilepsy. Epilepsy Research 26, 141-150. 
Engel, J., Jr., 1993. Update on surgical treatment of the epilepsies. Summary of the Second 

International Palm Desert Conference on the Surgical Treatment of the Epilepsies 
(1992). Neurology 43, 1612-1617. 

Engel, J., Jr., McDermott, M.P., Wiebe, S., Langfitt, J.T., Stern, J.M., Dewar, S., Sperling, 
M.R., Gardiner, I., Erba, G., Fried, I., Jacobs, M., Vinters, H.V., Mintzer, S., 
Kieburtz, K., Early Randomized Surgical Epilepsy Trial Study, G., 2012. Early 
surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. 
JAMA 307, 922-930. 

Engel, J., Jr., Wiebe, S., French, J., Sperling, M., Williamson, P., Spencer, D., Gumnit, R., 
Zahn, C., Westbrook, E., Enos, B., Quality Standards Subcommittee of the 
American Academy of, N., American Epilepsy, S., American Association of 
Neurological, S., 2003. Practice parameter: temporal lobe and localized neocortical 
resections for epilepsy: report of the Quality Standards Subcommittee of the 
American Academy of Neurology, in association with the American Epilepsy 
Society and the American Association of Neurological Surgeons. Neurology 60, 
538-547. 

Engel, T., Goni-Oliver, P., Lucas, J.J., Avila, J., Hernandez, F., 2006. Chronic lithium 
administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau 
hyperphosphorylation and neurofibrillary tangle formation, but pre-formed 
neurofibrillary tangles do not revert. J Neurochem 99, 1445-1455. 

Ettore Beghi, Sonia Arrigoni, Arnaldo Bartocci, M.Donata Benedetti, Amedeo Bianchi, 
Graziella Bogliun, L. Giuseppe Bongiovanni, Daniela Buti, Giovanna Cagnin, 
Cesare Cardinali, Vittorio Crespi, Patrizia Ferri, Dante Galeone, Elena Gambini, 
Angela La Neve, Cesare Lanzi, Marcella Lini, Carlo Lenti, Giuseppe Maccarrone, 
Manuela Molteni, M. Luisa Monticelli, Federico Morello, Cristina Musetti, 
Giuseppe Olivieri, Tommaso Perniola, Luigi Piattella, Daniele Porazzi, M. Rosa 
Rottoli, Patrizia Rugireta, Luigi M. Specchio, Camillo Tiacci, Gianni Tognoni, Vito 
Toso, Daniela Trevisan, Marta Trizio, Gaetano Zaccara, Piergiuseppe Zagnoni, 
Nelia Zamponi, Zolo, P., Epilepsy, C.G.f.t.S.o., 1992. Prognosis of Epilepsy in 
Newly Referred Patients: A Multicenter Prospective Study of the Effects of 
Monotherapy on the Long-Term Course of Epilepsy. Epilepsia 33, 45-51. 

Fernandez-Nogales, M., Cabrera, J.R., Santos-Galindo, M., Hoozemans, J.J., Ferrer, I., 
Rozemuller, A.J., Hernandez, F., Avila, J., Lucas, J.J., 2014. Huntington's disease 
is a four-repeat tauopathy with tau nuclear rods. Nat Med 20, 881-885. 

Fisher, R.S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J.H., Elger, C.E., Engel, 
J., Jr., Forsgren, L., French, J.A., Glynn, M., Hesdorffer, D.C., Lee, B.I., Mathern, 
G.W., Moshe, S.L., Perucca, E., Scheffer, I.E., Tomson, T., Watanabe, M., Wiebe, 
S., 2014. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 
55, 475-482. 

Fisher, R.S., Cross, J.H., D'Souza, C., French, J.A., Haut, S.R., Higurashi, N., Hirsch, E., 
Jansen, F.E., Lagae, L., Moshe, S.L., Peltola, J., Roulet Perez, E., Scheffer, I.E., 
Schulze-Bonhage, A., Somerville, E., Sperling, M., Yacubian, E.M., Zuberi, S.M., 



153 
 

2017. Instruction manual for the ILAE 2017 operational classification of seizure 
types. Epilepsia 58, 531-542. 

Fisher, R.S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., Engel, J., Jr., 
2005. Epileptic seizures and epilepsy: definitions proposed by the International 
League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). 
Epilepsia 46, 470-472. 

Flach, K., Hilbrich, I., Schiffmann, A., Gartner, U., Kruger, M., Leonhardt, M., Waschipky, 
H., Wick, L., Arendt, T., Holzer, M., 2012. Tau oligomers impair artificial 
membrane integrity and cellular viability. J Biol Chem 287, 43223-43233. 

Flach, K., Ramminger, E., Hilbrich, I., Arsalan-Werner, A., Albrecht, F., Herrmann, L., 
Goedert, M., Arendt, T., Holzer, M., 2014. Axotrophin/MARCH7 acts as an E3 
ubiquitin ligase and ubiquitinates tau protein in vitro impairing microtubule 
binding. Biochim Biophys Acta 1842, 1527-1538. 

Flajolet, M., He, G., Heiman, M., Lin, A., Nairn, A.C., Greengard, P., 2007. Regulation of 
Alzheimer's disease amyloid-beta formation by casein kinase I. Proc Natl Acad Sci 
U S A 104, 4159-4164. 

Fleisher, A.S., Truran, D., Mai, J.T., Langbaum, J.B., Aisen, P.S., Cummings, J.L., Jack, 
C.R., Jr., Weiner, M.W., Thomas, R.G., Schneider, L.S., Tariot, P.N., Alzheimer's 
Disease Cooperative, S., 2011. Chronic divalproex sodium use and brain atrophy 
in Alzheimer disease. Neurology 77, 1263-1271. 

Fontaine, S.N., Ingram, A., Cloyd, R.A., Meier, S.E., Miller, E., Lyons, D., Nation, G.K., 
Mechas, E., Weiss, B., Lanzillotta, C., Di Domenico, F., Schmitt, F., Powell, D.K., 
Vandsburger, M., Abisambra, J.F., 2017. Identification of changes in neuronal 
function as a consequence of aging and tauopathic neurodegeneration using a novel 
and sensitive magnetic resonance imaging approach. Neurobiol Aging 56, 78-86. 

Forrest, S.L., Halliday, G.M., McCann, H., McGeachie, A.B., McGinley, C.V., Hodges, 
J.R., Piguet, O., Kwok, J.B., Spillantini, M.G., Kril, J.J., 2019. Heritability in 
frontotemporal tauopathies. Alzheimers Dement (Amst) 11, 115-124. 

Forrest, S.L., Kril, J.J., Stevens, C.H., Kwok, J.B., Hallupp, M., Kim, W.S., Huang, Y., 
McGinley, C.V., Werka, H., Kiernan, M.C., Gotz, J., Spillantini, M.G., Hodges, 
J.R., Ittner, L.M., Halliday, G.M., 2018. Retiring the term FTDP-17 as MAPT 
mutations are genetic forms of sporadic frontotemporal tauopathies. Brain 141, 
521-534. 

Frandemiche, M.L., De Seranno, S., Rush, T., Borel, E., Elie, A., Arnal, I., Lante, F., 
Buisson, A., 2014. Activity-dependent tau protein translocation to excitatory 
synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci 34, 6084-
6097. 

Fraser, D.D., Whiting, S., Andrew, R.D., Macdonald, E.A., Musa-Veloso, K., Cunnane, 
S.C., 2003. Elevated polyunsaturated fatty acids in blood serum obtained from 
children on the ketogenic diet. Neurology 60, 1026-1029. 

French, J.A., Perucca, E., 2020. Time to Start Calling Things by Their Own Names? The 
Case for Antiseizure Medicines. Epilepsy Curr 20, 69-72. 

Friedman, D., Honig, L.S., Scarmeas, N., 2012. Seizures and epilepsy in Alzheimer's 
disease. CNS Neurosci Ther 18, 285-294. 



154 
 

Frotscher, M., Seress, L., Schwerdtfeger, W.K., Buhl, E., 1991. The mossy cells of the 
fascia dentata: a comparative study of their fine structure and synaptic connections 
in rodents and primates. J Comp Neurol 312, 145-163. 

Fujio, K., Sato, M., Uemura, T., Sato, T., Sato-Harada, R., Harada, A., 2007. 14-3-3 
proteins and protein phosphatases are not reduced in tau-deficient mice. 
Neuroreport 18, 1049-1052. 

Fulga, T.A., Elson-Schwab, I., Khurana, V., Steinhilb, M.L., Spires, T.L., Hyman, B.T., 
Feany, M.B., 2007. Abnormal bundling and accumulation of F-actin mediates tau-
induced neuronal degeneration in vivo. Nat Cell Biol 9, 139-148. 

Funk, K.E., Thomas, S.N., Schafer, K.N., Cooper, G.L., Liao, Z., Clark, D.J., Yang, A.J., 
Kuret, J., 2014. Lysine methylation is an endogenous post-translational 
modification of tau protein in human brain and a modulator of aggregation 
propensity. Biochem J 462, 77-88. 

Furtado Mde, A., Braga, G.K., Oliveira, J.A., Del Vecchio, F., Garcia-Cairasco, N., 2002. 
Behavioral, morphologic, and electroencephalographic evaluation of seizures 
induced by intrahippocampal microinjection of pilocarpine. Epilepsia 43 Suppl 5, 
37-39. 

Gamache, J., Benzow, K., Forster, C., Kemper, L., Hlynialuk, C., Furrow, E., Ashe, K.H., 
Koob, M.D., 2019. Factors other than hTau overexpression that contribute to 
tauopathy-like phenotype in rTg4510 mice. Nat Commun 10, 2479. 

Gamblin, T.C., King, M.E., Dawson, H., Vitek, M.P., Kuret, J., Berry, R.W., Binder, L.I., 
2000. In vitro polymerization of tau protein monitored by laser light scattering: 
method and application to the study of FTDP-17 mutants. Biochemistry 39, 6136-
6144. 

Garcia-Cabrero, A.M., Guerrero-Lopez, R., Giraldez, B.G., Llorens-Martin, M., Avila, J., 
Serratosa, J.M., Sanchez, M.P., 2013. Hyperexcitability and epileptic seizures in a 
model of frontotemporal dementia. Neurobiol Dis 58, 200-208. 

Garcia-Sierra, F., Jarero-Basulto, J.J., Kristofikova, Z., Majer, E., Binder, L.I., Ripova, D., 
2012. Ubiquitin is associated with early truncation of tau protein at aspartic 
acid(421) during the maturation of neurofibrillary tangles in Alzheimer's disease. 
Brain Pathol 22, 240-250. 

Gardiner, J., Marc, J., 2010. Disruption of normal cytoskeletal dynamics may play a key 
role in the pathogenesis of epilepsy. Neuroscientist 16, 28-39. 

Geiszler, P.C., Barron, M.R., Pardon, M.C., 2016. Impaired burrowing is the most 
prominent behavioral deficit of aging htau mice. Neuroscience 329, 98-111. 

Gheyara, A.L., Ponnusamy, R., Djukic, B., Craft, R.J., Ho, K., Guo, W., Finucane, M.M., 
Sanchez, P.E., Mucke, L., 2014. Tau reduction prevents disease in a mouse model 
of Dravet syndrome. Ann Neurol 76, 443-456. 

Gibbs, J.W., 3rd, Shumate, M.D., Coulter, D.A., 1997. Differential epilepsy-associated 
alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 
neurons. J Neurophysiol 77, 1924-1938. 

Giustiniani, J., Chambraud, B., Sardin, E., Dounane, O., Guillemeau, K., Nakatani, H., 
Paquet, D., Kamah, A., Landrieu, I., Lippens, G., Baulieu, E.E., Tawk, M., 2014. 
Immunophilin FKBP52 induces Tau-P301L filamentous assembly in vitro and 
modulates its activity in a model of tauopathy. Proc Natl Acad Sci U S A 111, 4584-
4589. 



155 
 

Glauser, T.A., Cnaan, A., Shinnar, S., Hirtz, D.G., Dlugos, D., Masur, D., Clark, P.O., 
Capparelli, E.V., Adamson, P.C., Childhood Absence Epilepsy Study, G., 2010. 
Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N 
Engl J Med 362, 790-799. 

Goedert, M., 2005. Tau gene mutations and their effects. Mov Disord 20 Suppl 12, S45-
52. 

Goedert, M., Jakes, R., 1990. Expression of separate isoforms of human tau protein: 
correlation with the tau pattern in brain and effects on tubulin polymerization. 
EMBO J 9, 4225-4230. 

Goedert, M., Jakes, R., Crowther, R.A., 1999. Effects of frontotemporal dementia FTDP-
17 mutations on heparin-induced assembly of tau filaments. FEBS Letters 450, 
306-311. 

Goedert, M., Jakes, R., Qi, Z., Wang, J.H., Cohen, P., 1995a. Protein phosphatase 2A is 
the major enzyme in brain that dephosphorylates tau protein phosphorylated by 
proline-directed protein kinases or cyclic AMP-dependent protein kinase. J 
Neurochem 65, 2804-2807. 

Goedert, M., Jakes, R., Spillantini, M.G., Hasegawa, M., Smith, M.J., Crowther, R.A., 
1996. Assembly of microtubule-associated protein tau into Alzheimer-like 
filaments induced by sulphated glycosaminoglycans. Nature 383, 550-553. 

Goedert, M., Jakes, R., Vanmechelen, E., 1995b. Monoclonal antibody AT8 recognises tau 
protein phosphorylated at both serine 202 and threonine 205. Neuroscience Letters 
189, 167-170. 

Goedert, M., Spillantini, M.G., Crowther, R.A., 1992. Cloning of a big tau microtubule-
associated protein characteristic of the peripheral nervous system. Proc Natl Acad 
Sci U S A 89, 1983-1987. 

Goedert, M., Spillantini, M.G., Jakes, R., Rutherford, D., Crowther, R.A., 1989a. Multiple 
isoforms of human microtubule-associated protein tau: sequences and localization 
in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519-526. 

Goedert, M., Spillantini, M.G., Potier, M.C., Ulrich, J., Crowther, R.A., 1989b. Cloning 
and sequencing of the cDNA encoding an isoform of microtubule-associated 
protein tau containing four tandem repeats: differential expression of tau protein 
mRNAs in human brain. EMBO J 8, 393-399. 

Goedert, M., Wischik, C.M., Crowther, R.A., Walker, J.E., Klug, A., 1988. Cloning and 
sequencing of the cDNA encoding a core protein of the paired helical filament of 
Alzheimer disease: identification as the microtubule-associated protein tau. Proc 
Natl Acad Sci U S A 85, 4051-4055. 

Gomez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J.H., Petersen, R.C., Parisi, J.E., 
Hyman, B.T., 1997. Neuronal loss correlates with but exceeds neurofibrillary 
tangles in Alzheimer's disease. Ann Neurol 41, 17-24. 

Goncalves, F.G., Freddi, T.A.L., Taranath, A., Lakshmanan, R., Goetti, R., Feltrin, F.S., 
Mankad, K., Teixeira, S.R., Hanagandi, P.B., Arrigoni, F., 2018. Tubulinopathies. 
Top Magn Reson Imaging 27, 395-408. 

Gong, C.X., Grundke-Iqbal, I., Iqbal, K., 1994. Dephosphorylation of Alzheimer's disease 
abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience 61, 765-
772. 



156 
 

Gong, C.X., Shaikh, S., Wang, J.Z., Zaidi, T., Grundke-Iqbal, I., Iqbal, K., 1995. 
Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer 
disease brain. J Neurochem 65, 732-738. 

Gong, C.X., Singh, T.J., Grundke-Iqbal, I., Iqbal, K., 1993. Phosphoprotein phosphatase 
activities in Alzheimer disease brain. J Neurochem 61, 921-927. 

Goode, B.L., Denis, P.E., Panda, D., Radeke, M.J., Miller, H.P., Wilson, L., Feinstein, 
S.C., 1997. Functional interactions between the proline-rich and repeat regions of 
tau enhance microtubule binding and assembly. Mol Biol Cell 8, 353-365. 

Goode, B.L., Feinstein, S.C., 1994. Identification of a novel microtubule binding and 
assembly domain in the developmentally regulated inter-repeat region of tau. J Cell 
Biol 124, 769-782. 

Gorter, J.A., van Vliet, E.A., Lopes da Silva, F.H., 2016. Which insights have we gained 
from the kindling and post-status epilepticus models? J Neurosci Methods 260, 96-
108. 

Gotz, J., Chen, F., Barmettler, R., Nitsch, R.M., 2001a. Tau filament formation in 
transgenic mice expressing P301L tau. J Biol Chem 276, 529-534. 

Gotz, J., Chen, F., van Dorpe, J., Nitsch, R.M., 2001b. Formation of neurofibrillary tangles 
in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293, 1491-1495. 

Gotz, J., Halliday, G., Nisbet, R.M., 2019. Molecular Pathogenesis of the Tauopathies. 
Annu Rev Pathol 14, 239-261. 

Gotz, J., Nitsch, R.M., 2001. Compartmentalized tau hyperphosphorylation and increased 
levels of kinases in transgenic mice. Neuroreport 12, 2007-2016. 

Gotz, J., Probst, A., Spillantini, M.G., Schafer, T., Jakes, R., Burki, K., Goedert, M., 1995. 
Somatodendritic localization and hyperphosphorylation of tau protein in transgenic 
mice expressing the longest human brain tau isoform. EMBO J 14, 1304-1313. 

Gotz, J., Tolnay, M., Barmettler, R., Chen, F., Probst, A., Nitsch, R.M., 2001c. 
Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. 
Eur J Neurosci 13, 2131-2140. 

Gourmaud, S., Shou, H., Irwin, D.J., Sansalone, K., Jacobs, L.M., Lucas, T.H., Marsh, 
E.D., Davis, K.A., Jensen, F.E., Talos, D.M., 2020. Alzheimer-like amyloid and tau 
alterations associated with cognitive deficit in temporal lobe epilepsy. Brain 143, 
191-209. 

Graziane, N., Dong, Y., 2016. 11.Measuring Presynaptic Release Probability, in: Dong, Y., 
Graziane, N. (Eds.), Electrophysiological Analysis of Synaptic Transmission. 
Humana Press, New York, NY, pp. 133-143. 

Grover, A., DeTure, M., Yen, S.-H., Hutton, M., 2002. Effects on splicing and protein 
function of three mutations in codon N296 of tau in vitro. Neuroscience Letters 
323, 33-36. 

Gulyas, A.I., Miles, R., Hajos, N., Freund, T.F., 1993. Precision and variability in 
postsynaptic target selection of inhibitory cells in the hippocampal CA3 region. Eur 
J Neurosci 5, 1729-1751. 

Guo, Q., Li, H., Cole, A.L., Hur, J.Y., Li, Y., Zheng, H., 2013. Modeling Alzheimer's 
disease in mouse without mutant protein overexpression: cooperative and 
independent effects of Abeta and tau. PLoS One 8, e80706. 

Gustke, N., Trinczek, B., Biernat, J., Mandelkow, E.M., Mandelkow, E., 1994. Domains 
of tau protein and interactions with microtubules. Biochemistry 33, 9511-9522. 



157 
 

Gutierrez, R., 2003. The GABAergic phenotype of the "glutamatergic" granule cells of the 
dentate gyrus. Prog Neurobiol 71, 337-358. 

Haj-Yahya, M., Lashuel, H.A., 2018. Protein Semisynthesis Provides Access to Tau 
Disease-Associated Post-translational Modifications (PTMs) and Paves the Way to 
Deciphering the Tau PTM Code in Health and Diseased States. J Am Chem Soc 
140, 6611-6621. 

Halabisky, B., Parada, I., Buckmaster, P.S., Prince, D.A., 2010. Excitatory input onto hilar 
somatostatin interneurons is increased in a chronic model of epilepsy. J 
Neurophysiol 104, 2214-2223. 

Handforth, A., DeGiorgio, C.M., Schachter, S.C., Uthman, B.M., Naritoku, D.K., Tecoma, 
E.S., Henry, T.R., Collins, S.D., Vaughn, B.V., Gilmartin, R.C., Labar, D.R., 
Morris, G.L., 3rd, Salinsky, M.C., Osorio, I., Ristanovic, R.K., Labiner, D.M., 
Jones, J.C., Murphy, J.V., Ney, G.C., Wheless, J.W., 1998. Vagus nerve stimulation 
therapy for partial-onset seizures: a randomized active-control trial. Neurology 51, 
48-55. 

Hanger, D.P., Betts, J.C., Loviny, T.L., Blackstock, W.P., Anderton, B.H., 1998. New 
phosphorylation sites identified in hyperphosphorylated tau (paired helical 
filament-tau) from Alzheimer's disease brain using nanoelectrospray mass 
spectrometry. J Neurochem 71, 2465-2476. 

Hanger, D.P., Byers, H.L., Wray, S., Leung, K.Y., Saxton, M.J., Seereeram, A., Reynolds, 
C.H., Ward, M.A., Anderton, B.H., 2007. Novel phosphorylation sites in tau from 
Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol 
Chem 282, 23645-23654. 

Harada, A., Oguchi, K., Okabe, S., Kuno, J., Terada, S., Ohshima, T., Sato-Yoshitake, R., 
Takei, Y., Noda, T., Hirokawa, N., 1994. Altered microtubule organization in 
small-calibre axons of mice lacking tau protein. Nature 369, 488-491. 

Harding, G., 2004. Chapter 45 The reflex epilepsies with emphasis on photosensitive 
epilepsy.  57, 433-438. 

Hasegawa, M., Smith, M.J., Goedert, M., 1998. Tau proteins with FTDP-17 mutations have 
a reduced ability to promote microtubule assembly. FEBS Letters 437, 207-210. 

Hasegawa, M., Smith, M.J., Iijima, M., Tabira, T., Goedert, M., 1999. FTDP-17 mutations 
N279K and S305N in tau produce increased splicing of exon 10. FEBS Letters 443, 
93-96. 

Hatch, R.J., Wei, Y., Xia, D., Gotz, J., 2017. Hyperphosphorylated tau causes reduced 
hippocampal CA1 excitability by relocating the axon initial segment. Acta 
Neuropathol 133, 717-730. 

Haukedal, H., Freude, K.K., 2020. Implications of Glycosylation in Alzheimer's Disease. 
Front Neurosci 14, 625348. 

Haussler, U., Bielefeld, L., Froriep, U.P., Wolfart, J., Haas, C.A., 2012. Septotemporal 
position in the hippocampal formation determines epileptic and neurogenic activity 
in temporal lobe epilepsy. Cereb Cortex 22, 26-36. 

He, H.J., Wang, X.S., Pan, R., Wang, D.L., Liu, M.N., He, R.Q., 2009. The proline-rich 
domain of tau plays a role in interactions with actin. BMC Cell Biol 10, 81. 

Helmstaedter, C., May, T.W., von Lehe, M., Pfaefflin, M., Ebner, A., Pannek, H.W., Elger, 
C.E., Stefan, H., Schramm, J., 2014. Temporal lobe surgery in Germany from 1988 
to 2008: diverse trends in etiological subgroups. Eur J Neurol 21, 827-834. 



158 
 

Henze, D.A., Wittner, L., Buzsaki, G., 2002. Single granule cells reliably discharge targets 
in the hippocampal CA3 network in vivo. Nat Neurosci 5, 790-795. 

Heriche, J.K., Lebrin, F., Rabilloud, T., Leroy, D., Chambaz, E.M., Goldberg, Y., 1997. 
Regulation of protein phosphatase 2A by direct interaction with casein kinase 
2alpha. Science 276, 952-955. 

Hernandez, F., Cuadros, R., Avila, J., 2004. Zeta 14-3-3 protein favours the formation of 
human tau fibrillar polymers. Neurosci Lett 357, 143-146. 

Herrmann, N., Lanctot, K.L., Rothenburg, L.S., Eryavec, G., 2007. A placebo-controlled 
trial of valproate for agitation and aggression in Alzheimer's disease. Dement 
Geriatr Cogn Disord 23, 116-119. 

Hershko, A., Ciechanover, A., 1998. The ubiquitin system. Annu Rev Biochem 67, 425-
479. 

Hesdorffer, D.C., Hauser, W.A., Annegers, J.F., Kokmen, E., Rocca, W.A., 1996. 
Dementia and adult-onset unprovoked seizures. Neurology 46, 727-730. 

Hevner, R.F., Kinney, H.C., 1996. Reciprocal entorhinal-hippocampal connections 
established by human fetal midgestation. The Journal of Comparative Neurology 
372, 384-394. 

Hill, E., Karikari, T.K., Moffat, K.G., Richardson, M.J.E., Wall, M.J., 2019. Introduction 
of Tau Oligomers into Cortical Neurons Alters Action Potential Dynamics and 
Disrupts Synaptic Transmission and Plasticity. eNeuro 6. 

Himmler, A., Drechsel, D., Kirschner, M.W., Martin, D.W., Jr., 1989. Tau consists of a set 
of proteins with repeated C-terminal microtubule-binding domains and variable N-
terminal domains. Mol Cell Biol 9, 1381-1388. 

Hirokawa, N., Funakoshi, T., Sato-Harada, R., Kanai, Y., 1996. Selective stabilization of 
tau in axons and microtubule-associated protein 2C in cell bodies and dendrites 
contributes to polarized localization of cytoskeletal proteins in mature neurons. J 
Cell Biol 132, 667-679. 

Hirokawa, N., Shiomura, Y., Okabe, S., 1988. Tau proteins: the molecular structure and 
mode of binding on microtubules. J Cell Biol 107, 1449-1459. 

Hirtz, D., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A.R., Zalutsky, R., 
2007. How common are the "common" neurologic disorders? Neurology 68, 326-
337. 

Hoffmann, R., Lee, V.M., Leight, S., Varga, I., Otvos, L., Jr., 1997. Unique Alzheimer's 
disease paired helical filament specific epitopes involve double phosphorylation at 
specific sites. Biochemistry 36, 8114-8124. 

Holth, J.K., Bomben, V.C., Reed, J.G., Inoue, T., Younkin, L., Younkin, S.G., Pautler, 
R.G., Botas, J., Noebels, J.L., 2013. Tau loss attenuates neuronal network 
hyperexcitability in mouse and Drosophila genetic models of epilepsy. J Neurosci 
33, 1651-1659. 

Honchar, M.P., Olney, J.W., Sherman, W.R., 1983. Systemic cholinergic agents induce 
seizures and brain damage in lithium-treated rats. Science 220, 323-325. 

Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V., Wszolek, Z., Reed, L., Miller, B.I., 
Geschwind, D.H., Bird, T.D., McKeel, D., Goate, A., Morris, J.C., Wilhelmsen, 
K.C., Schellenberg, G.D., Trojanowski, J.Q., Lee, V.M., 1998. Mutation-specific 
functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 
282, 1914-1917. 



159 
 

Hoover, B.R., Reed, M.N., Su, J., Penrod, R.D., Kotilinek, L.A., Grant, M.K., Pitstick, R., 
Carlson, G.A., Lanier, L.M., Yuan, L.L., Ashe, K.H., Liao, D., 2010. Tau 
mislocalization to dendritic spines mediates synaptic dysfunction independently of 
neurodegeneration. Neuron 68, 1067-1081. 

Horvath, A., Szucs, A., Hidasi, Z., Csukly, G., Barcs, G., Kamondi, A., 2018. Prevalence, 
Semiology, and Risk Factors of Epilepsy in Alzheimer's Disease: An Ambulatory 
EEG Study. J Alzheimers Dis 63, 1045-1054. 

Houser, C.R., 2007. Interneurons of the dentate gyrus: an overview of cell types, terminal 
fields and neurochemical identity. Prog Brain Res 163, 217-232. 

Hunsberger, H.C., Rudy, C.C., Batten, S.R., Gerhardt, G.A., Reed, M.N., 2015. P301L tau 
expression affects glutamate release and clearance in the hippocampal trisynaptic 
pathway. J Neurochem 132, 169-182. 

Hunt, R.F., Scheff, S.W., Smith, B.N., 2009. Posttraumatic epilepsy after controlled 
cortical impact injury in mice. Exp Neurol 215, 243-252. 

Hunt, R.F., Scheff, S.W., Smith, B.N., 2010. Regionally localized recurrent excitation in 
the dentate gyrus of a cortical contusion model of posttraumatic epilepsy. J 
Neurophysiol 103, 1490-1500. 

Hunt, R.F., Scheff, S.W., Smith, B.N., 2011. Synaptic reorganization of inhibitory hilar 
interneuron circuitry after traumatic brain injury in mice. J Neurosci 31, 6880-6890. 

Hutton, M., Lendon, C.L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-
Brown, S., Chakraverty, S., Isaacs, A., Grover, A., Hackett, J., Adamson, J., 
Lincoln, S., Dickson, D., Davies, P., Petersen, R.C., Stevens, M., de Graaff, E., 
Wauters, E., van Baren, J., Hillebrand, M., Joosse, M., Kwon, J.M., Nowotny, P., 
Che, L.K., Norton, J., Morris, J.C., Reed, L.A., Trojanowski, J., Basun, H., 
Lannfelt, L., Neystat, M., Fahn, S., Dark, F., Tannenberg, T., Dodd, P.R., Hayward, 
N., Kwok, J.B., Schofield, P.R., Andreadis, A., Snowden, J., Craufurd, D., Neary, 
D., Owen, F., Oostra, B.A., Hardy, J., Goate, A., van Swieten, J., Mann, D., Lynch, 
T., Heutink, P., 1998. Association of missense and 5'-splice-site mutations in tau 
with the inherited dementia FTDP-17. Nature 393, 702-705. 

Iijima, T., Witter, M.P., Ichikawa, M., Tominaga, T., Kajiwara, R., Matsumoto, G., 1996. 
Entorhinal-hippocampal interactions revealed by real-time imaging. Science 272, 
1176-1179. 

Ikeda, F., Dikic, I., 2008. Atypical ubiquitin chains: new molecular signals. 'Protein 
Modifications: Beyond the Usual Suspects' review series. EMBO Rep 9, 536-542. 

Ikegami, S., 2000. Muscle weakness, hyperactivity, and impairment in fear conditioning in 
tau-deficient mice. Neuroscience Letters 279, 129-132. 

ILAE, I.L.A.E., 1989. Proposal for revised classification of epilepsies and epileptic 
syndromes. Commission on Classification and Terminology of the International 
League Against Epilepsy. Epilepsia 30, 389-399. 

Illenberger, S., Zheng-Fischhofer, Q., Preuss, U., Stamer, K., Baumann, K., Trinczek, B., 
Biernat, J., Godemann, R., Mandelkow, E.M., Mandelkow, E., 1998. The 
endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: 
implications for Alzheimer's disease. Mol Biol Cell 9, 1495-1512. 

Iseki, E., Matsumura, T., Marui, W., Hino, H., Odawara, T., Sugiyama, N., Suzuki, K., 
Sawada, H., Arai, T., Kosaka, K., 2001. Familial frontotemporal dementia and 



160 
 

parkinsonism with a novel N296H mutation in exon 10 of the tau gene and a 
widespread tau accumulation in the glial cells. Acta Neuropathol 102, 285-292. 

Ishizawa, K., Ksiezak-Reding, H., Davies, P., Delacourte, A., Tiseo, P., Yen, S.H., 
Dickson, D.W., 2000. A double-labeling immunohistochemical study of tau exon 
10 in Alzheimer's disease, progressive supranuclear palsy and Pick's disease. Acta 
Neuropathol 100, 235-244. 

Ittner, L.M., Fath, T., Ke, Y.D., Bi, M., van Eersel, J., Li, K.M., Gunning, P., Gotz, J., 
2008. Parkinsonism and impaired axonal transport in a mouse model of 
frontotemporal dementia. Proc Natl Acad Sci U S A 105, 15997-16002. 

Ittner, L.M., Ke, Y.D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wolfing, H., 
Chieng, B.C., Christie, M.J., Napier, I.A., Eckert, A., Staufenbiel, M., Hardeman, 
E., Gotz, J., 2010. Dendritic function of tau mediates amyloid-beta toxicity in 
Alzheimer's disease mouse models. Cell 142, 387-397. 

Iwatsubo, T., Hasegawa, M., Esaki, Y., Ihara, Y., 1992. Lack of ubiquitin 
immunoreactivities at both ends of neuropil threads. Possible bidirectional growth 
of neuropil threads. The American journal of pathology 140, 277-282. 

Izumi, Y., Zorumski, C.F., 1999. Norepinephrine promotes long-term potentiation in the 
adult rat hippocampus in vitro. Synapse 31, 196-202. 

Jeganathan, S., Hascher, A., Chinnathambi, S., Biernat, J., Mandelkow, E.M., Mandelkow, 
E., 2008. Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes 
induces a compaction of the paperclip folding of Tau and generates a pathological 
(MC-1) conformation. J Biol Chem 283, 32066-32076. 

Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H.J., Mandelkow, E., 2006. Global 
hairpin folding of tau in solution. Biochemistry 45, 2283-2293. 

Jensen, F.E., 2011. Epilepsy as a spectrum disorder: Implications from novel clinical and 
basic neuroscience. Epilepsia 52 Suppl 1, 1-6. 

Jensen, P.H., Hager, H., Nielsen, M.S., Hojrup, P., Gliemann, J., Jakes, R., 1999. alpha-
synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau 
phosphorylation of serine residues 262 and 356. J Biol Chem 274, 25481-25489. 

Jiang, W., Van Cleemput, J., Sheerin, A.H., Ji, S.P., Zhang, Y., Saucier, D.M., Corcoran, 
M.E., Zhang, X., 2005. Involvement of extracellular regulated kinase and p38 
kinase in hippocampal seizure tolerance. J Neurosci Res 81, 581-588. 

Jones, A.L., Britton, J.W., Blessing, M.M., Parisi, J.E., Cascino, G.D., 2018. Chronic 
traumatic encephalopathy in an epilepsy surgery cohort: Clinical and pathologic 
findings. Neurology 90, e474-e478. 

Jones, N.C., Nguyen, T., Corcoran, N.M., Velakoulis, D., Chen, T., Grundy, R., O'Brien, 
T.J., Hovens, C.M., 2012. Targeting hyperphosphorylated tau with sodium selenate 
suppresses seizures in rodent models. Neurobiol Dis 45, 897-901. 

Josephs, K.A., 2017. Current Understanding of Neurodegenerative Diseases Associated 
With the Protein Tau. Mayo Clin Proc 92, 1291-1303. 

Josephs, K.A., 2018. Rest in peace FTDP-17. Brain 141, 324-331. 
Jung, M.W., McNaughton, B.L., 1993. Spatial selectivity of unit activity in the 

hippocampal granular layer. Hippocampus 3, 165-182. 
Jung, S.H., Kong, D.H., Jeon, H.Y., Han, E.T., Park, W.S., Hong, S.H., Kim, Y.M., Ha, 

K.S., 2017. Systematic investigation of protein kinase A substrate proteins using 
on-chip protein kinase kinetic profiling. Analyst 142, 2239-2246. 



161 
 

Kadavath, H., Cabrales Fontela, Y., Jaremko, M., Jaremko, L., Overkamp, K., Biernat, J., 
Mandelkow, E., Zweckstetter, M., 2018. The Binding Mode of a Tau Peptide with 
Tubulin. Angew Chem Int Ed Engl 57, 3246-3250. 

Kadavath, H., Hofele, R.V., Biernat, J., Kumar, S., Tepper, K., Urlaub, H., Mandelkow, 
E., Zweckstetter, M., 2015a. Tau stabilizes microtubules by binding at the interface 
between tubulin heterodimers. Proc Natl Acad Sci U S A 112, 7501-7506. 

Kadavath, H., Jaremko, M., Jaremko, L., Biernat, J., Mandelkow, E., Zweckstetter, M., 
2015b. Folding of the Tau Protein on Microtubules. Angew Chem Int Ed Engl 54, 
10347-10351. 

Kamah, A., Huvent, I., Cantrelle, F.X., Qi, H., Lippens, G., Landrieu, I., Smet-Nocca, C., 
2014. Nuclear magnetic resonance analysis of the acetylation pattern of the 
neuronal Tau protein. Biochemistry 53, 3020-3032. 

Kampers, T., Friedhoff, P., Biernat, J., Mandelkow, E.M., Mandelkow, E., 1996. RNA 
stimulates aggregation of microtubule-associated protein tau into Alzheimer-like 
paired helical filaments. FEBS Letters 399, 344-349. 

Kanaan, N.M., Morfini, G.A., LaPointe, N.E., Pigino, G.F., Patterson, K.R., Song, Y., 
Andreadis, A., Fu, Y., Brady, S.T., Binder, L.I., 2011. Pathogenic forms of tau 
inhibit kinesin-dependent axonal transport through a mechanism involving 
activation of axonal phosphotransferases. J Neurosci 31, 9858-9868. 

Kanai, Y., Chen, J., Hirokawa, N., 1992. Microtubule bundling by tau proteins in vivo: 
analysis of functional domains. The EMBO Journal 11, 3953-3961. 

Kanai, Y., Hirokawa, N., 1995. Sorting mechanisms of Tau and MAP2 in neurons: 
Suppressed axonal transit of MAP2 and locally regulated microtubule binding. 
Neuron 14, 421-432. 

Kang, Y.-J., Clement, E.M., Park, I.-H., Greenfield, L.J., Smith, B.N., Lee, S.-H., 2021. 
Vulnerability of cholecystokinin-expressing GABAergic interneurons in the 
unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy. 
Experimental Neurology, 113724. 

Kaplan, M.S., Hinds, J.W., 1977. Neurogenesis in the adult rat: electron microscopic 
analysis of light radioautographs. Science 197, 1092-1094. 

Keith, H.M., 1933. Factors Influencing Experimentally Produced Convulsions. Archives 
of Neurology And Psychiatry 29, 148. 

Kharatishvili, I., Nissinen, J.P., McIntosh, T.K., Pitkanen, A., 2006. A model of 
posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. 
Neuroscience 140, 685-697. 

Kim, D.Y., Vallejo, J., Rho, J.M., 2010. Ketones prevent synaptic dysfunction induced by 
mitochondrial respiratory complex inhibitors. J Neurochem 114, 130-141. 

Kimura, T., Whitcomb, D.J., Jo, J., Regan, P., Piers, T., Heo, S., Brown, C., Hashikawa, 
T., Murayama, M., Seok, H., Sotiropoulos, I., Kim, E., Collingridge, G.L., 
Takashima, A., Cho, K., 2014. Microtubule-associated protein tau is essential for 
long-term depression in the hippocampus. Philos Trans R Soc Lond B Biol Sci 369, 
20130144. 

Kins, S., Kurosinski, P., Nitsch, R.M., Götz, J., 2003. Activation of the ERK and JNK 
Signaling Pathways Caused by Neuron-Specific Inhibition of PP2A in Transgenic 
Mice. The American Journal of Pathology 163, 833-843. 



162 
 

Kiss, J., Csáki, Á., Bokor, H., Shanabrough, M., Leranth, C., 2000. The supramammillo-
hippocampal and supramammillo-septal glutamatergic/aspartatergic projections in 
the rat: a combined [3H]d-aspartate autoradiographic and immunohistochemical 
study. Neuroscience 97, 657-669. 

Klein, P., Janousek, J., Barber, A., Weissberger, R., 2010. Ketogenic diet treatment in 
adults with refractory epilepsy. Epilepsy Behav 19, 575-579. 

Ko, D., Heck, C., Grafton, S., Apuzzo, M.L., Couldwell, W.T., Chen, T., Day, J.D., 
Zelman, V., Smith, T., DeGiorgio, C.M., 1996. Vagus nerve stimulation activates 
central nervous system structures in epileptic patients during PET H2(15)O blood 
flow imaging. Neurosurgery 39, 426-430; discussion 430-421. 

Ko, H.J., Chiou, S.J., Wong, Y.H., Wang, Y.H., Lai, Y., Chou, C.H., Wang, C., Loh, J.K., 
Lieu, A.S., Cheng, J.T., Lin, Y.T., Lu, P.J., Fann, M.J., Huang, C.F., Hong, Y.R., 
2019. GSKIP-Mediated Anchoring Increases Phosphorylation of Tau by PKA but 
Not by GSK3beta via cAMP/PKA/GSKIP/GSK3/Tau Axis Signaling in 
Cerebrospinal Fluid and iPS Cells in Alzheimer Disease. J Clin Med 8. 

Kohler, C., Bista, P., Gotz, J., Schroder, H., 2010. Analysis of the cholinergic pathology in 
the P301L tau transgenic pR5 model of tauopathy. Brain Res 1347, 111-124. 

Kohler, C., Chan-Palay, V., Wu, J.Y., 1984. Septal neurons containing glutamic acid 
decarboxylase immunoreactivity project to the hippocampal region in the rat brain. 
Anat Embryol (Berl) 169, 41-44. 

Köhler, C., Steinbusch, H., 1982. Identification of serotonin and non-serotonin-containing 
neurons of the mid-brain raphe projecting to the entorhinal area and the 
hippocampal formation. A combined immunohistochemical and fluorescent 
retrograde tracing study in the rat brain. Neuroscience 7, 951-975. 

Komuro, Y., Xu, G., Bhaskar, K., Lamb, B.T., 2015. Human tau expression reduces adult 
neurogenesis in a mouse model of tauopathy. Neurobiol Aging 36, 2034-2042. 

Koren, S.A., Hamm, M.J., Meier, S.E., Weiss, B.E., Nation, G.K., Chishti, E.A., Arango, 
J.P., Chen, J., Zhu, H., Blalock, E.M., Abisambra, J.F., 2019. Tau drives 
translational selectivity by interacting with ribosomal proteins. Acta Neuropathol 
137, 571-583. 

Kosik, K.S., Orecchio, L.D., Bakalis, S., Neve, R.L., 1989. Developmentally regulated 
expression of specific tau sequences. Neuron 2, 1389-1397. 

Kossoff, E.H., McGrogan, J.R., Bluml, R.M., Pillas, D.J., Rubenstein, J.E., Vining, E.P., 
2006. A modified Atkins diet is effective for the treatment of intractable pediatric 
epilepsy. Epilepsia 47, 421-424. 

Kovacs, G.G., 2015. Invited review: Neuropathology of tauopathies: principles and 
practice. Neuropathol Appl Neurobiol 41, 3-23. 

Krahl, S.E., Clark, K.B., Smith, D.C., Browning, R.A., 1998. Locus coeruleus lesions 
suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 39, 
709-714. 

Krook-Magnuson, E., Armstrong, C., Bui, A., Lew, S., Oijala, M., Soltesz, I., 2015. In vivo 
evaluation of the dentate gate theory in epilepsy. J Physiol 593, 2379-2388. 

Krook-Magnuson, E., Armstrong, C., Oijala, M., Soltesz, I., 2013. On-demand optogenetic 
control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4, 1376. 

Kwan, P., Brodie, M.J., 2000. Early identification of refractory epilepsy. N Engl J Med 
342, 314-319. 



163 
 

Lam, A.D., Sarkis, R.A., Pellerin, K.R., Jing, J., Dworetzky, B.A., Hoch, D.B., Jacobs, 
C.S., Lee, J.W., Weisholtz, D.S., Zepeda, R., Westover, M.B., Cole, A.J., Cash, 
S.S., 2020. Association of epileptiform abnormalities and seizures in Alzheimer 
disease. Neurology 95, e2259-e2270. 

Lambeng, N., Gillard, M., Vertongen, P., Fuks, B., Chatelain, P., 2005. Characterization 
of [(3)H]ucb 30889 binding to synaptic vesicle protein 2A in the rat spinal cord. 
Eur J Pharmacol 520, 70-76. 

Larson, J., Munkacsy, E., 2015. Theta-burst LTP. Brain Res 1621, 38-50. 
Lasagna-Reeves, C.A., Castillo-Carranza, D.L., Sengupta, U., Sarmiento, J., Troncoso, J., 

Jackson, G.R., Kayed, R., 2012. Identification of oligomers at early stages of tau 
aggregation in Alzheimer's disease. FASEB J 26, 1946-1959. 

Lee, G., Neve, R.L., Kosik, K.S., 1989. The microtubule binding domain of tau protein. 
Neuron 2, 1615-1624. 

Lee, G., Newman, S.T., Gard, D.L., Band, H., Panchamoorthy, G., 1998. Tau interacts with 
src-family non-receptor tyrosine kinases. J Cell Sci 111 ( Pt 21), 3167-3177. 

Lee, S.H., Kim, K.R., Ryu, S.Y., Son, S., Hong, H.S., Mook-Jung, I., Lee, S.H., Ho, W.K., 
2012. Impaired short-term plasticity in mossy fiber synapses caused by 
mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in 
a mouse model of Alzheimer's disease. J Neurosci 32, 5953-5963. 

Lefebvre, T., Ferreira, S., Dupont-Wallois, L., Bussière, T., Dupire, M.-J., Delacourte, A., 
Michalski, J.-C., Caillet-Boudin, M.-L., 2003. Evidence of a balance between 
phosphorylation and O-GlcNAc glycosylation of Tau proteins—a role in nuclear 
localization. Biochimica et Biophysica Acta (BBA) - General Subjects 1619, 167-
176. 

Lei, P., Ayton, S., Finkelstein, D.I., Spoerri, L., Ciccotosto, G.D., Wright, D.K., Wong, 
B.X., Adlard, P.A., Cherny, R.A., Lam, L.Q., Roberts, B.R., Volitakis, I., Egan, 
G.F., McLean, C.A., Cappai, R., Duce, J.A., Bush, A.I., 2012. Tau deficiency 
induces parkinsonism with dementia by impairing APP-mediated iron export. Nat 
Med 18, 291-295. 

Leranth, C., Malcolm, A.J., Frotscher, M., 1990. Afferent and efferent synaptic 
connections of somatostatin-immunoreactive neurons in the rat fascia dentata. J 
Comp Neurol 295, 111-122. 

Leroy, C., Poisbeau, P., Keller, A.F., Nehlig, A., 2004. Pharmacological plasticity of 
GABA(A) receptors at dentate gyrus synapses in a rat model of temporal lobe 
epilepsy. J Physiol 557, 473-487. 

Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., 
Gwinn-Hardy, K., Paul Murphy, M., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, 
A., Lin, W.L., Yen, S.H., Dickson, D.W., Davies, P., Hutton, M., 2000. 
Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice 
expressing mutant (P301L) tau protein. Nat Genet 25, 402-405. 

Li, G., Yin, H., Kuret, J., 2004. Casein kinase 1 delta phosphorylates tau and disrupts its 
binding to microtubules. J Biol Chem 279, 15938-15945. 

Li, Z., Hall, A.M., Kelinske, M., Roberson, E.D., 2014. Seizure resistance without 
parkinsonism in aged mice after tau reduction. Neurobiol Aging 35, 2617-2624. 



164 
 

Liang, Z., Liu, F., Iqbal, K., Grundke-Iqbal, I., Gong, C.X., 2009. Dysregulation of tau 
phosphorylation in mouse brain during excitotoxic damage. J Alzheimers Dis 17, 
531-539. 

Liauw, S., Steinberg, R.A., 1996. Dephosphorylation of catalytic subunit of cAMP-
dependent protein kinase at Thr-197 by a cellular protein phosphatase and by 
purified protein phosphatase-2A. J Biol Chem 271, 258-263. 

Lim, J.A., Moon, J., Kim, T.J., Jun, J.S., Park, B., Byun, J.I., Sunwoo, J.S., Park, K.I., Lee, 
S.T., Jung, K.H., Jung, K.Y., Kim, M., Jeon, D., Chu, K., Lee, S.K., 2018. 
Clustering of spontaneous recurrent seizures separated by long seizure-free periods: 
An extended video-EEG monitoring study of a pilocarpine mouse model. PLoS 
One 13, e0194552. 

Lindwall, G., Cole, R.D., 1984. Phosphorylation affects the ability of tau protein to 
promote microtubule assembly. J Biol Chem 259, 5301-5305. 

Litman, P., Barg, J., Rindzoonski, L., Ginzburg, I., 1993. Subcellular localization of tau 
mRNA in differentiating neuronal cell culture: Implications for neuronal polarity. 
Neuron 10, 627-638. 

Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G.-H., Tan, Y., Zhang, Z., Lin, X., He, X., 
2002a. Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase 
Mechanism. Cell 108, 837-847. 

Liu, F., Grundke-Iqbal, I., Iqbal, K., Gong, C.X., 2005. Contributions of protein 
phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. 
Eur J Neurosci 22, 1942-1950. 

Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W., Gong, C.X., 2004a. O-GlcNAcylation 
regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. 
Proc Natl Acad Sci U S A 101, 10804-10809. 

Liu, F., Liang, Z., Shi, J., Yin, D., El-Akkad, E., Grundke-Iqbal, I., Iqbal, K., Gong, C.X., 
2006. PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in 
site- and kinase-specific manners. FEBS Lett 580, 6269-6274. 

Liu, F., Zaidi, T., Iqbal, K., Grundke-Iqbal, I., Gong, C.X., 2002b. Aberrant glycosylation 
modulates phosphorylation of tau by protein kinase A and dephosphorylation of tau 
by protein phosphatase 2A and 5. Neuroscience 115, 829-837. 

Liu, F., Zaidi, T., Iqbal, K., Grundke-Iqbal, I., Merkle, R.K., Gong, C.-X., 2002c. Role of 
glycosylation in hyperphosphorylation of tau in Alzheimer's disease. FEBS Letters 
512, 101-106. 

Liu, G., Slater, N., Perkins, A., 2017a. Epilepsy: Treatment Options. Am Fam Physician 
96, 87-96. 

Liu, L., Drouet, V., Wu, J.W., Witter, M.P., Small, S.A., Clelland, C., Duff, K., 2012. 
Trans-synaptic spread of tau pathology in vivo. PLoS One 7, e31302. 

Liu, S., Shen, Y., Shultz, S.R., Nguyen, A., Hovens, C., Adlard, P.A., Bush, A.I., Chan, J., 
Kwan, P., O'Brien, T.J., Jones, N.C., 2017b. Accelerated kindling epileptogenesis 
in Tg4510 tau transgenic mice, but not in tau knockout mice. Epilepsia 58, e136-
e141. 

Liu, S.J., Zhang, J.Y., Li, H.L., Fang, Z.Y., Wang, Q., Deng, H.M., Gong, C.X., Grundke-
Iqbal, I., Iqbal, K., Wang, J.Z., 2004b. Tau becomes a more favorable substrate for 
GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279, 50078-
50088. 



165 
 

Liu, S.J., Zheng, P., Wright, D.K., Dezsi, G., Braine, E., Nguyen, T., Corcoran, N.M., 
Johnston, L.A., Hovens, C.M., Mayo, J.N., Hudson, M., Shultz, S.R., Jones, N.C., 
O'Brien, T.J., 2016. Sodium selenate retards epileptogenesis in acquired epilepsy 
models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. 
Brain 139, 1919-1938. 

Loomis, P.A., Howard, T.H., Castleberry, R.P., Binder, L.I., 1990. Identification of nuclear 
tau isoforms in human neuroblastoma cells. Proc Natl Acad Sci U S A 87, 8422-
8426. 

Lopes, S., Vaz-Silva, J., Pinto, V., Dalla, C., Kokras, N., Bedenk, B., Mack, N., Czisch, 
M., Almeida, O.F., Sousa, N., Sotiropoulos, I., 2016. Tau protein is essential for 
stress-induced brain pathology. Proc Natl Acad Sci U S A 113, E3755-3763. 

Loughlin, S.E., Foote, S.L., Bloom, F.E., 1986. Efferent projections of nucleus locus 
coeruleus: Topographic organization of cells of origin demonstrated by three-
dimensional reconstruction. Neuroscience 18, 291-306. 

Louis, J.V., Martens, E., Borghgraef, P., Lambrecht, C., Sents, W., Longin, S., 
Zwaenepoel, K., Pijnenborg, R., Landrieu, I., Lippens, G., Ledermann, B., Gotz, J., 
Van Leuven, F., Goris, J., Janssens, V., 2011. Mice lacking phosphatase PP2A 
subunit PR61/B'delta (Ppp2r5d) develop spatially restricted tauopathy by 
deregulation of CDK5 and GSK3beta. Proc Natl Acad Sci U S A 108, 6957-6962. 

Lowenstein, D.H., Thomas, M.J., Smith, D.H., McIntosh, T.K., 1992. Selective 
vulnerability of dentate hilar neurons following traumatic brain injury: a potential 
mechanistic link between head trauma and disorders of the hippocampus. The 
Journal of Neuroscience 12, 4846-4853. 

Lubke, J., Deller, T., Frotscher, M., 1997. Septal innervation of mossy cells in the hilus of 
the rat dentate gyrus: an anterograde tracing and intracellular labeling study. Exp 
Brain Res 114, 423-432. 

Lucas, J.J., Hernandez, F., Gomez-Ramos, P., Moran, M.A., Hen, R., Avila, J., 2001. 
Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration 
in GSK-3beta conditional transgenic mice. EMBO J 20, 27-39. 

Lynch, M., Sutula, T., 2000. Recurrent excitatory connectivity in the dentate gyrus of 
kindled and kainic acid-treated rats. J Neurophysiol 83, 693-704. 

Ma, Q.L., Zuo, X., Yang, F., Ubeda, O.J., Gant, D.J., Alaverdyan, M., Kiosea, N.C., 
Nazari, S., Chen, P.P., Nothias, F., Chan, P., Teng, E., Frautschy, S.A., Cole, G.M., 
2014. Loss of MAP function leads to hippocampal synapse loss and deficits in the 
Morris Water Maze with aging. J Neurosci 34, 7124-7136. 

Ma, W., Berg, J., Yellen, G., 2007. Ketogenic diet metabolites reduce firing in central 
neurons by opening K(ATP) channels. J Neurosci 27, 3618-3625. 

Maalouf, M., Sullivan, P.G., Davis, L., Kim, D.Y., Rho, J.M., 2007. Ketones inhibit 
mitochondrial production of reactive oxygen species production following 
glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145, 256-
264. 

Mady, M.A., Kossoff, E.H., McGregor, A.L., Wheless, J.W., Pyzik, P.L., Freeman, J.M., 
2003. The ketogenic diet: adolescents can do it, too. Epilepsia 44, 847-851. 

Maeda, S., Djukic, B., Taneja, P., Yu, G.Q., Lo, I., Davis, A., Craft, R., Guo, W., Wang, 
X., Kim, D., Ponnusamy, R., Gill, T.M., Masliah, E., Mucke, L., 2016. Expression 



166 
 

of A152T human tau causes age-dependent neuronal dysfunction and loss in 
transgenic mice. EMBO Rep 17, 530-551. 

Maeda, S., Sahara, N., Saito, Y., Murayama, M., Yoshiike, Y., Kim, H., Miyasaka, T., 
Murayama, S., Ikai, A., Takashima, A., 2007. Granular tau oligomers as 
intermediates of tau filaments. Biochemistry 46, 3856-3861. 

Magloczky, Z., Acsady, L., Freund, T.F., 1994. Principal cells are the postsynaptic targets 
of supramammillary afferents in the hippocampus of the rat. Hippocampus 4, 322-
334. 

Magnani, E., Fan, J., Gasparini, L., Golding, M., Williams, M., Schiavo, G., Goedert, M., 
Amos, L.A., Spillantini, M.G., 2007. Interaction of tau protein with the dynactin 
complex. EMBO J 26, 4546-4554. 

Maguire, J.L., Stell, B.M., Rafizadeh, M., Mody, I., 2005. Ovarian cycle-linked changes in 
GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and 
anxiety. Nat Neurosci 8, 797-804. 

Mandelkow, E.M., Schweers, O., Drewes, G., Biernat, J., Gustke, N., Trinczek, B., 
Mandelkow, E., 1996. Structure, microtubule interactions, and phosphorylation of 
tau protein. Ann N Y Acad Sci 777, 96-106. 

Manford, M., Hart, Y.M., Sander, J.W., Shorvon, S.D., 1992. National General Practice 
Study of Epilepsy (NGPSE): partial seizure patterns in a general population. 
Neurology 42, 1911-1917. 

Mantis, J.G., Centeno, N.A., Todorova, M.T., McGowan, R., Seyfried, T.N., 2004. 
Management of multifactorial idiopathic epilepsy in EL mice with caloric 
restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab 
(Lond) 1, 11. 

Marchisella, F., Coffey, E.T., Hollos, P., 2016. Microtubule and microtubule associated 
protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 73, 596-611. 

Marin, O., Bustos, V.H., Cesaro, L., Meggio, F., Pagano, M.A., Antonelli, M., Allende, 
C.C., Pinna, L.A., Allende, J.E., 2003. A noncanonical sequence phosphorylated 
by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of 
important signaling proteins. Proc Natl Acad Sci U S A 100, 10193-10200. 

Marrosu, F., Serra, A., Maleci, A., Puligheddu, M., Biggio, G., Piga, M., 2003. Correlation 
between GABAA receptor density and vagus nerve stimulation in individuals with 
drug-resistant partial epilepsy. Epilepsy Research 55, 59-70. 

Marson, A., Burnside, G., Appleton, R., Smith, D., Leach, J.P., Sills, G., Tudur-Smith, C., 
Plumpton, C., Hughes, D.A., Williamson, P., Baker, G.A., Balabanova, S., Taylor, 
C., Brown, R., Hindley, D., Howell, S., Maguire, M., Mohanraj, R., Smith, P.E., 
Lanyon, K., Manford, M., Chitre, M., Parker, A., Swiderska, N., Appleton, R., 
Pauling, J., Hughes, A., Gupta, R., Hanif, S., Awadh, M., Ragunathan, S., Cable, 
N., Cooper, P., Hindley, D., Rakshi, K., Molloy, S., Reuber, M., Ayonrinde, K., 
Wilson, M., Saladi, S., Gibb, J., Funston, L.-A., Cassidy, D., Boyd, J., Ratnayaka, 
M., Faza, H., Sadler, M., Al-Moasseb, H., Galtrey, C., Wren, D., Olabi, A., Fuller, 
G., Khan, M., Kallappa, C., Chinthapalli, R., Aji, B., Davies, R., Foster, K., Hitiris, 
N., Maguire, M., Hussain, N., Dowson, S., Ellison, J., Sharrack, B., Gandhi, V., 
Powell, R., Tittensor, P., Summers, B., Shashikiran, S., Dison, P.J., Samarasekera, 
S., McCorry, D., White, K., Nithi, K., Richardson, M., Brown, R., Page, R., 
Deekollu, D., Slaght, S., Warriner, S., Ahmed, M., Chaudhuri, A., Chow, G., Artal, 



167 
 

J., Kucinskiene, D., Sreenivasa, H., Velmurugan, S., Zipitis, C.S., McLean, B., Lal, 
V., Gregoriou, A., Maddison, P., Pickersgill, T., Anderson, J., Lawthom, C., 
Howell, S., Whitlingum, G., Rakowicz, W., Kinton, L., McLellan, A., Vora, N., 
Zuberi, S., Kelso, A., Hughes, I., Martland, J., Emsley, H., de Goede, C., Singh, 
R.P., Moor, C.-C., Aram, J., Mohanraj, R., Sakthivel, K., Nelapatla, S., Rittey, C., 
Pinto, A., Leach, J.P., Cock, H., Richardson, A., Houston, E., Cooper, C., Lawson, 
G., Massarano, A., Burness, C., Marson, A., Smith, D., Wieshmann, U., Dey, I., 
Sivakumar, P., Yeung, L.-K., Smith, P., Bentur, H., Heafield, T., Mathew, A., 
Smith, D., Jauhari, P., 2021. The SANAD II study of the effectiveness and cost-
effectiveness of valproate versus levetiracetam for newly diagnosed generalised 
and unclassifiable epilepsy: an open-label, non-inferiority, multicentre, phase 4, 
randomised controlled trial. The Lancet 397, 1375-1386. 

Marson, A.G., Al-Kharusi, A.M., Alwaidh, M., Appleton, R., Baker, G.A., Chadwick, 
D.W., Cramp, C., Cockerell, O.C., Cooper, P.N., Doughty, J., Eaton, B., Gamble, 
C., Goulding, P.J., Howell, S.J.L., Hughes, A., Jackson, M., Jacoby, A., Kellett, 
M., Lawson, G.R., Leach, J.P., Nicolaides, P., Roberts, R., Shackley, P., Shen, J., 
Smith, D.F., Smith, P.E.M., Smith, C.T., Vanoli, A., Williamson, P.R., 2007a. The 
SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, 
oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded 
randomised controlled trial. The Lancet 369, 1000-1015. 

Marson, A.G., Al-Kharusi, A.M., Alwaidh, M., Appleton, R., Baker, G.A., Chadwick, 
D.W., Cramp, C., Cockerell, O.C., Cooper, P.N., Doughty, J., Eaton, B., Gamble, 
C., Goulding, P.J., Howell, S.J.L., Hughes, A., Jackson, M., Jacoby, A., Kellett, 
M., Lawson, G.R., Leach, J.P., Nicolaides, P., Roberts, R., Shackley, P., Shen, J., 
Smith, D.F., Smith, P.E.M., Smith, C.T., Vanoli, A., Williamson, P.R., 2007b. The 
SANAD study of effectiveness of valproate, lamotrigine, or topiramate for 
generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. 
The Lancet 369, 1016-1026. 

Martin-Belmonte, A., Aguado, C., Alfaro-Ruiz, R., Moreno-Martinez, A.E., de la Ossa, L., 
Martinez-Hernandez, J., Buisson, A., Shigemoto, R., Fukazawa, Y., Lujan, R., 
2020. Density of GABAB Receptors Is Reduced in Granule Cells of the 
Hippocampus in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 21. 

Martin, L., Latypova, X., Wilson, C.M., Magnaudeix, A., Perrin, M.L., Terro, F., 2013a. 
Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A. Ageing 
Res Rev 12, 39-49. 

Martin, L., Latypova, X., Wilson, C.M., Magnaudeix, A., Perrin, M.L., Yardin, C., Terro, 
F., 2013b. Tau protein kinases: involvement in Alzheimer's disease. Ageing Res 
Rev 12, 289-309. 

Matthews, D.A., Cotman, C., Lynch, G., 1976. An electron microscopic study of lesion-
induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time 
course of degeneration. Brain Research 115, 1-21. 

McInnes, J., Wierda, K., Snellinx, A., Bounti, L., Wang, Y.C., Stancu, I.C., Apostolo, N., 
Gevaert, K., Dewachter, I., Spires-Jones, T.L., De Strooper, B., De Wit, J., Zhou, 
L., Verstreken, P., 2018. Synaptogyrin-3 Mediates Presynaptic Dysfunction 
Induced by Tau. Neuron 97, 823-835 e828. 



168 
 

McIntosh, A.M., Kalnins, R.M., Mitchell, L.A., Fabinyi, G.C., Briellmann, R.S., Berkovic, 
S.F., 2004. Temporal lobectomy: long-term seizure outcome, late recurrence and 
risks for seizure recurrence. Brain 127, 2018-2030. 

McIntosh, T.K., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., Faden, A.L., 
1989. Traumatic brain injury in the rat: Characterization of a lateral fluid-
percussion model. Neuroscience 28, 233-244. 

McKenna, J.T., Vertes, R.P., 2001. Collateral projections from the median raphe nucleus 
to the medial septum and hippocampus. Brain Research Bulletin 54, 619-630. 

McKhann, G.M., Wenzel, H.J., Robbins, C.A., Sosunov, A.A., Schwartzkroin, P.A., 2003. 
Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and 
hippocampal pathology. Neuroscience 122, 551-561. 

McLin, J.P., Steward, O., 2006. Comparison of seizure phenotype and neurodegeneration 
induced by systemic kainic acid in inbred, outbred, and hybrid mouse strains. Eur 
J Neurosci 24, 2191-2202. 

Meier, S., Bell, M., Lyons, D.N., Ingram, A., Chen, J., Gensel, J.C., Zhu, H., Nelson, P.T., 
Abisambra, J.F., 2015. Identification of Novel Tau Interactions with Endoplasmic 
Reticulum Proteins in Alzheimer's Disease Brain. J Alzheimers Dis 48, 687-702. 

Meier, S., Bell, M., Lyons, D.N., Rodriguez-Rivera, J., Ingram, A., Fontaine, S.N., Mechas, 
E., Chen, J., Wolozin, B., LeVine, H., 3rd, Zhu, H., Abisambra, J.F., 2016. 
Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function 
and Decreasing Protein Synthesis. J Neurosci 36, 1001-1007. 

Milder, J.B., Liang, L.P., Patel, M., 2010. Acute oxidative stress and systemic Nrf2 
activation by the ketogenic diet. Neurobiol Dis 40, 238-244. 

Milner, T.A., Bacon, C.E., 1989. Ultrastructural localization of tyrosine hydroxylase-like 
immunoreactivity in the rat hippocampal formation. J Comp Neurol 281, 479-495. 

Min, S.W., Chen, X., Tracy, T.E., Li, Y., Zhou, Y., Wang, C., Shirakawa, K., Minami, 
S.S., Defensor, E., Mok, S.A., Sohn, P.D., Schilling, B., Cong, X., Ellerby, L., 
Gibson, B.W., Johnson, J., Krogan, N., Shamloo, M., Gestwicki, J., Masliah, E., 
Verdin, E., Gan, L., 2015. Critical role of acetylation in tau-mediated 
neurodegeneration and cognitive deficits. Nat Med 21, 1154-1162. 

Min, S.W., Cho, S.H., Zhou, Y., Schroeder, S., Haroutunian, V., Seeley, W.W., Huang, 
E.J., Shen, Y., Masliah, E., Mukherjee, C., Meyers, D., Cole, P.A., Ott, M., Gan, 
L., 2010. Acetylation of tau inhibits its degradation and contributes to tauopathy. 
Neuron 67, 953-966. 

Miszczuk, D., Debski, K.J., Tanila, H., Lukasiuk, K., Pitkanen, A., 2016. Traumatic Brain 
Injury Increases the Expression of Nos1, Abeta Clearance, and Epileptogenesis in 
APP/PS1 Mouse Model of Alzheimer's Disease. Mol Neurobiol 53, 7010-7027. 

Miyamoto, K., Kowalska, A., Hasegawa, M., Tabira, T., Takahashi, K., Araki, W., 
Akiguchi, I., Ikemoto, A., 2001. Familial frontotemporal dementia and 
parkinsonism with a novel mutation at an intron 10+11-splice site in the tau gene. 
Ann Neurol 50, 117-120. 

Miyamoto, T., Stein, L., Thomas, R., Djukic, B., Taneja, P., Knox, J., Vossel, K., Mucke, 
L., 2017. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau 
to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. 
Mol Neurodegener 12, 41. 



169 
 

Mizumori, S.J., McNaughton, B.L., Barnes, C.A., 1989. A comparison of 
supramammillary and medial septal influences on hippocampal field potentials and 
single-unit activity. J Neurophysiol 61, 15-31. 

Mocanu, M.M., Nissen, A., Eckermann, K., Khlistunova, I., Biernat, J., Drexler, D., 
Petrova, O., Schonig, K., Bujard, H., Mandelkow, E., Zhou, L., Rune, G., 
Mandelkow, E.M., 2008. The potential for beta-structure in the repeat domain of 
tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly 
with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28, 737-
748. 

Mohan, M., Keller, S., Nicolson, A., Biswas, S., Smith, D., Osman Farah, J., Eldridge, P., 
Wieshmann, U., 2018. The long-term outcomes of epilepsy surgery. PLoS One 13, 
e0196274. 

Molnar, P., Nadler, J.V., 2001. Lack of effect of mossy fiber-released zinc on granule cell 
GABA(A) receptors in the pilocarpine model of epilepsy. J Neurophysiol 85, 1932-
1940. 

Mondragon-Rodriguez, S., Trillaud-Doppia, E., Dudilot, A., Bourgeois, C., Lauzon, M., 
Leclerc, N., Boehm, J., 2012. Interaction of endogenous tau protein with synaptic 
proteins is regulated by N-methyl-D-aspartate receptor-dependent tau 
phosphorylation. J Biol Chem 287, 32040-32053. 

Moore, R.Y., Halaris, A.E., 1975. Hippocampal innervation by serotonin neurons of the 
midbrain raphe in the rat. J Comp Neurol 164, 171-183. 

Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Titani, K., Ihara, Y., 
1993. Ubiquitin is conjugated with amino-terminally processed tau in paired helical 
filaments. Neuron 10, 1151-1160. 

Morris, G.L., 3rd, Gloss, D., Buchhalter, J., Mack, K.J., Nickels, K., Harden, C., 2013. 
Evidence-based guideline update: vagus nerve stimulation for the treatment of 
epilepsy: report of the Guideline Development Subcommittee of the American 
Academy of Neurology. Neurology 81, 1453-1459. 

Morris, G.L., 3rd, Mueller, W.M., 1999. Long-term treatment with vagus nerve stimulation 
in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group 
E01-E05. Neurology 53, 1731-1735. 

Morris, M., Knudsen, G.M., Maeda, S., Trinidad, J.C., Ioanoviciu, A., Burlingame, A.L., 
Mucke, L., 2015. Tau post-translational modifications in wild-type and human 
amyloid precursor protein transgenic mice. Nat Neurosci 18, 1183-1189. 

Morsch, R., Simon, W., Coleman, P.D., 1999. Neurons may live for decades with 
neurofibrillary tangles. J Neuropathol Exp Neurol 58, 188-197. 

Mtchedlishvili, Z., Kapur, J., 2006. High-affinity, slowly desensitizing GABAA receptors 
mediate tonic inhibition in hippocampal dentate granule cells. Mol Pharmacol 69, 
564-575. 

Mucke, L., Masliah, E., Yu, G.-Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., Hu, K., 
Kholodenko, D., Johnson-Wood, K., McConlogue, L., 2000. High-Level Neuronal 
Expression of Aβ1–42in Wild-Type Human Amyloid Protein Precursor Transgenic 
Mice: Synaptotoxicity without Plaque Formation. The Journal of Neuroscience 20, 
4050-4058. 



170 
 

Mukrasch, M.D., Bibow, S., Korukottu, J., Jeganathan, S., Biernat, J., Griesinger, C., 
Mandelkow, E., Zweckstetter, M., 2009. Structural polymorphism of 441-residue 
tau at single residue resolution. PLoS Biol 7, e34. 

Mukrasch, M.D., von Bergen, M., Biernat, J., Fischer, D., Griesinger, C., Mandelkow, E., 
Zweckstetter, M., 2007. The "jaws" of the tau-microtubule interaction. J Biol Chem 
282, 12230-12239. 

Muller, C.J., Bankstahl, M., Groticke, I., Loscher, W., 2009. Pilocarpine vs. lithium-
pilocarpine for induction of status epilepticus in mice: development of spontaneous 
seizures, behavioral alterations and neuronal damage. Eur J Pharmacol 619, 15-24. 

Nacharaju, P., Lewis, J., Easson, C., Yen, S., Hackett, J., Hutton, M., Yen, S.-H., 1999. 
Accelerated filament formation from tau protein with specific FTDP-17 missense 
mutations. FEBS Letters 447, 195-199. 

Nadler, J.V., Perry, B.W., Cotman, C.W., 1978. Intraventricular kainic acid preferentially 
destroys hippocampal pyramidal cells. Nature 271, 676-677. 

Nagiec, E.E., Sampson, K.E., Abraham, I., 2001. Mutated tau binds less avidly to 
microtubules than wildtype tau in living cells. Journal of Neuroscience Research 
63, 268-275. 

Naritoku, D.K., Terry, W.J., Helfert, R.H., 1995. Regional induction of fos 
immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. 
Epilepsy Research 22, 53-62. 

Neal, E.G., Chaffe, H., Schwartz, R.H., Lawson, M.S., Edwards, N., Fitzsimmons, G., 
Whitney, A., Cross, J.H., 2008. The ketogenic diet for the treatment of childhood 
epilepsy: a randomised controlled trial. The Lancet Neurology 7, 500-506. 

Neuman, R.S., Harley, C.W., 1983. Long-lasting potentiation of the dentate gyrus 
population spike by norepinephrine. Brain Research 273, 162-165. 

Neve, R.L., Harris, P., Kosik, K.S., Kurnit, D.M., Donlon, T.A., 1986. Identification of 
cDNA clones for the human microtubule-associated protein tau and chromosomal 
localization of the genes for tau and microtubule-associated protein 2. Molecular 
Brain Research 1, 271-280. 

Nevitt, S.J., Sudell, M., Weston, J., Tudur Smith, C., Marson, A.G., 2017. Antiepileptic 
drug monotherapy for epilepsy: a network meta-analysis of individual participant 
data. Cochrane Database Syst Rev 12, CD011412. 

Nusser, Z., Hajos, N., Somogyi, P., Mody, I., 1998. Increased number of synaptic 
GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. 
Nature 395, 172-177. 

Ondrejcak, T., Klyubin, I., Corbett, G.T., Fraser, G., Hong, W., Mably, A.J., Gardener, M., 
Hammersley, J., Perkinton, M.S., Billinton, A., Walsh, D.M., Rowan, M.J., 2018. 
Cellular Prion Protein Mediates the Disruption of Hippocampal Synaptic Plasticity 
by Soluble Tau In Vivo. J Neurosci 38, 10595-10606. 

Otis, T.S., De Koninck, Y., Mody, I., 1994. Lasting potentiation of inhibition is associated 
with an increased number of gamma-aminobutyric acid type A receptors activated 
during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci U S A 91, 
7698-7702. 

Otvos, L., Jr., Feiner, L., Lang, E., Szendrei, G.I., Goedert, M., Lee, V.M., 1994. 
Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine 
residues 396 and 404. J Neurosci Res 39, 669-673. 



171 
 

Pallo, S.P., DiMaio, J., Cook, A., Nilsson, B., Johnson, G.V.W., 2016. Mechanisms of tau 
and Abeta-induced excitotoxicity. Brain Res 1634, 119-131. 

Palop, J.J., Chin, J., Roberson, E.D., Wang, J., Thwin, M.T., Bien-Ly, N., Yoo, J., Ho, 
K.O., Yu, G.Q., Kreitzer, A., Finkbeiner, S., Noebels, J.L., Mucke, L., 2007. 
Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory 
hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55, 697-711. 

Panda, D., Goode, B.L., Feinstein, S.C., Wilson, L., 1995. Kinetic stabilization of 
microtubule dynamics at steady state by tau and microtubule-binding domains of 
tau. Biochemistry 34, 11117-11127. 

Pandis, D., Scarmeas, N., 2012. Seizures in Alzheimer disease: clinical and 
epidemiological data. Epilepsy Curr 12, 184-187. 

Pascual, M.R., 2007. Temporal lobe epilepsy: clinical semiology and neurophysiological 
studies. Semin Ultrasound CT MR 28, 416-423. 

Patrylo, P.R., Dudek, F.E., 1998. Physiological unmasking of new glutamatergic pathways 
in the dentate gyrus of hippocampal slices from kainate-induced epileptic rats. J 
Neurophysiol 79, 418-429. 

Peeraer, E., Bottelbergs, A., Van Kolen, K., Stancu, I.C., Vasconcelos, B., Mahieu, M., 
Duytschaever, H., Ver Donck, L., Torremans, A., Sluydts, E., Van Acker, N., 
Kemp, J.A., Mercken, M., Brunden, K.R., Trojanowski, J.Q., Dewachter, I., Lee, 
V.M., Moechars, D., 2015. Intracerebral injection of preformed synthetic tau fibrils 
initiates widespread tauopathy and neuronal loss in the brains of tau transgenic 
mice. Neurobiol Dis 73, 83-95. 

Pellegrini, L., Wetzel, A., Granno, S., Heaton, G., Harvey, K., 2017. Back to the tubule: 
microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 74, 409-434. 

Peng, Z., Huang, C.S., Stell, B.M., Mody, I., Houser, C.R., 2004. Altered expression of the 
delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. 
J Neurosci 24, 8629-8639. 

Pennanen, L., Welzl, H., D'Adamo, P., Nitsch, R.M., Gotz, J., 2004. Accelerated extinction 
of conditioned taste aversion in P301L tau transgenic mice. Neurobiol Dis 15, 500-
509. 

Pennanen, L., Wolfer, D.P., Nitsch, R.M., Gotz, J., 2006. Impaired spatial reference 
memory and increased exploratory behavior in P301L tau transgenic mice. Genes 
Brain Behav 5, 369-379. 

Penry, J.K., Dean, J.C., 1990. Prevention of intractable partial seizures by intermittent 
vagal stimulation in humans: preliminary results. Epilepsia 31 Suppl 2, S40-43. 

Perez, C., Ziburkus, J., Ullah, G., 2016. Analyzing and Modeling the Dysfunction of 
Inhibitory Neurons in Alzheimer's Disease. PLoS One 11, e0168800. 

Pérez, M., Avila, J., 1999. The expression of casein kinase 2α′ and phosphatase 2A activity. 
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1449, 150-156. 

Perry, G., Friedman, R., Shaw, G., Chau, V., 1987. Ubiquitin is detected in neurofibrillary 
tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci 
U S A 84, 3033-3036. 

Peterman, M.G., 1924. The Ketogenic Diet in the Treatment of Epilepsy. American Journal 
of Diseases of Children 28, 28. 

Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., 
McGowan, E., Lewis, J., Prihar, G., Kim, J., Dillmann, W.H., Browne, S.E., Hall, 



172 
 

A., Voellmy, R., Tsuboi, Y., Dawson, T.M., Wolozin, B., Hardy, J., Hutton, M., 
2004. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. 
Hum Mol Genet 13, 703-714. 

Phillips, M., Boman, E., Osterman, H., Willhite, D., Laska, M., 2011. Olfactory and 
visuospatial learning and memory performance in two strains of Alzheimer's 
disease model mice--a longitudinal study. PLoS One 6, e19567. 

Pickel, V.M., Segal, M., Bloom, F.E., 1974. A radioautographic study of the efferent 
pathways of the nucleus locus coeruleus. J Comp Neurol 155, 15-42. 

Pickering-Brown, S.M., Baker, M., Nonaka, T., Ikeda, K., Sharma, S., Mackenzie, J., 
Simpson, S.A., Moore, J.W., Snowden, J.S., de Silva, R., Revesz, T., Hasegawa, 
M., Hutton, M., Mann, D.M., 2004. Frontotemporal dementia with Pick-type 
histology associated with Q336R mutation in the tau gene. Brain 127, 1415-1426. 

Pigino, G., Morfini, G., Atagi, Y., Deshpande, A., Yu, C., Jungbauer, L., LaDu, M., 
Busciglio, J., Brady, S., 2009. Disruption of fast axonal transport is a pathogenic 
mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci U S A 106, 5907-
5912. 

Polydoro, M., Acker, C.M., Duff, K., Castillo, P.E., Davies, P., 2009. Age-dependent 
impairment of cognitive and synaptic function in the htau mouse model of tau 
pathology. J Neurosci 29, 10741-10749. 

Pooler, A.M., Phillips, E.C., Lau, D.H., Noble, W., Hanger, D.P., 2013. Physiological 
release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14, 389-
394. 

Porsteinsson, A.P., Tariot, P.N., Erb, R., Cox, C., Smith, E., Jakimovich, L., Noviasky, J., 
Kowalski, N., Holt, C.J., Irvine, C., 2001. Placebo-Controlled Study of Divalproex 
Sodium for Agitation in Dementia. The American Journal of Geriatric Psychiatry 
9, 58-66. 

Preuss, U., Biernat, J., Mandelkow, E.M., Mandelkow, E., 1997. The ‘jaws’ model of tau-
microtubule interaction examined in CHO cells. Journal of Cell Science 110, 789-
800. 

Priel, M.R., Albuquerque, E.X., 2002. Short-term effects of pilocarpine on rat hippocampal 
neurons in culture. Epilepsia 43 Suppl 5, 40-46. 

Probst, A., Gotz, J., Wiederhold, K.H., Tolnay, M., Mistl, C., Jaton, A.L., Hong, M., 
Ishihara, T., Lee, V.M., Trojanowski, J.Q., Jakes, R., Crowther, R.A., Spillantini, 
M.G., Burki, K., Goedert, M., 2000. Axonopathy and amyotrophy in mice 
transgenic for human four-repeat tau protein. Acta Neuropathol 99, 469-481. 

Profenno, L.A., Jakimovich, L., Holt, C.J., Porsteinsson, A., Tariot, P.N., 2005. A 
randomized, double-blind, placebo-controlled pilot trial of safety and tolerability 
of two doses of divalproex sodium in outpatients with probable Alzheimer's 
disease. Curr Alzheimer Res 2, 553-558. 

Puangmalai, N., Bhatt, N., Montalbano, M., Sengupta, U., Gaikwad, S., Ventura, F., 
McAllen, S., Ellsworth, A., Garcia, S., Kayed, R., 2020. Internalization 
mechanisms of brain-derived tau oligomers from patients with Alzheimer's disease, 
progressive supranuclear palsy and dementia with Lewy bodies. Cell Death Dis 11, 
314. 

Puvenna, V., Engeler, M., Banjara, M., Brennan, C., Schreiber, P., Dadas, A., Bahrami, A., 
Solanki, J., Bandyopadhyay, A., Morris, J.K., Bernick, C., Ghosh, C., Rapp, E., 



173 
 

Bazarian, J.J., Janigro, D., 2016. Is phosphorylated tau unique to chronic traumatic 
encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic 
encephalopathy. Brain Res 1630, 225-240. 

Puzzo, D., Privitera, L., Leznik, E., Fa, M., Staniszewski, A., Palmeri, A., Arancio, O., 
2008. Picomolar amyloid-beta positively modulates synaptic plasticity and memory 
in hippocampus. J Neurosci 28, 14537-14545. 

Quarato, P.P., Di Gennaro, G., Mascia, A., Grammaldo, L.G., Meldolesi, G.N., Picardi, A., 
Giampa, T., Falco, C., Sebastiano, F., Onorati, P., Manfredi, M., Cantore, G., 
Esposito, V., 2005. Temporal lobe epilepsy surgery: different surgical strategies 
after a non-invasive diagnostic protocol. J Neurol Neurosurg Psychiatry 76, 815-
824. 

Racine, R.J., 1972. Modification of seizure activity by electrical stimulation: II. Motor 
seizure. Electroencephalography and Clinical Neurophysiology 32, 281-294. 

Radde, R., Bolmont, T., Kaeser, S.A., Coomaraswamy, J., Lindau, D., Stoltze, L., Calhoun, 
M.E., Jaggi, F., Wolburg, H., Gengler, S., Haass, C., Ghetti, B., Czech, C., 
Holscher, C., Mathews, P.M., Jucker, M., 2006. Abeta42-driven cerebral 
amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7, 
940-946. 

Raedt, R., Van Dycke, A., Van Melkebeke, D., De Smedt, T., Claeys, P., Wyckhuys, T., 
Vonck, K., Wadman, W., Boon, P., 2009. Seizures in the intrahippocampal kainic 
acid epilepsy model: characterization using long-term video-EEG monitoring in the 
rat. Acta Neurol Scand 119, 293-303. 

Raftery, M., Campbell, R., Glaros, E.N., Rye, K.A., Halliday, G.M., Jessup, W., Garner, 
B., 2005. Phosphorylation of apolipoprotein-E at an atypical protein kinase CK2 
PSD/E site in vitro. Biochemistry 44, 7346-7353. 

Ramón y Cajal, S., 1909. Histologie du système nerveux de l'homme & des vertébrés. 
Maloine, Paris. 

Ramsden, M., Kotilinek, L., Forster, C., Paulson, J., McGowan, E., SantaCruz, K., 
Guimaraes, A., Yue, M., Lewis, J., Carlson, G., Hutton, M., Ashe, K.H., 2005. Age-
dependent neurofibrillary tangle formation, neuron loss, and memory impairment 
in a mouse model of human tauopathy (P301L). J Neurosci 25, 10637-10647. 

Reyes-Marin, K.E., Nunez, A., 2017. Seizure susceptibility in the APP/PS1 mouse model 
of Alzheimer's disease and relationship with amyloid beta plaques. Brain Res 1677, 
93-100. 

Reynolds, C.H., Betts, J.C., Blackstock, W.P., Nebreda, A.R., Anderton, B.H., 2000. 
Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: 
differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-
terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem 74, 
1587-1595. 

Reynolds, C.H., Garwood, C.J., Wray, S., Price, C., Kellie, S., Perera, T., Zvelebil, M., 
Yang, A., Sheppard, P.W., Varndell, I.M., Hanger, D.P., Anderton, B.H., 2008. 
Phosphorylation regulates tau interactions with Src homology 3 domains of 
phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family 
kinases. J Biol Chem 283, 18177-18186. 

Reynolds, E.H., 2000. The ILAE/IBE/WHO Global Campaign against Epilepsy: Bringing 
Epilepsy "Out of the Shadows". Epilepsy Behav 1, S3-S8. 



174 
 

Rho, J.M., Anderson, G.D., Donevan, S.D., White, H.S., 2002. Acetoacetate, acetone, and 
dibenzylamine (a contaminant in l-(+)-beta-hydroxybutyrate) exhibit direct 
anticonvulsant actions in vivo. Epilepsia 43, 358-361. 

Ribak, C.E., Seress, L., 1983. Five types of basket cell in the hippocampal dentate gyrus: 
a combined Golgi and electron microscopic study. J Neurocytol 12, 577-597. 

Ribak, C.E., Seress, L., Peterson, G.M., Seroogy, K.B., Fallon, J.H., Schmued, L.C., 1986. 
A GABAergic inhibitory component within the hippocampal commissural 
pathway. The Journal of Neuroscience 6, 3492-3498. 

Rizzu, P., Van Swieten, J.C., Joosse, M., Hasegawa, M., Stevens, M., Tibben, A., 
Niermeijer, M.F., Hillebrand, M., Ravid, R., Oostra, B.A., Goedert, M., van Duijn, 
C.M., Heutink, P., 1999. High prevalence of mutations in the microtubule-
associated protein tau in a population study of frontotemporal dementia in the 
Netherlands. Am J Hum Genet 64, 414-421. 

Roberson, E.D., Halabisky, B., Yoo, J.W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., 
Devidze, N., Yu, G.Q., Palop, J.J., Noebels, J.L., Mucke, L., 2011. Amyloid-
beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau 
levels in multiple mouse models of Alzheimer's disease. J Neurosci 31, 700-711. 

Roberson, E.D., Scearce-Levie, K., Palop, J.J., Yan, F., Cheng, I.H., Wu, T., Gerstein, H., 
Yu, G.Q., Mucke, L., 2007. Reducing endogenous tau ameliorates amyloid beta-
induced deficits in an Alzheimer's disease mouse model. Science 316, 750-754. 

Rocher, A.B., Crimins, J.L., Amatrudo, J.M., Kinson, M.S., Todd-Brown, M.A., Lewis, J., 
Luebke, J.I., 2010. Structural and functional changes in tau mutant mice neurons 
are not linked to the presence of NFTs. Exp Neurol 223, 385-393. 

Rosenberg, K.J., Ross, J.L., Feinstein, H.E., Feinstein, S.C., Israelachvili, J., 2008. 
Complementary dimerization of microtubule-associated tau protein: Implications 
for microtubule bundling and tau-mediated pathogenesis. Proc Natl Acad Sci U S 
A 105, 7445-7450. 

Saha, P., Sen, N., 2019. Tauopathy: A common mechanism for neurodegeneration and 
brain aging. Mech Ageing Dev 178, 72-79. 

Sakanaka, C., 2002. Phosphorylation and regulation of beta-catenin by casein kinase I 
epsilon. J Biochem 132, 697-703. 

Salanova, V., Markand, O., Worth, R., 2004. Temporal lobe epilepsy: analysis of patients 
with dual pathology. Acta Neurol Scand 109, 126-131. 

Sander, J.W., 2003. The epidemiology of epilepsy revisited. Curr Opin Neurol 16, 165-
170. 

Santacruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimaraes, 
A., DeTure, M., Ramsden, M., McGowan, E., Forster, C., Yue, M., Orne, J., Janus, 
C., Mariash, A., Kuskowski, M., Hyman, B., Hutton, M., Ashe, K.H., 2005. Tau 
suppression in a neurodegenerative mouse model improves memory function. 
Science 309, 476-481. 

Sarkar, M., Kuret, J., Lee, G., 2008. Two motifs within the tau microtubule-binding domain 
mediate its association with the hsc70 molecular chaperone. J Neurosci Res 86, 
2763-2773. 

Sato, Y., Naito, Y., Grundke-Iqbal, I., Iqbal, K., Endo, T., 2001. Analysis of N-glycans of 
pathological tau: possible occurrence of aberrant processing of tau in Alzheimer's 
disease. FEBS Lett 496, 152-160. 



175 
 

Scharfman, H.E., 1995. Electrophysiological evidence that dentate hilar mossy cells are 
excitatory and innervate both granule cells and interneurons. J Neurophysiol 74, 
179-194. 

Schauwecker, P.E., Steward, O., 1997. Genetic determinants of susceptibility to 
excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad 
Sci U S A 94, 4103-4108. 

Schmidt, D., 2011. Efficacy of new antiepileptic drugs. Epilepsy Curr 11, 9-11. 
Schneider, A., Biernat, J., von Bergen, M., Mandelkow, E., Mandelkow, E.M., 1999. 

Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also 
protects it against aggregation into Alzheimer paired helical filaments. 
Biochemistry 38, 3549-3558. 

Schoch, K.M., DeVos, S.L., Miller, R.L., Chun, S.J., Norrbom, M., Wozniak, D.F., 
Dawson, H.N., Bennett, C.F., Rigo, F., Miller, T.M., 2016. Increased 4R-Tau 
Induces Pathological Changes in a Human-Tau Mouse Model. Neuron 90, 941-947. 

Schweers, O., Schönbrunn-Hanebeck, E., Marx, A., Mandelkow, E., 1994. Structural 
studies of tau protein and Alzheimer paired helical filaments show no evidence for 
beta-structure. Journal of Biological Chemistry 269, 24290-24297. 

Segal, M., 1979. A potent inhibitory monosynaptic hypothalamo-hippocampal connection. 
Brain Research 162, 137-141. 

Semah, F., Picot, M.C., Adam, C., Broglin, D., Arzimanoglou, A., Bazin, B., Cavalcanti, 
D., Baulac, M., 1998. Is the underlying cause of epilepsy a major prognostic factor 
for recurrence? Neurology 51, 1256-1262. 

Sen, A., Jette, N., Husain, M., Sander, J.W., 2020. Epilepsy in older people. The Lancet 
395, 735-748. 

Sengupta, A., Kabat, J., Novak, M., Wu, Q., Grundke-Iqbal, I., Iqbal, K., 1998. 
Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal 
inhibition of its binding to microtubules. Arch Biochem Biophys 357, 299-309. 

Seress, L., Pokorny, J., 1981. Structure of the granular layer of the rat dentate gyrus. A 
light microscopic and Golgi study. J Anat 133, 181-195. 

Seubert, P., Mawal-Dewan, M., Barbour, R., Jakes, R., Goedert, M., Johnson, G.V., 
Litersky, J.M., Schenk, D., Lieberburg, I., Trojanowski, J.Q., Lee, V.M., 1995. 
Detection of phosphorylated Ser262 in fetal tau, adult tau, and paired helical 
filament tau. J Biol Chem 270, 18917-18922. 

Sharma, A.K., Reams, R.Y., Jordan, W.H., Miller, M.A., Thacker, H.L., Snyder, P.W., 
2007. Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and 
lesions. Toxicol Pathol 35, 984-999. 

Sherzai, D., Losey, T., Vega, S., Sherzai, A., 2014. Seizures and dementia in the elderly: 
Nationwide Inpatient Sample 1999-2008. Epilepsy Behav 36, 53-56. 

Shibley, H., Smith, B.N., 2002. Pilocarpine-induced status epilepticus results in mossy 
fiber sprouting and spontaneous seizures in C57BL/6 and CD-1 mice. Epilepsy 
Research 49, 109-120. 

Shipton, O.A., Leitz, J.R., Dworzak, J., Acton, C.E., Tunbridge, E.M., Denk, F., Dawson, 
H.N., Vitek, M.P., Wade-Martins, R., Paulsen, O., Vargas-Caballero, M., 2011. 
Tau protein is required for amyloid {beta}-induced impairment of hippocampal 
long-term potentiation. J Neurosci 31, 1688-1692. 



176 
 

Singh, T.J., Grundke-Iqbal, I., Iqbal, K., 1995. Phosphorylation of tau protein by casein 
kinase-1 converts it to an abnormal Alzheimer-like state. J Neurochem 64, 1420-
1423. 

Sirven, J.I., Waterhouse, E., 2003. Management of status epilepticus. Am Fam Physician 
68, 469-476. 

Sjoberg, M.K., Shestakova, E., Mansuroglu, Z., Maccioni, R.B., Bonnefoy, E., 2006. Tau 
protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar 
organization. J Cell Sci 119, 2025-2034. 

Sloviter, R.S., 1991. Permanently altered hippocampal structure, excitability, and 
inhibition after experimental status epilepticus in the rat: the "dormant basket cell" 
hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1, 
41-66. 

Sloviter, R.S., Zappone, C.A., Harvey, B.D., Bumanglag, A.V., Bender, R.A., Frotscher, 
M., 2003. "Dormant basket cell" hypothesis revisited: relative vulnerabilities of 
dentate gyrus mossy cells and inhibitory interneurons after hippocampal status 
epilepticus in the rat. J Comp Neurol 459, 44-76. 

Smith, K.M., Blessing, M.M., Parisi, J.E., Britton, J.W., Mandrekar, J., Cascino, G.D., 
2019. Tau deposition in young adults with drug-resistant focal epilepsy. Epilepsia 
60, 2398-2403. 

Sohn, P.D., Tracy, T.E., Son, H.I., Zhou, Y., Leite, R.E., Miller, B.L., Seeley, W.W., 
Grinberg, L.T., Gan, L., 2016. Acetylated tau destabilizes the cytoskeleton in the 
axon initial segment and is mislocalized to the somatodendritic compartment. Mol 
Neurodegener 11, 47. 

Sontag, E., Nunbhakdi-Craig, V., Lee, G., Brandt, R., Kamibayashi, C., Kuret, J., White, 
C.L., 3rd, Mumby, M.C., Bloom, G.S., 1999. Molecular interactions among protein 
phosphatase 2A, tau, and microtubules. Implications for the regulation of tau 
phosphorylation and the development of tauopathies. J Biol Chem 274, 25490-
25498. 

Spillantini, M.G., Murrell, J.R., Goedert, M., Farlow, M.R., Klug, A., Ghetti, B., 1998. 
Mutation in the tau gene in familial multiple system tauopathy with presenile 
dementia. Proc Natl Acad Sci U S A 95, 7737-7741. 

Spillantini, M.G., Yoshida, H., Rizzini, C., Lantos, P.L., Khan, N., Rossor, M.N., Goedert, 
M., Brown, J., 2000. A novel tau mutation (N296N) in familial dementia with 
swollen achromatic neurons and corticobasal inclusion bodies. Annals of 
Neurology 48, 939-943. 

Spires-Jones, T.L., de Calignon, A., Matsui, T., Zehr, C., Pitstick, R., Wu, H.Y., Osetek, 
J.D., Jones, P.B., Bacskai, B.J., Feany, M.B., Carlson, G.A., Ashe, K.H., Lewis, J., 
Hyman, B.T., 2008. In vivo imaging reveals dissociation between caspase 
activation and acute neuronal death in tangle-bearing neurons. J Neurosci 28, 862-
867. 

Spires, T.L., Orne, J.D., SantaCruz, K., Pitstick, R., Carlson, G.A., Ashe, K.H., Hyman, 
B.T., 2006. Region-specific dissociation of neuronal loss and neurofibrillary 
pathology in a mouse model of tauopathy. Am J Pathol 168, 1598-1607. 

Squires, R.F., Saederup, E., Crawley, J.N., Skolnick, P., Paul, S.M., 1984. Convulsant 
potencies of tetrazoles are highly correlated with actions on 



177 
 

GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sciences 35, 
1439-1444. 

St Louis, E.K., Rosenfeld, W.E., Bramley, T., 2009. Antiepileptic drug monotherapy: the 
initial approach in epilepsy management. Curr Neuropharmacol 7, 77-82. 

Staley, K.J., Otis, T.S., Mody, I., 1992. Membrane properties of dentate gyrus granule cells: 
comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67, 
1346-1358. 

Statler, K.D., Scheerlinck, P., Pouliot, W., Hamilton, M., White, H.S., Dudek, F.E., 2009. 
A potential model of pediatric posttraumatic epilepsy. Epilepsy Res 86, 221-223. 

Steiner, B., Mandelkow, E.M., Biernat, J., Gustke, N., Meyer, H.E., Schmidt, B., Mieskes, 
G., Soling, H.D., Drechsel, D., Kirschner, M.W., Goedert, M., Mandelkow, E., 
1990. Phosphorylation of microtubule-associated protein tau: identification of the 
site for Ca2(+)-calmodulin dependent kinase and relationship with tau 
phosphorylation in Alzheimer tangles. EMBO J 9, 3539-3544. 

Stell, B.M., Mody, I., 2002.   Receptors with Different Affinities Mediate Phasic and 
Tonic GABAA Conductances in Hippocampal Neurons. The Journal of 
Neuroscience 22, RC223-RC223. 

Steward, O., Scoville, S.A., 1976. Cells of origin of entorhinal cortical afferents to the 
hippocampus and fascia dentata of the rat. J Comp Neurol 169, 347-370. 

Strittmatter, W.J., Saunders, A.M., Goedert, M., Weisgraber, K.H., Dong, L.M., Jakes, R., 
Huang, D.Y., Pericak-Vance, M., Schmechel, D., Roses, A.D., 1994. Isoform-
specific interactions of apolipoprotein E with microtubule-associated protein tau: 
implications for Alzheimer disease. Proc Natl Acad Sci U S A 91, 11183-11186. 

Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K.H., Mistl, C., Rothacher, 
S., Ledermann, B., Burki, K., Frey, P., Paganetti, P.A., Waridel, C., Calhoun, M.E., 
Jucker, M., Probst, A., Staufenbiel, M., Sommer, B., 1997. Two amyloid precursor 
protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl 
Acad Sci U S A 94, 13287-13292. 

Sultan, A., Nesslany, F., Violet, M., Begard, S., Loyens, A., Talahari, S., Mansuroglu, Z., 
Marzin, D., Sergeant, N., Humez, S., Colin, M., Bonnefoy, E., Buee, L., Galas, 
M.C., 2011. Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 
286, 4566-4575. 

Sun, L., Wang, X., Liu, S., Wang, Q., Wang, J., Bennecib, M., Gong, C.X., Sengupta, A., 
Grundke-Iqbal, I., Iqbal, K., 2005. Bilateral injection of isoproterenol into 
hippocampus induces Alzheimer-like hyperphosphorylation of tau and spatial 
memory deficit in rat. FEBS Lett 579, 251-258. 

Sun, W., Qureshi, H.Y., Cafferty, P.W., Sobue, K., Agarwal-Mawal, A., Neufield, K.D., 
Paudel, H.K., 2002. Glycogen synthase kinase-3beta is complexed with tau protein 
in brain microtubules. J Biol Chem 277, 11933-11940. 

Sutula, T., Cascino, G., Cavazos, J., Parada, I., Ramirez, L., 1989. Mossy fiber synaptic 
reorganization in the epileptic human temporal lobe. Ann Neurol 26, 321-330. 

Sydow, A., Van der Jeugd, A., Zheng, F., Ahmed, T., Balschun, D., Petrova, O., Drexler, 
D., Zhou, L., Rune, G., Mandelkow, E., D'Hooge, R., Alzheimer, C., Mandelkow, 
E.M., 2011. Tau-induced defects in synaptic plasticity, learning, and memory are 
reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 
31, 2511-2525. 



178 
 

Tabuas-Pereira, M., Duraes, J., Lopes, J., Sales, F., Bento, C., Duro, D., Santiago, B., 
Almeida, M.R., Leitao, M.J., Baldeiras, I., Santana, I., 2019. Increased CSF tau is 
associated with a higher risk of seizures in patients with Alzheimer's disease. 
Epilepsy Behav 98, 207-209. 

Tai, H.C., Wang, B.Y., Serrano-Pozo, A., Frosch, M.P., Spires-Jones, T.L., Hyman, B.T., 
2014. Frequent and symmetric deposition of misfolded tau oligomers within 
presynaptic and postsynaptic terminals in Alzheimer's disease. Acta Neuropathol 
Commun 2, 146. 

Tai, X.Y., Koepp, M., Duncan, J.S., Fox, N., Thompson, P., Baxendale, S., Liu, J.Y., 
Reeves, C., Michalak, Z., Thom, M., 2016. Hyperphosphorylated tau in patients 
with refractory epilepsy correlates with cognitive decline: a study of temporal lobe 
resections. Brain 139, 2441-2455. 

Takashima, A., Murayama, M., Murayama, O., Kohno, T., Honda, T., Yasutake, K., 
Nihonmatsu, N., Mercken, M., Yamaguchi, H., Sugihara, S., Wolozin, B., 1998. 
Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. 
Proc Natl Acad Sci U S A 95, 9637-9641. 

Takashima, A., Noguchi, K., Michel, G., Mercken, M., Hoshi, M., Ishiguro, K., Imahori, 
K., 1996. Exposure of rat hippocampal neurons to amyloid β peptide (25–35) 
induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau 
protein kinase I/glycogen synthase kinase-3β. Neuroscience Letters 203, 33-36. 

Takei, Y., Teng, J., Harada, A., Hirokawa, N., 2000. Defects in axonal elongation and 
neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 150, 
989-1000. 

Tan, D.C.S., Yao, S., Ittner, A., Bertz, J., Ke, Y.D., Ittner, L.M., Delerue, F., 2018. 
Generation of a New Tau Knockout (tauDeltaex1) Line Using CRISPR/Cas9 
Genome Editing in Mice. J Alzheimers Dis 62, 571-578. 

Tanemura, K., Akagi, T., Murayama, M., Kikuchi, N., Murayama, O., Hashikawa, T., 
Yoshiike, Y., Park, J.M., Matsuda, K., Nakao, S., Sun, X., Sato, S., Yamaguchi, H., 
Takashima, A., 2001. Formation of filamentous tau aggregations in transgenic mice 
expressing V337M human tau. Neurobiol Dis 8, 1036-1045. 

Tariot, P.N., Schneider, L.S., Cummings, J., Thomas, R.G., Raman, R., Jakimovich, L.J., 
Loy, R., Bartocci, B., Fleisher, A., Ismail, M.S., Porsteinsson, A., Weiner, M., Jack, 
C.R., Jr., Thal, L., Aisen, P.S., Alzheimer's Disease Cooperative Study, G., 2011. 
Chronic divalproex sodium to attenuate agitation and clinical progression of 
Alzheimer disease. Arch Gen Psychiatry 68, 853-861. 

Tatebayashi, Y., Miyasaka, T., Chui, D.H., Akagi, T., Mishima, K., Iwasaki, K., Fujiwara, 
M., Tanemura, K., Murayama, M., Ishiguro, K., Planel, E., Sato, S., Hashikawa, T., 
Takashima, A., 2002. Tau filament formation and associative memory deficit in 
aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci U S A 99, 
13896-13901. 

Tatum, W.O., Johnson, K.D., Goff, S., Ferreira, J.A., Vale, F.L., 2001. Vagus nerve 
stimulation and drug reduction. Neurology 56, 561-563. 

Tauck, D.L., Nadler, J.V., 1985. Evidence of functional mossy fiber sprouting in 
hippocampal formation of kainic acid-treated rats. The Journal of Neuroscience 5, 
1016-1022. 



179 
 

Tellez-Zenteno, J.F., Dhar, R., Wiebe, S., 2005. Long-term seizure outcomes following 
epilepsy surgery: a systematic review and meta-analysis. Brain 128, 1188-1198. 

Tepper, K., Biernat, J., Kumar, S., Wegmann, S., Timm, T., Hubschmann, S., Redecke, L., 
Mandelkow, E.M., Muller, D.J., Mandelkow, E., 2014. Oligomer formation of tau 
protein hyperphosphorylated in cells. J Biol Chem 289, 34389-34407. 

Terwel, D., Muyllaert, D., Dewachter, I., Borghgraef, P., Croes, S., Devijver, H., Van 
Leuven, F., 2008. Amyloid activates GSK-3beta to aggravate neuronal tauopathy 
in bigenic mice. Am J Pathol 172, 786-798. 

Thies, E., Mandelkow, E.M., 2007. Missorting of tau in neurons causes degeneration of 
synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27, 2896-
2907. 

Thomas, S.N., Funk, K.E., Wan, Y., Liao, Z., Davies, P., Kuret, J., Yang, A.J., 2012. Dual 
modification of Alzheimer's disease PHF-tau protein by lysine methylation and 
ubiquitylation: a mass spectrometry approach. Acta Neuropathol 123, 105-117. 

Thurman, D.J., Beghi, E., Begley, C.E., Berg, A.T., Buchhalter, J.R., Ding, D., Hesdorffer, 
D.C., Hauser, W.A., Kazis, L., Kobau, R., Kroner, B., Labiner, D., Liow, K., 
Logroscino, G., Medina, M.T., Newton, C.R., Parko, K., Paschal, A., Preux, P.M., 
Sander, J.W., Selassie, A., Theodore, W., Tomson, T., Wiebe, S., Epidemiology, 
I.C.o., 2011. Standards for epidemiologic studies and surveillance of epilepsy. 
Epilepsia 52 Suppl 7, 2-26. 

Tian, H., Davidowitz, E., Lopez, P., Emadi, S., Moe, J., Sierks, M., 2013. Trimeric tau is 
toxic to human neuronal cells at low nanomolar concentrations. Int J Cell Biol 2013, 
260787. 

Tian, Q., Zhang, J.X., Zhang, Y., Wu, F., Tang, Q., Wang, C., Shi, Z.Y., Zhang, J.H., Liu, 
S., Wang, Y., Zhang, Q., Wang, J.Z., 2009. Biphasic effects of forskolin on tau 
phosphorylation and spatial memory in rats. J Alzheimers Dis 17, 631-642. 

Tomson, T., Marson, A., Boon, P., Canevini, M.P., Covanis, A., Gaily, E., Kalviainen, R., 
Trinka, E., 2015. Valproate in the treatment of epilepsy in girls and women of 
childbearing potential. Epilepsia 56, 1006-1019. 

Torborg, C.L., Nakashiba, T., Tonegawa, S., McBain, C.J., 2010. Control of CA3 output 
by feedforward inhibition despite developmental changes in the excitation-
inhibition balance. J Neurosci 30, 15628-15637. 

Tortosa, E., Santa-Maria, I., Moreno, F., Lim, F., Perez, M., Avila, J., 2009. Binding of 
Hsp90 to tau promotes a conformational change and aggregation of tau protein. J 
Alzheimers Dis 17, 319-325. 

Tracy, T.E., Sohn, P.D., Minami, S.S., Wang, C., Min, S.W., Li, Y., Zhou, Y., Le, D., Lo, 
I., Ponnusamy, R., Cong, X., Schilling, B., Ellerby, L.M., Huganir, R.L., Gan, L., 
2016. Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity 
and Promotes Tauopathy-Related Memory Loss. Neuron 90, 245-260. 

Trinczek, B., Biernat, J., Baumann, K., Mandelkow, E.M., Mandelkow, E., 1995. Domains 
of tau protein, differential phosphorylation, and dynamic instability of 
microtubules. Mol Biol Cell 6, 1887-1902. 

Tucker, K.L., Meyer, M., Barde, Y.A., 2001. Neurotrophins are required for nerve growth 
during development. Nat Neurosci 4, 29-37. 

Turski, W.A., Cavalheiro, E.A., Bortolotto, Z.A., Mello, L.M., Schwarz, M., Turski, L., 
1984. Seizures produced by pilocarpine in mice: A behavioral, 



180 
 

electroencephalographic and morphological analysis. Brain Research 321, 237-
253. 

Turski, W.A., Cavalheiro, E.A., Schwarz, M., Czuczwar, S.J., Kleinrok, Z., Turski, L., 
1983. Limbic seizures produced by pilocarpine in rats: Behavioural, 
electroencephalographic and neuropathological study. Behavioural Brain Research 
9, 315-335. 

Tyagi, A., Delanty, N., 2003. Herbal remedies, dietary supplements, and seizures. Epilepsia 
44, 228-235. 

Van Erum, J., Valkenburg, F., Van Dam, D., De Deyn, P.P., 2020. Pentylenetetrazole-
induced Seizure Susceptibility in the Tau58/4 Transgenic Mouse Model of 
Tauopathy. Neuroscience 425, 112-122. 

van Groen, T., Miettinen, P., Kadish, I., 2003. The entorhinal cortex of the mouse: 
organization of the projection to the hippocampal formation. Hippocampus 13, 133-
149. 

Vazquez, B., 2004. Monotherapy in epilepsy: role of the newer antiepileptic drugs. Arch 
Neurol 61, 1361-1365. 

Verret, L., Mann, E.O., Hang, G.B., Barth, A.M., Cobos, I., Ho, K., Devidze, N., Masliah, 
E., Kreitzer, A.C., Mody, I., Mucke, L., Palop, J.J., 2012. Inhibitory interneuron 
deficit links altered network activity and cognitive dysfunction in Alzheimer 
model. Cell 149, 708-721. 

Vershinin, M., Carter, B.C., Razafsky, D.S., King, S.J., Gross, S.P., 2007. Multiple-motor 
based transport and its regulation by Tau. Proc Natl Acad Sci U S A 104, 87-92. 

Vertes, R.P., 1992. PHA-L analysis of projections from the supramammillary nucleus in 
the rat. J Comp Neurol 326, 595-622. 

Vertes, R.P., Fortin, W.J., Crane, A.M., 1999. Projections of the median raphe nucleus in 
the rat. The Journal of Comparative Neurology 407, 555-582. 

Vertes, R.P., Kinney, G.G., Kocsis, B., Fortin, W.J., 1994. Pharmacological suppression 
of the median raphe nucleus with serotonin1a agonists, 8-OH-DPAT and buspirone, 
produces hippocampal theta rhythm in the rat. Neuroscience 60, 441-451. 

Vertes, R.P., Kocsis, B., 1997. Brainstem-diencephalo-septohippocampal systems 
controlling the theta rhythm of the hippocampus. Neuroscience 81, 893-926. 

Violet, M., Delattre, L., Tardivel, M., Sultan, A., Chauderlier, A., Caillierez, R., Talahari, 
S., Nesslany, F., Lefebvre, B., Bonnefoy, E., Buee, L., Galas, M.C., 2014. A major 
role for Tau in neuronal DNA and RNA protection in vivo under physiological and 
hyperthermic conditions. Front Cell Neurosci 8, 84. 

Volicer, L., Smith, S., Volicer, B.J., 1995. Effect of Seizures on Progression of Dementia 
of the Alzheimer Type. Dementia and Geriatric Cognitive Disorders 6, 258-263. 

von Bergen, M., Barghorn, S., Li, L., Marx, A., Biernat, J., Mandelkow, E.M., Mandelkow, 
E., 2001. Mutations of tau protein in frontotemporal dementia promote aggregation 
of paired helical filaments by enhancing local beta-structure. J Biol Chem 276, 
48165-48174. 

von Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E.M., Mandelkow, E., 
2000. Assembly of tau protein into Alzheimer paired helical filaments depends on 
a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl 
Acad Sci U S A 97, 5129-5134. 



181 
 

Vossel, K.A., Beagle, A.J., Rabinovici, G.D., Shu, H., Lee, S.E., Naasan, G., Hegde, M., 
Cornes, S.B., Henry, M.L., Nelson, A.B., Seeley, W.W., Geschwind, M.D., Gorno-
Tempini, M.L., Shih, T., Kirsch, H.E., Garcia, P.A., Miller, B.L., Mucke, L., 2013. 
Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA 
Neurol 70, 1158-1166. 

Vossel, K.A., Ranasinghe, K.G., Beagle, A.J., Mizuiri, D., Honma, S.M., Dowling, A.F., 
Darwish, S.M., Van Berlo, V., Barnes, D.E., Mantle, M., Karydas, A.M., Coppola, 
G., Roberson, E.D., Miller, B.L., Garcia, P.A., Kirsch, H.E., Mucke, L., Nagarajan, 
S.S., 2016. Incidence and impact of subclinical epileptiform activity in Alzheimer's 
disease. Ann Neurol 80, 858-870. 

Walker, M.C., Ruiz, A., Kullmann, D.M., 2002. Do mossy fibers release GABA? Epilepsia 
43 Suppl 5, 196-202. 

Walling, S.G., Harley, C.W., 2004. Locus ceruleus activation initiates delayed synaptic 
potentiation of perforant path input to the dentate gyrus in awake rats: a novel beta-
adrenergic- and protein synthesis-dependent mammalian plasticity mechanism. J 
Neurosci 24, 598-604. 

Wang, J.-z., Wu, Q., Smith, A., Grundke-Iqbal, I., Iqbal, K., 1998. τ is phosphorylated by 
GSK-3 at several sites found in Alzheimer disease and its biological activity 
markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Letters 
436, 28-34. 

Wang, J.Z., Gong, C.X., Zaidi, T., Grundke-Iqbal, I., Iqbal, K., 1995. Dephosphorylation 
of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol 
Chem 270, 4854-4860. 

Wang, J.Z., Grundke-Iqbal, I., Iqbal, K., 1996. Glycosylation of microtubule-associated 
protein tau: an abnormal posttranslational modification in Alzheimer's disease. Nat 
Med 2, 871-875. 

Wang, P., Joberty, G., Buist, A., Vanoosthuyse, A., Stancu, I.C., Vasconcelos, B., Pierrot, 
N., Faelth-Savitski, M., Kienlen-Campard, P., Octave, J.N., Bantscheff, M., 
Drewes, G., Moechars, D., Dewachter, I., 2017. Tau interactome mapping based 
identification of Otub1 as Tau deubiquitinase involved in accumulation of 
pathological Tau forms in vitro and in vivo. Acta Neuropathol 133, 731-749. 

Wei, W., Zhang, N., Peng, Z., Houser, C.R., Mody, I., 2003. Perisynaptic Localization of 
δ Subunit-Containing GABAAReceptors and Their Activation by GABA Spillover 
in the Mouse Dentate Gyrus. The Journal of Neuroscience 23, 10650-10661. 

Welzel, L., Schidlitzki, A., Twele, F., Anjum, M., Loscher, W., 2020. A face-to-face 
comparison of the intra-amygdala and intrahippocampal kainate mouse models of 
mesial temporal lobe epilepsy and their utility for testing novel therapies. Epilepsia 
61, 157-170. 

Wenzel, H.J., Buckmaster, P.S., Anderson, N.L., Wenzel, M.E., Schwartzkroin, P.A., 
1997. Ultrastructural localization of neurotransmitter immunoreactivity in mossy 
cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 7, 559-
570. 

West, M.J., Slomianka, L., Gundersen, H.J., 1991. Unbiased stereological estimation of the 
total number of neurons in thesubdivisions of the rat hippocampus using the optical 
fractionator. Anat Rec 231, 482-497. 



182 
 

White, H.S., Smith, M.D., Wilcox, K.S., 2007. Mechanisms of Action of Antiepileptic 
Drugs.  81, 85-110. 

White, W.F., Nadler, J.V., Hamberger, A., Cotman, C.W., Cummins, J.T., 1977. Glutamate 
as transmitter of hippocampal perforant path. Nature 270, 356-357. 

Wiebe, S., 2000. Epidemiology of temporal lobe epilepsy. Can J Neurol Sci 27 Suppl 1, 
S6-10; discussion S20-11. 

Wille, H., Drewes, G., Biernat, J., Mandelkow, E.M., Mandelkow, E., 1992. Alzheimer-
like paired helical filaments and antiparallel dimers formed from microtubule-
associated protein tau in vitro. J Cell Biol 118, 573-584. 

Williams, P.A., White, A.M., Clark, S., Ferraro, D.J., Swiercz, W., Staley, K.J., Dudek, 
F.E., 2009. Development of spontaneous recurrent seizures after kainate-induced 
status epilepticus. J Neurosci 29, 2103-2112. 

Willis, S., Stoll, J., Sweetman, L., Borges, K., 2010. Anticonvulsant effects of a 
triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis 40, 565-572. 

Wilson, J.V., Reynolds, E.H., 1990. Texts and documents. Translation and analysis of a 
cuneiform text forming part of a Babylonian treatise on epilepsy. Med Hist 34, 185-
198. 

Winokur, R.S., Kubal, T., Liu, D., Davis, S.F., Smith, B.N., 2004. Recurrent excitation in 
the dentate gyrus of a murine model of temporal lobe epilepsy. Epilepsy Res 58, 
93-105. 

Witter, M.P., Van Hoesen, G.W., Amaral, D.G., 1989. Topographical organization of the 
entorhinal projection to the dentate gyrus of the monkey. The Journal of 
Neuroscience 9, 216-228. 

Won, Y.J., Lu, V.B., Puhl, H.L., 3rd, Ikeda, S.R., 2013. beta-Hydroxybutyrate modulates 
N-type calcium channels in rat sympathetic neurons by acting as an agonist for the 
G-protein-coupled receptor FFA3. J Neurosci 33, 19314-19325. 

Woodgett, J.R., 1990. Molecular cloning and expression of glycogen synthase kinase-
3/factor A. EMBO J 9, 2431-2438. 

Wuarin, J.P., Dudek, F.E., 2001. Excitatory synaptic input to granule cells increases with 
time after kainate treatment. J Neurophysiol 85, 1067-1077. 

Wyss, J.M., Swanson, L.W., Cowan, W.M., 1979. Evidence for an input to the molecular 
layer and the stratum granulosum of the dentate gyrus from the supramammillary 
region of the hypothalamus. Anat Embryol (Berl) 156, 165-176. 

Xu, Y., Chen, Y., Zhang, P., Jeffrey, P.D., Shi, Y., 2008. Structure of a protein phosphatase 
2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell 31, 
873-885. 

Yamada, K., Holth, J.K., Liao, F., Stewart, F.R., Mahan, T.E., Jiang, H., Cirrito, J.R., Patel, 
T.K., Hochgrafe, K., Mandelkow, E.M., Holtzman, D.M., 2014. Neuronal activity 
regulates extracellular tau in vivo. J Exp Med 211, 387-393. 

Yetman, M.J., Fowler, S.W., Jankowsky, J.L., 2016. Humanized Tau Mice with 
Regionalized Amyloid Exhibit Behavioral Deficits but No Pathological Interaction. 
PLoS One 11, e0153724. 

Yoshida, H., Crowther, R.A., Goedert, M., 2002. Functional effects of tau gene mutations 
deltaN296 and N296H. J Neurochem 80, 548-551. 

Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S.M., Iwata, N., Saido, T.C., Maeda, J., 
Suhara, T., Trojanowski, J.Q., Lee, V.M., 2007. Synapse loss and microglial 



183 
 

activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337-
351. 

Yuan, A., Kumar, A., Peterhoff, C., Duff, K., Nixon, R.A., 2008. Axonal transport rates in 
vivo are unaffected by tau deletion or overexpression in mice. J Neurosci 28, 1682-
1687. 

Yudkoff, M., Daikhin, Y., Nissim, I., Horyn, O., Lazarow, A., Luhovyy, B., Wehrli, S., 
Nissim, I., 2005. Response of brain amino acid metabolism to ketosis. Neurochem 
Int 47, 119-128. 

Yuzwa, S.A., Shan, X., Macauley, M.S., Clark, T., Skorobogatko, Y., Vosseller, K., 
Vocadlo, D.J., 2012. Increasing O-GlcNAc slows neurodegeneration and stabilizes 
tau against aggregation. Nat Chem Biol 8, 393-399. 

Yuzwa, S.A., Yadav, A.K., Skorobogatko, Y., Clark, T., Vosseller, K., Vocadlo, D.J., 
2011. Mapping O-GlcNAc modification sites on tau and generation of a site-
specific O-GlcNAc tau antibody. Amino Acids 40, 857-868. 

Zentner, J., Hufnagel, A., Wolf, H.K., Ostertun, B., Behrens, E., Campos, M.G., Solymosi, 
L., Elger, C.E., Wiestler, O.D., Schramm, J., 1995. Surgical treatment of temporal 
lobe epilepsy: clinical, radiological, and histopathological findings in 178 patients. 
J Neurol Neurosurg Psychiatry 58, 666-673. 

Zhang, B., Higuchi, M., Yoshiyama, Y., Ishihara, T., Forman, M.S., Martinez, D., Joyce, 
S., Trojanowski, J.Q., Lee, V.M., 2004. Retarded axonal transport of R406W 
mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24, 
4657-4667. 

Zheng, N., Shabek, N., 2017. Ubiquitin Ligases: Structure, Function, and Regulation. Annu 
Rev Biochem 86, 129-157. 

Zhou, L., McInnes, J., Wierda, K., Holt, M., Herrmann, A.G., Jackson, R.J., Wang, Y.C., 
Swerts, J., Beyens, J., Miskiewicz, K., Vilain, S., Dewachter, I., Moechars, D., De 
Strooper, B., Spires-Jones, T.L., De Wit, J., Verstreken, P., 2017. Tau association 
with synaptic vesicles causes presynaptic dysfunction. Nat Commun 8, 15295. 

 



 
 

VITA 

Ryan Adam Cloyd 

Education 

Ph.D. (Physiology), University of Kentucky, 2017-Present 

M.D. (Medicine), University of Kentucky, 2015-Present 

B.A. (Biochemistry), Wabash College, 2010-2014 

 

Professional Experience 

Graduate Research Assistant 

2017-present  

Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 

Advisor: Dr. Bret N. Smith (2018-present), Dr. Jose F. Abisambra (2017-2018) 

 

Medical School Student Tutor 

2017-2019 

University of Kentucky College of Medicine, Lexington, KY 

Supervisor: Dr. Michelle Lineberry 

 

Medical Student Researcher 

2015-2017 

Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 

Advisor: Dr. Jose F. Abisambra  

 

Operations Technician 

2014-2015 

BioStorage Technologies, Indianapolis, IN 

Supervisor: Rob Dininger 

 



185 
 

Research Intern 

2014 

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, 
Luxembourg 

Supervisor: Dr. Alexander Crawford 

 

Undergraduate Researcher 

2012-2014 

Chemistry Department, Wabash College, Crawfordsville, IN 

Advisor: Dr. Laura M. Wysocki 

 

Scholastic and Professional Honors 

2017- Promoted to third year of medical school with distinction 

2016- Promoted to second year of medical school with high distinction 

2014- Wabash College John Maurice Butler Prize for Scholarship and Character 

2014- Earned distinction of senior comprehensive examinations 

2014- Winner of American Chemical Society “Speak Simply” poster contest 

2013- Elected to Phi Beta Kappa as a junior 

2011- Wabash College Paul T. Hurt for All-Around Freshman Achievement 

2010- Wabash College Honor Scholarship 

2010- Eli Lily Community Scholarship 

 

Funding 

2018-2020 “Training Program for Predoctoral Students in Clinical and Translational 
Sciences” TL1TR001997 

2017-2018 “Graduate Training in Integrative Physiology” 1T32GM118292-01A1 

2016-2017 “Professional Student Mentored Research Fellowship” IL1TR000117/ 
UL1TR001998 

 



186 
 

Professional Publications and Presentations 

Publications 

Cloyd RA, Koren J 3rd, Abisambra JF, Smith BN. Effects of altered tau expression on 
dentate granule cell excitability in mice. Exp Neurol. 2021. 
doi: 10.1016/j.expneurol.2021.113766 

Sompol P, Gollihue JL, Kraner SD, Artiushin IA, Cloyd RA, Chisti EA, Koren SA, 
Nation GK, Abisambra JF, Huzian O, Nagy LI, Hackler L Jr, Puskas, LG, Norris, 
CM. Q134R: Small chemical compound with NFAT inhibitory properties 
improves behavioral performance and synapse function in mouse models of 
amyloid pathology. Aging Cell. 10.1111/acel.13416 

Koren SA, Hamm MJ, Cloyd R, Fontaine SN, Chisti E, Lanzilotta C, Rodriguez-Rivera 
J, Ingram A, Bell M, Galvis-Escobar SM, Zulia N, Di Domenico F, Duong D, 
Seyfried NT, Powell D, Vandsberger M, Frolinger T, Hartz AMS, Koren J 3rd, 
Axten JM, Laping NJ, Abisambra JF. Broad kinase inhibition mitigates early 
neuronal dysfunction in tauopathy. Int J Mol Sci. 2021.  
doi: 10.3390/ijms22031186 

Cloyd RA, Koren SA, Abisambra JF. Manganese-enhanced imaging: Overview and 
central nervous system applications with a focus on neurodegeneration. Front in 
Aging Neurosci. 2018; 10. doi: 10.3389/fnagi.2018.00403; PMCID: 
PMC6300587 

Gusareva ES, Twizere JC, Sleegers K, Abisambra JF, Meier SE, Cloyd RA, Weiss B, 
Dermaut B, Dourlen P, Dupont C, Bessonov K, van der Lee S, Carrasquillo MM, 
Katsumata Y, Cherkaoui M, Asselbergh B, Bellenguez C, Hofman AA, Ikram 
AMA, the GERAD1 consortium Harold D, Williams J, Amouyel P, van Dujin 
CM, Ertekin-Taner N, van Broeckhoven C, Fardo DW, Lambert JC, van Steen K. 
Male-specific epistasis between WWC1 and TLN2 genes is associated with 
Alzheimer’s Disease. Neurobiol Aging. 2018. doi: 
10.1016/j.neurobiolaging.2018.08.001 

Cloyd RA, Vandsburger M, Abisambra JF. A new opportunity for MEMRI. Aging-US. 
2017; 9: 1855-6. doi: 10.18632/aging.101283 

Fontaine SN, Ingram A, Cloyd RA, Meier SE, Miller E, Lyons D, Nation GK, Mechas E, 
Weiss B, Lanzillotta C, Di Domenico F, Schmitt F, Powell DK, Vandsburger M, 
Abisambra JF. Identification of changes in neuronal function as a consequence of 
aging and tauopathic neurodegeneration using a novel and sensitive magnetic 
resonance imaging approach. Neurobiol Aging. 2017; 56: 78-86. doi: 
10.1016/j.neurobiolaging.2017.04.007 

Kitley WR, Santa Maria PJ, Cloyd RA, Wysocki, LM. Synthesis of high contrast 
fluorescein-diethers for rapid bench-top sensing of palladium. Chem Commun. 
2015; 51 (40): 8520-3. doi: 10.1039/c5cc02192h 

Presentations 

2019- American Epilepsy Society Annual Meeting (Poster) 
2019- Association for Clinical and Translational Science Annual Meeting (Poster)  



187 
 

2019- University of Kentucky Center for Clinical and Translational Science Spring 
Conference (Talk) 
2018- University of Kentucky Neurology Department Resident Research Day (Poster and 
talk) 
2018- Wabash College Chemistry Department Seminar Series (Talk) 
2018- Society for Neuroscience Annual Meeting (Poster) 
2018- University of Kentucky Center for Clinical and Translational Science Spring 
Conference (Poster)  
2017- Sanders-Brown Center on Aging Markesbery Symposium on Aging and Dementia 
(Poster) 
2017- Alzheimer’s Association International Conference (Poster)     
2017-University of Kentucky Center for Clinical and Translational Sciences Spring 
Conference (Poster and talk) 
2016- Sanders-Brown Center on Aging Markesbery Symposium on Aging and Dementia 
(Poster) 
2016- AOA Groves Memorial Research Day (Poster)  
2014- American Chemical Society National Conference, Dallas (Poster)    
2013-American Chemical Society National Conference, New Orleans (Poster) 
2012- Eli Lilly Research Symposium (Poster) 


	THE ROLE OF MICROTUBULE-ASSOCIATED PROTEIN TAU IN NEURONAL EXCITABILITY AND EPILEPTOGENESIS
	Recommended Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1.1 Common tau antibodies and associated epitopes 8
	Table 1.2 Key Tau Kinases/Phosphatases and Associated Phosphorylation Sites 10
	Table 3.1 Summary of Replicates used for Electrophysiological Measurements 76
	Table 3.2 Summary of Resting Membrane Potential and Input Resistance 78
	Table 4.1 Summary of electrophysiological measurements 102

	LIST OF FIGURES
	Figure 1.1 Structure of MAPT and microtubule associated protein tau 2
	Figure 2.1 Approximate location of stimulating and recording electrodes 67
	Figure 3.1 Membrane voltage response to injected current in DGCs from tau-/- and htau mice compared to non-transgenic control mice. 80
	Figure 3.2 Membrane voltage responses change with age in DGCs. 82
	Figure 3.3 Average spontaneous EPSC frequency in tau-/-, htau, and non-transgenic control mice. 84
	Figure 3.4 Paired pulse ratio in tau-/- mice compared to non-transgenic control mice. 85
	Figure 3.5 Paired pulse ratio in htau mice compared to non-transgenic control mice. 87
	Figure 4.1 Daily seizure frequency recorded by vEEG 104
	Figure 4.2 Survival after IHK in tau-/-, htau, and non-transgenic mice 106
	Figure 4.3 Effect of IHK on resting membrane potential and input resistance in DGCs from tau-/-, htau, and non-transgenic mice 107
	Figure 4.4 Effect of IHK on membrane voltage response in DGCs from tau-/-, htau, and non-transgenic mice 109
	Figure 4.5 Effect of IHK on spontaneous EPSC frequency in DGCs from tau-/-, htau, and non-transgenic mice 110
	Figure 4.6 Effect of IHK on paired pulse ratio in DGCs from tau-/-, htau, and non-transgenic mice 112

	CHAPTER 1. INTRODUCTION
	1.1 Microtubule associated protein tau
	1.1.1 Expression and alternative splicing
	Figure 1.1 Structure of MAPT and microtubule associated protein tau

	1.1.2 Tau structure and structural domains
	1.1.3 Post-translational modifications
	1.1.3.1 Phosphorylation
	Table 1.1 Common tau antibodies and associated epitopes
	Table 1.2 Key Tau Kinases/Phosphatases and Associated Phosphorylation Sites

	1.1.3.2 Acetylation
	1.1.3.3 Ubiquitination
	1.1.3.4 Methylation
	1.1.3.5 Glycosylation

	1.1.4 Physiologic functions of tau

	1.2 Tauopathies
	1.2.1 Tau pathophysiology
	1.2.1.1 MAPT mutations
	1.2.1.2 Hyperphosphorylation
	1.2.1.3 Aggregation and filamentous tau
	1.2.1.4 Trans-synaptic spread of tau

	1.2.2 Mouse models of tauopathy
	1.2.2.1 Mouse models expressing pathological tau
	1.2.2.2 Tau deficient mouse models
	1.2.2.3 The htau mouse model


	1.3 The Dentate Gyrus of the Hippocampus
	1.3.1 Dentate gyrus organization and major cell types
	1.3.1.1 Dentate granule cells
	1.3.1.2 Dentate basket cells
	1.3.1.3 Mossy cells

	1.3.2 Major inputs to the dentate gyrus
	1.3.3 Major outputs from the dentate gyrus
	1.3.4 Local circuits in the dentate gyrus

	1.4 Temporal Lobe Epilepsy
	1.4.1 Classification and description of seizures
	1.4.2 Temporal lobe epilepsy
	1.4.3 General clinical management of epilepsy
	1.4.3.1 Medical management of epilepsy
	1.4.3.2 Surgical intervention in epilepsy
	1.4.3.3 Other treatment options

	1.4.4 Potential mechanisms of epileptogenesis
	1.4.5 Animal models to study seizures and epilepsy
	1.4.6 Seizures and epilepsy associated with tauopathy

	1.5 Study Aims and Significance

	CHAPTER 2. Materials and Methods
	2.1 Animals
	2.2 Intrahippocampal kainate (IHK) mouse model of epilepsy
	2.3 Hippocampal slice preparation
	2.4 Electrophysiological recordings
	2.5 Tissue Homogenization and Western Blot
	2.6 Data Analysis
	Figure 2.1 Approximate location of stimulating and recording electrodes


	CHAPTER 3. Effects of altered tau expression on dentate granule cell excitability in mice
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 Animals
	3.2.2 Hippocampal slice preparation
	3.2.3 Electrophysiological recordings
	3.2.4 Tissue Homogenization and Western Blot
	3.2.5 Data Analysis

	3.3 Results
	3.3.1 Resting membrane potential and input resistance in tau-/- and htau mice
	Table 3.1 Summary of Replicates used for Electrophysiological Measurements
	Table 3.2 Summary of Resting Membrane Potential and Input Resistance

	3.3.2 Lower action potential firing frequency in young tau-/- and htau mice
	Figure 3.1 Membrane voltage response to injected current in DGCs from tau-/- and htau mice compared to non-transgenic control mice.

	3.3.3 Spontaneous EPSC frequency was not impacted by tau
	Figure 3.2 Membrane voltage responses change with age in DGCs.

	3.3.1 Paired pulse facilitation is enhanced in young tau-/- and htau mice
	Figure 3.3 Average spontaneous EPSC frequency in tau-/-, htau, and non-transgenic control mice.
	Figure 3.4 Paired pulse ratio in tau-/- mice compared to non-transgenic control mice.


	3.4 Discussion
	Figure 3.5 Paired pulse ratio in htau mice compared to non-transgenic control mice.

	3.5  Conclusions

	CHAPTER 4. Loss of tau modifies but does not prevent epileptogenesis after intrahippocampal kainate treatment in mice
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Animals
	4.2.2 Intrahippocampal kainate (IHK) mouse model of temporal lobe epilepsy
	4.2.3 Hippocampal slice preparation
	4.2.4 Electrophysiological recordings
	4.2.5 Data Analysis

	4.3 Results
	4.3.1 Seizure induction after IHK differs in tau-/- mice
	Table 4.1 Summary of electrophysiological measurements

	4.3.2 Prevalence and frequency of spontaneous seizures in tau-/- and htau mice
	Figure 4.1 Daily seizure frequency recorded by vEEG

	4.3.1 All-cause mortality is greater in htau mice
	4.3.2 Intrinsic membrane properties after IHK
	Figure 4.2 Survival after IHK in tau-/-, htau, and non-transgenic mice
	Figure 4.3 Effect of IHK on resting membrane potential and input resistance in DGCs from tau-/-, htau, and non-transgenic mice

	4.3.1 IHK-related changes in synaptic function are abrogated in tau-/- and htau mice
	Figure 4.4 Effect of IHK on membrane voltage response in DGCs from tau-/-, htau, and non-transgenic mice
	Figure 4.5 Effect of IHK on spontaneous EPSC frequency in DGCs from tau-/-, htau, and non-transgenic mice


	4.4 Discussion
	Figure 4.6 Effect of IHK on paired pulse ratio in DGCs from tau-/-, htau, and non-transgenic mice

	4.5 Conclusions

	CHAPTER 5. Discussion
	5.1 Summary of findings
	5.2 DGC function tau-/- and htau mice
	5.2.1 Synaptic function in DGCs from tau-/- and htau mice
	5.2.2 Intrinsic neuronal properties in DGCs from tau-/- and htau mice
	5.2.3 Future directions

	5.3 Epileptogenesis in tau-/- and htau mice
	5.3.1 Induction of SE by IHK
	5.3.2 Survival after SE
	5.3.3 Development of spontaneous seizures after SE
	5.3.4 Future directions

	5.4 Dentate granule cell excitability after IHK in tau-/- and htau
	5.4.1 Electrophysiology in IHK treated mice
	5.4.2 Future directions

	5.5 Final conclusions

	APPENDICES
	APPENDIX 1 ELECTROPHYSIOLOGY RECORDING SETUP
	APPENDIX 2 SOLUTIONS USED FOR ELECTROPHYSIOLOGY
	A2.1 Cutting/holding solution
	A2.2 Recording solution
	A2.3 Electrode internal solution


	REFERENCES
	VITA

