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Individuals with Down Syndrome (DS), or trisomy 21, develop Alzheimer’s disease (AD) pathology by approximately 40 years
of age. Chromosome 21 harbors several genes implicated in AD, including the amyloid precursor protein and one homologue of
the β-site APP cleaving enzyme, BACE2. Processing of the amyloid precursor protein by β-secretase (BACE) is the rate-limiting
step in the production of the pathogenic Aβ peptide. Increased amounts of APP in the DS brain result in increased amounts of
Aβ and extracellular plaque formation beginning early in life. BACE dysregulation potentially represents an overlapping biological
mechanism with sporadic AD and a common therapeutic target. As the lifespan for those with DS continues to increase, age-
related concerns such as obesity, depression, and AD are of growing concern. The ability to prevent or delay the progression of
neurodegenerative diseases will promote healthy aging and improve quality of life for those with DS.

1. Introduction

According to the CDC, 1 in 700 infants born have Down
syndrome (DS), approximately 400,000 people in the US and
6 million people world-wide. DS is caused by an extra copy
of chromosome 21 that arises during gametogenesis. In 95%
of cases, this occurs as the result of chromosomal nondis-
junction [1]. This is usually due to improper segregation of
chromosomes into daughter cells during meiosis I (Figure 1),
although nondisjunction in meiosis II also occurs. This
results in gametes that have two copies of chromosome 21
(HSA 21), and upon fusion with another gamete, results
in trisomy 21. Although HSA 21 is the smallest human
autosome, the chromosome encodes more than 400 known
genes [2], a number that may increase with further study.
Less frequently, DS occurs due to somatic mosaicism or
translocations [1]. DS presents with an easily recognizable
phenotype, including a characteristic set of facial features,
delayed development, and varying levels of intellectual
disability, shortened stature, muscle hypotonia, joint laxity,
AD-like neuropathology, and a heterogeneous range of other
traits.

Advances in health care have led to improved longevity
for individuals with DS, with the expected lifespan now
approaching 60 years. While advanced maternal age is the
only well-documented risk factor for DS [3], many socioeco-
nomic and environmental factors that are difficult to evaluate
may affect prevalence and survivability. With aging, the DS
population faces an entirely different set of challenges. By
the late 1800s, it was documented that individuals with DS
develop plaque and tangle neuropathology that is similar
to the one described in 1906 by Alois Alzheimer and is
now known as Alzheimer’s disease (AD) pathology (reviewed
in [4]). AD is a disease that has progressed in our social
consciousness from a peculiar rarity less than half a century
ago to one of the greatest public health concerns of our
generation [5]. We now know that essentially all individuals
with DS develop AD-like pathology by the fourth decade
of life. Interestingly, this predated the finding that an extra
copy of chromosome 21 causes DS by almost 50 years [6].
Clues as to how this predisposes individuals with DS to
AD-like pathology became more clear with the finding that
HSA 21 harbors the genes for the amyloid precursor protein
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Figure 1: Chromosomal nondisjunction. (a) Most often Down
syndrome (DS) occurs as an error in meiosis I (usually in the
oocyte). Chromosomal nondisjunction, or improper segregation
of chromosome 21 (the smallest autosome; orange), results in one
precursor cell having 2 copies (b), upper half) while the other has
zero (b), lower half). (c) Meiosis II then proceeds, with the outcome
being two gametes that possess an extra copy of chromosome
21 which, after fusion with another gamete, bears 3 copies of
chromosome 21; the genetic condition known as DS or trisomy
21. Also produced in this process are two nonviable gametes that
possess zero copies of chromosome 21 (bottom).

(APP) and BACE2, two genes directly implicated in AD
pathogenesis.

Alzheimer’s disease is a devastating disease and is a
growing public health concern as our population ages. The
most common form of dementia among the elderly, AD is
already taking a toll on our health care system, and many
families struggle to provide necessary care. AD manifests as a
progressive cognitive decline, including memory loss, speech
dysfunction, and impaired spatial orientation, as well as a
host of other symptoms [7]. In the general population, AD
manifests in two forms: an autosomal dominant early onset
form of the disease, familial AD (FAD), that accounts for less
than 1% of disease cases, and the more common sporadic
form of late-onset AD. Age of onset distinguishes the two
groups, but clinical presentation and neuropathology are
identical [8]. Thus, studying FAD gene mutations has pro-
vided insight into the molecular mechanisms that lead to
neuropathology [9–12], even though the process may begin
as much as 20 years before the patient begins to present
clinically with symptoms [13].

2. The Molecular Neurobiology and
Histopathology of AD

AD is characterized by the presence of two neuropatho-
logical lesions, extracellular plaques composed largely of
a 40–42 amino acid peptide called β-amyloid (Aβ), and
intracellular tangles and striated neuropil threads composed
of a hyperphosphorylated form of the cytoskeletal protein
tau [14–16]. Synapse loss in areas of the brain vital for
learning and memory correlates with a patient’s performance
on cognitive tests even in cases of mild AD and precedes
neuronal loss, which becomes prevalent in mild-AD. [17, 18].
This neuropathology eventually encompasses most of the

brain, which ultimately becomes atrophied, with enlarged
ventricles and significantly less overall brain weight than a
comparatively aged healthy brain.

Characterization of genomic mutations present in early
onset FAD led to the amyloid cascade hypothesis [19]. The
amyloid precursor protein (APP) is a ubiquitously expressed
type 1 transmembrane protein similar in structure to a
receptor [20], but after years of intense study no universally
accepted ligands have been identified [21]. The processing
of the protein is now known in considerable detail [22–
24] (Figure 2(a)). Nonamyloidogenic APP processing by
α-secretase on the cell surface results in cleavage within
the Aβ peptide fragment thereby abrogating Aβ peptide
formation and resulting in secretion of a large fragment,
sAPPα. The resultant transmembrane c-terminal fragment
(CTFα) is a substrate for γ-secretase processing, but results
in secretion of a peptide fragment much smaller than Aβ,
called p3. Cleavage of APP by a transmembrane aspartyl
protease, β-site APP site cleaving enzyme (BACE), occurs
in the endocytic pathway (Figure 2(b)) and results in the
transmembrane fragment CTFβ. Subsequent cleavage in the
transmembrane domain of CTFβ by γ-secretase generates
secreted Aβ peptide fragments 38–43 residues in length.
Cleavage of either CTFα or CTFβ by γ-secretase also results
in the generation of a small, cytosolic fragment (AICD) of
poorly understood function. FAD-linked mutations in APP
generally result in an increase in Aβ42 production [25, 26];
this is thought to be the most toxic peptide species generated
by this noncanonical APP processing pathway and leads
to aggregation and formation of higher order structures
including oligomers (reviewed in [27]) that damage neurons
and induce pathogenesis [28]. This slightly longer peptide
fragment is more hydrophobic and is thought to seed neuritic
plaque deposition by causing aggregation of other species
that are more soluble, such as Aβ40 [29, 30].

The 400 known genes on HSA 21 represent many protein
families and diverse functions, including the transmembrane
phosphatase with tensin homology (TPTE) and superoxide
dismutase (SOD1). HSA 21 harbors at least two genes impli-
cated in the development of AD-like pathology (Figure 1(c)).
The first is APP, the substrate from which the pathogenic Aβ
peptide is derived. The second is BACE2, an aspartyl protease
with ∼65% sequence homology to BACE1, the major form
of β-secretase in the brain. BACE1 was originally discovered
by multiple groups as the primary β-secretase responsible for
Aβ generation in the brain [21, 31–34], and the homologue
BACE2 was discovered shortly thereafter [35, 36]. The β-
secretases belong to the pepsin family of aspartyl proteases
and are the only transmembrane domain containing mem-
bers. The BACE1 gene is found on chromosome 11 and
encodes a 501 amino acid protein, while the BACE2 protein
is found on chromosome 21 and encodes a 518 amino acid
protein (reviewed in [37]). Like other aspartyl proteases,
both BACE1 and BACE2 have an N-terminal prodomain that
is cleaved by a furin-like protease or through autoproteolytic
cleavage [38] to generate the mature enzyme. One of the
primary differences between the enzymes occurs within the
C-terminal portion of the proteins, with the BACE1 active-
site containing 3 disulfide bonds, while BACE2 has 2 [39].



Current Gerontology and Geriatrics Research 3

Endosome
maturation

β-secretase

γ-secretase

AICD

Endocytosis

Intracellular

sAPPβ

APP

CTFα

α-secretase
and Aβ

sAPPα

Increased
APP processing

Extracellular

Accumulation of

Age-related neurodegeneration

extracellular Aβ 
Formation of toxic

Aβ oligomers

Healthy brain aging

AICD

CTFα

sAPPα

Endocytosis and
processing CTFα 

Intracellular

Extracellular

Normal APP
processing

Aβ   clearance 
and degradation

(b) (c)

γ-secretase

Secretion

Amyloidogenic processing Nonamyloidogenic

sAPPβ

Aβ

APP

sAPPα

P3

CTFαCTFβ

AICD AICD

(a)

α-secretase

γ-secretase

β-secretase

γ-secretase

Figure 2: APP processing and imbalance in age-related neurodegeneration. (a) The amyloid precursor protein is processed either by an amy-
loidogenic pathway (left) or a canonical pathway (right). Canonical processing by α-secretase results in secretion of a large extracellular frag-
ment, sAPPα. Importantly, this cleavage occurs within the Aβ peptide fragment (light blue), preventing its formation. A membrane bound C-
terminal fragment, CTFα, then becomes a substrate for γ-secretase. This cleavage occurs within the membrane, releasing a short extracellular
p3 peptide, and the APP intracellular domain (AICD, dark blue). Amyloidogenic processing occurs as APP interacts with β-secretase, or
BACE, in the endocytic pathway. This generates the secreted sAPPβ, and a longer C-terminal fragment, CTFβ; γ-secretase cleavage of this
fragment generates Aβ and AICD. (b) In Down syndrome, the overexpression of APP on the cellular surface results in increased amounts of
APP being endocytosed. In mature endosomes, BACE (an enzyme that is more active at acidic pH) then cleaves APP resulting in increased
amounts of CTFβ and Aβ peptide (light blue) being secreted outside the cell. Increased extracellular accumulation of toxic Aβ species, par-
ticularly Aβ42, results in the formation of Aβ oligomers. These oligomers then overwhelm the brains capacity for clearance and degradation
and form extracellular plaques, ultimately leading to neurodegeneration and severe brain atrophy. (c) Normally, most APP is cleaved by the
α-secretase, secreting sAPPα. CTFα is endocytosed and then processed by γ-secretase, resulting in formation of the p3 peptide, which is
secreted, and releasing the AICD into the cytosol. BACE processing of APP does occur to generate Aβ (blue), but these are degraded and
cleared. While few small plaques may accumulate with aging, they are much smaller and fewer in number than those associated with disease.
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3. β-Secretases and Neuropathology

Since its discovery little more than a decade ago, a vast
body of work has amassed supporting the role of BACE1 in
AD. BACE1 activity has been established as the rate-limiting
step in formation of the Aβ-peptide. BACE1 levels increase
slightly during the normal aging process [40, 41], but it
is well established that both BACE1 protein and enzymatic
activity are further increased in the AD brain [42–44]. In
the Swedish familial form of AD, an APP mutation at the β-
site makes the protein a more efficient substrate for BACE,
resulting in early onset dementia and a more rapid disease
progression [45]. Importantly, BACE1 knockout prevents
formation of the Aβ peptide in vivo, a finding that solidly
supports BACE1 as the major β-secretase in the brain, and a
prime therapeutic target for AD [46]. Although phenotypic
changes in BACE1 knockout mice are subtle, it is likely that
BACE1 is involved in myelination [47, 48] and is important
during development and following traumatic brain injury
[48, 49]. Unlike in AD, BACE1 activity in DS does not
appear to be significantly increased [50]. While some reports
indicate a trend toward an increase, the absence of a robust
effect likely indicates that the overexpressed APP is more
important for driving AD-like pathology in DS than an
increase in enzymatic activity, [50–52] although other cel-
lular processes may be involved [53].

Because BACE2 is located on chromosome 21 and initial
reports indicated an ability to generate the Aβ peptide from
APP [54], it seemed plausible that this enzymatic activity
might contribute to AD pathology in DS [35]. Recent ev-
idence indicates that BACE1 and BACE2 activities and ex-
pression are highly correlated in the brain, including in
individuals with DS [50]. However, significant effort from
multiple groups has uncovered little evidence to support
a role for BACE2 in driving the disease process. While
BACE2 mRNA is increased in DS [55], posttranscriptional
regulatory mechanisms either prevent an increase in trans-
lation or affect flux of the protein by increasing the rate
of degradation. Many groups have reported that levels of
BACE2 protein in the DS brain are comparable to control
brains in various brain regions [50, 55–57]. Even though
structural studies indicate that the active sites of both BACE1
and BACE2 are very similar [39], overexpression studies
of BACE2 in both primary and immortalized cell culture
models generally result in decreased Aβ production [58].
Other studies indicate that BACE2 has a higher propensity
to cleave APP downstream from the BACE1 protease site, ac-
tually abrogating Aβ formation [37, 58, 59]. In vivo studies
using transgenic mice that overexpress BACE2 alone [60]
or cooverexpress both BACE2 and APP [61] do not show a
resultant increase in Aβ peptide in the brain. These findings
taken together indicate that BACE2 is probably not responsi-
ble for AD pathology in the DS brain and, indeed, may have
a protective function.

4. APP and Aβ

There is much debate about which characteristics confer
toxicity to the Aβ peptide. The N-terminal end of the peptide,

formed by β-secretase cleavage, is fairly heterogeneous and
subject to various modifications. The C-terminus, produced
by intramembrane processing of the CTF by the γ-secretase,
yields a peptide 39–43 amino acids long, with Aβ40 and Aβ42

being the most abundant species. The peptide likely exists
as a dynamic pool of forms ranging from soluble dimers
through higher order oligomers that become increasingly
insoluble with size and result in plaque deposition. While
many of the events regarding this process are poorly under-
stood, it is likely driven biochemically by sequestration of
hydrophobic regions from the aqueous environment [62]. It
is widely accepted that the 42 amino acid peptide is more
hydrophobic and aggregate prone and is proposed to seed
plaque formation in the brain. Aβ42 is the first peptide
species to form extracellular deposits in the DS brain, and
these deposits are abundant in brains from young individuals
with DS by 12 years of age, approximately 20 years before
significant Aβ40 and tau histopathology can be found [63].

The Aβ peptide is a fragment of APP, a transmembrane
protein of unknown function. Recently, it was proposed that
APP stimulates neuroprogenitor cells to develop into various
glial cell lineages and could be a possible contributor to the
decreased neurogenesis and delayed development seen in
DS [64]. A role in the vasodilation process has also been
suggested and represents a potential mechanism for APP-
mediated cerebral amyloid angiopathy, a process that could
contribute to early neuropathology in AD [65]. The APP
gene is found in the DS obligate region, and the protein is
overexpressed in the adult DS brain [50, 56]. Overexpression
of APP leads to dysfunction of the endocytic system, resulting
in increased turnover from the cellular surface, thereby
increasing the likelihood that APP will encounter β-secretase
and be processed via the amyloidogenic pathway [66].
This will result in more intracellular APP carboxyl-terminal
fragment(s) cleaved at β-site(s) (CTFβ), and in turn more Aβ
will be generated in the DS brain. Given that β-secretase itself
does not appear to specifically increase in DS [50], it would
thus appear that APP overexpression is the main driver of
AD-like pathology in the brains of elderly DS individuals.

5. Conclusion

While there are similar neuropathological changes in people
with DS compared to AD, the brains of these populations are
quite different. The DS brain is slower to develop and smaller
at maturity than the brain of a diploid individual, weighing
less than 1250 and often under 1000 grams, several hundred
grams less than normal. Anatomically, the DS brain is more
rounded with a distinct fore-shortened shape, and smaller
frontal lobes, hippocampi, and cerebellum (reviewed in [4]).
The brain in older individuals with DS is susceptible to cell
loss in both cortical and subcortical regions, resulting in
dysfunctions in both neurotransmitter systems and neuronal
circuitry.

Emerging evidence from both fetal and adult DS tissues
and animal models of DS indicates that changes at the
molecular level are more wide spread than previously
acknowledged. While there are about 400 known genes on
chromosome 21, a meta-analysis of the transcriptome and
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proteome reveals that many more are affected. Several—but
not all—genes on chromosome 21 were overexpressed, while
expression of others was unchanged or even decreased [67].
This indicates that the in vivo state is the result of a more
complex interplay of factors than a simple gene dosage effect.
There may be over 300 genes that are significantly changed
in DS, the majority of which are not located on chromosome
21, and many of which have known roles in early devel-
opmental processes. The role of these various changes in
development and the penetrance of many of the typical phe-
notypes of DS is largely unknown. Recently exon tiling arrays
have been used to interrogate the role of various genomic
loci in DS features, using rare segmental trisomies [68].
Importantly, this work highlights that the obligate region of
chromosome 21 is more heterogenous than anticipated and
may not exist at all, as individuals with segmental trisomies
can still present with a moderate to severe DS phenotype.
One of the patients characterized, a 65-year old without an
additional copy of APP, did not have dementia or indication
of amyloid accumulation when assessed by brain imaging,
supporting a causative role for APP overexpression in neuro-
pathology in DS [68].

In the general population, a definitive neuropathological
diagnosis of AD requires that the classical hallmarks of AD,
namely, neuritic plaques and neurofibrillary tangles, to be
present along with a clinical history of dementia. Although
this characteristic AD-like pathology is present by the fourth
decade of life, not all individuals with DS develop dementia,
even with complete trisomy 21 [69]. Even though changes
in cognitive ability and social withdrawal are often reported
by caregivers of middle-aged persons with DS, there is some
controversy about whether this represents a clinically defined
dementia [4]. Prevalence rates for dementia in DS vary
considerably between studies, but are approximately 15%,
slightly higher than that in the general population; however,
in DS, the dementia occurs at significantly younger ages (re-
viewed in [70]). Cognitive testing for DS has proven difficult,
which is not surprising given the wide range of intellectual
disabilities presented. Also, because there is often little
cognitive data for individual patients before their decline,
establishing a cognitive baseline is not often possible for
individuals. These issues at the individual level make it dif-
ficult to elucidate effects in groups, resulting in floor effects
plaguing cognitive tests, and difficulty making conclusions
regarding population-wide affects in DS [71, 72]. A better
understanding of the cognitive strengths and weaknesses of
individuals with DS (reviewed in [73]) and how these change
over time represents a huge need for the DS community.
Recently, much effort has been put into developing cognitive
tests specifically for DS, such as the Arizona Cognitive Test
Battery [74]. These testing methods that can be used across
a wide range of ages and cultures with little dependence on
language skill are an important step forward. In addition,
both functional and cognitive abilities are assessed, which are
particularly useful for longitudinal studies of basic cognitive
ability in persons with DS and discerning if they do indeed
develop AD. As a diagnosis of AD requires both neuropathol-
ogy and dementia, it is important for many reasons that we

know the clinical consequences of AD-like pathology in DS
versus the non-DS population.

DS is commonly recognized as a model for AD pathology,
and is very much proof of principle for the amyloid cascade
hypothesis, because the additional copy of APP in DS results
in pathology long before it occurs in the general population.
As such, if the progression to dementia is delayed or absent in
DS, this may help us elucidate a therapeutic strategy that may
be applicable to patients with familial or sporadic AD as well.
Therapies to treat Alzheimer’s disease in both the DS popula-
tion and general population are limited. No pharmacological
agents have been described that are able to alter disease
progression. Symptoms may be improved by a cholinesterase
inhibitor (donepezil, rivastigmine, galantamine), or NMDA
receptor antagonist (memantine) (reviewed in [75]). Current
goals include determining which biomarkers are indicative of
the disease process years before development of pathology,
which may lead to therapeutics designed to alter the disease
process. Still, many questions remain. Although the pathway
driving the degenerative process in DS may be different
than the one in familial or sporadic AD, and is likely fueled
by substrate (APP) overexpression, the neuropathological
hallmarks of the disease are the same. How much do these
pathways overlap compared to sporadic AD that occurs in
the general population? Are there factors responsible for
controlling progress for dementia that are altered in DS, and
are these a direct or indirect consequence of an extra copy of
HSA 21? Many non-DS individuals who have been followed
longitudinally and come to autopsy have sufficient neuritic
plaques and neurofibrillary tangles to meet the critera for a
neuropathological diagnosis of AD, yet there is no evidence
to suggest they experienced cognitive impairment or decline,
and so are referred to as preclinical AD [76]. Although it is
possible that they would eventually progress to dementia, it
is also possible that these individuals exhibit a compensatory
mechanism that allows them to endure this neuropathology
relatively unscathed. A similar mechanism may be at work in
DS.

While there is much to learn, developing and executing
longitudinal studies for persons with DS is difficult, and
success will depend on an integrated, informed, and moti-
vated network of parents and caregivers of persons with DS,
medical professionals that better understand the range of
primary and secondary complications that result from DS,
and involvement and outreach from the research community.
This process has already begun as two goals stemming from
the National Institutes of Health’s Research Plan on Down
syndrome will be realized within the next year. The first
is the development and testing of a national registry for
DS, and the second is the establishment of a consortium
to bring clinicians and researchers together [77]. These are
exciting steps for the DS community and hopefully just the
beginning of many resources that will benefit individuals
with DS. However, there are still many challenges and
areas where improvements are needed, including identifying
socioeconomic factors that impact the early development
and increased risk of mortality among certain ethnicities;
developing learning tools and programs specifically for
intellectual disabilities; educating families and healthcare
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personnel so individualized health plans and testing for rou-
tine and secondary afflictions can be monitored routinely;
performing routine functional and cognitive testing prior to
decline; and finally, using therapeutics for age-related con-
cerns such as depression and AD.
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