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We study the Cauchy problem of the derivative nonlinear Schrodinger equation in one space
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Chapter 1 Introduction

The Derivative Nonlinear Schrodinger equation (DNLS)
ity + Uy = ie(Jul’u), (1.0.1)

where € = +1, is a canonical dispersive equation derived from the Magneto-Hydrodynamic
equations in the presence of the Hall effect. The equation models the dynamics of Alfvén
waves propagating along an ambient magnetic field in a long-wave, weakly nonlinear scaling
regime [5, 18]. There is a Hamiltonian form for the DNLS equation

Ug| 0 1 0
(2 3) o

with the Hamiltonian

and

aradH — [—mx — uﬂ2]

i, — u’u

In terms of scaling properties, DNLS is invariant under the transformation

u— uy = A"y (%, %) :

In particular, it is L?-critical in the sense that

Junllzz = fu e

It was proved by Hayashi and Ozawa [10] that solutions exist locally in time in the
Sobolev space H'(R) and they can be extended for all time if the L?*norm of the initial
condition is small enough, namely if |ug|2 < v/27. Recently, this upper bound has been
improved to v/4m by Wu [24].

A central property of DNLS, discovered by Kaup and Newell [12], is that it is solvable
through the inverse scattering method. In this pioneering work, the authors establish the
main elements of the inverse scattering analysis. In particular, they find the Lax pair,
analyze the linear spectral flow and derive the soliton solutions. A key observation is that
the associated spectral problem is of second order in terms of the spectral parameter. This
is in contrast with the ZS-AKNS system [I, 25] (the linear spectral problem associated to
NLS) which is of first order in the spectral parameter. The study of the DNLS equation
was the object of Lee’s thesis [13] and his subsequent work [14]. The spectral analysis also
provides an infinite number of conserved quantities [12].
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The present dissertation is devoted to a rigorous analysis of the direct and inverse scat-
tering map, with the goal of establishing global well-posedness for the DNLS equation and
providing building blocks for proving the soliton resolution conjecture, which will appear

in a subsequent paper [l 1]. In the rest of the introduction, we present the framework for
the inverse scattering approach, building on seminal works by Beals-Coifman [2] and De-
ift and Zhou [7, &, 26, 27]. We first review the Lax representation for DNLS, the spectral

problem that defines the direct scattering map, and the Riemann-Hilbert problem (RHP)
that defines the inverse scattering map (Section 1.1). We then use symmetry reduction to
give a more precise and analytically tractable definition of the direct and inverse scattering
maps (Section 1.2; see Definitions 1.2.1 and 1.2.2). The introduction ends with a summary
of our results (Section 1.3). These include a Lipschitz continuity property of the direct
and scattering maps in weighted Sobolev spaces (Theorems 1.3.7, 1.3.8). Due to the simple
time-evolution of the scattering data (see (1.1.10)), this analysis provides a construction of
a global solution of the DNLS equation with generic initial conditions in H*?*(R) (excluding
spectral singularities, a notion that we will define precisely later). Finally, we mention that
the analysis of the direct and inverse scattering maps and well-posedness of DNLS is also
the subject of recent work by Pelinovsky, Saalmann and Shimabukoro [19, 21].

1.1 DNLS as an Integrable System

As the solution spaces of (1.0.1) with ¢ = 1 and ¢ = —1 are connected by the simple mapping
u(z,t) — u(—x,t), we will now fix ¢ = —1 and consider only this case for the rest of the
dissertation. This choice of sign will induce the symmetry required for proving the existence
of solution to the inverse scattering problem. So equation (1.0.1) becomes

ity + Upy + i(|u)*u), = 0 (1.1.1)

A gauge transformation

d(ot) = uwtyexp (i [ 0Py (112)
—a0
maps solutions of (1.1.1) into solutions of
: o1

We will actually solve (1.1.3) by inverse scattering and use the inverse of the gauge trans-
formation (1.1.2) to obtain the solution of (1.1.1). The advantage of this formulation mani-
fests itself when analyzing the inverse scattering map through the Riemann-Hilbert problem
(RHP), allowing us to write appropriately normalized, piecewise analytic solutions.

The integrable equations (1.1.1) and (1.1.3) each admit a Lax representation

Li— Ay +[L,A]=0

for suitable operators L and A. Equivalently, (1.1.1) and (1.1.3) are the compatibility con-
ditions for the system of equations

Vo = Loy, Y = Ay (1.1.4)
2



The operators A and L for (1.1.1) and (1.1.3) and their equivalence through the gauge
transformation are given in Section 8.1. The flow defined by (1.1.3) with ¢ = —1 is linearized
by the scattering transform associated with the linear problem

Ly o+ Q)Y + P, (1.15)

where VU is a 2 x 2 matrix-valued function of z and

(3 2) - (k) - (70 ,0)

pi(@) = (i/2)la(@)P,  pa(a) = —(i/2)la(2)*.

To describe the scattering transform, we recall the Jost solutions and their associated scat-
tering data. First, observe that if ¢ = 0, (1.1.5) admits the solutions Wy(z, () = exp(—iz(?0).
These solutions are bounded for ¢ € ¥ where

with

» = {¢eC:Im(¢? =0}

From this observation, we are led to consider bounded solutions ¥*(z,¢) of (1.1.5) with
¢ € X, asymptotic as * — 00 to Vy(x,(). For such ¢, we denote by ¥*(z, () the unique
solutions of (1.1.5) with

lim UF(z,()e™™ = 1.

r—+00
Here and in what follows, 1 denotes the 2 x 2 identity matrix. The ¥+ are called Jost
solutions. Analytically, it is more convenient to work with the normalized Jost solutions

m*(x, () = U(x,¢)e™? (1.1.6)
These functions solve the equation

%m = —i¢*ado(m) + (Q(z)m + P(z)m, ado(A)=0cA— Ao, (1.1.7)

with asymptotic condition

. + _
zlirfwm (x,¢) =1.

It follows from (1.1.5) that det ¥(z) is constant for any solution ¥, and that any two solutions
Uy and U, of (1.1.5) with nonvanishing determinant are related by ¥; = Wy A for a constant
nonsingular matrix A. Hence, detm(z) is constant for any solution of (1.1.7), and any
two solutions m; and mo of (1.1.7) with nonvanishing determinant are related by m; =
mae~ 6% 247 A for a nonsingular constant matrix A.

In particular, for all 2 the Jost solutions U+ obey the relation

U (2, ¢) = U (2. OT(C), T<c>=(“(<) ”(O) (1.18)



The matrix T(¢) is called the transition matriz, and the functions a(¢), b(¢), a(¢), b(¢) are
called the scattering data. By asymptotic condition we have

v

det T(C) = a(Q)(¢) — HOH(C) = 1 (1.1.9)

and (a, a, b, 5) obey the symmetry relations (1.2.5) described below. Roughly and informally,
the map ¢ — (a,a,b, I;) is the direct scattering map.

The crucial result of inverse scattering theory for (1.1.3) is the following: suppose that
a(C.t), a(C,t), b(C, 1), b(C,t) are the scattering data of a solution g(z,t) of (1.1.3). It follows
from the spatial asymptotics of ¥* and the equations (1.1.4) that

G(C.t) = (G, ) = 0, B(C.t) = 4iCB(C, 1), B(C.t) = —4iCB(C, 1) (1.1.10)

(see [12, eq. (34)]). Hence, to solve the Cauchy problem (1.1.3), it suffices to compute the
scattering data, solve the linear evolution equations (1.1.10), and invert the time-evolved
scattering data to recover ¢(x,t).

Let
OF ={2eC:£Im(z*) > 0}

and )
=%
=1

(see Figure 1.2 below). In Chapter 4 we will show that the function a extends analytically
to Q~, while @ extends analytically to Q*. It follows from Theorem A in [13] that any zeros
of a are contained in a bounded set. The zero set respects the symmetries ¢ — ¢ and
¢ — —(. In addition, zeros of a(¢) and a({) cannot occur on the imaginary axis. This is
a consequence of the symmetry conditions (1.2.5) and the fact that the determinant of the
transition matrix 7'(z) is equal to 1 (see Figure 1.1 below).

Zeros of a in Q7 correspond to L? eigenfunctions and give rise to bright (exponentially
decaying) solitons. Zeros of a on 3 are called spectral singularities and give rise to algebraic
solitons. In the following, we exclude initial conditions ¢ for which a({) has zeros on ¥. Due
to (1.1.10), this property persists for all time.

The class of initial data considered here (see Theorems 1.3.7 and 1.3.8) excludes initial
data with spectral singularities. In Chapter 3, we will show that the set of initial conditions
with this property is open and dense in the weighted Sobolev space used here. We discuss
this further in Remark 1.3.1 of what follows.

We denote by v; ; 4,7 = 1,2 the components of ¥. From (1.1.8) we deduce that

Un(z,¢) Yz, Q)
a(¢) = det . (1.1.11)

Uy (2,¢) ¥ay(,C)

CRICNORREPENG
a(¢) = det : (1.1.12)

\ 05 (2,0) ¥5(,0)
4




Figure 1.1: Spectral Singularities in the (- and A-planes

2
Q—+ Q++
’ — —"_ ’ [ ] [ ]
23 — - E1
+ . . - C+
+
A C-
Ot Q- .
2y
Spectrum in ¢ Spectrum in \ = (2

Origin (o) Spectral Singularity (¢) FEigenvalue (e o )

Suppose that &(¢;) = 0 for some (; € QT+ i = 1,2, ..., N then we have the linear dependence
of the columns of (1.1.11)

Definition 1.1.1. We call initial data gy generic if spectral singularities do not occur and
zeros of & are of order one.

Using normalization (1.1.6) we get

my, (7, Cz)] b [mﬁ(fﬂa Cz)] 2iz¢?
- =b; e o 1.1.14
|:m21(x7 Gi) My (2, G;) ( )
We set the norming constant to be
bi
Ci = < 1.1.15
(@) —

In Section 1.2 we show @(¢) = a((), which implies that a(¢;) = 0. Thus we also have

mp(z, ()] [mi(@,¢)] ol
B R e (116



and set

To formulate the inverse scattering map, we recall that equation (1.1.7) admits Beals-
Coifman solutions M (z, z), piecewise analytic for z € C\X, with the following spatial nor-
malizations:

(i) The “right-hand” Beals-Coifman solutions are normalized so that

lim M(z,2) =1

T—00

for z € C\X, and M(x, z) is bounded as © — —oo, for each such z, while

(ii)) The “left-hand” Beals-Coifman solutions are normalized so that

lim M(xz,z)=1

T——00
for z € C\X, and M/(z, 2z) is bounded as © — +oo for each such z.
Denoting by M (x, z) either the left or right Beals-Coifman solution for z € R and z € C\X,
there exist boundary values M4 (z, () as + Im(z?) | 0 which obey a jump relation of the form
M, (2,¢) = M_(2,Q)e ™ *oy((), (e (1.1.17)

The jump matriz v(¢) is determined by the scattering data a, b, a, and b. For the right-hand
Beals-Coifman solution,

1 —b(¢)b(¢)/al¢)a(C) b(¢)/a(¢)

v, (¢) = : (1.1.18)
—b(¢)/a(C) 1
while for the left-hand Beals-Coifman solution,
1 b(¢)/a(¢)
ve(C) = . (1.1.19)

—b(¢)/a(¢) 1 —b(Q)b(C)/a(¢)a(C)

M has simple poles at each ¢; and (;. For the right-hand Beals-Coifman solution,

0 0
ReSC=CiMT(x7O :}l_r,% MT(I’ C) b; e?z‘(fa: 0
a'(G)
bi_ o—2iCw
Res._z M, (x,¢) = lim M,(z,() (%)
C=C; 7T\ N ¢—C; e
0 0



and for the left-hand Beals-Coifman solution,

1 o
0 —2i(x
- bid ()
Res—¢, Mi(x,¢) = lim M(z, ()
0 0
0 0
Resc—¢, Mi(z, () = lim M(z, () 1 o
cHCz > — 627(7,'1‘ O
bia' (¢;)
These jump conditions, together with the large-z asymptotics
M
Ma, ) ~ 14+ 2@ (1.1.20)
z

suffices to determine the Beals-Coifman solutions uniquely. Using this asymptotic expansion
in (1.1.7), it is easy to see that the potential Q(z) may be recovered from the formula

Q(z) =iado [M_1(x)]

which implies that
q(z) = 2i lim zMis(z, 2).
zZ—0

We may take the Riemann-Hilbert problem (RHP) (1.1.17), (1.1.20) with given scattering
data

D= (Cl, &7 b7 B’ {iCz}> {izz}> {bl}> {Bl})

as a starting point to recover ¢ from the scattering data. In practice, the RHP with jump
matrix (1.1.18) gives a stable reconstruction of ¢(z) for x in half-lines |¢, 00), while the RHP
with jump matrix (1.1.19) gives a stable reconstruction of the potential ¢(z) for x in half-
lines (—o0, ¢]. Roughly and informally, the map D — ¢ defined by these RHPs is the inverse
scattering map.

1.2 Symmetry Reduction

To give a precise formulation of the direct and inverse maps, we reduce by symmetry from
scattering data on the oriented contour X to scattering data on the oriented contour R.
Both contours with orientation are shown in Figure 1.2. The contour X can be viewed as
the boundary of the regions

O ={(eC:+Im¢*>0}.

The map ¢ +— ¢2 maps X onto R, QT onto C*, O~ onto C~, and induces the natural
orientation on the contour R.

Even functions on ¥ determine and are determined by functions on R. This observation
allows us to reduce the scattering map defined by (1.1.5) to a map involving functions on
the real line.



Figure 1.2: The Contours ¥ and R

2o
- + +
o ) C
Sy + o, +
+ —_
Q"+ 0 C-
2y

The Contour X The Contour R

We can reduce the spectral problem (1.1.7) from 3 to R by noting that the maps
mn(l’a —C) —m12(:1:, —C)

m(m)C) — (1.2.1)
—m21(1’7 —C) m22(x, —C)

w0 = (g )0 (1 5) (122)

preserves the solution space of (1.1.7). It follows from the unicity of normalized Jost solutions
m?* and stability of the solution space under (1.2.1) that

and

mfl(fa —() = mﬂ(l’,C), mE(:L‘, —() = —mﬁ(x, —()
mgl(x, -

Q)= —mii(x,0), mb(x,—C) = mb(x, ) (1.2.3)

and similarly for m_(z,¢). In an analogous way, it follows from unicity of m* and stability
of the solution space under (1.2.2), that

m;Q(xa g) = mﬂ(%aa mTZ(l’7<) = _m;_l(m7Z) (124)
and similarly for + replaced by —.
Equations (1.1.8), (1.2.3), and (1.2.4) imply the symmetry relations
a(¢) = a(Q). B(¢) = =b(0), a(=¢) =a(¢), b(—¢) = ~b(C) (1.2.5)

for the continuous scattering data. For the discrete scattering data, we have that

(1.2.6)
Using these relations, we can now reduce the scattering problem (1.1.7) with ¢ € X to

scattering problem for A = (% € R to define the direct scattering map. Let

mll('ra C) <_1m12($, C)
mﬁ(:ﬁ, C) =
Cle(x7 C) Ma2 ({L‘, C)
8



By (1.2.3), m" is an even function of . Then define
A= (e ) = mi(z,0) (1.2.7)

a b a C7'b
(Ca)=(& ")

is an automorphism of 2 x 2 matrices and commutes with differentiation in x. It follows that
the functions n* obtained from M by this map obey

The map

% = —idado(n™) + ( —(3\5 g ) n* + Pn* (1.2.8a)
ml_i)lfooni(:c, A)=1 (1.2.8b)
and are related by
a(A) B
nT(x, \) = n"(x, \)e Arde (1.2.9)

_ n*(:c, )\)efi)\xado

where for A = (2

a(N) =a(¢), BN =¢M(C) (1.2.10)
and the relation
NP+ ABAP =1

holds. We used the symmetry relations (1.2.5) to compute the form of the transition matrix
in (1.2.9). Denoting by n one of n* or n~, we also have
ngg(ﬂf, )\) = nn(x, )\), nlg(ﬂf, )\) = —)\717121(.17,)\) (1211)
so that one column or row of n(z,\) determines n(x, \) completely. Finally we define the
continuous scattering data:
B

p(N) = a0)’ (1.2.12)

By setting By, = b;/¢; and \; = (?, we follow the change of variable m(x, ) — n(x, \) to get

ny (z, Az)] [nfz (z, Az):| 2z N
= = B;\; et 1.2.13
[”21(% Ai) Ny (T, Ay) ( )
and
nm(l’:xi)] ) [nﬂ(l’;xi)] —2iz )
= = —B; e i 1.2.14
[”22(377 i) n5r1(957 Ai) ( )



We also set

B;
- _ 1.2.1
c &' (i) ( 2
and define the discrete scattering data
{ANi, Citiny (1.2.16)

From (1.2.10) and (1.2.12) it is easy to see that

r(¢) = ¢p(¢?)

Definition 1.2.1. The map ¢ — {p, {C;, \;}]_;} defined by (1.2.8), (1.2.9), (1.2.12) and
(1.2.15) is called the direct scattering map and denoted R.

Similarly, one can reduce the RHP (1.1.17) with contour ¥ and jump matrix (1.1.18) to
a RHP with contour R using symmetry 1.2.3. It follows from the parity properties of the
scattering data (see (1.2.5)) and the jump relation (1.1.17) that the mapping

o My (z,—() —Ma(x,—()
Mz, () —
—Mgl(l', —C> M22($a _C)

preserves the solution space of the RHP. This fact, together with unicity of the solution
(Lemma 5.2.9), implies that the diagonal entries of M, are even under the reflection ¢ — —¢,
while the off-diagonal entries are odd under this reflection.

Let
Mll('xa C) C_IMIQ('I? C)
M2, () =
CMQl (CL’, C) MQ?(*T’ g)
and define
N(z,¢?) = M*(z, ).

One arrives at the RHP

Ni(z,\) = N_(z, \)e~?2do j(}) (1.2.17)

L+ Ap(MP p(V)
J(A) = -

Ap(A) 1

corresponding to the RHP with jump matrix (1.1.18), where p(A) = ¢ 'b(¢)/a(¢). A similar
computation for the RHP with jump matrix (1.1.19) leads to a RHP in the A variable with

p(A) replaced by 5(\) = ¢'b(¢)/a(C).
N has simple poles at each \; and \;. Suppose that A € {\;, \;}7,
Res,_\N(z,z2) = hH/l\ N(z, 2) Jges(N)

10



with Jges(\) given as follows:

0 0 o 0 _a —2i\iz
JRes()\i) = ( Ci/\iem'/\ix 0 ) 9 JRes()\i) = ( 0 60 ) .

However, this RHP is not properly normalized: a careful computation shows that the
piecewise analytic function N(z,z) on C\R has the asymptotics

1 0
N(z,z) ~ +0 (=7

—(i/2)q(z) 1

as z — oo. It is more effective to consider the row-wise RHP

N, (z,)) = N_(z, \)e wad@) (})

Res: N (x, 2) = lim N(z, 2) Jres(A) (1.2.18)
lim N (z,\) = (1,0).
A—o0

where

N(z,\) = (N11(z, A), Nia(, ) .

A similar problem occurs in the study of KdV in a small dispersion limit [0].
One recovers ¢ from the relation

q(z) = 2i lim zN9(x, 2) (1.2.19)

zZ—00

where z — o0 in C\R. As we show in §5.3 (see Proposition 5.3.1 and (5.3.13)), one can also
compute the limit in (1.2.19) from the integral formula

1 (® , - ——— o
q(z) = ——J vir(z, s)p(s)e **ds — Z 2ivy (1, \) Cre 2" (1.2.20)

TJ-o k=1

where v = (v11,112) solves the Beals-Coifman integral equation (5.1.2) associated with the
RHP 5.1.1.

Definition 1.2.2. The mapping {p, {Ck, A\x}}?_;} — ¢ determined by the RHP (1.2.18) and
the asymptotic formula (1.2.19) is called the inverse scattering map and denoted Z.

From the evolution equations (1.1.10), we see that!

p(\ 1) = —4iX?p(\ 1) (1.2.21a)
ANe=0, k=1,...n (1.2.21b)
IThis equation differs by a minus sign from Kaup-Newell [12, eq. (34)] since Kaup and Newell take

p(N) = ¢71B(¢)/a(¢) whereas we take p(A) = ¢'B(¢)/a(().
11



C; = —4iXiCy (1.2.21¢)

In Lee’s thesis, it is shown that for generic Schwartz class initial condition ¢y the formula
ﬂxj)zl{émww(R%)Qﬂ(@ (1.2.22)

gives a classical solution to (1.1.3). Lee’s class includes S(R) n U where U is the open set
in Theorem 1.3.2 below. We give a self-contained proof of the solution formula (1.3.4) in
section 7 and Section 8.2.

1.3 Summary of Results

Given the solution formula (1.2.22) for Schwartz class data, the key to obtaining a globally
defined solution map with good continuity properties is to prove precise continuity properties
of the maps R and Z in a natural function space in which the map p — e %) p(o) is
continuous.

Let H*>?(R) be the completion of S(R) in the norm

lal 2@y = |1+ ()laC)], + 14"l

Definition 1.3.1. The set U consists, by definition, of those ¢ € H*?(R) for which the
scattering data &(\) is everywhere nonzero on R and has an analytic extension &(z) to C*
with finitely many first order zeros. We can further write

o0}
U:Um
n=0

where g € U,, implies that the scattering data &(\) associated to ¢ has n simple zeros in C*.

From the relation
la(M]? + AIBA? =1

we deduce that
(@N)a(\) " = a2 =1+ Ap(N)]?

then we have the following observations:

1

L+ ApNP? € s 1.3.1

NI < e < (1.3.1)

1+ ApV)|? = 0 (1.3.2)
sup |c(A)[?

The first observation follows from the fact that &(\) is everywhere nonzero on R while
the second observation is the consequence of the boundedness of ¢ in H%? norm.
The main result of this dissertation is expressed in the following theorem:

12



Theorem 1.3.2. There is a spectrally determined open subset U of H**(R) containing a
neighborhood of 0 so that the solution map (1.3.4) for (1.1.3)

H**(R) x R — H**(R)
(QO7 t) — Q( ’ 7t)
15 continuous, and Lipschitz continuous in qo for each t.

Lee [13] proved that the set of such potentials ¢ is open and dense in S(R). His proof is
based on a general argument of Beals and Coifman [2] In Chapter 3 we give a more precise
functional analytic argument inspired by analogous results in Schrodinger scattering theory
(see the manuscript of Dyatlov and Zworski [9, Chapter 2, Theorem 2.2 |. Following the
work of Tovbis-Venakides [22], in [l 1] we construct potentials for which the spectral data
can be fully calculated. In particular, we find sufficient conditions ensuring that the discrete
spectrum be empty and the L? norm of the potential arbitrarily large at the same time.

Since the gauge transformation (1.1.2) defines a Lipschitz continuous self-mapping G of
H??(R) onto itself with G(0) = 0, we immediately obtain:

Corollary 1.3.3. There is an open subset of H**(R) containing a neighborhood of 0 so that
the solution map for (1.1.1)

H**(R) x R — H**(R)
(uOv t) = u( ’ 7t)

1 continuous, and Lipschitz continuous in ug for each t.

The technical core of this dissertation consists of the following two continuity results for
the direct and inverse scattering maps. We begin with the following definitions:

Definition 1.3.4. By S we denote a subset of H*»?(R) where p € S satisfies the conditions
given in (1.3.1)-(1.3.2).

Definition 1.3.5. By V' we denote the disjoint union
Q0
V={JV
0

where Vo = S and for n > 1
V,=8x(Cy xCH"

We call a subset of V,, bounded if there is a constant C' with

1pll 22 + sup [Cyf + sup [N < C

and a constant ¢ > 0 so that inf;<;<, | Im \;| = ¢ for all data (p, {\;, C;}I~,) in that subset.

13



Definition 1.3.6. From (1.2.21a)-(1.2.21c) we define flow

e—4i>\2tp(>\)
q)t(pv{A]ka}) = )‘k7 k= 17"'7” (133)

4402
e NG, k=1,....n

Theorem 1.3.7. There is a spectrally determined open and dense subset U of H*?(R) con-
taining a neighborhood of 0 so that for n = 0,1, ... the direct scattering map R

R:U,— S x(CyxCH)"
q— (pf{cia)\i}?:l)

15 a Lipschitz continuous map from bounded subsets of U,, into bounded subsets of V,,. More-

over, R(U) is invariant under the flow ®, : V,, — V,,, and also contains an open neighborhood
of 0 in S x (Cx x CH)™.

Theorem 1.3.8. Forn = 0,1, ... the inverse scattering map T

z:Vv,—U,
(P, {Ci, NiYizy) = q

1s a Lipschitz continuous map from bounded subsets of V,, to bounded subsets of U, with the
property that R o Z s the identity map on the open set V,, and Z o'R is the identity map on
the open set U, of Theorem 1.5.7.

We emphasize that results from Lee’s thesis [13] already imply that the direct scattering
map is continuous from S(R) n U into S(R), and that the inverse map is continuous from
S(R)nV to S(R). Our contribution is to prove sharp continuity estimates between weighted
Sobolev spaces.

The space H**(R) is invariant under the Fourier transform, and, for p € H**(R), the
map t — e~ p(\) describes a continuous curve in H>?(R). Since the nonlinear maps R
and Z linearize respectively to the direct and inverse Fourier transform, the space H??*(R)
is well-suited to study the map (1.3.4).

Given Theorems 1.3.7 and 1.3.8, the proof of Theorem 1.3.2 is straightforward. The
solution map M defined by

(90, ) = Z[®; 0 (Rao) ()] (+) (1.3.4)

has the claimed continuity properties by Theorems 1.3.7 and 1.3.8. Thus, from Theorem
1.3.8 that M (qo, 0) = go. Moreover, the solution map gives a classical solution of (1.1.3) by
Theorem 7.0.2. The result for ¢ € H**(R) now follows from Lipschitz continuity of R and
7.

Finally, we mention that in [16] and [I1] J. Liu, P. Perry and C. Sulem established the
large-time asymptotics of the solution g(z,t) for (1.1.3) using the o version [1] of the Deift-
Zhou nonlinear steepest descent method [7, 8] for a spectrally determined subset of the initial
data in H**(R).

14



The dissertation is organized as follows. In Chapter 2, we present some useful tools of
functional and complex analysis. They include Volterra integral equation that will be used
in the analysis on the direct map, as well as basic properties of Cauchy projectors onto the
lower and upper half complex planes that come into play in the analysis of the RHP. We also
recall the Beals-Coifman formulation of the RHP which shows that the RHP is equivalent to
the Beals-Coifman integral equation. Chapter 3 is devoted to Lipschitz continuity properties
of the direct scattering map defined on U. We discuss the construction of Beals-Coifman
solutions in Chapter 4. In Chapter 5, we study the RHP that defines the inverse scattering
map and in Chapter 6, we prove Lipschitz continuity of the inverse scattering map defined
on an open subset V of H*?(R) x (C4)™ x (C*)". In Chapter 7, we give a self-contained
proof that the formula (1.3.4) gives a classical solution of (1.1.3) if the initial data belong to
S(R) n U. For sake of completeness, several technical calculations and proofs are presented
in Chapter 8. In Section 8.1, we formulate the Lax pairs for (1.1.1) and (1.1.3) and show
their equivalence through the gauge transformation (1.1.2). Finally, in Section 8.2, we supply
some technical computations needed in Chapter 7.

We close this introduction with a table of notations used for various solutions of the
linear systems defining the direct scattering map and the Riemann-Hilbert problem defining
the inverse scattering map.

Notation Summary

m, mf Solutions to the linear system
(1.1.7).

n Solution to the linear system
(1.2.8)

+ superscripts | Jost solutions obeying a bound-
ary condition at +oo.

Boldface n Renormalized first column of n
(see (3.1.17)).

M Solution of the Riemann-Hilbert
problems 1.1.17 and 5.1.4.

N Solution of the Riemann-Hilbert

problem 1.2.17.

Boldface N The first row of N. The RHP for
N is formulated precisely as Prob-
lem 5.1.1.

1 The 2 x 2 matrix-valued solu-
tion for the Beals-Coifman in-
tegral equation corresponding to
Problem 5.1.4.

v The row vector-valued solution to
the Beals-Coifman integral equa-
tion for Problem 5.1.1.

The Beals-Coifman equation for v = (141, 112) can be reduced for a scalar integral equation
for v1; which is studied in depth in Chapter 6.

15
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Chapter 2 Preliminaries

We start this chapter with some functional analysis results, namely estimates for Volterra-
type integral equations (Section 2.1.2) useful in the analysis of the direct scattering map.
Since the spectral problem and the RHP are formulated for matrix-valued functions, we
present in Section 2.2 some classical operations on matrices. We then turn to complex
analysis tools that are central for the study of the inverse scattering map and recall some
properties of Cauchy integrals and Cauchy operators in Section 2.3. We present a useful
change-of-variables formula for the Cauchy projectors in Section 2.4. Finally, we discuss
the key ideas leading to the reduction of the RHP to the so-called Beals-Coifman integral
equation in Section 2.5.

2.1 Some Tools from Functional Analysis

2.1.1 Notations

If X and Y are Banach spaces, we denote by B(X,Y’) the Banach space of bounded linear
operators from X to Y. We write B(X) for B(X, X). If A is a Hilbert-Schmidt operator on
a Hilbert space H, we denote by |A|yg the Hilbert-Schmidt norm of A. If I is an interval
on the real line, C°(I, X) denotes the space of continuous functions on I taking values in X.
It is equipped with the norm

HfHCO(I,X) = sug) (@)l -
xe

We write C°(1) if there is no possibility of confusion.
We denote by D the operator —i(d/dz), by {x) the smooth function (1 + 22)/2. Note
that [[(z)u'|l, < C||u] 2.2 . We normalize the Fourier transform as follows:

ee]

o= FHW) = | e®pta) ds

—0

§(z) = (F'g) (z) = % f : ¥ g(\) d.

—0

2.1.2 Volterra Integral Equations

Lemma 2.1.1. Suppose that X is a Banach space and consider the Volterra-type integral
equation

u(z) = f(x) + (Tu)(x) (2.1.1)
on the space C°(R™, X), where f € CO(R™, X) and T is an integral operator on C°(R™, X).
Let f*(z) = sup,, [|f(y)|x . and assume there is a nonnegative function h € L'(R™) such
that

0

(Tf)(z) < f h(t)f*(t)dt. (2.1.2)

xT
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Then for each f, equation (2.1.1) has a unique solution. Moreover, the resolvent (I —T)™?
obeys the bound

H(I — T)’lHB(CO(LX)) < exp (L h(t) dy) . (2.1.3)

Proof. Estimate (2.1.3) is obtained by expanding (I —7T)~! in powers of T" and using (2.1.2)

iteratively in the form
0 n
f h(y) dy> /().

xT

. 1
e < o (

to get a convergent series. ]

Remark 2.1.2. There is an obvious analogue of Lemma 2.1.1 for the negative half-line.

2.2 Matrix Operations

For a 2 x 2 matrix
a b
=)

we denote its Frobenius norm |A| = v/a2 + b2 + c2 + d2. Let

()

and define ad o(A) = [0, A] = 0 A — Ao. We have

ad o(A) = ( R )

and ad o(Agiag) = 0. If A is off-diagonal,

wart(25) 250,

i ad o

The exponential operator e acts linearly on 2 x 2 matrices:

i0ado (@ D\ a e2i0p
€ c d )]\ e ( :

2.3 Cauchy Projections and Hilbert Transform

2.3.1 Contours

Figure 1.2 displays the oriented contours under consideration. Integration on the oriented
contour > may be parameterized as follows:

L F(Q) d¢ = LOO Fb)dt — iLOO F(it) dt — LOO F(=t)dt +sz F(=it)dt (2.3.1)
18



and integration with respect to arc length is parameterized as
0
[ s iact= [+ s+ g6+ gy ae.
b 0

Denote by LP(X) the space of measurable functions on 3 with norm

1/p
ooy = ( [L1sor |d<|)

finite. We say that f e L'(X) is even if f(—¢) = f(¢) and odd if f(—¢) = —f(¢). It is easy
to see that the integral of an even function is zero while the integral of an odd function is
given by

e} o0
f F(O)dC QJ F)dt— 2ij F(it) dt.
) 0 0
A short computation using (2.3.1) shows that for any function f e H* (%),

du

oL (2.3.2)

[ r@ac= [ (- s-vi)
> R
where R is given the usual orientation.

2.3.2 Cauchy Projectors

We recall some basic facts about the Cauchy transform and the Cauchy projectors. See,
for example, Deift-Zhou [3, Section 2] and Trogdon-Olver [23, Chapter 2] for details and
references.

Let A denote an oriented contour in the complex plane which can be either ¥ or R
(as plotted in Figure 1.2). QF denotes the region +Im(¢?) > 0 if A = X, and the region
+Im(\) > 0if A =R.

For f e LP(A), p € (1,00), the Cauchy integral

N =— [

21 Jy S — 2

f(s)ds
defines a function bounded and analytic in C\A. The nontangential limits

(C*NHC) = lim_ (Cf)(2)

z—(, zeQE

exist for almost every z € A, and the estimate

|C= 1], < e lf1,

holds. We have the Plemelj-Sokhotski formula

CHf=+4-f— %Hf (2.3.3)



where H is the Hilbert transform

(H)(z) = lim j L s ds

el0 e ~{|]s—z|>¢} zZ— S8

From this, it follows that C* —C~ = I on LP(A). If p = 2, C* are orthogonal projections. In
particular, if the contour is R, the Cauchy projectors C* are simply defined via the Fourier
transform :

)\ = % Loo M F(¢) dg (2.3.4)
M =1 [ e (235)

A short computation using (2.3.1) shows that the Hilbert transform H on ¥ preserves the
subspaces of odd and even functions on ». We will use this fact in the analysis of direct and
inverse scattering map. We will also make use of the following commutator identities.

Lemma 2.3.1. Suppose that m is a nonnegative integer and f € L*™(R). Then

m—1
UG = CHLECN - Y e = [ Speds (2a0)
=0
Proof. The case m = 1 follows from (2.3.3) and the commutator identity
1
7 Jy
The general formula is derived by induction. O]

2.4 Change of Variables in Cauchy Projectors

The following change of variables formula for the Cauchy transform appears in Lee [13, §8].
We reproduce it here for the reader’s convenience.

Let ¥ = {( € C:S(¢*) = 0} with the orientation shown in Figure 1.2. The mapping
¢+ ¢? maps ¥ onto R and induces the usual orientation. Let Cs; and Cg be the respective
Cauchy integrals for 3 and R. For u € R we denote by 4/u the principal branch of the square
root function, so that, referring to Figure 1.2:

e u+— 4/u maps R onto ¥; U ¥y, and

e u+— —y/u maps R onto ¥3 U Xy.
For f e HY(Y), define



Lemma 2.4.1. Let f € HY(X) and z € C\X. The identities

(Csf) (2) = (Crg) (%) + 2 (Crh) (%) (2.4.1)
hold. Moreover, for any ¢ € X3,
(C) (©) = (Crg) (%) + ¢ (Crh) (&) (2.4.2)

Proof. Using (2.3.2), we compute
f(s) E_LJ (f(\/ﬂ) B f(-ﬂ)) du
sS—z2m  2mi Jgp \Vu—z —yJu—2z) 24/u
_}f fWu) + f(=vu) du
2 R 2—u 211

SR CCE CCRE)

22 —u 2w

This gives the formula for Cyxf. Observe that the quadratic mapping z + 22 takes the
regions QF to the half-planes C*, and paths approaching ¥ non-tangentially from QT (resp.
27) are mapped to paths approaching R non-tangentially from C* (resp. C~). Formula
(2.4.2) is now an immediate consequence of (2.4.1). O

Remark 2.4.2. From Lemma 2.4.1, we easily deduce that if f is an odd function on ¥ and

h(u) = f(v/u)//u then

(CE1) (Q) = ¢ (Cah) (&) (2.4.3)
On the other hand, if f is an even function on ¥ and g(u) = f(y/u), then
(C51) (Q) = (Cia) (D). (2.4.4)

2.5 Riemann-Hilbert Problem and Beals-Coifman Integral Equation

We recall briefly the Beals-Coifman [2] approach to RHPs: see, for example, [3, Section 2] for
a detailed exposition and further references. Let A be an oriented contour (for our purpose,
a finite union of oriented lines) that divides C\A into disjoint open sets QO and Q~. Suppose
given a 2 x 2 measurable, matrix-valued function v on A with v,v~! € L®(A). Formally, the
normalized RHP (A, v) is stated as follows:

Problem 2.5.1. Find a piecewise analytic function M (z) on C\A so that
e M(z) —> 1 as |z| > oo, and
e the boundary values M, (() obey the jump relation M, ({) = M_({)v(().

To formulate this notion more rigorously, we say that a pair of measurable functions
(f+, f-) on A belong to dCy(LP) if there is a function h € LP(A) with the property that
f+ = Cih. In this case, fi are boundary values of the piecewise analytic function

1 1
21 Jy S — 2

21

h(s)ds.



Here p € (1,00); in the sequel, we will be concerned exclusively with the case p = 2. We now
reformulate the normalized RHP (A, v) as follows:

Problem 2.5.2. Find a pair of matrix-valued functions (M, , M_) with
o M, —1€dCy(LP), and

o M,(¢)=M_({)v(¢) for a.e. (€ A

Given a solution of the RHP (A, v,), we can then recover the piecewise analytic function
M (z) through the Cauchy transform of the function h with My — 1 = C; h:

M(z) =1+ L Shf)z%.

h=Cth—C h=M, — M_.
To derive the Beals-Coifman integral equation, we assume that the jump matrix v(¢) admits
a matrix factorization of the form

v(¢) = (1 —w () (1 +w ()
for weight functions w* € L®(A) n LP(A). If we set

Q) = Mo(O +w ()™ = M_(O) —w™ ()
assuming that M solve the RHP, it follows that the additive jump M, — M _ is given by

M (¢) = M_(¢) = () (w™ (¢) +w™(C))

so that the piecewise analytic function M(z) is given by
ds

ME) =14 [ [t )+ ()] 5

AS— 2 27

Note that

Taking boundary values from Q7, we find that

Mo (Q) = Q) +w* () =1+ CF [p(-)(w*(+) +w ()] (©)-
Using I = C{ — C}, we conclude that pu obeys the Beals-Coifman integral equation

p=1+Cypu (2.5.1)
where, for any 2 x 2 matrix-valued function h € LP(A),
Cw(h) = CY(hw™) + Cy (hw™). (2.5.2)

In (2.5.2), the operators C'{ act componentwise on matrix-valued functions. Note that C,
is a bounded operator from LP(A) to itself for any p € (1, 00) since w* € L(A) n LP(A) and
Ci are bounded operators on LP(A). Also note that C,,1 € LP(A). An important result of
the theory is the following (see for example [3, Proposition 2.6]).

Proposition 2.5.3. The operator (I —C,,) has trivial kernel as an operator on LP(A) if and
only if there exists a unique solution for the RHP (A,v) on LP .

In applications, (I —C,) will be a Fredholm operator on LF(A).
Copyright®© Jiaqi Liu, 2017.
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Chapter 3 The Direct Scattering Map

This section is devoted to the Lipschitz continuity of the scattering data (p, {\x, Ci}2_,) with
respect to the potential q. The Lipschitz continuity of the reflection coefficient p in terms
of ¢ is given in Proposition 3.1.1. The Lipschitz continuity of the discrete scattering data in
terms of ¢ presented in Section 3.4. For this purpose, we make the notion of generic potential
precise and prove in Section 3.3 that the set of potentials supporting at most finitely many
solitons and having no spectral singularities is open and dense in H*?(R). We also prove
that the coefficients @ and & are analytic in the lower (resp. upper) complex plane, and the
location of their zeros in a compact set of C, (Propositions 3.2.4 and 3.2.5).

3.1 Lipschitz Continuity of the Continuous Scattering Data

To study the Jost solutions it is convenient to set
m*(z,¢) = U (z, )™, lim m*(z,¢) = L0
9 Y 9 {L‘ﬁ)iw Y 0 1 *

We recall from (1.2.1)-(1.2.2) that the off-diagonal components of m are odd functions of
¢ and the on-diagonal components are even in (. Because of this symmetry, the change of
variables

+( 2) my(z,¢)  (rmaya(z, Q)
n(x,(°) =

<m21(x7 C) M2 ($, C)

yields well-defined functions n*(z, \) obeying the differential equation

C%n* = —ixad(o)n® + (( _)\% Q(Ox) ) +% ( |q<g)|2 _|q?x)|2 )) n*,  (3.1.1)

the respective asymptotic conditions

lim n*(z,\) = ( é (1) ) (3.1.2)

r—1+0

and the relation

nt(z,\) = n~(z, \)e P 2d@T()) (3.1.3)

where T'(\) is the transition matrix

a(r) BN
T(\) = (AB(A) d(A)) (3.1.4)

and a(¢?) = a(¢) and B(¢?) = ¢ 'b(¢) are well-defined functions of A = (2 owing to the
symmetries (1.2.5). We also recall from (1.2.9) that

a(\) =a(d), B =B
23



Using the relation (3.1.3) and the asymptotic condition (3.1.2) we can write o and § in
terms of Jost solutions:

a(N) = n (0, )ng; (0, A) + A Ty, (0, \)nd, (0, ), (3.1.5)
5 = 5 (=700 V0,0 + 1,0, ) 0, (3.1.6)

and this reduces the analysis of o and 3 to the study of the normalized Jost functions n*.
Recall that p(A) = S(A)/a(A). By showing the map ¢ — (a—1, ) is Lipschitz continuous
and using the quotient rule we will prove:

Proposition 3.1.1. The map q — p is Lipschitz continuous from the open subset
Uy, = {q e H**(R) : & has n simple zeros in C* and }\nﬂg |a(N)] > 0}
(S

of H**(R) into H**(R).

To prove Proposition 3.1.1, we need estimates on the solutions of (3.1.9) and their deriva-
tives in A as L%(R)-valued functions of #. We have from (3.1.1) that nj; and n;i, obey the
integral equations

+o0 +o0 -

o) dy = | Slaw)Pri(v ) dy (317)

T

(2 \) = 1 —L
nd (2. ) :J

x

+o0

+o0

N\l (9, ) dy + J 20 g () Pnd (v, N dy.  (3.1.8)

x

For A in a bounded interval I;, we can study the equations (3.1.7)-(3.1.8) directly. In
subsection 3.1.1, we will prove:

Proposition 3.1.2. Let Iy be a bounded interval in R. The maps
q— nfl(oa >‘)7 q— n2il(0’ /\)/)‘7
defined for q € U,, are Lipschitz continuous maps from H*?(R) into H*(Iy).

To obtain uniform estimates for large A, we begin with some simple algebraic manipula-
tions on the solutions of (1.2.8). Define ey(z) = e~%** and use the identity

(—=2i)\) " 1(d/dx)er(x) = ex(x)

and integrating by parts in (3.1.9b), we may remove the factor of A\ at the expense of
taking derivatives of ¢. Inserting (1.2.8a) to evaluate the derivative of n}; that occurs in the
computation,we observe some cancellations and obtain that

@) = 1+ | W) f T enz = ) (e, ) dedy (3.1.99)
i) = — 5@ (o0 = 5 [ eaty = ) )i 0. 3) dy (3.190)



where

@) = 700 + @pa(x) = 700 + gla(x) o). (3.1.10)

Note that ny; does not appear in the equation for nj;. We first solve the integral equation
(3.1.9a) for ni;, and then use its solution to compute nj; .
It is helpful to extract the leading order behavior of ni; and n3; for large A by setting

1

From (3.1.9) and (3.1.11), we conclude that

nii(x, \) = Fe(x, \) + (Tw)ﬁ) (x,\) (3.1.12a)
BN = GoleN) = Sa@h — 5 [ ey-oFGie Ny (3120)

where
Fale ) = = [ )Gt N (3.1.13a)
Gale ) =[xy - ) dy (3.1.130)
@ =3[ aw) [ eaG-néere (31130

=

In terms of the solutions 7i; and 73, the functions a()\) and B(\) defined in (3.1.5) and
(3.1.6) are expressed as

a\) =1 = an(\) + iag(x) (3.1.14)
AB(A) = Bi(A) + Ba(N) (3.1.15)
where
041(>\) = 77?1 (07 )‘) + 113 (07 )‘) + 7]?1(07 /\)771_1 (O? /\)
00(3) = 1L L0140 = L0000, + 255 (0. )75,
and

B0 = (0 + 50 OO ) + (70N 5a0)m 0N )

Ba(A) = =111(0, A)nz1 (0, A) + 177(0, A)ngy (0, A)

Let nt = (nii,n3;) and I, ={AeR: |\ > 1}. In Subsection 3.1.2, we will prove:
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Proposition 3.1.3. The maps
q - 77i (OJ )‘)7 q - 77)\i (07 >\)7 q - )\7177;\_&(0’ >\)7
defined for q € Uy, are Lipschitz continuous from H*?*(R) to L*(Iy).

Proof of Proposition 3.1.1, given Propositions 3.1.2 and 3.1.3. Propositions 3.1.2, 3.1.3, and
Sobolev embedding show that ¢ — n(0, -) is Lipschitz continuous from H*?(R) into H'(R).
It follows from this fact and (3.1.14) that q — « — 1 is Lipschitz continuous from H?*?*(R)
to H'(R). Since a = 1 if ¢ = 0, there is an open neighborhood U of zero in H*?(R) so that
infyer |a(q)(N)] > 0 for all ¢ € U. The map ¢ — 1/a — 1 is locally Lipschitz continuous from
U into H'(R).

It follows from Proposition 3.1.2 and (3.1.5)—(3.1.6) that the map ¢ — p is Lipschitz from
U to H*(Iy) for any bounded interval Iy. To show that ¢ — p is also Lipschitz from U to
H??*(I), we need to show that the maps ¢ — A\?p and g — p" are Lipschitz continuous on
U.

To prove that ¢ — A?p is Lipschitz continuous from U to L?(1,), it suffices to show that
q — A?B has the same Lipschitz continuity. From (3.1.15), we compute

W250) = A (TN + 590N ) + 3 (10N 5a0)m 00 )

A (=m0 Xm0, 0) + 75, (0, Mz, (0,))

To estimate the three right-hand terms, we rewrite (3.1.12b) as

i [(F*° .
s — §J e 2T (1 + ) dy.

l

2

T _
1 =

Setting x = 0 and integrating by parts to remove the power of A we obtain

7 i/\ +0oo o
A (0. + 37000 ) = =5 [ e i ay
0
1 1
= 10 0) — T O O.0) + RE(Y)
where
to
RE(N) = — f 2NV (L + 1t )dy

0

+ iy i
f e~ 2 Mg [qnfi + 5|Q|2n1+1] dy.
0

We can then compute

NBA) == RN + R (\) =012 (0, )R (A) + 01,0, )R~ (A)

1_ —
+ Zqﬁ [77;1(07 A) =110, /\)]
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Since g — 7i;(0, \) is Lipschitz from H?2(R) to C°(I,) by Sobolev embedding, it suffices to
show that ¢ — R*()\) is Lipschitz from H??(R) to L?*(Iy). This follows from the estimate

B e,y < DD)aly (14 i s )

4 (lafal, + 1a1al],) (14 [ e oy + 153 s )
To prove that ¢ — p” is Lipschitz continuous on U, we exploit the identity

(5)”: O Y (o, 2l

a ()2 a

o 0%

o 2

From this identity, it suffices to show that the maps
g 3"\, q— B0, qg—= I, g—dN), g— 2N, (3.1.16)

are Lipschitz continuous from H*?(R) to L?(1,,), and that the map ¢ — A~*a/(])) is continu-
ous from H*?(R) to C°(I). This last fact will follow from Lipschitz continuity of the maps
q — o'(\) and ¢ —» A7'a”(\) from H*?(R) to L?(Iy) and Sobolev embedding. Lipschitz
continuity of the maps (3.1.16) is easily deduced from (3.1.14), (3.1.15), and Proposition
3.1.3. O

3.1.1 Small-)\ Estimates

In this subsection we prove Proposition 3.1.2. We give the proofs for n{; and nj; since the

others are similar. We set

n=(n}, -1, x5’ (3.1.17)
so that (3.1.7)-(3.1.8) become
n=ny+ 71()1’17 ng = T0e1 (3118)
where "
(Tuh)(w) = [ Kol V(o) dy (3.1.19)
and
—p1(y) —q(y)
Ko(z,y,\) = L (3.1.20)
ex(v —2)q(y) —p2(y)
so that
0 _pl(y)
ng = J dy. (3.1.21)

ex(y — z)q(y)

We will establish existence, uniqueness, and estimates on n by studying (3.1.18) as a Volterra
integral equation. To study A-derivatives of the solution, we will solve the integral equations

ny, =n; + To(n)\), n = (Il()))\ + (T()))\Il (3122)
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ny), = nNo + To(n)\)\), ny, = (no),\A + (To))\An + Q(To))\l’l)\ (3123)

We will prove Proposition 3.1.2 in the following steps. Let Iy denote a bounded interval
of R, which we’ll finally set to I = (—2,2). We will write Ty as Tp(A) or Ty(A, ¢) to emphasize
its dependence on A\ € I and ¢ € H*?(R). First, we obtain basic estimates on ny and its
derivatives (Lemma 3.1.4) and obtain mapping properties of the operators Ty, (7o), and
(To)an (Lemma 3.1.5). Second, we show that the family of operators (I — To(N)) ™! — T
indexed by A € I induces bounded operators

Lo : CO(R*, L2(Iy)) — CO(RT, L2(I)),  Lo: L*(R* x Iy) — L*(R* x I,)
(Lemmas 3.1.6, 3.1.7 and Remark 3.1.8). Third, we solve (3.1.18) to prove that
ne CO(R™, L*(Iy)) n L*(RT x Iy)
(Lemma 3.1.9). Fourth, we use this result to show that
n; € C°(R™, L*(Iy)) n L*(R™ x Iy)
and solve (3.1.22) to show that
ny € CO(RY, L*(Ip)) n L*(R™ x )

(Lemma 3.1.10). Fifth, we use this result to show that ny € C°(R", L?(Iy)) and solve (3.1.23)
to prove that
ny, € CO(RY, L*(Iy))

(Lemma 3.1.11). Combining these results, we conclude that n(0,\) € H?(Iy). Lipschitz
continuity of the map ¢ — n(0, \) follows from resolvent bounds established on (I — T)™*
and the second resolvent formula.

In what follows, we define

7 (y) = 2lq(y)] + 2[p1(y)|.
Note that ||q|| 2. bounds |[v1];: and [y1] 2.

(1) Estimates on ng and Tj. Let

gi(z,y, ) = 2i(z — y)ex(y — 2)q(y),

g2(z,y, A) = —4(z —y)’er(y — x)q(y)
Then

(mo)y = a0 , (no) = o (3.1.24)
J gl(xayvk) dy J 92(I7y7)‘)dy

x x
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while the integral kernels of (Tp), and (Tp)ay are

0 0

(Koa(z,y,A) = , (3.1.25)
g1(z,y,A) 0
0 0

(Ko)m(z,y,A) = . (3.1.26)
g2(z,y,A) 0

Lemma 3.1.4. Let Iy be a bounded interval. The following estimates hold.

[0l co@s royy < o2l +lalz s Imoll o e ryy < 22 - (3.1.27)

[mo)xlco@ L2y < lallzers s TMo)alL2s ry < lall 2 (3.1.28)
) ( )

||(n0)>v\Hco R+, L2(Io)) S lg] 2.1 - (3.1.29)

Proof. To prove (3.1.27), we note that the first component is independent of A, bounded by
|p1]l1, and continuous. To bound the second component, let ¢ € Ci°(Iy), compute

0

[e [ estv—satias = [ ot - aratmay

x x

o 1/2
<(j|«@ﬁ@) |
L2(Io) z

The first estimate is immediate and the second follows by integration in x.

A similar argument shows that
o) 1/2
<([ atwra)
L2(1y) T

0 1/2
< U yvla(y)l® dy) :
L2(Io) x

The operator (Ty), induces linear mappings L?(R* x Iy) — L?*(R* x Iy) and L*(R* x Iy) —
C°(R*, L?(1y)) by the formula g(z, \) = (To)A(f(-, ) (x), and similarly for (Tp)xx. We will
need the following estimates on these induced maps.

so that

foo ey — x)q(y) dy

T

J gl(x7y7 )dy

T

from which (3.1.28) follows.
Similarly,

J gao(z,y, - ) dy

xT

]

Lemma 3.1.5. Suppose that g € H**(R). The following operator bounds hold uniformly in
q € H*?(R), and the operators are Lipschitz functions of q.

(1) 1Tl 2@t xr0) 12 <1y = ldll 2,

(i) |[(To)] e (R+ x Ig)—CO(R+,L2(Ip)) < lall 2
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(ii6) [(T0) | p2®+ x 1)o@+ 121y < 4] 722

Proof. For an operator T'(\) with integral kernel k(x, y, \) satisfying the estimate sup,.; |k(z, y, \)|
h(y) and satisfying k(z,y, ) = 0 if z > y, the B(L*(R* x Ij))-norm is controlled by

<LOO LOO h(y)* dy d:v) v _ <JO° y () dy> 1/2

0
and the B(L*(R™ x I), C°(R™, L*(Iy)))-norm is controlled by

sup <LOO h(y)? dy> " :

The conclusions follow from this observation and the estimates

g1 (2,5, M < Jylla@)], g2z, 9, M) < vP[a()]
true for x < y. Since these operators are linear in ¢ the Lipschitz continuity is immediate. [

(2) Resolvent estimates. Our construction of the resolvent is based on the estimate
(see Lemma 2.1.1 and (2.1.2))

(T (o) < | ) ) dy. (3.1.30)

T

which is an easy consequence of (3.1.20).

Lemma 3.1.6. For each A € R and q € H**(R), the operator (I —Ty)™! exists as a bounded
operator from CO(RT)QC? to itself. Moreover, (I —Ty)™' —1I is an integral operator with con-
tinuous integral kernel Lo(x,y, ), Lo(x,y,A) = 0 for x > y. The integral kernel Lo(z,y, \)
satisfies the estimate

| Lo(z,y, )| < exp (|71l 1) 71(y) (3.1.31)

Proof. Because Ty is a Volterra operator, we deduce from Lemma 2.1.1 that (I —Tp) ! exists
as a bounded operator on C°(R") ® C?. We can obtain rather precise estimates on the
resolvent through the Volterra series. The integral kernel Ky(x,y, ) obeys the estimate
|Ko(z,y,\)| < 71(y) where on the left, |- | denotes the operator norm on 2 x 2 matrices. The
operator

LO = (I —To)il —1

is an integral operator with integral kernel Ly(z,y, \) given by

Z;z.ozl Kn(x7y7 )‘)a x < y
LO(xayv )‘) =
0, >y

where
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Ko (z,y,\) =

J K0(913> Y1, )\)KO(yla Y2, )\) cen KO(ynfla Y, )\) dyn—1 ... dy
AN

and the estimate

|KM%%AN<@ﬁ%ﬁ(£?ww)wimw

holds. The estimate (3.1.31) follows. O
Now suppose that f e CO(R*, L?(I)) and let

gz, \) = J " Loy N) f(y, ) dy. (3.1.32)

T

Denote by EO the map f — g. We will prove:
Lemma 3.1.7. The estimates
HLOHB(CO(R+,L2(10))) < ehlet |y, (3.1.33)

and ~
HLOHB(L2(R+ x1o)) < bl Il 2. (3.1.34)

hold.
Proof. Suppose that g € CO(R*, L?(Iy)). Then f belongs to C°(R*, L?(1,)) since

wwﬁﬂsJMmJ'%@Mﬂ%MMy

xT

and we may conclude from Minkowski’s integral equality that

0
9 Mooy < ™5 | 910)  lengee sz

It follows that L induces a bounded mapping Lo from CO(R*, L2(I,)) to itself obeying the
estimate (3.1.33).
Similarly, suppose that f e L2(R" x Iy). Defining g as in (3.1.32), we estimate

x x

so that

||gH§2(R+XIO) <L (SE}OJ |Lo(z,y, \)|? dy> <L U lg(y/, NI dy') d)\) dx

o0 o0
< <J J Y1 (y)eller gy da?) Hg||L2(R+><IO)
0 T

< el Il 2. ||9HL2(R+ xIo) *
so that the operator bound (3.1.34) holds. O
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Remark 3.1.8. As an immediate consequence of Lemma 3.1.7, we see that (I —Tp) ! induces
bounded operators on B(C°(R*, L?(1y))) and B(L*(R x Iy)) with respective norms bounded
by 14 [l prexp g and 14 [yl 2 exp ] 2.

(3) Solving for n. We can now use these resolvent estimates to solve (3.1.18).

Lemma 3.1.9. Suppose that ¢ € H**(R) and let Iy = R be a bounded interval. There exists a
unique solution of (3.1.18) for each A € Iy so thatn € C*(R™, L*(Iy))nL*(R* x Iy). Moreover
the map ¢ — n is Lipschitz continuous from H**(R) to C°(R™, L*(Iy)) n L*(R™ x Iy).

Proof. An immediate consequence of Lemma 3.1.4, (3.1.27), Lemma 3.1.7, and Remark
3.1.8. O

(4) Solving for n,. Next, we estimate ny by controlling n; and solving (3.1.22).

Lemma 3.1.10. Suppose that g € H**(R) and let Iy = R be a bounded interval. There exists
a unique solution of (3.1.22) belonging to n € CO(R™, L*(Iy)) n L*(R™ x Iy). Moreover, the
map q¢ — n is Lipschitz continuous from H*?(R) to C°(RT, L*(1y)) n L*(R* x Iy).

Proof. From Lemma 3.1.9, estimate (3.1.28) of Lemma 3.1.4, and Lemma 3.1.5(i) and (ii),
we may conclude that n; € C°(R™, L?(1y)) n L*(R* x I)) and is Lipschitz continuous in q. We
may then solve (3.1.22) for ny € CO(R™, L*(I))n L*(R™ x ) using Lemma 3.1.7 and Remark
3.1.8. The map g — n, is Lipschitz continuous from H*?(R) to C°(R*, L?(I)) n L*(R™ x Iy)
since ¢ — ny has this continuity and the resolvents are Lipschitz continuous as operator-
valued functions. O

(5) Solving for ny,. Finally, we control ny and solve (3.1.23) to estimate n,,.

Lemma 3.1.11. Suppose that q € H**(R) and Iy < R is a bounded interval. There exists
a unique solution of (3.1.23) in C°(R*, L*(1y)). Moreover, the map q — nyy is Lipschitz
continuous from H**(R) to C(R*, L*(Iy)).

Proof. From Lemma 3.1.4, eq. 3.1.29, Lemma 3.1.9, Lemma 3.1.10, and Lemma 3.1.5(ii),
(iii), we deduce that ny € CO(R™; L*(I)) with ¢ — ny Lipschitz as a map from H*?*(R) to
C°(R*, L*(1y)). We now use Lemma 3.1.7 and Remark 3.1.8 to solve for ny, as before. [

Proof of Proposition 3.1.2. An immediate consequence of Lemmas 3.1.9, 3.1.10, 3.1.11, and
the fact that the restriction map f — f(0) from C*(R™; L*(1y)) to L?(Ip) is continuous. [J

3.1.2 Large-)\ Estimates

In this subsection we prove Proposition 3.1.3. To study n{;, (7{7)x and (n{7)ar, We solve
(3.1.12a) and the derived equations

() = (Fx + (Tox [ma] + Ty [(01)A] (3.1.35)
() = (Fy)ox + 2(TO)x [ma)a] + (T ) s Il + T [(ni)an] - (3.1.36)

With good estimates in hand for 7, and its derivatives, it will be a simple matter to prove
the corresponding estimates on 73; using (3.1.12b).
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In the rest of this section, we will drop the + and obtain estimates 7}, and 73; since the
analogous estimates for 7;; and 7, are similar. We will write 7y, for n{;, F for Fy, T for
T, etc. We recall that I, = {\e R : || > 1}.

Overall, we follow a strategy similar to that of section 3.1.1 to study the scalar equation
(3.1.12a) for my1, and then use these results to obtain comparable estimates on 7. First,
we will obtain estimates on F' and G and derivatives of these functions in A (Lemmas 3.1.12,
3.1.13, 3.1.15, and 3.1.16). Second, we will obtain resolvent estimates for (I — 7)~! by a
method similar to that used in the previous subsection (Lemmas 3.1.17 and 3.1.18). Third,
we will solve (3.1.12a) for 7y, (Lemma 3.1.19). Fourth, we’ll solve (3.1.35) for dnyy /oA
(Lemma 3.1.20). Fifth, we’ll solve (3.1.36) for 0°1;,/0A? (Lemma 3.1.21). Finally we will
use (3.1.12b) to obtain estimates on 79; (Lemma 3.1.22).

(1) Estimates on F, G, and T.

Lemma 3.1.12. Suppose ¢ € H**(R). The following define Lipschitz maps from H?**(R)
into CO(RT, L*(I)) n L2(R™ x I):

(i) G, (i) F, (iii) %, (iv) g—];

The following define Lipschitz maps from H**(R) into C*'(R*, L*(I)):

0*G O*F
-1~ -1~ =
() A5G, () AT

Proof. Observing that

| Flleows 2201, < 14l |Gl oo+ ro,y) »
) < |

HF”L2(R+LL qf 2.2 ||G||L2(R+ x 1)

we see that (i) = (ii). To prove (i) we pick ¢ € C§°(I5) and mimic the proof of Lemma
3.1.4. The Lipschitz continuity follows from the fact that G is linear in ¢ and F' is bi linear
in q.

One can similarly check that (iii) = (iv), so it suffices to prove (iii). We do so by applying
mimicking the proof of Lemma 3.1.4 for the function

oG *
S| @-vew-ode)d
Finally, it is easy to see that (v) = (vi). To prove (v), we recall ¢ =@ — %|q|2§ and
split
G
W(xa )‘) = h1($, )‘) + h2(x> )‘)
where

Q0

ha(z, ) = 2i f (v — oVerly — )Tw) dy

xT
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o) = = [ =0 erly — 2@ la(w) dy

xT

We can estimate hy as before but for h; we integrate by parts to obtain

0

b (2, \) = J (20A(y — 2)° + 2(y — 1)) g(0)erly — @)

x

We can now use previous techniques to bound A™'hy(z, A) for I, O

The operator T defined in (3.1.13c) has the integral kernel
Yy
<J ex(y — 2)q(2) dZ> ), » <y,
Ko (z,y,\) = ’ (3.1.37)
0 T > .
From this computation, we can prove:

Lemma 3.1.13. The Volterra estimate

Q0
(Tf)"(z) < (||Q||1J |qﬁ(y)|dy) f*(x) (3.1.38)
holds. Moreover
+o0 1/2 +oo 1/2
sup J K4 (2, y, NIPdy) <A 4] e J () dy (3.1.39)
xTE x x
1/2 +00 1/2
U K (2,y, A)IQdIdy) < A dl e f lyllg* (y)]* dy (3.1.40)
Rt xR+ 0

N 1/2
(f (f |Ki<x,y,A)|dy) dx> < lalges |€] 00 - (3.1.41)
R+ \JR+

We omit the proof.

Remark 3.1.14. Tt follows respectively from (3.1.38), (3.1.39), (3.1.40), and (3.1.41) that T
is a bounded operator from C°(R") to itself, from L*(R") to C°(R"), and from C°(R")
to L*(R"). The map ¢ +— T is bilinear and Lipschitz continuous from H?*?*(R) to the
corresponding Banach spaces of bounded operators with constants uniform in A € I,.

Lemma 3.1.15. Let § € [0,1/2). Then, the continuity estimates

1750, — Tq,)\ZHB(CO) <s [A— )\2|6 HqﬁHLm gl s (3.1.42)

T = Toeallggeoy < [af =8| Narlo + a8 lar = gl (3.1.43)
oe) 1/2

[T — Tq,szB(m) < A - )‘2|6 (L |y|1+25|qﬁ(y)|2 d?/) (3.1.44)
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1/2
laall e (3.1.45)

+o0
Tor — Toallsny < \ [ ol - g ay

+a0 1/2
IR
0

||CI1 - Q2||L1

hold, where the implied constants in (3.1.43) and (3.1.45) are uniform in A with I.
Finally we need mapping properties of the operators T and 7).

Lemma 3.1.16. The estimates
() 1T sz@s <,y < €] pon lalas

(i1) | T\l sz2@r wroycoms 2oy < 1€ 2 lal 2z,

(z'z'i) HA_ITM [h]HCO(RhL?(I%)) < HC]HZM <“h||L2(R+x[1) + HhIHLQ(R+><I¢))'
hold.
Proof. (i), (ii) From the formula

or

00 = [ [ = wenc = e Ny

we may estimate

or

U@ < [ N, [ lat0]

We easily conclude that

< HqﬁHLm lal 11 ”h”LZ(RJrX[w) ,
CO(R+,L2(Im))

B30

< HqﬁHLQ,l g 2.2 Hh||L2(R+ x 1)
L2(R+ xI0)
which imply (i) and (ii). The maps are Lipschitz since they are bilinear in g.
(iii) From the formula

*T

Ceen = =2 [ a) [ vl - e iy

x Yy
=L +1

where

=2 [ ) [ = urests - ) ey

T
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b= [ "4 [ G- oPetz ~ vl Phiz ) d dy

z Y

Since 2%|q(2)]? € L*! for ¢ € H**(R), we can estimate I, using the same techniques used
for (i), (ii). The expression I; makes sense for ¢ € S(R) but we must integrate by parts to
obtain an expression that is meaningful for arbitrary ¢ € H**(R). We compute

B2 [ a) [ ete = 0ale) [20G 0z ) + 20— g)iz,0)] d=dy

T Y

+2 [0 [ e = 0a) [~ 0] dzdy

T Y

from which (iii) follows. O

(2) Resolvent Estimates. As before we exploit Volterra estimates to construct the
resolvent, obtain an integral kernel, and extend the resolvent to a bounded operator on the

spaces CO(R™, L*(I)) and L*(R* x I,).

Lemma 3.1.17. Suppose that ¢ € H**(R). The resolvent (I — T)™' exists as a bounded
operator in CO(RY) and the operator L = (I —T)~' — I is an integral operator with integral
kernel L(x,y, \) so that L(xz,y,\) =0 for x >y, L(x,y,\) continuous in (x,y, \) for x <y,
and obeying the estimates

|L(z,y, M| < exp (Jal 6] 0) lale 16 ).
Moreover, the map q — L is Lipschitz continuous from H**(R) into
B(C*(R*, L*(1,)) n B(L*(R* x I,)).

We omit the proof, which is very similar to the proof of Lemma 3.1.6. The integral kernel
L defines an operator L much as the integral kernel Ly defined an operator Lq in (3.1.32)
and Lemma 3.1.7. Following that analysis, one has:

Lemma 3.1.18. The estimates
12 o saqryy < lallie 1070 exp (lal o |l ) (3.1.46)
and
1L szae zo,yy <Ml pza @] a0 + lalSes exp (lal: 6] ,.) (3.1.47)
Proof. The estimate (3.1.47) follows from (3.1.46), the formula
I-T)'—I=T+TI-T)'T,

and the bounds on T': L? — C°, T : C° — L? and T : L? — L? obtained in Lemma 3.1.13
and Remark 3.1.14. The estimate (3.1.46) follows from the Volterra estimate (3.1.38) and
the same argument used to in the proof of Lemma 3.1.7 to prove (3.1.33). O

36



(3) Solving for 7;;. From the resolvent construction above, we can solve for 7;;.

Lemma 3.1.19. For each ¢ € H**(R) and X € I, the equation (3.1.12a) admits a unique
solution m; € CO(RT, L* (1)) n LA (R x I,). Moreover, ¢ — my; is Lipschitz continuous as
a map from H**(R) to CO(RT, L*(I)) n L*(R™ x I).

Proof. A direct consequence of Lemma 3.1.12(ii) and Lemma 3.1.18. O]

(4) Solving for 0n;1/0A. By controlling the inhomogeneous term in (3.1.35), we can
estimate (111)y.

Lemma 3.1.20. For each ¢ € H**(R) and )\ € Iy, the equation (3.1.35) admits a unique
solution (n11)y € CO(RT, L?(I))nL*(RT x I,). Moreover, ¢ — (n11)a is Lipschitz continuous
as a map from H**(R) to CO(RY, L?(I)) n L*(RT x I).

Proof. By (3.1.35) and Lemma 3.1.18, it suffices to show that the inhomogeneous term
Fx + T[]
belongs to CO(R™, L*(1)) n L*(R* x I). This follows from Lemma 3.1.12(iv), Lemma
3.1.16(i),(ii), and Lemma 3.1.19. O
(5) Solving for 0%n;;/0\*. Next we obtain estimates on (1;1)xy using (3.1.36).

Lemma 3.1.21. For each ¢ € H**(R), X € I, equation (3.1.36) admits a unique solution
(m1)an with A1 (ny1)an € CO(RT, L2(1y). Moreover, ¢ — X' (m11)an 4s Lipschitz continuous
as a map from H**(R) to C°(R", L*(I)).

Proof. By (3.1.36) and Lemma 3.1.18, it suffices to show that the inhomogeneous term
A o+ 20 T [(m11)a] + A T[]

belongs to CO(R*, L*(I,). For the first term, this follows from Lemma 3.1.12(vi), for the
second term from Lemma 3.1.16(i), (ii), Lemma 3.1.12a, and for the third term from Lemma
3.1.16(iii) and Lemmas 3.1.19 and 3.1.20. [l

(6) Estimates on 7, and its derivatives. It is now a simple matter to use (3.1.12b),
estimates on (G, and results already proved for 7;; to obtain Lipschitz continuity of 79; and
its derivatives.

Lemma 3.1.22. The maps ¢ — 121, ¢ — (21)x, and ¢ — X1 (n21)ax are Lipschitz continu-
ous from H**(R) to C°(R™, L*(I1))
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Proof. Referring to (3.1.12b) and dropping the + signs, the term G(z, A) has the required
properties by Lemma 3.1.12(i), (iii), (v), and the second right-hand term of (3.1.12b) has
the required properties since ¢ is bounded and 7;; has the correct mapping properties by
Lemmas 3.1.19; 3.1.20, and 3.1.21. Thus, it remains to analyze the third term of (3.1.12h)

(dropping the + sign on 77)

W) = 5 [ ert= o) N dy

It is easy to see that

1
Wl o+ 121,y < B ||, Imal o+ 1,

1
”W)\”CO(R‘F,L?(II‘)) < 5 <HquHL2,1 ||7711||L2(]R+><I-D) + Hq”HLQ ||(7711)A||L2(R+x10@)>

which shows that ¢ — W and ¢ — W) have the required properties.
To analyze Wy, recall (3.1.10) to write W = W; + W5 where

Wie ) =5 [ erty =)0\ s

Wate ) = 1 [ exty = o)ty ) dy

T

We first control W;. Differentiating in A we have
(Wl))\)\(ﬂf, )\) = Wll(l', )\) + ng(.f, )\)

where

0

Wiz, \) = —2i f ex(y — 2)(y — 27T @ (v, N) dy

x

Wiale ) = 5 [ exty = )T mnaa(o )

It is easy to see that

up () Wz, s,y < 10 160 000AC 0 g,

so that ¢ — A\71(Wi,) has the correct mapping property. Turning to Wi, we integrate by
parts to remove the derivative on ¢ and obtain

o}

Wi(z, A) = 2lf ex(y —2)q(y) 2@y — 2)mi (@, A) + (y — 2)*(m1)2(y, \)) dy  (3.1.48)

x

— 4 foo ex(y — 2)(y — 2)” q(y)mily, A) dy.

x

The first right-hand term in (3.1.48) has C°(R™", L?(/))-norm bounded by

lal 2 Il o o,y - (3.1.49)
(R+x1,)
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Since, by (3.1.9a) and (3.1.11),

?

(M1)e = (1) = q(y) (7721(33, A) 2@) + %Iq(y)l2 (T +nu(z,A),

we can reexpress the second right-hand term in (3.1.48) as

2i JOO ex(y — ) (y —=)%|q(y) [ (—f@ + 12 (y, A)) dy

. 2

+2i fo ex(y —2)(y — )? <£@|Q(y)|2 1+ miy A))) W

. 2
which has C°(R™, L*(I))-norm bounded by constants times
lalifea (14 Il paqgenr,y + Il iage i) - (3.1.50)

Finally, dividing by A in the third term, we can estimate the C°(R™, L?(I,)) norm of the
quotient by

lall o2 Imall o<z, - (3.1.51)
Combining (3.1.49), (3.1.50), and (3.1.51), we see that
H (0)_1W11( ) 70) HCO(R+,Iq) $ (1 + ||qu]2,2) (3152)

(1 Il iy + oaliage s, ) -

which shows that 1/} has the required mapping property.
Now we turn to Ws. Since

W0 =5 [ ealy =l ([0mIm(: )

—4i(y — o) (ma(y, A) — 4y — x)27711(y, A)] dy,

we may estimate

H(O)_I(Wg))\)\( . ,<>) Hco(RJr,LQ(I%)) < ||(]Hip,2 (H)\_l(nll)AHCO(R+7L2(]%)) (3153)
+ “(nll)A||co(R+,L2(Lx))
+ HnllHCO(RhL%I%)))'

This shows that ¢ — W5 has the correct mapping properties.
Combining (3.1.52) and (3.1.53), we conclude that ¢ — W,y has the correct mapping
property, and hence, also, ¢ — (¢) ' ( -, ©). ]

Proof of Proposition 3.1.5. An immediate consequence of Lemmas 3.1.19, 3.1.20, 3.1.21, and
3.1.22 and the fact that the restriction map f — f(0) from C°(R"; L*(I)) to L*(Iy) is
continuous. 0
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3.2 Discrete Scattering Data

Lemma 3.2.1. nj;(z,\), ny(z,N), nfh(z,\) and niy(x, \) all have analytic continuation
into C*.

Proof. For reference convenience we state the following Volterra integral equations

nf(z, ) =1+ % JOO q(y) JOO ex(z — ) (2)ni (2, \) dz dy (3.2.1)
W) = i@ - 5 [ a-ofwihe Ny 622)

where

¢ (z) = ¢'(z) + %|Q($)I2m

Recall from (3.1.12a) that
np(e,\)—1=F (z,\)+T (nj; — 1)

where I is given by (3.1.13a) and 7' is given by (3.1.13¢). Using that ‘e%’\(y_z)‘ < 1 for
ImA > 0 and z < y, the estimate

(T f)(@)| < ~v(2)sup [ f(y)]

y<x

2 (2) =f |j o)\ d=dy.

we claim that each term of the resolvent operator

(I-T)"'= i o

is analytic in A. To see this, we deduce from (3.1.13a)-(3.1.13c) that

(T"f) (2, \) = (%)

Direct calculation gives

holds with

fw q(2n—1)G(Tn_1,\) - (Jw )Gy, N f(y) dy) coedz,

T 1

i
7 sop )

y<w

up ‘Tff‘ <

Analyticity of (T"f) in C* follows from changing the order of integration and an application
of Morera’s theorem. Using Neumann series we write

0

ny(z,A) —1 = Z (T"F)
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and analyticity of nj; follows from the fact that uniform limit of analytic functions is analytic.
By (3.2.2) the analyticity of ny; follows from the analyticity of ny;. We can show that nj; and
n4, have analytic continuation into C~ using the same argument above. And the analyticity
of niy(x, A) and ngy(x, A) in C* follow from the symmetry relation

nfz(x, )‘) = )‘71”;1 (.’L’,X), né&(m, )‘) = nfl(a:,X)

O
Proposition 3.2.2. & (a) has analytic continuation into C* (C7).
Proof. An easy consequence of the fact that
- o+
‘ N1 Mg
aA)=| ]
Tigr Mg
and
+ —
LGV
aA)=| |
Tigr Mg
[

Lemma 3.2.3. There exist unique solutions of (3.2.1)—(3.2.2) with

B 1
sup |ng;(z,\)| < exp (§|qu1 Iqﬁ||L1>
Im A>=0

and

_ 1
sup [ny (2, )| < exp (§QL1 ||qﬁL1> (lglzt + |g#ler) -
Im A>=0

Moreover,

In (2, X5 q1) — ngy (2,45 o)
< exp [C (”%HLlHC]HLl + HQZHL1HQ§”L1>] <||Q1 - C]2||L1 ||q§HL1 + ||qQ||L1Hq§ — ngp) (3.2.3)
0.

where C' is independent of A with Tm(\) >

Proof. From the standard theory of Volterra integral equations, we have that

_ 1
|(1-T) 1HC(R+)HC(R+) < eXp (§||QL1qﬁ||L1> , (3.2.4)

uniformly in A with ImA > 0.Since |g||z: and [¢*|;1 are controlled by |q| 2, we have
Hnl_lHC(R+) and (from (3.2.2)) also Hn;lHC(R+) bounded uniformly in A, Im A < 0 and in ¢ for

g in a bounded subset of H*?(R). Finally (3.2.3) follows from the resolvent estimate (3.2.4)
and the second resolvent formula. O
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Similar estimates are obtained for nj; and n,;. From these estimates and the Wronskian
formula (3.1.5), we conclude:

Proposition 3.2.4. The function « satisfies
(X 1) — a(Xig2)| < exp O (a] o + @3] o) (22 + a2l r22) (lar = @2 g22) -
where the constants are uniform in A with Im A < 0.

It is important that the zeros of «a lie in a compact set of C~, more precisely, in
C™ n {lz] < R} where R > 0 depends only on [g22@. This is the object of the next
proposition.

Proposition 3.2.5. The function « satisfies

lim  sup Ja(A)—1]=0 (3.2.5)
R—% | \|=R,Im A<0

where the convergence is uniform in q in a bounded subset of H*?(R).

Proof. From the Wronskian formula (3.1.5) for o and the uniform bounds on ny; and ng;,
estimate (3.2.5) will follow from

lim sup |n};(0,)\) — 1| = 0. (3.2.6)

We now sketch the proof of (3.2.6) for nj;, the proof for nj; is similar.
From (3.2.1) and an integration by parts we see that

7/' oo oo PV
@) = 1= | aw) [ e ddy (3.27)
x y
1 0
I q(y) [G1(y, A) + Ga(y, A) + Gs(y, N)] dy,

where

Gi(z, ) = —¢*(2) (nfy (z,A) — 1)

Gl V) = = | 28070 (Y (o) (s (9.2) 1) dy
0 +

Gala ) = — [ e 20 Ty ) dy
z T

Reversing the orders of integration in the first right-hand term of (3.2.7) and integrating by
parts we may estimate

Q0 o0
—2iA(z— 1
f a(y) f e y>qﬁ<z>dzdy‘<mq”Hu(nqnmq'nu).

T Y

From Lemma 3.2.3 we have |Gy (z, \)| < 1 where the implied constants depend only on |¢| 11
and ||¢*| ;1. Differentiating (3.2.1) to compute on;,/0x we may similarly estimate |Gs(x, \)|.
To estimate Ga(z, A), we need to show that |nf;(-,\) — 1HL2(R+) is bounded uniformly in A

with Im A < 0 and ¢ in a bounded subset of H*?(R). This is carried out in Lemma 3.2.7
below. 0
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To prove the L? estimate on nj;(x, \) —1, we return to the integral equation (??7) and note
that the operator S is a Hilbert-Schmidt operator on L?*(R™) uniformly in A for Im A < 0.
Indeed its integral kernel is given by

f A)e P EIG) dy, @< 2
K(z,2)=13"" (3.2.8)

0, T >z

with
||KHL2(R+xR+) < HqﬁHLzm lqll -
One checks that
kerLz(R+)(I — T+) - kerC(R+)(I — T+) = {O}

where the last equality follows from the existence of the resolvent (I — T,)~! on C'(R").
Writing Ty = T, (\) to display the dependence of the operator T on A, we can show that

lim [Ty (V)]s = 0 (3.2.9)

[A| >0

uniformly in A with Tm A < 0 and ¢ in a bounded subset of H**(R). This follows from the
integration by parts

- —2iA(z— 1 - —2tA\(z—
[ atwe 2 ay = o) — ) + [ e 00 dy

x x

and a straightforward estimate of the Hilbert- Schmidt norm using (3.2.8). Writing K =
K (X, q), we may also estimate

KA q1) = KX @) pogres xrsy < lan = @l o lanlo + llg2] 2 lar — g2

uniformly in A with Im A < 0. On the other hand, it follows from the Dominated Convergence
Theorem that |K(A1,q) — K (A2, @)l 2g+ xr+) = 0 as A — Ag for any fixed g € L' n L¥/2,
Writing T, = T, (A, ¢), we now use a ‘continuity-compactness argument’ as well as (3.2.9)
to prove:

Lemma 3.2.6. The resolvent (I — T, (\,q))™" exists as a bounded operator on L*(R™) and
for any M > 0,

sup (I -T.(\q

Im A<0, ||q|| ;2,2 <M

D)oz <

Proof. For any M > 0, R > 0, the identity map takes the set
{AeC:ImA<0,|\ <R} x {q € H**(R) : |lq| o < M}

into a subset of C x (L*»/2 ~ L') with compact closure. By the second resolvent formula,
the map (A, q) — (I — S(\,q))"! is continuous into the bounded operators on L?(RT). Tt
follows by compactness and continuity that the set

{([ - T+(>‘aQ))_1 :Im A <0, |)‘| <R, HCJ”H2,2 < M}
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is compact in B(L*(R")), hence bounded. On the other hand, for sufficiently large R de-
pending on M, we have from (3.2.9) that supjyp [(1 — T4(A @) ' gz2@+y < 2 for any ¢
with ||| 2. < M. O

We can now prove:

Lemma 3.2.7. If ¢ € H**(R), the estimate
anl( S A) = 1HL2(R+) <1
holds.
Proof. The function n = nf; — 1 obeys the integral equation n = F, (z,\) + T, (n) where

i ” —2iX(z~y) f
Fe(z, ) =5 | aly) | e q'(z) dz dy.

We may estimate
|l 2y < <2) 722 [l 22 6P | o

which shows that F,(x,\) € L*(R*) uniformly in A with Im A < 0. The desired bound is
obtained using Lemma 3.2.6 on nj;. O

3.3 Generic Properties of Spectral Data

Lee [13] showed that generic potentials ¢ in the Schwartz class have at most finitely many
simple zeros of a and no spectral singularities. His proof is based on a general argument of
Beals and Coifman [2]. Here we give a more precise functional analytic argument inspired
by analogous results in Schrodinger scattering theory (see the manuscript of Dyatlov and
Zworski | [9] Chapter 2, Theorem 2.2]DZ17). We will prove:

Theorem 3.3.1. The set of potentials q supporting at most finitely many solitons and having
no spectral singularities is open and dense in H**(R).

Our strategy is to study the dense set of ¢ € C°(R) and prove that any such ¢ can
be perturbed by an arbitrarily small amount in H*?-norm to a potential with the desired
properties. We then use continuity of spectral quantities to show that the set is open as well
as dense. These steps are carried out in Propositions 3.3.5 and 3.3.6 below which together
give the proof of Theorem 3.3.1.

We begin with the study of C° potentials. The following fact is well-known and easy to
prove; see for example Chapter 2 of Lee’s thesis [13].

Lemma 3.3.2. Suppose that ¢ € CP(R). Then a(X;q) is analytic in C and has at most
finitely many zeros in Im A < ¢ for any c € R.

Using this fact, a perturbation argument, and Rouché’s theorem, we will construct a
dense set of potentials in H*2?(R) for which a has at most finitely many simple zeros in C~
and no zeros on R. We will then exploit Proposition 3.2.4 to show that this set is also open.

To construct the dense set, we need two perturbation lemmas. The first concerns per-
turbation from the zero potential for which a(A) =1 and 5(\) = 0.
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Lemma 3.3.3. Suppose that ¢ € CP(—R,R), A\ # 0, and u is a small parameter. Let
q = pp. Then the associated transition matrix has the form

(10 0 HCy 2
T(A,q)—(o 1)+(_M_% 0 >+(’)(u) (3.3.1)
where "
Cp = —f *Mo(y) dy (3.3.2)
—0

and the correction term depends on || .-
Proof. 1t suffices to show that
a(A) ~ 140 (p?), (3.3.3)
AB(N) = M\ f e Moy dy + O (12) . (3.3.4)
First, we recall from Lemma 3.2.7 that, for A € R, we have the uniform estimate
‘(nfl(x7/\)7n;1(xv A))‘ <1

where the implied constants depend only on | g|| ;1. (the key issue is that the large-A behavior
is controlled despite the A\-dependence of the perturbing term in (3.1.1); see equations (3.2.1)—
(3.2.2) for the integration by parts that removes this term). Taking limits as * — —o0 in
equations (3.2.1)—(3.2.2) for n*™ (and as © — —oo in the corresponding equations for n~)
and using the relation (3.1.3), we deduce that (3.3.3) and (3.3.4) hold. O

The next lemma will give a mechanism for splitting multiple poles and perturbing zeros
on the real axis.

Lemma 3.3.4. Suppose that ¢ and qy are compactly supported potentials with disjoints
supports, and that the support of qo on the real line is to the left of the support of qi. Then:

(i) The identity
T()‘7 Q1 + q2) = T()‘7 qQ)T()‘a Q1)
holds.

(i) If 4 € CL((—R, R)) and qo = up with ¢ € C((—2R, —R)), the formula

T\ qu + ) = ( _ QE e ) T\ 1) + O (11?) (33.5)
holds.
Proof. Consider the normalized solution n*(z, A, ¢). It is not difficult to see that
nt(z, N\, g+ @) =nT(x,\, ¢)n" (2, \, q1).

We may now compute

TN ¢ +q2) = hfjloo g ad(es) [”Jr(xa A, CI2)”+($7 A, Q1)] =T\ ¢2)T(\ q1)

The second assertion is an immediate consequence of the first. O
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Suppose that ¢; and g, are chosen as in Lemma 3.3.4(ii). To simplify the notation, let
us write a(A, ) to denote (X, g1 + ). It follows from (3.3.5) that

a(\ i) = a(X,0) + pc AN + O (14?) . (3.3.6)

where ¢, is given by (3.3.2). In the next proposition, we will expand the above formula near
A= )\01

a(\ 1) = a(X, 0) + pcproB(No) + Colh — Ao)p + O (1?) . (3.3.7)
where "
o == | oty dy
and

6l < | 45 (A0)

From the compactness of the potential ¢ and the asymptotic condition of a/(\) we know that
a has finitely many zeros in C~ U R. We will prove:

L

Proposition 3.3.5. Suppose that R > 0 and q € C([—R, R]). Let a(\) be the (1,1) entry
of the transition matriz for q. For p € CP(R), let a(A, ) be the (1,1) entry for the transition
matriz of ¢ + pp, so that a(X,0) = a(N).

(i) Suppose that {\;}™, are the isolated zeros of a(\) in C~ U R and \; # 0 is one of
the zeros of a(\) of multiplicity n = 2, i.e. a(N) = (A = X\)"g(\) for some analytic
function g with g(A;) # 0. Then, for some ¢ € CF(R) and all sufficiently small p # 0,
a(A, u) has n simple zeros in the disc D, (\;).

(11) Suppose that after the perturbation in part (i), A; is a simple zero of a(A, ) on the
real axis, A; # 0. Then, there is a function ¢ € C(R) so that, for all real, nonzero,
and sufficiently small i/, a(\, ') has no zeros on the real axis near w;.

In each case, we may choose ¢ to have support in (—2R, —R) v (R,2R).
Proof. (i) We first claim that there exists a function ¢ € C°(R), ¢ = 0 such that

o0
30 = J £2N ()l £ 0

—0

for all 4.
Indeed, let 2)\; = &; + in;, then we have

o0
o(N) = J (cos & +isin&z)e" p(x) dx
with e"*p(x) = 0 for all z.

If we let & = max{&y,...&;, ...&m}, r = m/2¢ and make |supp(p)| < r, then at least one of
cos &z and sin &z does not change sign on supp(yp) for all i. So @(\;)# 0 for all 7.
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Using the Taylor expansion of G(\) and A3(\) we can write (3.3.7) as
a(\ i) = (A= A)"g(\) + pep NiBN) + Co(A = A+ O (1?) . (3.3.8)
If we can establish the following inequalities
N <4 1 (3.3.9)
and y
OBl <, 1 (3:3.10)
where A € D(\;,7;) then it is clear that

(X, 1) — (A= A)"g(N)] = |pep, AiBN) + Co(A = Ao + O (4?) |
< A= A" g(N)]

for p sufficiently small and A € dD(\;, ;). Rouché’s Theorem shows that the number of zeros
of a(A, 1) and (A, 0) agree (with multiplicities) in D(\;, ;). That is, a(A, 1) has exactly n
zeros there.

To prove estimates (3.3.9) and (3.3.10), we use the boundary condition of the Jost
functions

MO = [ e (N palw)) - (0} dy (3:3.11)

-R

_ JR 2%y (_A@ni (y, \) + pa(y)nay (v, A)) dy.

-R
From direct computation its derivative is

% (AB(A)) = —2i J_RR e 2y (_)\@”ﬂ (y, A) + p2(y)ny (v, )\)) dy (3.3.12)

+ JR e 2 (—@nﬁ (v, A) + p2(y)nay (v, A)A) dy

-R

+ JR o~ 21Ny (—)\@nﬁ(y, A+ pa(y)na (v, )\)A) dy.

—R

Inequalities (3.3.9) and (3.3.10) follow from these expressions and Lemma 3.2.3.

Now we want to show that the zeros of a(\, ) are simple. For 0 < k < n — 1, consider
the disc around the & root of unity of —;

Dy =D (|%|%ez'<¢+2wk>/n A p|%.|%) (3.3.13)
where .
AiB(A;
;= %1—6()’ Qb:arg'.)/i"i‘ﬂ
9(Ai)
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Notice that p < w/n = Dy n D, is empty for k # [. We now expand g(\) at A = \; and get
a(\ 1) = (A= X)"g(\) + O\ — X))t

For \ € 0D,
(A= A)"g(N) + ep MBON) — a(, w)| < ol

On the other hand, if we choose p > 2Cq|;|= then for A € 0D,

[N = X)"g(\) + 79| = lp (1+ O (%))
= Co|%|1+%

> (A= X)"g(N) + peg B — a(\ )]

Since the discs Dy are disjoint, Rouché’s theorem now shows that there is exactly one zero
of a(A, 1) in each Dj. This shows that all n zeros are simple.

(i) After the first step of perturbation in (i), (A, 1) has simple zeros {A;}._;. Suppose
A;j is a zero of a(A, 1) on the real axis. We make another small perturbation of the potential
as above and formulate

a( 1) = (A= AN, ) + pley, AiB(A, 1) + CHA = A’ + O (1) (3.3.14)

where
and we define
where v
ey AiB(A 1)
’ h(Aj7 N)
Given A; € R, we can make appropriate choices of small parameter 1/ and ¢ € C§°(R) such
that S(I'; + A;) is strictly nonzero and D; n R is empty. Since there are only finitely many

zeros, we can choose 1 which works for all 7 = 1,2,...,1. Repeating the argument in (i) we
get the desired conclusion.

]

Proposition 3.3.5 shows that there is a dense subset of ¢ € H*?*(R) for which a(X; ¢) has
at most finitely many simple zeros in C~ and no zeros on R. Owing to the continuity of « in
q, the fact that « is analytic in C™, and the continuity of the map ¢ — «( -, q) imply that
this set is also open.

Proposition 3.3.6. Suppose that qo € H*?(R) and that o(-;qo) has exactly n simple zeros
in C~ and no zeros on R. There is a neighborhood N of qo in H**(R) so that all g € N
have these same properties.
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~

Figure 3.1: Zeros of & and « in the A plane

-

N

' \
4

Dy,

Figure 3.2: Simple zero of a(A, u) on R

Proof. Since |a(); qo)| does not vanish on R, we have |a()\; qo)| = ¢ for some ¢ > 0. It follows
from Lipschitz continuity of ¢ — «(-;q) in H*(R) that there is an 7o > 0 so that |a()\; ¢)| =
¢/2 for all ¢ with ||g — qol|gz2 < ro. Next, let ny = inf, .1 |\; — M|, m2 = infy | Im \g|, and
n = %inf(m,ng). By Proposition 3.2.4 and analyticity there is an r; > 0 so that the n
simple zeros of o remain simple and move a distance no more than 7 for ¢ € H**(R) with
lg — Goll 2.2 < r1. Take N' = B(qo, ) where r < inf(ry, ry). O

3.4 Lipschitz Continuity of Spectral Data for Generic Potentials

Finally we prove that, for the open subset of generic H*? potentials, the zeros of & and the
associated norming constants are continuous functions of g. We order the zeros by modulus
and, given two zeros with the same modulus, order by increasing phase in (0, 7). We recall
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that, if &(\x) = 0, there is a constant b, with the property

o 2ika ( ny (z, )‘k)) > _ ppeitee ( A gy, Ar) > (3.4.1)

/\n2_1 (IL‘, Ak 713_2 (ZE, )‘k)

If &'(A\g) # 0, one defines the norming constant as Cy = where A\, = (£(;)%. The

b
ck&’?kk)
discrete scattering data are composed of the pairs (Ag, Cy).
Proposition 3.4.1. Suppose that qy is a generic potential with n simple zeros of & in C*.
Let A = {)\1,..., \.} be a listing of the zeros of & with the ordering as described above, and
set

dy = min ( min  |A;(qo) — M(qo)|, min(Im )\k)) :

1<j#k<N

There is a neighborhood N of qo so that:

(i) For any qle N, &(X;q) has exactly n simple zeros in C*, no zeros on R, and |X\;(q) —
Ai(qo)| < 3da.

(ii) The estimate |X\;j(q) — X;(qo)| < C'|lg — ol g2 holds for C uniform in ge N.
(iii) The estimate |bj(q) — b;(q0)] < C'|q — qoll 2.2 holds for C uniform in g€ N.
(iv) The estimate |Ci(q) — C;i(q0)| < C'|lg — @l 2.2 holds for C uniform in g e N.

Proof. (i) From Proposition 3.3.6 we immediately conclude that there is a neighborhood N of
qo for which g € N has exactly n simple zeros in C* with no singularities on the real axis. We
can establish continuity of the simple zeros as a function of ¢ (and hence both the estimate
1Ai(9)—X;(q0)| < 3da and assertion (ii) ) by exploiting simplicity of the zeros and the implicit
function theorem for Banach spaces applied to the equation a(\;(¢);¢) = 0 regarding « as
a function on C~ x H*?(R). This function is analytic in A € C~ by Proposition 3.2.4 and
differentiable in ¢ because the functions occurring in the Wronskian formula (3.1.5) may be
computed by convergent Volterra series which are analytic in ¢. Since A;(qo) is a simple zero,
we have o/ ()\;(qo), qo) # 0 which is the differential condition for the implicit function to be
applicable.

(ii) The implicit function theorem also guarantees that the function \;(¢) will be C* as
a function of ¢, and hence Lipschitz continuous. See [20].

(iii) Uniqueness for the equation (3.1.1) guarantees that at least one of nj,(0,)\;) and
n35(0, A;) is nonzero at ¢ = go. Suppose that nf5(0,A\;(qo)) # 0. By shrinking the neighbor-
hood if needed we may assume that nf,(0,\;(q)) > 0 strictly for all ¢ € N. We may then
compute from (3.4.1) that b;(q) = \;(q)na;(0,X;(q))/n35(0,A;(q)) which, as a product and
quotient of Lipschitz continuous functions of ¢, is itself Lipschitz continuous in q.

(iv) Finally, o/(\g) can easily be expressed in terms of a through a Cauchy integral over
a small circle around A, due to the analyticity of o in C~, and the Lipschitz continuity of b,
and a();) in ¢ extends to the norming constants C. O

Copyright®© Jiaqi Liu, 2017.
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Chapter 4 Beals-Coifman Solutions

In this chapter we construct the Beals-Coifman solutions for (1.1.7). It follows from (1.1.6)
and the discussion in the Introduction that the scattering data is given by

m*(:z:',() _ mf(x’g)efiz@ad(d) ( Zgg; 2(<) ) (4.0.1)

where the symmetries (1.2.5) hold. In order to elucidate properties of the scattering data
we recall the integral equations for m*.

Assuming that ¢ € L' n L? (so that both Q and P are L' matrix-valued functions), the
Jost solutions m* are solutions of the integral equations

Ha,¢) =1~ f " e it Do) [(cQ(y) + Py)) mly, O] dy

x

Q) =L [ e () + () mly. )] dy

with det m™(z) = detm™(x) = 1.
Observe that

Cqma; + pimy; )
- ) d 4.0.2
e [y +pams] ) 02

Joo ( 6—21'(2(93711) [Cqm22+ +p1mi~_2] ) d,y (403)

Cqmyy + pamay,

Cqmyy + prmy;
e d 4.0.4
e2i¢" (z—y) [—Gmﬁ + pgmgl] y ( )

(29) - (1) [z ans

Moy (2, () Cqmyy + pamagy

Write m(yy = (myy, mg)", miy = (mfy, may)", and similarly for m ) and m,. Using the
fact that detm™ = detm™ = 1, it is easy to deduce that

a(@)=| —W( ()M {)) (4.0.6)

al@)=| . T |=W (m&,m@) (4.0.7)



It follows from (4.0.1), the first line of (4.0.2), and the second line of (4.0.3) that

a(¢) =1 _J (Cqm;ﬁ "‘plmfl) dy,

—00

a(C) =1-— f (Cgmiy + pamizy) dy.

—0

(4.0.8)

(4.0.9)

(4.0.10)

Using (1.1.9), (4.0.1), the first line of (4.0.4), and the second line of (4.0.5), we also have

a(¢) =1+ J (Cquz +p1m52) dy
a(¢) =1+ f_ (Camay + prmyy) dy

From Lemma 3.2.1 and change of variable formula (1.2.7) we have

+

me, has a bounded analytic continuation to Im((?

<0

° m(g) has a bounded analytic continuation to Im(¢?) > 0

(€*)
(€)
(¢*)
(€*)

* my, has a bounded analytic continuation to Im(¢*) > 0

* My, has a bounded analytic continuation to Im(¢?) < 0
It follows from these observations, (4.0.6), and (4.0.7) that

e a(¢) has an analytic extension to Im(¢?) < 0

e (¢) has an analytic extension to Im(¢?) > 0

(4.0.11)

(4.0.12)

To construct the Beals-Coifman solutions, we will need the asymptotic behavior of mzil)

t

as r — Foo and Mgy s T — FO. An argument with the dominated convergence theorem,

exploiting the decay of the exponential exp(+i(z —y)(? ad(c)), shows that

lim m3,(z,¢) =0, Im(¢*) <0
T——00
lim my(r,¢) =0, Im(¢*) >0
T——00
- _ 2
xEIPOOmH(xa C) - 07 Im(c ) <0
_ 2
$1_1>I_ir_loom21($7 C) - 07 Im(C ) >0

It now follows from these relations, the integral equations (4.0.2), (4.0.3), (4.0.4), (4.0.5),

and the integral identities (4.0.8), (4.0.9), (4.0.11), and (4.0.12) that

i oo (0,0) = ( “F) ) et <o

T—>—0

(4.0.13)



lim m (z,¢) = ( aog) ) Im(¢%) > 0 (4.0.14)
¢

T—>—0 (
Jim m (. ¢) = ( d(o) ) Im(¢%) > 0 (4.0.15)
im e () = ( a(og) ) Im(¢?) < 0. (4.0.16)

4.1 Construction of Beals-Coifman Solutions

We now define the right-hand Beals-Coifman solutions by

<% m@(sz,c)) . Im() > 0,
Mr(’r’ g) = 3

. My)(, C) )
<m(1)(1‘, ), W) Im(¢2) < 0.

These solutions are piecewise analytic, and bounded as x — —oo by the boundedness of the
normalized Jost solutions and the functions a(¢) and a(¢) (so long as a(¢) and a(¢) have no
zeros). By (4.0.15) and (4.0.14), they are normalized so that

lim M, (z,¢) =1, Im¢%#0,

r—0

and are bounded as r — —oo0.
Similarly, the left-hand Beals-Coifman solutions, given by

My ()

a(C)

-

~

M£($7C) = 9

Do m@)@;,g)) L Im(¢?) <0

are piecewise analytic, bounded as x — 40, and normalized so that

lim My(z, () =1, Im¢? #0.
Tr—>—0
Both M, and M, have boundary values as +3¢? | 0. We denote these respectively by
M* and MZL We now compute the jump relations for these boundary values. In what
follows, we write

flx) ~ g(x)

xr—7+00

if limy 400 | f(2) — g(x)] = 0.
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From (4.0.1) it is easy to see that, for $¢* = 0,

a(q)
miy(@.Q) ~ iy

miy(@,C) | ( sinct ¢ )
(1) 33—>+oo ( szCQ
(2) J} C xa+oo < 2zz(2
It follows from these relations that
a¢) 0
M7 (,Q) ~ oo 1
x T
1 o
s K
My (a,¢)~ eistait) | )
0 a(Q)
and
1 o
- b
MrJr (IE, C) N efix@ ad(o) G(C) (C)
0 a(Q)
a(() 0
MT_ ([E, C) ~ e—z’x(2 ad(o) 1
From (4.1.1) and (4.1.2), we compute that
1
M (@,¢) = My (2, Q)e (), wi(¢) =
W9
a(C)

o4

jle

—a(QalQ)

(4.1.1)

(4.1.2)

(4.1.3)

(4.1.4)

(4.1.5)



while, from (4.1.3) and (4.1.4), we see that

IOLINIE
o a(Q)a(0)  a(()
M (x,¢) = My (z,Q)e ™, (C),  v.(¢) = (4.1.6)
b(¢) |
i(¢)

4.1.1 Residue conditions

The functions a(¢) and a(¢) admit analytic continuations respectively to Q* and Q~ where
OFf ={zeC: £Im 2* > 0}.
The contour ¥ bounds the regions Q2. We denote by Q** the first quadrant
Q" ={CeC:Re(>0,Im (>0}

and by C* the set {z € C: z # 0}.

We have shown in the direct scattering problem that there is an open and dense subset
U of H**(R) with the following properties: a(z) has only finitely many simple zeros in C~,
and a(z) has no zeros on the real line. We will assume that the initial condition is in this
subset U.

Due to symmetries, a(¢) has a finite number of simple zeros (; € Qi =1,..n:

a(¢) =0, a'(¢) #0.

& also has zeros at —(y, ..., —(,, while a has zeros at (£(1,...+(,). We denote by Z the set

{igla EE iCna iaa sy i@)}
and
Zi =Zn Qi.

For each (; € Q** there are four resonances: (;, —( € QF and (;, —(; € Q. We assume that
a(¢) and a(¢) do not vanish on ¥, ruling out algebraic solitons.
At ¢ = £(;, using the symmetry given in (1.2.3) we have the linear dependence relation

my (7, igz)] [mﬁ(x, i@)] 2i¢;x
. = +0; et 4.1.7
lm21(5”7 +Gi) Mgy (7, £G) ( )
Similarly, at ¢ = ;,
miy (2, i@)] —7 [mﬂ (z, i@)] —2i %
- 20 = F; 2 e 4.1.8
[m22(37a +¢:) may (2, £¢;) ( )
Finally, we define the norming constants ¢;, for k = 1,...n
= Cic, = = o (4.1.9)
td(G)



Due to symmetry reduction, ¢ 4G = G

Fix index 4, for ¢ € {£¢;, +(,},
Res,_¢M,(x, z) = lim M, (z, 2)V,(()

z—(
with V.({) given as follows:
0 0 B 0 —5 2iC
Va(£Gi) = - o Vae(2G) =
Cie—szC 0 0 0

4.2 The Riemann-Hilbert Problems in the )\ Variables

We can recast the left and right RHP’s (4.1.5) and (4.1.6) in terms of the dependent variables
N* and the spectral variable z = (2. The new RHP is an RHP with contour R. Applying

the automorphism
[ a b (@ )
v\ ¢ d Ce d

to the Jost and Beals-Coifman solutions and exploiting the odd symmetry of off-diagonal
components, and even symmetry of diagonal components, with respect to the reflection
¢ — —(, we may define first

n*(2,0) = p(m*(2,¢)), A=¢"
and then

N*(va) ZQO(N*(I‘,CQ)), A:C2
where = = £,r. To get the correct normalization as x — oo, in the remaining part of the
dissertation we work with the first row of p(M,(z,()). More explicitly, for * = r we define

N (2, )) = (%,ng(m, A)) (4.2.1)

N7 (2, ) = <nf1(35,)\),w) (4.2.2)

Set
a(d) = a(®), B =), al) =a(®), BO) =)
From the symmetries (1.2.5), it follows that
a(\) =a(), A =B, (4.2.3)
We can now compute jump relations for the pairs (N,”, N,") and (N,5, N;). It follows
from (4.1.5), (4.1.6), and the definitions above that

1 50)
. a(A)
NS (2, \) = N, (z,\)e Arado ; ] (4.2.4)
AN L BB
Aoy LT aaty
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L BWAW B

- ENal) al

N (z,\) = N, (z,\)e Poade (4.2.5)

o)
a(A)

Setting p = /& and p = [/« respectively in (4.2.4) and (4.2.5) and using the symmetries
(4.2.3), we conclude that

| T8y
NS (2, \) = N (w, \)e~iwrade (4.2.6)

A(A) L+ AB(N) P

| L+ Ap(N)* p(A)
N¥(z,\) = N (z, \)e wrade (4.2.7)

T

Ap(A) 1
For N = N, and A = (2 where ( € {+G, +(;},
Res,_\N,(z,z2) = lirr)l\ N, (z,2)J.(2)

with JZ(\) given as follows.

. 0 0 .~ 0 _a —2iX\;z
E0 = (gatane g ) = (5 ).

where Oy = 2c¢.

Similarly,
Res,_\N;(z, z) = lim Ny(z, 2)J.(2)

z—A

with J%(\) given as follows:

0 Ciate 2 . 0 0

where Cy is constructed in (6.3.12). We will build the left RHP through conjugation in
Section 6.3.

Copyright®© Jiaqi Liu, 2017.

o7



Chapter 5 Two Riemann-Hilbert Problems and their equivalence

In this chapter we study the RHPs that defines the inverse scattering map. We only discuss
the ‘right’” RHP problem since the discussion for the ‘left’ RHP is similar.

We begin by formulating precisely the RHPs (R, J) (see Problem 5.1.1) and (X, v) (see
Problem 5.1.4). Next, we prove that these two problems are equivalent through change of
variable . We then prove that the RHP (¥, v) has a unique solution. We use these facts to
show that the Beals-Coifman integral equation associated to the RHP for (R, J) has a unique
solution provided that p € H*»?(R). Finally, we show that the solution M, of Problem 5.1.4
obeys (1.1.7) as a function of z, and obtain reconstruction formulas for Q(x) and P(z) in
terms of the solution p of the Beals-Coifman integral equation for Problem 5.1.4. Using the
equivalence of Problems 5.1.1 and 5.1.4, we obtain the reconstruction formula (1.2.20) that
will be used in the next section to analyze the inverse scattering map.

In this chapter, for each pole \; € C*, let I'; be a circle centered at \; of sufficiently small
radius to be lie in the open upper half-plane and to be disjoint from all other circles. By doing
so we replace the residue condition of the Riemann-Hilbert problem with Schwarz invariant
jump conditions across closed contours. The equivalence of this new RHP on augmented
contours with the original one is a well-established result (see [20] Sec 6). The purpose of
this replacement is to make use of

1. Vanishing lemma of homogeneous RHPs from [26] Theorem 9.3.

2. The Plemelj formula (2.3.3) over closed contours.

5.1 Two RHPs

We formulate precisely the RHPs on two types of contours A and ¥’ . In the next section
we prove their equivalence.
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Figure 5.1: The Augmented Contour A
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Problem 5.1.1. Fix z € R and let (p, {C;, \;}I~;) be a set of scattering data such that
p € H*?(R) and \; € C, C; € Cx. Find a vector-valued function N(z, -) with the following
properties:

(i) (Analyticity) N(z, 2) is a row vector-valued analytic function of z for z € C\A where

A = RU{Fh "‘7P77»7PT’ ,FZ}

(ii) (Normalization) There are two types of normalization. Either,

A. N(z,2) = (1,0) + O(z7') as z — o0, or
B. N(z,2) = O(z7!) as z > .

(iii) (Jump condition) For each A\ € A, N has continuous boundary values N4 (\) as z — A
from C*. Moreover, the jump relation

N (2, 0) = N_(2,0)L()
holds, where for A € R

, L+ Ap(N)* p(N)
Jx(>\) _ e—zAJ:ada

Ap(A) 1
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and for AeI'; UT?

1 0
O»L‘ /\i627)‘x 1 )\ € Fia
A— N\
Ee—%:c)\
! A— N\ Ael¥
\o 1

Remark 5.1.2. Problem 5.1.1 has two types of normalization at infinity. Type A which
has an inhomogeneous boundary condition at infinity is needed for the reconstruction of
the potential q. Type B, the homogeneous one is suitable for proving the existence and
uniqueness of the solution.

Now we derive the Beals-Coifman integral equation for Problem 5.1.1. The unique solv-
ability of Problem 5.1.1 is equivalent to unique solvability of this integral equation.

We set

v=NT1+WH =N (1-w,)" (5.1.1)
where (A2
0 0 _ 0 p(Ne ==
+ == a— =
W - )\,0(/\ 2idx )7 Wa: (0 0 ) AeR
C )\62”\7” W, = 0 Ael
’ v 0 0
Cle—Qza:)\
Wi = (o o> wr=| " aon | rer
0 0

Using (4.2.1)-(4.2.2) we write down v explicitly: for A € R

-

_622'/\:1:)\p( ) 1
v(xz,A) = <
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for A eI

1 0
nn(@,A)
( CL()\) le(:U?)‘) C )\821‘)\1
ni(z,A) G NieZ2end (z, N) (. \) 10
\ a(\) A=\ 1 01

and for A e I'}

nyp(z, ) Cie 2@A\nt (z,\) 10
(n”(I’A) O A—N 01
T =2
a,\) = 4 )  Gie
”12(35’ )‘) A=A\
nll( 7)‘) OJ()\)
\ 0 1

From (5.1.1) we have
N —N =v (WS +W,).

The Plemelj formula (2.3.3) and Type A normalization together give the following Beals-
Coifman integral equation:

v=(1,0)+Cwr = (1,0) + C{ (W) + Cy (vW,}) (5.1.2)
Similarly, for Type B normalization we have that
v=_Cyrv=C{wW.)+Cy(wW)) (5.1.3)

For A € R and Type A normalization we have

o 2isx n 2isx

v1a(x, s)sp(s)e*® ds 1 via(x, s)C; \e
A)=1 — — d 5.1.4
v, A) * f_oo s—A+i0  2mi - =2omi Jr, (s—=M(s—N\) ° ( )

and

vi(x, s)p(s)e™ " ds 1 J vii(x, s)C; e
A) = — — ——d 5.1.5
e e e o L Sy 619

An application of Cauchy’s integral formula on (5.1.4) and (5.1.5) gives the following
integro-algebraic equations:

o) 2isx n 21\ x
via(x, s)sp(s)e”* ds via(x, A;)C; Ae*i
2, =N

Vn(x, )\) =1+ J (516)

. 5 —A+10 2mi
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and

e —2isx -2\
vi(x, s)p(s)e ds vi1(z, \)Cy e
) = — ) 5.1.7
viz(w, A) J_OO s—A—i0  2mi Z )\ —\ ( )

To close the system above, we evaluate (5.1.4) and (5.1.5) at the eigenvalues to get

] 2isx dS n l’ )\ C 6721)%1
v = (s A =J v, s)p(s)e” KOk 5.1.8
R e P T - (5.18)
w0 2isx n 2i\LT
3 — Vlz(m,s)sp(s) ds via(x, A ) CpApe®™*
v, =vn(xe, ) =14+ — 5.1.9
T -1 | AnC DI (5.19)

To write down the integral equation (5.1.3) explicitly, we just remove the ”1” term from the
RHS of equation (5.1.4) and equation (5.1.9).

The solution to Problem 5.1.1 with Type A normalization, in terms of

v(z,s) = (vi1, V12)
should then be
L[ v(z,s)(WS(s) + W (s))

N S d 1.1
(2= L0+ 2mi r §—z 5 (5.1.10)
1 + -
=0 g [ AR (.L11)
211 Jr 55—z
+ <Zn: vi2(7, Ar) O;:\Ak@m)‘km Zn: —vn(z, )\k Cre™ 2“‘”)
k=1 S k=1 2=
Using (1.2.20) we obtain
1 (* . n S
q(x) = _—J vi(z, s)p(s)e ***ds — Z 2ivy1 (2, Ay ) Cre 2" (5.1.12)
T k=1

Remark 5.1.3. Note that (5.1.10) which is a direct consequence of the Beals-Coifman integral
equation involves the value of v on R and {vy1 [T'f, 112 1T} while for (5.1.11) we only need the
value of v on R and {v1;(\;), v12(A\:)},. We use the second form to re construct the potential
and study the Lipschitz continuity of the inverse scattering map. We mention that the Beals-
Coifman integral equation (5.1.2) can be derived from the integro-algebraic equations (5.1.6)
and (5.1.7). To do this, we extend (5.1.6) and (5.1.7) to I'f and IT; respectively to obtain
{V11 frf7 V12 m‘}-

In the next section we study the existence and uniqueness of the solution to Problem
5.1.1. To make use of the symmetry relations of the jump conditions, we need the following
Riemann-Hilbert problem with jump contour ¥’ and its equivalence with Problem 5.1.1
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Figure 5.2: The Augmented Contour ¥/
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Problem 5.1.4. Given functions r(¢), #(¢) , {G}Y, = C*F, {c;}Y, = C*, where

1

C=VA G=VX =50 (0=, 7 =) (5.1.13)

and the Schwarz-invariant contour ¥’ given by Figure 5.2 where

4
=%
j=1

¥ = s Ut

find a matrix-valued meromorphic function M (z, ¢) with the following properties:

(i) (Analyticity) M(z,z) is analytic in C\X' and has continuous boundary values M, on
Y and M satisfy

M+(£L', C) = M_((L‘, C)Uﬂc(C)

where on X
L—r(QF(¢) e 2= r(()
—e** () 1

with _
7€) = —r(C) (5.1.14)
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and

(ii) (Normalization)
A M(z,{)=T1+0(C")as ( > .
B. M(z,() =0((") as ( — oo.
Following the same approach in dealing with Problem 5.1.1, we can also obtain the
following Beals-Coifman solution to Problem 5.1.4:
p=M"1+wH) =M (1-w,)" (5.1.15)

where for ( € X

p(z, ¢) = < (5.1.16)

and for ¢ € +;

ml;((g 3 miy(z, C) 1 0
Mo (.Z', C) — Ci 621‘%42
2@) LEACHY ST
pu(w,¢) = 5




and for ¢ € ;=

. mp(2,Q) | Ge 2 mi(x,()
mhn) =ag tT g 1
+ m;? (.CE, C) C_ie_2i$g2 m;l (:Ua C) 0
m21(x7 ) @(C) + Cia
w(z, ¢) = 3
1 ) C) —2ix(?
iy, MO /e
0 g3
| m;l (:E7 C) % O 1

In analogy to Problem 5.1.1 we can deduce the the following Beals-Coifman integral

equation for Problem 5.1.4. For Type A normalization:
p=1+Cup=1I+C5(pw;) + Cx(pwy)
where [ is the 2 x 2 identity matrix. And for Type B normalization:
= Cup = C&(pwy) + 5 (pwy)
In this case, for ( € X

(€)= = O [pale, Jr()e* | (¢)

,U/12 x Cz C; € Qing NIQ(«T, —Cl)Cl 622'90@‘2-2
Z ( C—G " CH+ ¢ >

=1

_l’_

e, €) = G5 [ (. )r (e 2] (0

i pa (z Q c e ~2ia(;” N pa1 (, —C)C_z 6—21‘9@2
-G (+G

=1

pan () = = O [alir, 7 () | (0)

paa(w, G)es €255 iy (w, —()e; ¥
Z ( C—G " CH+ ¢ >

i=1

_l’_

paal, €)= G5, [ (. )r (e~ 2] ()

i M21 x Q c e ~2i2G;” N #21(:[7 —C)C_z 6—21'9@2
—G C+G
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(5.1.17)

(5.1.18)

(5.1.19)

(5.1.20)

(5.1.21)

(5.1.22)



and in order to close the system, we have

v 2% 2
J— 187 T d
o e+ (5.1.23
b $F( 2mi
+ Z fa2(, C) Ck;emk n paz(z, _Ck;)CkeQiCix
k=1 —Cz Gk +( + (g
pia1(x, s)r(s)e™25° ds
)= o 5.1.24
pa2(x, £G;) L ST G 5 ( )
Zn: pia (2, G )ce ~2i0, " n (e, _@)@6_2@2%
k=1 +CZ gk iCz + Ck
g 2is%x
v x,8)r(s)e ds
pa(r ) = _J e (5.1.25)
b SFG 2me
+ an oz (, G e e | H(2, —Ci)ope?ii
k=1 +G — G +G + G
pior (0, )r(s)e 25" ds
)= o2 5.1.26
M22(x, _C) L ST o ( )
_ Z pi21 (%, G )ere 20 n po1 (2, —@)qe—?@ x
C Ck iQ + Ck-

Again, to write down the integral equation (5.1.17) explicitly, we just add 1 to the RHS of
equation (5.1.19) (5.1.22) (5.1.23) and (5.1.26).

5.2 Equivalence of two RHPs

Definition 5.2.1. For fixed z and A € R and {)\;}I, < C*, we define the following two
n + 1 dimensional vectors:

v = (vi(z, A), @i{vii (@, A\i)})

vy = (via(@, A), ®i{via (@, \i)})
We also define a Hilbert space X = L3(R) @ C".

We begin with the following change of variable formulas: for ( € ¥

Lbn(x,C) = Vu(%CZ); Mlz(%g) = (V12($7C2)- (5-2-1)
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and for (; e C*+

=2

Mll(%zz‘) =vn(z,¢;), pi(r,§) = Cﬂ/lz(%ﬁ)‘ (5.2.2)

It is easy to see that

,LLn(SC,—C) = M11(SU7C)7 le(% —C) = —,u12(37; Q-

Lemma 5.2.2. For v = (v1,15) a solution of the homogeneous Beals-Coifman equation
(5.1.3) i.e.
v(z,\) = [Cwr] (z,N),

then vyi1(z, \), via(z, \) € L2(R) implies that pyir, pioF given by (5.2.1) belong to L*(X) N
LY(%).

Proof. We first notice that

[ st QR 1dc] = [ st 0r)F + e -0 ) (523
+ |z, it)r(it)[* + | (2, —it)r(—it) | di

0
=2 [ ol o) + s~
0

e¢]
:f v (2, w) p(u) A/ |l du

—0

The improper integral above is convergent given vy, € L*(R) and p € H**(R).

Now we want to show that

[ it @) g < e (5.2.4)

In this case we have
| s, 0RO 1) = [ 162 mrate, ol ]
> >
- zf |2 o, ) p(82)|” + [£2 via(, —t2) p(—2)|” dt
0

| el w)pt) Plufa

—Q0
Again, the improper integral above is convergent given vy, € L*(R) and p € H**(R). The
L! boundedness is an easy consequence of the Cauchy-Schwarz inequality. O]

Lemma 5.2.3. For v = (vy,15) a solution of the homogeneous Beals-Coifman equation
(5.1.3), define

Mn(%f) MlQ(fE,C) V11(5U7C2) CV12(37, C2)
p(z, ¢) = = (5.2.5)
po1(x,¢)  poz(w, C) —Cuia(z,¢?) vz, (?)
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and fori=1,...,n

pir(z, £C;)  paa(z, ) 1/11(1’,5?) +(via(, ¢F)
= (5.2.6)

par (2, 4G;) o, £G) (@, ) vi(,C)
then p solves integral equation (5.1.18).

Proof. We first build equations (5.1.19)-(5.1.22) from the homogeneous form of Equation
(5.1.4)-(5.1.9) using the change of variable given in (5.1.13). We first deal with the discrete
part of equations (5.1.4)-(5.1.9). Using change of variable formulas from (5.1.13), simple
computation gives us

vi1 (2, \i)Cie 2k _ 1 uu(x,a)c_ie‘%& n p (x, _E)C—ie—mﬁ%
A=\ ¢ (-G C+G

and
v12(7, Ai)Ci AjeZii . pa2(, Gi)ei e2icie I p2(7, —Gi)ei e2ici

A=A - C—G C+G
So we get the discrete part of formula (5.1.19)-(5.1.22).

We can use the conclusion of the previous lemma and the change of variable formulas
(2.4.3) and (2.4.4) to deduce that

Ci: (oo, )P0 ) (V) = C5 | mra, 0)(©)p((02)e | (¢) (5.2.7)
= —=C5 |ma(e, o) (0)e™ | (©)
and
(CE [, 9)p(e)e O] (%) = O [vua(, (Pr(@)e | () (5.28)
= G5 [ 0)r(e)e™ " | (¢)

We use the fact that Cg(f) = —Cg (f) and the change of variable formula (5.1.13) to
deduce the following integral equations from (5.1.4) and (5.1.5)

po2(z, ¢) = v (7, ¢?)
=~ [vala. (e ) 0| (€) + )3 72

=1

=5 [le(% (- )e 2t )2] (©)

22

— Z pon (. G)G e n por (1, —E)Cze*%ﬁ52
(=G C+G
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and
pio1(z, ¢) = —Cuiz(z, (?)
= 0 [t e )+ ¢ RS
= —C5 [l JF() 7] (©
M22 z, Q ;e p2iwC? M22(5U, _Ci)ci p2iwC?
: Z ( (=G " C+G >

Equations (5.1.23)-(5.1.26) can be derived by following the same approach. O

Lemma 5.2.4. Suppose vi,vy € L3(R) @ C" solve Equation (5.1.3) then we can construct
solution M(x,¢) to Problem 5.1./ with Type B normalization such that My (zx, - ) € 0Cs(L?).

Proof. We construct the solution to Problem 5.1.4 in terms of py; and py2. By (5.2.5) the
2 x 2 matrix g in (5.1.15) has the following symmetry condition:

M1l 12 pai(z,¢) iz, Q)
o= = (eXx (5.2.9)

H21 22 —Mm(%g) Mu(%C)

As a consequence of the Plemelj formula, the solution M(z, z) to Problem 5.1.4 is given by

pl, s) (wy (s) +wy (s)) ds
M(z,z) = L/ s - (5.2.10)

Combining the symmetry condition given by (5.2.9) with (5.1.16) we get the following bound-
ary condition:

paa (7, ¢) — pa(, C)e%“z?*(é) p2(z, C)
M™*(z,¢) = (eX (5.2.11)

—p12(z, ¢) — pu (2, Q)€ F#(¢) i (2, )

1 (z,¢) oz, Q) — pan(x, e 27 ()
M (z,¢) = (eX (5.2.12)

—p12(2,¢)  pr(2, ) + paa(z, Q)22 r(C)

Now we can appeal to Lemma 5.2.2 and the L? boundedness of the Cauchy projection to
conclude that M, (z, -) € 0Cs(L?). O

Using the same reasoning in Lemma 5.2.3 and Lemma 5.2.4 we can also obtain the
following lemma:

Lemma 5.2.5. Suppose v; — 1,15 € L*(R) ® C", then we can construct solution M(z,() to
Problem 5.1. with Type A normalization and M, (x, -) — I € 0Cx(L?).
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Remark 5.2.6. The following proposition is an application of the Vanishing Lemma from
[26]. We give the details here for completeness.

Proposition 5.2.7. The solution to Problem 5.1.4 with Type B normalization given by
(5.2.10) is identically zero.

Proof. We first recall that the symmetry reduction condition for the entries of the transition
matrix is given as follows:

Q) = —r(Q).
Thus for ¢ € iR we compute
() = —#(¢),  —H(Q) =r(¢)

Taking complex conjugate of both terms above we get:

r(Q) = =7, =) =70

So we conclude that on ‘R B
v(¢) = v(Q)' (5.2.13)

where { denotes complex conjugation and transpose of a given matrix. It is trivial that the
same equality holds on {£7;  J+77}7,. So we conclude that (5.2.13) holds on ¥"\R.

Now we formulate the matrix-valued function: F(¢) = M ()M (¢)' and we want to show
that

fo Fo(C)dC = 0. (5.2.14)

—
It is clear that F(() is analytic in C\X by the Schwarz reflection principle. Now suppose
that ¢ € C\R, then we have

where the third equality above comes from (5.2.13).

By Morera’s theorem F(() is analytic for ¢ € C\R. Since M, (x, -) is L? on R, F(() is
integrable. Also we can write

plz, s) (wy(s) + wy (s)) ds.

M(z,2) :J,

S — 2 2mi
- EL/ s i Zﬂ($v s) (w;(s) + w;(s)) ;_;z
B %J,u(w) (w(s) + w; (s)) %



so we have )
M(z,2z) ~ O (;) , zeC\X
(5.2.14) follows from Cauchy’s theorem.

For ¢ € R we have that

F.(¢) = M (QOM-(¢)" = M_(¢)u(¢)M-(¢)f

and

and (5.2.14) we get .
| M0 00+ M©' -0 (5.2.15)

where for ( € R
L+ [r(QF e (Q)
v(¢) + ()" =2 o
e**r(C) 1

v(¢) + v(¢)' is positive definite since it is Hermitian and has positive eigenvalues. From
(5.2.15) we conclude that M_(¢) = M,(¢) = 0 on R. From Morera’s theorem we conclude
that M (({) is analytic in a neighborhood of every point on R. Since M({) = 0 for ¢ € R,
analytic continuation gives us that M (¢) = 0 holds all the way up to the first complex part
of 3. Applying the jump condition on this part shows that M, ({) agree and and vanish.
We can apply the same argument to the remaining parts of ¥’ and conclude that M (¢) =0
on the entire complex plane. This completes the proof. O

Corollary 5.2.8. The homogeneous Beal-Coifman integral equation given by (5.1.3) has
only the trivial solution.

Proof. An immediate consequence of change of variable formula (5.2.1) and Proposition
5.2.7. O

The following lemma is a standard result from [26]:

Lemma 5.2.9. If M is a solution to Problem 5.1. with My — 1 € 0Cx(L?), then M s
unique.

5.3 Reconstruction of the Potential

In this section we show that the solution to Problem 5.1.4 with Type A normalization solves
a differential equation of the form (1.1.7) and obtain explicit formulas for Q(z) and P(z)
having the correct structure (see Remark 5.3.2).
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Proposition 5.3.1. The functions My obey the differential equation (1.1.7) where M, P

and Q are constructed from the solution p of (5.1.17) as follows:

M) = 1+ [ HEDEIO) rur(o) s
Q) = —5-ado ([ n(e.0) (0) + 07(0) ac)

P(z) = Q(z)i(ad o) ' Q(x)

Remark 5.3.2. We set
f(@,¢) = p(z, Q) (wi () +w (C)) -

More explicitly
—p2(z, Q)%(C)e%@% paa (1, C)T(C)e_%c%
f(xa C) = C ey

—pza(, () g (, OIr(Q)e ™

Ci 621'30(2
x? J—
t2(z, ) CFC
f([E, ) = C € =
(.05
x? J—
pro2 (2, ¢ (TG
66*2“42
0 Mn(a%C) - ——
CFG
f(:L‘, ) = QE maLy
0 pian ( C)C_ie_mg?
H21( T, =
CF G
which, together with the formula (5.3.2), shows that
0 q() )
r)= N )
as required. Here
1 2 C . TN 2iCs
q(z) = —;f e 2 r(Qpan(, Q) dC = Y i (x, G)ge
b

i=1
We begin the proof with the following lemma:

Lemma 5.3.3.

J,s”f(x,s)ds _ L s”f(x,s)ds—i—f § f(x, s)ds

S

1s diagonal when n is odd and off-diagonal when n is even.
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Proof. For the first term on the RHS of (5.3.8) note that when n is even (odd) , s" f(z, s) is
odd (even) off-diagonal and even (odd) on-diagonal. We can deduce these relations from the
evenness (oddness) of the diagonal (off-diagonal) entries of pu(z, (). Given the orientation
of the contour ¥’ as shown in Figure 5.2, the even (odd) terms integrate to zero while the
odd (even) terms persist. To deal with the second term, we can now use Cauchy integral
formula and the fact that p;1 , poo are even and that o , p19; are odd to arrive at the desired
conclusion. O

Proof of Proposition 5.3.1. For ¢ € %, let

UCE(C) _ efixCQ adUU(C)-

Differentiating the jump relation

M+(x7 C) = M,(:E, C)vw(g)

with respect to  and using the fact that ad o is a derivation, we compute

dﬁ* = %vx + M_ (—i¢*ado(v,))
= di\i vy + M_ (—i¢?ad o ((M-)"'M.))
_ dé‘i ve 4+ iC?ad o (M_Yu, — ic? ad o(M.)
We conclude that
%J\L(z, O) +ictado(M,) (%M(x, 0) +ic*ad J(M)) v (53.9)
Using the fact that
M) 1 = 0% [u(e, ) (g () + st ()] (5.3.10)

and Lemma 2.3.1(ii), we conclude that

i ad o (M) (x,C) = iada| C* ((+)2f(x, )

_ i f(;p’s) ds — L sf(x,s) dS]

271 SV 271 sV

where f(z,() is given by (5.3.4). It follows from Lemma 5.3.3 and (5.3.4) that the matrix-
valued integral

L Cf, Q) de

ad o (Jlsf(x,s)ds) 0.
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Hence defining Q(z) by (5.3.2), we have

iCCado(My)(z,¢) =iado [CF ((+)*f(z, -))] + CQ). (5.3.11)

Note that Cauchy projection is bounded on L? and v; — 1 € L? for each fixed . Through
change of variable and following the same argument given in Lemma 5.2.2 we can show that
the first term defines an L? function of ¢ for each x. Next, observe that, by (5.3.10) and
Lemma 2.3.1(i),

Q) (M — 1) = Q@)C" [(-)f (=, )] — Q) R(x) (5.3.12)
where R(x) is given by

1 _
R(r) = o [ e s (€) + uz (0)) g
T Jsy
=i(ad o)™ Q(x)
and the first right-hand term of (5.3.12) is an L? function of ¢ for each x.
Now define

We = O i ad o (M) — Q)M () — Q) R() M ()

By (5.3.10), (5.3.11), (5.3.12), and the identity

—(Q(z)M+(x) — Q(z)R(x)M+(z) = —(Q(x) — (Qx)(M+ — 1)
— Q(z)R(z) — Q(z)R(z)(M+ — 1),

it now follows that (W, ,W_) € 0Cx(L?) for each fixed z. More explicitly,

d

Wi = —C*[f(w, )] +iado [CF ((-)*f(2, )] = Q) [C*(()f (@, -))]

— Q@) R(@) [C*(()f (@, )]

Also
W+ =W Vg,

and we can check that W (z, z) has the same residue condition in the complex plane as
Problem 5.1.4. It follows from Proposition 5.2.7 that W, = W_ = 0.
m

Recalling that we construct p from v = (141, v12) as in Proposition 5.2.3, we may use the
reconstruction formula (5.3.7), the change of variables formula (2.3.2), and the odd symmetry
of the integrand in (5.3.7) to conclude that

1 . - —— o
q(z) = —— j e"H A (N vy (2, N) dX — Z 2ivyy (w, \;) Cre 2N, (5.3.13)
R

& i=1

We conclude this chapter with the derivation of the 1-soliton solution from Problem 5.1.1.
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5.4 1-soliton solution

Suppose p(A) = 0 for all A € R and & has only one zero \; in C*. Then (5.1.4) and (5.1.5)

become : ,
V12 (l’, /\1)/\1620\1101

V11($,>\):1+ )\_/\1

(5.4.1)

and B .
B 11 (I, )\1)6722)\13801

A=\
Since vy and vq; are analytic in C* respectively, to close the system formed by (5.4.1) and
(5.4.2), we set A = A\; and A = \; for v4; and vy, respectively to get

Vlz(l', )\) =

(5.4.2)

_ )\ /\ 2i\1x
7/11(13,)\1) — 14 V12($,_1) 1€ Ch
A — N\

(5.4.3)

and B _
_ V11 (I’, )\1)6_21/\13301

)\1 — X1
Now we can first solve for 11 (2, A1) to get v12(x, A) given in (5.4.2) and use the reconstruction
formula (5.3.13) to get the 1-soliton solution to equation (1.1.3):

vig(T, A1) = (5.4.4)

87;7]26—22')\13001

= 5.4.5
1) = e me 545)
where
Using the notations of [12] , we set
Ay = iAZe7 27 — A2cosy +iAZsiny, (0<v <)
and
Cl — 2ﬁ62i00 62nx0‘
we obtain . vio 28
m e e
=4—— 4.
Q(I) A e + ety (5 6)
where
0 = n(x — o)

o=E&x+ oy

Using (33a) and (33b) of [12] we get
+o0 40 iy 2
72i,u+ . . 2 . e +e
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Now we invert the gauge transformation (1.1.2) to get the 1-soliton solution to Equation
(1.1.1)

ute) = ata) exp (=i [ latan) (5.47)

—0

= q(z) exp (@ LOO IQIQdy) exp (—i fi IQIQdy)

4277 6—21'(04-27) e20

— €
A et et
020 o—2i(0+27)
= 42ASIH’}/ 0 . =i ezt e 2
e + e
020 p—2i(0+27)

(¥ + en)(ed + )2 ©

,i,Uﬁr

3.
752/1

= 4iA siny

The denominator of this expression simplifies to

e/ e0 + =10 4 ¢ 4 e=7 = \/2e21/cosh(46) + cos .

which leads to
6—22'(04-2'7)

e
+/cosh(40) + cosy

e—2i(0+27) (32 +oo
— 2v/2iAsin exp | — J 2d )
K y/cosh(40) + cosy P4 . laldy

3;,+
—2ip

u(z) = 2v2iA sin (5.4.8)

Remark 5.4.1. We notice that (5.4.6) and (5.4.7) differ from (31) and (33c) of [12] by a factor
of i. This is legitimate since we can multiply both sides of equations by 7. (1.1.1) and (1.1.3).

5.4.1 Time Evolution

Recall the time dependence of the scattering data

pr = —4iXp (5.4.9)
and for k=1,2,.... N
d Cy :
— - —4iX2Cy (5.4.10)
For one-soliton solution (5.4.6) we can write the time dependent parameters 6 and o as
0 = n(z — z9) = A%sin(y) (z — 2o + 4A% cos(7)t) (5.4.11)
and
o =&x + o9 = A*cos(y)x + Gy + 2A% cos(27)t (5.4.12)
where

N 9= ~
Cl |t=0 =2 Z62wo 6277330
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We now write the soliton solution in the form of hyperbolic function. We first introduce
two parameters ¢ and w with |c¢| < 24/w. Denote ¢/2y/w = —cosy, A = w'/*/y/2 then

Vidw — 2 = 2y/wsiny = 4A?sin(y)

dw — 2\

( W ) — 2wt siny = 2v/2Asin vy (5.4.13)

and

c = —4A%cos vy
This gives
cosh(460) + cosy = cosh (\/ dw — Az — To — ct)) S (5.4.14)
2\/w

and

e~ = exp (2iA*(cos )z — 2i6y — 4iA*(cos 27)t) (5.4.15)

, . C
= expi (wt — 200 + é(ac — ct))

Now we have the following sech-form soliton:

32 x—xo—ct

u(z,t) = iR(x — To — ct) exp (z’wt + zg(a: —ct) — 2i6g — iy — —

1 IR(y)|2dy>

(5.4.16)

—0

with

(5.4.17)

Also using gauge transformation (1.1.2) we have

r—20—ct

q(z,t) = iR(x—Ty—ct) exp (z’wt + zg(x —ct) — 2i6g — iy + i J

—0

|R(y)|2dy> (5.4.18)

We can see from (5.4.16) and (5.4.18) that both solitons have velocity —4¢ and amplitude

2v/2n/ |\ |2,

Copyright®© Jiaqi Liu, 2017.
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Chapter 6 The Inverse Scattering Map

In this chapter we prove Theorem 1.3.8 by studying the RHP given by Problem 5.1.1 to
reconstruct ¢ on (—a,o0) for any a > 0, and studying the RHP given by Problem 6.3.1 to
reconstruct g on (—oo,a) for any such a. Recall the construction formula given by (1.2.20).
Let us write ¢(z) = ¢1(x) + go(z) where

Direct computation gives

1 , 1 ,
(q1) ez = —J e 2N (1 +17) — = J e B p(N) (—didv) + 1)) (6.0.1)
T Jr T Jr
132 ( ) _ _i —2i\x ”(1 + ) i —2idx (2 + b ) (6 0 2)
G r) = e Re v e R P V)\ PV 0.

and

q2):cx = - Z 2 (Vz_ (l')) —2idx Z 4)\ 16 ~2ikiz (603)

+ 2 8i\ v e 72N
q(2) = —x Z2w Cie —2ikiz (6.0.4)

where for (6.0.2) we used (—2i)~!(d/d\)e~*** = ze~?* and integrated by parts. From these
formulas and the mapping properties of the Fourier transform, we are going to obtain the
sufficient conditions for Lipschitz continuity of the map {p, {\;, Ci}?_1} — ¢.

We’'ll make repeated use of the operator . given by the following formulas

SN, A) = Cx |G ()R- )e™50)) (o) (()p()e® ) | (3) (6.0.5)
1 —0 o0}

—o | e @eb@)p - dede ner

2
2ime J, .

1), 3) = Cx {Ci [p()e 7] ()p( )} () (6.0.6)
o | e[ aerpe-eraea

2
2ime J, .

These formulas follow from elementary properties of the Fourier transform and the fact that
C* act in Fourier representation as multiplication by the characteristic functions of R¥.
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Remark 6.0.1. The operator .% is denoted AgyBgo in Lemma 6.1.5 and the first term of Ky
in (6.2.12). Different notations are used in different contexts.

For Problem 5.1.1 , we solve
V= 4+ K[V (6.0.7)

for ¥ (x, -) € L*(R) @® C" and f* given by (6.2.8). Similarly, for Problem 6.3.1, we solve
7 =F + K[#] (6.0.8)

for v#(z, -) e L2 (R) @ C". Let
VoS x (CexCH?

be the bounded open subset given in Definition 1.3.5. We will first prove:

Proposition 6.0.2. For any a > 0, the map

(P, {Cs Aitin)) — ¢ (6.0.9)

defined by Problem 5.1.1 and the formula (5.3.13) on any bounded subset of V,, is a locally
Lipschitz continuous map from V to H**(—a, o).

We give the proof of Proposition 6.0.2 in Section 6.2. By essentially identical arguments,
we may prove:

Proposition 6.0.3. For any a > 0, the map
(5. {Ci, AiYisy) = G (6.0.10)

defined by Problem 6.5.1 and the formula (6.3.17) on any bounded subset of V,, is a locally
Lipschitz continuous map from V to H**(—o0,a).

Finally, we will prove:

Proposition 6.0.4. For any a > 0, we have q(x) = ¢(z) for x € (—a,a), so the maps
(6.0.9)—(6.0.10) together define a locally Lipschitz mapping T on any bounded subset of V,,

(07 {Oi; Ai}?:l) = q

with the property that T (R(q)) = q on U, an open neighborhood of 0 in H**(R), and RoZ = I
onV.

Before proving the propositions above, we first establish the mapping properties of the
operator . and estimates on the resolvent operator (I —.#)~! which will be extensively
used in the next section. We will need the Banach space

Wy = {f e LX(R): f, f'e Ll(R)}. (6.0.11)
in which H*?(R) is compactly embedded.
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Lemma 6.0.5. Suppose that p € H**(R) then

(i) .S, Sy, and Sy, are bounded operators on L? with norm < C|p|32. where C is
independent of x.

(ii) The operator . is Hilbert-Schmidt with |||y < C |p|32z and
iy [ s = 0
uniformly in bounded subsets of H**(R).
(iii) For any a =0, the map
(—a,0) x Wy — B(L?)
(z,p) =
18 continuous.

Proof. (i) Let F denote the Fourier transform. From (6.0.5) we see that the operator F.& F !
has integral kernel

oo
K(6.¢5a) = | Bl(e- € —€dg, €<0 (6.0.12)
up to trivial constants, so that
IR0 < C ol 171 Il e (6.0.13)

The estimate (6.0.13) shows that %[ g2 is bounded by C Ip|%2.> and from (6.0.11), we
also have 5]z, < C Hp||?4,0 Differentiating (6.0.12) with respect to x we have

Ko(6,6"2) = =p (€ —2)p(x — &) (6.0.14)

so that
|-l sz < 1Felus < 17 22 171l 22 -

Differentiating again we find
~ ~ ~ 2
|-Saw |52y < |Faallus < 102 1212 + 12122

(ii) From (6.0.12) and integration by parts we have

K(&, & a) = —p(¢ —x)plz — &") — f pE—p(E —¢a¢

= Kl(é-?é”;x) + K2(€7£”;x)

where £ < 0 and ¢ > x > —a. Clearly

0 1/2
1wy < ([ 1O ) 1l < G 1) 7l B (6015
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Since |’ — & =z and |€ — &'| = &, we have

56 = €N < Call+ |22+ )21+ e = €D Bl — &)

It follows that
Ko (6" < Cal+ 1)) 7] o 17] 2 (6.0.16)

The estimates (6.0.15)—(6.0.16) show that
| s < Ca(l + )2 1] 22 171 1

which proves (ii).
(iii) Write . = .%, ,. Using the technique that proved (6.0.13) we have
|-S0 = Lapa 2y < Ca (151 = Pallpa 18111 + 152] 11 151 — Pl 1) (6.0.17)
uniformly in = —a. On the other hand, by (6.0.14) and Young’s inequality,
105 /0] 12y < CNP Nl x 17] 10

so that
|70 = L0l 512y < Clz =12 17 o 1] 1 - (6.0.18)

Combining (6.0.17) and (6.0.18) we obtain the claimed continuity. O

Remark 6.0.6. Since all estimates in the proof of Lemma 6.0.5 are bilinear in p, it follows
that p — ., p+— %, and p — .%,, are locally Lipschitz maps from H?? to the bounded
operators on L?.

We can now construct the resolvent (I —.#)~! as a bounded operator on L?. Although

we do not obtain the kind of explicit integral representation we obtained for resolvents in
the direct problem, we are able to extend the resolvent family to a bounded operator on the
space L?((—a,o0) x R) by the uniformity of the estimate (6.0.19) with respect to z.

Lemma 6.0.7. Suppose that p € H**(R) and a > 0. The resolvent (I —.)"1 exists as a
bounded operator on L? and

sup |(I —. <C (6.0.19)

TZ=—a

-1
) s
with C' uniform in p in a fized bounded subset of H**(R). Moreover

sup [(1 = Z4,0) " = (I = F20) g2y < Clp =0l 22 (6.0.20)

r=—a

with C uniform in p,o in a fived bounded subset of H*?*(R).
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Proof. The estimate (6.0.20) follows from (6.0.19) and the second resolvent identity. It
suffices to prove (6.0.19).

By Proposition 5.2.8, Lemma 6.0.5(ii), and Fredholm theory, the resolvent (I — .7 ,)™*
exists for all (x,p) € R x H**(R).

To bound the norm of the resolvent, fix a bounded subset B of H?*?(R). By Lemma
6.0.5(ii), there is an R so that |75,] 52y < 1/2 for 2 > R and all p € B. Thus (I — Fp)
exists for all such (x,p) and |(I — YW)*HB(LQ) < 2. To control the resolvent for (z,p) €
[—a, R] x B, we note that [—a, R] x B is a compact subset of R x X By Lemma 6.0.5(iii)
and the second resolvent formula, the map (z, p) — (I —.%,,) ! is a continuous map from

R x Wy to B(L?). The continuous image of the set [—a, R] x B is compact, hence bounded,
in B(L?). O

Remark 6.0.8. (i) The family of operators (I —.7, ,) " for © = —a defines a bounded operator
R, from L*((—a,0) x R) to itself by the formula

(Rof)(@, ) = (I = Fop) ' flz, ).

By Lemma 6.0.7 the map p — R, is locally bounded and locally Lipschitz continuous from
H?**(R) to B(L*((—a, ) x R)). (ii) Lemma 6.0.5(i) shows that ., .%,, and .%,, extend in

the same way to bounded operators on L?((—a, ) x R) to itself, Lipschitz continuous in p.

6.1 Uniform Resolvent Bound

The reconstruction procedure can be reduced in each case to solving an n + 1 vector-valued
integral equation . We will show that, by iteration, we can decouple the system (5.1.4)-(5.1.9)
into integral equations for (1/11, {y; — 1}) and (1/12, {z/j}) Let

X = L*(R)@C".
We expect that the vectors

V= (v — 1L {y; —1})

Vg = (V12>{Vi+})
each belong to X. Now set Y = X ® X and
Vi = (uf, z/g) :

We expect that v# € Y. With respect to the direct sum decomposition Y = X @ X, the
system of equations (5.1.4)— (5.1.9) takes the form

V= f+ Ki (6.1.1)

K = ( - ) (6.1.2)

where



and the operators A, B : X — X are defined as follows. With respect to the decomposition

L*(R) ® C", write
Ao Ao Boo  Bo
A == B =
( A An ) ’ ( By Bn )

Denote by h a generic function in L*(R) and by {h;}7_, a generic n-tuple in C". Then

Ago[h)() = € (AL )()p( ) (3) (6.1.3)
h

n kaAkGQ’L)\k:E
Aor[h, . b)) = Y 6.1.4
[ I =2 "32% (6.1.4)
n eQiAkx "
Anlhy, ... byl = {Z h’“%%} (6.1.6)
k=1 J j=1
and
Boo[P](A) = Cy (A(-)p(-)e™ %) () (6.1.7)
n —€—2¢7kx
Bl ha](3) = = Y} M (619
k=1
Bio[h] = Uw ha, Sgp_(‘;)jé - %} B (6.1.9)

n =2z
Bulhy, ... h :—{Z hm’“#} (6.1.10)

Boundedness of these operators on their respective spaces follows from the facts that p and
(+)p(+) belong to L*(R), that the Cauchy projectors C* are bounded operators on L?, and
the explicit formulas.

The inhomogeneous term f is given by 0 ® f; where

—2i\p

Cy (P( Jem i z) 1 )\e ™

e p(s)efm‘sx ds n @efm;ﬁx
P B e v

R W FrAP T v vl £ (6.1.11)

foo p(s)e—Zism ﬁ B an ﬁke—m‘ﬁm
e S— Ay 2m = A — M\
It will be useful to iterate (6.1.1) to obtain

=f+Kf+ K% (6.1.12)
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since

., (AB 0
K _( 0 BA (6.1.13)

so that the system decouples into separate equations for l/ii and l/g. This means that it
suffices to solve the iterated equation for ¥, which yields functions vy; and {v; — 1} for the
reconstruction formula (5.3.13). We will prove that there exists a unique solution to (6.1.1)
using Fredholm theory and its connection to Problem 5.1.1; we will carry out estimates using
(6.1.12). Owing to the special structure of the problem, the resolvent (I — K)~! needed to
solve (6.1.1) exists if and only if the resolvent (I — K?)~! needed to solve (6.1.12) exists.

Lemma 6.1.1. Suppose that X is a Banach space and A, B € B(X) are operators with the
property that AB and BA are compact. Let K be given by (6.1.2). Then ker(I — K) is trivial
if and only if ker(I — K?) is trivial.

Proof. First, recall that if A and B are bounded operators, then (I — AB)™! exists if and
only if (I—BA) ™! exists. Since AB and BA are compact it follows that ker(I — AB) is trivial
if and only if ker(I — BA) is trivial. Hence, ker(I — K?) is trivial if and only if ker(/ — AB)
is trivial. Finally, a simple computation shows that the map

V= (¢, BY)

is an isomorphism from ker(/ — AB) onto ker(I — K), so ker(/ — K) is trivial if and only if
ker(I — AB) is trivial. O

We prove the existence of (I — K?)™! in two steps. First, we show that ker(/ — K) is
trivial by exploiting the uniqueness of solutions for the Problem 5.1.1.

Lemma 6.1.2. ker(I — K) is trivial.
Proof. See Corollary 5.2.8. m
Lemma 6.1.3. The operator I — K? is Fredholm on X.

Proof. Tt suffices to show that K? is compact on X, or equivalently that AB and BA are
compact on Y. We give the argument for AB since the argument for BA is similar. In
Lemma 6.2.8, we will show that AgByo is compact. Since all of the operators A;;, B;; with
(i,7) # (0,0) are either finite-rank or bounded, and their products are all compositions of
bounded (finite rank) operators with finite rank (bounded) operators, thus compactness of
K? is immediate. O

Now we prove a uniform resolvent bound needed for the Lipschitz continuity of the inverse
scattering map. We will prove uniformity over sets of the following form.

Proposition 6.1.4. Fiz a € R and a bounded subset of V,, as in Definition 1.5.5. Then,
Sup H(I - K2)_1HB(Y) Sav. L.
r>—a

The first step is to obtain a large-x bound on the resolvent.

84



Lemma 6.1.5. Fiz a € R and a set V,, as in Definition 1.5.5. Then, there is a number
R > 0 depending on V,, so that

sup [ (7 — KQ)_lHB(Y) ST

=R
Proof. Our goal is to show that |AB| — 0 as z — co. Since
(I-BA)'=1+B(I-AB) 'A

and [|Al|x): | Blgx) are bounded uniformly in z for scattering data in S, it suffices to show
that (I — AB) ! is uniformly bounded for large x. But

I—Cop —Cn
I —AB =
—Cw I-Cu
where
Coo = AgoBoo + Ao1B1o Cor = Ao Bo1 + Ao B
Cho = A10Boo + A1 By Ci = AwBo1 + A B

The explicit form of Cyg, Co1, Cio and Cy; is given by (6.2.13)—(6.2.16) respectively. It is
shown in Lemma 6.0.5 that

T—+00
uniformly in p in a bounded subset of H**(R) From the explicit formulas, it is easy to see
that

||A01H£(<C",L2(R))7 ||A11H£(<C")7 HBOlHﬁ(C",B(R))? ”BH”L((C”)

vanish as x — 0o owing to the exponential decay in x of factors e?*#*. On the other hand,

lAoolsr2ry »  1Boolseary:  [Awoleemyeny s 1Bl grzm.cn

are all uniformly bounded for p in a bounded subset of H*? and {\}"_, in a bounded subset
of C*. Thus it remains only to estimate |[A10Boo (2(r)cny- A single entry is given by

C [hO)p(e V] () —— iy ds
(B = | =l e
For h € L*(R) and z € C™, we have
1 1 1 1 _
o 3 _zh(s)ds =5 s (C’ h) (s)ds

since I = Ct—C~, C"h is the boundary value of a function analytic in the upper half-plane,
and we may close the contour to show that the contribution from the C* term is zero. It
follows that
[(A10Booh)]; = Cr[(AooBoo)h] (A;)
so that
|[(A10Booh)];| < c(ImA;) [[(Aoo Boo) 1| 12w

which goes to zero as x — oo uniformly in p in a bounded subset of H*?(R) and h € L*(R)
by Lemma 6.0.5. O
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Next, we bound
sup (I — K?

-1
—asz<R ) HB(X)

using a continuity-compactness argument. We will embed V,, in a compact subset of the
space Zy = Wy x (Cy)™ x (C*)™ where Wy is given by (6.0.11). The proof of Lemma 6.0.7
can easily be adapted to show that the map

[—a,0) x Zy — B(X)
(@, (0, {Ck} k=1, M }h=1)) = K
is continuous. By mimicking the arguments given there we can prove:

Lemma 6.1.6. Fixa€ R, R > 0, and a bounded subset of V,, as in Defintion 1.5.5. Then,

I— K% ! <. 1.
sup [(1 = K27y San

—a<T<

Proof of Proposition 6.1.4. An immediate consequence of Lemmas 6.1.5 and 6.1.6. O]

6.1.1 Lipschitz Continuity of the Resolvent

The resolvent (I — K?)~! depends on z as parameter; we now use the notation (I — K?)™!
to emphasize this dependence. The operator K lifts to an operator K* on the space

X! = L*([~a,»), X) (6.1.14)

via the formula

Immediately from Proposition 6.1.4, we have

Proposition 6.1.7. Fiz a € R and a set V,, as in Definition 1.5.5. Then
2\—1
H(I - (Kﬁ) ) HB(XH) Sav, 1

Denote by v, and v, elements of the set V,,. We write K f = K ﬁ(vn) to emphasize the
dependence of K* on the scattering data. For v, = (p, {Ck, \x}7_;) define

lonlls = llpl g2z + sup [Cl+ sup |Ael.

1<k<n 1<k<n

Lemma 6.1.8. The estimate
HKﬁ(Un) - Kﬁ(U;)HB(xﬁ) < a,vn lvn — U;LHV,,L
holds.

We omit the proof, which is an easy consequence of the explicit formulae (6.1.3) — (6.1.10).
It is clear that a similar estimate holds for |K?*(s)? — Kﬁ(s’)ZHB(XH).

From Lemma 6.1.8, Proposition 6.1.7, and the second resolvent formula, we immediately
obtain:

Proposition 6.1.9. Fix a € R, ¢ > 0 and a set S as in Definition 1.5.4. Then, for any
s,s' €S,
(1 = KA ()™ = (1 = KX ™ | gixey Saces 5= s
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6.2 Mapping Properties
From (6.1.12) we obtain an integral equation for v’ (z, \) := vy;(z, ) — 1

Vi =1+ K[V (6.2.1)
In this case the operator L = AB where AB is given by (6.1.13) and

V= (v — L {y; —1}) = (V(2,0), (2, \) ... (2, A

We now use the preceding analysis to show that the reconstruction formula (1.2.20) defines
a continuous map from S x (C* x C,)" to H*?*((—a, o)).
We want to obtain the following two lemmas:

Lemma 6.2.1. Suppose that the maps

(P, { M, Cr}iizt) = v (6.2.2)

defined on a bounded subset of V,, are Lipschitz continuous. Then

(P» {)\k’a Ck}?::l) =42

18 Lipschitz continuous.

Lemma 6.2.2. Suppose that the following functions

Vll(ﬂl,)\) — 1, ﬁun(q:, )\)/813, 82V11/a$2, (623)
al/ll(QT, )\)/&\)\, <)\>_1&\21/11($, )\)/&\)\2

are all Lipschitiz continuous maps from a bounded subset of V,, to L*((—a,0) x R). Then
the map

(P> {)\k, Ck}zzﬁ — Q1

18 Lipschitz continuous.

The proof of Lemma 6.2.1 and 6.2.2 follows directly from the expressions given in (6.0.1)—
(6.0.4).

To get the Lipschitz continuous maps (6.2.2) and (6.2.3) listed in Lemma 6.2.1 and
Lemma 6.2.2 we study the mapping properties of the integral equation (6.2.1) and also the
following equations involves derivatives in A and z:

W = £ + (K[ (6.2.4)
QO W) = )y + O K] (6.2.5)
W), = £ + K [vd] + K[(v]).] (6.2.6)
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(Vg)m = fiz + QICI[(V%)x] + ICM[VH + ’C[(Vi)xw] (6.2.7)

First, we show that the inhomogeneous term

£ = Alf] = (fi(z, ) i) o fia )

has the required properties. For scattering data
(p. {0, Cii_y) € S x (C* x C,)"

we give the explicit formulas:

Fa,A) = i@\ + f@ ) + fi@,\) + fi(z, ) (6.2.8)

where

i J

1 (s)e™%s (s :
s T, A) = (J P Ci )\ 62“’“”)

R S—Ak 2_7TZ

’ ~ A=A A — A

s _ N7, 2z M
fite ) = 0 {0 [p(0)e 7] (Do)} ()

We can get f¥(x, )\;), 1 < j < n, by substituting A; for A € R and changing the corresponding
Cauchy projection C' to a Cauchy integral over the real line.

Lemma 6.2.3. For any fived x € (—a, o), f* given by (6.2.8) and indices i = 1,2,3,4 and
1 < 5 <n we have that

i), off(e Ny fox, & fi(x, X)) /027

are all contained in some bounded set of C.

Lemma 6.2.4. For f* given by (6.2.8) and indices i = 1,2,3 and 1 < j < n we have that
fi@ ), off(x.N) 0w, & fi(x,A;)/02

all belong to L*([a, +o0) and

i, N, off(x,N)/ox, *fFox?,
Off(w, \) /0N, (N1 f(x, N)/oN
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all belong to L*([—a, +o) x R). For f; we have the following estimates:

i )], = A1) lolio ol (6.2.90)

[CAH I Y (6.2.9b)
D oy < Dl ol (6:2.9¢)
|G, ), = @+l ol e (6:2.94)
O )], € @) ol (6.2.9¢)

Remark 6.2.5. Since f and its derivatives are bilinear in the scattering data (p, {\¢}, {Ci}),
the estimates used to prove the lemma above can easily be adapted to show that f and its
derivatives are Lipschitz continuous as a function of (p, { A\, Cx}i_;) € S x (Ct x Cy)".

Proof. We establish the inequalities (6.2.9a)-(6.2.9¢) and the other part of the lemma is
trivial. It follows from (6.0.6) that, Fourier transforming in A,

Fie.6) = —f 5(E— &) (@) e, (6.2.10)

Note that, in (6.2.10), £ < 0 and & = = = —a. We'll sketch the proofs assuming a = 0 and

when a > 0, we simply write
0 0 o]
J -J.+]
T T 0

and use the fact that | — a|] > |¢]. The same conclusions follow.

Using (6.2.10) and the inequality (1 + |z]) < (1 + |§ = {'[), we easily recover (6.2.9a)
using Hp’HL1 < Hp HL2 ., Young’s inequality, and Plancherel’s theorem. Estimates (6.2.9b)
and (6.2.9¢) follow by differentiating (6.2.10).

To prove (6.2.9d) it suffices to estimate Hf4
we may estimate

Since 0 < z < [¢'| and |¢| < || < [€—=¢|

|2

0

n 1 -~ A~ o1 /
A+ INa+laD|[fa@ 8] < 55 | G+le=¢D[p =) +1gh1aE de.

and use Young’s inequality together with the estimate |z f'(x)| 2 < | f| 2.
To prove (6.2.9¢), we compute

=5 [ e [ e rasa (6211)
g
=2 [ e f(J PN~ €)) de'ds
21 ®

_ f e (2irg? 4 26) | EVRE — €) e de

xT
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Following the pattern of the previous arguments, it is easy to see that

(T, < QLD ol

L3
O
We now analyze the operator K, an (n + 1) x (n + 1) matrix form operator:
Koo Ko
K= 6.2.12
(k& (62.12)

where for fixed z
Koo : LA(R) — L3(R)
’C()l C"— Li(R)
]CIO : Li(R) — C"
Kiyp:Ch'—->C"

The operators K;; are as follows:

Koow’) = C [{Cy [, 0)p(o)e 2] ()} ()p()e O | ) (6.2.13)
I/b(l’,S)p(S)e_Qiszﬁ

- JR 5— A 271 2\,
E AC k
+ )\_)\k LUke

Ko (Vb(x,xl) yb(x,xn)) = - i Cc~ [%] (N (2, M) Cre 2% (6.2.14)

k=1 = M
n n \ 2i\pT o _
B Z Z RCRe™* Ve, %) Cye 2
j=1 \k=1 (/\ - )‘k)(Ak - >‘j)

K10(+*) is an n dimensional vector where the i-th entry is given by

V(e s)p()e ds

- ..d T f _ 27i .
estm_S. + Z R i )\k U3 /\kOkGQka
Ai — Mg

k=1

- - (6.2.15)
K11 (V'(z, A1) ...’ (z,A,)) is an n dimensional vector where the i-th entry is given by

213&: dS ) _ n n )\kaeZZ/\kx
_ )\ C’ *21/\kx_ )\ C f2z>\ T
(6.2.16)
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Since

(I- K™ = ( (I_‘SB)_I (]_f;A)_l )

and K = AB, the following lemma is an immediate consequence of Proposition 6.1.9.

Lemma 6.2.6. For fired x, (I — K)™! exists as a bounded operator on the space X =
L3(R) @ C™ to itself by the formula

(Rsf)(x’ ) = (I - K)_lf(‘r7 )

and
sup (7 = K) 7 lsx) Spancy 1 (6.2.17)
z€(—a,0)
such that
i@, e@ec < I )| z@ec (6.2.18)

for a fixed C uniform in x € [—a,0). Moreover, we can estimate the mized norm on the
space X* given by (6.1.1])

e8]
il < Cs |17 ) Bampends (6.2.19)

Remark 6.2.7. By Lemma 6.2.6 the map (p, {\¢, Cx}7_,) — (I —K) ! is locally bounded and
locally Lipschitz continuous from S x (C* x Cy)" to B(X)

Lemma 6.2.8. Fiz a > 0. The maps p — v} and p — (A"}, are Lipschitz continuous
from H**(R) to L*((—a, ) x R).

Proof. By the integral equation (6.2.1) and the estimates (6.2.9a)—(6.2.9¢), it suffices to show
that the maps p — ("), and p — (F1"),, are Lipschitz continuous. From the identity
(6.0.5), we compute (up to trivial constants)

F(LTh) (2, €) = gf peh) (€)5 (6~ €). de (6.2.20)
— £(p+ W)(@)f(e — ) sf RNEVRE — €) de’

where in the second step we integrated by parts. The first right-hand term in (6.2.20) has
L*((—a,0) x R)-norm estimated by [|p] 1 [l 2 |7 /| 21 To estimate the second right-hand
term in (6.2.20) we note that

\s e 1) (ENPE — ) ’<JmKﬁ%3X€NK—€Hﬂ€—€H% (6.2.21)

xz

since ¢ and &' have opposite sign. By Young’s inequality, the right-hand side of (6.2.21) has
L3((~a,50)  R)-norm estimated by [ . 7] 2. |, Hence

s

S OD N 1P oz [ 2l
L2((—a,00)xR)
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Applying this estimate with h(\) = v we see that (0.7[1*]/0)\ € L?((—a,x) x R). The
Lipschitz continuity of ©* in p together with the bilinear estimates above show that p —
0.7 [V"]/0\ is Lipschitz.

To study (A\)~10%.7[1"] /0], we use the same integration by parts trick used in (6.2.11)
to conclude that

2 Vb i 0 ' @ N
(FZ D) en =2 [ enane o0 [ 0 )€ - as de

By the Plancherel theorem, it suffices to bound the L?((—a, o) x R)-norm of the function

ee}

Gla.€) = (1+ [€])? f (5 )(E)B(E — &) de

T

As £ <0 and £ > x we may estimate

ee}

Gle,6)| < f (57 s )E)] (1+ | — EDP)[F(E — &) de”.

T

By Young’s inequality we get

G, Mz < 151w [#] 15100

where

o’

oA

which gives the desired estimate. O]

i

<P < [ +

L2

Lemma 6.2.9. The maps (p, {\n, Ci}i_y) — (W) and (p, {\p, CrYi_y) — Y 1 (1)an are
Lipschitz continuous from S x (C*t x C,)" to X*.

Proof. For integral equations (2) and (3) by computing the derivatives in A we get

Y (2, N)a = (2, \)x + Koo(V')r + Koy (ub(x,xl) yb(x,xn))/\

OO (2, N)an = OO (2, N + O oo (1)
+ {0 Ko (ub(x,xl) yb(gc,xn))/\A

We notice that the operator ICy; contains the following:
- [( | )<p(>' )eii(')x] OFF f_w (¢ — )¢

where




Taking the second derivative with respect to A we get

[T et - mac
0

™

By Plancheral’s theorem, to evaluate the L? norm we look at
1C)*R( —2)x-|re
If x > 0, then we have
1C2RC = 2)x-lez < (- —2)*h(- —2)x-r2 < [pla22
If —a < x < 0, we use the inequality:
(1€ =2+ a)?* = ¢+ (a—2)[ = [¢]”

Using Lemma 6.2.4, the conclusion v’ € L?((—a, +o0) x R) from Lemma 6.2.6 and Lemma
6.2.8 we conclude that v”(x, \), and {(A\)~'°(z, A)xx both belong to L?([a, +o0) x R). The
derivatives of the remaining components of 1/%i with respect to A are all zero. O

Now we turn to equation (6.2.6) and equation (6.2.7). We only need to show that the
inhomogenous terms belong to L3 @ C".

Proposition 6.2.10. Suppose that p € S and {Ci}}_, and {\;}}_, in some bounded set
of C. Then for any x € (—a, o), K, and K, are bounded operators on L3 @ C" and the
operator norm s uniform in x.

Proof. The study of the boundedness of the derivatives in x variables of those operators
given by (6.2.13)-(6.2.16) only requires the analysis of the mapping properties of Cauchy
projection C', from (6.2.15). The analysis of other parts of the operators is either trivial or
has been done in Paper 1. For fixed x and some h € L*(R), we have

C* Th()p(e 0] (s) = j iy i+ )] et (6.2.22)
Computing the first and second order derivative of z, we get
O [h( o) 0], () = - w (e #(+ )] @as (6229
—2ia(- L[ 1 2
O™ [ 0] ) = | [ (- + )] e (62.24)

Using Plancherel’s identity we have
[C*[A()p()e® O] |2 < [hl 226 .

and A )
|CH [h()p()e O] |0 < ]l 2
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In our case, we have h = 1’ and we know from Lemma 6.2.8 that

» b v’ p
[72]r < KOV N2 < | = + 1] e
O | 2
and the two terms on the right hand side both belong to X* by Lemma 6.2.9. O

Remark 6.2.11. Since all estimates in the proof of Proposition 6.2.10 are bilinear in the
scattering data (p, {\x, Ck}i_q), it follows that (p, {\g, Ck}7_;) — Ky and (p, { A, Cr}i_y) —
K. are locally Lipschitz maps from S x (CT x Cx)" to the bounded operators on L3 @ C".

Lemma 6.2.12. The maps (p, (A, Cili_y) > (%) and (p, D, Cilfy) > (V) are Lips-
chitz continuous from S x (Ct x Cy)" to X*.

Proof. The conclusion follows from Lemma 6.2.6 and Lemma 6.2.10. O

6.3 Proof of the Inverse Scattering Map

To reconstruct the potential q on the left, we use the standard trick of conjugating to a new
left RHP that gives good estimates on the inverse map for < a. This RHP yields solutions
normalized so that lim,_,_, N(z,z) = (1,0), and gives a stable reconstruction of ¢ on any
interval (—o0,a). In this case, the jump matrix J, across the real line is replaced by

1 p(A)

AB(A) 1+ AN
where y
p(N) = p(¢%) = ¢b(¢) /al(C) (6.3.1)
and the jump matrices across the circles are replaced by

, 0 kae—Qi)\kx 0 — 0 0

To construct(6.3.1)-(6.3.2), we need to write & and « in terms of the reflection coefficient p.
Here we have to take into consideration the zeros of a(¢) = &(A). Since &()\) and a(A) have
the simple zeros {\; : S(Ag) > 0}, and {\, : S(\x) < 0}, respectively. we define:

N N
o /\_)\ku A— /\k
A) = o’ = : 6.3.3
0 = [ a0 ,!lm o (6:3.3)

%(A) is analytic in the upper half plane where it has no zeros, while 7 is analytic in the lower
half plane where it has no zeros. Also ¥ and v — 1 as |A\| — o0 in the respective half planes.
And both 4 and + have no zeros on the real line.

Therefore we have

} +“° 1ogv(€) € " logy(§) d¢ N
94



and

T log(€) deg " log (&) d€
bng_f_oo EoN omi Lo £\ i

Subtracting these equations from one another and using (6.3.3), we obtain

log &(\) = Z log (;\\ :;:) + JMOO log ( (5)7(5))d_§" I(\) > 0

and

o) = Stos (73t ) - [ BT sy <o

0 () <0.

(6.3.4)

(6.3.5)

From &(&)a(€) = 5(€)y(€) and the fact that that &(&)a(€) = (1 + &[p(€)2)~", (6.3.4) and

(6.3.5) can be written as

R A=N\ (TP log(L+Ep(&)) d¢
loga()\)—kzgllog()\_xk) - o et J(A) >0,
- A=\ | (TP log(L+€p(&)) d¢
lOgO&()\)—k:EllOg()\_)\k) +J700 f—)\ 2_7'['27 \S(/\)>0

Taking exponential on both sides we obtain:

50 = [T exp (_ f: log (1 : _s|§<5>|2> & )

N /\_X +a0 ] 2) ¢
o) = [T ([ oLl

(6.3.6)

(6.3.7)

(6.3.8)

(6.3.9)

A straightforward computation shows that the jump matrices (4.2.4) and (4.2.5) are related

T () () e

We now derive Cy in (6.3.2) from the set of scattering data {p, \g, C;} of the right RHP.

Recall that for the right RHP,

N*(z,\) = (%,ng(ag, A))

N (2,)) = ("1+1 (@2, %)

If a(\g) =0, then '
ny(z, Ar) = Behenis(z, >\k)62l>\k$

ni(e, M) = =By (2, A)e >
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and we have the norming constant

For the left RHP, we have

Thus

and
1 _

Res,_x, N, (z,A) = O (nfl(x,)\k),(])

eQiXkJ: _

= _B_kT(Xk) (nIQ(xv Ak’)? O)

We now define
~ 1 1

Ce = B (M) O (& (M)’

Now we arrive at the following left Riemann-Hilbert problem:

(6.3.12)

Problem 6.3.1. Fix z € R and let (j, {\, Cx}7_,) such that 5 € S and for i = 1,..n,
\i € C*, C; e Cy. Find a vector-valued function N(z, -) with the following properties:

(i) (Analyticity) N(z, z) is an analytic function of z for z € C\A where

A=Rou{ly, ... I, I, Th)

~

(ii) (Normalization) N(z,z) = (1,0) + O(z ') as z — .

(iii) (Jump condition) For each A € A, N has continuous boundary values N1 (\) as z — A
in C*. Moreover, the jump relation

N, (z,A) = N_(z,\)JL(\)
holds, where for A € R

1 p(A)
ngﬁ()\) _ efi)\:pada L
A(A) 1+ AN
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and for AeI'; UT?

6‘672»@
1 =
0 1
JLA) = 3
1 0
O p2ie) Nels
1
A— N\

We mention that solvability of Problem 6.3.1 is equivalent to the solvability of the fol-
lowing integral equation:

7= (1,0) + Cob = (1,0) + Cf (0} ) + C (5]) (6.3.13)

Suppose now that N(x, z) solves Problem 5.1.1 and for z € C\A let

d(z) 0
N(z,z) = N(z, 2) : (6.3.14)
0 d(z)7t
where
_ja(z) Imz >0
i(z) = {a(z) s < 0 (6.3.15)

Then N solves Problem 6.3.1. We recover G(z) from the formula

G(x) = lim 2i2Nyy(z, 2) (6.3.16)

Z—00

where the limit is taken in a direction not tangential to R. In terms of the Beals-Coifman
solution,

1 . = —
ix) = -+ J eGP (2, A) dA — 3 20y (2, 1) Coe 2. (6.3.17)
R i

™

Lemma 6.3.2. For any xz € R, ¢(x) = ¢(x).

Proof. The solutions N(z, z) and N(z, z) have large-z asymptotic expansions in C\R of the

form N
N_ 1 ~ N_ 1
N(Z‘,Z) =e; + ;(x) + O (;) ) N(l‘,Z) =e; + l(x) + 0O (—)

while the function §(z) given by (6.3.15) satisfies

5(2):1+0(§).
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From these formulae, it is easy to see that

~ 1
ng(ilf,Z) = ng(x,z) + 0O (;) .
We now use the fact that the reconstruction formulas (5.3.13) for ¢ and (6.3.17) for ¢ are
equivalent to the formulae

q(z) = lim 2izNyy(z, 2)

Z—00

G(z) = lim 2izNys(z, 2)

zZ—00

to conclude that ¢ = q. O

Define
I = q(z)x(z) + 4(z)(1 — x(x))
The map Z is Lipschitz continuous from a bounded subset of V,, to H*2.

Proposition 6.3.3. Suppose that q € U,,.

(i) There exists at most one matriz-valued solution M (x, z), meromorphic for z € C\X, of
the problem

C%M(x,z) = —iz’ad (M) + 2Q(z)M + P(z)M,

lim M(z,2)=1,

r—+00

M (z, z) is bounded as x — —o0.

(ii) There exists at most one matriz-valued solution M(x,z), analytic for z € C\X, of the
problem

4 M(x,2) = i ad o (M) + 2Q(x)M + P()M,

lim M(z,z) =1,

T—>—00

M (x, z) is bounded as x — +00.

Proof. We prove (i) since the proof of (ii) is similar. Suppose that M; and M, are two such
solutions. It is easy to prove that there is a matrix A(z) with det A(z) =1 and

y A(z)  Ap(z)e 7
My (z,2) = My(z,2)e” "7 A(2) = My(z, 2)
A21 (2)6222238 AQQ(Z)
Using the exponential blow-up of the factors e¥*°* as 2 — o0 together with the asymptotic
conditions it is easy to see that Ajs(z) = Asi(z) = 0 for z € C\X. We can then use the

asymptotic condition as z — +oo to show that Aj;(2) = Ay(z) = 1. Hence My = M,. O
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Proposition 6.3.4. For any v, belonging to a bounded subset of V,,, Z(v,) € U, and R o T
1s the identity map. Moreover, the map R is one-to-one from U onto V.

Proof. For given v,, € V,, we solve the Beals-Coifman integral equations for Problem 5.1.1 and
Problem 6.3.1 obtaining solutions v and 7. By Lemma 5.2.3 of Chapter 5 we can construct
solutions p and fi to the Beals-Coifman integral equations for the corresponding RHP’s on
Y. Now define

M2 =1+ | ul,Q) (0 Q) + w7 (©)) 7 5
Moz = 1+ | ple.O) (81(0) +020) o o

The functions M and M solve (1.1.7) and are analytic in z € C\Y'. Using the estimate
(6.2.9), the boundedness of (I — K)',and the construction of y from v in (5.2.1)-(5.2.2),
it is easy to see that || — 1|,» is bounded uniformly for > —a. Using this estimate, the
Riemann-Lebesgue lemma, and the formula

M(m,z)zl—i—f (u(m,{)—l)(w;—i-w;) LS

’ C—Z%

1 dC

4w a6
+J,(wm+w“)g—z2m

we see that M(x,2) — 1 as  — +o0. A similar argument shows that M(z,z) — 1 as
x — —oo. It now follows from (6.3.14) that M(z, z) is bounded as © — —oo. Hence, M (z, z)
is the unique “right” Beals-Coifman solution for ¢ = Z(v,,).

Let 7(¢) = ¢p(¢?), then My (z,() satisfy the jump relation

ARG GRS
M+(£L',C) = M—(w7C)Ux(C)7 Uﬂc(C) = gTreTede )
—7(¢) 1

This is equivalent to the statement that R o Z = Id since the scattering data for the unique
Beals-Coifman solutions corresponds exactly to the input (p, {Ck, A\e}i_;)-

Next, we prove that R is one-to-one. Suppose that ¢; and ¢, are potentials with R(q;) =
R(q2). We can construct "right” Beals-Coifman solutions M; and M, which both satisfy the
same jump relation. It follows that (M; — M), = (M; — M) _v, and (M; — M>) . € 0C(L?)
so that M; = M, by Lemma 5.2.7. But then the reconstruction formulas show that ¢; = g,
so R is one-to-one. O

Proposition 6.3.5. For any a > 0, we have q(x) = ¢(z) for x € (—a,a), so the maps
(6.0.9)—(6.0.10) together define a locally Lipschitz mapping Z on any bounded subset of V,,

(0, {Ck, Me}i1) — ¢

with the property that T (R(q)) = q on U, an open neighborhood of 0 in H*>*(R), and R o T
15 the identity map.
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Proof of Theorem 1.5.5. By Proposition 6.3.5, R o Z extends to the identity map on V', and
R is one-to-one from U to V. Theorem 1.3.8 now follows. ]

Copyright®© Jiaqi Liu, 2017.
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Chapter 7 Inverse Scattering Solution to DNLS

The purpose of this chapter is to prove that the function

q(z,t) = Z(®; 0 (Rao)(-)) (x) (7.0.1)

gives a classical solution to (1.1.3) if ¢go € S(R) n U where U is the spectrally determined set
in Theorem 1.3.2. Equation (8.1.3) from Section 8.1 is the zero-curvature representation
of (1.1.3) where ¢ = q(z,1):

by = —iC* + CQ(x, )Y + Pz, )y, (7.0.2)

2
b= =i+ 20QG i (10 ) (703)

(0 g i (gt 0
ric g & )eri ()
_i_l(_qg“q"i_qqr 0 >¢

2 0 —qq, + ¢.q

Recall that a fundamental solution to this system is an invertible matrix-valued solution
¥(x,t,¢). The computations in Section 8.1 imply the following criterion which is the key to
our analysis.

Lemma 7.0.1. Suppose that o € S(R) nU. Then q = q(z,t) € C*(R x R),

awn—( s MDY ey (O 0

and suppose that there exists a fundamental solution ¥ (x,t,() of the system (7.0.2)—(7.0.3)
for each ¢ € 3. Then q(z,t) is a classical solution of (1.1.3).

Our main result is:

Theorem 7.0.2. Suppose that qo € S(R) nU. Then the function (7.0.1) is a classical
solution of (1.1.3).

Remark 7.0.3. From the continuity of the solution map (1.3.4), it follows that if gy € S(R)nU,
then the function (7.0.1) is a strong solution of (1.1.3).

By Lemma 7.0.1, it suffices to construct a fundamental solution for (7.0.2)—(7.0.3). We
will do so using the RHP.
Suppose that M, solve the RHP

M, (2,8,¢) = M_(x,t, )™ (() (7.0.4)
My — I € 0Cs(L?)
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where

a(¢) = a(Q), b(¢) = —b(¢)-

We also have a(—() = a((), b(—() = —b(() so that (¢) is odd. We have the factorization

v=(I—w_)"(I+w,;) where

We define ’
wy,(¢) = e 7wE(Q),
so that ot g
Wy, . Wy .
e L= —i¢%ad J(wit), pn - —i¢*ad Jw;{t.

Proposition 7.0.4. Suppose that M+ solve the RHP (7.0.4). Let

Q(z,t) = _ L ad o [L,u (wi, + w;t)]

2
o la® 0
Pla.1) = iQ(x, 1) (ad o) ' Qa,1) = .
2 2
0 —lql
Then My are fundamental solutions for the Lax equations

oM,

—= = —i¢®ado(Ms) + (Q@) My + P(2) Mo
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oM

P (z,t,¢) = —2iCtad o(My) + Az, t, () My (z,t, () (7.0.9)
where
0 ¢ lq> 0 0 ¢
Ax,t,¢) = 2¢° + i +iC (7.0.10)
7: |Q|4 O 1 _Q:vq + qug 0
+ = + =
4 2 _ _
0 —lq* 0 —qq, + 47

Proof. We have already shown in Proposition 5.3.1 that, for each fixed ¢, M, obeys (7.0.8).
In Section 8.2, we show that (7.0.9) also holds. Straightforward computation then shows
that the functions v = M,e% obey (7.0.2)—(7.0.3). O

The proof of Theorem 7.0.2 is an immediate consequence of Proposition 7.0.4 and Lemma
7.0.1.

Copyright®© Jiaqi Liu, 2017.
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Chapter 8 Supporting Calculations

8.1 Gauge Equivalence

In this section, we provide details about the correspondence between the gauge transforma-
tion relating solutions u and g of DNLS equations (1.1.1) and (1.1.3) (¢ = —1) and a matrix
gauge transformation relating their respective Lax pairs (L, A) and (L', A").

We write v = w and r = g. We know from the original paper of Kaup and Newell [12]
that the DNLS equation (1.1.1) is equivalent to the zero-curvature condition !

Li— A, +|L,Al=0 (8.1.1)
where the operators L and A are given by

L = —iC%c + (U(x),
L A A
- (G )

Here U = ( 0 u),while
v 0

AH = 2{4 + CQUU
Aip = 2iCu — Cuy + iuv
Ay = 2iCv + Cu, + iCuv?.

The zero-curvature representation (8.1.1)

0 Up — Mgy — (UV),
O F g — (V) 0
gives the evolution equations
Uy = gy + (U20),,

8.1.2
V=~V — (V2U),. ( )

Proposition 8.1.1. The zero-curvature representation associated to (1.1.3) has the form
L — A +[L,AT=0 (8.1.3)
where the Laz pair (L', A’) is equivalent to (L, A) through a matriz gauge transformation and
L' = —iC®c + (Q(x) + P(x)

W (_Z) Alll A/12 (8.1.4)
Ay — Ay

IThis terminology refers to a geometrical interpretation of (1.1.4) where the matrix operators L and A
are seen as connection coeflicients.
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with

1 1
Al =20 + Cgr — Zq2r2 + 3 (qur — qrz)

A/12 = 22C3q - ng:
Ay = 2iCr + (ry

(8.1.5)

Proof. A 2 x 2 matrix-valued function G(x,t) defines a gauge transformation to a new Lax
pair

L'=GLG ' +G,G! (8.1.6)
A =GAG™ + GG (8.1.7)

Indeed, if ¢, = Ly and v, = A, then the function ¥ = G satisfies ¥, = L'U and
U, = A'U. We seek a gauge transformation in the matrix form

G(z,t) = ( e:: e_OW ) . (8.1.8)

A simple computation shows that

where, setting

we have

We wish to choose ¢ so that?
Ny 14 —%qr 0
P =iQ(ado)™Q = ( 0 qu>.

It follows that | (e | o
oz, t) = éj qrdy = éj uv dy. (8.1.9)

AL A .
We get A’ in the form A’ = (—i) ( A’H —/ﬁ ) with
21 11
Ay =20+ Cagr — ¢
1o = 2iC%q — Quue®? +iCqPr
b = 2iC%r + Cuge % +iCqr? .
We can express uze~ 2% and v,e*% in terms of ¢ and r by differentiating the identities

u = e**?q and v = e~ ?*r to obtain

uze—Qiap = {4z + iq2T7 Uaxe%(p =Tz — iqTZ' (8110)

2This condition insures that the RHP associated to the inverse scattering map will be properly normalized
for large scattering parameter.
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We compute @; using that u and v obey the equations (8.1.2)

1(* ' 3 1 )
o = (5 J_OO uw dy)t = % (v — uvy) + Z(u2v2) = —Zq2'r2 + % (qur — qry)

Finally, a short computation shows that the condition Lj — A’ + [L', A’] = 0 gives the
following equations (in the order (11), (12), (21), (22) of entries in the matrices):

i i 1
=5 (@ +ar) = 5 (r%age + 4rre) = 5 (Pee = @700) = 0
G — Qe + @0 — %rzq?’ =0

3
T 4 iree + 120 + =12¢* =0

2
i(q'r+qr)+£('r2qq + ¢’rry) Jr1
92 t t 92 T T 9
In particular, the (12) and (21) equations hold, the (11) and (22) equations are vacuous. It

shows that (8.1.3) give a zero-curvature representation of (1.1.3), and that the transformation
(1.1.2) indeed maps solutions of (1.1.1) to solutions of (1.1.3). O

(TQIQ: - qrxz) =0

8.2 Time-Evolution of Solutions to the RHP

We prove that the solutions My of the RHP (7.0.4) solve equation (7.0.9), completing the
proof of Proposition 7.0.4. The computation is similar to that presented in the proof of
Proposition 5.3.1 except that now, we take into account the time evolution. We write

g+ = hs
if
—hy =C%, g_—h_=C"k for the same function k € L*(2).
Since the RHP (7.0.4) has a unique solution, we have:

Lemma 8.2.1. Suppose that Gy =0 and G+ = G_vyy. Then G = G_ = 0.

We will differentiate the jump relation in (7.0.4) and use a commutator formula to show

that the function
oM+ B

ot
obeys Gy = 0 and G = G_v,,, proving Proposition 7.0.4. A computation similar to that
leading to (5.3.9) gives

Gi = A(ZE, t C)Mi - Mi(21<40-)

M M-
aa; +i¢tado(M,) = (% +i¢tadoM_ > Vgt (8.2.1)

We need to evaluate i¢* ad o(M..) modulo terms = 0. To this end, we use the commutator
formula (2.3.6)

("Crf mZ ¢t 2L f” (8.2.2)
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The function

—f(C)th(ny L, C) T(C)Mll(l‘, t C)
—F(Opaz(,t,¢) T(Qpan (2,1, C)

f('ra tv C) = ,u(ac, tv C) (w:cr,t(C) + w;t(()) =

and its moments

filet) = | CftQdc j=0,1,23

play a crucial role in the the computations since the solution of the RHP has the large-z
asymptotic expansion
M(z,z) ~1——=— — —=—+ ... 8.2.3
(z,2) z22mi 2% 2mi ( )
By symmetry, fo and f; vanish on the diagonal, while f; and f3 vanish off the diagonal, so
that in particular

ado(f1) =ado(f;) =0. (8.2.4)
We recall the reconstruction formula
0 g\ _ 1
< 7 0 ) = —5-ado(fo) (8.2.5)
— _lf ( 0 . Mll(l‘7C)T(C)672i82x ) dc
T s \ —paa(x, O)F(C)e** 0
which implies
fo=n( U 4 (8.2.6)
0= g 0 . L.
The formula
My =1+C*f (8.2.7)
implies that
1 0 —q\ . 1 0 —q
1—My)=— = — M 2.
< 2 22’(—6 0) 2@'(—6 0) g (8.2.8)

where the last step follows from the fact that M4 = 1. In the course of the computations,
we will need to evaluate the off-diagonal matrix fs. It follows from (7.0.8) and the identity
of .
o —icado(n)+ Q@)+ PO)S.

Hence

%f 0 L, (—i¢*ado(f) + ¢Q(x)f + P(x)f) d¢

= —iado(fe) + Q(x) fL + P(z) fo. (8.2.9)
Lemma 8.2.2. The identity
oM. .
Er 0. (8.2.10)

holds.
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Proof. Recall that My = p(1
We claim that (du/dt)(z,t, - )
We prove that (du/dt)(z, t,

+ w},) where w,, is given by (7.0.6). Assume that r € S(X).
€ 2( ). If so, then (8.2.10) follows by differentiating (8.2.7).
-) € L*(X) using the Beals-Coifman integral equation satisfied

by p
p=1+C"(pw;,)+C (pw,,) =1+ Cyp.
We obtain 5 5
o 3 1
P —(x,t,¢) = g(x,t,¢) + Cy (6t> (8.2.11)
where

[ owy, L Ow,,

Since pp— 1 € L*(X) and owy, /ot € L*(X) n L2(%), it follows that g(,t, ) € L*(X) for each
(z,t), and eq. (8.2.11) for du/dt can be solved in L?(X). O

From the commutator formula (8.2.2) (applying it successively for j = 4 and j = 3)
and the identity (8.2.4), we have

2i¢*ad o (M) = —C?’%ada[fo] — g% ad o [ f] (8.2.12)

= 20Q() M, +20Q)(I - My) - C ado[£]

2
= 20Q)M, + Q) fo+ Q@i + X py - Sado

We wish to re-write the last four terms on the right-hand side of (8.2.12) as coeflicients times
M, modulo the equivalence relation. We will see that terms involving f; cancel so we will
keep separate track of these. We have (using again the identity matrix 1 = M4 + (1 — My))

Cz _ 2 |Q|2 0 . |<]|2 0 2
EQ(m)fo =i ( 0 —|qP ) My +i ( 0 —|g? ) [¢*(1 = My)|
( g> 0 )
0 —|Q|2
(5 e ) [eam v o
0 |q|2 27m
= 2 |q|2 0 C 0 |Q|2q
i (1 ) v s (e )

=

(by (8.2.2), m=2) =ic? +(x)

0 lq*q ) ( lal* 0 )
~ 1— M)+ —
gPg 0 ) Dtolo e )

(by (8.2.2), m=1) =ic?



Collecting all the terms, we get

2i¢*ad o (M) — 2C3Q(x) My (8.2.13)
—i?|g? 0 1 0 ClaPq
* ( 0 i¢?qf? ) Me=3 ( —Clgl’7 0 ) My

We are now able to simplify the right hand side of (8.2.13) using (8.2.9):

%Q(m)(ad o)'Q(x) f1 + %Q(x)fQ

and

( 0 (lg’q )
—Clgl’7 0
M

Eq. (8.2.13) now becomes the equivalence relation:

2i¢*ad o (M) — 2¢*Q(x) M- (8.2.14)

—ilq* 0 ) i ( lg* 0 )
+ . M. -2 M
( 0 gl ) a4\l 0 —[g* )T

0 (g L[ —qq, + ¢.q 0 .
(. M, + = @ M, = 0.
(z@ 0 ) i+2( 0 R Rl

We combine (8.2.14) with Lemma 8.2.2 and Lemma 8.2.1 to obtain eq. (7.0.9) and conclude
the proof of Proposition 7.0.4.
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