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Attention is the ability to facilitate processing perceptually salient information while blocking the irrelevant information to an
ongoing task. For example, visual attention is a complex phenomenon of searching for a target while filtering out competing stimuli.
In the present study, we developed a new Brain-Computer Interface (BCI) platform to decode brainwave patterns during sustained
attention in a participant. Scalp electroencephalography (EEG) signals using a wireless headset were collected in real time during a
visual attention task. In our experimental protocol, we primed participants to discriminate a sequence of composite images. Each
image was a fair superimposition of a scene and a face image. The participants were asked to respond to the intended subcategory
(e.g., indoor scenes) while withholding their responses for the irrelevant subcategories (e.g., outdoor scenes). We developed an
individualized model using machine learning techniques to decode attentional state of the participant based on their brainwaves.
Ourmodel revealed the instantaneous attention towards face and scene categories.We conducted the experimentwith six volunteer
participants. The average decoding accuracy of our model was about 77%, which was comparable with a former study using
functional magnetic resonance imaging (fMRI). The present work was an attempt to reveal momentary level of sustained attention
using EEG signals.The platformmayhave potential applications in visual attention evaluation and closed-loop brainwave regulation
in future.

1. Introduction

Attention is generally a core function in human cognition
and perception [1]. Sustained attention refers to a cognitive
capability to maintain focus during a task [2]. Deficits in
attention are commonly seen in various brain disorders
such as Alzheimer’s disease (AD) and related dementia,
Traumatic Brain Injuries (TBI), and Posttraumatic Stress
Disorder (PTSD) [3–5]. Improvement in attentional states
may assist these populations in boosting cognitive and per-
ceptual functions such as working memory [6–8]. Recently,
a number of studies have evaluated attentional states, most
of which utilized blood oxygen-level dependent (BOLD)
signal collected by functional magnetic resonance imaging
(fMRI) [9, 10]. Using fMRI technology, Rosenberg et al. [11]
suggested that the whole-brain functional connectivity could
be a representation of a robust neuromarker for sustained

attention. Rosenberg and colleagues [11] used images of
city and mountain scenes as visual stimuli. Since face-like
visual stimuli undergo specialized processing in human brain
compared to other non-face objects (see Kanwisher et al.
[12–15]), face images were employed in numerous brain
studies particularly studies on attention. Cohen and Tong [16]
investigated instantaneous object-based attentional states in
individuals who attended to a sequence of blended images
of face and house using fMRI. By employing the same
brain imaging technique, deBettencourt et al. [2] designed
a closed-loop attention training paradigm in which the
transparency of an image category (face or scene) inside
a sequence of blended images was adjusted based on the
participant’s decoded attentional level to the primed image
category. Although fMRI has superior spatial resolution,
the technology has several limitations for practical use in
a real-time neurofeedback training system. fMRI measures
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the blood oxygenation level dependent changes caused by
the hemodynamic and metabolism of neuronal responses
[17]. Even though there is a significant correlation between
neural activity and the underlying BOLD signal, the vascular
response of the brain is much slower than the underlying
synaptic activity [17]. Instead, electroencephalography (EEG)
is a convenient solution given direct measure of neural activ-
ity at milliseconds time precision. Additionally, a wireless
EEG headset can make Brain-Computer Interface (BCI) at
an individual level simpler to use [18]. EEG has been used as
a low-cost brain imaging technique for attention evaluation
and training by many researchers [19]. A number of EEG
paradigms have been suggested in connection with attention
deficit and attention enhancement [18, 19]. In 1976, Lubar
and Shouse [20] pioneered the EEG-based neurofeedback
training for patients with attention disorders.

Neurofeedback training has been studied extensively
in children with Attention Deficit/Hyperactivity Disorder
(ADHD) [21–23]. Several studies have focused on developing
EEG-based BCI systems to evaluate momentary attentional
levels and utilized it in a closed-loop structure for attention
training [24] (for a review see [1]). Among these atten-
tion training studies, some reports were on regulating the
sensorimotor rhythms (SMR), i.e., theta, and alpha bands
which have direct connections to memory and attention
training [25]. Lim et al. [26] developed a BCI system for
reducing attentional impairments in children with ADHD.
Lee et al. [27] suggested a platform for improving working
memory and attention in healthy elderly people. Cho et al.
[28] conducted a study on the attention concentration in
poststroke patients using beta waves. In a recent offline work,
List et al. [29] explored the spatiotemporal changes in EEG
to classify perceptual states (e.g., faces versus Gabors) and
analyzed the scope of attention (e.g., locally versus globally
focused states). Finally, Sreenivasan et al. [30] used event-
related potential (ERP) analysis to show that attention to
faces in composite images with different transparency of
face images can modulate perceptual processing of faces at
multiple stages of processing. Nevertheless, this study did
not report the EEG classification results when the subjects
attended to both categories of image in the overlapped images
in separate blocks of training. We hypothesize that scalp EEG
data collected from an individual who attends to the elements
of a complex stimulus contains relevant and distinguishable
pattern. The majority of previous studies focused on identi-
fying the level of attention in a participant without knowing
which visual stimulus the sustained attention is devoted to.

The objective of the current work is to develop a clin-
ically convenient and portable neurotraining platform for
simultaneously monitoring visual attentional states to two
categories of images in a single-trial basis using whole-brain
activity. By adopting the paradigm from an fMRI study
[2], we aim to analyze instantaneous attentional states by
introducing a novel EEG-based BCI platform. We evaluated
the proposed platform within a pilot study with a group of
participants. We primed them with two categories of face
and scene images while a sequence of composite images (face
and scene) was displayed. In each block, we asked them to
focus their attention to only one image category. A machine

Simulink-MATLAB
(Classification)

Composite Image

EEG Signals

Participant

Stimulus

Male?

Figure 1: A schematic of the EEG-based BCI system for decoding
brainwaves during sustained attention task.

learning technique is introduced for EEG classification. The
technique takes advantage of a combined feature set of neural
oscillations (SMR) and ERP. The analysis of brain signals
collected from the whole brain of all participants suggests
the existence of an individualized attention neuromarker
[11]. Additionally, the results may advocate the presence of
a common attention neuromarker among our pilot sample
data. The results of the study could also suggest that the
platform has potential application in a closed-loop attention
training by adjusting the transparency of image categories
inside the overlapped images based on devoted attentional
level to the instructed category [2].

2. Materials and Methods

This section covers the materials and components of the
integrated BCI platform. The experimental protocol used to
collect the scalp EEG from multiple participants during a
sustained attention task is also described. Subsequently, the
applied techniques for decoding EEG data are explained in
detail.

2.1. Development of the BCI Platform. The BCI platform
consists of a wireless EEG headset, a workstation computer
with dual monitors, data acquisition, and analysis software.
Figure 1 shows a simple schematic of the platform’s com-
ponents and the direction of data flow among components.
A Graphic User Interface (GUI) was developed to allow
a practitioner to conveniently administer the experimental
protocol.

2.2. EEG Recording Device. EEG signals were acquired using
a wireless headset called Emotiv EPOC [31]. The Emotiv
EPOC headset has 14 channels of EEG electrodes located
based on 10-20 international system covering the frontal,
temporal, and occipital lobe regions. The exact locations
are labeled sequentially as AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8, FC6, F4, F8, and AF4. The sampling frequency
was set to 128Hz. By applying a high-pass filter with cut-
off frequency at 0.2 Hz and a low-pass filter with cut-
off frequency at 43Hz, the device collects band-pass brain
signals and transmits the participant’s brain signals to the
PC with a Bluetooth connection. The research edition of
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the headset provides access to the raw EEG signals for
further analysis. The same headset has been used for motor
assessment and rehabilitation in a number of previous BCI
works [32, 33]. Use of wireless headsets offers the potential
for applications in real-life settings [34, 35].

2.3. Interface. We performed our data acquisition and anal-
ysis in MATLAB and Simulink. The visual stimulation
and designed protocol were also controlled by MATLAB
and Simulink through a customized Graphic User Interface
(GUI).

2.4. Stimuli. Four subcategories of indoor scenes, outdoor
scenes, male face, and female face images were chosen in
our experiment as stimuli. The images were all black and
white with equal sizes, 800 × 1000 pixels. Each subcategory
contained 90 images. Some of the images were gathered
from Sanders-Brown Center on Aging at the University of
Kentucky and the others were collected through the Internet.
Face images were chosen to be neutral without any emotional
expression. They were centered inside the composite image.
Female faces had long hair and male ones had short hair. The
indoor images were chosen from interior scenes. Outdoor
images were natural landscapes and cityscapes. Brightness
and contrast for all face and scene images were adjusted
so that the images on both face and scene categories have
equalized and identical contrast. Participants were trained
with a sequence of superimposed images of face and scene.
Theduration of each stimulus was set to be 1000milliseconds.
It was programmed to have 50% transparency of each image
subcategory in the superimposed images. For the future
works, the platform has also the capability to further adjust
the transparency of image types in the superimposed image
based on attentional level to the instructed subcategory.

2.5. Experimental Protocol. Six healthy participants including
4 males and 2 females, with a mean age of 43 years, vol-
untarily completed eight training blocks of the experiment.
All participants had normal or corrected-to-normal vision.
They were all right-handed and never had prior experience
in participating in BCI studies. They had no history of
neurological or psychological disorder (based on self-report).
All the subjects were employees at UTK and five out of
six participants had an academic degree. The experimental
protocol was approved by the Institutional Review Board at
the University of Tennessee, Knoxville (UTK). All partici-
pants gave written consent to perform the experiment. The
computerized task was provided by a PC with dual monitors.
One monitor was viewed by the experimenter to control the
experiment. The other monitor was positioned in front of
the participants for presentation of stimuli. The participants
were asked to sit comfortably in a fixed chair with one hand
resting on the lap and another hand grabbing a computer
mouse for giving behavioral responses. The participants
were instructed to pay attention to the monitor during the
experiment and limit their excessive body movement. The
participants were also asked to fixate their gaze to the middle
of the screen, and keep their head at approximately 50 cm
from the monitor while observing the stream of images.

Our experimental protocol consisted of eight blocks of trials
with a respite between blocks. Each block started with a
one-second texture cue instructing the attended subcategory
image, followed by 50 trials of image stimuli. The duration
of each trial was set to one second without any intertrial
time. A trial includes a greyscale overlaid picture in which
50% of opacity was from scene (indoor or outdoor) category
and 50% is from face (male or female) category. There was
no repetition of face or scene images through each block of
the experiment. This process helped to prevent any learning
mechanism happening for the participant. Participants were
asked to identify whether the shown image contained the
task-relevant image (e.g., an indoor image) or the task-
irrelevant image (e.g., an outdoor image) by responding to
each superimposed image. They were asked to click the
mouse for each recognized relevant image and withhold their
responses for irrelevant image.The task-relevant subcategory
images were fairly distributed within each block. As a result,
half of the composite images contained images from the
task-relevant subcategory (e.g., indoor image) while the
other half of composite images contained images from the
task-irrelevant subcategory (e.g., outdoor image). Table 1
illustrates a sample sequence of composite images during
a block and also the corresponding expected responses
from participants. The number and distribution of blocks
were chosen in a way to counterbalance the projection of
mouse clicking on the brainwaves. We alternated the task-
relevant and task-irrelevant images among the four image
subcategories as shown in Table 2. Because of difficulty in
keeping constant sustained attention to the composite images
during a block, we ran each block one time to prevent any
fatigue happening for the participant. The total time for the
experiment was about 10 minutes per participant.

3. Classification Methods

Previous studies provided evidence that recorded EEG signals
have potential to discriminate healthy people and individ-
uals with cognitive deficits. A number of signal process-
ing and machine learning methods have been studied for
(non-)event-related EEG analysis by our group (see McBride
et al. [36, 37]). We applied different techniques on EEG such
as interchannel coherence, spectral analysis, and causality.
In the present work, we aimed to identify participants’
attentional states into two categories of images (face versus
scene; regardless of their subcategories) by using recorded
EEG signals. The participants were primed with the sub-
categories throughout the experiment. So, we hypothesized
that the brainwaves contained common features for the
subcategories of one category. This assumption reduced the
problem into the classification of EEG signals to a 2-class
classification problem, i.e., classifying underlying patterns
of EEG while the participants attended to faces or scene.
Meanwhile, the behavioral responses were collected and used
as a predictor for comparison (relevant image vs. irrelevant
image; see Table 1). Flowcharts in Figure 2 illustrate the
process of analyzing a participant’s overt response as well
as his/her EEG signals. A brief description of EEG signal
preprocessing, features extraction, dimensionality reduction,
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Table 1: A sample sequence of trials. A participant was expected to respond to the task-relevant images by clicking the mouse while ignoring
the task-irrelevant images (from left to the right: trial sequence).

Instruction Composite Composite Composite
. . ..

Composite

(1000ms) image image image image
(1000ms) (1000ms) (1000ms) (1000ms)

Indoor . . ..Indoor + Outdoor+ Indoor+ Outdoor+
Female Male Male Female

Expected Participant Response Relevant Irrelevant Relevant
. . .. Irrelevant

Image Image Image Image

Table 2: The task-relevant and task-irrelevant images for each block a sample sequence of trials.

Block Number Task-Relevant Image Task-Irrelevant Image
1 Indoor Outdoor
2 Male Female
3 Indoor Outdoor
4 Female Male
5 Outdoor Indoor
6 Male Female
7 Outdoor Indoor
8 Female Male

No

YesComposite 
Image

Is attentional 
state on task-

relevant 
subcategory?

Go: Click 
the mouseComposite 

Image

Is attentional 
state on task-

relevant 
subcategory?

No-Go: 
Withhold 
response

Figure 2: The method for computing behavioral response for a
participant (top) and calculating the brainwave classification result
for a participant (bottom).

and classification techniques is given as follows. In this study,
a combination of temporal and frequency features has been
extracted.

3.1. Signal Preprocessing. A band-pass FIR filter with an order
of 500 and cut-off frequencies of 0.4 Hz and 40Hz has
been applied to EEG recordings. The filter has the advan-
tage of removing low-frequency drifts while eliminating the
undesired frequency bands. EEG has a low signal/noise ratio
(SNR) and is prone to various artifacts such as electroocu-
lography (EOG). This muscle artifact may interfere with the
results of the experiment. To avoid the influence of facial
movement artifacts on the experiment result, we excluded the
trials in which the participants’ EEG amplitude was greater
than 75𝜇V.

3.2. Temporal Features Extraction. There were numerous
features that can be extracted from EEG data. After an
initial investigation, we found that there are multiple ERPs
associated with different stages of attention. We incorporated
all of those ERPs to be part of the feature vector. This feature
vector was formed by extracting magnitude and latency on
all 14 channels corresponding to ERPs including ELAN, N1,
Visual N1, P1, N2, N2pc, N400, MMN, Bereitschaftspotential
(BP), P50, P2, P3, P3a, P6, and N700. Overall, the calculation
led to a total of 420 (30x14) ERP related features.

3.3. Frequency Features Extraction and Dimension Reduction.
The power spectral density (PSD) of all 14 channels was
calculated. By using theWelch’s method, we extracted energy
fromdelta [0.5, 3.5]Hz, theta [3.5, 7.5]Hz, alpha [7.5, 12.5] Hz,
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Figure 3: Behavioral performance versusmean EEGdecoding accu-
racy across all participants.The outliers were eliminated to illustrate
the relationship between decoding performance and participants’
behavioral responses.

beta [12.5, 25] Hz, and gamma band [25, 40] Hz.The median
spectral power and total spectral power were also computed.
It led to a feature vector with the size of 112 (8 × 14) elements
to represent frequency features of a trial.The temporal feature
vector in addition to the frequency feature vector resulted in
a vector of 532 elements for training portion of EEG data.
A stepwise iterative variable selection was applied [38–40]
to reduce the dimension of the extracted feature array while
choosing the most significant features. The confidence level
was set at 95%.Therefore, features with the significance level
(p value) below 0.05 were incorporated.

3.4. Classification Method. An individualized support vector
machine (SVM) model with the reduced size feature vector
was trained to classify participant’s attentional state to a scene
versus to a face image. SVM is a supervised classification
method for linear and nonlinear pattern recognition [41].
SVM has been employed in many studies on machine
learning and data classification where it is difficult to assort
distinct classes with a straight line. The basic approach of
SVM is to construct a hyperplane in a feature space to
perform as a decision surface for separating data from two
different categories. If we assign “+1” and “-1” labels to the
two class categories, the objective in SVM analysis is to
find an optimal hyperplane between positive and negative
examples such that the margin between two classes would be
maximized. To evaluate the performance of classification and
prevent model overfitting, we conducted a leave-one-block-
out (LOBO) cross-validation to develop an individualized
attentional state decoding model within each participant’s
dataset. For each participant, one block of trials was withheld
as the test set while an SVM model was trained using the
remaining blocks. Subsequently, classification results of the

SVM model evaluated on the test set block were recorded.
This was repeated to facilitate each block of data as a test set.

4. Results

This section illustrates the results of participants’ behavioral
response as well as EEG decoding accuracy among sample
dataset during a sustained attention task. We measured
the percentage of correct responses as behavioral response.
Participants’ mean behavioral performance is reported in
Table 3. The average success rate over the entire face and
scene blocks were shown for each participant, separately. The
behavioral performance ranges between 73.0% and 96.5%.
Since each composite image was shown for one second
only, a participant may misidentify a relevant image or
fail to make the correct response within the trial interval.
Thus, we decided to accept participants’ self-correction if
it happened during the same trial interval. We performed
a linear SVM classification with the collected EEG signals
dataset while participants were attending to two classes of
scene and face images. The LOBO cross-validation results
on attentional state evaluation are summarized in Table 4.
The scene accuracy indicates how accurately the SVMmodel
predicts the attentional state towards scene images whereas
the face accuracy indicates how accurately the SVM model
predicts the attentional state on face images. On average,
the accuracy of the individualized model was around 77%
which is comparable to the fMRI study’s result that reported
an accuracy of 78% [2]. In some of the previous studies
with fMRI, there has been a report of positive correlation
between functional neural network and the relevant behav-
ioral performance [2, 42]. This motivated us to investigate
the existence of such correlation in our experiment using the
classification results of EEG signals. Figure 3 is plotted by
using reported computation in Tables 3 and 4. Figure 3 illus-
trates the success rate of behavioral performance with respect
to mean decoding accuracy for scene and face categories,
separately. The result suggests a positive correlation between
mean behavioral success rate and the corresponding mean
attentional states among the population. This observation
may suggest that there is a close association between decoded
attentional states and the response of motor.This observation
confirmed the finding in some of the previous fMRI studies
while suggesting the efficacy of the proposed low-cost EEG-
based platform in tracking interconnectivity of cognitive
and motor performance in neurorehabilitation programs.
Figure 4 shows the average time-frequency illustration of
EEG signals during attention to faces and scenes (left and
middle) and averaged ERP responses (right) over all par-
ticipants at occipital (O1, O2) and parietal electrodes (P7,
P8) in Figure 4(a), and frontal (left F3, FC5, right F4, FC6)
sites in Figure 4(b). Visual attention is mostly associated with
ERP components N100, N200, and P300 [1, 43, 44]. Faces
evoked larger N100, N170 responses in early visual cortices
as it is seen in Figure 4(a) compared to ERPs of scenes.
In Figure 4(b) frontal sites, faces evoked extra alpha waves
compared to scene (e.g., F3). Enhanced ERP to faces is also
observed in P1 and P2 range, likely because faces draw more
attention. Consistentwith literature, right hemisphere depicts
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Figure 4: Time-frequency (left and middle) and averaged ERP responses (right) from all participants at (a) visual and parietal sites (O1, O2,
P7, and P8), electrode sites; (b) frontal sites (F3, F4, FC5, and FC6).
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Table 3: Behavioral performance of participants. The percentage of correct mouse clicks (success rate) separated by the stimuli category is
given.

Participant Accuracy of Scene Accuracy of Face
[Mean(SD)] [Mean(SD)]

Sub1 80.5% (9.0%) 80.5% (21.7%)
Sub2 96.0% (8.0%) 96.5% (3.0%)
Sub3 83.5% (25.0%) 77.0% (6.8%)
Sub4 95.0% (2.0%) 90.5% (5.7%)
Sub5 73.0% (17.0%) 80.5 (8.1%)
Sub6 85.5 (7.2%) 89.5% (6.2%)
Group Average 85.6% (8.7%) 85.7% (7.5%)

Table 4: LOBO cross-validation prediction results. Results are based on attentional state evaluation.

Participant Accuracy of Decoding Accuracy of Decoding
Scene [Mean(SD)] Face [Mean(SD)]

Sub1 80.0% (4.0%) 74.0% (5.9%)
Sub2 84.0% (16.3%) 86.5% (3.4%)
Sub3 75.0% (12.0%) 77.5% (2.5%)
Sub4 67.0% (18.8%) 68.5% (18.7%)
Sub5 72.5% (23.6%) 79.5% (17.2%)
Sub6 81.0% (7.4%) 77.5% (7.2%)
Group Average 76.6% (6.3%) 77.2% (5.9%)

slightly more attention to faces [43]. Additionally, P300 ERP
component which relates to late positive brain response does
not reveal any difference in processing of attentional states to
face and scene categories.

5. Discussion and Future Work

Thepresent study is an attempt to develop a newBCI platform
to conveniently decode the brainwave patterns during a
sustained attention task using EEG. Previously, Wang et
al. [45] reported discriminating four categories of images
(human faces, buildings, cats, cars) using offline recorded
EEG data. The same group later improved the classification
results in 2016 [46]. De Vos et al. [47] classified the face
image stimulus among house and word stimuli using single-
trial EEG data. El-Lone et al. [48] classified the EEG signals
for two categories: objects versus animals. However, none of
these works reported the attentional state evaluation using
EEG classification when two different categories of images
are superimposed in one image. As an initial attempt, an
EEG-based BCI platform was developed to implement the
designed attentional state protocol. In a pilot study consisting
of six participants, the EEG data was collected while the
participant attended to only one subcategory of images
during the blocks of streaming of composite images.

The developed platform may be employed in diagnosis of
attention deficit in early stage of dementia or Mild Cognitive
Impairment (MCI) in elderly people [5]. The platform may
also be used as a method to assess the attentional levels
in children to diagnose ADHD. Moreover, the proposed
platform may be extended into a real-time neurofeedback

protocol as a mechanism to enhance attention in ADHD
as well as in dementia patients. An individualized EEG
neuromarker from the whole brain for sustained attentional
state was extracted using machine learning methods. After
extracting 532 spectral and temporal features from EEG,
we filtered out the most significant features through an
iterative stepwise feature reduction algorithm. It helped to
refine the feature set to incorporate the most relevant features
with an automated scheme. The individual differences in
cognition, performance, and brain responses were observed
in another study [49]. This intersubject variability led to
different targeted neural frequency (e.g., theta/beta, upper
alpha) and brainwave patterns in individualized attention
training protocols [50, 51]. As a result, different neurofeed-
back protocols were proposed for various clinical populations
rather than offering a generic neurofeedback protocol [50, 51].
The EEG showed a potential to provide information about
the sustained attention network in brain beyond the classic
vigilance networks [11, 52, 53].The classification results could
be improved by using advanced machine learning techniques
such as deep learning methods [54–57]. This enhanced
cognition model from the whole brain may reduce the time
needed to generate an individualized classifier/neuromarker
[11].The current study has a small sample size. Future research
shall investigate an extended population. As suggested in
recent research [5, 7, 58], EEG-based paradigms may be
developed into an optimized, generic, and ready-to-use
neurofeedback protocol. In future work, we will implement
the trained SVM classifier in a real-time closed-loop system
to further study the efficacy of themethod in a neurofeedback
rehabilitation setup. The neurofeedback training (adjusting
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the transparency of images in the composite image based on
attentional level) will be used to modulate brain activities
while increasing the vigilance in behaviorally relevant func-
tional network [2, 59] using a reward-based training protocol
[2, 44] and brain-machine interface technology [42, 60].

6. Conclusions

A new EEG-based BCI classification system was developed
for evaluating attention during a visual discrimination task.
Thedeveloped platform is able to collect EEGdata in real time
while presenting superimposed stimuli to a participant. A
GUI was designed to give more flexibility and controllability
to the practitioner for administering participants through
the experiment. Six participants were recruited to test the
feasibility of the system and to evaluate the viability of EEG-
based classification of the participant’s attentional state. EEG
signals were collected from the whole brain and were sent to
the computer for processing. A subset of features comprised
of power spectral density on different bands in addition to
amplitude and latency of multiple ERPs were identified in the
data classification. Support vector machine was employed as
the discrimination method. The average behavioral response
was around 85%. The average classification result between
scene and face categories was at 77%. It is noteworthy that the
visual stimuli in this work are composite pictures that consist
of two image categories. As such the developed platform
is not designed to extract the content of the stimulation
but to determine the attentional state of the subject. The
developed EEG-based BCI platform has the potential to be
applied in real-time classification andneurofeedback tasks for
diagnosing and training patients with attention deficits.
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