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ABSTRACT OF DISSERTATION 

POTENTIAL ALZHEIMER’S DISEASE PLASMA BIOMARKERS  

In this series of studies, we examined the potential of a variety of blood-based 
plasma biomarkers for the identification of Alzheimer's disease (AD) progression and 
cognitive decline. With the end goal of studying these biomarkers via mixture modeling, 
we began with a literature review of the methodology. An examination of the biomarkers 
with demographics and other health factors found evidence of minimal risk of confounding 
along the causal pathway from biomarkers to cognitive performance. Further study 
examined the usefulness of linear combinations of biomarkers, achieved via partial least 
squares (PLS) analysis, as predictors of various cognitive assessment scores and clinical 
cognitive diagnosis. The identified biomarker linear combinations were not effective at 
predicting cognitive outcomes. The final study of our biomarkers utilized mixture 
modeling through the extension of group-based trajectory modeling (GBTM). We modeled 
five biomarkers, covering a range of functions within the body, to identify distinct 
trajectories over time. Final models showed statistically significant differences in baseline 
risk factors and cognitive assessments between developmental trajectories of the biomarker 
outcomes. This course of study has added valuable information to the field of plasma 
biomarker research in relation to Alzheimer’s disease and cognitive decline. 
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CHAPTER 1 

Nonparametric Regression Review 

Introduction 

Before we dive into this review of nonparametric regression methods, it is important to 

understand what we mean by nonparametric. The word can take meaning in two very distinct ways. 

The perhaps more abstract definition of nonparametric describes a set of methods used to model 

the data when it cannot be described by a finite number of parameters. More commonly 

nonparametric statistics are defined to be statistical methods in which the data at hand is not 

required to fit into one of the parametric families of distributions [1]. Both definitions of the word 

are intuitive, and it is useful to note that they are not mutually exclusive. 

There are many methods of nonparametric regression, along with many justifications for 

its use over (or even hand in hand) with the much more popular forms of parametric regression. In 

nonparametric regression we take our information from the data at hand as opposed to labeling it 

with a parametrized function. Immediately we can see that nonparametric regression will be of 

significant use if the data we have does not readily fit into a known family of parametric functions. 

Nonparametric regression methods arguably require more justification of use, as using less 

common and less well-known methods than the popular parametric methods and comes with the 

added burden of correctly conveying results and motivating readers to think outside their comfort 

zones. The added burden may not always be worth the trouble [2], but nonparametric regression is 

vastly underused in situations where it would be greatly helpful. The hope of many is that one day 

nonparametric statistics will be as common as its parametric counterpart [3]. 

 

Motivation 

Section 1.1 of Hardle (1990) [4] presents many of the most common motivations behind 

the use of nonparametric regression over standard parametric methods. Among them is the ability 
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of nonparametric methods to model complex, nonlinear relationships in a variety of situations. 

These models do not have to conform to a certain shape or pattern, which is thought to be very true 

of many real-world processes even though parametric models are most often used to describe them. 

This is thought to give better predictions with less bias for data where the underlying function is 

truly nonparametric, an idea that is difficult to dispute.  

Another highlighted motivation is the flexible treatment of outliers with nonparametric 

methods. While there are some modern techniques for dealing with outliers in parametric methods 

these days, such as methods with high breakdown points [5], the point can also be made that when 

using parametric methods that the reason some observations are labeled as outliers is not that they 

don’t fit in the pattern of the data, but they don’t follow the prescribed parametric distribution. This 

is not the case with nonparametric regression, and these methods offer a variety of down-weighting 

techniques that are a good alternative to many of the parametric techniques that entirely ignore or 

throw out the outliers.  

Nonparametric regression also enables the estimation of derivatives, where this estimation 

can be limited in parametric regression. For example, 2nd degree polynomial regression provides a 

strictly constant second derivative, while linear regression does not provide a second derivative at 

all. While some fields of interest have no use or need for a higher order derivative there are some 

areas where it becomes quite essential. A very popular example of where the second derivative is 

very useful in a real-world situation is in human growth data, as discussed in Ramsay [6] chapter 

6, and Charnigo (2011) [7].  

Although parametric and nonparametric statistics are often at odds, using them together 

can be an invaluable resource that is not taken advantage of often enough. There are countless ways 

the two fields can be used to complement each other. For example, nonparametrics can be used as 

a tool to confirm your belief that the use of a certain degree polynomial is appropriate for the data.  
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Challenges 

As with many things in life, some of our strengths can also be viewed as weaknesses, and 

nonparametric regression is no different. Since we are deriving both the structure and estimates for 

the model from our data, we require a larger sample size to do nonparametric regression, which is 

not always possible or desirable. Putting so much emphasis on the data can lead to overfitting in 

different ways than we often see in parametric statistics. When fitting these nonparametric models, 

it is easy to allow the training data to control the fit too much, giving us higher variance and lower 

bias in the training set, and if we let this happen our models can be less effective when we have 

testing data or new observations. See Mroz and Savage (1999) [8] for a detailed discussion on 

overfitting. 

One important distinction between parametric and nonparametric statistics is the use of 

parameters. In parametric statistics a parameter is a defining characteristic of a certain distribution 

that we can pull from our data, like the mean and standard deviation. Most families of distributions 

only require a couple parameters to describe them in their entirety. This is quite different from the 

tuning parameters we find in nonparametric regression. Here, tuning parameters are values used to 

specify the conditional mean function that have to be chosen in order to fit the nonparametric 

model. As we will discuss deeper later, there is no one correct value of a tuning parameter and their 

selection can be considered one of nonparametric regressions greatest weaknesses.  

Nonparametric statistics is no stranger to the curse of dimensionality [9], in fact 

nonparametrics may be even more impacted by the curse than parametric statistics. For this reason, 

it is often the case that semi-parametric methods be explored, such as in Martins-Filho and Yao 

(2011) [10], in order to try to balance the strengths and weaknesses of each field, though we will 

not be discussing semi-parametric methods in this paper [11]. Additive models (where interactions 

are not allowed) have also been used to mitigate the effect of the curse of dimensionality but making 

the assumptions that there are no interactions in your model should not be taken lightly.  
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Local Regression 

The first nonparametric regression method we will explore is local regression, which has a 

fairly intuitive name (often a rare occurrence in this field). Local regression originated in the 70’s 

[12] and was an expansion of kernel regression, the second method we will discuss in this chapter. 

The goal of local regression is to minimize a locally weighted sum of squares, usually over a grid 

or set of x values that span the support. The weights vary depending on proximity of the input value 

from the subject, xi, to the grid value, x0, for most choices of weights. The closer xi is to x0 the 

higher the weight and vice versa. This is quite different from ordinary least squares regression 

(OLS) where the goal is to minimize the global sum of squares one time. With local regression we 

locally estimate µ and µ´. With this method we can essentially “connect the dots” to get a global 

estimate, but these estimators are not self-consistent, a topic we will dive deeper into later [7].  

In 1979 Cleveland improved upon the standard local regression by introducing his robust 

locally weighted regression as a way to reduce the influence of outliers even more [13]. The first 

step in Cleveland’s procedure is standard local regression. What makes this procedure more robust 

over the standard is the reassignment of weights based on a point’s residual in the standard local 

regression step. Once the new weights are determined we fit another local regression using them 

and the cycle continues until it is terminated, or a convergence criterion is met. Just as before, the 

farther a point is from x0 the smaller its weight will generally be, which makes good intuitive sense. 

This is a kind of supervised learning technique and is less sensitive to fluctuations in the training 

data than standard local regression. See Hastie et al Ch. 2 [14] for more information on supervised 

learning. 

The range around x0 used for each local estimation is also important because, although they 

will inevitably overlap, the larger the range the smoother the overall estimation will end up, 

potentially producing high amounts of bias. Alternatively, smaller ranges lead to overall estimates 
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that are more tailored to the training data which can lead to higher amounts of variance. Choosing 

the range, as with all other tuning parameters, is a balancing act and should be treated with care. It 

is important to remember that this method only produces a set of smoothed points. These points are 

often connected for a visual representation of the pattern along the data, which can be used 

advantageously but also misinterpreted easily. For example, there should not be too much meaning 

assigned to small artifacts in the curve and unfortunately it often requires over-smoothing to get rid 

of them, so there needs to be an understanding of what the curve represents. 

Though local regression is highly touted there are quite a lot of tuning parameters that need 

to be set, three and a weight function, but Cleveland provides much guidance on their selection. 

There are four fairly intuitive requirements for the weight function and the author suggests that the 

tricube weight function can be used in nearly all situations. Among the other parameters that must 

be set is the order of the polynomial used for the local regression. Here the author suggests that 

using degree 1 gives adequate fit while remaining computationally unburdensome. Another 

parameter to set is the number of iterations to carry out. Again, the author suggests 2 iterations is 

enough based on vast experience. While I am willing to accept a degree 1 polynomial without much 

discomfort, I think given the computation power of popular programs like R these days it would 

not be difficult to define a convergence criterion for the continuation of these iterations. The final 

and most complicated parameter that must be chosen is used to determine the level of smoothing 

that is to be done. This is where the dreaded subjectivity of smoothing methods comes into play. 

The smoothing parameter is much more sensitive to the data at hand and must be chosen carefully. 

With its value ranging from 0 to 1 it is a balancing act between minimizing variability of the 

smoothed points and staying true to the pattern in the data. This is not to suggest that 0.5 is the 

optimal choice to balance the two. All data sets are unique and different values of the smoothing 

parameter will be appropriate. Though the suggestions for this parameter are much softer than 

previous ones, the author suggests choosing a value between 0.2 and 0.8 for most data and starting 

with a value of 0.5 when there is less of an idea of what to use.  
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Plotting a smoothed curve through a scatter plot can be beneficial for seeing general 

patterns in the data but it is very easy to over-fit the line and the limits of such overfitting are quite 

subjective. One of our biggest assets in evaluating appropriateness of fit, as supported by Loader 

[15], is various plots of our data and their residuals. As Loader suggests, there are many ways to 

detect an inadequate fit to your data in the direction of undersmoothing, but once you achieve a 

good fit it can be difficult to use residuals to assess if you’ve gone too far and overfit the data.  

Local regression can be a good method to visualize a smoothed curve through a 2-

dimensional scatterplot, but most real-world problems involve many more than 2 dimensions. 

Though having outliers is certainly not the only reason to use nonparametric regression, both local 

regression and its robust counterparts seem to be a good way to handle fitting a nonparametric 

curve through the data if you have reason to believe you do not want your fit largely influenced by 

them. But what happens if the outliers in your data are genuine data points? Should you really be 

down-weighting them if you have no reason to believe that these points are not in some way truly 

representative of the pattern in the data at hand? Maybe not, but then again, one can view this 

method as a way to model the data in a desirable way without completely throwing out valid data 

points (which is often frowned upon). Nonparametric regression is also not the only solution to 

such problems. There are many good parametric techniques that have been designed to be robust 

to outliers in the data, like least trimmed difference [16] and least median of squares [17]. This brief 

discussion is here to serve as a reminder that there are many things you must consider when 

modeling in the real world, and not all of them deal with the goodness of fit.  

 

Kernel Regression 

Kernel regression, which originated in the 60’s [18,19], gave rise to the previously 

mentioned local regression and lives in the realm of local location estimators along with local 

regression and nearest neighbors, which will be briefly discussed at the end of this section [20]. 
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While some could argue that kernel methods were improved with local regression it is still a 

common nonparametric regression procedure, in part because it is easily useful for the proving of 

theoretical results [21]. In essence, kernel regression takes a weighted average of yi observations 

whose xis are near every x0 observation in the training data set to obtain an estimate of the response 

function. The nature of the weighted averages is determined by choice of kernel function, of which 

there are many common choices including Gaussian, Epanechnikov [22], and tricube (see [4] 

sections 3.1 and 4.5). It is usually nonnegative and symmetric with a peak at 0. When choosing a 

kernel function, it is often more natural to pick one with an infinite support set, like the Gaussian 

kernel, because we would not want to throw away any real-world data. On the other hand, choosing 

a kernel with a compact support set can be much easier in terms of theory and computation. When 

using a kernel with compact support you can easily end up with a response function that is not 

smooth. For example, when using a uniform (-1, 1) kernel the response function will resemble a 

step function. This may be appropriate in some cases but not others. Kernel selection is often 

subjective, but some procedures have been proposed to make it less so, as in Ding and Liao (2017) 

[23].  

While kernel selection is very important it turns out that the estimated response function is 

much more sensitive to the selection of the smoothness tuning parameter h [4 section 4.5], which 

is called the bandwidth. The bias-variance tradeoff is always a hot topic in the modeling world [24] 

and we can see this directly relates to kernel regression through the bandwidth parameter. The 

bandwidth parameter h must be carefully chosen so that it is not too tailored to the training data set 

at hand, yet reasonably minimizes the variability (see Hazelton [25] for more on bandwidth 

selection). Smaller bandwidths lead to noisier estimates while larger bandwidths lead to smoother 

estimates (h is constrained to be a positive value and directly depends on the range of the data).  

Evaluating bias when using kernel regression can be difficult because it relies on an 

asymptotic formula [4 (chapter 4)] which we most of the time do not have enough data to 

approximate, and also includes an unknown functional of mu. Estimating the variance tends to be 
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much easier because it does not contain an unknown functional of mu and it is proportional to 

1/(nh), where n is the sample size and h is the bandwidth. Estimation of the variance does, however, 

use sigma^2 and often the assumption of homoscedasticity is made, which is not always reasonable 

[26]. 

As a way to mitigate the effect of biases sometimes higher order kernels are used. These 

kernels can be negative, where standard kernels are generally strictly positive, which can lead to 

some questionable estimates. Using higher order kernels is much more complicated and they are 

used far less often because substantial reductions in bias are seen only in asymptotically large data 

sets, which are less uncommon than they were in the past, but still not often used. See Hardle 

section 4.6 [4] for more discussion on the issue. As an alternative, local regression is often used 

over higher order kernels as a solution to unwanted bias, though it is important to note that local 

regression does not entirely eliminate it. 

Kernel regression, in addition to being expanded upon with local regression, has also been 

adapted to what is now known as nearest neighbor’s analysis [27]. In kernel regression the 

bandwidth is specified and held constant for each local value of x0, which means that a varying 

number of neighboring points may be used for estimation at each x0, depending on how dense the 

region is. Nearest neighbors’ analysis takes this idea and adapts it so that instead of fixing the 

bandwidth and letting the number of neighboring points to vary, the number of neighboring points 

used for estimation at each value of x0 is fixed and the bandwidth is allowed to vary to accommodate 

the specified number of neighboring points.  

 

Self-consistency 

Self-consistency is a term coined by Charnigo and Srinivasan (2011) [7] to represent 

interchangeability of estimation and differentiation. It seems obvious that self-consistency would 

be a desirable property of most estimates, though this is unfortunately the exception, not the rule, 
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as we have seen with local regression so far. Some methods like kernel regression and spline 

smoothing can be made to be self-consistent, but at the cost of much higher bias, which is not 

desirable. The authors propose a new estimator, the compound estimator, which has many desirable 

properties. The estimator is formed via a weighted average of many polynomials defined with 

pointwise estimators and is infinitely differentiable, achieves nearly optimal convergence rates in 

large samples, and holds self-consistency. It is important to note here that the compound estimator 

remains infinitely differentiable and self-consistent regardless of the method used for the pointwise 

estimation. A reasonable method for pointwise estimation is required for probabilistic consistency 

to hold. 

 

Compound Estimation 

Compound estimation should be considered as a strong candidate for use in nonparametric 

regression scenarios, though it is not without issue. While compound estimation out-performed 

both local regression and smoothing splines in simulations, there was no R package created for 

convenient use of this method. This largely decreases the frequency of its use because it can be 

computationally intensive to compute the convolution smoothing tuning parameter and it can be 

difficult to convince a researcher to use new methods, much less ones that have not been 

implemented in their preferred software program. 

 

Tuning Parameters 

Tuning parameter selection is arguably the most subjective aspect of nonparametric 

statistics, as we have seen with each method so far. Choosing tuning parameters wisely can make 

or break any nonparametric analysis [28], so it’s very important to clearly state how they are chosen 

because poor selection can easily discount the validity of your results. That is not to say that there 

is one correct way to choose your tuning parameter, in fact there is no one correct way to do so. 
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Selection techniques can range from very subjective selection based on experience, as Cleveland 

suggested when we discussed robust local regression, to largely not subjective when choosing the 

parameters strictly based on some criterion, though choosing which criterion to base your decision 

on can be seen as subjective as well. More often than not it is very difficult to know whether you 

have chosen appropriate values for your tuning parameters because in the real world we do not 

have the true mean response function to compare fitted values to, so we have to compare them to 

the raw data. This is as opposed to simulation studies where we know exactly how the data 

originated and are able to confirm the best selection of the tuning parameters [29].   

There is an endless list of criteria that have been used for tuning parameter selection, but 

here I will highlight just a few of the most well-known, and perhaps one that should be added to 

that list. Among the most widely used criterion are generalized cross-validation (GCV) and the 

Akaike information criterion (AIC). GCV and AIC are common and easy to use as they have been 

used for quite some time and implemented in many software programs like SAS and R. However, 

they are not without their shortcomings. Both of these methods tend to produce highly variable 

estimates of smoothing parameters that typically lead to under-smoothing [30]. Arguably one of 

the biggest problems in nonparametric statistics is the continued use of general methods of tuning 

parameter selection, like AIC (which originated for parametric models), that do not account for the 

complexity of the situation. Hurvich et al [30] proposed an improvement to AIC for the selection 

of smoothing parameters in nonparametric models, AICc. They showed that their corrected criterion 

was less biased than the standard AIC while also producing estimates of the smoothing parameter 

that did not tend to under-smooth and it has been referenced even in recent work on tuning 

parameter selection for use over the classic AIC [31]. Another very common criterion for selection 

is Mallows Cp criterion, which gives estimates very similar to GCV [31].  

The vast majority of tuning parameter selection criteria have been developed in regard to 

the mean response function, but in 2011 Charnigo et al developed the generalized Cp criterion (GCp) 

for tuning parameter selection with a particular focus on derivative estimation that can be used with 
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multiple nonparametric regression methods [32]. It was developed to emphasize the estimation of 

the derivative by defining a proxy for error sum of squares in estimating the derivative mu-prime(x). 

This criterion can be used with many of the most popular nonparametric regression methods, like 

kernel smoothing, local regression, and smoothing splines. The main requirement of this criterion 

is that at any fixed value of the tuning parameter the estimated derivative should have a linear 

representation in terms of the observed outcomes. This also makes bias and variance calculations 

easier. Once the tuning parameter is selected the estimator is no longer linear because a nonlinear 

relationship exists between both the tuning parameter and outcome and the model fit and the tuning 

parameter. See Charnigo et al 2011 for much more detail and theoretical results [32]. This criterion 

was tested against a multitude of other selection criteria and out-performed nearly all of them in a 

variety of settings. This criterion was later expanded to a multivariate GCp (MGCp) for use with 

multiple covariates (Charnigo and Srinivasan 2015) which appeared in simulations to not be prone 

to undersmoothing like many of the traditional criteria based on the mean response function.  

 

Conclusion 

As we have seen, there are many things to take into consideration when deciding whether 

or not to use nonparametric regression methods. Often in research there is some form of hypothesis 

test desired to test the presence of a relationship. Parametric statistics are well suited for this, but 

nonparametric statistics is often better suited for characterizing a relationship as opposed to testing 

for one. While it is very common for professionals from other fields to perform some statistical 

procedures, they must be careful and attentive to detail if they try the nonparametric route. It is 

important for statisticians to accurately convey the complexity of these models to others, as the 

theory of nonparametrics can often be quite dense [33,34]. 

Aside from the careful work a nonparametric method requires, the statistician carrying out 

the methods must also consider their audience and whether or not they will be pleased with and/or 
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understand the results of a nonparametric model. All of this is to say that parametric and 

nonparametric statistics both have their place, and we should be careful to use the best method for 

the task at hand.  
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Mixture Modeling Review 

Introduction 

Mixture modeling can be thought of in more than one context in statistical analyses. In one 

case we can think of the mixture density estimation problem where you know that your population 

density is a mixture of a certain number of sub-populations (with certain mixing proportions), but 

information on the sub-populations is not available for the observations in the sample, similar to a 

situation where we have an unobserved group indicator that we know exists even if we can’t 

identify it. In this situation you can use the model to estimate which sub-density an observation 

belongs to if the variable on which the density is split is not available. The second, less common 

context in which we think of mixture modeling is when you have access to all the variables you 

need, including a variable on which you believe there may be multiple sub-populations. In this 

situation you would use the information available to you to try and determine if there is a split in 

the density in one of the variables that you have recorded. Having access to the variable on which 

there are yet undetermined sub-populations is an ideal situation, but unfortunately, we often are not 

able to identify said variable, much less have recorded information on it. 

True mixture distributions are often disguised as unimodal distributions. You cannot 

always see a true multicomponent distribution behind a unimodal plot, even if we know sub-

populations are present. It can be hard to see sub-groups separations if the means of the components 

we do have information on are very similar. Additionally, data visualizations get harder with more 

and more dimensions involved in the distributions.   

For the purposes of real-world applications of mixture modeling it is important to note that 

we have to restrict our analyses to mixtures containing a finite number of components. Finite 

mixture densities are densities in which the population of interest is a mixture of J sub-populations 

(or component populations) with certain mixing proportions [35]. There are many mixture densities 

containing possibly infinite numbers of components, but we focus on mixtures with relatively few 
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components for practical applications. The marginal distribution of the outcome Y is a finite 

component mixture, while the conditional distributions give the components of the marginal 

distribution. 

 

Parameter Estimation 

We will refer to J as the parameter for the number of components within the mixture 

distribution. Multiple parameters need to be estimated in mixture modeling, including the number 

of components, J, and their mixing proportions. Parameter estimation is relatively simple if you 

know J and observe x and y because you can use expectation maximization (EM). Discussed in 

more detail later, EM is intended to give an approximation of maximum likelihood estimation for 

the parameters as each iteration increases the likelihood. Even if we don’t end at the correct answer 

via expectation maximization, it will be better than the initial value. Initial values for EM are very 

important because poor choices can lead to needing a large number of iterations before convergence 

or getting stuck at a local maximum instead of being able to make it to the global maximum. 

Although EM is common, there are many other ways to estimate the parameters needed in mixture 

modeling. 

 

Evolution of Mixture Modeling 

We closely reviewed [35] for the history of mixture modeling methods. One of the first 

methods proposed for solving a mixture density estimation problem where all observations are 

unlabeled was the method of moments presented by Pearson [36]. This method was quite 

computationally intensive before computers were of popular use, as it involves lengthy algebraic 

manipulation of sample moments even in simple cases. For that reason, the method was used 

sparingly and generally for the simplest case of a mixture of two normal densities. The method of 



15 

moments has since been expanded upon and has the desirable aspect that the moment equations are 

linear in the mixture proportions.  

Perhaps more popular than the method of moments for estimating parameters that 

determine a mixture density was maximum likelihood estimation once it came about in the 1960’s 

[37,38], and it is arguably still the most common method used. Maximum likelihood estimates for 

the parameters that determine a mixture density will find the parameters that maximize the induced 

density function of a given sample of observations. With computational burden greatly decreased 

due to use of computers, maximum likelihood estimation paved the way to increasingly more 

complicated mixture solutions involving any number of Normal distributions, mixtures of 

multivariate Normal distributions, samples with labeled and unlabeled observations, and eventually 

solutions involving mixtures of non-Normal distributions. The maximum likelihood approach 

involves obtaining a set of likelihood equations and solving for the maximum likelihood estimate. 

This process is described in much detail by Redner and Walker [35].  

Even given its popularity, there are many criticisms of maximum likelihood estimation in 

this setting [39]. In spite of these inevitable downfalls, maximum likelihood estimates perform well 

when compared with other mixture density estimation methods [35].  

All the talk of method of moments and maximum likelihood is not to say that there weren’t 

other methods developed and/or frequently used in mixture modeling estimation. There were 

countless methods developed for solving mixture densities and they covered very general [40,41] 

to very specific [42] cases, with varying levels of success and applicability. However, the method 

of moments and maximum likelihood estimation represent major milestones in the evolution of 

mixture modeling methods. 

Even with the great popularity of maximum likelihood estimation, these estimates can be 

difficult to obtain. Computational problems can arise easily because of the “complex dependence 

of the likelihood function on the parameters to be estimated.” [35] With mixture density problems 
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it becomes difficult to find solutions because after the (log) likelihood function has been 

differentiated it is not linear and you must use an iterative procedure to approximate the solution.  

Many iterative procedures have been used for mixture density solutions, but one method 

that has been widely accepted and has many desirable properties is the expectation maximization 

(EM) algorithm [43]. It would almost be inappropriate to attribute the formulation of the EM 

algorithm to one set of authors because it was seemingly independently derived by multiple authors 

[44-47]. The common theme among developments of the EM algorithm is equating partial 

derivatives of the log likelihood to zero to obtain equations for the algorithm. It appears to be 

common practice for methods in the mixture density field to originate for simple cases of a mixture 

of a couple univariate Normal distributions and then be extended to more complicated scenarios, 

and the EM algorithm was no different. Although, most applications of EM have involved mixtures 

of densities belonging to the exponential family of distributions because they are particularly easy 

to implement.  

A different viewpoint of the EM algorithm was taken by Dempster et al [43]. Instead of 

building on partial derivatives of the log likelihood, Dempster et al approached mixture densities 

as “an estimation problem involving incomplete data by regarding an unlabeled observation on the 

mixture as “missing” a label indicating its component population of origin,” which seems like a 

very intuitive approach. With this formulation they showed that the mixture density setting of the 

EM algorithm was truly a special case of a more general EM algorithm which can be used in a wide 

variety of settings for “approximating maximum-likelihood estimates from incomplete data,” 

which is a very useful result. Redner and Walker [35] believe this is the best conceptualization of 

the EM algorithm in this setting.  

The iterative procedure of the EM algorithm involves an E-step and an M-step, 

unsurprisingly standing for Expectation and Maximization, which have both been made relatively 

easy with modern computation power. With each iteration the log-likelihood function increases 

(monotonically) and the algorithm relatively reliably converges to at least a local maximum for the 
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log-likelihood. With an appropriate initial starting point the algorithm can be assumed to find the 

global maximum. It is admittedly a slight injustice to summarize the entire EM algorithm to just a 

few sentences, so please see Redner and Walker [35] and Dempster et al [43] for much more detail 

on the general EM algorithm and how it specializes to the mixture density estimation problem.  

Although some would argue EM is the best method for mixture density estimation, the EM 

algorithm is not without fault. In many applications the convergence of the iterations can be very 

slow, though this becomes less and less of an issue as modern computing power continues to grow. 

As one would expect, increasingly poorly separated mixtures will take an increasingly large number 

of iterations to approximate, but promising application results have been presented by Redner and 

Walker [35] and others that suggest the EM algorithm still performs well in these cases after a 

relatively low number of iterations.  

Redner and Walker [35] also touch on two important topics for the feasibility of any 

mixture density estimation problem: identifiability and information. The Fisher information matrix 

can provide information on how good you can expect your estimates to be, while identifiability 

refers to the possibility of unique parameter estimates. See section 2.5 of [35] for an explanation 

and importance of these concepts, as well as many references for a deeper understanding.  

 

Likelihood Ratio Testing 

A popular way of determining if your data comes from a mixture distribution is by using a 

likelihood ratio test (LRT). We can test the null hypothesis that the distribution has p components 

versus the alternative that it has q components, where p and q are integers, p<q, and p can equal 1. 

The test is not restricted to testing consecutive numbers of components, though it makes good sense 

to do so. If multiple tests are performed on consecutive numbers of components, care must be taken 

in the consideration of the usual multiple testing precautions. Using a Bonferroni correction will 

likely be conservative, and the tests will not be independent.  
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A typical likelihood ratio test is easy to employ and has a chi-squared limiting distribution 

(see Statistical Inference [48] section 10.3). In the mixture modeling setting unfortunately not all 

of the regularity conditions for the test are met. A mixture of two normal distributions can be written 

as (1-α)N(θ1,1) + αN(θ2,1) and a test of homogeneity (for 1 vs 2 components) has a null of H_0: 

α(1- α)(θ2-θ1)=0. We can see here that there are multiple ways that this null hypothesis can be true. 

Either α can be 0, 1- α can be 0, or θ2 can equal θ1, the latter of which is the true homogeneity result 

that we want to test. The null hypothesis here lies on the boundary of the parameter space and if it 

is true then the parameters are not identifiable [49]. We also require a positive, finite Fisher 

information number here, which can fail and coupled with loss of identifiability contributes to the 

more complicated nature of the LRT in the mixture modeling setting.  

The limiting null distribution of the LRT in mixture modeling is much more complicated 

than a chi-squared distribution because of the violations in the regularity conditions, two of which 

were mentioned above. As shown by Chen and Chen [50], under a new set of conditions, one of 

which is a compact parameter space, it turns out that the limiting distribution of the likelihood ratio 

test statistic is “the squared supremum of a truncated standard Gaussian process”. The supremum 

is taken over the parameter space and removes the separation condition of Ghosh and Sen [49] that 

the parameters are not identifiable, as described above. 

This is clearly a rather complicated distribution to pull a quantile function from in order to 

get an asymptotic p-value. Though there have been multiple methods proposed for obtaining a p-

value [49], Chen and Chen recommend using a bootstrap procedure, which they accredit being 

based on Beran (1988) [51]. The authors condone this procedure because it requires no specification 

of the null distribution of the data and no “detailed knowledge of the limiting null distribution of 

the LRT,” merely that it exists [50].   

Beran was far from the only one to employ bootstrapping for p-values in the mixture 

modeling LRT setting. McLachlan (1987) [52] discussed the method in the restricted case of a 

mixture of one versus two univariate normal distributions (with a common variance), a theme we 
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have already identified as common throughout the history of mixture modeling methods. Under 

this bootstrapping procedure, which is inherently parametric, a very large number of independent 

samples is taken from the distribution formed under the null hypothesis, in this case a normal 

distribution with mean and variance corresponding to the original sample of data. The value of the 

test statistic (-2log-likelihood) is computed for each bootstrapped sample and the distribution of 

those many values is used to approximate the true null distribution of the test statistic. Finally, we 

can use the quantiles of this distribution to obtain approximated p-values for the hypothesis test 

given the value of the test statistic from our original sample. Through simulation McLachlan 

showed that the null distribution of the -2log-likelihood is very similar to that of a chi-squared 

distribution with 2 df and therefore appropriate for the approximation of p-values when n is large 

enough (>100), but this only holds when the variances of the components in the mixture are the 

same [52].   

There are many well-knows problems that come with using bootstrap procedures. In the 

situation of a parametric bootstrap, like the one described above, the performance of the test can 

greatly rely on the specification of an appropriate null distribution. The sample size and 

representativeness of the original sample can affect the quality of the parameters used to specify 

the distribution that the bootstrap samples are drawn from. Further, the number of bootstrap 

samples taken from the proposed distribution can have a great influence on the formulation of the 

approximated distribution of the test statistic. If the number of bootstrap samples taken is small 

then the variance of the quantiles of the distribution will be high, but it can sometimes take a 

considerable amount of time to bootstrap a large number of samples. In the real world the best we 

can do is assume that we have correctly specified our distributions and taken enough bootstrap 

samples. Bootstrapping is a very useful tool, but we would not recommend heavily relying on it to 

obtain p-values when there are arguably more reliable methods available. 
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Modified Likelihood Ratio Testing 

A modified likelihood ratio test (MLRT) was presented by Chen, Chen, and Kalbfleisch 

(2001) [53] as a way to try to mitigate the violation of identifiability in the standard LRT and 

identify a simpler limiting distribution to gain p-values from with minimal loss of power. The 

MLRT places a penalty on the log-likelihood function so that the mixture weight α is pushed away 

from 0 and 1 (the boundaries of the parameter space) with the goal that the only way to retain the 

null is when θ1 and θ2 are equal. This reduces the non-identifiability of the parameters. With this 

penalty comes the burden of appropriately choosing the value of this additional penalty parameter, 

C, which must be a fixed positive constant. Chen, Chen, and Kalbfeisch [53] suggest that C=log(M) 

is a suitable choice when the parameter θ if the kernel density is restricted to values of (-M, M), as 

their simulations showed that the MLRT is not sensitive to choice of C. This choice of penalty can 

be modified in the situation that the parameter space of a certain kernel does not allow negative 

values.  

The penalty placed on the log likelihood results in a much simpler limiting null distribution 

that is asymptotically most powerful under local alternatives, meaning it has the most power to 

handle alternatives that are converging to the null at an appropriate rate. This method is only 

proposed for when the parameter θ is one-dimensional. The limiting null distribution is an equally 

weighted mixture of a central chi-square with 1 df and a central chi-square with 0 df. Note that a 

chi-square with 0 df is a degenerate distribution with a point mass at 0. In this setting the 

homogeneous population pdf is referred to as the kernel function, which must meet certain criteria 

for the MLRT limiting distribution to hold [53]. Through simulations the authors showed that the 

MLRT performed as well or better than other methods such as Neyman and Scott’s C(α) test 

[54,55], Davie’s method [56] and the bootstrap LRT [52] in a variety of situations, but some 

common kernels, such as kernels from the exponential family, do not meet the criteria needed, 

which can be a major limitation. 

 



21 

D-Testing 

Taking an entirely different approach than the LRT and MLRT procedures, the D-test of 

Charnigo and Sun (2004) [57] can also be used to test homogeneity in mixture modeling. The D-

test uses maximum likelihood estimation to obtain estimates of the parameters of the mixture 

components belonging to a certain parametric family of distributions. Charnigo and Sun point out 

that the selection of a specific distribution in the alternative gives the test the most power when that 

alternative is correct, but it can be generalized to a nonparametric alternative at the loss of some 

power if desired. They also recognize that any reasonable parameter estimation method other than 

maximum likelihood estimation can also be used here.  

The D-test statistic is the integrated square of the L2 distance between a fitted homogeneous 

and a fitted heterogeneous model, which will be small when the mixture is homogeneous and large 

when it is heterogeneous. The statistic uses only the estimated parameters of the distributions, and 

therefore changes depending on the specified family of distributions of the mixture components. 

The D-test consistently outperformed the MLRT in simulations with mixture components from a 

normal location family and when the sample size is large [57] The D-test can better detect differing 

shapes (rather than scales) between mixture components because it is based off the L2 distance. 

When the sample size is not large, or the mixture components come from a family other 

than the normal location family, Charnigo and Sun [57] suggest using a weighted D-test. The only 

difference with the weighted D-test is that it adds a weighting function that is designed to make it 

easier to identify separations in the components with the L2 distance. Using a weighting function 

can be thought of as analogous to placing a transformation on the data before computing the D-test 

statistic. Different transformations of the data will result in different weighting functions and when 

chosen appropriately the weighted D-test performs favorably to the MLRT and much better than 

the standard D-test.   

One perceived advantage the D-test has over the MLRT is that the test statistic depends on 

the data only through the parameter estimates, and therefore once the parameters are estimated the 
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rest of the data can be disregarded for the remainder of the procedure. This is contrary to the MLRT 

which uses all of the data to calculate the test statistic. With relatively small datasets this will not 

seem to matter much, but with “big data” becoming more and more popular and accessible this trait 

seems more desirable. Not only does it greatly cut down on computation time of the test statistic, 

but data storage issues do not present a problem for this test.  

While there are definitely advantages to using the D-test we need to consider the 

implications of a much stricter alternative than the MLRT. The inherent parametric assumptions of 

the D-test may not always be reasonable or desirable. In some cases, the more general alternative 

of the MLRT will be preferred.  

 

Conclusion 

Here we briefly covered some highlights in finite mixture modeling methodology, but 

existing methods reach far beyond this review and are expanding every year. Two major milestones 

in mixture modeling were the development of method of moments and its subsequent replacement 

with maximum likelihood estimation as the most popular method of the time. Log likelihoods 

became a vital tool for mixture modeling methodology through their use in MLE, EM algorithms, 

and LRTs. MLRTs improved upon LRTs by dropping bootstrapping for p-values and implementing 

a penalty on the log likelihood to simplify the limiting null distribution, resulting in a test that 

outperformed those previously used. The D-test, however, approaches mixture modeling from a 

different direction. The D-test statistic is based on the L2 distance between a fitted homogeneous 

and a fitted heterogeneous model. This method has outperformed MLRT in simulation and can 

better detect differing shapes between mixture components because of its basis in the L2 distance.  

Computational considerations, which were once considered a heavy burden in mixture 

modeling, have been greatly reduced with computational advancements and statistical programs. 

Many mixture modeling techniques were developed for the easiest case, a mixture of two Normal 
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distributions. Increases in computational power have facilitated the use of mixture modeling for 

situations beyond a mixture of 2 distributions and expanded its horizons to include non-Normal 

distributions as well.  
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CHAPTER 2: Associations of novel plasma-based biomarkers of 
neurodegeneration, angiogenesis, and inflammation with demographic and clinical 

characteristics among cognitively normal research volunteers 
Taylor G. Estepp, MS; Richard J. Charnigo, PhD; Erin L. Abner, PhD; Gregory A. Jicha, MD, 

PhD; Tiffany L. Sudduth; David W. Fardo, PhD; Donna M. Wilcock, PhD. 
 

Abstract  

This study examined the relationships between 13 novel blood-plasma biomarkers and 

dementia-related demographic and health factors in a cohort of 237 cognitively normal research 

volunteers. We regressed each biomarker on selected covariates to explore the relationships the 

biomarkers have with health factors likely along the causal pathway to dementia to assess whether 

these factors may contribute to biomarker values. In this sample, biomarker concentrations were 

largely not associated with participants’ demographics or health conditions, but some expected 

associations (e.g., of APOE with Aβ42/Aβ40) were observed. To assess robustness of cross-

sectional associations, we used a second set of measures obtained five years later on participants 

who remained cognitively normal and found similar results.   

 

Introduction 

By 2030, all baby boomers – approximately 21% of the US population [58]—will have 

reached 65 years of age [59]. As the aging population grows, so does the prevalence of age-related 

conditions. According to the Alzheimer’s Association, in 2020 more than 5 million Americans were 

living with Alzheimer’s disease (AD) dementia, and 1 in 3 deaths among adults aged 65 and older 

were associated with dementia [60]. Dementia is characterized by cognitive impairment that affects 

memory and other cognitive functions (such as the ability to reason, plan, or effectively 

communicate) [61] and is most prevalent among adults over age 65 [62]. Both the prevalence of 

dementia and the accompanying burden on patients, caregivers, and health care systems are 

expected to grow in the coming years, absent significant headway in treatment and prevention 

measures. 
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Decades of research have characterized the pathophysiology and natural history of the 

diseases that cause dementia, with a heavy focus on AD [61]. However, both dementia and AD 

remain incurable and without proven prevention measures [62]. Moreover, diseases that cause 

dementia are complicated [63], and the gold-standard diagnosis for AD still requires brain autopsy. 

Clinical diagnosis of AD is based on symptoms and patient history, and may also include CSF (e.g., 

for amyloid and tau) [64] and neuroimaging biomarkers [65]. Neuroimaging can be a very 

expensive procedure, and attaining CSF is considered an invasive procedure [66]. These, along 

with other reasons, make CSF and neuroimaging biomarkers not feasible for many studies [67]. 

Given such limitations, there is an urgent need for valid, accurate, and easily measurable 

biomarkers of dementia-causing diseases.  

Blood-based biomarkers for AD and related dementias (ADRD) are a recent development 

and have not been thoroughly studied or optimized. However, there is hope that blood-based 

biomarkers can help identify disease states and predict cognitive trajectories, while mitigating 

difficulties associated with more invasive and expensive testing [66,67]. Recent advancements in 

technology used to measure biomarkers have allowed us to begin exploring these possibilities. 

Quanterix Single Molecule Array (SiMOA) technology, which is much more sensitive than 

previous blood assays, allows measurement of AD-relevant biomarker concentrations in the blood, 

which are much lower than concentrations in CSF [68]. 

To inform future studies based on SiMOA data, the current study investigated the 

relationships between three types of biomarkers (inflammatory, vascular, and neurodegenerative; 

defined below) and participant demographics, health related factors, and technological factors 

related to the assays. Our objective was to better understand which, if any, features outside of 

neurodegenerative or cerebrovascular disease may influence biomarker values [69]. In participants 

with initially normal cognition, cross-sectional associations were estimated at two time points, five 

years apart, to assess robustness of these associations. As part of assessing associations between 
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participant characteristics and biomarker values, we also quantified the proportion of biomarker 

variance explained by covariates.  

 

Methods 

Setting 

Data for the current study were drawn from the community-based longitudinal cohort of 

brain aging and cognition at the University of Kentucky Alzheimer’s Disease Research Center 

(UKADRC). Cohort recruitment began in 1989, and over 1000 participants have been recruited 

into the cohort and agreed to be followed approximately annually until death; most participants 

also consent to brain donation [70]. To be included in the cohort, an individual has to live close 

enough for a brain autopsy to be performed at UKADRC within 4 hours of death. In 2019, 

UKADRC added a Biomarker Core, which uses SiMOA to measure a standard set of biomarkers 

in plasma donated by UKADRC participants at their annual visits [70]. Sampling banked plasma 

for biomarker analysis began with participants who had two visits five years apart, beginning with 

visits that took place in 2012 and in 2017, as plasma collection at UKADRC was transitioned to 

Ethylenediaminetetraacetic acid (EDTA; used in the present analysis to standardize samples) from 

heparinized vacutainer tubes in 2012. The UK Institutional Review Board (IRB) approved all study 

procedures, and all participants provided written informed consent.  

 

Study Design 

We conducted a retrospective study on a subset of the University of Kentucky Alzheimer’s 

Disease Research Center (UKADRC) longitudinal cohort [70]. Biomarker data in the current study 

were obtained on two pairs of visits: 2012 and 2017 (12/17), and 2013 and 2018 (13/18). If 

participants were included in both sampling pairs, the data from the 12/17 set were used. Inclusion 

criteria for the current study were enrollment in the UKADRC cohort, available blood-based 
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biomarker data in the identified visit pair, and a diagnosis of normal cognition at the first of these 

visits.  

 

Plasma Biomarkers 

The SiMOA-based measures included amyloid-beta1-40 (Aβ40), amyloid-beta1-42 (Aβ42), 

total tau (distinguished from other tau measurements such as p-tau), neurofilament light chain 

(NfLight), tumor-necrosis factor-alpha (TNFα), interleukin 6 (IL6), interleukin 8 (IL8), interleukin 

10 (IL10), interleukin 1Beta (IL1B), matrix metallopeptidase 9 (MMP9), and placental growth 

factor (PlGF). In addition to these individual biomarkers, we also investigated the ratios of 

Aβ42/Aβ40 and tau/Aβ42 [Table 1]. Notably missing from our biomarkers is phosphorylated tau, 

or p-tau. P-tau values were not included in this analysis, as the assay used for the 12/17 samples 

(p-tau 231) demonstrated poor reliability in validation testing (data not shown). 

We classified the biomarkers into clinically relevant subgroups: (1) nonspecific 

neurodegenerative and AD markers, containing NfLight, tau, Aβ40, Aβ42, and the ratios 

Aβ42/Aβ40, and tau/Aβ42; (2) vascular markers, containing PlGF and MMP9; and (3) 

inflammatory markers (i.e., cytokines), containing TNFα, IL6, IL8, IL10, and IL1B. 

These biomarker data were collected at a single facility using standard NIA/NACC 

biospecimen best practice protocols, and the biomarker assays were run in the single UKADRC 

biomarker core biosample laboratory. During the interval between the processing of the 12/17 and 

13/18 samples, the machine used to run the assays was updated from the Quanterix HD1 Analyzer 

to the HDX Analyzer, which incorporated sophisticated control systems to enhance reproducibility 

and included essential temperature control that the HD1 lacked [71]. It was unclear a priori whether 

the data produced on the two instruments are interchangeable, especially given the upgraded 

temperature control feature. Quanterix no longer sells or supports the HD1 Analyzer [72], and we 

are unaware of any publications comparing the performance of the HD1 and HDX machines. Yet, 

we assume there are extant HD1 machines in use. Labs that have transitioned from the HD1 to the 
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HDX, as well as labs considering the transition, may have similar questions about the consistency 

of their data across machines. Thus, in addition to the covariates described below, all analyses 

included a batch indicator (12/17 vs 13/18). 

 

Covariate Selection  

Because our interest in these biomarkers relates to their potential association with ADRD 

and vascular cognitive impairment and dementia (VCID), we identified covariates that would 

mitigate confounding between biomarker levels and measures of cognition, with confounding 

defined as distortion in the association between the biomarkers and cognition arising from their 

shared causes. We first created directed acyclic graphs (DAGs) to encode our theoretical model for 

the causal relationship with cognitive status [73] [Supp. Figure 1-3]. We used the biomarker types 

(vascular, inflammatory, and neurodegenerative/AD) as the exposure for these DAGs assuming 

that biomarkers of the same type would have similar causes and effects, rather than generating an 

independent DAG for each individual biomarker. Covariate selection was guided via sufficient 

adjustment sets in each DAG [Table 2], which are sets of covariates that theoretically eliminate 

confounding and bias between the exposure and the outcome when adjusted for. 

Participant age (in years), gender, BMI (calculated via measured height and weight), 

lifetime smoking status (ever vs. never), and APOE were included as covariates. APOE, the 

strongest genetic risk factor for late onset AD [74], is included as 0 e4 alleles vs any e4 alleles, as 

our sample size did not warrant a finer categorization. Race was not considered as a covariate, in 

part because the study sample is primarily Caucasian (>90%), and we lacked the ability to assess 

racial and ethnic differences in biomarkers within this sample..  

Self-reported medical conditions (coded ever vs. never, unless otherwise specified) were 

cancer, cardiovascular conditions (CV; any vs none), cerebrovascular conditions (CB; any vs none), 

COPD, depression, diabetes, hypercholesterolemia, hypertension, and vitamin B12 deficiency. CV 

was operationalized as a single variable to indicate whether a participant had at least one 
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cardiovascular condition, based on self-reported atrial fibrillation, angina, angioplasty, coronary 

bypass, congestive heart failure, or heart attack. CB was similarly operationalized based on self-

reported ischemic stroke and transient ischemic attack. Medical conditions were updated at annual 

visits. 

 

Cognition 

Participants undergo cognitive testing at each study visit, and these data are used, in 

combination with results of clinical examinations, to ascertain syndromic cognitive diagnosis: 

normal cognition, MCI, or dementia [75]. Explicit guidelines for clinical diagnosis were followed 

at each visit to reduce biases from subjective clinical diagnoses [70]. 

 

Statistical Analysis 

Biomarkers were investigated individually to estimate their associations with participant 

characteristics and medical conditions. Adjusted analyses were implemented as 13 linear regression 

models, with individual biomarkers specified as dependent variables. The first set of analyses 

focused on the baseline levels of the biomarkers (i.e., first year in the pair 12/17 or 13/18).  

Biomarker values were log-transformed [76,77] to improve plausibility of linear model 

assumptions [78]. Log-transformations also present an advantage for analyzing biomarker ratios, 

in that log-transforming a ratio makes the results invariant to choice of numerator and denominator 

[79]. Although some values appear as possible outliers [Figure 1, Supp. Figure 4], all values were 

double checked for errors and confirmed.  

In the 13 linear models, the independent variables were based on the DAG sufficient 

adjustment sets, along with the batch indicator. Missingness in the data was minimal; there were at 

most 5 missing observations for any covariate, and at most 13% missing observations for any 

biomarker, though most biomarkers had fewer than 5% missing values. Thus we used only 
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complete cases, which slightly reduced the effective sample size for each linear model. Goodness-

of-fit was assessed via Normal Q-Q plots and plots of residuals vs fitted values. R-squared was 

used to estimate the proportion of variance explained by covariates.  

After analyzing baseline plasma data, we performed sensitivity analysis using information 

from the second visit (5 years later) among participants who remained cognitively normal. The 

same covariate sets were used in sensitivity analysis.  

Upon reviewing results of the original 13 models, we noticed that the model with the 

highest R-squared involved a ratio of two individual biomarkers (Aβ42/Aβ40). These two 

biomarkers had a pairwise correlation of 0.629 [Supp. Table 1], which was much stronger than the 

correlations between all other pairs of biomarkers, except for TNFα and PlGF, which had a 

correlation of 0.694. Therefore we pursued a post hoc analysis using log(TNFα/PlGF) as an 

outcome to see if a linear model for this ratio could produce a similarly large R-squared. Covariate 

selection for the model of log(Aβ42/Aβ40) had been guided by the sufficient adjustment set for 

Neuro/AD biomarkers. The same could not be done for the model with log(TNFα/PlGF) because 

TNFα was classified as inflammatory and PlGF was classified as vascular. Therefore, we used all 

variables from each sufficient adjustment set (inflammatory and vascular) as covariates in this post 

hoc model for log(TNFα/PlGF).  

We used a 5% significance level when interpreting results, but numerical p-values are 

supplied in all cases. Analyses were performed with R version 3.6.2 in RStudio, using packages 

readxl, haven, tidyverse, plyr, ggplot2, and gridExtra [80-86]. 

 

Results 

A total of 237 initially cognitively normal UKADRC participants met all inclusion criteria. 

The average baseline age was 82.7 years, 62% of participants were female, and 31% had at least 

one APOE e4 allele [Table 3]. Overall, the selected demographic and clinical features did not 
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explain a majority of the variance in biomarker values. The mean and median R-squared values 

were 0.117 and 0.088 [Tables 4-6]. The highest R-squared produced by any of the models was 

0.363 for log(Aβ42/Aβ40).  

 

Demographics and Genetics 

Of the 13 biomarker variables, 4 were significantly associated with increasing age, which 

was associated with higher concentrations of Aβ40, NfLight, MMP9, and IL10. For a 5-year 

increase in age, the models predicted 6.2% (95% CI: 0.5, 13.6), 21.5% (95% CI: 14.3, 29.4), 16.2% 

(95% CI: 3.0, 31.4), and 11.1% (95% CI: 3.2, 20.1) increases in these biomarkers, respectively. 

Increasing age was also significantly associated with lower concentrations of Aβ42/40 and tau. For 

a 5-year increase in age, the models predicted 9.1% (95% CI: 3.5, 13.9) and 8.1% (95% CI: 0.8, 

14.8) decreases in Aβ42/40 and tau, respectively. 

Gender was not significantly associated with biomarker concentrations in any of the 

models, and APOE, which was only included in the models for the six neurodegenerative 

biomarkers, was significantly associated with log(Aβ42/Aβ40). This biomarker ratio was predicted 

to be 18% lower among participants who had at least one e4 allele (95% CI: 4, 30).  

 

Medical Conditions 

Hypertension, included in all 13 models, was significantly positively associated with 

log(Aβ40) and log(Tau) but not other biomarkers or their ratios. Cancer history, included only in 

the five inflammatory biomarker models, was significantly positively associated with log(IL6). No 

other medical conditions had significant associations with the biomarkers. 

 

Batch (HD1 vs HDX)  

Eight of the 13 models produced a significant batch coefficient. Effect size was calculated 

for each batch coefficient and defined as the estimated number of standard deviations that the mean 
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biomarker concentration changed by in absolute value when the batch changed (i.e., absolute value 

of each batch coefficient, divided by the marginal standard deviation of the outcome). Our batch 

effect sizes ranged from 0.06 to 1.17, with an average of 0.56 [Supp. Table 2]. Ten of the 13 batch 

effect sizes exceeded 1/3 of a standard deviation, and three of the batch effect sizes were greater 

than 1, meaning that in these cases the biomarker measurements from the HDX were predicted to 

be more than one standard deviation different from those of the HD1. 

 

Sensitivity Analysis 

After 5 years of follow up, most participants remained cognitively normal, while 38 (16%) 

transitioned to MCI and 9 (4%) to dementia [Supp. Table 7]. We repeated all analyses on the 190 

individuals remaining cognitively normal at the second visit (5 years later) [Supp. Tables 3-5]. 

APOE was again only significantly associated with one outcome, though here it was 

log(Tau/Aβ42). Six of these models produced a significant batch effect, again with the majority 

showing higher means for batch 1 (i.e., the HD1 yielded higher measurements on average). 

Otherwise, we saw no discernable patterns. 

 

Post Hoc Analysis 

One post hoc model was run for the ratio of log(TNFα/PlGF) based on the high pairwise 

correlation between TNFα and PlGF. This post hoc model produced an R-squared of 0.098, which 

was very similar to the average R-squared for the original 13 models [Supp. Table 6]. The only 

variable with a significant coefficient in this post hoc model was batch (effect size was 0.68 [Supp. 

Table 2]).  

 

Discussion 
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We evaluated participant and technical characteristics as predictors of concentrations of 

novel plasma-based biomarkers in a cohort of cognitively normal research volunteers. 

Encouragingly, biomarker concentrations were not strongly associated with age or gender, nor 

medical conditions, suggesting that changes in these biomarkers, when observed, are likely 

attributable to neuropathological changes rather than other confounding medical conditions. 

Further supporting this interpretation is the finding of significant relationships of APOE with 

Aβ42/40 and tau/Aβ42. This study adds important data to the literature on plasma biomarkers in 

cognitively normal individuals given that, of the existing studies reporting on these SiMOA-

measured biomarkers, all but one focused on cognitively impaired study participants [87].  

The relationships of these plasma biomarkers with demographics of well characterized 

individuals have not been widely studied. While published plasma biomarker studies have reported 

relationships of their biomarkers with age, gender, APOE, race, education, and/or BMI [68,87-93], 

the majority of these studies were limited to reporting on only subsets of these factors. Studies 

using SiMOA technology often only reported these relationships as supporting information, 

secondary to a main analysis involving the biomarkers [87-90,93], or such information was not 

reported at all [68,91-92].The breadth of factors we studied in relation to plasma biomarkers stands 

out in comparison to the current literature.  Additionally, the majority of similar studies examined 

only 4 or 5 potential biomarkers, most commonly Aβ42 and total tau, while we examined a much 

larger set of biomarkers. The relationships reported are not entirely consistent across the literature, 

suggesting that study variability in sample acquisition, handling and processing, as well as the 

methods used for biomarker analysis may influence the results from any given study. Thus, our 

study also contributes additional information about the influence of demographic, clinical and 

genetic influences on biomarker measurements. While we were not able to study p-tau because of 

an outdated assay, its use as a potential biomarker for dementia has been examined and we believe 

it to have as much potential as any other biomarker we studied here [67,69]. 
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Our sample size of 237 observations in the main analysis, which is is comparable to those 

reported in the similar literature, is robust in the early era of plasma biomarker discovery in the 

field of neurodegenerative diseases. Further studies using cohorts with even larger sample sizes 

should provide clearer insights into the relationships seen in this study. The availability of a 

longitudinally, well-characterized, cohort with uniform biospecimen collection is a clear strength 

of the present study. The sensitivity analysis, conducted to assess reproducibility of our results, is 

also a positive feature of this study.  

While our sample was restricted to participants with intact cognition, approximately 20% 

of participants were subsequently diagnosed with MCI or dementia over the five year follow up 

period for each cohort in this study. While heterogeneity in our sample is unavoidable, the degree 

of heterogeneity with regard to preclinical brain disease is likely relatively small and analytically 

uninfluential given that only a small portion of our participants were diagnosed with some level of 

cognitive decline within five years of follow-up. We repeated these analyses for the subset who 

remained normal 5 years later and found no remarkable differences or patterns as compared to the 

main analysis, suggesting that the individuals who had declined within 5 years had no substantial 

effect on our results.  

While Type II errors (i.e., false negatives) are possible due to sample size, it is also possible 

that few relationships truly exist. Arguably, our most robust results were for Aβ42/Aβ40. In both 

the main analysis and the sensitivity analysis, this model had the largest R-squared values, at 0.363 

and 0.452 respectively, making log(Aβ42/Aβ40) the most predictable outcome with the most 

variance explained. Notably, this outcome involves a ratio of biomarkers that is consistent with 

other reports in the literature [87,90]. The observed relationships with age were not consistent 

across all biomarkers. There were six statistically significant age coefficient estimates: 4 predicted 

increases in the biomarkers with advancing age, and 2 predicted decreases. Though not all were 

statistically significant, 8 of the 13  age coefficient estimates were positive. Other studies examining 

blood biomarkers using Quanterix SiMOA technology found associations of age with total tau [87-
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88,90,93], Aβ42/40 [87], NfLight [87-88], Aβ42 [87,89-90,93], Aβ40 [89,93], and TNFα [90], 

though the directions of the associations were not always reported. While age was not consistent in 

direction or magnitude of association with biomarkers in the present study, it may yet influence 

temporal changes in biomarkers that may be non-linear. Future research will examine temporal 

changes in biomarkers and cognition, in tandem with age and other covariates.  

While the use of the two different Quanterix machines may be regarded as a limitation in 

this study, these data provide valuable insights into the impact of technologic upgrades within even 

a single quantitative biomarker assay platform. We note that most SiMOA studies in the 

comparable literature used the HD1 analyzer [87-93]. The present demonstration of a “batch 

effect”, based on analyzer upgrades, is an important consideration when interpreting results from 

cross site and even same site longitudinal studies. While inclusion of batch in the linear models 

compensates for a possible systematic tendency of one machine to give a higher or lower result, its 

inclusion will not correct distortions that may exist in the associations between covariates and 

biomarkers, and predictability of some biomarkers could be affected by such distortions.  

This study is not without its limitations. Using only complete cases introduces some bias, 

but the proportion of missing observations is quite modest. Additionally, having all participants in 

this cohort consent to being followed through autopsy introduces another selection bias, as these 

individuals are more likely to be highly educated and/or motivated to help with dementia research 

(perhaps indicating a higher prevalenceof a family history of dementia) [94]. Linear models may 

be too limited to accurately describe the relationship between biomarkers and covariates as well. 

We can generalize our results to other cognitively normal individuals in this age range in the state 

of Kentucky, specifically in the central Kentucky region where the University of Kentucky is 

located, because our participants comprise a community-based sample from this specific area. 

However, our results may not be generalizable outside the state, or even to the entire state, because 

the populations will be qualitatively different in many socioeconomic factors. Kentucky is a high 
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poverty state, and the outlying rural counties are quite different from the urban region our study 

sample comes from.  

Overall, we present evidence that SiMOA plasma biomarkers do not appear to be strongly 

associated with medical conditions or demographic characteristics among cognitively normal 

research participants.  However, this does not preclude the possibility that such biomarkers, or 

temporal changes in them, may still aid in predicting cognitive decline, and our results suggest face 

validity (e.g. APOE was associated with Aβ42/40 but not Nflight). These results encourage the use 

of plasma biomarkers in future dementia research without considerable worry of confounding due 

to demographic or medical conditions.  
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Biomarker Distribution Statistics 
  Baseline 5 years later 

Biomarker Mean (SD) 
Median 
(IQR) 

Effective 
N Mean (SD) 

Median 
(IQR) 

Effective 
N 

Aβ40 193.59 (104.63) 172 (122.88) 267 237.29 (122.7) 215.12 (130) 266 
Aβ42 11.39 (6.97) 10.1 (9.3) 273 14.07 (8.15) 13.25 (10.46) 275 
Aβ42/40 0.07 (0.06) 0.05 (0.03) 264 0.06 (0.05) 0.05 (0.03) 264 
Tau 6.95 (6.75) 4.94 (3.97) 276 8.46 (47.34) 4.22 (3.38) 277 
Tau/Aβ42 0.88 (1.25) 0.52 (0.5) 273 0.64 (3.15) 0.34 (0.22) 275 
NfLight 20.61 (23.47) 16.48 (12.89) 276 25.4 (14.49) 21.55 (17.77) 275 
PlGF 27.02 (70.19) 4.03 (5.58) 267 26.15 (67.58) 4.29 (5.55) 273 
MMP9* 50.72 (66.81) 27.45 (40.45) 273 78.80 (12.59) 38.90 (64.15) 259 
IL6 1.61 (4.36) 0.8 (0.91) 275 2.46 (8.14) 0.99 (1.27) 274 
IL8 0.41 (1.34) 0.19 (0.33) 250 0.29 (1.3) 0.14 (0.18) 242 
IL10 0.7 (1.42) 0.5 (0.35) 274 0.85 (1.69) 0.57 (0.46) 277 
IL1b 0.44 (2.63) 0.07 (0.09) 244 0.33 (1.54) 0.02 (0.04) 245 
TNFα 1.89 (2.7) 1.21 (0.82) 271 2.69 (9.26) 1.32 (1.07) 266 

SD: Standard Deviation; IQR: Interquartile Range; Effective N: number of observations where biomarker is not 
missing out of possible 277 total individuals (2012/13 data). *MMP9 values are presented in thousands. 

 

Tables and Figures 

Table 1. Distribution of plasma biomarkers at baseline and five years later among cognitively normal 

older adult research volunteers 
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Table 2. Selected covariates by biomarker group 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covariates Neurodegenerative Vascular Inflammatory 
Age X X X 
APOE  X   
B12   X 
Body mass index   X 
Cancer   X 
Cerebrovascular disease  X X 
COPD    X 
Cardiovascular disease    X 
Depression    X 
Diabetes   X X 
Hypercholesterolemia   X X 
Hypertension  X X X 
Gender  X X X 
Smoker   X X 

Note: Sufficient adjustment sets representing selected covariates for each biomarker subgroup. APOE: 
Apolipoprotein E; COPD: chronic obstructive pulmonary disease. 
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Figure 1 

  

Note: Histograms of biomarkers before and after log transformation. Remainder of biomarker histograms in Supplemental 
Materials. Aβ: amyloid beta. 
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Table 3. Included University of Kentucky Alzheimer’s Disease Research Center  

baseline participant characteristics (N=237). 

Variable Summary 
Age (mean ± sd) 82.69 ± 7.46 
BMI (mean ± sd) 26.55 ± 4.61 

Batch (2013/2018) 60 (22) 
Gender (F) 171 (62) 

APOE (any e4 allele) 86 (31) 
Cerebrovascular disease 23 (8) 
Cardiovascular disease 58 (21) 

Hypertension 167 (61) 
Diabetes 39 (14) 

Hypercholesterol 176 (64) 
Smoker 126 (45) 

B12 Deficiency 25 (9) 
COPD 19 (7) 
Cancer 66 (24) 

Depression 52 (19) 
 

Note: Unless otherwise stated in Variable column, statistics reported are number (%) and variables are  
coded as 0=never having condition and 1=ever having condition, unless otherwise stated.  

BMI: Body mass index; APOE: Apolipoprotein E; COPD: Chronic obstructive pulmonary disease. 
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Neurodegenerative/AD Biomarker Model Results* 
Outcome: log(Aβ40) log(Aβ42) log(Aβ42/Aβ40) log(Tau) log(Tau/Aβ42) log(NfLight) 
Predictor Est. SE P-val Est. SE P-val Est. SE P-val Est. SE P-val Est. SE P-val Est. SE P-val 
APOE 0.042 0.084 0.615 -0.141 0.105 0.181 -0.194 0.079 0.015 -0.073 0.103 0.478 0.056 0.119 0.639 0.091 0.085 0.282 
Age 0.013 0.006 0.033 -0.006 0.008 0.424 -0.019 0.006 0.001 -0.017 0.008 0.030 -0.011 0.009 0.221 0.039 0.006 <0.001 
Hypertension 0.191 0.076 0.013 0.076 0.096 0.429 -0.136 0.072 0.059 0.202 0.095 0.034 0.113 0.109 0.300 0.057 0.077 0.464 
Gender 0.051 0.077 0.510 0.058 0.097 0.552 0.018 0.072 0.800 -0.050 0.095 0.597 -0.107 0.109 0.331 0.129 0.078 0.099 
Batch -0.079 0.103 0.447 0.534 0.132 <0.001 0.671 0.097 <0.001 0.043 0.129 0.740 -0.509 0.149 0.001 0.662 0.106 <0.001 
R-squared 0.075 0.117 0.363 0.046 0.063 0.189 
Effective N 227 233 225 235 233 235 

*NOTE: Model results for main analysis for Neuro/AD biomarkers. Est: 
coefficient estimate; SE: Standard Error; P-val: p-value. 

 

Table 4 
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Table 5 

 
Note: Model results for vascular biomarkers. Est: coefficient estimate; SE: Standard Error;  

P-val: p-value. 

  

 

Vascular Biomarker Model Results 
Outcome: log(PlGF) log(MMP9) 

Predictor Est. SE P-val Est. SE P-val 
Age 0.014 0.016 0.371 0.030 0.012 0.015 
CB -0.545 0.429 0.205 -0.042 0.319 0.896 
CV 0.249 0.245 0.312 -0.245 0.188 0.194 
Diabetes -0.248 0.283 0.381 0.054 0.218 0.805 
Hypercholesterol 0.383 0.212 0.072 0.100 0.163 0.541 
Hypertension -0.304 0.213 0.155 0.028 0.162 0.864 
Gender 0.091 0.200 0.648 0.036 0.153 0.815 
Smoking -0.275 0.192 0.154 0.133 0.147 0.365 
Batch 0.525 0.271 0.054 1.371 0.211 <0.001 
R-squared 0.063 0.174 
Effective N 226 232 
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Note: Model results for inflammatory biomarkers. Est: coefficient 

estimate; SE: Standard Error; P-val: p-value. 

 

 

Inflammatory Biomarker Model Results 
Outcome: log(TNFα) log(IL6) log(IL8) log(IL10) log(IL1b) 

Predictor Est. SE P-val Est. SE P-val Est. SE P-val Est. SE P-val Est. SE P-val 
Age 0.002 0.009 0.845 0.015 0.010 0.131 0.017 0.011 0.137 0.021 0.008 0.006 -0.003 0.017 0.866 
B12 Defficiency 0.017 0.183 0.924 0.327 0.206 0.115 -0.104 0.242 0.667 0.260 0.169 0.124 -0.617 0.380 0.106 
BMI 0.003 0.011 0.782 0.020 0.013 0.128 -0.017 0.014 0.237 0.003 0.010 0.770 0.018 0.024 0.466 
CB -0.084 0.233 0.721 0.034 0.274 0.901 0.000 0.286 0.999 0.184 0.213 0.387 0.349 0.453 0.442 
CV 0.199 0.132 0.133 0.195 0.148 0.190 -0.033 0.170 0.845 -0.002 0.115 0.986 -0.017 0.265 0.950 
COPD 0.030 0.203 0.882 -0.260 0.229 0.258 0.163 0.251 0.516 -0.122 0.178 0.493 -0.203 0.412 0.622 
Cancer 0.146 0.125 0.244 0.330 0.140 0.019 -0.090 0.158 0.569 0.196 0.108 0.071 0.332 0.255 0.195 
Depresison -0.164 0.135 0.226 -0.122 0.153 0.427 -0.046 0.168 0.785 0.159 0.119 0.181 -0.515 0.276 0.064 
Diabetes 0.106 0.150 0.481 -0.068 0.169 0.687 0.000 0.191 0.998 0.069 0.131 0.599 0.023 0.298 0.938 
Hypercholesterol 0.140 0.113 0.215 -0.093 0.127 0.463 -0.054 0.145 0.707 -0.071 0.099 0.472 0.007 0.228 0.974 
Hypertension 0.012 0.113 0.919 0.080 0.127 0.529 0.029 0.143 0.840 -0.069 0.098 0.481 -0.369 0.228 0.107 
Gender 0.051 0.106 0.628 -0.032 0.120 0.788 0.016 0.136 0.907 -0.133 0.093 0.157 -0.023 0.217 0.915 
Smoking -0.138 0.103 0.180 0.000 0.116 0.997 0.139 0.130 0.287 -0.043 0.090 0.630 -0.050 0.207 0.810 
Batch -0.294 0.146 0.046 0.314 0.166 0.059 0.625 0.181 0.001 0.110 0.128 0.389 -0.628 0.310 0.044 
R-squared 0.075 0.082 0.088 0.1 0.09 
Effective N 225 226 204 225 201 

Table 6 
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Supplemental Materials 

Supplemental Figure 1 

 

  
Note: Neuro/AD Biomarkers Directed Acyclic Graph (DAG) made with daggity.net. Neuro/AD 

Biomarker node is exposure, yellow nodes are ancestors of the exposure, Cognition node is the 
outcome, blue nodes are ancestors of the outcome, pink nodes are ancestors of exposure and 

outcome, gray nodes are other variables. Green arrow is a causal pathway, pink arrow is a 
biasing pathway, black arrows are connections between other variables. 

Neuro/AD,: Neurodegenerative/Alzheimer’s Disease; APOE: Apolipoprotein E; B12def: vitamin 
B12 defficiency; BMI: body mass index; CB outcomes: cerebrovascular outcomes; COPD: Chronic 

obstructive pulmonary disease; CV outcomes: cardiovascular outcomes; Hypercho: 
hypercholesterolemia; Hyperten: hypertension; ses: socioeconomic status. 
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Supplemental Figure 2 

 

Note: Inflammatory Biomarker DAG. 
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Supplemental Figure 3

Note: Vascular Biomarker DAG. 
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Supplemental Figure 4 
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Note: Remaining biomarker histograms. 
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Note: Correlation matrix for biomarkers using data from first visits (2012 or 2013). 

Aβ40 Aβ42 Aβ42/40 Tau Tau/Aβ42 NfLight PlGF MMP9 IL6 IL8 IL10 IL1b TNFα
Aβ40 1 0.629 -0.278 0.271 -0.189 0.159 0.136 0.021 0.020 -0.025 0.096 -0.018 0.177
Aβ42 0.629 1 0.336 0.239 -0.350 0.308 0.115 0.124 0.011 0.053 0.052 -0.024 0.117
Aβ42/40 -0.278 0.336 1 -0.030 -0.183 0.125 -0.034 0.163 -0.012 0.095 -0.003 -0.020 -0.073
Tau 0.271 0.239 -0.030 1 0.482 0.067 0.072 0.044 -0.018 0.012 -0.018 -0.016 0.093
Tau/Aβ42 -0.189 -0.350 -0.183 0.482 1 -0.079 0.007 -0.008 -0.036 -0.016 -0.043 -0.018 -0.030
NfLight 0.159 0.308 0.125 0.067 -0.079 1 0.017 0.057 0.009 0.381 0.076 0.000 -0.017
PlGF 0.136 0.115 -0.034 0.072 0.007 0.017 1 0.082 0.276 -0.037 0.041 0.255 0.694
MMP9 0.021 0.124 0.163 0.044 -0.008 0.057 0.082 1 0.025 0.005 -0.050 0.278 0.070
IL6 0.020 0.011 -0.012 -0.018 -0.036 0.009 0.276 0.025 1 -0.002 0.135 0.149 0.179
IL8 -0.025 0.053 0.095 0.012 -0.016 0.381 -0.037 0.005 -0.002 1 0.093 -0.014 -0.031
IL10 0.096 0.052 -0.003 -0.018 -0.043 0.076 0.041 -0.050 0.135 0.093 1 -0.027 0.121
IL1b -0.018 -0.024 -0.020 -0.016 -0.018 0.000 0.255 0.278 0.149 -0.014 -0.027 1 0.101
TNFα 0.177 0.117 -0.073 0.093 -0.030 -0.017 0.694 0.070 0.179 -0.031 0.121 0.101 1

Biomarker Correlation Matrix (Visit 1)

Supplemental Table 1 
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Supplemental Table 2 

 

 

Note: Effect sizes for batch coefficient for all main analysis models and post hoc analysis  
model (TNFα/PlGF). All outcomes are logged in models. Effect sizes presented  

are in absolute value. 

  

 

Batch Effect Sizes 
Outcome Effect Size 
Aβ40 0.14 
Aβ42 0.72 
Aβ42/40 1.05 
Tau 0.06 
Tau/Aβ42 0.62 
NfLight 1.05 
PlGF 0.37 
MMP9 1.17 
TNFα 0.40 
IL6 0.36 
IL8 0.68 
IL10 0.17 
IL1b 0.43 
TNFα/PlGF 0.68 
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Note: Sensitivity analysis results for Neuro/AD biomarkers. Est: coefficient estimate; SE: 
Standard Error; P-val: p-value 

Supplemental Table 3 
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Supplemental Table 4 

 

Note: Sensitivity analysis results for Vascular biomarkers. Est: coefficient estimate; SE: Standard Error;  
P-val: p-value. 

  

 

Vascular Biomarker Sensitivity Analysis Results 
Outcome: log(PlGF) log(MMP9) 

Predictor Est. SE P-val Est. SE P-val 
Age 0.022 0.018 0.224 0.047 0.014 0.001 
CB -0.566 0.366 0.124 -0.033 0.284 0.907 
CV 0.394 0.266 0.139 0.111 0.204 0.587 
Diabetes 0.248 0.315 0.433 -0.189 0.241 0.435 
Hypercholesterol 0.086 0.222 0.699 0.139 0.170 0.412 
Hypertension -0.151 0.224 0.503 0.059 0.171 0.729 
Gender -0.117 0.227 0.607 -0.264 0.171 0.124 
Smoking -0.230 0.211 0.277 0.264 0.161 0.104 
Batch 0.520 0.270 0.056 1.500 0.226 <0.001 
R-squared 0.066 0.241 
Effective N 185 180 
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Inflammatory Biomarker Sensitivity Analysis Results 
Outcome: log(TNFα) log(IL6) log(IL8) log(IL10) log(IL1β) 

Predictor Est. SE P-val Est. SE P-val Est. SE P-val Est. SE P-val Est. SE P-val 
Age 0.004 0.012 0.725 0.015 0.013 0.253 0.017 0.014 0.233 0.008 0.012 0.487 0.040 0.023 0.089 
B12 Defficiency 0.188 0.433 0.664 1.151 0.461 0.014 -1.082 0.454 0.018 1.376 0.404 0.001 1.021 0.749 0.175 
BMI -0.010 0.014 0.481 -0.012 0.017 0.492 -0.009 0.018 0.612 -0.025 0.015 0.092 0.020 0.029 0.495 
CB 0.082 0.236 0.728 0.197 0.282 0.486 -0.113 0.289 0.695 0.180 0.239 0.453 -0.200 0.460 0.665 
CV 0.174 0.164 0.289 0.175 0.193 0.367 -0.251 0.206 0.227 -0.102 0.169 0.547 -0.253 0.330 0.445 
COPD 0.627 0.295 0.035 0.027 0.349 0.938 0.758 0.348 0.031 0.560 0.306 0.069 -0.318 0.573 0.580 
Cancer -0.001 0.163 0.996 0.338 0.190 0.077 -0.408 0.206 0.049 -0.078 0.165 0.637 0.768 0.314 0.016 
Depresison 0.068 0.163 0.679 -0.057 0.188 0.761 -0.038 0.192 0.845 0.102 0.164 0.535 -0.351 0.327 0.284 
Diabetes 0.087 0.198 0.659 0.119 0.231 0.608 -0.238 0.243 0.328 0.122 0.202 0.548 -0.021 0.405 0.959 
Hypercholesterol -0.002 0.139 0.989 -0.022 0.163 0.893 -0.054 0.179 0.765 0.034 0.143 0.814 -0.121 0.281 0.666 
Hypertension 0.049 0.141 0.729 0.123 0.165 0.458 0.074 0.174 0.673 0.070 0.144 0.628 -0.415 0.284 0.146 
Gender -0.192 0.145 0.188 -0.108 0.168 0.523 0.175 0.176 0.321 -0.100 0.146 0.495 -0.135 0.287 0.638 
Smoking -0.108 0.134 0.420 -0.030 0.157 0.848 -0.196 0.164 0.233 -0.185 0.137 0.177 -0.150 0.270 0.581 
Batch 0.170 0.175 0.334 0.158 0.204 0.439 0.657 0.201 0.001 -0.119 0.175 0.498 -0.248 0.369 0.502 
R-squared 0.068 0.098 0.216 0.12 0.13 
Effective N 178 183 159 185 164 

Note: Sensitivity analysis results for Inflammatory biomarkers. Est: coefficient estimate; SE: Standard Error; P-val: p-value. 

 

Supplemental Table 5 
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Supplemental Table 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Model results for post hoc analysis of the ratio of TNFα and PlGF.  
Est: coefficient estimate; SE: Standard Error; P-val: p-value. 

  

Post-Hoc Analysis 
Outcome: log(TNFα/PlGF) 
Predictor Est. SE P-val 
Age -0.010 0.014 0.472 
B12 Defficiency -0.310 0.291 0.288 
BMI -0.012 0.018 0.491 
CB 0.052 0.374 0.890 
CV -0.103 0.207 0.618 
COPD 0.360 0.322 0.264 
Cancer -0.094 0.198 0.635 
Depression -0.040 0.211 0.849 

Diabetes 0.397 0.238 0.097 
Hypercholesterol -0.135 0.178 0.447 
Hypertension 0.237 0.179 0.187 
Gender -0.031 0.168 0.854 
Smoking 0.134 0.162 0.407 
Batch -0.781 0.232 0.001 
R-squared 0.098 
Effective N 218 
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Supplemental Table 7 

2012/13 
Diagnosis 

2017/18 Diagnosis   
Normal MCI Demented 2012/13 Totals 

Normal 190 38 9 237 

MCI - 12 21 33 

Demented - - 7 7 

2017/18 Totals 190 50 37 277 
 

Note: Diagnosis transition table. 
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Supplemental Table 8 

 

 

 

 

 

 

 

Note: Batch demographics table. Batch 0 = 2012-2017, Batch 1 = 2013-2018.  
Age and education present mean(standard deviation), otherwise values are proportions. 

APOE: Aplipoprotien E. 

  Batch 
Demographics 0 1 
Gender (F) 0.59 0.7 
Apoe (+) 0.31 0.32 
Smoker (ever) 0.44 0.47 
Age (yrs) 84.7(6.2) 78(7.6) 
Education (yrs) 16.7(2.7) 16.4(2.8) 
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Supplemental Figure 5 
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Note: Model assessment plots for main analysis. 
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CHAPTER 3 

Introduction 

Cognitive decline due to Alzheimer’s disease (AD) is characterized by memory loss, 

reduced motor function, inability to think clearly, decrease in processing speed, and more [95]; 

these changes generally occur over decades. Although two anti-amyloid, disease modifying 

therapies have been recently approved by the US Food and Drug Administration (Aduhelm [96-

97] and Leqembi [98-99]), there is much controversy about the clinical effectiveness of these 

treatments. Prevention remains the most promising strategy for addressing the immense public 

health burden of dementia, which can be characterized by the estimated $355 billion spent on health 

and long-term care of dementia patients and an estimated $256.7 billion worth of care provided by 

family members and other unpaid caregivers in 2021 and 2020, respectively [100], not to mention 

the emotional, mental, and physical burden that effects family members daily. There is much work 

being done in relation to identification and preventative measures, one avenue of which is the 

development of prognostic biomarkers.   

Multiple candidate biomarkers have been identified for use in studies of cognitive decline. 

Neuroimaging and cerebrospinal fluid (CSF) biomarkers have shown some promising results for 

diagnostic biomarkers, but their widespread use is hindered by their cost and invasive nature [64-

65,67,101-102]. The desire for a cost-effective, easily accessible, and minimally invasive 

biomarker has led researchers to focus on blood plasma biomarkers [67,101-103]. Given the 

complexity and heterogeneity of the neuropathology that underlies dementia [104], it is likely that 

multiple biomarkers will be necessary to best detect and predict disease progression. While the 

typical study of plasma biomarkers is likely to examine 4-5 separate biomarkers [87-88,90-

92,103,105-106], studies often examine fewer [107-110], and rarely examine more [111].  

Many studies in this realm use cognitive diagnosis as their outcome [87-88,90,106], while 

some use various cognitive test scores, mainly the Mini Mental State Exam (MMSE) [87,105]. 
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Studies have used a wide variety of analytical methods, with varying levels of complexity, to 

examine biomarkers in relation to cognition and related demographics and health factors. Popular 

forms of analysis include receiver operating characteristic (ROC) area under the curve (AUC) [87-

88,105,108,110]; various types of linear, logistic, and survival regression models [87-88,90,105-

106,108]; as well as meta-analysis and review papers [101,103,107,109,111-113]. However, 

available literature using more sophisticated statistical methods in ADRD research is limited and 

application to plasma biomarkers even more so.  

Plasma biomarkers have been found to be significantly associated with AD and other 

measures of cognitive decline in a myriad of ways. Plasma measures of Aβ40 [114], Aβ42 [106], 

Aβ42/40 [87-88,114], total tau [90,87,114], p-tau [87-88], NfLight [87-88,106,114], and IL6 [90] 

have all shown significant association with dementia diagnosis, to name just a few. MMP9 has 

been associated with blood-brain barrier breakdown, which contributes to cognitive decline [107]. 

In longitudinal data, plasma NfLight has been significantly associated with MMSE measures over 

time, and “more abnormal plasma measures were associated with an accelerated decline in MMSE 

scores,” [87]. In addition to their relationship with cognitive decline, many biomarkers have been 

significantly associated with each other, supporting our idea that they may work in tandem to 

influence cognition. Aβ42 has been statistically significantly linked to total tau, TNFα, and IL6 

[90], p-tau has shown association with Aβ measurements [87], and significant associations have 

been found between the inflammatory markers IL6, IL10, and TNFa [90].  

Thus, the aim of the current study is to evaluate the usefulness of a panel of Quanterix HD-

X SiMOA plasma biomarkers, measured in a cohort of older adult research volunteers enrolled at 

the University of Kentucky Alzheimer’s Disease Research Center (UKADRC), to predict current 

and future cognitive performance. Participant data were obtained from two visits, 5 years apart. 

The longitudinal aspect of our study data gives us the opportunity to evaluate the potential of linear 

combinations of the biomarkers as predictors for three well-known and widely used cognitive 

exams: Mini Mental State Exam (MMSE), California Verbal Learning Test Long Delay Recall 
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(CVLT-LD), and Trail Making Test (Trails). Each of these instruments target different cognitive 

domains: global, memory, and executive function. 

 

Methods 

Setting 

Data for this study was drawn from the UKADRC community based longitudinal cohort, 

which evaluates participant cognition and overall health approximately annually. This subset of 

participant data was selected as described by Estepp et. al. [115]. Briefly, included participants with 

cognitive assessment who completed UKADRC study visits in either 2013/2018 or 2014/2019 and 

had available plasma biomarker data. Both sets of years were combined, and 2013/2018 data was 

used if a participant was present in both sets, retaining two observations per participant. No 

exclusions were made based on cognitive status or medical conditions. The University of Kentucky 

Institutional Review Board approved all UKADRC study procedures, and all participants gave 

written informed consent. 

 

Plasma Biomarkers 

The UKADRC Biomarker Core provided data from a panel of 12 blood plasma biomarkers, 

comprising the following biomarker subtypes: neurodegenerative, vascular, and inflammatory. 

This study, which was performed following the conclusion of [115], includes the same battery of 

biomarkers, with the addition of phosphorylated-tau(p-tau)181 to the neurodegenerative subgroup. 

A listing of the biomarkers is provided in [Table 1]. Detailed methods for these biomarker assays 

have been published previously Estepp et al [115]. Briefly, banked participant EDTA plasma 

samples were run by study year, with the samples from 2013/2018 and then 2014/2019 being run 

at the same time to minimize batch effects. Commercially available Quanterix SiMOA kits were 

used to measure all biomarkers on the HDX analyzer. Multiplex kits were used to measure amyloid 
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beta 1-40 (Aβ40), amyloid beta 1-42 (Aβ42), and total tau. Uniplex kits were used to measure the 

rest of the biomarkers. We previously found no strong associations between the biomarkers and 

various medical conditions or demographic characteristics with linear models, leading to minimal 

worry of confounding by these factors in the current analysis [115].  

 

Cognitive Measures 

UKADRC participants are administered the National Alzheimer’s Coordinating Center’s 

Uniform Data Set (UDS) Neuropsychological Battery approximately annually, in addition to the 

CVLT. However, the UDS Neuropsychological Battery was substantially revised in March 2015 

with UDS 3.0. Thus, only some measures were available at both time points in the current study. 

Our first selected outcome, MMSE [116], has been widely used in the field of AD research 

to measure global cognitive function. MMSE was removed from the UDS in 2015 when v3.0 was 

implemented [117], but the UKADRC has continued to collect this measure. MMSE consists of 16 

questions, comprising oral, written, and action elements, totaling 30 possible points [116]. The 

length and breadth of this exam contributes to its reputation as a valid measure of global cognition 

[118]. Typical scoring of the MMSE subtracts the number incorrect responses, or points lost, from 

the 30 total points, effectively counting correct responses. For the current study, we chose to use 

the number of incorrect responses as the outcome. This facilitated modeling using a Poisson count 

distribution (see Statistical Analysis section below), without quantitatively changing its meaning 

(since the MMSE has a strict range of values and specified scoring system, examining the number 

of correct answers is the same as examining the number of incorrect answers).  

The CVLT assesses the episodic memory domain [119]. It is thought to be sensitive to early, 

more subtle impairment, unlike the MMSE [120], which was developed to detect more serious 

impairments. The CVLT exam has two lists of words, A and B, both 16 words long, with 4 words 

from 4 different categories presented in a pseudo-random order [121]. List A is presented to the 

individual 5 times, followed by list B immediately after the fifth presentation of list A. Various 
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CVLT scores are extracted based on the patient’s ability to recall the lists immediately, multiple 

times, and after a period of time (long delay recall). For this study, we selected the long delay recall 

(CVLT-LD) score, which captures the number of correct words recalled from list A after 20 

minutes. Raw CVLT scores are converted to standard scores based on participant age and sex; 

CVLT-LD is operationalized as a z-score based on a reference population of cognitively intact 

adults [122]. 

To capture executive function, our third outcome comes from the Trail Making Test (TMT). 

The TMT has two parts, A and B. TMT A asks the participant to connect a series of dots numbered 

1-25 in ascending order and the time elapsed in seconds is recorded as the score; maximum allowed 

time to complete is 180 seconds. TMT B asks the participant to connect a series of dots, numbered 

1-12 and lettered A-L (24 dots total), in ascending order, alternating numbers and letters. Time 

elapsed in seconds is again recorded as the score; maximum time allowed to complete is 300 

seconds [123-127]. TMT A and B are often used separately [123-128], but in the current study we 

chose to use TMT B-A as a measure for the extra difficulty in TMT B while controlling for TMT 

A (processing speed) for each individual [127].  

Finally, in a post-hoc analysis, clinical cognitive diagnosis was used as an outcome. 

UKADRC clinicians followed explicit guidelines for diagnoses of Normal, Mild Cognitive 

Impairment (MCI), and Dementia [70]. 

 

Study Design 

To assess the diagnostic and prognostic utility of the biomarkers, we constructed four 

iterations of the data. We speculated that in addition to using baseline levels to predict future 

cognitive status, the change in biomarkers over the 5-year study period may explain cognition, as 

well as their base levels. To this end, we constructed two cross-sectional studies and two 

longitudinal studies. In the first cross-sectional study, we included only information from Study 

Year 1 (2013 or 2014; dataset 1); the second cross-sectional included only Study Year 5 information 



69 

(2018 or 2019; dataset 2). The first longitudinal study used Study Year 1 biomarker and covariate 

data, and outcome data from Study Year 5 (dataset 3). The second longitudinal study used Study 

Year 5 covariates and outcomes but incorporated biomarker data from both Study Year 1 and Year 

5 (dataset 4).  

Evaluating the relations among biomarkers and outcomes in these four study designs 

provides results applicable in a variety of possible clinical settings. Results from the cross-sectional 

studies (datasets 1 and 2) provide information on associations of outcomes with variables, and 

dataset 2 results can be thought of as a sensitivity analysis for the results from dataset 1. Results 

from the first longitudinal study (dataset 3) may be the most relevant to clinicians, who often wish 

to use a participant’s current state to predict their future outcomes. Finally, results from the second 

longitudinal study (dataset 4) may provide more insight toward disease progression if the change 

in biomarkers proves to be influential in explaining cognitive changes.  

 

Statistical Analysis 

The main interest for this analysis is to assess the relationship between the biomarkers and 

cognitive tests. We hypothesized that information from biomarkers needs to be considered 

collectively, as opposed to independently. In order to produce a relatively simple model that was 

not affected by collinearity but still included the most information from the biomarkers, we sought 

an appropriate dimension reduction technique.  

We used partial least squares (PLS) analysis for dimension reduction because PLS uses the 

outcome in the formation of its components, unlike principal components analysis, deriving linear 

combinations of covariates that explain the variation in the outcome [129]. PLS thus achieves the 

desired dimension reduction while producing combinations of covariates that are related to the 

outcome.  
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In addition to PLS for dimension reduction of the biomarkers, we used Lasso to select 

covariates. The initial set of variables included in the Lasso was based on the confounders identified 

by previously developed Directed Acyclic Graphs [115]. Age (in years), gender, education (in 

years), Apolipoprotein E (APOE), any e4 alleles vs none, and batch (13/18 vs 14/19), as described 

in [115]), were forced to stay in each of the Lasso models as critical prognostic factors for cognitive 

outcomes. In the Lasso procedure the number of variables included in each model (in addition to 

the 5 required variables) was determined via cross validation selection of the lambda parameter 

(default 10-fold validation for the R package was used) [14,130]. The lambda parameter in the 

Lasso procedure is a weight for the penalty factor applied to the covariates that measures the amount 

of simplification that occurs in the model through variable removal [14]. The “best” lambda value 

produces a model (using certain covariates) that has the smallest mean squared error (MSE). The 

“second-best” lambda value produces the model with the smallest number of covariates while 

maintaining a MSE within one standard error of the smallest MSE. To determine which lambda 

value to choose, which determines how many variables are to be included in the model, we 

evaluated plots of MSE by lambda values. The “second-best” lambda value was chosen for each 

model. This value produced the simplest models that performed reasonably well (via MSE), as the 

plots showed that the tradeoff of using lambda that improved MSE to its smallest value was never 

a drastic change in MSE, therefore it did not justify adding sometimes numerous variables to the 

models [Supplemental Figures 1-3]. 

After identifying covariates with the Lasso procedure, the parameters of interest from each 

of the four study designs were approximated with linear models including only the variables 

identified with the Lasso. Residuals from each of these models were taken and used as the data for 

the PLS procedure to ensure that the biomarker linear combinations would consider any other 

variables that would be in the final model and contribute information toward the outcome. We used 

linear models to produce the residuals for the PLS procedure for two reasons. First, we wanted to 

include any variables identified by the Lasso procedure in their full capacity, whereas the resulting 
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Lasso models may have penalties placed on some variables. Second, and perhaps more pertinent, 

the Lasso procedure has a reduced effective sample size because it requires observations to be 

complete cases when using all possible variables. By running our linear models, using complete 

cases only for the variables identified as useful by the Lasso, we can achieve a slightly larger sample 

size by not removing observations that are incomplete only for variables that were not included in 

the variable set. Once the PLS components for each model were identified, a final model for each 

study design-outcome combination was fit to the data including appropriate variables identified in 

the Lasso procedure and of appropriate model type (linear or Poisson). The statistical analysis 

process is outlined in [Figure 1]. 

Four data sets and three primary outcomes produced 12 sets of model results to evaluate. 

Participant age, gender, education, batch, and APOE were included in each model as covariates, in 

addition to identified PLS components.  

 

Post Hoc Analyses 

Two post hoc analyses were completed. First, a forward selection procedure was done for 

each outcome-dataset combination (starting with the 5 variables required to be in each model) to 

see if this simple procedure would add similar or differing variables to the models as compared to 

the Lasso-PLS process from the main analysis. 

The second post hoc analysis followed the procedures outlined for the main analysis and 

first post hoc analysis but used clinical cognitive diagnosis (collapsed to normal vs. MCI or 

demented) as the outcome. Although the outcome was binary, a linear model was still used to 

produce the residuals for the PLS stage of the analysis, which is defensible given posterior 

classification above or below 0.5 [131]. This analysis was done to assess whether results for 

cognition aligned with the cognitive proxy outcomes used in the main analysis. The final models 

were changed to logistic regression to reflect the nature of the outcome.  
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Software 

A 5% significance level was used when interpreting results. Analyses were performed with 

R version 4.1.2 in RStudio, using packages glmnet, tidyverse, dplyr, r2symbols, ggplot2, gridExtra, 

readxl, and haven [86,130,132-137]. 

 

Results 

The analytic sample included 277 participants. Our sample was 64% female, 94% white, 

with an average age of 76.29 years at Study Year 1, and an average educational attainment of 16.67 

years. Approximately 34% had at least one APOE e4 allele [Table 2]. About 20% of the individuals 

who were clinically Normal at Study Year 1 progressed to either MCI or Dementia at their Study 

Year 5 follow-up visit. Approximately 70% contributed biomarker information from their 

2013/2018 visits, with the remaining 30% from the 2014/2019 visits. Results of the modeling 

procedures are given below. 

 

Step 1: Lasso Procedure 

The Lasso procedure identified few variables to include in each of the models beyond the 

pre-specified covariates (age, gender, education, APOE, and batch) [Table 3]. No additional 

covariates were selected for CVLD-LD; depression was selected for all four MMSE models; and 

the Trail B-A models selected no variables for dataset 1, diabetes for dataset 2, and hypertension 

for datasets 3 and 4. 

 

Step 2: Linear Modeling Procedure 

All cognitive test outcomes were approximated using linear models including the pre-

specified covariates and any Lasso identified variables. Residuals from each model were extracted 

for the PLS procedure. 
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Step 3: Partial Least Squares Procedure 

PLS analyses were run on the residuals from the previous step for each outcome-dataset 

combination. Validation plots showing mean squared error of prediction (MSEP) via cross 

validation, per number of components, showed that the addition of even one component for all 

models increased model error without improving accuracy [Supplemental Figures 4-6]. Biomarker 

coefficients for the first component in each model are presented in Table 4.  

 

Step 4: Final Models 

Final models for each outcome-dataset combination were run with the covariates as 

described above, and the first components identified by PLS. Linear models were used for CVLT-

LD and Trails B-A, while MMSE errors used a Poisson generalized linear model. None of the 

biomarker component variables reached statistical significance [Table 5]. Batch did not reach 

significance for any of the outcome-dataset combinations. Among the other four prognostic 

variables purposely included in each model, age reached significance for CVLT-LD dataset 1, 

MMSE dataset 1, and Trails B-A datasets 2, 3, and 4; gender reached significance for CVLT-LD 

dataset 3, and MMSE datasets 1, 3, and 4; education reached significance for CVLT-LD datasets 1 

and 3, and MMSE datasets 1, 2, 3, and 4; and APOE reached significance for MMSE datasets 1, 2, 

3, and 4, and Trails B-A dataset 3. Depression, included in the MMSE models via the Lasso 

procedure, reached significance for all 4 datasets. For the Trails B-A models, neither diabetes 

(included for dataset 2) nor hypertension (included for datasets 3 and 4) reached significance.  

 

Post Hoc Analyses 

Forward selection was performed on each outcome-dataset combination, starting with the 

covariates as described above, to compare results with PLS findings. All covariates and biomarkers 

were available for selection (but not the component variable identified with PLS). This procedure, 
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based on model AIC, did not add any available covariates or individual biomarkers to the starting 

variables for any of the 12 models. 

 

Following the completion of the main analysis and forward selection assessment, a post hoc 

analysis was done using the same 4 datasets for the outcome of clinical cognitive diagnosis. 

Cognition was specified as Normal vs. any cognitive decline due to small cell sizes for non-Normal 

diagnoses (Impaired, MCI, and Dementia). The same process followed in the main analysis [Figure 

1] was carried out for this outcome.  

The Lasso procedure, where the “second-best” lambda was again used for variable selection 

[Supplemental Figure 7], added no variables beyond the required five for dataset 1, and depression 

was selected for datasets 2, 3, and 4. Linear regression models were run to acquire residuals for the 

PLS procedure. PLS analysis was run for each dataset, and the first component was pulled for the 

next analysis [Supplemental Table 1]. Logistic regression models were run for each of the 4 

datasets, including the pre-specified variables, Lasso identified variables, and the first component 

from the PLS procedure. The first PLS component variable did not reach significance for any of 

the datasets [Table 6]. Among the prognostic variables included in each model, batch and education 

did not reach significance for any of the 4 datasets, while age reached significance for datasets 2 

and 3, gender reached significance for datasets 2, 3, and 4, and APOE reached significance for 

dataset 2. Depression, included in only datasets 2, 3, and 4 via the Lasso procedure, reached 

significance for all 3. This process was again followed by a standard forward selection procedure, 

which again did not add any variables to the models.  

 

Discussion 

We employed PLS analysis, in conjunction with variable selection via the Lasso procedure, 

with the goal of identifying informative linear combinations of plasma biomarkers in relation to 

our cognitive outcomes. While PLS analysis has been used in AD research, it is often used in studies 
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with neuroimaging outcomes [138-141] or without the use of potential AD biomarkers [138-

139,142]. Similar literature that does utilize biomarkers with the PLS method typically uses very 

few or focuses on CSF biomarkers [128,140-141]. Our study makes a novel contribution in its use 

of many plasma biomarkers as predictors of non-neuroimaging cognitive outcomes. 

We evaluated the possible use of linear combinations of biomarkers for the prediction of 

three different cognitive outcomes, considering some important patient characteristics. Age, 

gender, education, and APOE were included in each model because they have been prognostic in 

dementia research [74,143-145]. Batch was included in each model, even though all measures were 

taken on the same machines at the same facility, because our previous research showed that batch 

can still affect biomarker values [115], though it proved to be insignificant in all models in this 

study. Linear combinations of the biomarkers studied here, identified through PLS, were not shown 

to be useful in predicting cognitive outcomes in any setting we studied (for none of the cognitive 

tests or outcomes, neither cross-sectionally nor longitudinally). Following the Lasso-PLS 

procedure, forward selection was done as a more standard analysis for comparison, however, this 

also did not produce any significant associations. 

As previously stated, many plasma biomarkers have been found to be statistically 

significantly associated with cognition, as well as each other [87-88,90,106-107,114]. While it was 

our hope to make clearer the relationships these biomarkers have with cognition and each other 

through the identification of influential linear combinations of biomarkers, we were unable to 

identify any statistically significant combinations. The reason for the lack of significant findings in 

this study cannot be easily determined. The sophisticated methodology we followed for this study 

is theoretically defensible but perhaps too convoluted for the relationships the biomarkers hold with 

cognitive outcomes. Additionally, a larger, more diverse sample may facilitate the discovery of 

more clinically significant relationships.  

 Despite the negative results, these findings are valuable and important to share. Research 

publications typically produce at least some positive findings, while null results are much less 
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common [146]. The presentation of only positive results for publication can lead to loss of time and 

money due to repetition of ineffective studies because of publication bias [147]. Our desire is to 

make advancements in the study of dementia, whether through our own findings or through guiding 

future research.  

A major strength of this study was the availability of longitudinal data on well characterized 

research participants from an ADRC. Additionally, our sample size is comparable, if not larger, 

than those in the current similar literature [128,138-142]. We attempted to account for the 

complexity of interpreting data from multiple biomarkers by delving into methods beyond standard 

linear modeling. We were also able to investigate a relatively large number of biomarkers in our 

study compared to the published literature [105,107-108,112,128,140-141,143].  

While our study sample represents a community-based cohort, it is highly specific in many 

ways. Our sample comes from a specific region of Kentucky (Central Kentucky), potentially 

limiting its applicability to individuals in other geographic and cultural regions. Given the 

convenience nature of the sample, and the restricted region from within which our sample comes, 

the external validity of our results is limited. Race was not included in the study because the vast 

majority of our participants are White, which could hinder the discovery of relationships relevant 

to the entire target population. In addition to lack of ethnoracial diversity, UK ADRC participants 

are much more highly educated than the general population of older adults. 

We hope that future research can be informed by our negative findings. While the use of 

biomarkers via PLS identified components did not prove to be useful here, different methodology, 

sampling, populations, or use of other available blood biomarkers may lead to clinically useful 

results.  
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Tables and Figures 

 

Figure 1. Statistical Analysis Flow Chart 

 

  

Note: Flow chart outlining the statistical analysis process for each outcome-dataset combination. 
DAG: directed acyclic graph; PLS: partial least square; APOE: apolipoprotein e. Previous research 

refers to Chapter 2. 
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Table 1. Biomarker Subtypes 

Subtype Biomarker 

Neurodegenerative/AD 

Aβ40 
Aβ42 

Aβ42/40 
t_tau 

t_tau/Aβ42 
ptau181 

ptau181/Aβ42 
NfLight 

Vascular PlGF 
MMP9 

Inflammatory 

IL6 
IL8 
IL10 
IL1β 
TNFα 

 

Note: Biomarker subtypes. AD: Alzheimer's Disease. Aβ: amyloid beta; ptau: phosphorylated tau; 
 t_tau: total tau; NfLight: Neurofilament light chain; TNFα: tumor necrosis factor alpha;  

PlGF: placental growth factor; MMP9: matrix metallopeptidase 9; IL: interleukin. 

 

  



79 

Table 2. Study Sample Characteristics 

Variable Statistic N Missing 
Batch (13/18) 193 (70) 0 
Age* (years) 76.29 (6.56) 0 

Gender (Female) 177 (64) 0 
Race (White) 261 (94) 0 

APOE (any e4) 94 (34) 2 
Education* (years) 16.67 (2.65) 0 

V1 Clinical Diagnosis (N) 239 (86) 0 
V2 Clinical Diagnosis (N) 187 (66) 0 

V1 Diabetes (y) 37 (13) 0 
V2 Diabetes (y) 38 (14) 4 

V1 Depression (y) 68 (25) 0 
V2 Depression (y) 79 (28) 0 

V1 Hypertension (y) 163 (59) 1 
V2 Hypertension (y) 171 (62) 0 

 

Note: *Age and Education presented as mean(standard deviation), all other measures are N(%). 
APOE: apolipoprotein e; Clinical Diagnosis N = Normal. Diabetes, Depression, ang Hypertension  

coded as yes/no. V1: visit 1 information, V2: visit 2 information. 
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Table 3. Lasso Identified Variables 

Outcome Dataset Lasso Identified Variables 

CVLT-LD 

1 - - - 
2 - - - 
3 - - - 
4 - - - 

MMSE 

1 Depression - - 
2 Depression - - 
3 Depression - - 
4 Depression - - 

Trails B-A 

1 - - - 
2 - Diabetes - 
3 - - Hypertension 
4 - - Hypertension 

 

Note: Variables added to models via the Lasso procedure.  
CVLD-LD: California Verbal Learning Test Long Delay; MMSE: Mini Mental State Exam;  

Trails: trail making test. 
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Table 4a. PLS First Component Coefficients 

Outcome Variable Dataset 1 Coeff Dataset 2 Coeff Dataset 3 Coeff Dataset 4 Coeff 

CVLT-LD 

AB40 0.0253 -0.0056 -0.0721 -0.0699 

AB42 0.0967 -0.0061 -0.0409 -0.0123 

AB42_40 -0.0090 -0.0368 0.0364 0.0583 

t_tau 0.0372 -0.0757 -0.1344 -0.1059 

ttau_ab42 -0.0562 -0.1307 -0.1420 -0.1192 

NfLight -0.0474 -0.1847 -0.1831 -0.1180 

TNFa -0.0494 -0.0284 0.0550 -0.1102 

PlGF -0.0876 0.0375 0.1319 0.0579 

MMP9 0.0142 0.0143 -0.0619 -0.0716 

IL6 -0.0611 -0.0463 0.0863 0.0042 

IL8 -0.1839 -0.0362 -0.0020 0.0050 

IL10 -0.1502 0.1751 0.1433 0.0632 

IL1b -0.0107 -0.0310 0.0840 0.0291 

ptau181 -0.0638 0.0380 0.1332 0.0903 

ptau181_ab42 -0.0300 -0.0070 0.0578 0.0714 

AB40 Diff - - - -0.0771 

AB42 Diff - - - -0.0593 

AB42_40 Diff - - - 0.0374 

t_tau Diff - - - -0.0930 

ttau_ab42 Diff - - - 0.0216 

NfLight Diff - - - -0.0343 

TNFa Diff - - - 0.0265 

PlGF Diff - - - 0.0392 

MMP9 Diff - - - -0.0451 

IL6 Diff - - - 0.0180 

IL8 Diff - - - -0.0324 

IL10 Diff - - - -0.0165 

IL1b Diff - - - -0.0411 

ptau181 Diff - - - 0.0582 

ptau181_ab42 Diff - - - 0.0448 
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Table 4. (cont.) PLS First Component Coefficients 

Outcome Variable Dataset 1 Coeff Dataset 2 Coeff Dataset 3 Coeff Dataset 4 Coeff 

MMSE 

AB40 -0.1611 0.0575 0.1531 0.0206 

AB42 -0.1467 -0.1194 0.1851 0.1738 

AB42_40 -0.1050 -0.1279 0.1140 0.1923 

t_tau -0.0106 0.0417 0.1201 0.0700 

ttau_ab42 -0.0388 -0.1703 0.0808 0.0330 

NfLight 0.1862 0.5438 1.3337 1.4221 

TNFa 0.1785 0.2174 -0.0270 0.1709 

PlGF 0.1253 0.0621 -0.1922 -0.2045 

MMP9 -0.0028 -0.0570 0.0742 0.1061 

IL6 0.1125 -0.0255 0.1652 0.0928 

IL8 0.0317 0.3038 0.3105 0.2765 

IL10 0.2483 0.8507 -0.1758 -0.2682 

IL1b -0.0519 -0.0252 -0.2653 0.1165 

ptau181 -0.0176 0.2129 -0.2070 0.0004 

ptau181_ab42 -0.0421 -0.1315 -0.0153 0.1418 

AB40 Diff - - - -0.1548 

AB42 Diff - - - 0.0143 

AB42_40 Diff - - - 0.0476 

t_tau Diff - - - 0.0537 

ttau_ab42 Diff - - - 0.1679 

NfLight Diff - - - 0.8240 

TNFa Diff - - - -0.1438 

PlGF Diff - - - -0.1028 

MMP9 Diff - - - 0.0668 

IL6 Diff - - - 0.1440 

IL8 Diff - - - -0.0966 

IL10 Diff - - - 0.2216 

IL1b Diff - - - 0.1395 

ptau181 Diff - - - 0.0364 

ptau181_ab42 Diff - - - 0.2836 
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Table 4. (cont.) PLS First Component Coefficients 

Outcome Variable Dataset 1 Coeff Dataset 2 Coeff Dataset 3 Coeff Dataset 4 Coeff 

Trails B-A 

AB40 -0.0120 0.0118 -0.0441 -0.0504 

AB42 0.0591 0.0435 0.0080 0.0255 

AB42_40 0.0715 0.0648 0.0569 0.0641 

t_tau -0.0075 0.0204 0.0573 0.0507 

ttau_ab42 -0.0491 0.0063 0.0713 0.0546 

NfLight 0.0624 0.0325 0.0582 0.0704 

TNFa 0.0295 0.0448 0.0582 0.0747 

PlGF -0.0169 0.0020 0.0034 -0.0097 

MMP9 -0.0237 -0.0355 0.0062 0.0485 

IL6 0.0563 -0.0265 0.0979 0.0743 

IL8 0.1217 0.0841 0.0732 0.0628 

IL10 -0.1010 -0.0260 -0.0210 0.0156 

IL1b -0.0707 -0.0363 0.0514 -0.0227 

ptau181 -0.0030 -0.0250 0.0297 0.0201 

ptau181_ab42 -0.0013 -0.0772 0.0286 0.0402 

AB40 Diff - - - -0.0546 

AB42 Diff - - - -0.0070 

AB42_40 Diff - - - 0.0538 

t_tau Diff - - - 0.0428 

ttau_ab42 Diff - - - 0.0048 

NfLight Diff - - - 0.0154 

TNFa Diff - - - 0.0633 

PlGF Diff - - - 0.0172 

MMP9 Diff - - - 0.0463 

IL6 Diff - - - 0.0578 

IL8 Diff - - - -0.0205 

IL10 Diff - - - 0.0249 

IL1b Diff - - - 0.0038 

ptau181 Diff - - - -0.0031 

ptau181_ab42 Diff - - - 0.0447 
 

 

Note: Biomarker variable coefficients for first PLS components from each dataset.  
CVLT-LD: California verbal learning test long delay; MMSE: Mini mental state exam; Trails: trail making test. 
Aβ: amyloid beta; ptau: phosphorylated tau; t_tau: total tau; NfLight: Neurofilament light chain; TNFα: tumor 

necrosis factor alpha; PlGF: placental growth factor; MMP9: matrix metallopeptidase 9; IL: interleukin. 
Coeff: coefficient; Diff: difference from study visit 1 to study visit 2. 
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Note: Model results for all combinations of outcome and dataset, including prognostic variables, 
Lasso identified variables, and first PLS component (linear combination of biomarkers). CVLT-LD: 

California verbal learning test; MMSE: mini mental state exam; Trails: Trail making test. Batch 
represents the years 2013/2018. Age and education presented in years. Gender represents females, 

APOE is any e4 alleles. Depression, Diabetes, and Hypertension coded as ever having the condition. 
SE: standard error. 

 PLS components described in Table 3. 

 

Outcome 

  Dataset 1 Dataset 2 Dataset 3 Dataset 4 

Variable Estimate SE P-values Estimate SE P-values Estimate SE P-values Estimate SE P-values 

CVLT-LD 

Batch 0.064 0.242 0.792 -0.022 0.311 0.945 -0.181 0.338 0.594 -0.283 0.406 0.488 
Age 0.041 0.018 0.022 -0.025 0.024 0.296 -0.039 0.027 0.154 -0.020 0.031 0.519 
Gender 0.234 0.231 0.314 -0.186 0.286 0.518 -0.742 0.322 0.023 -0.549 0.402 0.177 
Education 0.088 0.039 0.025 0.081 0.049 0.102 0.115 0.055 0.041 0.092 0.066 0.168 

APOE -0.332 0.238 0.165 0.134 0.292 0.646 -0.140 0.320 0.663 0.355 0.403 0.382 

PLS Component -2.51E-06 3.55E-05 0.944 3.79E-06 3.95E-05 0.924 9.45E-06 1.15E-05 0.414 9.51E-06 8.36E-06 0.260 

MMSE 

Batch 0.052 0.150 0.731 0.195 0.103 0.060 0.145 0.127 0.252 -0.038 0.140 0.786 
Age 0.028 0.012 0.018 0.015 0.008 0.067 0.011 0.009 0.197 0.005 0.009 0.554 
Gender -0.343 0.144 0.017 -0.187 0.102 0.068 -0.403 0.126 0.001 -0.343 0.139 0.014 
Education -0.098 0.025 <0.001 -0.046 0.018 0.011 -0.101 0.021 <0.001 -0.075 0.022 0.001 

APOE 0.687 0.147 <0.001 0.939 0.103 <0.001 0.819 0.125 <0.001 0.912 0.140 <0.001 
Depression 0.498 0.159 0.002 0.461 0.112 <0.001 1.039 0.115 <0.001 0.953 0.126 <0.001 

PLS Component 1.57E-06 1.41E-04 0.991 2.24E-06 5.51E-06 0.684 5.32E-06 3.98E-06 0.181 2.29E-06 2.08E-06 0.271 

Trails B-A 

Batch 0.068 0.108 0.532 0.136 0.124 0.274 0.140 0.145 0.338 0.017 0.183 0.924 
Age 0.015 0.008 0.056 0.042 0.010 0.000 0.029 0.011 0.009 0.030 0.013 0.022 
Gender -0.006 0.103 0.952 -0.095 0.120 0.428 -0.026 0.140 0.855 -0.050 0.176 0.776 
Education -0.014 0.018 0.433 -0.020 0.021 0.336 -0.021 0.025 0.410 -3.410E-05 0.030 0.999 

APOE 0.145 0.107 0.174 0.192 0.124 0.123 0.286 0.144 0.049 0.256 0.182 0.164 
Diabetes - - - 0.154 0.161 0.340 - - - - - - 
Hypertension - - - - - - 0.122 0.138 0.378 0.184 0.172 0.290 

PLS Component 6.17E-06 9.62E-06 0.522 5.99E-06 7.24E-06 0.409 5.73E-06 4.81E-05 0.905 4.63E-06 4.23E-06 0.277 
 

Table 5. Final Model Results 
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Outcome 

  Dataset 1 Dataset 2 Dataset 3 Dataset 4 

Variables Estimate SE P-values Estimate SE P-values Estimate SE P-values Estimate SE P-values 

Cognition 

Batch 0.028 0.065 0.67 0.077 0.079 0.334 0.082 0.09 0.363 0.003 0.111 0.978 

Age -0.004 0.005 0.414 0.015 0.006 0.016 0.019 0.006 0.003 0.015 0.008 0.054 

Gender -0.089 0.062 0.156 -0.268 0.076 0.001 -0.243 0.088 0.007 -0.268 0.109 0.016 

Education -0.014 0.011 0.185 -0.023 0.013 0.086 -0.017 0.015 0.263 -0.011 0.018 0.528 

APOE 0.124 0.064 0.055 0.159 0.078 0.044 0.145 0.089 0.106 0.113 0.112 0.315 

Depression - - - 0.305 0.086 0.001 0.321 0.089 0 0.373 0.106 0.001 

PLS Component 6.03E-06 7.21E-06 0.404 6.51E-06 6.13E-06 0.29 5.75E-06 9.61E-06 0.551 6.86E-06 4.87E-06 0.163 
 

Note: Model results for post hoc analysis following the same analysis procedure with cognition as the 
outcome. Cognition is measured as Normal vs. any cognitive decline. Batch represents years 

2013/2018, gender is female, APOE represents any e4 alleles, and depression represents ever having 
the condition. Age and education are measured in years. APOE: apolipoprotein e; PLS: partial least 

squares; SE: standard error.  

 

Table 6. Post Hoc Cognitive Outcome Model Results 
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Supplemental Materials 

Figure 1. Lasso Lambda MSE Plots (CVLT-LD) 
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Note: Plots of mean squared error per model defined by different values of lambda from the Lasso procedure for each 
dataset with CVLD-LD outcome. Numbers below title represent number of variables left in model. Dotted vertical line 
for lowest value of MSE represents best lambda value. Remaining vertical dotted line represents second best lambda. 

CVLD-LD: California Verbal Learning Test Long Delay score; MSE: mean squared error. 
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Figure 2. Lasso Lambda MSE Plots (MMSE) 
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Note: Plots of mean squared error per model defined by different values of lambda from the Lasso procedure for each 
dataset with MMSE outcome. Numbers below title represent number of variables left in model. Dotted vertical line for 

lowest value of MSE represents best lambda value. Remaining vertical dotted line represents second best lambda. 
MMSE: Mini Mental State Exam; MSE: mean squared error. 
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Figure 3. Lasso Lambda MSE Plots (Trails B-A) 
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Note: Plots of mean squared error per model defined by different values of lambda from the Lasso procedure for each 
dataset with Trails B-A outcome. Numbers below title represent number of variables left in model. Dotted vertical line 
for lowest value of MSE represents best lambda value. Remaining vertical dotted line represents second best lambda. 

Trails: Trail Making Test; MSE: mean squared error. 
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Figure 4. Partial Least Squares MSEP Plots (CVLT-LD) 
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Note: Plots of mean squared error of prediction via cross-validation based on number of PLS components included, for 
each dataset with CVLD-LD outcome. MSEP: mean squared error of prediction; PLS: partial least squares; CVLD-

LD: California Verbal Learning Test Long Delay. 
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Figure 5. Partial Least Squares MSEP Plots (MMSE) 

 

 

 



95 

 

Note: Plots of mean squared error of prediction via cross-validation based on number of PLS components included, for 
each dataset with MMSE outcome. MSEP: mean squared error of prediction; PLS: partial least squares; MMSE: Mini 

Mental State Exam. 
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Figure 6. Partial Least Squares MSEP Plots (Trails B-A) 
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Note: Plots of mean squared error of prediction via cross-validation based on number of PLS components included, for 
each dataset with Trails B-A outcome. MSEP: mean squared error of prediction; PLS: partial least squares; Trails: 

Trail Making Test. 
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Figure 7. Post Hoc Lasso Lambda Binomial Deviance Plots (Cognition) 
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Note: Post hoc plots of binomial deviance per model defined by different values of lambda from the Lasso procedure 
for each dataset with cognitive diagnosis outcome. Numbers below title represent number of variables left in model. 

Dotted vertical line for lowest value of binomial deviance represents best lambda value. Remaining vertical dotted line 
represents second best lambda. 
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Figure 8. Post Hoc PLS MSEP Plots (Cognition) 
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Note: Post hoc plots of mean squared error of prediction via cross-validation based on number of PLS components 
included, for each dataset with cognitive diagnosis outcome. MSEP: mean squared error of prediction; PLS: partial 

least squares. 
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Table 1. Post Hoc PLS First Component Coefficients (Cognition) 

 

Note: Post hoc biomarker variable coefficients for first PLS components from each dataset with cognition as the 
outcome. Cognition is presented as Normal vs. any cognitive decline. 

Aβ: amyloid beta; ptau: phosphorylated tau; t_tau: total tau; NfLight: Neurofilament light chain; TNFα: tumor 
necrosis factor alpha; PlGF: placental growth factor; MMP9: matrix metallopeptidase 9; IL: interleukin. 

Coeff: coefficient; Diff: difference from study visit 1 to study visit 2. 

  

 

Outcome Variable Dataset 1 Coeff Dataset 2 Coeff Dataset 3 Coeff Dataset 4 Coeff 

Cognition 

AB40 0.0052 0.0188 0.0277 0.0148 

AB42 -0.0177 0.0017 0.0258 0.0254 

AB42_40 -0.0056 -0.0161 -0.0211 -0.0092 

t_tau 0.0057 -0.0080 0.0331 0.0248 
ttau_ab42 0.0428 0.0006 0.0352 0.0252 
NfLight 0.0382 0.0462 0.0712 0.0503 
TNFa 0.0164 -0.0060 0.0234 0.0332 

PlGF 0.0116 -0.0204 -0.0420 -0.0316 
MMP9 -0.0191 -0.0275 0.0197 0.0138 
IL6 -0.0057 -0.0091 0.0091 0.0066 
IL8 0.0576 0.0409 0.0499 0.0343 
IL10 0.0333 0.0224 -0.0058 -0.0061 

IL1b -0.0135 -0.0232 -0.0249 -0.0240 

ptau181 -0.0068 -0.0142 -0.0171 -0.0131 

ptau181_ab42 -0.0081 -0.0289 0.0067 -0.0020 

AB40 Diff - - - -0.0160 

AB42 Diff - - - -0.0076 

AB42_40 Diff - - - -0.0034 

t_tau Diff - - - 0.0263 

ttau_ab42 Diff - - - 0.0256 

NfLight Diff - - - 0.0134 

TNFa Diff - - - 0.0027 
PlGF Diff - - - -0.0137 
MMP9 Diff - - - 0.0327 
IL6 Diff - - - 0.0097 
IL8 Diff - - - 0.0134 
IL10 Diff - - - 0.0099 
IL1b Diff - - - 0.0206 
ptau181 Diff - - - 0.0116 

ptau181_ab42 Diff - - - 0.0256 
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CHAPTER 4 

Introduction 

While prevention and cure are the end goal researchers work toward, clinical identification of 

Alzheimer’s disease (AD) remains complicated as well. While certain identifiable pathologies are 

specific to AD, other pathological signs and symptoms are not AD specific and may overlap with 

other dementias and neurodegenerative disorders, making it difficult to differentiate [104,148-151]. 

The gold standard of AD diagnosis is still brain autopsy, but much focus is being given to the 

potential of blood-based biomarkers that can be measured throughout disease progression and 

before cognitive decline occurs. Diagnostic guidelines for AD-type dementia include biomarker 

evidence but recognize the limited validation of available biomarkers [65]. Thus, research focused 

on characterizing and validating blood-based biomarkers addresses a critical gap in knowledge.  

Currently, hypothesized models of AD pathogenesis posit that measures of tau and amyloid 

beta, the hallmark proteins that are misfolded in AD neuropathological changes (ADNC), change 

gradually from normal to abnormal levels many years prior to the onset of cognitive symptoms 

[152]. Additionally, there is growing appreciation that AD-type dementia is most often explained 

by a mixture of ADNC and additional pathologies, including cerebrovascular disease and immune 

dysfunction [153-154]. However, longitudinal studies of blood-based biomarker trajectories are 

lacking.  

Thus, in this study we examined age-related trajectories, via group-based trajectory models 

(GBTMs), of five plasma biomarkers that have shown promise in research related to cognitive 

decline: two neurodegenerative biomarkers, amyloid beta 42/40 (Aβ42/40) [155] and 

phosphorylated tau (ptau181) [156]; one vascular biomarker, placental growth factor (PlGF) [157]; 

and two inflammatory biomarkers, interleukin 6 (IL6) [158] and tumor necrosis factor alpha 

(TNFα) [159]. GBTM is a semiparametric method developed as an extension of mixture modeling 

[160-161]. Our goal was to identify distinct, latent trajectories for each of the biomarkers over time 
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and examine whether they differ based on cognitive performance. We hypothesized that if these 

biomarkers are truly measuring disease progression due to ADNC, then we would expect to see 

differences in cognitive performances between the GBTM identified trajectories.  

 

Methods 

Setting 

Data for the current study were drawn from the University of Kentucky Alzheimer’s Disease 

Research Center (UKADRC) community-based longitudinal cohort (full cohort description in 

[115]). Individuals were evaluated approximately annually until death and through autopsy, for 

which participants gave informed consent. Our sample was restricted to UKADRC participants 

who had plasma biomarker assays, which began collection in 2012. Due to technical changes in the 

acquisition of biomarker measurements (that is, switching from the Quanterix HD-1 analyzer to the 

HD-X analyzer), biomarker data from the first year of collection was excluded [115]. All studies 

have been reviewed and approved by the University of Kentucky Institutional Review Board (IRB). 

 

Biomarkers 

Blood-plasma biomarkers were measured using the Quanterix SiMOA HD-X machine, as 

described previously [115]. Quanterix multiplex kits were used to measure Aβ40 and Aβ42, while 

Quanterix uniplex kits were used to measure ptau181, PlGF, IL6, and TNFα. For analysis, values 

of Aβ42 were combined with Aβ40 to create the ratio of Aβ42/40. Aβ40 and Aβ42 were not 

investigated independently.  

 

Risk factors 

Participant age at each annual visit was rounded to the nearest year and used as the time scale 

for the GBTMs. Gender (male and female), education (years), Apolipoprotein E (APOE) (defined 
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as any e4 alleles vs no e4 alleles), and race (defined as white vs other) were included as baseline 

(non-time-dependent) risk factors in all models. While these baseline risk factors may aid in 

determining group membership, they are not time-varying and therefore have no effect on the shape 

of the trajectories [166].  

 

Cognitive measures 

Three measures of global cognition were used to evaluate the GBTMs: Mini-Mental State 

Exam (MMSE), Clinical Dementia Rating Global Score (CDRGLOB), and clinical cognitive 

diagnosis. The MMSE consists of 16 questions totaling 30 points [116]. MMSE scores are typically 

given as the number of correct answers out of 30, meaning the higher the score the better the 

cognition. While there are no universally agreed upon cutoffs for MMSE score interpretation, 

scores of 26 and above generally indicate normal cognition, while scores at or below 24 generally 

indicate cognitive impairment [162]. The MMSE is administered by trained psychometricians. 

Clinical Dementia Rating Scale assessment yields a raw score called the CDR Sum of Boxes 

(CDRSUM; range 0-18, higher scores are worse) [163]. The CDR is administered by UKADRC 

clinicians and consists of six categories (memory, orientation, judgement and problem solving, 

community affairs, home and hobbies, and personal care), each of which is rated by a study co-

participant to reflect the participant’s level of impairment: 0 (None), 0.5 (questionable), 1 (mild), 

2 (moderate), or 3 (severe). Their ratings are added up to create CDRSUM [164]. An additional set 

of guidelines [163,165] is used to calculate a global CDR rating (CDRGLOB), which is a measure 

of overall severity of impairment presented on the same scale used to score the individual 

categories. Therefore, a lower global score suggests better cognitive function. 

Finally, clinical cognitive diagnosis is assessed for each individual at each visit following a 

strict set of guidelines to reduce subjectivity across clinicians [70]. Diagnosis is based on physical 

examination, neurological examination, cognitive examination, and medical history, as well as 
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information provided by the study co-participant. Regression to a lesser clinical cognitive diagnosis 

following a more severe diagnosis was not allowed in this dataset. 

 

Statistical Analysis 

We used GBTMs to identify distinct trajectories for each of the five measured biomarkers. This 

method, developed by Nagin and colleagues [160-161,166-167], uses mixture modeling techniques 

to identify at least 2 latent subgroups within the population. These groups show how the outcomes 

progress over time [160-161,166-167]. This method is an effective tool for visually representing 

longitudinal changes in outcomes, and GBTMs have been increasingly used in recent years to 

model cognitive trajectories in ADRD research [168-171].  

Just as the individual mixtures in classic mixture modeling do not represent literal groups [172], 

Nagin emphasizes that the identified trajectory groups should not be thought of as literal, 

identifiable groups of individuals, but rather as latent groups that follow similar courses over time 

[166]. Group membership is determined by maximum probability assignment and should be 

understood as probabilistic [166].  

There are three different kinds of GBTMs: single, joint- (or dual-) trajectory, and multi-

trajectory. We employed the use of both single and multi-trajectory models in this analysis. A 

single-trajectory analysis identifies the number of groups that develop similarly over time for one 

outcome. A dual-trajectory model is designed to analyze the interrelationship of two outcomes that 

jointly develop over time. The estimated trajectories for each outcome are linked with a table of 

conditional probabilities that measures the probability of following a specific trajectory for 

outcome 2 given that the individual is following a specific trajectory for outcome 1 [173]. In some 

cases, it may be desirable to allow trajectories to differ across multiple outcomes, but this method 

becomes exponentially computationally intensive when more than 2 outcomes are considered. 

Multi-trajectory models were designed to avoid the computational problem of the conditional 

probability tables when performed for more than 2 outcomes, but their use with just two outcomes 
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may be desirable as well. In this form of GBTM, the trajectories identified by the model are 

consistent across all outcomes being considered, meaning no matter how many outcomes are 

considered there is only one set of trajectory groups. This is much more computationally reasonable 

and also affords the researcher the knowledge that the individuals in a specific trajectory are the 

same across all outcomes used, which may be clinically meaningful. 

For the current study, we fit multi-trajectory models to Aβ42/40 and ptau181 data (i.e., 

measures of ADNC), as well as IL6 and TNFα data (i.e., measures of inflammation), and we fit a 

single trajectory model to the PlGF data. In the initial runs of the GBTMs, there were many issues 

with convergence and calculation of standard errors. In order to combat these issues, two 

approaches were taken. First, all five biomarker outcomes were logged [174]. This not only reduced 

the range of values but allowed us to model the biomarker trajectories via the censored-Normal 

distribution within PROC TRAJ in SAS. As our outcomes were not censored, the minimum and 

maximum censoring values were set outside the range of logged values for each outcome, as 

advised by Nagin, for when outcomes are approximately Normal but not censored [167]. Second, 

the timescale for the models, age, was scaled and centered, as this increases model stability, as 

noted by Dr. Daniel Nagin and Dr. Bobby Jones [email correspondence, May 2023]. Once these 

measures were taken no more convergence or standard error issues were encountered.  

Model selection for the GBTMs was undertaken as outlined in [175]. Prior to any modeling, 

the maximum reasonable number of groups per outcome was set to be 4. More than 4 trajectory 

groups may lead to additional convergence problems while also increasing difficulty of 

interpretation. With little known about the changes in biomarkers over time, and how those changes 

may relate to cognition, we believe 4 trajectories to be the maximum number of groups to consider 

here while remaining clinically relevant and interpretable. Again prior to any modeling, the 

maximum order for any one trajectory was set to be 2 (quadratic). In addition to being the 

recommendation by Nagin [166], we have no clinical reason to believe that the trajectory of 

biomarker measurements would be more complicated than can be described by a second order 
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polynomial. The original sample of eligible UKADRC participant visits was trimmed to include 

only those visits where the age at the visit was between 65 and 90, inclusive, as both tails were very 

scarcely populated [Figure 1]. 

The first step was to determine the number of trajectory groups for each of the 3 models. Since 

“the choice of the order of the trajectory for each group is of less importance than the choice of the 

number of such groups,” [166(p67)], the order for each group in the group number selection process 

was set to quadratic and trajectory group orders were determined second. Trajectory group 

determination was done by comparing trajectory plots and Bayesian Information Criterion (BIC) 

for each set of models run with 1, 2, 3, and 4 groups, respectively. According to Nagin, the addition 

of a trajectory group is desirable only if the measured improvement of model fit, assigned to be the 

first component of the BIC, is larger than the incurred penalty for adding more parameters, the 

second component of the BIC [166(p65)], i.e., increasing the overall BIC by a measurable margin 

(as seen in Table 2 of Jones et. al. [167]), where twice the log of the Bayes factor can be 

approximated by twice the change in BIC between models and any difference greater than 6 

supports the use of the more complex model via strong evidence.  

Once the number of groups was determined, the orders of the polynomials describing the group 

mean of the trajectory over time were reduced from quadratic (where all orders were set for group 

number determination) to an appropriate level. This was done via manual backwards selection: 

within each model, each group was compared and the order coefficient with the highest p-value 

removed. This process was repeated until either the highest order coefficient per trajectory was 

statistically significant or only the 0-order remained. A 0-order polynomial (that is, a flat line) 

would suggest that the group mean for the trajectory of the outcome is stable over study time. A 

first order polynomial would suggest that the group mean for the trajectory of the outcome develops 

linearly (either positively or negatively) over study time. Finally, a second order polynomial for the 

mean of the trajectory would suggest that the outcome develops in a curvilinear fashion (with no 

changes in concavity, or points of inflection) over study time. 



109 

After group number and orders were determined, Wald tests [166(pp102-106)] and Likelihood 

Ratio tests [176] were performed for each of the 4 included baseline risk factors. Baseline risk 

factors, which do not change over time, are only useful as possible predictors of group membership. 

They are included throughout and tested for relevance at the end of the model selection process 

because they have “almost no impact on the form of the trajectories themselves,” [166(p114)], 

because they don’t contain information that influences the shape of the trajectory since they do not 

change over time [166(pp113-116)]. 

After the determination of the final models for each of the outcomes, the respective trajectories 

were compared in a myriad of ways. Average posterior probability for each assigned group was 

assessed to confirm each group surpassed the rule of thumb cutoff of 0.7, presented by Nagin 

[166(p88)]. Special consideration of trajectory groups must be taken when analyzing model results 

for the multi-trajectory models. As previously stated, in a multi-trajectory model, no matter how 

many outcomes are considered, there is only one set of groups, each containing the same set of 

individuals across all outcomes, though the trajectories for each group may differ across outcomes. 

Consequently, it may be the case that two (or more) trajectories look the same for one outcome, but 

some distinction between them can be found in a different outcome. In such a case, it may be 

beneficial to analyze trajectory characteristics with certain trajectories grouped together for one 

outcome when it appears that the distinction between them comes from the other outcome. When 

analyzing model results, final trajectory plots will be referenced for possible trajectory groupings 

that may provide clinically relevant results. Baseline risk factors (gender, APOE, education, and 

race) and cognitive assessments (MMSE, CDRGLOB, and clinical diagnosis) were tested for 

differences across assigned trajectory groups, and relevant groupings of trajectories, via ANOVA 

F tests [177] and Chi-square tests [178] for independence. 

 

Post Hoc Analysis 
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A significant result for the Chi-Square test of independence of cognitive diagnosis transitions 

and trajectory group for Aβ42/40 and ptau181 trajectories led to a post hoc analysis further 

investigating the differences in cognition between the trajectory groups. First, we performed new 

Chi-Square tests of independence for baseline and final diagnoses separately. We also tested for 

differences in the number of individuals who transitioned to a more severe diagnosis, given it was 

possible for them to receive a more severe diagnosis. Additionally, we did pairwise Chi-Square 

comparisons for all combinations of trajectory groups for the three previously mentioned 

breakdowns of cognitive diagnosis to try and determine specifically which trajectories differed 

from the others.  

 

Software 

All results were interpreted at the 5% significance level. Analyses were performed using a 

combination of SAS version 9.4 and R version 4.1.2 in RStudio. The GBTM package was installed 

for use in SAS [167,179], while the following packages were used in R: tidyverse, plyr, haven, and 

readxl [86,136-137,180]. 

 

Results 

After application of eligibility criteria, our sample included 1082 unique UKADRC 

participants, with an average of 5.3 study visits (range 1 to 10 visits). After trimming study visits 

where participants were younger than 65 or older than 90 years, our analysis sample comprised 

1015 unique individuals with an average of 5.11 visits (range 1 to 10 visits). In all, 916 individuals 

were utilized (with complete information for the baseline risk factors, as required by PROC TRAJ 

in SAS). Among the individuals utilized in our analysis, approximately 60% were female, 87% 

were white, 39% had at least one APOE e4 allele, and the average years of education attained was 

16.25.  
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Model Selection 

Each of the 3 GBTMs, two multi-trajectory and one single trajectory, resulted in a 4-group 

model. The 4-group model fit each outcome the best based on evaluation of trajectory plots [Figures 

2-6] and BIC comparisons [Table 1], all of which exceeded the suggested cutoffs of 6 and 10 for 

justifying the larger model via strong and very strong evidence, respectively [167]. 

Two measures of BIC were used throughout both group number selection and order reduction 

for trajectory groups, one with N set to the number of observations and the other with N set to the 

number of unique individuals. Because N is intended to measure independent observations making 

up a sample, neither value of N defined here is technically correct in the GBTM setting because 

multiple observations from independent individuals are not themselves totally independent. The 

large and small values of N used to create these two BIC measures create a range, within which the 

theoretically correct BIC lies for each model [166(p68), 190], though this is debated [190]. Thus, 

comparisons were made using both values. 

Order reduction for each of the trajectories was evaluated via manual backwards selection and 

comparison of model BICs. While the individuals assigned to a specific trajectory in a multi-

trajectory model are consistent across outcomes, the order assigned to those trajectories can differ 

between outcomes. The orders for the first multi-trajectory model, for Aβ42/40 and ptau181, were 

reduced to final orders of 2, 2, 0, and 0 for Aβ42/40 and 1, 0, 0, 0 for ptau, for trajectories 1, 2, 3, 

and 4, respectively [Table 2]. The final orders for trajectories 1, 2, 3, and 4 for the single trajectory 

model for PlGF were 0, 0, 1, and 2, respectively [Table 3]. Lastly, the final orders for the second 

multi-trajectory model, for IL6 and TNFα, were reduced to orders of 2, 1, 1, and 0 for IL6, and 0, 

0, 0, and 2 for TNFα, respectively [Table 4]. 

After the determination of the number and order of the trajectories for each model, baseline 

risk factors were assessed for their usefulness in group membership determination via commonly 

used LRTs [181] and Wald test (suggested in the GBTM literature [166,173]). Interestingly, results 

from the two versions of testing did not often agree on whether to retain the baseline risk factors. 
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Likelihood ratio tests for the inclusion of each risk factor for each model indicated to retain all 

variables except gender for Aβ42/40 and ptau, race for PlGF, and gender for IL6 and TNFα [Table 

5], while the Wald tests suggested keeping only education and race for PlGF and the IL6 and TNFα 

models [Table 5]. In the interest of consistency, and in the light of these conflicting results, all four 

risk factors were retained for each GBTM.  

 

Trajectory Characteristics 

Following the determination of the final models for each GBTM, trajectory group 

characteristics, baseline risk factors, and cognitive performance were evaluated for each group and 

compared for differences. In total, every trajectory exceeded the 0.7 rule of thumb cutoff for 

average posterior probability set forth by Nagin [166(p88)], indicating adequate fit for each model.  

In addition to evaluating cognitive characteristics across the assigned trajectories, the final 

trajectory plots were examined to determine any relevant groupings of trajectories for comparisons 

amongst trajectories used in multi-trajectory models. Evaluation of the Aβ42/40 plot suggests that 

trajectories 2, 3, and 4 may be similar and separate from trajectory 1 in relation to Aβ42/40, even 

though reasonable separation can be seen between them in relation to ptau181. Evaluation of the 

ptau181 plot suggests that trajectories 1 and 2 may be similar and separate from trajectories 3 and 

4 in relation to ptau181, even though trajectories 1 and 2 appear very different in relation to 

Aβ42/40. This is the nature of multi-trajectory modeling, resulting from the requirement that 

individuals in each trajectory remain the same across outcomes, and thus we will be comparing 

relevant cognitive measures for the aforementioned groupings of Aβ42/40 and ptau181 trajectories 

[Figure 7], in addition to comparing each trajectory separately. 

Similarly, evaluation of the final trajectory models for IL6 and TNFα revealed their own 

clinically relevant groupings for comparison. Evaluation of the final plot for IL6 suggests that 

trajectories 3 and 4 may be similar and separate from trajectories 1 and 2 in relation to IL6, even 

though trajectories 3 and 4 appear quite different in relation to TNFα. Evaluation of the final plot 
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for TNFα suggests that trajectories 1, 2, and 3 may be similar and separate from trajectory 4 in 

relation to TNFα, even though trajectories 1, 2, and 3 are distinguishable in relation to IL6. These 

clinically relevant groupings of trajectories for IL6 and TNFα were compared [Figure 9], again in 

addition to all 4 trajectories separately. 

No groupings of trajectories were considered for the analysis of PlGF results because it was a 

single-trajectory model. The final PlGF plot confirmed that no trajectories should be combined for 

comparison [Figure 8]. 

 

Baseline Characteristics 

Gender, race, and APOE status were compared across trajectory groups via Chi-square tests for 

independence, while education was assessed with an ANOVA F test. The ANOVA assumption of 

normality of education for the entire sample was tested via the Shapiro Wilk test [182] in R. Though 

the test failed and found evidence of non-Normality, an evaluation of the plot of years of education 

per individual suggests that we would not be egregious in proceeding with the analysis anyways 

[Supplemental Figure 1] as the F statistic is robust against non-Normality given the population is 

symmetric and unimodal, and group sizes are greater than 10 [183-184], both of which our data 

satisfy. Also tested was homogeneity of variances across groups for each set of trajectories, another 

assumption of the ANOVA test. For each set of trajectories, group variances were tested via 

Bartlett’s test [185], and no evidence of unequal variances was found for any set of trajectories.  

Among Aβ42/40 and ptau181 trajectories, each group closely resembled the total sample on 

gender and race. Consequently, the tests of independence found no significant difference between 

the groups. The distribution of APOE e4 alleles across trajectory groups differed slightly from the 

sample distribution for trajectory group 1, but statistical significance was not reached (possibly 

because group 1 was the smallest trajectory group). We were also unable to detect difference in the 

mean number of years of education across trajectory groups here [Table 6].  
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PlGF trajectory groups showed more differences in baseline characteristics than the Aβ42/40 

and ptau181 trajectory groups. While group 2 appeared to resemble the total sample on gender, 

groups 3 and 4 appear to have a slightly higher percentage of males and group 1 was 100% female. 

The Chi-Square test for independence reached statistical significance, implying that the distribution 

of gender did differ across trajectory groups. For race, trajectory group 1 appears to have a vastly 

different distribution than the total sample (and the other trajectory groups), which was enough for 

the test of differences across groups to reach statistical significance. While there was some variation 

in APOE distribution across trajectory groups, they were not statistically significantly different. 

Finally, average education appeared to be lower than the sample average for group 1, and higher 

than the group average for group 3. The ANOVA test for differences in mean years of education 

across trajectory groups reached statistical significance [Table 7].  

Lastly, unlike the Aβ42/40 and ptau 181 trajectory groups, TNFα and IL6 trajectory groups did 

show some differences in baseline characteristics across trajectory groups, though not as many as 

the PlGF trajectory groups. While trajectory group 3 appears to have a slightly higher percentage 

of females than the sample as a whole, the differences in gender distribution across trajectory 

groups were not enough to reach statistical significance. Groups 2, 3, and 4 appear to resemble the 

sample on race, but trajectory group 1 has a smaller proportion of white individuals. This difference 

was enough for the test of differences across groups to reach statistical significance. We again see 

some variation in APOE distribution across trajectory groups, but there is not enough evidence to 

lead to statistical significance. Finally, trajectory groups 3 and 4 appear to have slightly lower 

average years of education. The differences in education across trajectories were enough to reach 

statistical significance [Table 8]. 

 

Cognitive Characteristics 

First, MMSE and CDRGLOB were compared across assigned trajectories, as well as relevant 

groupings of trajectories (informed by the final trajectory plots). MMSE was evaluated via the 
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difference in first and last score to assess how much an individual’s score decreases (i.e., got worse) 

over their study time. The differences in the maximum (best) and last (theoretically worst) MMSE 

scores were also evaluated to account for any testing variation that may have occurred in their 

scores while remaining temporally consistent with disease progression. CDRGLOB was similarly 

evaluated via the difference in first and last scores to assess how much an individual’s score 

increased (again, got worse) over their study time. The difference in first (theoretically best) and 

last (worst) CDRGLOB score was also evaluated to account for any testing variation that may have 

occurred in their scores while remaining temporally consistent.  

In the total sample, the average difference in first and last MMSE scores was 1.12, with a 

standard deviation of 3.28, meaning that on average an individual’s MMSE score will decrease by 

an estimated 1.12 points from their first to their last visit, though the large standard deviation 

suggests this is not a strong pattern within the entire sample. This measure reached statistical 

significance when testing for differences between trajectory groups for the following scenarios: all 

4 trajectories separately and trajectories 1 and 2 vs. 3 vs. 4 for Aβ42/40 and ptau181 trajectories 

[Table 6], and trajectory 1 vs. 2 vs. 3 and 4 for IL6 and TNFα trajectories [Table 8]. For the whole 

sample, the average difference in maximum and last MMSE scores was 1.65, with a standard 

deviation of 3.15. This implies a slightly larger decrease in score between an individual’s maximum 

and last MMSE score in our sample, though again there is large standard deviation. This measure 

reached significance only for the comparison of trajectory groups 1 and 2 vs. 3 vs. 4 for Aβ42/40 

and ptau181 trajectories.  

In the total sample, the average difference in first and last CDRGLOB scores was -0.13, with 

a standard deviation of 0.36, meaning that on average an individual’s CDRGLOB score will 

increase by 0.13, but a large standard deviation suggests that this is not a strong tendency within 

our sample. This measure reached significance when testing for differences between trajectory 

groups for the comparison of all 4 groups for PlGF trajectories, the only cognitive evaluation across 

trajectory groups to reach significance [Table 7]. For the total sample, the average difference in 
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first and maximum CDRGLOB score was -0.16, with a standard deviation of 0.36. This measure 

did not reach significance when testing differences across trajectory groups for any outcome.  

Finally, clinical cognitive diagnosis was examined. For the entire sample, approximately 71% 

of individuals were diagnosed as Normal at their first visit, while 16% were MCI and 14% had 

dementia [Table 6]. The majority of baseline Normal individuals remained Normal at their last visit 

(~80%), while some transitioned to MCI (15%), and few reached Demented (5%) by their last visit. 

Approximately 76% of individuals with MCI at their first visit remained there at their last visit, 

while 24% progressed to Dementia. Given the restriction of no milder diagnoses after receiving a 

more severe diagnosis, all patients who had dementia at their first visit remained Demented at their 

last visit. 

The diagnosis transition from first visit to last visit was compared across trajectories via Chi-

square test. For Aβ42/40 and ptau181 trajectories it appears that trajectory 1 (which is by far the 

smallest group) may have a different distribution of diagnosis transitions than the rest of the groups 

[Table 6]. Though the Chi-square test does not specify which trajectories differ from the others, it 

did reach statistical significance, implying that diagnosis transition was not independent of 

trajectory group. Diagnosis transitions in the PlGF trajectory groups do not appear starkly different 

aside from trajectory group 1 (which is again by far the smallest group) having no individuals that 

were MCI at the first visit [Table 7]. The test for differences of diagnosis transitions across 

trajectory groups did not reach statistical significance. Finally, the distribution of diagnosis 

transitions across trajectory groups for TNFα and IL6 trajectories appear to be distributed roughly 

similarly, which is supported by a non-significant result from the Chi-square test for independence 

[Table 8].  

 

Post Hoc Analysis 

Following a significant Chi-Square test for diagnosis transitions for Aβ42/40 and ptau181 

trajectories, further analysis was done to investigate three cognitive characteristics (baseline 



117 

diagnosis, final diagnosis, and diagnosis progression) across trajectory groups. The distribution of 

baseline cognitive diagnosis in trajectory groups 2, 3, and 4 resemble the distribution of the entire 

sample, but trajectory group 1 has far fewer Normal individuals at baseline. The distribution of 

final cognitive diagnosis for the whole sample is reflected in trajectory groups 2 and 4, but 

trajectory group 3 appears to have slightly more Normal individuals and trajectory group 1 has far 

fewer Normal individuals. Chi-Square tests concluded that both baseline and final cognitive 

diagnosis differed among trajectory groups [Table 9]. The final overall comparison made was a 

dichotomy of whether individuals in the sample progressed to a more severe diagnosis from their 

baseline to final diagnoses (amongst only those individuals who could progress, i.e., excluding 

individuals who began as Demented). While trajectory groups 2 and 4 appear similar to the total 

sample, groups 1 and 3 show lower proportions of individuals who did progress to a more severe 

diagnosis. This cognitive characteristic also proved to be significantly different across trajectory 

groups via a Chi-Square test [Table 9]. All pairwise combinations of trajectories were then 

compared via Chi-Square test for all three aforementioned cognitive characteristics. For both 

baseline and final cognitive diagnosis, trajectory group 1 was significantly different than groups 2, 

3, and 4, but no significant differences could be found between trajectory groups 2, 3, and 4. For 

cognitive diagnosis progression, the only pair of trajectories that were statistically significantly 

different were trajectory groups 3 and 4 [Table 10]. 

For all three cognitive characteristics, pairwise Chi-Square comparisons with trajectory group 

1 are not stable because >20% of cells have an expected cell size of <5. This is a result of the small 

size of trajectory group 1 and should be considered when weighing the validity of these results.  

 

Discussion 

Using data from a community-based cohort of older adult research volunteers, we used GBTMs 

to identify latent groups (trajectories) of five clinically relevant blood-plasma biomarkers, 
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investigating gender, race, education, and APOE as risk factors that influence trajectory group 

membership. We were able to attain adequate fit for all 3 models and compare baseline risk factors 

and cognitive assessments across trajectories for each outcome. 

Baseline risk factors were evaluated for utility in predicting group membership by both Wald 

tests and LRTs. Test results for their inclusion from each method did not often agree. All four 

baseline risk factors were retained in each model because they each achieved significance for at 

least one model, via at least one testing method, and we wished to remain consistent across models. 

The source of the inconsistency of test results per risk factor likely stems from the difference in 

basis of each test. An LRT is based on a simple difference in log likelihoods [186] and is thought 

to be very reliable [181]. A Wald test, however, is based on the inverse of a Fisher information 

matrix [187], which is itself based on derivatives of the log likelihood function [187], the 

calculations of which may not be as stable, yet the test was recommended [166]. 

Interesting patterns are seen in the trajectories for each biomarker. While the majority of 

individuals have a stable pattern of development of Aβ42/40 over time, a small portion of 

individuals very much differ with a strong decrease in the ratio over time. These individuals are 

repeatedly highlighted as different in the analysis. The small size of this group of individuals 

suggests caution, but it is possible that such a subset of individuals exists in the population. The 

trajectory plot for ptau181 differs greatly from that of Aβ42/40. This plot suggests that the general 

level of ptau181 is more important and generally stable over time. PlGF, the only single-trajectory 

model where we would expect all trajectories to be distinguishable, shows that the general level of 

PlGF over time is likely its most important feature (though two of the trajectories were beyond 0-

order). Similar to the first model, group 1 for PlGF is much smaller than the rest, which can account 

for the deviation of the nonparametric fit around the polynomial mean line. IL6 trajectories suggest 

that there are important differences in IL6 level, while all slightly increase over time. Throughout 

our trajectory analyses there are groups that are defined for subsets of the available ages of the 

sample individuals. This is a result of the overall age distribution and the fact that our individuals 
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cover a range of number of visits to be included in the data. TNFα has the trajectory defined for the 

shortest span of ages in its group 4, which is also its smallest group at N=28 individuals. Though 

this trajectory does not seem biologically plausible in relation to the rest of the individuals, its 

presence was strong in the data, and likely just a feature of our sample. These individuals were 

assigned their own trajectory when considering any number of trajectories beyond 1 [Figure 6]. 

However, as discussed below, although race and education are found to differ across trajectory 

groups, the distributions in group 4 do not immediately stand out as different than that of the entire 

sample for these or the non-significant baseline risk factors. Additionally, this trajectory group is 

not found to be significantly different from the rest in any cognitive characteristics.  

Aβ42/40 and ptau181 trajectories were not found to differ on any baseline risk factors. The 

insignificant findings are perhaps not surprising given the disagreement between their respective 

LRT and Wald tests. What is surprising is the trajectory groupings for which significant MMSE 

scores were found when compared to the significant clinical diagnosis transitions and subsequent 

pairwise trajectory comparisons. Although the post hoc clinical diagnosis findings suggest that 

trajectory group 1 is significantly different from the other 3 trajectories, the grouping of trajectory 

1 vs all three other trajectories were the only tests in which MMSE was not significant. The 

significant findings for MMSE are likely driven more by ptau181 than Aβ42/40 because the 

trajectory group pairings that reached significance represent the possible relevant pairings based on 

the final ptau181 trajectory plot [Figure 7]. However, significant cognitive diagnosis findings are 

perhaps driven more by Aβ42/40 because they mainly highlight the difference of trajectory group 

1 from the other 3, which is reflected in the final trajectory plot for Aβ42/40 [Figure 7]. These 

findings show that there is some direct relation between neurodegenerative biomarkers and 

cognitive characteristics that extends beyond any relation they may have with the baseline risk 

factors. Based on the significant findings and the patterns seen in the final Aβ42/40 and ptau181 

plots, it appears that, in general, level of ptau181 over time is important, while changes in the 

balance of Aβ42 and Aβ40 may be influential.   
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Unlike the first model, the baseline gender, race, and education factors did differ across PlGF 

trajectory groups, though useful baseline risk factors did not appear to influence findings in 

cognitive characteristics across trajectory groups. Similar to the first model, it appears as though 

trajectory group 1 stands out from the other 3 in most measures, although there was not probable 

cause to investigate this difference further as the final trajectory plot did not prompt pairings of 

trajectories to compare (as is expected for a single-trajectory model) [Figure 8], and the test of 

independence of clinical diagnosis transitions across trajectory groups was not significant. PlGF 

trajectory groups were the only ones to show a significant difference for any CDRGLOB measure, 

perhaps suggesting vascular biomarkers may be more related to this measure than inflammatory or 

neurodegenerative biomarkers. 

Although there appears to be an unreasonable trajectory defined for TNFα, this is likely just a 

feature of the sample [188], not the population, and the remainder of the model should still be 

thought of as statistically sound. Few significant results were found for the IL6 and TNFα trajectory 

groups, similar to that of PlGF. Race and education differed across groups, while gender and APOE 

did not. The only significant finding in cognitive characteristics was the difference of first and last 

MMSE score for the comparison of trajectory groups 1 vs. 2 vs. 3 and 4. This result is likely driven 

by IL6 because that trajectory group pairing is reflected in the final IL6 trajectory plot [Figure 9], 

although the same grouping of trajectories did not yield a significant finding for the difference of 

maximum and last MMSE scores. Unlike the previous two models, no trajectory groups here 

consistently stood out as possibly different from the rest, and no more significant differences were 

found in the cognitive characteristics.  

This study utilized a relatively large number of individuals and took full advantage of their 

longitudinal data without loss of information due to breaking it down for a cross-sectional analysis. 

Sophisticated modeling techniques enabled the evaluation of complex relationships between 

biomarkers and cognition for a considerable range of ages relevant to disease progression. 

Additionally, the ability to examine five plasma biomarkers that cover a wide range of functions 
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within the body sets our study apart from the majority that examine very few biomarkers [107-

110,128,140-141]. 

While the strength and value of this study is considerable, there are limitations to be 

acknowledged. Our sample size is quite reasonable, though limited to complete cases. The 

contribution of anywhere from 1 to 10 visits per individual means that we are unable to estimate 

these trajectories with the same amount of information at each age. Less information in the age 

extremes leads to less certainty or trajectories defined over only a portion of the study time (as seen 

in the final trajectory plots). Full information from individuals across the ages examined as study 

time could help fill out the ends of the trajectories and possibly rectify any odd trajectory shapes. 

There were many hypothesis tests performed in this analysis, especially with the addition of the 

post hoc analyses. No multiple testing corrections were added to any p-values in the post hoc 

analysis, so we must be wary of Type 1 errors. Additionally, many of the Chi-Square tests 

performed in the post hoc analysis were not stable because of small cell sizes, casting some level 

of doubt on their validity.  

An important factor to consider when evaluating this study is the nature of the data. As 

previously stated, our sample includes multiple observations for individuals, ranging from 1 to 10 

visits and averaging about 5 visits. This implies that there are individuals whose first, last, and 

maximum values all come from the same visit. These individuals would also be categorized as not 

progressing to a more severe diagnosis by their last visit (if they began as either Normal or MCI), 

even though they theoretically could not progress with only one visit. These individuals were 

included so we could gain as much information as possible for all factors (baseline, cognitive, and 

biomarker). Approximately 22% of the 916 individuals utilized in the analysis had only one visit. 

This represents a sizeable portion of the data and may have influenced the results. In the future it 

could be useful to evaluate data with and without individuals who have only one time point (or age 

in this case) to evaluate whether this feature has an effect on the analysis and eliminate it if 

necessary.  
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There are many other future directions researchers could explore, informed by our findings. 

Most obviously, it would be beneficial to similarly study additional plasma biomarkers to establish 

more relationships with cognitive characteristics over time. It may also be beneficial to examine 

some of our results, specifically the post hoc pairwise comparisons that had many small cell sizes, 

with different statistical tests that account for such limitations, like the non-parametric Fisher’s 

exact test [178].  

Given the significant results for AB42/40 and ptau181, it may be useful to examine these 

biomarkers separately, or even with a dual-trajectory model, to see if the positive results are driven 

by one or both of them. Also, we would like to perform a more in-depth examination of the changes 

in Aβ40 and Aβ42 over time, as new insights could be gained by examining them separately 

(outside of their ratio). While interpretation and computational difficulties may present new 

challenges, a dual-trajectory analysis of Aβ40 and Aβ42 could be an effective method because the 

trajectory groups, and even number of groups, would not be required to be the same across the two 

outcomes.  

This study adds valuable information to the field of AD blood-plasma biomarker research with 

the use of a sophisticated statistical modeling technique to characterize biomarker trajectories that 

develop over many years. Our findings suggest that Aβ42/40 and ptau181 are related to MMSE 

measures and clinical cognitive diagnosis over time, and that PlGF and IL6 may be related to 

CDRGLOB and MMSE measures over time, respectively. These findings highlight important 

features of the relation of two neurodegenerative biomarkers to cognitive measures over time and 

provide a promising basis for future research of these elements with more neurodegenerative, 

vascular, and inflammatory biomarkers.  
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Tables and Figures 

 

Figure 1. Age Histogram 

  

 

NOTE: Histogram of age for each visit originally available for analysis.  
Multiple observations per individual included. Age recorded in years. 
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Table 1. Model Group Number Selection Statistics 

NOTE: Sample sizes are based on available biomarker and risk factor information per individual.  
Diff: Difference; BIC: Bayesian information criterion; Aβ: amyloid beta; PlGF: placental growth factor; IL: 

interleukin; TNFα: tumor necrosis factor alpha.

Outcome(s) 
Num. of 
groups 

Big N 
BIC (Big N) 

Small N 
BIC (Small N) 

Group 
Comparison 

Big BIC 
Diff 

Small BIC 
Diff 

2*Big 
Diff 

2*Small 
Diff 

Aβ42/40 + 
ptau 

1 -6809.85 4900 -6801.71 641 - - - -  

2 -6314.29 4900 -6294.97 641 2 - 1 495.56 506.74 991.12 1013.48 

3 -6212.77 4900 -6182.26 641 3 - 2 101.52 112.71 203.04 225.42 

4 -6182.98 4900 -6141.28 641 4 - 3 29.79 40.98 59.58 81.96 

PlGF 

1 -5343.04 3207 -5340.64 965 - - - - - 

2 -4286.41 3007 -4278.78 843 2 - 1 1056.63 1061.86 2113.26 2123.72 

3 -4180.12 3007 -4167.4 843 3 - 2 106.29 111.38 212.58 222.76 

4 -4175.96 3007 -4158.16 843 4 - 3 4.16 9.24 8.32 18.48 

IL6 + TNFα 

1 -9830.46 6571 -9822.4 879 - - - - - 

2 -9370.16 6571 -9351.02 876 2 - 1 460.3 471.38 920.6 942.76 

3 -9226.29 6571 -9196.06 876 3 - 2 143.87 154.96 287.74 309.92 

4 -9198.13 6571 -9156.82 876 4 - 3 28.16 39.24 56.32 78.48 
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Figure 2. Aβ42/40 Group Number Selection Plots 

 

 

 

NOTE: Aβ42/40 trajectory plots based on multi-trajectory GBTMs for the outcomes Aβ42/40 and 
ptau181 with 1, 2, 3, and 4 trajectory groups considered. GBTM: group-based trajectory model; Aβ: 

amyloid beta; ptau: phosphorylated tau. 
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Figure 3. Ptau181 Group Number Selection Plots 

 

 

 

 

 

 

 

  

NOTE: Ptau181 trajectory plots based on multi-trajectory GBTMs for the outcomes Aβ42/40 and 
ptau181 with 1, 2, 3, and 4 trajectory groups considered. GBTM: group-based trajectory model; Aβ: 

amyloid beta; ptau: phosphorylated tau. 
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Figure 4. PlGF Group Number Selection Plots 

 

 

 

 

 

 

 

  

NOTE: PlGF trajectory plots based on single-trajectory GBTMs with 1, 2, 3, and 4 trajectory 
groups considered. PlGF: placental growth factor; GBTM: group-based trajectory model. 
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Figure 5. IL6 Group Number Selection Plots 

 

 

 

 

  

NOTE: IL6 trajectory plots based on multi-trajectory GBTMs for the outcomes IL6 and TNFa with 1, 2, 
3, and 4 trajectory groups considered. GBTM: group-based trajectory model; IL: interleukin, TNFa: 

tumor necrosis factor alpha. 
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Figure 6. TNFα Group Number Selection Plots 

 

 

 

 

 

 

NOTE: TNFα trajectory plots based on multi-trajectory GBTMs for the outcomes IL6 and TNFα with 1, 
2, 3, and 4 trajectory groups considered. GBTM: group-based trajectory model; IL: interleukin, TNFα: 

tumor necrosis factor alpha. 
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Table 2. Aβ42/40 and ptau181 Trajectory Order Reduction 

 

NOTE: P-values for trajectory polynomial order reduction via manual backwards selection. Aβ: amyloid beta, ptau: 
phosphorylated tau.

Outcome Group Parameter 

Iteration 

1 2 3 4 5 6 7 8 9 10 11 12 

P-value P-value P-value P-value P-value P-value P-value P-value P-value P-value P-value P-value 

Aβ42/40 

1 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Quadratic 0.0036 0.0036 0.0035 0.0037 0.0041 0.0038 0.0036 0.0038 0.0039 0.0052 0.0053 0.0052 

2 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear 0.7087 0.7099 0.7107 0.6936 0.6712 0.6578 0.5331 0.5298 0.4638 0.525 0.5293 0.5364 

Quadratic 0.0106 0.0105 0.0104 0.0102 0.0091 0.0121 0.0135 0.0094 0.0095 0.0091 0.0097 0.012 

3 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear 0.1783 0.1778 0.1813 0.1807 0.1795 0.1719 0.1303 0.1177 - - - - 

Quadratic 0.1646 0.1643 0.1606 0.1605 0.1602 0.1852 0.1926 - - - - - 

4 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear 0.2676 0.2671 0.2659 0.2717 0.2811 0.3045 - - - - - - 

Quadratic 0.5158 0.5155 0.5071 0.5045 0.4879 - - - - - - - 

ptau 

1 
Intercept 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0008 0.0008 0.0009 
Linear 0.0004 0.0004 0.0004 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0035 0.0035 0.0035 

Quadratic 0.1032 0.1033 0.1022 0.0973 0.0962 0.091 0.0866 0.0885 0.0869 - - - 

2 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear 0.5624 0.563 0.5657 0.5997 - - - - - - - - 

Quadratic 0.7009 0.6926 0.692 - - - - - - - - - 

3 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear 0.0814 0.0808 0.0654 0.0647 0.0601 0.0625 0.0576 0.0621 0.0655 0.0663 - - 

Quadratic 0.5338 0.5353 - - - - - - - - - - 

4 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear 0.064 0.0624 0.0616 0.0595 0.0433 0.0467 0.0395 0.04 0.0406 0.0398 0.1099 - 

Quadratic 0.9555 - - - - - - - - - - - 
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Table 3. PlGF Trajectory Order Reduction 

 

NOTE: P-values for trajectory polynomial order reduction via manual backwards selection. PlGF: placental growth 
factor. 

 

 

 

  

Outcome Group Parameter 

Iteration 
1 2 3 4 5 6 

P-value P-value P-value P-value P-value P-value 

PlGF 

1 
Intercept 0.7511 0.7517 0.4825 0.4798 0.4214 0.7598 
Linear 0.0415 0.0414 0.0422 0.044 0.0631 - 

Quadratic 0.7484 0.7476 - - - - 

2 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear 0.0785 0.0771 0.0799 0.086 - - 

Quadratic 0.7005 0.7158 0.717 - - - 

3 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Quadratic 0.8114 - - - - - 

4 
Intercept <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Linear 0.0295 0.0268 0.0268 0.0269 0.0334 0.0336 

Quadratic 0.0401 0.0395 0.0395 0.0396 0.0386 0.0387 
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Table 4. IL6 and TNFa Trajectory Order Reduction 

NOTE: P-values for trajectory polynomial order reduction via manual backwards selection. IL: 
interleukin; TNFa: tumor necrosis factor alpha 



 

Table 5. P-values for Risk Factor Retention Tests 

Outcome(s) Risk 
Factor 

Likelihood Ratio 
Tests 

Wald 
Tests 

Aβ42/40 + 
ptau 

APOE < .0001 0.3425 
Gender 0.8826 0.8801 

Education < .0001 0.9716 
Race 0.0119 0.3101 

PlGF 

APOE < .0001 0.6179 
Gender < .0001 0.5365 

Education < .0001 0.0370 
Race 0.2427 0.0368 

IL6 + TNFa 

APOE < .0001 0.4435 
Gender 0.1703 0.8137 

Education < .0001 0.0060 
Race 0.0027 0.0160 

 

NOTE: Likelihood ratio test p-values result from Chi-Square test statistics (with 3 degrees of freedom) for twice  
the difference in the log likelihoods of the models with and without the specified risk factor. Wald test p-values  

result from Chi-Square test statistics (with 3 degrees of freedom) for a test of whether the risk factor coefficients 
 for group membership are equal to 0. Aβ: amyloid beta; ptau: phosphorylated tau; PlGF: placental growth factor; 

 IL: interleukin; TNFa: tumor necrosis factor alpha.  
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Figure 7. Aβ42/40 and ptau181 Final Trajectory Model Plots 

 

 

  

NOTE: Trajectory plots for Aβ42/40 and ptau181 from the final model (with reduced trajectory 
polynomial orders). Aβ: amyloid beta; ptau: phosphorylated tau. 
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Figure 8. PlGF Final Trajectory Model Plot 

 

 

  

NOTE: Trajectory plot for the final PlGF model (with reduced trajectory polynomial orders).  
PlGF: placental growth factor. 
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Figure 9. IL6 and TNFα Final Trajectory Model Plots 

 

 

 

  

NOTE: Trajectory plots for IL6 and TNFa from the final model (with reduced trajectory polynomial 
orders). IL: interleukin; TNFα: tumor necrosis factor alpha. 
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Table 6. Aβ42/40 and ptau181 Results Table 

 

NOTE: Comparison of various characteristics across trajectories from the final GBTM for AB42/40 and ptau181. 33 
individuals are missing cognitive diagnosis, all of which are in trajectory group 2, making 630 its effective N, and 833 
the effective total sample size for clinical diagnosis. Any percentages that do not add to 100 are a result of rounding. 

Aβ: amyloid beta; ptau: phosphorylated tau; APOE: apolipoprotein E; MMSE: Mini Mental State Exam; CDRGLOB: 
Clinical Dementia Rating global score; MCI: mild cognitive impairment; SD: standard deviation, N: sample size. 

  

Sample Characteristics by Aβ42/40 & ptau181 Trajectory 

Characteristics 
Total Sample     

(N=916) 

Trajectories 

Test Statistic  
1        

(N=16) 
2     

(N=663) 
3       

(N=84) 
4      

(N=153)  
Trajectory Characteristics  

Group Proportion   0.02 0.72 0.09 0.17    
Avg. Post. Prob.   0.794 0.811 0.913 0.861    

Baseline Characteristics  

Gender, N(%)           

 Male 363(40) 7(44) 258(39) 38(45) 60(39) Χ2
3 = 1.3708   

 Female 553(60) 9(56) 405(61) 46(55) 93(61)    
Race, N(%)           

 White 794(87) 14(88) 564(85) 75(89) 141(92) Χ2
3 = 5.9711   

 Other 122(13) 2(12) 99(15) 9(11) 12(8)    
APOE, N(%)           

 Any e4 alleles 358(39) 8(50) 245(37) 37(44) 68(44) Χ2
3 = 4.7809   

 No e4 alleles 558(61) 8(50) 418(63) 47(56) 85(56)    

Education, mean(SD) 16.25(2.81) 15.12(2.53) 16.18(2.83) 16.68(2.87) 16.44(2.71) F3,912 = 1.864   

Cognitive Characteristics  

MMSE, mean(SD)              

 First-Last 1.12(3.28) 0.93(1.67) 0.99(3.08) 0.65(2.94) 1.97(4.19) F3,845 = 4.126   

 First-Last (1 vs 2, 3, 4)   0.93(1.67) 1.13(3.3) F1,847 = 0.051   

 First-Last (1, 2 vs 3 vs 4)   0.99(3.06) 0.65(2.94) 1.97(4.19) F2,846 = 6.193   

 Max-Last 1.65(3.15) 1.2(1.52) 1.49(2.96)  1.41(2.67) 2.51(4.1) F3,800 = 4.141   

 Max-Last (1 vs 2, 3, 4)   1.2(1.52) 1.66(3.18) F1,802 = 0.31   

 Max-Last (1, 2 vs 3 vs 4)   1.48(2.93)  1.41(2.67) 2.51(4.1) F2,801 = 6.154   
CDRGLOB, mean(SD)            

 First-Last -0.13(0.36) -0.03(0.12) -0.13(0.36) -0.13(0.4) -0.17(0.35) F3,879 = 1.077   

 First-Last (1 vs 2, 3, 4)   -0.03(0.12) -0.14(0.36) F1,881 = 1.334   

 First-Last (1, 2 vs 3 vs 4)   -0.13(0.36) -0.13(0.4) -0.17(0.35) F2,880 = 1.051   

 First-Max -0.16(0.36) -0.03(0.12) -0.15(0.36) -0.17(0.38) -0.21(0.36) F3,879 = 2.054   

 First-Max (1 vs 2, 3, 4)   -0.03(0.12) -0.16(0.36) F1,881 = 2.024   

 First-Max (1, 2 vs 3 vs 4)   -0.14(0.36) -0.17(0.38) -0.21(0.36) F2,880 = 2.272   
Clinical Diagnosis, N(%)            

 Baseline Normal            

  Normal 500(57) 4 (25) 351 (56) 56 (67) 89 (58) Χ2
15 = 38.409   

  MCI 95(11) 0 (0) 72 (11) 5 (6) 18 (12)    

  Demented 31(3) 1 (6) 20 (3) 1 (1) 9 (6)    

 Baseline MCI            

  MCI 103(12) 7 (44) 79 (13) 7 (8) 10 (7)    

  Demented 33(4) 0 (0) 21 (3) 2 (2) 10 (7)    

 Baseline Demented            

  Demented 121(14) 4 (25) 87 (14) 13 (16) 17 (11)    
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Table 7. PlGF Results Table 

 

NOTE: Comparison of various characteristics across trajectories from the final GBTM for PlGF. 33 individuals are 
missing cognitive diagnosis, all of which are in trajectory group 2, making 666 its effective N, and 833 the effective 

total sample size for clinical diagnosis. Any percentages that do not add to 100 are a result of rounding. PlGF: 
placental growth factor; APOE: apolipoprotein E; MMSE: Mini Mental State Exam; CDRGLOB: Clinical Dementia 

Rating global score; MCI: mild cognitive impairment; SD: standard deviation, N: sample size. 

  

Sample Characteristics by PlGF Trajectory 

Characteristics 
Total Sample 

(N=916) 

Trajectories 

Test Statistic  
1        

(N=13) 
2     

(N=699) 
3       

(N=109) 
4      

(N=95)  
Trajectory Characteristics  

Group Proportion     0.01 0.76 0.12 0.10   
 

Avg. Post. Prob.   0.856 0.921 0.812 0.930   
 

Baseline Characteristics  

Gender, N(%)           
 

 Male 363(40) 0(0) 268(38) 51(47) 44(46) X2
3 = 13.13   

 Female 553(60) 13(100) 431(62) 58(53) 51(54)   
 

Race, N(%)          
 

 White 794(87) 6(46) 609(87) 96(88) 83(87) X2
3 = 18.836   

 Other 122(13) 7(54) 90(13) 13(12) 12(13)   
 

APOE, N(%)          
 

 Any e4 alleles 358(39) 7(54) 266(38) 51(47) 34(36) X2
3 = 4.6522   

 No e4 alleles 558(61) 6(46) 433(62) 58(53) 61(64)   
 

Education, mean(SD) 16.25(2.81) 15.85(2.64) 16.03(2.81) 17.16(2.59) 16.87(2.82) F3,912 = 6.919   

Cognitive Characteristics  

MMSE, mean(SD)           
 

 First-Last 1.12(3.28) 0.92(1.83) 1.17(3.38) 1.12(3.4) 0.82(2.52) F3,845 = 0.312   

 Max-Last 1.65(3.15) 1.33(1.92) 1.71(3.32) 1.76(3.19) 1.1(1.56) F3,800 = 1.014   

CDRGLOB, mean(SD)         
  

 First-Last -0.13(0.36) -0.19(0.56) -0.12(0.34) -0.23(0.48) -0.11(0.31) F3,879 = 3.37   

 First-Max -0.16(0.36) -0.19(0.56) -0.15(0.33) -0.24(0.48) -0.14(0.33) F3,879 = 2.407   

Clinical Diagnosis, N(%)         
  

 Baseline Normal         
  

      Normal  500(57) 9(69) 373(56) 58(53) 60(63) X2
15 = 11.419   

      MCI  95(11) 2(15) 71(11) 13(12) 9(9)  
  

      Demented  31(3) 0 24(4) 5(5) 2(2)  
  

 Baseline MCI         
  

      MCI  103(12) 0 81(12) 13(12) 9(9)  
  

      Demented  33(4) 0 21(3) 8(7) 4(4)  
  

 Baseline Demented         
  

      Demented  121(14) 2(15) 96(14) 12(11) 11(12)  
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Table 8. IL6 and TNFα Results Table 

 

NOTE: Comparison of various characteristics across trajectories from the final GBTM for IL6 and TNFa. 33 
individuals are missing cognitive diagnosis, all of which are in trajectory group 2, making 599 its effective N, and 833 
the effective total sample size for clinical diagnosis. Any percentages that do not add to 100 are a result of rounding. 

IL: interleukin; TNFα: tumor necrosis factor; APOE: apolipoprotein E; MMSE: Mini Mental State Exam; CDRGLOB: 
Clinical Dementia Rating global score; MCI: mild cognitive impairment; SD: standard deviation, N: sample size. 
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Table 9. Post Hoc Cognitive Diagnosis Tests for Aβ42/40 and ptau181 

 

NOTE: Post hoc analysis of clinical cognitive diagnoses for Aβ42/40 and ptau181 trajectories following a significant 
test of clinical diagnosis transition. Aβ: amyloid beta; ptau: phosphorylated tau; MCI: mild cognitive impairment; N: 

sample size. 

 

 

  

Post Hoc Tests of Aβ42/40 & ptau181 Trajectories 

Characteristics 

Total 
Sample     
(N=916) 

Trajectory 

Test Statistic P-Value 
1        

(N=16) 
2     

(N=663) 
3       

(N=84) 
4      

(N=153)  
Post Hoc Cognitive Diagnosis Tests 

 

Baseline Clinical Diagnosis          
 

 Normal 626(71) 5(31) 443(70) 62(74) 116(76) Χ2
6 = 16.815 0.00999  

 MCI 136(15) 7(44) 100(16) 9(11) 20(13)   
 

 Demented 121(14) 4(25) 87(14) 13(15) 17(11)   
 

Final Clinical Diagnosis          
 

 Normal 500(57) 4(25) 351(56) 56(67) 89(58) Χ2
6 = 13.596 0.03449  

 MCI 198(22) 7(44) 151(24) 12(14) 28(18)   
 

 Demented 185(21) 5(31) 128(20) 16(19) 36(24)   
 

Progression (if possible)          
 

 Yes 159(21) 1(8) 113(21) 8(11) 37(27) Χ2
3 = 8.414 0.03819  

 No 603(79) 11(92) 430(79) 63(89) 99(73)   
 

 (Total) (762) (12) (543) (71) (136)   
 

 



141 

Table 10. Post Hoc Pairwise Comparisons 

Post Hoc Pairwise Chi-Square Tests of Independence 

Trajectory Pairings 

Comparison 
Baseline Diagnosis Final Diagnosis Progression 

Χ2
2 P-Value Χ2

2 P-Value Χ2
1 P-Value 

Trajectory 1           

 With Trajectory 2 12.142* 0.0023 6.081* 0.047 1.120* 0.2899 

 With Trajectory 3 13.518* 0.0012 10.983* 0.0041 0.091* 0.7629 
 With Trajectory 4 14.800* 0.0006 7.782* 0.0204 2.058* 0.1514 
Trajectory 2           

 With Trajectory 3 1.567 0.4568 4.663 0.0971 3.614 0.0573 
 With Trajectory 4 1.827 0.4011 2.468 0.2911 2.585 0.1079 
Trajectory 3           
 With Trajectory 4 1.092 0.5793 1.654 0.4373 6.965 0.0083 

 

NOTE: Post hoc pairwise comparisons of cognitive diagnosis characteristics (first identified in Table 9) for 
trajectories from the final Aβ42/40 and ptau181 model. Χ2: Chi-square where subscript identifies degrees of freedom 

for test. *Tests with asterisk are not stable because >20% of cells have an expected size of <5 [178]. 
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Supplemental Materials 

Figure 1. Education Distribution 

 

NOTE: Distribution of education for 916 individuals used in the analysis. Shape is not Normal, but it is unimodal and 
roughly symmetrical. 
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Chapter 5 

Introduction 

Throughout the course of this dissertation, we studied relatively new blood-based plasma 

biomarkers in relation to Alzheimer’s Disease (AD) and measures of cognitive decline. These 

biomarkers have shown promise in similar literature [155-159], but do not have standard, 

established relationships with cognition and related outcomes. Chapter 1 presents a literature 

review of two statistical methodologies, nonparametric regression and mixture modeling, the latter 

of which lays the groundwork for the methodology used in the final analytic chapter. Chapter 2 is 

motivated by the need for a thorough examination of the relationships the biomarkers hold with 

other demographics and health conditions before the inclusion of cognitive factors. Chapter 3 

attempts to examine a large number of biomarkers in relation to three cognitive outcomes, as well 

as clinical cognitive diagnosis, while accounting for established prognostic factors and identified 

influential health conditions. Finally, Chapter 4 utilizes mixture modeling through the extension of 

Group-Based Trajectory Modeling (GBTM) [160-161] to analyze whether the paths of five 

different biomarker measurements over a number of years can be divided into groups that 

significantly differ in a variety of cognitive assessments.  

 

Summary 

Literature Review 

A brief review of nonparametric regression highlighted its utility as a method to handle real-

world data that does not follow a known parametric distribution or is plagued with outliers. Both 

structure and estimates are derived from the data with nonparametric statistics, which requires 

generally larger sample sizes. A more careful analysis is required for nonparametric regression than 

its parametric counterpart, but its utility is not taken advantage of as often as it should be. 

Ultimately, nonparametric regression was not used for any analyses in this dissertation. 
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 Our brief review of mixture modeling techniques laid the groundwork for the analysis in our 

penultimate chapter. At its most basic, mixture modeling is used to identify latent subgroups within 

a population. While it is theoretically plausible for there to be infinitely many mixture components, 

many real-world applications are limited to mixture models with a finite number of components. 

We covered a variety of methods for parameter estimation, including method of moments [36], 

maximum likelihood estimation [37-38], and expectation maximization algorithms [189]. While 

the modified likelihood ratio test (MLRT) improved upon the standard likelihood ratio test (LRT) 

for the estimation of mixtures [53], the D-test, which is distinct from the LRT and MLRT in its 

utilization of the L2 distance, was shown to outperform the MLRT in some simulations [57]. 

Computational feasibility used to be a major burden but advancements in computational power and 

abilities have facilitated the use of mixture modeling methods for estimating mixtures beyond a 

mixture of 2 Normal densities to many more, possibly non-Normal, densities.  

 

Chapter 2 

We conducted a retrospective study on a cognitively Normal subset of the University of 

Kentucky Alzheimer’s Disease Research Center (UKADRC) longitudinal cohort [70], using paired 

observations for individuals as the main and sensitivity cross-sectional analyses. Eleven different 

biomarkers and two ratios were evaluated. Each biomarker (and biomarker ratio) was individually 

analyzed via linear regression models, with covariates identified through sufficient adjustment sets 

of variables included in directed acyclic graphs (DAGs) representing the causal pathway from 

biomarkers to cognition [73]. In our sample, biomarkers were not largely associated with 

demographic or health factors, although some expected associations were observed (e.g., APOE 

with Aβ42/40 and tau/Aβ42). Sensitivity analyses found very similar results. These results 

encourage the use of plasma biomarkers in future dementia research without considerable worry of 

confounding due to demographic or medical conditions.  
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One major limitation of this analysis was the data quality. The instrument for measuring 

biomarkers was upgraded from the Quanterix SiMOA HD1 to the HDX between the running of our 

first and second paired years of data. Batch coefficients, which were nearly always significant, 

produced effect sizes that showed the majority of biomarker measurements from the HDX were 

predicted to be more than 1/3 of a standard deviation different than those from the HD1. While a 

difference in machine performance was not something we intended to study, our findings highlight 

the importance of thorough evaluation of data collection and measurement methods, especially for 

longitudinal data. Quanterix no longer advertises the SiMOA HD1 analyzer [72], but many of them 

may still be in use, and our study emphasizes the importance of clearly identifying machines used 

for data collection and the impact a machine update can have on longitudinal datasets.  

 

Chapter 3 

In this study we evaluated the usefulness of the same battery of plasma biomarkers, with the 

addition of phosphorylated tau (ptau181), in predicting current and future cognitive performance. 

Cognition was measured viz Mini Mental State Exam (MMSE) [17], California Verbal Learning 

Test long delay score (CVLT-LD) [119], and Trail Making Test B-A (Trails B-A) [127], and 

clinical cognitive diagnosis was used as an additional outcome in a post hoc analysis [70].  

With individuals still contributing paired visits, four study designs were used to cover cross-

sectional and longitudinal use of the data. Datasets 1 and 2 used all information from an individual’s 

first and second visits, respectively, providing two cross-sectional analyses, the second of which 

can be thought of as a sensitivity analysis for the first. Dataset 3 used biomarker and covariate data 

from visit 1, and cognitive outcome data from visit 2, to evaluate use of the biomarkers in predicting 

future cognitive outcomes. Dataset 4 used covariate and cognitive outcome data from visit 2, while 

biomarkers were evaluated via change in values from visit 1 to visit 2, which may provide more 

insight into disease progression if change in biomarkers is predictive. 
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All variables identified in DAGs from the previous chapter, along with 5 prognostic factors, 

were run through a Lasso procedure for each cognitive outcome to reduce the number of variables 

and retain only those that influence the outcome. Residuals from linear models (with cognitive 

outcomes regressed on Lasso and prognostic variables) were used as the input for a partial least 

squares (PLS) analysis [129]. The PLS analysis contained only biomarker measurements and 

produced linear combinations of biomarkers that theoretically explain variation in the outcomes. 

Final models were run with the prognostic variables, Lasso identified variables, and first 

components (linear combinations of biomarkers) from the PLS procedure.  

While it was our hope to identify predictive linear combinations of biomarkers, we were unable 

to identify any statistically significant combinations. While our statistical methodology is 

theoretically defensible, it was perhaps too convoluted to represent the relationships between the 

biomarkers and cognition. Our sample size was reasonable, but perhaps a larger group of 

individuals could facilitate the discovery of more clinically significant findings. 

This study proved to be a lesson in negative findings. While positive findings are much more 

interesting, it is vitally important that researchers share negative findings. While our methodology 

did not prove to be useful here, PLS analysis is a valuable tool, and it may be very effective in 

slightly different situations. Though we were not able to add positive findings to the field of 

research, it is our hope that future research can be informed by, and even improve upon, our 

negative findings.  

 

Chapter 4 

Our final analytic study yielded the most interesting results of the dissertation. Using GBTMs 

[166], we examined age-related trajectories of five plasma biomarkers that have shown promise in 

dementia research. Our goal was to identify distinct, latent trajectories for each biomarker over 

time and examine whether they differ based on cognitive performance, which would be expected 

if they truly measure disease progression. Aβ42/40 and ptau were modeled via a multi-trajectory 
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GBTM, as were IL6 and TNFα. PlGF was given its own single-trajectory model. MMSE [116], 

Clinical Dementia Rating Global Score (CDRGLOB) [24], and clinical cognitive diagnosis [70] 

were evaluated across identified trajectory groups. 

While PlGF and the IL6 and TNFα trajectories differed mainly on baseline risk factors (and 

only one cognitive measure), the trajectories for Aβ42/40 and ptau181 did not differ on any baseline 

risk factors but did differ on many cognitive characteristics. Aβ42/40 and ptau trajectories differed 

on many measured differences in MMSE over time, as well as clinical cognitive diagnosis 

transitions from first to last visit per individual. Further post hoc analysis of cognitive diagnosis 

across trajectories revealed that the trajectory groups significantly differed on baseline diagnosis, 

final diagnosis, and whether individuals who could progress to a worse diagnosis did. Pairwise 

comparisons of trajectory groups for these factors showed that most differences were likely driven 

by one trajectory group that was quite different from the rest. However, this trajectory group was 

very small and all of its pairwise Chi-Square tests presented warnings based on small cell sizes. 

While it is possible that this trajectory group is just an artifact of the data, it could also represent a 

unique set of individuals in the target population. More testing needs to be done to examine this 

relationship.  

In all, this study adds valuable information to the field of AD plasma biomarker research. A 

sophisticated modeling technique was leveraged and found significant differences within the 

sample. The results suggest that Aβ42/40 and ptau181 are most related to MMSE and clinical 

diagnosis over time, and that PlGF and IL6 may be related to CDRGLOB and MMSE measures 

over time, respectively. While much future research needs to be done, this work provides a 

promising basis for the establishment of these relationships. 

 

Strengths and Limitations 

There were many positive aspects of our studies. The design of our data facilitated its use by 

both cross-sectional and longitudinal analysis, the latter of which we were able to leverage in 
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multiple ways (prediction of future outcomes, differences in paired observations, and GBTM 

longitudinal analysis). The individuals in our various samples are well characterized and seen 

repeatedly at the same facilities. A wide range of information is available for each observation 

(from the National Alzheimer’s Coordinating Center (NACC) Uniform Dataset Version 3 (UDS3), 

as well as additional measures), and standard guidelines and protocol were followed for data 

collection and clinical cognitive diagnosis. 

As with any study, there are drawbacks. One major limitation we faced was the quality of our 

data in Chapter 2. The sample consisted of paired observations for individuals from two sets of 

years and the first paired years of observations were not run on the same machine as the second 

paired year (and any years beyond used in future analyses). The old machine may be less reliable 

than the new one, and significant batch effects gave validity to our concern. While the analysis 

done in Chapter 2 contains some unreliable data, we are fortunate in that the cohort is ongoing and 

more data became available be the time Chapters 3 and 4 were performed, so the loss of the first 

paired year of data has minimal impact on subsequent analyses.  

Finally, the external validity of the results from all three studies is quite limited. A defining 

feature of the UKADRC longitudinal cohort is that all individuals have consented to be followed 

through autopsy, restricting the data to individuals who may not be representative of the target 

population of elderly individuals. Additionally, the individuals in this cohort are very highly 

educated. Our external validity is perhaps the most restricted given the geographical considerations 

of the cohort. Because each individual included in the cohort has consented to autopsy, they must 

be within 4 hours of the University of Kentucky (in central Kentucky). This highly specific region 

cannot be said to represent the entire state and may not be generalizable to others.  

 

Future Directions 

Through both the examination of similar literature and the results we were able to find, it is 

clear that more validation is needed to establish any consistent relationships these biomarkers have 
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with AD and cognitive decline. It would be our desire in the future to leverage a larger, and 

particularly more diverse sample of individuals, perhaps from multiple states, to better assess these 

relationships in a sample that has more external validity. Releasing some of the restrictions our 

samples hold may facilitate the discovery of relationships that we could not detect. 

More investigation should be done into linear combinations of biomarkers that may be 

influential in AD research, either though PLS or another method. While we were unable to find any 

useful biomarker combinations in Chapter 3, we still believe that these biomarkers do not work 

independently in the body and their use together will likely lean in the direction of their true 

relationships with cognition. Given the chance, we would repeat the analysis in Chapter 3 using a 

different dimension reduction technique or remove the Lasso and linear regression residuals steps 

and include all variables in the PLS analysis for comparison with our original results.  

There are many desirable directions for future analysis informed by the findings in our final 

analytic chapter. Given the significant findings for Aβ42/40 and ptau trajectories, it could be very 

beneficial to examine the biomarkers with separate or dual-trajectory GBTMs to see what 

relationships remain when trajectory groups are not tied to the other biomarker. It would also be 

very interesting to evaluate Aβ40 and Aβ42 separately, possibly with a dual-trajectory model, to 

compare results of the individual biomarkers with the results from their ratio. Additionally, given 

that this method showed promise with our small number of studied biomarkers, we would want to 

see this analysis performed on an even wider range of biomarkers over time.  

While it would be premature to state that blood-based plasma biomarkers should be collected 

and evaluated at regular intervals for elderly individuals based on our findings alone, coupled with 

results from similar studies it is possible that collection and evaluation of biomarkers could be quite 

useful in the future. If researchers continue to study these biomarkers, our results may contribute 

to the overall literature that leads to the establishment of firm relationships between these 

biomarkers and cognitive decline. Such firm relationships could facilitate an easily accessible form 
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of detection and/or prevention of cognitive decline for a disease that is known for its difficulty in 

both of those respects.  
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