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RESEARCH Open Access

Age and sex are associated with the
plasma lipidome: findings from the GOLDN
study
Emily Slade1* , Marguerite R. Irvin2, Kevin Xie1, Donna K. Arnett3, Steven A. Claas3, Tobias Kind4,
David W. Fardo1 and Gregory A. Graf5

Abstract

Background: Developing an understanding of the biochemistry of aging in both sexes is critical for managing
disease throughout the lifespan. Lipidomic associations with age and sex have been reported, but prior studies are
limited by measurements in serum rather than plasma or by participants taking lipid-lowering medications.

Methods: Our study included lipidomic data from 980 participants aged 18–87 years old from the Genetics of
Lipid-Lowering Drugs and Diet Network (GOLDN). Participants were off lipid-lowering medications for at least 4
weeks, and signal intensities of 413 known lipid species were measured in plasma. We examined linear age and sex
associations with signal intensity of (a) 413 lipid species; (b) 6 lipid classes (glycerolipids, glycerophospholipids,
sphingolipids, sterol lipids, fatty acids, and acylcarnitines); and (c) 15 lipid subclasses; as well as with the particle
sizes of three lipoproteins.

Results: Significant age associations were identified in 4 classes, 11 subclasses, 147 species, and particle size of one
lipoprotein while significant sex differences were identified in 5 classes, 12 subclasses, 248 species, and particle sizes
of two lipoproteins. For many lipid species (n = 97), age-related associations were significantly different between
males and females. Age*sex interaction effects were most prevalent among phosphatidylcholines, sphingomyelins,
and triglycerides.

Conclusion: We identified several lipid species, subclasses, and classes that differ by age and sex; these lipid
phenotypes may serve as useful biomarkers for lipid changes and associated cardiovascular risk with aging in the
future. Future studies of age-related changes throughout the adult lifespan of both sexes are warranted.

Trial registration: ClinicalTrials.gov NCT00083369; May 21, 2004.

Keywords: Lipidomics, Glycerolipids, Glycerophospholipids, Sphingomyelin, Sterols, Fatty acid, Acylcarnitines,
Cohort, Age, Sex
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Introduction
Global life expectancy has increased [1] and is predicted
to continue increasing in many countries [2]. In devel-
oped nations, age is the primary risk factor for many
common diseases including cardiovascular disease, can-
cer, and Alzheimer’s disease [3]. Human aging is a com-
plex phenomenon influenced by environmental, genetic
and other endogenous factors. For example, the aging
process differs between sexes, and there are well estab-
lished associations between sex and the incidence, symp-
toms, severity, age of onset, and response to treatments
for many diseases. Management of disease in aging pop-
ulations may be improved by better understanding the
physiology of aging in both sexes. Given the complex
biochemistry of aging, metabolomic approaches may
offer important insights into the aging process and age-
related disease etiologies. Lipidomics, in particular, is
well positioned to investigate those pathologies. Lipids
function as both structural and signaling molecules and
are known to play important roles in age-related disor-
ders such as cardiovascular disease [4], metabolic syn-
drome [5], macular degeneration [6], neurodegenerative
diseases [7], and at least some types of stroke [8]. How-
ever, before lipidomics can be used to dissect and
characterize disease, it is critical that we understand how
the lipidome changes during normal, healthy aging in
both sexes.
A number of well-powered metabolomic studies of age

and sex have included lipidomic species [9–12]; how-
ever, most of these studies measured metabolites in
serum, while current recommendations favor plasma for
lipidomics due to the generation and degeneration of
lipid species during the coagulation process and the
similarity of plasma generated from fresh blood to the
plasma compartment in vivo [13]. Beyene et al. studied a
large Australian cohort (n = 10,339) to examine age and
sex associations with individual plasma lipid species that
are independent of lipoprotein metabolism [12]. Wong
et al. conducted a plasma lipidomics study in a modestly
sized sample (n = 100) of participants age > 55 years [14].
Darst et al. conducted a longitudinal plasma lipidomics
analysis of 1212 participants with up to three study visits
per participant, with follow-up occurring four years after
baseline and every two years thereafter [15, 16]. How-
ever, these studies were not restricted to participants
free of lipid-lowering medication, somewhat complicat-
ing the interpretation of their findings.
The Genetics of Lipid-Lowering Drugs and Diet Net-

work (GOLDN) offers a context to investigate lipidomic
markers of age and sex. Data on GOLDN’s 980 partici-
pants includes robust characterization of health status,
diet, anthropometry, and demographics. No GOLDN
participants were taking lipid-lowering drugs, including
fish oils, at the time specimens were collected, thus

avoiding the difficulties of interpretation that have char-
acterized some previous studies. GOLDN participants
ranged in age from 18 to 87 years, making it better
suited for a study across the adult lifespan than previous
studies with a more age-restricted sample. In this study
we used liquid chromatography/mass spectrometry to
quantify 413 lipidomic species in GOLDN plasma speci-
mens. The goal of this study is to examine associations
between age and each lipid species and to assess whether
these associations across the adult lifespan differ be-
tween sexes.

Methods
The GOLDN Study has been described in detail else-
where [17]. GOLDN participants were re-recruited from
three-generational pedigrees from two National Heart,
Lung and Blood Institute Family Heart Study field cen-
ters (Minneapolis, MN and Salt Lake City, UT); genetic-
ally related pedigree members of these probands were
recruited as well. Nearly all participants were of Euro-
pean ancestry. Earlier studies demonstrated that Cauca-
sians in Utah and Minnesota were homogeneous, and
pooling data across centers did not threaten the validity
of this study [18].
Exclusion criteria included the following: recent his-

tory (past six months) of myocardial infarction, coronary
bypass surgery, coronary angioplasty or percutaneous
transluminal coronary angioplasty; current use of war-
farin or insulin; self-report of a positive history of kid-
ney, gall bladder, liver, or pancreatic disease, or a history
of nutrient malabsorption; serum concentrations of ala-
nine transaminase exceeding 66 U/L in males or 44 U/L
in females; serum concentrations of aspartate amino-
transferase exceeding 52 U/L in males or 42 U/L in fe-
males; glomerular filtration rate < 30ml/min/1.73 m2

estimated from the Modification of Diet in Renal Disease
(MDRD) Study equation; fasting triglycerides ≥1500mg/
dL; pregnant women or women of childbearing potential
not using contraception; and women nursing a child. In-
dividuals who reported current use of prescription and/
or over-the-counter hypolipidemic drugs or dietary sup-
plements known to influence lipid values (e.g., fish oil,
niacin, flaxseed oil) were required to consult with their
clinician for approval to discontinue these lipid-lowering
agents for four weeks prior to study participation.
Specimens were collected at a pre-intervention, base-

line visit. Participants were asked to fast for ≥12 h and
abstain from using alcohol for ≥24 h before the clinic
visit [19]. Blood samples were centrifuged within 20min
of collection at 2000 g for 15 min at 4 °C [20]. Plasma
samples were stored at − 80 °C.
Unique, known lipid species were analyzed by liquid

chromatography coupled-mass spectrometry (LC-MS/
MS). The data set was obtained as an untargeted
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lipidomic profiling experiment. Differences in signal in-
tensity reflect differences in abundance of any given lipid
species based on instrumental settings and solvents and
buffers used during analysis. The relative concentrations
are comparable within the experiments obtained with
the same protocol but, by design, cannot be easily com-
pared with absolute (targeted) measurements. The sig-
nals of lipids designated as (A) and (B) are related to
double bond stereoisomers (cis/trans) which can be re-
solved by the chromatographic protocol used. Due to
missing authentic reference compounds, no further an-
notations can be made. Moreover, tetrahedral stereoiso-
mers (R/S) and regioisomers were not distinguished.
Raw lipidomic data were normalized using Systematic
Error Removal using Random Forest (SERRF) [21]. SERR
F is a machine learning algorithm for large metabolomic
data sets that characterizes systematic error such as
batch effects and day-to-day variation in quality control
samples and uses this model to reduce systematic error
in study samples [21]. For lipid species measured on
both positive and negative modes, the mode with the
smaller standard deviation across participants was
retained for analysis.
For statistical analysis, individual lipid species were

classified into six major classes: glycerolipids, glycero-
phospholipids, sphingolipids, sterol lipids, fatty acids,
and acylcarnitines. Four of the six major classes were
further subdivided into 15 subclasses: glycerolipids were
subdivided into triglycerides (TG) and diacylglycerols
(DG); glycerophospholipids were subdivided into phos-
phatidylcholines (PC), phospatidylethanolamines (PE),
phosphatidylinositols (PI), phosphatidylglycerols (PG),
lysophosphatidylethanolamines (LPE), and lysophospha-
tidylcholines (LPC); sphingolipids were subdivided into
sphingomyelins (SM), ceramides, lactosylceramides
(LCer), glucosylceramides (GlcCer), and galactosylgalac-
tosylceramides (GalGalCer); sterol lipids were subdivided
into cholesterol and cholesteryl esters (CE). Fatty acids
and acylcarnitines were not further subdivided. Analyses
were performed at the class level, subclass level, and in-
dividual lipid level. For class and subclass analyses, each
participant’s observed class/subclass intensity was calcu-
lated by summing the total signal intensity of lipid spe-
cies belonging to the class/subclass for that participant.
Three sets of analyses were performed to examine the

associations of age, sex, and their interaction with signal
intensities of (1) classes of lipids, (2) subclasses of lipids,
and (3) individual lipid species. The class intensities,
subclass intensities, and individual lipid intensities were
standardized to have mean 0 and standard deviation 1
prior to analysis. This standardization of outcome data
allows for a direct comparison of estimated regression
coefficients between models. Further, it aids in interpret-
ation as a one unit change in outcome reflects a change

of one standard deviation in signal intensity for all lipid
species, classes, and subclasses. No further transform-
ation was performed to the classes, subclasses, and indi-
vidual lipid species.
A fourth set of analyses was also performed to exam-

ine the associations of age, sex, and their interaction
with lipoprotein particle size measured by nuclear mag-
netic resonance (NMR) spectroscopy. Lipoproteins mea-
sured via NMR spectroscopy include very-low-density
lipoprotein (VLDL), low-density lipoprotein (LDL), and
high-density lipoprotein (HDL). All particle sizes are
measured in nanometers (nm).
All analyses employed linear regression modeling to

examine the associations between the class, subclass,
lipid species, or lipoprotein particle size outcome
(each separately) with age, sex, and age*sex inter-
action, while including adjustment for body mass
index (BMI). Other studies have shown BMI associa-
tions with the plasma lipidome [22, 23]. As such,
BMI is included as a covariate in all analyses in order
to examine age and sex associations with the plasma
lipidome that are not driven by BMI-related associa-
tions. Analyses of classes, subclasses, and individual
lipid species also included adjustment for batch ef-
fects. For analyses including an age*sex interaction,
the age variable was centered prior to analysis to aid
in interpretability of the interaction term. For classes,
subclasses, individual lipid species, and lipoprotein
particle sizes exhibiting significant age*sex interaction
effects, age associations with the class, subclass, lipid
species, or lipoprotein particle size outcome were fur-
ther explored in sex-stratified analyses, i.e., separate
linear regression models were fit for males and fe-
males to explore the relationship between age and the
class, subclass, lipid species, or lipoprotein particle
size in a more easily interpretable form.
To account for multiple testing, a Benjamini-

Hochberg adjustment (false discovery rate correction)
was applied to control the false discovery rate in each
set of analyses at 0.05 [24]. All reported P-values are
the Benjamini-Hochberg-adjusted P-values, and thus,
a significance level of 0.05 was utilized for all ana-
lyses. All analyses were performed using R version
4.0.2 [25].

Results
Participant demographics
Fasting plasma samples were analyzed for 980 partici-
pants with 413 unique, known lipid species identified.
The mean age of participants was 48.3 years (standard
deviation = 16.4 years), and 52.3% were female
(Table 1). As expected by design of the GOLDN
study, participants identified primarily as white
(99.9%) (Table 1).
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Age and sex are associated with lipid classes
Among the six classes of lipid species, four had signifi-
cant associations between age and total class intensity
after adjustment for sex, BMI, and batch (Table 2).
These include glycerophospholipids, sphingolipids, sterol
lipids, and fatty acids, which all increase significantly
with age. On average, total intensity of glycerolipids and
acylcarnitines did not change significantly with age after

adjustment for sex, BMI, and batch (Table 2). Five of the
six classes of lipid species had a significant association
with sex (Table 2). Total intensities of glycerophospholi-
pids, sphingolipids, sterol lipids, and fatty acids were sig-
nificantly higher in women than men, and total intensity
of glycerolipids was significantly higher in men than
women after adjustment for age, BMI, and batch. The
average total intensity of acylcarnitines did not differ

Table 1 GOLDN cohort characteristics, mean (standard deviation) or n (%)

All Participants, n = 980 Male, n = 467 Female, n = 513

Age (years) 48.3 (16.4) 48.8 (16.4) 48.0 (16.4)

White race 979 (99.9%) 466 (99.8%) 513 (100.0%)

Alcohol consumer 477 (48.7%) 220 (47.1%) 257 (50.1%)

Smoking status

Current smoker 73 (7.4%) 36 (7.7%) 37 (7.2%)

Past smoker 211 (21.5%) 121 (25.9%) 90 (17.5%)

Never smoker 695 (70.9%) 310 (66.4%) 385 (75.0%)

Missing 1 (0.1%) 0 (0.0%) 1 (0.2%)

BMI (kg/m2) 28.3 (5.7) 28.4 (4.8) 28.1 (6.3)

Waist-hip ratio 0.9 (0.1) 0.9 (0.1) 0.9 (0.1)

Blood glucose (mg/dL) 97.5 (15.3) 100.8 (16.2) 94.4 (13.8)

LDL cholesterol (mg/dL) 121.8 (30.9) 123.4 (30.1) 120.5 (31.6)

HDL cholesterol (mg/dL) 47.1 (13.1) 41.3 (9.6) 52.5 (13.6)

Triglycerides (mg/dL) 138.6 (96.8) 151.3 (111.0) 127.1 (80.3)

Creatine (mg/dL) 0.8 (0.2) 0.9 (0.2) 0.7 (0.1)

HOMA-IR (score) 3.5 (2.4) 3.7 (2.6) 3.3 (2.3)

Coronary heart disease 49 (5.0%) 41 (8.8%) 8 (1.6%)

Diabetes 75 (7.7%) 31 (6.6%) 44 (8.6%)

Hypertension 256 (26.1%) 127 (27.2%) 129 (25.1%)

Summaries of the characteristics of the GOLDN cohort, both overall and stratified by sex, are provided as mean (standard deviation) for numerical variables or as
n (%) for categorical variables

Table 2 Associations between total class intensity with age, sex, and their interaction

Class Age β (SE) Sex β (SE) Age*Sex Interaction β (SE)

Glycerolipids 0.0050 (0.0027) − 0.2036 (0.0600)b 0.0098 (0.0037)a

Glycerophospholipids 0.0132 (0.0026)c 0.3243 (0.0580)c 0.0116 (0.0035)b

Sphingolipids 0.0178 (0.0026)c 0.1657 (0.0577)b 0.0074 (0.0035)

Sterol lipids 0.0094 (0.0028)b 0.2467 (0.0624)c 0.0002 (0.0038)

Fatty acids 0.0067 (0.0027)a 0.2898 (0.0597)c −0.0017 (0.0036)

Acylcarnitines 0.0042 (0.0028) 0.0485 (0.0629) −0.0012 (0.0038)

Rows include regression coefficients (β) and standard errors from separate linear regression models with outcome of standardized total class intensity. Each model
includes age, sex, age*sex interaction, batch, and BMI as covariates. In all models, age is centered at the mean age of 48.3 years, and the reference category for
sex is male. All P-values are adjusted for multiple testing using a Benjamini-Hochberg adjustment to control the false discovery rate among each set of six
coefficients at 0.05. Age coefficients (β) can be interpreted as the expected change in standardized total class intensity for a one-year increase in age, among
men, after adjustment for batch and BMI. Sex coefficients (β) can be interpreted as the expected difference in standardized total class intensity between women
and men, at the mean age, after adjustment for batch and BMI (positive values indicate higher expected levels in women). Age*sex interaction coefficients (β) can
be interpreted as the expected additional change in standardized total class intensity for a one-year increase in age, among women (on top of the age coefficient
for men), after adjustment for batch and BMI. Put more simply, add the age coefficient and age*sex interaction coefficient together to find the expected change
in standardized total class intensity for a one-year increase in age, among women, after adjustment for batch and BMI
aadjusted P-value < 0.05
badjusted P-value < 0.01
cadjusted P-value < 0.001
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significantly between males and females after adjustment
for age, BMI, and batch (Table 2).
In two classes of lipids, glycerophospholipids (P =

0.007) and glycerolipids (P = 0.022), age and sex had a
significant interaction effect, indicating that the associ-
ation between age and the total class intensity was differ-
ent among males and females, while controlling for BMI
and batch (Table 2). In both classes, the expected in-
crease in the total class intensity with increasing age was
larger in women than in men (Fig. 1). For a ten-year in-
crease in age, our model predicts the total intensity of
glycerophospholipids to increase by 0.05 standard devia-
tions in men and by 0.15 standard deviations in women
after controlling for BMI and batch (Table 2, Fig. 1). For
a ten-year increase in age, we expect the total intensity
of glycerolipids to increase by 0.13 standard deviations
in men and by 0.25 standard deviations in women after
controlling for BMI and batch (Table 2, Fig. 1). Correla-
tions between total intensities of the six lipid classes are
shown in Additional File 2.

Age and sex are associated with lipid subclasses
Among the 15 subclasses of lipid species, 11 had signifi-
cant associations with age after adjustment for sex, BMI,
and batch (Table 3). Of these, cholesterol was the only
subclass that decreased significantly with age. The other
10 (PC, PE, PI, PG, LPE, SM, ceramide, LCer, GlcCer,
CE) all increased with age. Of the 15 subclasses of lipid
species, 12 had significant associations with sex after ad-
justment for age, BMI, and batch (Table 3). On average,
women had higher total subclass intensity of PC, PE, PI,
PG, SM, GlcCer, and CE, while men had higher total
subclass intensity of TG, DG, LPC, ceramides, and

cholesterol after adjustment for age, BMI, and batch
(Table 3).
Five subclasses of lipid species exhibited a significant

interaction effect between age and sex (Table 3). These
included GalGalCer (P = 0.006), PE (P = 0.008), PC (P =
0.012), TG (P = 0.028), and LPC (P = 0.033). In GalGal-
Cer and LPC, the total intensity remained approximately
constant across ages in men, but in women there was a
significant decrease in GalGalCer with age and a signifi-
cant increase in LPC with age (Table 3, Fig. 2). In the
PE, PC, and TG subclasses, total subclass intensity in-
creased with age in both men and women, but the rate
of increase was larger in women than men after control-
ling for BMI and batch (Table 3, Fig. 2).

Age and sex are associated with individual lipid species
Among the 413 individual lipid species, 147 had signifi-
cant associations with age after adjustment for sex, BMI,
and batch (Table 4, Additional File 1); on average, 141
increased with age, and 6 decreased with age. Among
the 413 individual lipid species, 248 had a significant as-
sociation with sex after adjustment for age, BMI, and
batch (Table 4, Additional File 1). Of these, 103 lipids
had higher levels in males and 145 had higher levels in
females, on average (Table 4, Additional File 1).
For 97 individual lipid species, the association between

age and lipid intensity was significantly different between
males and females after adjustment for batch and BMI
(Table 4, Additional File 1). All but three of these signifi-
cant age*sex interaction effects were in the form of lar-
ger age-related increases in lipid intensity in females as
compared to males (Fig. 3). Only PC (p-36:1) or PC (o-
36:2), GalGalCer/LCer (d18:1/16:0), and PC (p-42:2) or

Fig. 1 Relationship between age and standardized total class intensity for glycerophospholipids (left) and glycerolipids (right). Dots represent
observed values for males (blue) and females (red). Lines represent a linear regression of class intensity on age, performed separately for males
(blue) and females (red). Only lipid classes with significant age*sex interaction effects from the overall analyses (see Table 2) are analyzed in these
stratified models
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PC (o-42:3) deviated from this pattern; the first two ex-
hibited age-related declines in females with very little
change in males, and the last exhibited an age-related
decline in females and an age-related increase in males.

Analysis of lipoprotein particle sizes
Of the three lipoproteins measured via NMR spectros-
copy, only VLDL exhibited a significant association with
age after adjustment for sex and BMI (Table 5). This as-
sociation between age and VLDL particle size was also
significantly different between males and females after
adjustment for BMI (Table 5, Fig. 4). In males, VLDL
particle size decreased with age by an average of 0.090
nm per year; and in females, VLDL particle size slightly
increased with age by an average of 0.036 nm per year,
after adjusting for BMI (Table 5).
There was not a significant association between LDL

and HDL particle size with age, but both lipoprotein
particle sizes were significantly different between males
and females after adjustment for BMI (Table 5). On
average, LDL particles were 0.587 nm larger in females
than in males, and HDL particles were 0.359 nm larger
in females than in males, after adjustment for BMI
(Table 5).

Discussion
Findings from the GOLDN study indicated many age
and sex-related associations in the plasma lipidome in a
large (n = 980) cohort of participants. GOLDN reflects a
unique cohort for lipidomic analyses because all partici-
pants were treatment-naïve at the time of plasma collec-
tion and therefore, results are not confounded by the
effects of lipid-lowering drugs. Many significant differ-
ences in the lipidomic measures were identified in the
lipid classes, lipid subclasses, and individual lipid species
for age and sex. These findings are highly consistent
with the results from the Australian diabetes (AusDiab)
cohort study which evaluated 706 lipids species in
plasma; of the 11 subclasses reported in GOLDN to dif-
fer by sex, 8 were consistent in the direction of the sex
difference and significance in the AusDiab cohort [12].
Similarly, of the 11 subclasses reported in GOLDN to
differ by age, 9 were significantly associated with age in
the AusDiab cohort [12]. Most interesting, however, is
that the relationship between age and the lipidomic
measures in GOLDN differed by sex; in one-third (two
out of six) of lipid classes, one-third (five out of 15) of
lipid subclasses, and about one fourth (97 out of 413) of
individual lipid species, age demonstrated either a
steeper increase or decline of the lipidomic measure

Table 3 Associations between total subclass intensity with age, sex, and their interaction

Subclass Age β (SE) Sex β (SE) Age*Sex Interaction β (SE)

TG 0.0050 (0.0027) −0.2035 (0.0600)b 0.0098 (0.0037)a

DG 0.0055 (0.0027) −0.1708 (0.0612)b 0.0082 (0.0037)

PC 0.0148 (0.0026)c 0.3695 (0.0574)c 0.0106 (0.0035)a

PE 0.0057 (0.0026)a 0.3079 (0.0584)c 0.0116 (0.0036)b

PI 0.0072 (0.0027)a 0.2908 (0.0606)c 0.0070 (0.0037)

PG 0.0103 (0.0026)c 0.2559 (0.0569)c 0.0023 (0.0035)

LPE 0.0059 (0.0028)a −0.1244 (0.0618) 0.0072 (0.0038)

LPC 0.0006 (0.0027) −0.5470 (0.0606)c 0.0094 (0.0037)a

SM 0.0152 (0.0026)c 0.3631 (0.0587)c 0.0082 (0.0036)

Ceramide 0.0175 (0.0026)c −0.1335 (0.0579)a 0.0046 (0.0035)

LCer 0.0109 (0.0028)c 0.0242 (0.0624) −0.0008 (0.0038)

GlcCer 0.0108 (0.0022)c 0.1240 (0.0499)a 0.0061 (0.0030)

GalGalCer 0.0000 (0.0027) −0.0223 (0.0602) −0.0130 (0.0037)b

Cholesterol −0.0123 (0.0027)c −0.2907 (0.0595)c 0.0012 (0.0036)

CE 0.0101 (0.0028)c 0.2637 (0.0623)c 0.0002 (0.0038)

Rows include regression coefficients (β) and standard errors from separate linear regression models with outcome of standardized total subclass intensity. Each
model includes age, sex, age*sex interaction, batch, and BMI as covariates. In all models, age is centered at the mean age of 48.3 years, and the reference
category for sex is male. All P-values are adjusted for multiple testing using a Benjamini-Hochberg adjustment to control the false discovery rate among each set
of 15 coefficients at 0.05. Age coefficients (β) can be interpreted as the expected change in standardized total subclass intensity for a one-year increase in age,
among men, after adjustment for batch and BMI. Sex coefficients (β) can be interpreted as the expected difference in standardized total subclass intensity
between women and men, at the mean age, after adjustment for batch and BMI (positive values indicate higher expected levels in women). Age*sex interaction
coefficients (β) can be interpreted as the expected additional change in standardized total subclass intensity for a one-year increase in age, among women (on
top of the age coefficient for men), after adjustment for batch and BMI. Put more simply, add the age coefficient and age*sex interaction coefficient together to
find the expected change in standardized total subclass intensity for a one-year increase in age, among women, after adjustment for batch and BMI
aadjusted P-value < 0.05
badjusted P-value < 0.01
cadjusted P-value < 0.001
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Table 4 Associations between lipid signal intensity with age, sex, and their interaction (includes those with top 10 most significant
age*sex interactions)

Lipid Species Age β (SE) Sex β (SE) Age*Sex Interaction β (SE)

PC (p-38:5) or PC (o-38:6) A 0.0071 (0.0026)a 0.2561 (0.0587)c 0.0201 (0.0036)c

PC (38:4) A 0.0026 (0.0027) 0.2269 (0.0595)c 0.0192 (0.0036)c

PC (34:4) −0.0022 (0.0027) 0.5713 (0.0598)c 0.0163 (0.0036)c

PC (38:4) −0.0018 (0.0027) 0.1720 (0.0611)b 0.0169 (0.0037)c

SM (d32:2) 0.0048 (0.0022) 1.0661 (0.0485)c 0.0131 (0.0030)c

SM (d41:2) B 0.0063 (0.0026)a 0.6994 (0.0581)c 0.0157 (0.0035)c

PC (35:4) 0.0006 (0.0027) 0.4934 (0.0608)c 0.0156 (0.0037)b

SM (d30:1) 0.0029 (0.0026) 0.7290 (0.0580)c 0.0140 (0.0035)b

TG (56:5) B 0.0046 (0.0027) −0.1895 (0.0595)b 0.0145 (0.0036)b

LPC (22:5) −0.0049 (0.0027) −0.5314 (0.0609)c 0.0146 (0.0037)b

Rows include regression coefficients (β) and standard errors from separate linear regression models with outcome of standardized lipid intensity. Only results from
models exhibiting the top 10 most significant age*sex interactions are shown; a full table of results for all 413 models is included in Additional File 1. Each model
includes age, sex, age*sex interaction, batch, and BMI as covariates. In all models, age is centered at the mean age of 48.3 years, and the reference category for
sex is male. All P-values are adjusted for multiple testing using a Benjamini-Hochberg adjustment to control the false discovery rate among each set of 413
coefficients at 0.05. Age coefficients (β) can be interpreted as the expected change in standardized lipid intensity for a one-year increase in age, among men, after
adjustment for batch and BMI. Sex coefficients (β) can be interpreted as the expected difference in standardized lipid intensity between women and men, at the
mean age, after adjustment for batch and BMI (positive values indicate higher expected levels in women). Age*sex interaction coefficients (β) can be interpreted
as the expected additional change in standardized lipid intensity for a one-year increase in age, among women (on top of the age coefficient for men), after
adjustment for batch and BMI. Put more simply, add the age coefficient and age*sex interaction coefficient together to find the expected change in standardized
lipid intensity for a one-year increase in age, among women, after adjustment for batch and BMI. Lipids (A) and (B) designate resolved cis/trans stereoisomers
aadjusted P-value < 0.05
badjusted P-value < 0.01
cadjusted P-value < 0.001

Fig. 2 Relationship between age and standardized total subclass intensity. Dots represent observed values for males (blue) and females (red).
Lines represent a linear regression of subclass intensity on age, performed separately for males (blue) and females (red). Only lipid subclasses with
significant age*sex interaction effects from the overall analyses (see Table 3) are analyzed in these stratified models. These include
galactosylgalactosylceramides (top left), phosphatidylethanolamines (top center), phosphatidylcholines (top right), triglycerides (bottom left), and
lysophosphatidylcholines (bottom center)
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Fig. 3 Relationship between age and standardized individual lipid intensity, stratified by sex. Bars indicate the age coefficient, representing the
expected change in standardized lipid intensity for a one-year increase in age, from separate linear regression models for males (blue) and
females (red). Only lipid species with significant age*sex interaction effects from the overall analyses (see Table 4) are analyzed in these stratified
models. Lipid species are grouped by class for ease of presentation (panel A: glycerolipids, panel B: glycerophospholipids, panel C: sphingolipids,
panel D: sterol lipids); within each class, lipids are ordered by size of the age*sex interaction effect (see Table 4). Lipids denoted A and B
designate resolved cis/trans stereoisomers

Table 5 Associations between lipoprotein particle size with age, sex, and their interaction

Lipoprotein Particle Age β (SE) Sex β (SE) Age*Sex Interaction β (SE)

VLDL size (nm) −0.090 (0.023)c 0.256 (0.504) 0.126 (0.031)c

LDL size (nm) −0.003 (0.002) 0.587 (0.049)c 0.003 (0.003)

HDL size (nm) 0.001 (0.001) 0.359 (0.025)c 0.001 (0.002)

Rows include regression coefficients (β) and standard errors from separate linear regression models with outcome of lipoprotein particle size (measured via
nuclear magnetic resonance (NMR) spectroscopy). Each model includes age, sex, age*sex interaction, and BMI as covariates. In all models, age is centered at the
mean age of 48.3 years, and the reference category for sex is male. All P-values are adjusted for multiple testing using a Benjamini-Hochberg adjustment to
control the false discovery rate among each set of three coefficients at 0.05. Age coefficients (β) can be interpreted as the expected change in particle size (nm)
for a one-year increase in age, among men, after adjustment for BMI. Sex coefficients (β) can be interpreted as the expected difference in particle size (nm)
between women and men, at the mean age, after adjustment for BMI (positive values indicate larger expected size in women). Age*sex interaction coefficients (β)
can be interpreted as the expected additional change in particle size (nm) for a one-year increase in age, among women (on top of the age coefficient for men),
after adjustment for BMI. Put more simply, add the age coefficient and age*sex interaction coefficient together to find the expected change in particle size (nm)
for a one-year increase in age, among women, after adjustment for BMI
aadjusted P-value < 0.05
badjusted P-value < 0.01
cadjusted P-value < 0.001
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between men and women. Four of the five subclasses re-
ported in GOLDN to exhibit differential age-related as-
sociations by sex were also identified in the AusDiab
cohort [12].
It is well understood that circulating lipoproteins are

affected by female sex steroids, in particular estrogens
which demonstrate more robust age-related fluctuations
associated with menopause. In the GOLDN study, fe-
males had greater age-related increases in both glyceroli-
pids and glycerophospholipids (Table 2, Fig. 1). Among
glycerolipids, this sex difference in the relationship of
age was also observed in triglycerides but not diglycer-
ides (Table 3). These species are almost exclusively asso-
ciated with circulating lipoproteins. The present study
evaluated the plasma lipidome; further analysis of the
lipidome within lipoproteins (LDL, HDL) and their sub-
classes (HDL1, 2, etc.) may reveal additional insight into
the origins of plasma lipids, their potential as bio-
markers, and perhaps the impact on aging and disease
risk within biological sex.
Galactosylgalactosylceramides (GalGalCer) had an

age-related decline in females that was not observed
in males (Table 2, Fig. 1). While the plasma source of
GalGalCer cannot be discerned from our lipidomic
measures, α-galactosidase, a key metabolic enzyme in
ceramides, is located on the X chromosome [26]. In
addition, messenger RNA for the enzyme has been
shown to be significantly repressed in MCF7 breast
cancer cells in which estrogen receptor-α had been si-
lenced by siRNAs [27–29]. Consistent with this

observation, treatment of breast cancer cell lines with
17β-estradiol has been shown to produce a time-
dependent increase in mRNA expression [30, 31].
Collectively, these data suggest a positive correlation
between estrogen signaling and α-galactosidase ex-
pression that may underlie the age-associated changes
in enzyme substrates over the lifespan in females but
not in males.
We also found a sex-dependent age-related increase

in choline-containing phospholipids, including phos-
phatidylcholines (PCs) which are the most abundant
phospholipids in cellular membranes. Like PCs, PEs
also demonstrated an age-related increase in females
but not males. PEs are significantly less abundant in
biological membranes than their PC counterparts (~
20–30% if membrane lipids in liver), but they play
critical roles in membrane biology and cellular signal-
ing. PEs are asymmetrically distributed in plasma
membranes where 80% are confined to the inner leaf-
let. The loss of that asymmetry is an inflammatory
signaling event in a number of tissues, including heart
[32]. PEs are also highly enriched in mitochondrial
membranes. Thus, changes in their abundance across
the lifespan may reflect well-established age-related
declines in basal metabolic rate [33]. The most sig-
nificant PE demonstrating an age*sex interaction was
40:7, which contains an omega – 3 PUFA. Such lipids
are well established to influence a number of cardio-
vascular functions including endothelial and cardio-
myocyte function and hemostasis [34].

Fig. 4 Relationship between age and lipoprotein particle size, stratified by sex. Dots represent observed values for males (blue) and females (red).
Lines represent a linear regression of lipoprotein particle size on age, performed separately for males (blue) and females (red). Only particles with
significant age*sex interaction effects from the overall analyses (see Table 5) are analyzed in these stratified models. This includes only VLDL

Slade et al. Lipids in Health and Disease           (2021) 20:30 Page 9 of 12



Study strengths and limitations
This study has several strengths. First, the large sample
size (n = 980) includes a robust characterization of
underlying health characteristics such as diet, anthro-
pometry, and medical conditions. Additionally, this large
cohort spans a wide range of ages (18 to 87 years), offer-
ing a comprehensive view across the adult lifespan. Fur-
thermore, all participants were free of lipid-lowering
medications. The measurement of participants’ lipid
levels in plasma is also a strength of this study. Although
serum is more widely used in clinical practice, the co-
agulation process used to isolate serum can lead to gen-
eration or degeneration of lipid species. Plasma
generated from fresh blood is considered to be the most
similar to the plasma compartment in vivo; therefore,
current recommendations for lipidomic analysis favor
plasma over serum [13].
Despite these strengths, some limitations do exist.

Examination of age associations in this study is lim-
ited by the cross-sectional nature of data collection;
as such, our results may be used to target specific
lipid species or classes in future longitudinal studies
examining intra-individual age-related changes. Fur-
ther, the generalizability of results from this study is
limited to similar populations, and these findings
should be confirmed in other populations. In particu-
lar, participants in the GOLDN cohort predominantly
identify as white, so results should only be general-
ized to populations of European descent.
Residual plots and histograms of residuals were visu-

ally examined to assess modeling assumptions of ho-
moscedasticity and normality of residuals for class and
subclass analyses. No strong departures from these as-
sumptions were observed, but some minor departures
do exist, noted in the glycerolipids class and its two
subclasses, TG and DG, as shown in Additional File 3.
Because this analysis is a large lipidomic-scale screen-
ing phase, we utilized straightforward linear modeling.
The intensities of some lipid species, classes, and sub-
classes may plateau at a certain age, possibly around
menopause in women. Our lipidomic screening phase
analysis has identified two classes, five subclasses, and
97 individual lipid species that exhibit age- and sex-
related associations. We recommend further explor-
ation of these associations in this smaller set of lipids
using more complex methodologies that can capture
non-linear trends, such as spline-based or change
point analyses.

Conclusion
The results of this study show evidence of age and sex-
related associations in several lipid species, classes, sub-
classes, and lipoproteins. These findings underscore the
need for sex stratification when examining age-related

changes in the plasma lipidome. Future studies may seek
to explore more complex age-related associations and/or
associations with disease in a small set of lipid species
in order to preserve statistical power; the lipid species
or groupings identified in our study should be targeted
for this purpose. Our findings add to the understand-
ing of changes in the plasma lipidome across the adult
lifespan in both sexes, a feature that can inform advances
in precision medicine to manage disease in aging
populations.
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