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ABSTRACT OF DISSERTATION 

 

PREDICTORS OF ARTERIAL STIFFNESS IN  
LAW ENFORCEMENT OFFICERS 

  
The prevalence of cardiovascular disease (CVD) among law enforcement officers 

(LEOs) is slightly higher than the general population. Furthermore, the prevalence of 
CVD doubles among LEOs following retirement compared to the general population. The 
measure of arterial stiffness serves as an independent risk factor that has prognostic value 
for future incidence of CVD. However, there is limited research on lifestyle, 
occupational, and demographic factors that may be associated with increased arterial 
stiffness in LEOs. Therefore, the purpose of this investigation was to compare the level of 
arterial stiffness among LEOs versus the general population and to identify lifestyle, 
occupational, and demographic predictors of arterial stiffness in LEOs. Seventy male 
career LEOs between the ages of 24 to 54 years from Kentucky and southwest Ohio 
participated in this study. LEOs completed a variety of questionnaires related to 
health/occupational histories, occupational stress, and diet. LEOs’ body composition 
(bioelectrical impedance), central and brachial blood pressures, and physical activity 
(triaxial accelerometers) were assessed. The dependent variable of arterial stiffness was 
measured by carotid-femoral pulse wave velocity (cfPWV). A variety of statistical 
techniques including 1 sample t-tests, Pearson product moment correlations, and multiple 
linear regression were utilized in study analyses, with a level of significance set at p < 
0.05.  Compared to the general population cfPWV was significantly lower among LEO’s 
under 30 years of age (mean difference = -0.6 m·s-1), but significantly higher among 
LEOs 50-55 years of age (mean difference = 1.1 m·s-1). Utilizing stepwise multiple linear 
regression, age, relative body fat, and diastolic blood pressure explained the most 
variance in LEO’s cfPWV (adj. R2 = 0.56, p < 0.001). The primary findings of this 
investigation demonstrate that arterial stiffness may progress more rapidly in LEOs 
compared to the general population and that LEOs should focus on maintaining 
appropriate levels of relative body fat and blood pressure to regulate arterial stiffness and 
risk of CVD. 
 
  
KEYWORDS: Carotid-femoral pulse wave velocity (cfPWV) 
                         Law Enforcement Officers (LEOs)  
              Cardiovascular disease (CVD) 
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CHAPTER I: INTRODUCTION 

 
The research presented in the following chapters represents work conducted by 

the primary author and investigator in order to satisfy the requirements for completion of 

a Ph.D. in Exercise Science from the University of Kentucky. These guidelines were set 

forth and reviewed by the Graduate School and members of the Dissertation Committee. 

This dissertation is presented in chapter format in an effort to demonstrate an organized 

research report. A detailed literature review of cardiovascular disease in law enforcement 

officers (LEOs) and the measurement of arterial stiffness occupy the second chapter. 

Chapter three details the methodology utilized to investigate arterial stiffness within male 

LEOs. Chapter four is comprised of the study’s results and discussion. Lastly, Chapter 5 

provides a summary and conclusions derived from the current research project.     

Cardiovascular disease (CVD) is the leading cause of death in the United States 

(21).  The development of CVD occurs over a lifetime, and is influenced by a variety of 

behavioral factors such as smoking, poor nutrition, physical inactivity, stress 

management, and others (21, 52, 56). One professional population that is particularly 

susceptible to CVD is law enforcement. The prevalence of CVD among active duty LEOs 

has been suggested to be similar to the general population (49). However, the prevalence 

of CVD doubles among LEOs following retirement compared to the general population 

(50, 80). The rapid progression of CVD in LEOs necessitates the investigation of CVD 

risk factors and assessments in this population. Earlier detection and intervention may 
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delay the onset of CVD and/or reduce the occurrence of CVD among active and retired 

LEOs.  

Investigators have studied the prevalence of several traditional CVD risk factors 

in LEOs (49, 50, 53, 80). The primary findings of these studies indicate that the 

prevalence of hypertension and obesity are higher in LEOs compared to the general 

population.  In addition, many LEOs lack the necessary physical activity to maintain 

cardiovascular health (49, 50, 56, 80). Law enforcement officers also experience physical 

and psychological stress, some of which is associated with performing law enforcement 

shift work (16, 33). Chronic stress is correlated with an increased risk of CVD (16, 53). 

Due to the deleterious health consequences and health care costs associated with CVD, 

the Centers for Disease Control (CDC) and National Institute for Occupational Safety and 

Health (NIOSH) have created a goal to decrease CVD prevalence by 10% among LEOs 

over a two year period (46). The primary goals of the CDC’s agenda focuses on 

conducting etiological studies of occupational risk factors and identification of work 

organizational factors that are associated with CVD risk. 

Several investigations have described a variety of occupational risk factors and 

stressors that LEOs are exposed to regularly, which include sudden onset and chronic 

exposure of physical and psychological stressors (49, 51-54, 56). Psychological stress has 

been associated with vascular dysfunction, CVD, impaired sleep, and depression (33).  

Likewise, Varvarigou et al. demonstrated that physical stress, such as performing 

physically demanding occupational tasks (e.g., restraints/altercations, pursuits of 

suspects, and physical training), was associated with sudden cardiac death, by serving as 

a physiological trigger to those who are predisposed to CVD (70). Research in other 
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tactical populations has noted that arterial stiffness increases during prolonged 

performance of occupational tasks (17). In fact, arterial stiffness, an independent 

predictor of cardiac events, is associated with sudden cardiac deaths among firefighters 

(17). Collectively, these CVD risk factors provide some insight into the cardiovascular 

health of LEOs, however utilization of direct measurements of cardiovascular health, 

such as arterial stiffness, would provide a clearer understanding of why LEOs are 

disproportionately at risk of CVD.  In turn, appropriate interventions may be identified 

and employed.  

 The measurement of arterial stiffness provides practitioners with an objective 

assessment that is predictive of CVD (12, 29, 40, 41, 74). Arterial stiffness, as measured 

by carotid-femoral pulse wave velocity (cfPWV), has been found to predict 

cardiovascular events and all-cause mortality in numerous epidemiological studies (12, 

29, 40, 41, 74). The assessment of central arterial stiffness can detect earlier changes in 

the vasculature compared to brachial (i.e., peripheral) blood pressure measurements (40). 

Central stiffness measurements have been found to be superior in predicting first 

cardiovascular events compared to typical brachial blood pressure measurements (74). 

Normal aging causes progressive escalation of arterial stiffness and hypertension (32), 

however excess body fat and a sedentary lifestyle further augment the increase in arterial 

stiffness and blood pressure (22). Another proposed accelerant of arterial stiffening is 

shift work, which was observed in a bus driver population (13). Shift work is also known 

for increasing traditional CVD risk factors within LEOs (77). To the best of our 

knowledge, the measure of arterial stiffness has not been performed in LEOs. The 
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assessment of arterial stiffness will provide unique insight on how lifestyle and 

organizational stressors may be associated with the law enforcement occupation.  

Identifying lifestyle, organizational, and demographic factors that are associated 

with arterial stiffness will provide healthcare clinicians with an understanding of how to 

identify LEOs who may be at greater risk for CVD. Furthermore, identification of risk 

factors will provide practitioners and police departments with information to develop 

appropriate interventions to reduce CVD risk.  Therefore the purpose of this study was to 

compare the arterial stiffness of LEOs versus the general population and to identify 

lifestyle, occupational, and demographic predictors of arterial stiffness in LEOs.  We 

hypothesized that cfPWV would be greater in LEOs than in the general population 

(relative to age & gender) and cfPWV would be positively correlated to age, relative fat 

mass, years spent on third (night) shift, perceived stress, and inversely correlated to daily 

time spent in moderate-to-vigorous physical activity. 

 

The following are assumptions of the present study. 

1. Subjects did not eat food or drink caffeinated beverages for three hours prior to 

testing. 

2. Subjects provided accurate responses on questionnaires. 

 

The following are delimitations of the present study. 

1. Professional male law enforcement officers from Kentucky and southwest Ohio 

between the ages of 21 and 55 years were recruited to participate in the study.  
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The following are exclusion criteria for the present study. 

1. Subjects were excluded from the study if they were a current smoker or reported 

any sign, symptom, or diagnosis of cardiovascular, pulmonary, or metabolic 

disease. 
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CHAPTER II: REVIEW OF LITERATURE 

 

Cardiovascular Disease and Law Enforcement Officers 

 
Law enforcement is recognized as a dangerous and stressful occupation, however 

to maintain peace and order, the United States is employing well over 1.3 million people 

in some aspect of law enforcement (51, 80). Law enforcement personnel includes patrol 

officers, detectives, jailers, dispatchers, and many more. Some of the dangers the police 

force have are higher mortality, suicide, and cancer rates compared to most other lines of 

work (24). The most evident dangers usually involve handling suspects, which could 

involve bodily injury or death (80). However, cardiovascular disease (CVD) is a hidden 

danger waiting to strike the deadliest blow to an unsuspecting officer at anytime. The 

National Occupational Research Agenda (NORA) highlights this point by outlining a 

goal of trying to reduce CVD among Law Enforcement Officers (LEOs) by 10% (46). 

NORA has generated sub goals to better understand how this disease affects the law 

enforcement population and how risk factors play a role in CVD prevention (46). New 

research could be vital for saving taxpayers’ money and most importantly, the life of an 

unsuspecting officer.  

The overall goal of this literature review is to describe how CVD affects LEO 

populations. One specific objective is to more clearly understand how the law 

enforcement occupation may predispose LEOs to CVD. Another objective is to identify 

potential links that exist between traditional risk factors associated with CVD in LEOs. 

Finally, this review will attempt to find avenues where research maybe lacking in 

cardiovascular health for this population. The ultimate goal of this review is to identify 
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how researchers, clinicians, and LEOs can help decrease the prevalence of CVD among 

LEOs.   

Stress and Cardiovascular Disease   

 
The occupation of law enforcement has been portrayed on television as a 

physical, high intensity career that is full of chases, arrests, and hand-to-hand combat. 

However the reality is that policing is a largely sedentary career interspersed with 

infrequent bursts of vigorous activity (21, 52). The law enforcement profession exposes 

officers to additional stressors that may be associated with the development of CVD. 

These stressors may include but are not limited to sudden and unexpected physical stress, 

large amounts of psychological stress, stress associated with of shift work (i.e., circadian 

stress/dysfunction/desynchronization), and excess noise exposure (80).      

 Stress is a general term used to characterize events that lead to physiological, 

emotional, and mental reactions (39). The response to a stressor is typically viewed 

through the Fight or Flight Response, and the body responds positively or negatively via 

the General Adaptation Syndrome. When the body is exposed to a stressful situation, 

physiologically, the hypothalamo-pituitary-adrenal (HPA) axis and autonomic nervous 

system are activated to deal with the perceived threat. It is natural and necessary for the 

body to react this way, because the stress hormones (cortisol, epinephrine, and 

norepinephrine) released from the HPA axis produce physiological responses (i.e., 

increased heart rate and blood pressure) to help the body meet the physical demands of a 

perceived threat. Traditionally the body’s increase of cortisol triggers a negative feedback 

response to the hypothalamus, however prolonged exposure to perceive threats (i.e., 

social, environmental, etc.)  can produce long-term alterations to the cognitive function of 
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the brain and its stress response (39). Prolonged elevation of the adrenocortical and 

autonomic function has been shown to be harmful for general and mental health (39). The 

process of maintaining homeostasis is called allostasis, and the prolonged elevations of 

allostasis through adrenocortical and autonomic functions create an overload on the body 

called allostatic load (39). This allostatic load encompasses every stressor the body has to 

adapt to, including physical, psychological, and social stressors. Without proper rest and 

recovery the stressors generate larger allostatic loads, which prolongs allostatic processes. 

The allostatic load may also increase with perceived stressors, and the extent to which the 

allostatic load is increased depends on the individual’s perception of the threat. If the 

threat is easily controlled the body should return homeostasis rather quickly, however, if 

the threat persists, it may prolong the process of allostasis and lead to allostatic overload. 

Allostatic overload can cause prolonged HPA axis and autonomic activity, which can 

cause the body to reach exhaustion, the final stage of the General Adaptation Syndrome 

(39). The exhaustion phase has detrimental effects like maladaptive pathophysiological 

conditions (e.g., atherosclerosis) (39). Since stress has such detrimental effects and is 

compounding in nature to lead to allostatic overload, it is imperative to understand what 

additional occupational stressors are imposed on LEOs.      

Physical stressors, such as wearing protective equipment and performing 

patrolling tasks become routine, however physical altercations, chases, and arrests are 

unpredictable and require greater physical exertion. A study with Canadian police 

officers showed that normal police work averaged a 23 beats per minute (b·min-1) 

increase in heart rate above resting heart rate, with peak increases of 88-112 b·min-1 

during unpredictable physical altercations (5). Zimmerman’s review noted that sudden 
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extreme and intense physical activities like performing arrests or chases could predispose 

LEOs to sudden CVD events (80). Varvarigou et al. showed that sudden cardiovascular 

events occur much more often during the physical exertion needed for altercations or 

pursuits in LEOs (70).  

 In addition to physical stress, psychological stress has been related to CVD and 

sudden cardiovascular events in a variety of populations including LEOs (16, 31, 33, 70). 

Although it is difficult to identify the exact mechanism for which stress may lead to 

CVD, vasculature changes like intimal-medial thickening, atherosclerotic changes, or 

hypertension might aid in the progression of CVD due to psychological stress (33). LEOs 

experience psychological stress on a regular basis (51, 80). Mental and emotional 

stressors come from a variety of sources, and when combined can play a role in the 

progression of CVD or posttraumatic stress syndrome (PTSD). PTSD is associated with 

the metabolic syndrome and CVD risk (80). The stresses presented to a LEO on-duty are 

either short-term stressors (altercations/chases) or organizational stressors (Figure 2-1).   

Figure 2-1, shows four organizational areas of stress within the occupation of law 

enforcement. Ramey et al. developed this model utilizing a survey (n= 672) and focus 

group discussions (n=50) to identify constructs that were correlated to LEO’s perceived 

stress (48). In brief, vital exhaustion, job strain, effort-reward imbalance, and social 

support contribute to the LEO’s perceived stress. Vital exhaustion refers to feelings of 

fatigue, dejectedness, or irritability experienced by the LEO (52). A few examples 

include lack of routine, irregular hours, low morale, and lack of sleep/rest (52). “Job 

Strain” is characterized by the perception of control or ability to perform the necessary 

tasks and make critical decisions during the task (52). LEOs identified the heavy 
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workload, lack of control, altercations with the public, and negative world view as 

examples for Job Strain stress (52). Effort-reward imbalance is the perceived lack of 

recognition LEOs receive for the amount of time and effort invested in occupational tasks 

(52). Lastly, the Lack of Social Support variable refers to perceived stress from 

insufficient social support on the job and by the immediate family members (52).  

 

Figure 2-1: Model of organizational stressors (adapted from Ramey et al. (52)). 

       
 
 One of the key contributors to the job strain and vital exhaustion components of 

Ramey and colleagues’ model is the performance of shift work among LEOs. Shift work 

within law enforcement agencies allows for continuous policing of an assigned 

jurisdiction. However many studies have reported negative health effects associated with 

shift work, especially performing nightshift work (11, 13, 27, 35, 47, 48, 66, 69, 72, 73, 

75, 77, 80). Shift work has been suggested to increase psychosocial stress, because it has 

inflexibility with work hours in shift organizations, it decreases work-life balance, and 

may increase perception of ability to recover from work shift (47). Within the policing 
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realm evening and night shifts have had a tendency to face situations of higher stress on a 

more regular basis (35). These situations may have an enhanced element of psychological 

stress, when combined with the knowledge that operational performance is decreased 

with consecutive night shifts (63). Waggoner and colleagues noted decrements in driving, 

psychomotor vigilance, and an increase in sleepiness following consecutive night shifts 

(75). An investigation by Lammers et al. revealed that cortisol-awakening response levels 

increased in novice LEOs during the first 14 months of rotating work shifts (28). This 

investigation noted that about half of the LEOs started to reverse towards baseline levels, 

but half continued to have elevated cortisol levels. It was speculated that LEOs could 

possibly develop shift work tolerance, however further research is warranted to confirm 

this contention. Wirtz and coworkers’ reported that law enforcement shiftwork 

experience was inversely associated with a decreased level of fitness for duty, and the 

reduced fitness levels were related to a rapid growth in health impairments in LEOs,  

independent of age (77).  

 Law enforcement officers are subjected to a variety of stimuli that may contribute 

to negative health and wellness outcomes over time. The increased load carriage can 

cause musculoskeletal injuries; while the sedentary nature of police work with sudden 

bursts of activity puts LEOs in dangerous situations that are out of their control. 

Organizational stressors and shift work also contribute to LEOs risk of CVD.  It is critical 

that the LEO population is investigated to minimize or reduce the effects of these 

stressors.  
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Traditional Cardiovascular Disease Risk Factors in Law Enforcement Officers 

Many researchers have noted a high prevalence of some traditional CVD risk 

factors among LEOs (21, 24, 49, 50, 52). It is important to identify which risk factors are 

most prevalent among LEOs and address those risk factors that are modifiable. Non-

modifiable risk factors include age, gender, and family history (7, 46).  Modifiable risk 

factors include hypertension, hyperlipidemia, obesity, tobacco use, diabetes, poor diet, 

and physical inactivity (7, 46). Although these two groups of risk factors both help 

predict CVD, the type of risk factor will have an inherent role in determining and 

reducing CVD risk.  For example, the non-modifiable risk factors should not play a major 

role in the health disparity of police officers compared to general population. However 

the physically demanding job tasks and social perceptions have swayed the Law 

Enforcement profession towards a more masculine overweight/obese population (52, 53). 

One major risk factor for CVD in younger adults is being male (45). Given that 

approximately 85% of LEOs are male, there is an increased risk of CVD compared to the 

general population (50). On the other hand, the opportunities to change diet or physical 

activity are readily available. The modifiable risk factors have been looked at to help 

decrease the risk of CVD in law enforcement, but have failed to drastically decrease the 

health disparity that exists between LEOs and the general population (49, 52, 56, 80). 

  Hypertension, excess body mass, and lack of physical activity are three 

modifiable risk factors noted to have a higher prevalence among LEOs, however a 

quantifiable metric is needed to more clearly describe the relative risk of CVD. The 

American College of Sports Medicine (ACSM) has developed a standard for stratifying 

CVD risk using modifiable and non-modifiable risk factors. According to ACSM there 
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are eight major risk factors, which can be seen in Table 2-1 (45). Summation of the 

positive risk factors allows for risk stratification. Low risk equates to being asymptomatic 

with one or zero CVD risk factors. Moderate risk equates to being asymptomatic with 

two or more CVD risk factors. High risk equates to having a known cardiovascular, 

metabolic, or pulmonary disease or having one or more symptoms of cardiovascular, 

metabolic, or pulmonary disease. These standards, along with the standards for blood 

pressure set by the American Heart Association (previous standards: normal blood 

pressure < 120/80 mmHg, hypertension ≥140/90 mmHg, new standards: normal blood 

pressure <120/80, hypertension stage-1 >130/80), provide a solid base of risk factors 

associated with CVD (7).   A description of the prevalence of CVD risk factors among 

LEOs is provided below. 

 

Table 2-1. American College of Sports Medicine Cardiovascular Risk Factors (40). 
 Risk Factor Risk Factor Description  

1 Age 
Men ≥ 45 years; Women ≥ 55 years 

2 Family History 
Myocardial infarction or sudden death in immediate family 
before 55 years of age in father or other male first-degree 
relative or before 65 years of age in mother or other female 
first-degree relative 

3 Cigarette Smoking 
Current smoker, those who have quit in the past six months 

4 Obesity 
BMI ≥ 30 kg·m-2 

5 Hypertension 
Systolic blood pressure ≥140 mmHg or diastolic blood 
pressure ≥90 mmHg 

6 Dyslipidemia 
Total cholesterol ≥200 mg·dL-1 

7 Pre-Diabetes 
Fasting glucose ≥ 100mg·dL-1 and < 126 mg·dL-1 

8 Sedentary Lifestyle 
< 30 minutes of moderate intensity physical activity on at 
least 3 days·week-1 for at least 3 months 
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 The first CVD risk factor is hypertension, however the prevalence of 

hypertension among LEOs compared to the general population’s prevalence has been 

debated in a couple of studies. In one study by Ramey et al., 27.4% of Milwaukee LEOs 

surveyed had hypertension compared to a 17.6% noted in the general population of 

Wisconsin (52). A study completed by Kales et al. on first responders (LEOs, firefighters, 

emergency medical services), noted that the prevalence of hypertension among LEOs was 

between 21-27%, however there were no data provided from the general population for 

comparison (26). The interesting aspect of this study is how officers and firefighters were 

classified. Part of the study said anything less than 160 mmHg systolic and less than 90 

mmHg diastolic was listed as an acceptable range for the tactical population of interest 

(26). To contrast, the ACSM would consider a blood pressure under 120/80 mmHg as 

normal with anything under 140/90 mmHg being acceptable. The discrepancy between 

the two acceptable ranges can cause a misinterpretation of the data, especially when just 

evaluating the prevalence between categorical classifications of hypertension.  

Although many studies concur that the prevalence of hypertension is greater in 

LEO compared to the general population, one large study reported an opposite trend. 

Specifically, Joseph and colleagues noted a decreased prevalence of age-adjusted 

hypertension in Buffalo, NY LEOs compared to the general population in Western New 

York State (24). Law Enforcement Officers did show a slightly higher mean blood 

pressure for both systolic (+ 3.1 mmHg) and diastolic (+1.7 mmHg) measures, but both 

group means were within acceptable ranges for the previous American Heart Association 

standards (25). Although the prevalence of hypertension among active LEOs is mixed, 

the prevalence of hypertension in retirement is significantly greater compared to the 
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general population (50, 80). Due to the use of different hypertension thresholds, the 

prevalence of hypertension among LEOs may be underestimated, which warrants 

continual identification and clarification of hypertension amongst LEOs.   

The second prevalent CVD risk factor among LEOs is excessive body weight. 

Approximately 66% of the general population of America is overweight or obese 

according to body mass Index (BMI) (80). A review of CVD risk factors among LEOs 

indicates that approximately 71-89% of LEOs were classified as overweight or obese 

(80). Similarly, Ramey et al. reported that 79% of the officers in Wisconsin and Hawaii 

were overweight or obese (56).  More specifically, Hartley et al. noted 41.5% of LEOs 

were overweight and 40.5% were obese (21). In the Hartley et al. study 40.0% of general 

population was overweight, and 32.1%were obese (21). The aforementioned studies 

present evidence that there is a prevalence of increased body weight for LEOs compared 

to the general population, which is a well-defined risk factor of CVD.  

In addition to increased obesity, the surprising misclassification of LEOs into 

obese or non-obese groups might necessitate the use of more accurate  body composition 

assessment techniques. Alasagheirin et al. evaluated the misclassification of LEOs based 

on BMI, and showed that about 30% of LEOs in their sample were classified as healthy, 

when they were truly overweight or obese according to the specification of ≥25% body 

fat (for males) as determined by dual x-ray absorptiometry (DXA) (3). Only 14% of the 

officers were misclassified as overweight or obese according to BMI, when they should 

have been classified in the healthy range according to relative body fat (3).  However, 

given a net 16% under classification, and the apparent high prevalence of obesity among 

LEOs, it would be advantageous for a more sophisticated body composition assessment 
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technique to be used when assessing CVD risk in LEOs. The use of DXA or bioelectrical 

impedance analysis might enhance the accuracy of estimating the prevalence of obesity 

among LEOs.   

The third most prevalent CVD risk factor among LEOs is a sedentary lifestyle 

(21, 49, 52, 56, 77, 80). This would seem contrary to general perception, because of the 

physically demanding tasks potentially required of LEOs. While unpredictable episodes 

of intense activity do occur, the majority of the time LEOs are sitting in a patrol car or at 

a desk (56, 80). Stamford noted that the requirements of police work were not sufficient 

to maintain physical fitness, and concluded that routine police work should be viewed as 

sedentary in nature (62). Zimmerman noted that criminal offenders of similar age were 

likely to be more fit than the arresting LEO (80). Ramey et al. used accelerometers to 

quantify physical activity levels in campus and municipal LEOs for 3 active duty days 

and 1 off-duty day (56). In the study, there was a notable increase in the physical activity 

level of both LEO types during off-duty days, and campus police officers were more 

active than municipal LEOs overall (56). Ramey et al. noted an average activity level of 

1.6 METs during active duty days, which would be equivalent to a desk or sedentary job 

(56). Ramey and coworkers’ study also noted inverse relationships between obesity 

versus accumulated physical activity (estimate energy expenditure and step counts) and 

age versus physical activity (56). Ramey et al. speculated that the inverse relationship 

between age and physical activity might be due to job task requirements for higher-

ranking officers (56).  

The three described risk factors may play a role in the possibility of developing 

the metabolic syndrome, which is another highly associated risk factor and predictor of 
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CVD and all-cause mortality (7). The metabolic syndrome is characterized by presenting 

three or more of the following risk factors: abdominal obesity measured by waist 

circumference (> 102 cm), dyslipidemia (≥ 150mg·dL-1), low high density lipoprotein (< 

40 mg·mL-1 for men or <50 mg·mL-1 for women), elevated blood pressure (≥130 mmHg 

systolic; ≥ 85 mmHg diastolic), and elevated fasting blood glucose (≥100 mg·mL-1) (80). 

Evaluation of metabolic syndrome in LEOs is limited. Violanti et al. evaluated 98 

officers during different shifts. There was a greater prevalence of metabolic syndrome 

risk factors in the midnight shift officers compared to day shift officers; however, there 

does not appear to be a difference in the prevalence of metabolic syndrome between 

LEOs versus the general population (72).   

Non-Traditional Cardiovascular Disease Risk Factors in Law Enforcement Officers 

The relationship between shift work and CVD has been investigated by several 

studies and these investigations have discovered a variety of adverse consequences for 

employees involved in shift work (5, 11, 13, 27, 35, 47, 48, 66, 72).  The late night or 

early morning shifts are of primary concern. These shifts have shown greater prevalence 

traditional CVD risk factors among several populations, including LEOs. Although shift 

work has not been directly related to CVD, it has been shown to perpetuate traditional 

CVD risk factors and has a weak association to CVD morbidity (47).  

Puttonen and colleagues believe the connection between shift work and CVD 

might be closely related to circadian stress, which refers to physiological, behavioral, and 

psychosocial consequences associated with changes in circadian rhythm (47). This 

assertion supports Ramey’s Organizational Stressor Model, which suggests that increased 

stressors augment CVD risk factors. Negative behavioral stressors associated with shift 
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work include poor sleep quality and quantity, increased smoking rates, poorer nutrition, 

weight gain, and physical inactivity (47, 48, 66, 77). Physiological outcomes of stressors 

associated negatively with shift work include increased inflammation, increased blood 

pressure, and increased sympathetic tone (5, 11, 35, 47, 66, 77, 80). Lastly, the 

psychosocial consequences include decrements in work-life balance, decreased time to 

recover from work, and an increase in work stress (5, 11, 15, 27, 35, 47). Increased stress 

from a variety of these areas culminates into greater CVD risk for shift work employees 

including LEOs. 

 As Puttonen et al. outlined, circadian stress has physiological consequences that 

can impact CVD risk including arterial stiffness (47). A primary consequence is the 

dysregulation of endocrine, immune and autonomic function (47). These dysregulations 

stem from the behavior and psychosocial changes associated with shiftwork, and the 

mind-body connection through the HPA-axis (39). The stress hormone cortisol is of 

primary importance when evaluating changes in circadian rhythm. Cortisol’s impact on 

the awakening cycle and immune function/dysfunction has been documented in a variety 

of investigations (39, 65, 76). In the LEO population, short-term shift work caused lower 

levels of cortisol during the awakening cortisol response, which is explained by reaching 

the exhaustive phase of the general adaptation syndrome(76). The decrement in cortisol 

leaves LEOs at greater risk for posttraumatic stress disorder (PTSD) and CVD risk 

factors (39, 76). Even though there is a decrement in cortisol during the awakening cycle, 

cortisol levels tend to stay more elevated throughout the day (61). Constantly elevated 

cortisol levels leads to increased inflammation and reduced immune function, which can 

ultimately lead to arterial stiffening (42, 61). Misalignment of the circadian rhythm 



 19 

through behavior and social modification can cause detrimental effects on the 

cardiovascular system, and ultimately increasing the risk of CVD.        

Although there is a compelling amount of evidence indicating CVD risk factors 

are higher in LEOs (49-53, 55, 56, 80), a comprehensive review found that CVD incident 

rates were lower (80). That study stated LEOs are less likely to die of CVD while active 

in service versus the general population (80). This study also pointed out how this could 

be a case of the “healthy worker effect,” since unhealthy individuals are less likely to 

pass the physical, medical, emotional stresses of the recruiting examinations (80). 

Another aspect of the healthy worker effect is the possibility of early retirement, because 

of the inability to perform job related tasks safely (50). A few studies looked at the 

presence of CVD after retirement, which might help investigators understand if the 

healthy worker effect is a plausible explanation for lower CVD incident rates during 

active service. According to previous research, officers’ are at a significantly greater risk 

of CVD incidents during retirement (50, 52, 80). Specifically, Ramey et al. stated that 

retired officers are at 1.7 times greater risk of developing CVD compared to the general 

population (50).  The dramatic increase in the prevalence of CVD upon retirement raises 

questions regarding the causes of CVD and the timing of the onset of CVD and its risk 

factors.   

Cardiovascular disease risks are prevalent in LEOs. A male dominant employee 

base brings an inherent increase in risk of cardiovascular disease, while certain 

modifiable risk factors also increase the risk. LEOs have a notable increase in 

hypertension and excess body fat, which increase the risk for developing CVD. The 

limited physical activity during duty may also play an important role in the later 
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development of CVD. The metabolic syndrome has not been investigated thoroughly 

enough to determine its role in CVD development for LEOs. Lastly the occupational 

stresses imposed impacts the susceptibility of officers developing CVD through an 

altered allostatic process. Although these factors may contribute to the development of 

CVD, none show how the body’s vasculature system is changing during a LEO’s career 

span. Measuring arterial stiffness cross-sectionally and longitudinally may provide new 

insight regarding vascular changes across the career span.                              

 

Arterial Stiffness 

The condition of arterial stiffening is a known contributor to the development of 

CVD and all cause mortality (8, 40, 79). This review discusses relevant literature 

regarding the development and progression of arterial stiffening. The primary objective is 

to discuss the basic pathology behind vascular changes, and how pulse wave velocity 

assesses arterial stiffness. The second objective is to understand how shift work, physical 

activity, and stress affect arterial stiffness. The final objective will focus on arterial 

stiffness research in tactical populations. These objectives provide a detailed description 

of how arterial stiffness occurs, progresses, and its contribution to CVD within tactical 

populations.  

 

 Basic Physiology and Pathology of Arterial Stiffness 

The first step in understanding the progression of stiffening arteries is to focus on 

the basic physiology of the cardiovascular system. The vasculature of the body at the 

most basic level is a series of elastic tubes, which allows the circulation of blood 

throughout the cardiovascular system. London and Pannier state that the arteries have two 
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primary functions. The first being the “conduit function (34, 40).” This is the basic 

function of transporting the blood throughout the body. The second function proposed 

was the “cushioning or dampening function (34).” This function in the aortic regions 

serves as regulator of pressures and blood flow to the rest of the arterial tree by distension 

of the arteries (34). The heart is the second major aspect of the cardiovascular system, 

and it is the motor that drives blood flow. The interdependent nature of the vasculature 

and heart allows for adaptions of one to aid in the shortcomings of the other, to continue 

the orchestration of a harmonious flow of blood to meet the bodily demands for oxygen 

and nutrients. This relationship is important when considering what happens to the 

cardiovascular system during arterial stiffening.    

Arterial stiffness is a notable reduction of the arterial tree’s ability to expand and 

recoil with changing pressures during the heart’s contractile cycle (12, 29). Another 

definition of arterial stiffness by Stoner et al. is, “a term that collectively describes 

distensibility, compliance, and elastic modulus of the arterial vascular system (63).” Both 

definitions focus on the arterial tree’s ability to change, which is made possible by the 

heterogenic construction of the arteries within the arterial tree (29, 63, 79). The ratio of 

collagen to elastin increases within the walls of the vasculature, as the arterial tree 

proceeds more distally. The aortic region of the arterial tree is composed of larger 

amounts of elastin to allow expansion of the aorta to provide a cushioning effect due to 

the large intravascular pressures created during systole. The peripheral arteries contain 

more collagen to maintain shape and structure (34, 79).  The aortic section is known to 

incur the largest change over time due to hemodynamic forces and extrinsic factors (79). 
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This change is primarily due to the fracturing and/or damaging of the elastin and the 

increase of collagen fibers in the tunica media layer (34, 79).   

Hemodynamic forces and extrinsic factors work concurrently to cause damage to 

the arteries as people age. Aging is positively associated with increases in arterial 

stiffness (32, 41, 68). Excessive hemodynamic forces cause elevated shear forces against 

the endothelial layer of the arteries. The excessive stress can cause micro-fractures of 

epithelium, increased collagen, increased inflammation, and increases in the permeability 

of the endothelium (79). This increased permeability allows greater access to the tunica 

media for extrinsic insults like NaCl, lipids, inflammatory cells, and angiotensin, which 

can accelerate arterial stiffening (79). The increase in pressure and extrinsic factors 

causes dysfunctional regulation of elastin and collagen remolding in the extracellular 

matrix of the arterial walls. The progressive increase in collagen and decrease of normal 

functioning elastin causes a thickening of the vasculature wall. Most notably the intima-

medial layer of the artery can double or triple in size over a 70-year span (ages 20-90 

years) (79). The growth of the intima-medial occurs through several changes to the 

extracellular matrix of the vasculature wall.   

As the body ages, remolding of the vasculature is regulated by matrix 

metalloproteases (MMPs). Collagenolytic and elastinolytic MMPs initiate the 

degradation of collagen and elastin, to allow for remolding of the proteins. This process 

should occur slowly to enable proper remolding, with the ultimate goal to maintain a 

proper ratio of collagen to elastin for each region of the arterial tree. However, the 

remolding process becomes dysfunctional because the hemodynamic stresses and 

extrinsic factors up-regulate MMPs and inflammatory cells. MMP-2 and MMP-9 are of 
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primary interest to researchers now, because these two have expressed a negative 

relationship with the arterial stiffness measure of pulse wave velocity (12).  The up-

regulation allows improper cross-linking, mineralization, and alterations to the collagen, 

elastin and other extracellular matrix proteins (79).  

Advanced glycation end products (AGEs) are seen as a main culprit that promotes 

dysfunctional regulation. When AGEs cross-link with either collagen or elastin proteins, 

a stronger and stiffer scaffolding protein is generated (79). Over time, as the number of 

AGE-collagen and AGE-elastin cross linkages grow, the artery becomes more ridged. 

The AGE cross linkages would not be of any concern if regulation were the same as with 

normal collagen or elastin linkages, however AGE cross linkages are less susceptible to 

hydrolytic turnover (12, 79). Eventually arterial wall thickness increases due to the 

buildup of normal functioning proteins and the increases of AGE-linked collagen and 

elastin. AGEs also affect endothelial function by decreasing nitric oxide release, 

promoting oxidative substance release, and increasing stress signaling through the 

immunoglobulin superfamily receptors (12, 79). The body’s inflammatory response is a 

primary controller of the MMPs regulation, through macrophage and neutrophil 

expression. As stated above AGEs increase the inflammatory response. That response 

increases expression of p12(ras), NF-kB, oxidant radical formation, pro-inflammatory 

cytokines, growth factors, and vascular adhesion molecules (79). All of these mediators 

can increase vascular stiffness through MMPs, contribute to endothelium dysfunction, 

worsen response to vascular injury, affect angiogenesis, and promote atherosclerotic 

plaques (79). Along with up regulation of MMPs, the down regulation or cessation of 

nitric oxide is a main contributor to arterial stiffness. Nitric oxide is reduced by reactive 
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oxygen species caused by stress, hormones, and AGEs (79). The decrease is also linked 

to increases in vascular smooth muscle cell tone, which can occur due to impaired 

endothelial function, oxidant stress, and high sodium intake (79). In summary, there are 

numerous pathophysiological mechanisms that contribute to vascular dysregulation and 

produce arterial stiffness.    

Arterial Stiffness Measurement      

Clinical evaluations of the cardiovascular system tend to rely on the measurement 

of different arterial pressures. The most common measurement is brachial blood pressure, 

which is preformed routinely in doctors’ visits, health screenings, and even at the grocery 

store pharmacy (34). Brachial blood pressure is a measure of the peripheral arteries, and 

this pressure can help diagnosis hypertension and risk for CVD after it has past a certain 

point.  However central arterial pressure measurements can provide earlier feedback to 

classify risk.  Increased aortic arterial stiffness measured by Carotid Femoral Pulse Wave 

Velocity (cfPWV) is a biomarker for increased risk for cardiovascular events (like 

myocardial infarction and heart failure), stroke, dementia, renal disease, and total 

mortality (9, 29, 37, 63, 79).  

Clinical implications of arterial stiffening include increases in systolic, diastolic, 

mean arterial, and pulse pressures, as well as increases in arterial wall thickness and 

cfPWV (29, 37, 79). Arterial stiffness describes the distensibility, compliance, and elastic 

modulus of the arterial system. A major consequence of increased central stiffness is the 

increase of afterload pressures placed on the heart’s aortic valve. The increase in 

afterload, results in greater pressure demands from the heart to open the aortic valve (12, 

29). The increase in afterload is attributed to a combination of decreased 
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compliance/distension of the arterial walls and a faster return of the reflected pulse wave 

following narrowing/splitting of the arterial tree (12, 29). As the large elastic central 

arteries feed into the small arteries of the periphery, the change in vessel diameter causes 

the pulsatile wave to reflect back towards the aorta, and with increased arterial stiffness 

the speed at which the reflected wave travels increases. The increased stiffness of the 

artery is of primary concern, while the faster return of the reflected wave is a 

consequence of increased stiffness. In a healthy person, distension of compliant arterial 

walls in the aortic regions creates a decrease in the afterload. The body benefits from the 

distension, because the elastic recoil of the arterial walls become a potential energy 

source that will be utilized during diastole to continue systemic circulation (34). The 

diastolic coronary perfusion phase of the cardiac cycle, is vital to enable increased 

circulation of blood to the coronary arteries (34). Without the perfusion time, the cardiac 

muscles are under nourished and are at greater risk for acute injuries.  

The measurement of arterial stiffness has been derived from the fundamental 

elements of hemodynamics, hydraulic theories, and elastic mechanical theories (29). 

With these fundamental elements in mind a few different approaches have been made 

with in an attempt to find the best model for prediction of CVD. This review will focus 

on the carotid-femoral pulse wave velocity (cfPWV) technique, because it has been 

shown to be reproducible and reliable (6). In fact, the European Society of Hypertension 

and European Society of Cardiology suggests aortic PWV measurements be taken to 

assess CVD risk in any population because of the reliability and reproducibility (74). In 

addition, the cfPWV measurement’s relationship with CVD may be stronger than the 

assessment of peripheral pressures, because of the more direct connection with the left 
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ventricle, coronary arteries, and the carotid artery’s pulse wave (14). Another reason 

cfPWV measurement may be a superior assessment is because of the phenomenon of 

pressure amplification, which demonstrates that there is an increase in pressures of the 

periphery compared to the central aortic arteries due to the peripheries being more ridged 

in nature leading to an overestimation of the central pressures (29).   

 Carotid-femoral pulse wave velocity is the criterion measure of arterial stiffness. 

The measurement value is representative of the elastic nature of aortic regions covered. 

Carotid-femoral pulse wave velocity is derived from dividing the pulse’s traveled 

distance by the change in time. This value demonstrates the velocity of the traveling 

pulse. The measurements of the pressure waves are taken at the carotid and femoral 

arteries. The distance measured is from the carotid to the sternal notch, the sternal notch 

to the navel, and finally the navel to the femoral artery. Prior to testing, Laurent et al. 

noted subjects must refrain from smoking 3 hours before, drinking alcohol 10 hours 

before, and must be supine for at least 10 minutes prior to measurement (29). The 

SphygmoCor (AtCor Medical, Australia) is an automatic recording device used to 

measure cfPWV. Asmar et al. validated the cfPWV measurement by comparing them to 

manual measurements, finding a nonsignificant mean difference of .20± 0.45 m·s-1 with 

the automated device’s value being slightly lower, (6). Asmar et al. also found strong 

intra-tester (ICC = 0.94) and inter-tester (ICC =0.89) reliability while using the 

automated device (6). The SphygmoCor uses the foot-to-foot velocity method, which 

measures the amount of time it takes the between the R-wave of the ECG until the pulse 

reaches the measurement site (carotid or femoral artery). A foot is considered the end of 

diastole, and is visually shown on the device as the beginning of the sharp increase in 
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pressure during systole. The distance and transit time between the two feet is used to 

calculate cfPWV (29).  

As stated before, the left ventricular afterload is affected by the PWV and the 

aortic wave reflections. The wave reflections are typically measured using radial artery 

tonometry and a transfer function to calculate the aortic pressure waveform (29). The 

degree to which the reflected wave affects the afterload is demonstrated through the use 

of the augmentation index. The augmentation index is the subtraction of the second 

systolic peak minus the first systolic peak, divided by the pulse pressure and multiplied 

by one hundred, to be expressed as a percent of the pulse pressure (29). Larger 

augmentation index values are indicative of faster returning reflective waves. Positive 

values indicate the return of the reflected waves during systole, while negative values 

denote the return of reflected waves during diastole. The return of the reflected waves 

causes an increase in aortic pressure. The elevated diastolic pressure from slower 

returning waves allows increased coronary perfusion (32). Carotid femoral pulse wave 

velocity and the augmentation index help discern how the vasculature is affecting the 

workload of the heart. Although the relevance of the augmentation index has been 

disputed, others view the augmentation index and cfPWV as vital tools that have been 

linked to predicting cardiovascular events and all cause mortalities in many 

epidemiological studies of high-risk subjects and general populations (12, 29, 40, 41, 74).  

The Effects of Law Enforcement Officer Cardiovascular Disease Risk Factors on Arterial 

Stiffness 

Arterial stiffness measures help assess CVD risk, but understanding its 

relationship to other risk factors noted in tactical populations can provide information 
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about why LEOs incur CVD at a greater rate upon retirement. Investigations into arterial 

stiffness have not been performed in law enforcement populations, but have assessed 

other populations who share similar risk factors. It was noted earlier that LEOs tend to be 

overweight, lack physical activity, and perform shift work (49-53, 55, 56). Most of these 

variables have been shown to impact arterial stiffness in other populations.  

Obesity is a major risk factor for CVD, which subsequently has a profound effect 

on arterial stiffness and cfPWV measurements (29, 79). Changes in adipokine 

concentrations have been linked to obesity, which can have an additive effect on arterial 

stiffness. Decrements in the plasma protein adiponectin have been linked to obesity, 

insulin resistance, type 2 diabetes, and hypertension (58). Adiponectin is produced by 

adipose tissue and possesses anti-inflammatory, antiproliferative, antiatherogenic, and 

insulin-sensitizing mechanisms (58). With limited adiponectin, nitric oxide synthesis 

expression decreases, which decreases the protective effects of nitric oxide and thus 

decreases the vessel’s ability to vasodilate. Low levels of adiponectin have been 

associated with increased arterial stiffness, however the extent of the exact mechanisms 

are still being investigated (58). Another adipokine affected by obesity is leptin. Obese 

individuals have elevated leptin levels in the plasma, which are known to increase 

aldosterone, sodium retention volume expression and increased blood pressure (58). High 

levels of leptin also contributes to production of vascular smooth muscle cell 

proliferation, endothelial oxidative stress, and reactive oxidative species formation (58). 

The microenvironment changes of the vasculature aid in the development of artery 

stiffening because they reduce nitric oxide, hinder aortic mechanical function, and 

increase blood pressures (58).  
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Another major consequence of obesity could be the inaccuracy of distance 

measurements between the carotid and femoral artery, thus producing measurement error 

in the cfPWV assessment. Measurement of sites maybe exaggerated due to a large girth 

at the abdomen or chest. This added distance would attenuate any increases in velocity 

due to the exaggeration of the distance travelled. Therefore the investigator must measure 

as straight as possible, which might be best if the flexible tape is held tautly above the 

surface of the skin to diminish arcing caused by larger girths. Obesity has the potential to 

change velocity values due to inaccurate measurements, but that can be corrected or 

minimized through various techniques (29). 

Hypertension has a strong link to arterial stiffening, so much so that a few 

researchers question which occurs first. Mitchell’s review focused on this topic and found 

that arterial stiffening measured by cfPWV occurs prior to hypertension (40). It has been 

noted that acute rises in blood pressure can cause acute/chronic increases in arterial 

stiffness in subjects (12). Sustained rises of blood pressure may accelerate structural 

changes within the vasculature walls, because hypertensive individuals have elevated 

stiffness compared to age-matched controls (12). Treating hypertension with medications 

may help decrease high blood pressures, but it has a less impactful reduction on arterial 

stiffness, compared to arterial structural changes (12). Anti-hypertensive medication will 

also distort wave reflections and produce lower PWV readings that do not represent the 

actual stiffness of the arteries (29).  

Another risk factor of note in LEOs is lack of physical activity, which is believed 

to have an inverse relationship with arterial stiffness. O’Donovan et al. reported an 

inverse relationship between regular physical activity at any intensity versus 
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augmentation index and PWV in hypertensive patients (43). Another investigation by 

MacAnaney et al. found similar results, however they found body fat to be strong driver 

of the relationship (36). The investigators concluded that those who participated in more 

physical activity had less body fat and thus less stiffness than those who were sedentary 

(36). A third study looking at physical activity in Korean office workers reported that 

there is no correlation between physical activity and stiffness, but there was a significant 

correlation between sedentary time and stiffness in just women (20). This study was 

interesting in the fact that is used a questionnaire to assess physical activity levels, which 

is a subjective assessment. Further research is warranted using an objective assessment of 

physical activity. In summary, there may be a relationship between physical activity and 

arterial stiffness; however, the confounding effects of body fat and age must be accounted 

for to more clearly understand its independent relationship.                    

The only investigation looking into shift work focused on Professional Asian Bus 

Drivers. This study used the brachial-ankle PWV assessment for a regional view of 

stiffness. Chen et al. found an increase of 3.6 cm·s-1 (0.36 m·s -1) in PWV for every year 

of shift driving (13). This small increase can add up over time and along with additional 

stressors placed on LEOs, there could be even greater increases in arterial stiffness. Even 

though this is the only shift work investigation that could be found looking at arterial 

stiffening, there is a considerable amount of evidence presented earlier that may indicate 

shift work contributes to arterial stiffening. 

The last and most important determinant of arterial stiffness is age. Throughout 

life the remolding of the vasculature occurs, and depending on the effectiveness of that 

remolding, the vasculature can become stiffer or remain more compliant. Several studies 
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note a linear increase of cfPWV values until the age of 60 years (40, 41, 79). Following 

the age of 60 years, there tends to be a rapid exponential increase in the cfPWV (40, 41, 

79). Age is a strong predictor variable of cfPWV independent of all other variables (40). 

This fact makes age an important factor in understanding how arterial stiffness is 

affecting LEOs.         

Arterial Stiffness measures in Tactical Populations 

 Tactical populations consist of first responders, paramilitary, and military units. 

Investigations of CVD have been prevalent among these populations, but the 

investigations of regional vascular health are limited. This review identified a few articles 

that assessed regional aortic stiffness or pulse wave analysis in firefighters and military 

personnel.  

 Firefighters are known to have a greater risk of sudden cardiovascular events than 

the general population, because of the strenuous nature of the job and the environmental 

extreme conditions (17, 19, 44). Fahs et al. evaluated the acute effects of firefighting on 

arterial stiffness and blood flow. Their investigation found that after a 3-hour firefighting 

activity, subjects significantly increased heart rate, aortic diastolic blood pressure, 

augmentation index (at 75 b·min-1), aortic PWV, carotid minimum and maximum 

diameter, core temperature, and significantly decreased brachial and aortic pulse pressure 

(17). These changes were similar to what has been observed in heavy resistance or 

aerobic training (17). Fahs et al. speculated that a combination of thermal, metabolic, and 

psychological stresses caused the significant changes. Gaughan et al.’s investigation did 

not evaluate PWV, but did assess other pulse wave analysis parameters. The investigators 

reported a 10.5% increase in the augmentation index for every one-unit increase of the 
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oxidative stress score (19). Oxidative stress scores were based on urine concentration of 

8-isoprotane assays, which might be related to artherogenesis (19). The last investigation 

on firefighter arterial stiffness looked at aspirin’s effects on changes in peripheral 

arteries. The main finding of their study showed that low dose aspirin ingested prior to 

physical exertion or firefighting tasks improved augmentation index  (at 75 b·min-1)(19). 

Although firefighting and policing are different, both populations are civil servants that 

must react to alarms and situations within seconds. It could be concluded that LEOs 

would likely experience similar vascular and pressure changes during job task duties.  

 One military study looked at the effects of a long-term military mission on arterial 

stiffness, inflammatory markers, and vitamin D levels. Salum et al. recruited 65 well-

trained Estonian soldiers, who were deployed for 6 months to Afghanistan. Following 

deployment, there were no significant changes in aortic PWV, but significant increases 

occurred in inflammatory markers (59). Increased inflammatory markers have been 

related to elevated PWV values, which lead to the authors hypothesis of soldiers having 

elevated PWV values (79). The presence of elevated inflammatory markers caused the 

authors to postulate that the effects of long-term strenuous physical workload and high 

levels of vitamin D augmented the anticipated change in arterial stiffness (59). The 

soldiers also demonstrated high levels of cardiorespiratory fitness with a mean VO2max 

53.8 ± 6.1 ml·kg-1·min-1, which could have also attenuated arterial stiffness adaptations 

(59). Police officers’ cardiorespiratory fitness level expectations are very low compared 

to this value. The Lexington, KY police department asks for officers to perform a 1.5-

mile run under 17 minutes and 56 seconds to be adequate for service. Using performance 

time prediction equations that would be equivalent to a VO2 max of 33 ml·kg-1·min-1. That 
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time is also seen as either poor or very poor for men, depending on age, based on the 

Cooper Institute’s 1.5-mile run/walk Age and Gender Based Standards for Law 

Enforcement. The lower expectations of cardiorespiratory fitness may suggest that LEOs 

are at an increased risk of greater arterial stiffness.            

Conclusion 

 Law enforcement officers suffer from elevated rates of adverse health outcomes, 

including obesity, psychological stress, depression, diabetes, and heart disease. 

Cardiovascular disease might be the most predominant adverse health outcome when 

viewing active duty and retired LEOs, because of the increased rates of traditional risk 

factors including hypertension, obesity, sedentary work, and diabetes. Along with shift 

work stresses and high levels of psychological stress, LEOs’ bodies create a perfect petri 

dish for a cardiovascular event. Traditional risk factors give a sense of who may be at 

risk, however more objective measures could provide pivotal information in 

cardiovascular disease risk. The use of cfPWV to assess arterial stiffness could provide 

that objective information.          
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CHAPTER III: METHODS 

Experimental Design  

 This study utilized a cross sectional design to compare arterial stiffness in LEOs 

versus the general population and to identify predictors of arterial stiffness in a cohort of 

professional LEOs.  Regarding the comparison of arterial stiffness in LEOs versus the 

general population, the subjects’ occupation served as the independent variable and 

cfPWV served as the dependent variable.  Regarding the prediction of arterial stiffness, 

age, body composition, shift outcomes, perceived stress, physical activity outcomes, 

chronotyping, and sleep outcomes served as the independent variables and cfPWV served 

as the dependent variable.  

 Subjects 

 A convenience sample of 70 professional LEOs participated in this study.  To 

qualify for the study, subjects had to be male professional LEOs between 21 and 55 years 

of age. Subjects were free of CVD according to the American College of Sports Medicine 

Guidelines (45). Subjects provided written informed consent prior to participation in the 

study. Also, the subjects were informed that participation in the study would not affect 

their employment status or union membership, and that they were free to withdraw from 

the study at any time. The study was approved by the University’s Institutional Review 

Board (IRB) prior to subject recruitment and data collection. 
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Procedures 

 Subjects participated in one testing session lasting approximately 2.5 hours, 

located in the University’s Exercise Physiology Laboratory or an alternative IRB 

approved location (i.e., police department, station, or training facility). Subjects abstained 

from consuming caffeine and food for at least three hours before testing.  

Questionnaires 

After written consent was provided, the subjects completed a physical activity 

readiness questionnaire (PAR-Q), a general health history questionnaire, and a 

work/personal history questionnaire (i.e., identification of age, race/ethnicity, rank, job 

duties, years in military, living arrangement, amount of time spent on certain shifts, and 

physical activity questions). Any sign, symptom, or diagnosis of cardiovascular, 

pulmonary, or metabolic disease listed on the health history questionnaire excluded the 

subject from participation in the study. To determine Chronotype - sleep/wake time 

preferences subjects completed the Horne-Ostberg Morningness-Eveningness 

Questionnaire which has an internal consistency of ICC = 0.83 (23). To assess 

occupational stress levels, subjects also completed the Operational Police Stress 

Questionnaire (PSQ-Op; ICC  = 0.92) and the Organizational Police Stress Questionnaire 

(PSQ-Org; ICC = 0.92) (38). The PSQ-Op and PSQ-Org specifically assess the perceived 

stressors related to policing using a 7-point Likert-type scale. The PSQ questionnaires use 

the descriptive anchors of 1 (no stress at all) to 7 (a lot of stress).      
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Anthropometrics  

 Subjects were asked to wear athletic clothing for anthropometric assessments 

including a t-shirt and athletic shorts. Height was measured, without shoes (to the nearest 

0.1 cm) using a portable stadiometer (HM200P, Charder Medical, Taichung City, 

Taiwan). Body mass was measured (to the nearest 0.1 kg) using an electronic scale 

(Health O Meter, Newell Brands, Hoboken, New Jersey). Circumference measurements 

were taken (to the nearest 0.1 cm) at the waist, abdomen, and hip according to American 

College of Sports Medicine guidelines (45). Specifically, circumference measurements 

were performed at the end of a normal exhalation and taken in rotational order. Each 

circumference was repeated until 2 trials were within 1 cm. The waist circumference 

measurement was located at the narrowest part of the torso below the rib cage. The 

abdomen circumference was taken at the level of the umbilicus. The hip circumference 

was taken while standing with the feet together at the greatest protuberance of the gluteus 

maximus. Measurements were taken against the skin, except for the hip measurement, 

which was performed over athletic shorts.  

 

Body Composition 

 Subjects’ body composition was measured with a dual-frequency bioelectric 

impedance analyzer (BIA; Bodystat 1500; Bodystat Ltd., Isle of Man, UK). Subjects 

assumed a supine position on a non-conductive surface with the limbs slightly abducted 

from the body and hands placed in a pronated position. Surface sensor electrodes were 

placed on the subject’s right side. One electrode was placed on the posterior aspect of the 

wrist, bisecting the radial and ulnar head. A second electrode was placed on the anterior 
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side of the ankle bisecting the lateral and medial malleoli. A third electrode was placed at 

the base of metacarpal joint and a fourth electrode at the base of the phalangeal joint. A 

series of standardized low-level electrical currents (5 and 50 kHz) were released, and the 

voltage drop due to the impedance was detected across the sensor. The manufacturer’s 

proprietary prediction equation was used to estimate the subjects’ body composition. The 

prediction equation estimates percent fat and has been validated against Dual-energy X-

ray absorptiometry (r = 0.88; (64)). 

 

Dietary Quality  

 Each subject completed a web-based National Institute of Health Diet History 

Questionnaire, focused on recall of food frequency patterns over the previous year. 

Assessment of dietary quality was in relation to the United States Dietary Guidelines, and 

is expressed in a 12-component composite Healthy Eating Index (HEI) score (Range: 0-

100). Higher HEI scores represent superior dietary quality. Nutritional analyses were 

performed with a computer program (Diet*Calc Analysis Program, National Cancer 

Institute, Silver Spring, MD), while the HEI component and composite scores were 

calculated on SAS 9.4 (SAS Institute, Cary, NC). Twelve subjects were excluded from 

the dietary analysis due to failure to fully complete the questionnaire.    

 

 

Physical Activity Monitoring 

 Daily physical activity outcomes were evaluated while on- and off-duty over one 

week with the use of a research grade triaxial accelerometer (GT3X, ActiGraph Inc., 
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Pensacola, FL). The accelerometer was worn on the waistband on the subjects’ right side 

at the midaxillary line during waking hours to provide physical activity data via step and 

activity counts. The activity count data were utilized to quantify volume, intensity, 

frequency, and duration of subjects’ physical activity. Freedson and coworkers’ (18) 

physical activity intensity (i.e., activity count) thresholds were applied to quantify time 

spent in sedentary, light, moderate, and vigorous intensity categories. The ActiGraph 

GT3X has been validated to quantify step counts and physical activity time, while also 

demonstrating inter-device reliability (r = 0.90-0.99) (1, 60). All data were downloaded to 

a personal computer, and evaluated using the manufacturer’s software (ActiLife Version 

6, ActiGraph, Pensacola, FL). Additionally, subjects were asked to keep a written 

physical activity log to confirm the duration of these activities and provide a qualitative 

context. 

 Accelerometer data were sampled at 30 Hz and collapsed into 10-second epochs. 

Wear and non-wear time data were identified through ActiLife’s proprietary procedure 

via the Troiano algorithm (2). Thirteen subjects were excluded from the physical activity 

analysis for not wearing the accelerometer for a minimum of 10 hours on at least 4 days.  

Thus, 57 subjects’ data were utilized for physical activity analyses with an average wear 

time of 7.1± 1.4 days.  

Pulse Wave Analysis Measurements   

 Carotid-femoral pulse wave velocity (cfPWV) is the criterion measurement of 

arterial stiffness and was assessed via transcutaneous tonometry of the carotid and 

femoral arteries with simultaneous ECG recording utilizing the SphygmoCor System 

(AtCor, Sydney, Australia) (74). This measurement has been shown to be reliable within 



 39 

a tactical population (r = 0.88) (67). The test-retest reliability of this measure in this 

sample was r = 0.84 (n=70). The subjects assumed a supine position with each 

measurement performed on the right side of the body. Three electrodes were placed on 

the chest to measure heart rhythm. Body hair was shaved prior to electrode placement 

and alcohol wipes were used to clean and remove excess oils from the skin. The subject 

rested in the supine position for 10-15 minutes prior to the measurement.  The carotid and 

femoral measurement sites were palpated to find the strongest pulse, and identified with a 

washable marker. The linear distance from the carotid site, to the sternal notch, to the 

navel, and then to the femoral site were measured with an inelastic tape measure and 

input into the SphygmoCor software.  Tonometry measurements were conducted with the 

SphygmoCor System at the carotid and femoral artery sites.  

Pulse wave analysis measurements were performed with transcutaneous 

tonometry at the radial artery, using the SphygmoCor System following manufacturer’s 

guidelines. Central aortic pulse pressures were estimated through the use of validated 

transfer functions (29). Pressure waveform measurements were only accepted if the 

operator index was greater than 80%, per manufacturer recommendations. Specifically, 

the operator index is a proprietary score in the SphymoCor System used to measure the 

reproducibility and strength of the radial pulse signal.  In addition, heart rate variability 

was assessed during a five-minute sampling period using measures of Root Mean Square 

of Successive Differences (RMSSD) and standard deviation of normal to normal (SDNN) 

R-R intervals.   
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Statistical Analysis 

 Basic statistics (i.e., mean ± standard deviation) were used to describe 

demographic and outcome variables. One sample T-tests were performed to determine if 

differences existed in pulse wave velocity values between LEOs and age-matched 

counterparts from the general population. Pearson Product Moment Correlations were 

used to assess relationships between independent variables and the dependent variables of 

central pressures and cfPWV. Furthermore, a one-way ANOVA was used to assess the 

main effect of age classification on cfPWV. Tukey HSD post-hoc analysis was used 

when main effects were identified. The normality of cfPWV outcomes within age strata 

was assessed using the Shapiro-Wilks test. Multivariate linear regression was utilized to 

identify significant predictors of cfPWV values within LEOs. Backward-stepwise 

regression analyses were performed on hypothesized variables (age, body fat, time on 

third shift, stress questionnaire scores, and time spent in moderate-to-vigorous physical 

activity) to provide the strongest predictor of cfPWV. Stepwise regression analyses were 

utilized to determine the predictability of cfPWV from all lifestyle, demographic and 

occupational variables collected. For the regression analyses, the predicted values were 

plotted against the residual values.  None of the described regression models produced 

visual patterns when predicted values were plotted against the residual values, indicating 

linear regression was an appropriate model for interpretation. Multicollinearity was 

controlled utilizing a variance inflation factor limit of ten. All analyses were performed 

using JMP® (Version 11. SAS Institute Inc., Cary, NC) statistical software. The level of 

significance for all statistical analyses were set at p < .05.   
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CHAPTER IV: RESULTS AND DISCUSSION  

Results 

 A total of 70 male LEOs from seven police departments participated in this 

investigation. Descriptive characteristics of the study’s sample are displayed in Table 4-1. 

The subjects’ mean BMI was classified as overweight and borderline obese according to 

a mean BMI of 29.4 ± 4.5 kg·m-2. Furthermore, the subjects’ mean relative body fat (i.e., 

22.8 ± 5.6%) falls between the 20th and 30th percentile relative to age and gender (45). 

The subjects’ mean HEI score (60.3 ± 12.6) was between the 75th and 90th percentile 

relative to the general population (45). The subjects’ mean daily moderate-to-vigorous 

physical activity was 7.4 ± 11.0 min·d-1). The subjects’ Chronotypes classifications 

included the following distribution: 57.1% (n=40)  were classified as neither type, 22.9% 

(n=16) were classified as moderate morning type, 4.3% (n=3) were classified as definite 

morning type, and 15.7% (n=11) were classified as moderate evening type.  Descriptive 

outcomes of resting cardiovascular measurements are presented in Table 4-2.  Table 4-3 

displays a comparison of mean PWV by age strata, between 70 male LEOs and 

normative values from the European Society of Cardiology. One sample T-tests revealed 

that LEOs under 30 years of age had significantly lower average PWV than the normative 

value (p = 0.0018). LEOs in the 4th and 5th decades of life demonstrated no significant 

differences compared to the normative values. However, the 50-55 yr. group had a 

significantly higher average PWV than the normative value (p = 0.0003).  
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Table 4-1. Descriptive characteristics of 70 male law 
enforcement officers. 
Variable Mean ± SD 
Age  (yr) 37.1 ± 7.7 
LEO experience (yr) 11.0 ± 7.6 
Height (cm) 179.2 ± 6.8 
Body mass (kg) 94.5 ± 16.4 
BMI (kg·m-2) 29.4 ± 4.5 
Waist circumference (cm) 94.3 ± 11.1 
Abdominal circumference (cm) 97.9 ± 12.2 
Hip circumference (cm) 104.9 ± 8.0 
Fat mass (kg)  22.2 ± 9.3 
Relative body fat (%) 22.8 ± 5.6 
Fat-free mass (kg) 72.3 ± 8.5 
Fat-free mass (%) 77.2 ± 5.6 
Months on first shift 45.5 ± 55.8 
Months on second shift 47.1 ± 43.2 
Months on third shift 35.5 ± 42.0 
PSQ-Op 61.9 ± 18.4 
PSQ-Org 57.8 ± 18.0 
PSQ-total 119.7 ± 33.7 
HEI (n = 58) 60.3 ± 12.6 
Steps per day (n = 57) 6977 ± 2181 
MVPA per day (min) (n = 57) 7.4 ± 11.0 
LEO: Law enforcement officer; BMI: Body mass index; 
PSQ-Op: operational police stress questionnaire score; PSQ-
Org:  organizational police stress questionnaire score; PSQ-
total: combined score of operational and organizational 
police stress questionnaires; HEI: Healthy Eating Index 
Score; MVPA: moderate-to-vigorous physical activity.  
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Table 4-2. Resting cardiovascular measurements of 70 male law 
enforcement officers (Mean ± SD). 
cfPWV (m·s-1) 6.72 ± 1.36 
Systolic blood pressure (mmHg)  129.77 ± 11.15 
Diastolic blood pressure (mmHg) 83.84 ± 8.00 
Pulse pressure (mmHg) 45.93 ± 9.00 
Aortic systolic pressure (mmHg) 114.54 ± 10.21 
Aortic diastolic pressure (mmHg) 84.63 ± 7.91 
Aortic pulse pressure (mmHg) 29.91 ± 6.43 
Aortic AIx 8.66 ± 12.78 
Aortic AIx75 0.93 ± 12.87 
RMSSD 49.62 ± 33.02 
SDNN 60.60 ± 25.43 
cfPWV: carotid-femoral pulse wave velocity; Aortic AIx: aortic 
augmentation index; Aortic AIx75: aortic augmentation index at heart 
rate 75 beats per minute; RMSSD: root mean squared of successive 
differences of neighboring R-R intervals; SDNN: Standard deviation 
of normal to normal R-R intervals.     
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Table 4-3. Comparison of average pulse wave velocity in the general population versus the 
70 male law enforcement officers (LEOs) by age strata.  

Age 
(yr) 

  PWV* (m·s-1) 
Male LEOs  

(n=70) 
 

PWV* (m·s-1) 
General 

population†  
(n=1455) 

Mean 
Difference 

(m·s-1) 

Rel. 
Diff. 
(%)  

p-value 

<30 a5.6 ± 0.74 (n = 15) 6.2 ± 0.75 -0.6 -10.2 0.002 
30-39 6.6 ± 1.13 (n = 28) 6.5 ± 1.35 0.1 1.5 0.644 
40-49 7 ± 1.13 (n = 22) 7.2 ± 1.30 -0.2 -2.8 0.411 
50-55 a9.4 ± 0.67 (n = 5) 8.3 ± 1.90 1.1 12.4 < 0.001 
*Values represent mean ± standard deviation. †Normative values adapted from Reference 
Values for Arterial Stiffness' Collaboration, 2010 (57).  Significance set at p < 0.05. 
aSignificant difference between LEOs and normative values for age strata. PWV: pulse 
wave velocity; Rel. Diff.: Relative difference between groups calculated as: ((LEO value – 
General population value) / LEO value) X 100. 
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Table 4-4 displays comparisons of descriptive and cardiovascular measures by 

decade of life in 70 male law enforcement officers. Significant main effects across age 

strata were noted in age (F (3, 66) = 175.30, p < 0.0001), LEO experience (F (3, 66) = 

34.01, p < 0.0001), relative body fat (F (3, 66) = 3.29, p = 0.0260), aortic augmentation 

index (F (3, 66) = 9.28, p < 0.0001), aortic augmentation index at heart rate 75 b·min-1 (F 

(3, 66) = 10.11, p < 0.0001), and cfPWV (F (3,66) = 17.86, p < 0.001) such that greater 

values were noted with increased age. Post-hoc analyses revealed that LEOs under the 

age of 30 years had significantly fewer years of experience, and significantly lower 

relative body fat than the 50-55 yr group (p = 0.0206). Post-hoc analysis also revealed 

that LEOs under the age of 30 yr had significantly lower cfPWV compared to the 30-39 

yr group (p = 0.029), the 40-49 yr group (p < 0.001), and the 50-55 yr group (p < 0.001). 

The LEOs in the 6th decade of life had the highest mean cfPWV (9.4 m·s-1), and were 

significantly higher than all other groups (p < 0.0001).  There was no effect of age on 

systolic or diastolic blood pressure across age strata.



 46 

Table 4-4. Comparison of descriptive and cardiovascular measures by age strata in 70 male law 
enforcement officers (Mean ± SD). 

  
< 30 yr (n=15) 30-39 yr (n=28) 40-49 yr (n=22) 50-55 yr (n=5) 

Age (yr) (a,b,c,d,e,f) 27.27 ± 1.33 34.57 ± 3.19 43.91 ± 2.67 51.40 ± 1.67 
LEO experience (yr) (a,b,c,d,e,f) 3.97 ± 1.23 8.14 ± 4.78 16.77 ± 5.61 23.20 ± 8.41 
BMI (kg·m-2)  29.57 ± 4.59 28.79 ± 4.33 29.43 ± 4.50 32.16 ± 5.19 
Relative body fat (%) (c) 20.71 ± 6.07 22.15 ± 5.11 23.65 ± 4.54 28.86 ± 7.03 
Waist circumference (cm) 92.46 ± 11.29 93.41 ± 11.16 94.36 ± 10.09 104.98 ± 11.73 
Systolic blood pressure (mmHg) 130.07 ± 11.61 128.64 ± 12.22 129.95 ± 9.82 134.40 ± 10.95 
Diastolic blood pressure (mmHg) 81.73 ± 7.11 83.89 ± 8.83 83.91 ± 7.19 89.60 ± 8.41 
AIx (b,c,d) 0.96 ± 11.90 4.54 ± 10.72 17.30 ± 11.03 16.87 ± 8.47 
AIx75 (b,c,d) -8.24 ± 11.91 -2.47 ± 10.04 9.69 ± 11.82 9.00 ± 7.05 
Aortic systolic pressure (mmHg) 111.89 ± 8.11 112.43 ± 11.52 117.23 ± 9.16 122.47 ± 7.56 
Aortic diastolic pressure (mmHg) 82.36 ± 6.78 84.50 ± 9.04 84.91 ± 6.50 91.00 ± 8.61 
RMSSD (n: 12,28,20,5) 68.74 ± 33.93 49.69 ± 35.04 42.50 ± 29.45 31.82 ± 11.14 
SDNN (n: 12,28,20,5) 72.51 ± 27.44 60.99 ± 23.07 56.12 ± 28.56 47.80 ± 8.82 
cfPWV (m·s-1) (a,b,c,e,f)  5.60 ± 0.74 6.60 ± 1.13 7.00 ± 1.13 9.40 ± 0.67 
Significance set at p < 0.05. LEO: Law Enforcement Officer; BMI: Body Mass Index; AIx: aortic augmentation index; AIx75: 
aortic augmentation index at heart rate 75 beats per minute; RMSSD: root mean squared of successive differences; SDNN: 
standard deviation of normal-to-normal R-R intervals; cfPWV: carotid-femoral pulse wave velocity. a = significant difference 
between the < 30 yr group and the 30-39 yr group;, b = significant difference between the < 30 yr group and the 40-49 yr group; 
c = significant difference between the < 30 yr group and the 50-5 yr group; d = significant difference between the 30-39 yr 
group and the 40-49 yr group; e = significant difference between the 30-39 yr group and the 50-55 yr group; f = significant 
difference between the 40-49 yr group and the 50-55 yr group.  
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Bivariate correlations between arterial stiffness versus demographic, 

anthropometric, lifestyle, and occupational variables are presented in Table 4-5. There 

was a significant positive correlation between age and cfPWV (r = 0.57, p < 0.0001). 

This relationship suggests that as age increases cfPWV also increases. There were 

significant positive correlations between cfPWV versus years served in law enforcement 

(r = 0.60, p < 0.0001) and relative body fat (r = 0.60, p < 0.0001).  These findings 

indicate that arterial stiffness increases with an increase of years served in law 

enforcement and increased body fat percentage. A significant positive correlation was 

also identified between the two predictor variables of years served in law enforcement 

and relative body fat (r = 0.34, p = 0.0035). These findings suggest that there is an 

increase in percent body fat with an increase in years of service in law enforcement. 

Other significant positive relationships were also identified between cfPWV versus all 

other variables except the three police stress questionnaire variables (PSQ-op, PSQ-org, 

and PSQ-total). 
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Table 4-5. Bivariate correlation matrix of carotid-femoral pulse wave velocity verses demographic, occupational, anthropometric, and cardiovascular outcomes in 
70 law enforcement officers.  

  
Age LEO 

yrs. 

Yrs. 
1st 

Shift 

Yrs. 
2nd 
Shift 

Yrs. 
3rd 

Shift 
PSQ-org PSQ-

op 
PSQ-
total BMI % 

BF WC SBP DBP Aortic 
SBP 

Aortic 
 DBP 

AIx 
75 RMSSD HEI 

Total Steps MVP
A 

LEO yrs. 0.79*                
    Yrs. 1st Shift 0.59* 0.68*               
    Yrs. 2nd Shift 0.48* 0.52* 0.12              
    Yrs. 3rd Shift 0.27 0.52* 0.12 -0.11             
    PSQ-org 0.19 0.23 0.14 0.12 0.20            
    PSQ-op 0.01 -0.01 0.01 -0.08 0.09 0.71*           
    PSQ-total 0.11 0.11 0.08 0.02 0.15 0.92* 0.93*          
    BMI 0.10 0.19 0.18 0.15 0.10 0.07 0.06 0.07         
    % BF 0.30* 0.34* 0.33* 0.19 0.15 0.09 0.06 0.08 0.86*        
    WC 0.19 0.31* 0.22 0.20 0.18 0.07 0.07 0.08 0.91* 0.90*       
    SBP 0.01 0.23* 0.21* 0.13 0.13 0.26 0.06 0.17 0.55* 0.46* 0.51*      
    DBP 0.16 0.43* 0.19* 0.32* 0.25* -0.02 -0.07 -0.05 0.6* 0.48* 0.64* 0.60*     
    Aortic SBP 0.23* 0.47* 0.41* 0.27 0.22 0.19 -0.02 0.09 0.67* 0.61* 0.64* 0.88* 0.76*    
    Aortic DBP 0.20* 0.47* 0.23* 0.33* 0.26* 0.02 -0.08 -0.03 0.61* 0.51* 0.66* 0.62* 0.98* 0.78*   
    AIx 75 0.54* 0.53* 0.40* 0.35* 0.24 0.02 -0.15 -0.07 0.34* 0.44* 0.32* 0.08 0.32* 0.47* 0.33*  
    RMSSD -0.39* -0.18 -0.09 -0.15 -0.08 -0.02 0.15 0.07 0.10 0.06 0.06 0.22 0.07 0.16 0.06 -0.14 
    HEI Total (n=58)  0.05 0.08 0.01 0.06 0.17 -0.07 -0.11 -0.10 -0.06 -0.21 -0.16 0.01 -0.08 0.00 -0.08 -0.06 -0.13 

   Steps (n=57) 0.21 0.20 0.16 -0.01 0.24 -0.05 -0.09 -0.07 -0.27 -0.20 -0.24 -0.22 -0.16 -0.20 -0.10 0.04 -0.19 0.41 
  MVPA (n=57) 0.07 0.06 0.01 -0.11 0.08 -0.09 -0.04 -0.07 -0.19 -0.23 -0.25 -0.06 0.00 -0.10 -0.02 -0.10 -0.17 0.26 0.73* 

 
cfPWV 0.57* 0.60* 0.43* 0.32* 0.31* 0.10 -0.02 0.04 0.43* 0.60* 0.53* 0.36* 0.46* 0.54* 0.49* 0.50* 0.54* -0.11 -0.12 -0.11 
*Indicates significant correlation (p < .05). 
LEO yrs.: years served as Law Enforcement Officer, PSQ-org : Organizational Police Stress Questionnaire score, PSQ-op: Operational Police Stress Questionnaire Score, PSQ-total: Combined score of 
PSQ-org and PSQ-op, BMI: Body Mass Index, % BF: Relative body fat (%), WC: waist circumference, SBP: brachial systolic blood pressure, DBP: Brachial Diastolic Blood Pressure, Aortic SBP: Aortic 
Systolic Blood Pressure, Aortic DBP: Aortic Diastolic Blood Pressure, AIx75: aortic augmentation index at heart rate 75 beats per minute, RMSSD: root mean squared of successive differences, HEI 
Total: Healthy Eating Index Score, Steps: Average steps per day, MVPA: moderate-to-vigorous physical activity, cfPWV: carotid-femoral pulse wave velocity (m·s-1).  
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Bivariate correlations demonstrated that two of the strongest correlates of cfPWV 

were relative body fat and age (Table 4-5). Relative body fat and age were also correlated 

with each other. Thus, to describe the independent effects of relative body fat on cfPWV, 

a one-way ANCOVA was performed, with age serving as the covariate. Relative body fat 

was stratified into three groups (i.e., obese, overweight, & normal weight), according to 

normative data standards from the ACSM (4).  There was a main effect for body fat 

classification on cfPWV. Post-hoc analyses revealed that the obese group had a greater 

cfPWV than the normal body weight group for relative body fat (F (3,66) = 22.56, p < 

0.001; mean difference = 1.46 m·s-1). Furthermore, the obese group had a greater cfPWV 

than the overweight group (F (3,66) = 22.56, p = 0.001; mean difference = 0.45 m·s-1). 

Likewise, to describe the independent effects of body mass index on cfPWV, a one-way 

ANCOVA was performed, with age serving as the covariate. There was a main effect for 

BMI. Post-hoc analyses revealed that the obese group had greater cfPWV than the normal 

BMI group for BMI (F (3,66) = 16.38, p < 0.001; mean difference = 1.16 m·s-1).  
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Table 4-6. Comparison of cfPWV according to body composition category in 70 male 
law enforcement officers. 
Relative Body Fat (%)  n cfPWV (m·s-1)* Age* 
Obese (> 25) (a,b)  21 7.81 ± 1.40 39.90 ± 7.75 
Overweight (21-25) (b) 25 6.54 ± 1.13 36.76 ± 7.93 
Normal (<21) (a)  24 5.96 ± 0.91 35.13 ± 7.10 

     
   

Body Mass Index (kg·m2) n cfPWV (m·s-1)* Age* 
Obese (≥30) (a) 27 7.23 ± 1.66 36.96 ± 8.96 
Overweight (25-29.9) 35 6.54 ± 1.04 37.91 ± 6.74 
Normal (≤24.9) (a)  8 5.82 ± 0.85 34.38 ± 7.69 
cfPWV: carotid-femoral pulse wave velocity; * mean ± standard deviation. 
Significance set at p < 0.05. a = a significant difference in cfPWV between obese and 
normal weight groups for respective assessment of body composition; b: a significant 
difference in cfPWV between obese and overweight groups for respective assessment 
of body composition. There was no significant difference in age for any group 
(Percent body fat: p = 0.11, Body mass index: p = 0.51).  
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Table 4-7 displays the five strongest multiple linear regression models without 

interaction effects used to predict cfPWV in male LEOs, with the hypothesized 

occupational and lifestyle factors of age, percent body fat, years of employment on third 

shift, combined score of the police stress questionnaires, and time spent in moderate-to-

vigorous activity per day.  As model A demonstrates, age and relative body fat explain 

51% of the variance in cfPWV, and these are the two primary variables for all regression 

models. Absolute fat-mass, and BMI were run in these models, but relative fat explained 

greater variance, and therefore it was utilized in the models. The addition of other 

variables only slightly increased the explained variance for models B, C, and D. Model E 

shows that the addition of daily moderate-to-vigorous physical activity diminished the 

variance explained by the regression model.     
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Table 4-7. Backwards multiple linear regression models predicting aortic 
stiffness (cfPWV) with hypothesized occupational and lifestyle factors in 70 
male law enforcement officers.  
  A B C D E 
Constant  1.2928* 1.4117* 1.4814* 1.6775* 2.0947* 

 
(0.646) (0.643) (-0.730) (0.730) (0.892) 

      Age 0.0754** 0.0695** 0.0762** 0.0702** 0.0748** 

 
(0.016) (0.016) (0.016) (0.016) (0.018) 

      %BF 0.1153** 0.1129** 0.116** 0.1136** 0.1061** 

 
(0.022) (0.021) (0.022) (0.022) (0.025) 

      Time on 3rd Shift 
(months)  

0.0044 
 

0.0047 0.0034 

 
(0.003) 

 
(0.003) (0.004) 

     PSQ-total 
  

-0.0019 -0.0027 -0.0047 

   
(0.003) (0.003) (0.004) 

      MVPA per day 
(minutes)  
  

    
-0.0017 

    
(0.003) 

          
R-squared 0.526 0.543 0.528 0.548 0.506 
Adjusted R-squared 0.512 0.523 0.507 0.520 0.458 
No. Observations 70 70 70 70 57 
*p < 0.05, **p < 0.001; significance of model coefficients, (standard error); 
%BF: relative body fat; PSQ-total: Combined score of PSQ-org and PSQ-op; 
MVPA per day: moderate to vigorous physical activity per day in minutes; No. 
Observations: number of observations.  
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Table 4-8 displays five stepwise linear regression models using all collected 

variables and two-way interaction variables to predict cfPWV in male LEOs. The 

addition of brachial diastolic blood pressure provided an increase of explained variance in 

models A and B. Model C reflects a significant interaction effect of age and perceived 

stress score on cfPWV. The interaction displays that as age’s effect of cfPWV is 

dependent on the amount of perceived stress an officer has. There is a significant 

interaction effect between age and percent body fat in model C. This interaction suggests 

that increased relative body fat later in life is associated with greater increases cfPWV. 

Model D demonstrates a significant interaction between moderate-to-vigorous activity 

and time spent on third shift, despite not predicting cfPWV independently. The 

interaction shows that the effect of time on third shift on cfPWV is dependent on the 

daily time spent in moderate-to-vigorous activity. Model E demonstrates the predictive 

power of using years in law enforcement compared to the hypothesized age variable in 

Table 4-9. There is slightly more explained variance using the years in law enforcement 

variable compared to the age variable.     
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Table 4-8. Stepwise multiple linear regression models with interactions 
predicting aortic stiffness (cfPWV) with occupational and lifestyle factors in 
male law enforcement officers.  
  A B C D E 
Constant  -1.1834 -1.0693 1.3894 1.9230* 3.3546* 

 
(1.239) (1.224) (0.708) (0.782) (0.477) 

     
 

Age 0.0749** 0.0731** 0.0754** 0.0736**  

 
(0.015) (0.015) (0.015) (0.018)  

     
 

%BF 0.0905** 0.0891** 0.1201** 0.0930** 0.1088** 

 
(0.024) (0.023) (0.021) (0.026) (0.022) 

     
 

PSQ-total  
  

-0.0021 
 

 

   
(0.003) 

 
 

     
 

MVPA 
   

-0.0036  

    
(0.003)  

     
 

DBP 0.0365* 0.0357* 
  

 

 
(0.016) (0.016) 

  
 

     
 

Time on 3rd shift 
   

0.0042  

    
(0.004)  

     
 

Age*PSQ-total 
  

-0.0010* 
 

 

   
(0.000) 

 
 

     
 

Age*%BF 
 

0.0042 0.0061* 
 

 

  
(0.002) (0.003) 

 
 

     
 

Time on 3rd 
shift*MVPA    

0.0002*  

   
(< 0.001)  

      
Yrs. LEO     0.0804** 
          (0.016) 
R-squared 0.562 0.581 0.585 0.537 0.539 
Adjusted R-squared 0.542 0.555 0.553 0.492 0.525 
No. Observations 70 70 70 57 70 
*p < 0.05, ** p < 0.001; significance of model coefficients (standard error); 
%BF: percent body fat; PSQ-total: combined score of PSQ-org and PSQ-op; 
MVPA: daily moderate-to-vigorous physical activity (min); DBP: brachial 
diastolic blood pressure; Yrs. LEO: years in law enforcement.   
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 Bivariate correlations demonstrated a significant relationship between cfPWV and 

brachial blood pressures (Table 4-5), so LEOs were stratified into normotensive (brachial 

blood pressure ≤ 140/90 mmHg) and hypertensive (brachial blood pressure >140/90 

mmHg) groups based on previous American Heart Association guidelines. The 

normotensive group demonstrated significantly lower cfPWV than the hypertensive 

group after controlling for the effect of age (F (2,67) = 36.71, p < 0.001; mean difference 

= 1.44 m·s-1). Table 4-9 provides a comparison of descriptive and cardiovascular 

characteristics in normotensive versus hypertensive LEOs.   
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Table 4-9. Comparison of descriptive and cardiovascular 
characteristic in normotensive versus hypertensive law 
enforcement officers (Means ± SD). 

  
Normotensive 

(n=50) 
Hypertensive 

(n=20) p-value 
Age (yr) 36.8 ± 7.4 37.9 ± 8.7 0.635 
Yrs. LEO (yr) 9.9 ± 6.9 14.0 ± 8.8 0.071 
% BF* 21.2 ± 4.7 26.9 ± 5.6 <0.001 
SBP (mmHg)* 124.8 ± 7.1 142.3 ± 9.5 <0.001 
DBP (mmHg)* 80.4 ± 4.6 92.4 ± 8.5 <0.001 
cSBP (mmHg)* 110.2 ± 7.3 125.4 ± 8.2 <0.001 
cDBP (mmHg)* 81.2 ± 0.8 93.3 ± 1.3 <0.001 
cfPWV (m·s-1)* 6.31 ± 1.1 7.75 ± 1.4 <0.001 
Aortic AIx75 -0.03 ± 12.8 3.4 ± 13.0 0.330 
*Significance set at p < 0.05; Yrs. LEO: years served as Law 
Enforcement Officer; % BF: relative body fat; SBP: brachial 
systolic blood pressure; DBP: diastolic blood pressure; cSBP: 
central systolic blood pressure; cDBP: central diastolic blood 
pressure; cfPWV: carotid-femoral Pulse Wave Velocity; Aortic 
AIx75: aortic augmentation index at a heart rate of 75 beats per 
minute.  
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Bivariate correlations demonstrated a significant relationship between cfPWV and 

brachial blood pressures (Table 4-5), so LEOs were stratified into normotensive (brachial 

blood pressure ≤ 130/80 mmHg) and hypertensive (brachial blood pressure >130/80 

mmHg) groups based on the new American Heart Association guidelines (7). The 

normotensive group demonstrated significantly lower cfPWV than the hypertensive 

group (F (1,68) = 9.32, p = 0.003; mean difference = 1.0 m·s-1). Table 4-10 provides a 

comparison of descriptive and cardiovascular characteristics in normotensive versus 

hypertensive LEOs. 
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Table 4-10. Comparison of select outcomes in normotensive/elevated 
versus hypertensive law enforcement officers (Mean ± SD) 

  

Normotensive / 
Elevated (n=22) 

Hypertension 
Stage 1 or 

Higher (n=48) 
p-value 

Age (yr) 36.6 ± 7.4 37.4 ± 8.0 0.689 
Yrs. LEO* (yr)  7.1 ± 5.6 12.8 ± 7.8 0.003 
% BF* 19.7 ± 4.1 24.2 ± 5.6 0.001 
SBP (mmHg)* 120.6 ± 4.7 134.0 ± 10.7 <0.001 
DBP (mmHg)* 76.8 ± 3.1 87.1 ± 7.5 <0.001 
cSBP (mmHg)* 105.7 ± 5.0 118.6 ± 9.4 <0.001 
cDBP (mmHg)*  78.0 ± 2.7 87.7 ± 7.6 <0.001 
cfPWV (m·s-1)* 6.0 ± 1.1 7.0 ± 1.4 0.003 
Aortic AIx75 -2.50 ± 12.4 2.5 ± 12.9 0.129 
* Significance set at p<0.05; Yrs. LEO: years served as Law 
Enforcement Officer; % BF: percent body fat, SBP: brachial systolic 
blood pressure; DBP: diastolic blood pressure; cSBP: central systolic 
blood pressure; cDBP: central diastolic blood pressure; cfPWV: 
carotid-femoral Pulse Wave Velocity; Aortic AIx75: aortic 
augmentation index at heart rate 75 beats per minute.  

   

  



 59 

Years of employment on third shift was dichotomized by stratifying the groups 

based on the median values (24 months = 2 yr.), which resulted in individual subsample 

sizes of n = 41 (≥2 yr.) and n =29 (< 2 yr.). There were no differences between the third 

shift groups’ ages (p = 0.22) and relative body fat (p = 0.58).  Likewise, there was no 

difference between third shift groups’ cfPWV (p = 0.11), which suggests that increased 

age and relative body fat are likely responsible for the increased in cfPWV.  
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Figure 4-1: Comparison of cfPWV by years of employment on third shift in 70 male law 

enforcement officers. cfPWV: carotid-femoral pulse wave velocity; *mean; error bars 

represent ±1 standard deviation. 
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Discussion 

The first purpose of this study was to compare the arterial stiffness of LEOs to the 

general population. We hypothesized that cfPWV would be greater in LEOs than age-

matched counterparts from the general population.  Interestingly, the <30 yr old cohort 

had a significantly lower cfPWV compared to the age-matched reference group. There 

was no difference in the cfPWV between LEOs and the general population within 30-39 

and 40-49 yr old cohorts. However, the cfPWV of the ≥50 yr old LEO cohort in the 

present study was 1.1 m·s-1 greater than the age-matched reference group (p < 0.001; 

Table 4-3).  Despite the cross-sectional nature of this descriptive comparison, this 

apparent rise in arterial stiffness over the life-span of LEOs is concerning, because of the 

increased risk of a cardiovascular event. Vlachopoulos et al. performed a meta-analysis 

that demonstrated that an increase of 1 m·s-1 in cfPWV corresponded to an increased risk 

of 14% for all cardiovascular events, 15% increased risk for cardiovascular mortality, and 

a 15% increased risk of all-cause mortality (74). Furthermore, it was reported that an 

increase of 1 standard deviation in cfPWV (i.e., cfPWV = 3.4 m·s-1) increased those risk 

outcomes to 47%, 47%, and 42%, respectively (74). In the Framingham Heart Study 

Mitchell et al. also demonstrated that higher PWV values were associated with increased 

cardiovascular disease risk (41).  

The < 30 yr LEO cohort’s lower cfPWV compared to the general population is 

intriguing and maybe, in part, attributed to “the healthy worker effect.” The healthy 

worker effect occurs when unhealthy or potentially unhealthy workers are selectively 

omitted through demands imposed by occupational necessities. To become a LEO, 
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recruits typically participate in several months of physical training (PT) in an academy to 

meet academy and/or department physical test requirements (80). Indirectly, these 

requirement increase the health of the LEO cohort compared to the general population. 

Wu et al. demonstrated improved fitness and body composition outcomes in cadets 

following a 20-week training period (78). Training academies may effectively reduce 

arterial stiffness, because resistance and endurance training in pre-hypertensive adults 

have been shown to reduce peripheral arterial stiffness, central blood pressures, and 

augmentation index (8). On the other hand, the significantly higher cfPWV in the ≥ 50 yr 

cohort begs the question of what is causing the acceleration in arterial stiffness beyond 

that of the general population over the 20-year career span.  

In light of the apparent increase in arterial stiffness among LEOs over the career 

span, the second purpose of this investigation was to identify demographic, lifestyle, and 

occupational predictors of arterial stiffness. We hypothesized that cfPWV would be 

positively correlated with age, fat mass, time spent on 3rd shift, perceived stress, and 

inversely correlated with daily time spent in moderate–to-vigorous physical activity. 

Carotid-femoral pulse wave velocity was positively correlated with age, fat mass and 

time spent on third shift (Table 4-5).  Interestingly, there were no correlations between 

Police Stress Questionnaire and physical activity outcomes versus cfPWV in this 

investigation (Table 4-5). Regression analysis demonstrated that age, relative body fat, 

diastolic blood pressure, years in law enforcement and some interactions of those 

variables (Tables 4-7 and 4-8) explained the most variance in cfPWV.   
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Aging has been established as a primary risk factor for CVD, and is highly 

associated with increased arterial stiffness (32, 68, 71, 74, 79). Several studies note a 

linear increase in cfPWV until the age of 60 yr (40, 41, 79). Following the age of 60 yr, 

there tends to be a rapid exponential increase in cfPWV (40, 41, 79). This increase is 

hypothesized to be due to the cyclical hemodynamic stresses that are placed on arterial 

structures, particularly elastin, which causes fracturing and improper remolding of the 

arterial matrix (12). This occurs independently of atherosclerotic plaque accumulation, 

however in some individuals’ atherosclerotic plaque accumulation may also be 

contributing factor to increased cfPWV. This cross-sectional investigation concurs with 

previous findings indicating that greater cfPWV values are associated with older LEOs 

(Table 4-3 and Table 4-5). These results suggest that a function of time causes an 

unavoidable progression in arterial stiffening, however the degree to which this 

progression occurs could be modulated through other demographic, lifestyle, and 

occupational variables.  

Given the extended period of time one spends in an occupation over a lifetime, 

factors associated with the occupation can have negative health consequences. The 

occupation of law enforcement has demonstrated a clear relationship of increasing the 

prevalence of traditional risk factors for negative health outcomes, like CVD, stroke, 

heart attack, post traumatic stress syndrome, amongst others (50, 51, 53, 55, 56, 80). 

Although it is impossible to completely measure and decompose all behavioral and 

environmental factors into quantitative variables, the positive correlation between cfPWV 

and years served as a LEO (Table 4-5 &Table 4-8, Model E) suggests that occupational 

factors associated with law enforcement may predispose officers to poorer health 
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outcomes, especially the risk of CVD. The increased explained variance from Model E in 

Table 4-8 compared to Model A in table 4-7 might indicate that time spent serving in law 

enforcement is a better predictor of cfPWV than just age for this population. However 

since years served as a LEO, is a function of time, like age, it would be remiss not to 

report the correlation between the age and LEO yrs. (r = 0.79, p < 0.0001).  

The lack of significant arterial stiffening in LEOs who participated in third shift 

for greater than two years was surprising, as previous studies has demonstrated how 

police shift work (on third shift or late night shift) has created an environment that may 

promote poor health habits (48-53, 55, 80). This investigation noted that there was a 

significant positive correlation with time spent on third shift and increased cfPWV. 

However no significant difference in cfPWV between LEOs working for more than 2 

years on third shift versus LEOs working less than two years on third shift. However the 

group mean average cfPWV was up 0.53 m·s-1, which is a greater increase compared to 

Chen et al.’s cross-sectional study found an increase in pulse wave velocity of 0.036 m·s-

1 per year of shift work bus driving (13). Although these populations seem drastically 

different, they have two major similarities in the fact that they both perform shift work 

for prolong periods of time and the both jobs are sedentary in nature (55, 56). Shift work 

investigations using cfPWV are lacking, but they may help provide a clearer picture of 

how occupational factors may influence cardiovascular health.    

This investigation utilized multiple linear regressions and found that the years of 

experience on 3rd shift and daily physical activity did not independently predict cfPWV, 

however the interaction of the two variables significantly explained a portion of the 

variance (Table 4-8, Model D). The interaction demonstrated that cfPWV increases with 
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time spent on third shift when accumulated time spent in MVPA is low, but the officers 

who spent more time in MVPA while being on third shift actually attenuated the 

increases of cfPWV. The nature and impact of this relationship needs to be more 

comprehensively evaluated through future research, but it alludes to the fact that MVPA 

may play a role in how other variables influence cfPWV values and ultimately health 

outcomes.   

Following the time-based variables of age and years served in law enforcement, 

this investigation found that relative body fat was positively correlated to arterial stiffness 

(Tables 4-5, 4-7, 4-8). That is, as the relative adiposity of a LEO increases, cfPWV also 

increases. Excess body fat is a well-known accelerant of the arterial stiffening process 

(22, 58). This investigation agreed with previous research, and found that relative body 

fat (r =0.60, p<0.05) and BMI (r = 0.43, p<0.05) were positively correlated with cfPWV. 

The stronger association of relative body fat compared to BMI, because BMI was not 

retained in the regression analyses (Tables 4-7 and 4-8), could be due to the miss 

interpretation of lean muscle as fat in the BMI equation. Since BMI is solely based on 

height and weight measures, BMI estimations cannot distinguish between fat and fat-free 

mass.  This evidence supports Alasagheirin’s inquiry calling for a direct measure of fat 

mass in LEOs instead of BMI, because BMI’s misclassification can add or reduce the risk 

stratification of health outcomes for officers (3). This misclassification could hinder 

prevention timeframes, by delaying early interventions, and thus causing greater harm to 

an unsuspecting officer.  

This investigation demonstrated a significant difference in average cfPWV values 

based on relative body fat classifications (Table 4-6). Specifically, the obese group (mean 
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= 7.81 m·s-1) had an average cfPWV of nearly 2 m·s-1 higher than that of the normal 

weight group (mean = 5.96 m·s-1), despite no difference in the LEO’s age. Thus, a 2 m·s-1 

greater cfPWV suggests that the obese LEOs have an increased risk of 28% for all 

cardiovascular events, 30% for cardiovascular mortality, and a 30% increase in all-cause 

mortality (74). Increases in arterial stiffness in obese/overweight populations has been 

attributed to a variety of different factors related to adipokine levels within the body (58, 

71, 79).  Adiponectin is produced by adipose tissue and possesses anti-inflammatory, 

antiproliferative, antiatherogenic, and insulin-sensitizing mechanisms (58). Adiponectin 

has the ability to provide the body with some protective effects, but low levels have been 

found in obese and hypertensive patients (58). With limited adiponectin, nitric oxide 

synthesis expression decreases, which decreases the protective effects of nitric oxide and 

thus decreases the vessel’s ability to vasodilate. Low levels of adiponectin have been 

associated with increased arterial stiffness, however the extent of the exact mechanisms 

are still being investigated (58).    

Another adipokine affected by obesity is leptin. Obese individuals have elevated 

leptin levels in the plasma, which are known to increase aldosterone, sodium retention 

volume expression, and increased blood pressure (58). High levels of leptin also 

contributes to production of vascular smooth muscle cell proliferation, endothelial 

oxidative stress, and reactive oxidative species formation (58). There has been an 

established positive correlation between leptin levels and arterial stiffness (58). Even 

though these adipokines may provide a mechanism for increased arterial stiffness, this 

study did not directly measure these biomarkers and can only speculate as to why there 

was a significant difference between the three body composition groups.   
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Hypertension has been established as a correlate of arterial stiffness. Previous 

research in LEOs, while utilizing the previous American Heart Association (AHA) 

standards, has demonstrated that the prevalence of hypertension ranges from 15-39%, 

(40, 80). The present study’s sample was within this range utilizing the previous AHA 

standards, as 29% of the subjects were classified as hypertensive (7). However under the 

new AHA standards 71% of the subjects would be classified as hypertensive, which is 

more than double. Table 4-2 shows subjects’ average systolic blood pressure (129.8 

mmHg) would be classified as elevated and borderline stage-1 hypertension according to 

the new AHA standards. The sample’s average diastolic pressure (83.8 mmHg), would 

also classify subjects as stage-1 hypertension, utilizing the new AHA standards.  For all 

LEOs, the group average cfPWV (6.72 ± 1.36 m·s-1) is within normative range for the 

group average age and sex (37.1 yr, male, cfPWV = 6.50 ± 1.35 m·s-1), established by the 

European Society of Cardiology. However compared to non-hypertensive LEOs in the 

present study, the hypertensive cohort’s cfPWV was 1.4 m·s-1higher (Table 4-9) with the 

previous AHA standards and 1.0 m·s-1higher (Table 4-10) with the new standards, which 

places these hypertensive groups at a higher risk for CVD risk compared to their non-

hypertensive peers. Hypertension has a strong link to arterial stiffening, so much so that a 

few researchers question which occurs first (40). It has been noted that acute rises in 

blood pressure can cause acute/chronic increases in arterial stiffness in subjects (12). 

These sustained rises in blood pressure may accelerate structural changes within the 

vasculature walls, because hypertensive individuals have elevated stiffness compared to 

age-matched controls (12). The fracturing and remolding of connective tissue proteins 
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like elastin and collagen are examples of structural changes within the vascular wall 

(especially in the ascending aorta) that occur over time due to the increased blood 

pressure. Even though arterial stiffness has been linked with hypertension, Blacher et al. 

demonstrated that atherosclerosis alterations, such as arterial wall thickening, calcium 

build up, and plaque formation, can increase cfPWV independent of age and blood 

pressure (10). This would indicate that measuring arterial stiffness in conjuncture with 

brachial blood pressures would provide health practitioners with a better understanding of 

the CVD risk of their patients involved in law enforcement. 

This investigation evaluated several different multiple regression analyses 

predicting arterial stiffness as measured by cfPWV, and concluded that Model A from 

Table 4-8 is the strongest. Model A utilizes age, relative body fat, and brachial diastolic 

blood pressure to explain 54% (adj. R2) of the variance in cfPWV values in this 

population. The variables of age, body fat, and hypertension have been associated with 

increases in arterial stiffness in diverse populations (29, 30, 36). This regression model 

also provides a simple and practical formula to estimate cfPWV, as a doctor can collect 

these measures during a yearly physical exam. These simple measures and a normative 

value table could identify an at-risk LEO earlier, which could lead to primary care 

interventions to protect LEOs rather than tertiary treatments. 

There are several limitations to this study. One major limitation of this study was 

the voluntary nature of subject recruitment. Many of the officers who were presumed to 

be in poorer health, likely declined to participate in the study. In fact, many officers who 

declined to participate stated that they knew they were fat and out of shape, and did not 

want to find out about their poor health from the investigators. This limitation occurs 
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frequently in research and likely produces a bias in the population’s estimate of health 

outcome variables. This sentiment is why further testing of LEOs must be completed in 

conjuncture with administrative support, to truly understand the health disparities that are 

present in this population. A second limitation of this study was the inability to collect 

valid sleep measures, as sleep logs were inaccurate and are needed to produce reliable 

actigraphy sleep data. A third limitation was the use of a cross-sectional designed study 

to assess longitudinal outcomes, however a cross-section study can still provide important 

insights for future studies. A final limitation of this study was the use of currently 

employed LEOs. These officers are deemed fit for duty, while many officers retire early, 

because they cannot fulfill the requirements of being a law enforcement officer. This 

leads to a bias known as the healthy worker effect, which must be investigated in future 

studies with the law enforcement population.    
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CHAPTER V: SUMMARY AND CONCLUSION 

 In summary the first purpose of this investigation was to descriptively compare 

arterial stiffness between LEOs and the general population. The primary findings of this 

investigation demonstrated that LEOs have significantly lower levels of arterial stiffness 

earlier in their career, which may be a sign of the healthy worker effect due to the 

screening process and cadet training requirements prior to full-time employment as a 

LEO. Whereas, later in their careers LEOs had significantly higher arterial stiffness as 

compared to the general population. The apparent disproportional increase in arterial 

stiffness across the career-span suggests that the occupation of law enforcement may 

contribute to the accelerated arterial stiffness, as measured by cfPWV.    

The second purpose was to identify lifestyle, occupational, and demographic 

predictors of arterial stiffness in LEOs. The results from this investigation confirmed that 

age and obesity are primary factors in determining arterial stiffness in a cohort of LEOs. 

The other hypothesized variables results showed that time spent on third shift, perceived 

stress and moderate-to-vigorous physical activity were not predictors of arterial stiffness 

in LEOs. Time on third shift and moderate-to-vigorous physical activity did have an 

interaction effect, which will need to be further evaluated in future studies. Also years in 

law enforcement provided strong predictive power of arterial stiffness, which is a novel 

contributor to arterial stiffness. Occupational longevity as a predictor of arterial stiffness 

may help inform prospective employees which career choices are at greater risk for CVD, 

however this relationship will also need further evaluation.  

 Arterial stiffness as measured by cfPWV might be an important tool to diagnosis 

CVD risk among LEOs, since many traditional risk factors appear to be absent until post-
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retirement (80).  Increased arterial stiffness (cfPWV) has been linked to sudden cardiac 

events independent of traditional CVD risk factors. If direct measurement is unavailable, 

using a regression model with age, relative body fat, and diastolic blood pressure could 

provide a reasonable estimation of arterial stiffness among LEOs. This information would 

be valuable for practitioners and patients by providing an earlier detection of CVD risk 

and thus identifying candidates for appropriate interventions. This would also provide a 

benefit to the government and taxpayers through reducing health care costs through using 

primary or secondary care instead of relying on tertiary care.  

 In conclusion, older LEOs as well as LEOs who present traditional risk factors 

such as hypertension and obesity are at greater risk of increased arterial stiffness. This 

investigation highlights the need for weight and blood pressure management for CVD 

risk reduction of an at risk population. The investigation also highlights that age, relative 

body fat, and diastolic blood pressure are the best predictors of arterial stiffness in this 

cohort of LEOs.   
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APPENDIX 

Personal/Work History Questionnaire 
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Physical Activity Readiness Questionnaire 
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Health History Questionnaire 
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Operational Police Stress Questionnaire 
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Organizational Police Stress Questionnaire 
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Chronotype Questionnaire 
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