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biosensors
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Abstract: D-serine is the major D-amino acid in the mammalian central nervous system. As the
dominant co-agonist of the endogenous synaptic NMDA receptor, D-serine plays a role in synaptic
plasticity, learning, and memory. Alterations in D-serine are linked to neuropsychiatric disorders
including schizophrenia. Thus, it is of increasing interest to monitor the concentration of D-serine
in vivo as a relevant player in dynamic neuron-glia network activity. Here we present a procedure for
amperometric detection of D-serine with self-referencing ceramic-based microelectrode arrays (MEAs)
coated with D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). We demonstrate
in vitro D-serine recordings with a mean sensitivity of 8.61 ± 0.83 pA/µM to D-serine, a limit of
detection (LOD) of 0.17 ± 0.01 µM, and a selectivity ratio of 80:1 or greater for D-serine over ascorbic
acid (mean ± SEM; n = 12) that can be used for freely moving studies.

Keywords: D-serine; biosensor; microelectrode array; amperometry; self-referencing

1. Introduction

In the 1990’s, the occurrence of D-serine in the mammalian brain and the similarity in its
distribution pattern to that of the N-methyl D-aspartate receptor (NMDAR) were first reported [1,2].
D-serine has since been confirmed as the main endogenous co-agonist of the glycine modulatory
site of the NMDAR in corticolimbic areas of the brain [3–5]. As such, it is presumed to be crucially
involved in neuroplasticity and cognitive functions, in particular, for learning and memory [5–18].
Furthermore, D-serine has been attributed a role in the hyper- and/or hypofunction of the NMDAR
in neuropsychiatric disorders [19–21]. For example, a major component in the pathophysiology of
schizophrenia, in particular, the cognitive deficits, is suggested to be NMDAR hypofunction associated
with reduced D-serine levels [12,20]. In the brain, D-serine is synthesized in neurons and/or astrocytes
from L-serine by the enzyme serine racemase [22]. Endogenous degradation after cellular uptake can
occur via the enzyme D-amino-acid oxidase (DAAO), located in peroxisomes, although for the brain
other mechanisms are also discussed [23].

Thus, independent of the ongoing debate on the neuronal and/or glial sources of
D-serine [22,24–27], its level and dynamics are pressing issues for understanding cognitive impairment
and neuropsychiatric diseases, as well as for basic research in neuroplasticity.

While several types of biosensors have already been employed for amperometric D-serine
detection [18,28–34], the extracellular levels of D-serine in the brain of freely moving rodents have so far
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only been measured by microdialysis [32,35–38]. A main advantage of amperometric recordings is the
ability to detect neurochemical changes in the range of seconds [39–41]. Such high temporal resolution
is relevant not only to detect putative fast transients as found for glutamate [41], but also for monitoring
neurochemical changes in relation to both state-dependent [42], as well as fast changes in brain electric
activity. Here, we provide a protocol for amperometric D-serine measurement with D-amino acid
oxidase (DAAO) coated ceramic-based microelectrode arrays (MEAs), whose configuration allows for
offline self-referencing. The principle of self-referencing employs 2 types of channels, here with each
consisting of a pair of platinum recording sites: D-serine detecting channels and sentinel channels.
Both of the channel types are able to measure background noise and interferent activity, but only the
enzyme coated sites (D-serine detecting channels) are able to detect D-serine [43–45]. Background noise
and neurochemical interferent activity can thus be easily subtracted from the D-serine detecting
channels [43–45]. Sentinel and D-serine detecting channels are spaced only tens of micrometers
apart on the MEA [44]. In fact, dual-sided MEAs with eight recording sites have been used to record
simultaneously in multiple regions of the prefrontal cortex [46]. With specific configurations, recordings
of different analytes with one MEA [47,48] and of local field potentials in parallel using a high data
acquisition rate were conducted [48–50]. MEAs possess a high spatial resolution, and are made of a
biocompatible material having been shown to produce only minimal tissue damage [44,51], a feature
that is required for chronic recordings.

2. Materials and Methods

2.1. Chemicals

L-ascorbic acid (AA), D-serine, D-alanine, L-glutamate, dopamine hydrochloride (DA), bovine
serum albumin (BSA), sodium chloride (NaCl), sodium phosphate monobasic monohydrate (NaH2PO4),
sodium phosphate dibasic anhydrous (Na2HPO4), meta-phenylenediamine dihydrochloride (mPD),
and glutaraldehyde were purchased from Sigma-Aldrich (St. Louis, MO, USA). Hydrogen peroxide
(H2O2) 3% (Paul W. Beyvers GmbH, Berlin, Germany) was purchased at a local pharmacy.
The recombinant D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO, EC 1.4.3.3)
was purified, as stated in Fantinato et al., [52], and was purchased with an approximate activity of
D-serine given as 20 U/mg dry protein (and 100 U/mg dry protein on D-alanine) from “The Protein
Factory research center” (Milano, Italy). Porcine kidney D-amino acid oxidase (pkDAAO, EC 1.4.3.3)
with a specific activity of D-alanine given as 2.53 U/mg dry weight protein (data on D-serine
was not provided) was obtained from Worthington Biochemical Corporation (Lakewood, NJ, USA).
Stock solutions were prepared using deionized distilled water, except in the case of dopamine that was
mixed with 1% perchloric acid (PCA) in addition, for a long shelf life. The 0.05 M phosphate-buffered
saline (PBS) solution used for in vitro calibration had a pH close to 7.4, mimicking the physiological
levels. A 5 mM mPD solution was made using nitrogen saturated PBS to reduce the oxidation of
the compound.

2.2. MEA Preparation

Ceramic-based S2 MEAs were obtained from CenMeT (Lexington, KT, USA; a comprehensive
fabrication review can be found elsewhere [44]). The S2 style MEA is arranged as two pairs of
platinum recording sites of 333 × 15 µm, separated by 30 µm from the neighboring recording site
and by 100 µm from the other pair (cp. Figure 1) [44]. After arrival, MEAs were cleaned and
calibrated in vitro using H2O2 to test performance (data not shown). Subsequently, MEAs were
enzyme coated (see “Enzyme preparation and immobilization” section) and stored at −20 ◦C until
use, to maintain enzymatic stability. An exclusion layer was applied (see “Electropolymerization of
meta-phenylenediamine (mPD)”) one day prior to calibration (see “In vitro calibration and recording
parameters”). In-depth background on the relevance of these steps has been reported elsewhere in
regard to other enzyme-based MEAs [43,44,53].
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For the freely moving recording the printed circuit board of the MEA was soldered onto a
miniature Omnetics connector (Omnetics Connector Corporation, Minneapolis, MN, USA) and a
chloride coated silver (Ag/AgCl) wire was used as reference electrode (Teflon-coated silver wire,
125 µm bare diameter, A-M Systems, Inc., Sequim, WA, USA). This MEA configuration enables the use
of a smaller preamplifier and thus, reduces weight of the headstage on the rat.
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Figure 1. Scheme for D-serine detection using S2 style Microelectrode Array (MEAs) consisting
of two pairs of platinum (PT) sites. When D-serine comes into contact with Rhodotorula gracilis
(RgDAAO) (platinum sites B: D-serine recording channels) H2O2 is produced by the enzymatic
reaction, crosses the mPD barrier and is then further oxidized, yielding two electrons per molecule.
At the amperometric fixed potential of +0.7 V, the sentinel channels (platinum sites A) detect only
electrochemically active interferents and background noise, whereas the RgDAAO coated channels
measure in addition D-serine.

2.3. Enzyme Preparation and Immobilization

The MEA configuration allows for offline self-referencing: two enzyme-coated platinum sites
were used for detecting D-serine (in Figure 1B), while two sentinel channels (in Figure 1A) detected
other potential electroactive compounds that could likewise be oxidized at +0.7 V, e.g., endogenous
H2O2. Measurements recorded with the sentinel channels are subtracted offline from the D-serine
detecting channels to obtain an interference-free D-serine signal. For coating, one droplet from an
aliquot of each 1% BSA, 0.125% glutaraldehyde, and 0.1 U/µL RgDAAO solution was applied to the
two D-serine recording channels under a stereomicroscope (0.8×–4×; Olympus Optical Company,
Hamburg, Germany) using a Hamilton microsyringe (Hamilton Company, Reno, NV, USA). Similarly,
a chemically inactive protein matrix composed of only BSA and glutaraldehyde was cross-linked onto
the sentinel channels. Following the same procedures as described above, some MEAs (n = 4) were
coated with mammalian DAAO purified from porcine kidney.
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2.4. Electropolymerization of Meta-Phenylenediamine (mPD)

Meta-phenylenediamine (mPD) served as an exclusion layer to increase the selectivity for D-serine.
The layer of mPD functions as a size exclusion barrier, prohibiting electroactive substances, such as
AA or DA, from reaching the platinum sites of the MEA [44]. mPD was electropolymerized onto
all platinum sites (D-serine recording and sentinel channels) after coating using a cycled potential
between +0.25 and +0.75 V vs. Ag/AgCl at a frequency of 0.05 V/s in a 5 mM mPD solution for 22 min
(FAST electroplating tool, Quanteon, LLC, Lexington, KT, USA). Note, mPD electropolymerization
occurs onto the surface of the platinum sites of the MEA, below the enzyme layer [44].

2.5. In Vitro Calibration and Recording Parameters

Enzyme coated MEAs were calibrated in vitro to determine their sensitivity to D-Serine (pA/µM
D-serine), selectivity against ascorbic acid or glutamate, limit of detection (LOD), and linearity
(R2) under an amperometric fixed potential of +0.7 V versus a glass Ag/AgCl reference electrode
(RE-5B Ag/AgCl, ProSense, Oosterhout, The Netherlands). Signals were first preamplified using
a microamplifier (2 pA/mV 500×; Quanteon, LLC, Lexington, KT, USA) and then amplified and
digitized at 10 Hz with the FAST-16mkIII data acquisition system (Quanteon, LLC, Lexington, KT,
USA). Standard calibrations were performed by immersing the MEAs in a calibration media, which
consisted of phosphate buffered-saline (PBS, 40 mL). The solution was stirred using a magnetic stirrer
device (Stuart, Bibby Scientific Limited, Staffordshire, UK) and kept at body temperature in a water
bath chamber (Pronexus, Analytical AB, Stockholm, Sweden) at 37 ◦C controlled by a water heater
system (Micro-Temp LT, Cincinnati Sub Zero, Cincinnati, OH, USA).

According to a standard protocol [43–45,53–55], after a stabilization period of at least 30 min,
aliquots of AA, D-serine, DA, and H2O2 were given. For the D-serine calibration three consecutive
40 µL additions of a 20 mM D-serine solution produced three consecutive total concentrations in the
beaker of 20 µM, 40 µM, and 60 µM. For AA the resulting concentration was 250 µM (500 µL of 20 mM),
for DA 2 µM (40 µL of 2 mM), and for H2O2 8.8 µM (40 µL of 8.8 mM); n = 12 for RgDAAO coated and
n = 4 for pkDAAO coated MEAs.

We selected these concentrations as they belong to an established in vitro calibration methodology
using enzyme-based MEAs for the detection of other molecules like L-glutamate [43–45,53–56].
Thus, our calibration results are directly comparable to previous calibration measurements, although a
much lower basal D-serine concentration in the prefrontal cortex of the anesthetized rat was reported
(~3 µM) [28]. Moreover, calibrations using only 1 mM D-serine (reaching a final concentration in
the calibration media of 1 µM) met the same threshold criteria (n = 5) as the calibrations using a
20 mM D-serine solution (Figure S1 and Table S1). Figure 2 depicts a typical calibration of a MEA
from which the following parameters were derived: selectivity for D-serine against AA (concentration
ratio of D-serine over AA), sensitivity to D-serine (pA/µM D-serine), limit of detection (LOD) for
D-serine (in µM), and linearity (R2; FAST analysis 6.1 software; Jason Burmeister Consulting, LLC,
KT, USA). Hereby, the responsivity of the MEA to changes in concentrations of D-serine is indicated
by the sensitivity; the LOD (i.e., the lowest change in D-serine detected by the DAAO coated MEAs
that cannot be attributed to noise, calculated as three times the standard deviation of the noise
of the corresponding MEA channel during calibration), and the linear regression shows the linear
response to the accumulating concentrations of D-serine that were added during the calibration [44,45].
Hydrogen peroxide was added to check for equal response performance to the reporter molecule of all
the channels (data not shown) [42].

Two other calibrations of the RgDAAO coated MEAs were performed to test selectivity against
L-glutamate and sensitivity to D-alanine. For the former, a final concentration of 20 µM of L-glutamate
instead of AA were added to the calibration media (n = 10). D-alanine is a substrate for DAAO as
well, thus the sensitivity to D-alanine was tested adding three aliquots of D-alanine to create a final
concentration of 20 µM, 40 µM, and 60 µM in the calibration media (n = 12). All data are presented
using mean ± standard error of the mean (SEM).
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Figure 2. In vitro calibration of one D-serine detecting Microelectrode Array (MEA). Arrows indicate
when substances were added and the resultant concentration obtained in the calibration media.
The figure reflects the current (nA) and corresponding concentration (µM) measured by the MEA
after each challenge. Channels 1 and 2 are D-serine detecting, and channels 3 and 4 are sentinel
channels, respectively. See Table S2 and Figure S2 for parameters of this calibration, and Figure S1 and
Table S1 for the calibration using 1 mM D-serine.

2.6. Surgery and Freely Moving Test of the D-Serine MEAs

As proof of principle, a RgDAAO coated MEA was implanted in vivo in a male Long Evans rat
(15 weeks at time of surgery; Janvier, Le Genest-Saint-Isle, France). All of the experimental procedures
were performed in accordance with the European animal protection laws and policies (directive 86/609,
1986, European Community) and were approved by the Schleswig-Holstein state authority. The animal
was housed individually with ad libitum access to food and water under a 12 h/12 h light-dark cycle
(lights on at 06:00 A.M.), and was handled seven days prior to surgery.

Stereotaxic surgery took place under isoflurane anesthesia. The MEA was implanted in the
prefrontal cortex (AP: +2.5 mm, L: −0.5 mm, DV: 2.5 mm) using an anterior Ag/AgCl electrode as
reference (AP: +5.5 mm, L: +1.0 mm, DV: 2.5 mm) [57]. The prefrontal cortex was selected due to its
reported high levels of D-serine [3,35].

After seven days of recovery, the freely moving recording was performed in a dark PVC recording
box with the same amperometric system as described for calibrations using cabling attached to a
low torque slip-ring commutator (Dragonfly Research and Development, Inc., Ridgeley, WV, USA).
D-serine signals were obtained after a one hour baseline recording during which channels stabilized.

Analyses were conducted with the FAST analysis 6.1 software as mentioned above. Only transients
measured in the D-serine channels and not in the sentinel channels were included in the analyses.

3. Results and Discussion

3.1. In Vitro Calibration Results

Mean values for the calibration parameters are given in Table 1, together with the threshold
criteria for sufficient MEA properties [44,45]. Our RgDAAO coated MEAs demonstrated a sensitivity
of 8.61 ± 0.83 pA/µM to D-serine, a linearity of 0.9986 ± 0.0005 and an LOD of 0.17 ± 0.01 µM
(mean ± SEM; n = 12, using a data acquisition rate of 10 Hz. In addition, all of the channels on a given
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MEA revealed a similar response to H2O2; meaning that D-serine recording and sentinel channels only
differed in their response to D-serine (data not shown) [42].

Table 1. In vitro measurements for the RgDAAO coated D-serine detecting MEAs as compared to
threshold criteria (n = 12; mean ± SEM). To test for selectivity against L-Glutamate 10 calibrations
were performed.

Parameters Sensitivity LOD Linearity (R2)
Selectivity

Against AA
Selectivity Against

L-Glutamate

Threshold criteria ≥2 pA/µM ≤0.5 µM 1 ≥80 ≥80
Measurements 8.61 ± 0.83 pA/µM 0.17 ± 0.01 µM 0.9986 ± 0.0005 191.75 ± 19.55 521.3 ± 112.23

3.2. Selectivity

In addition to the use of enzymes, selective detection of non-electroactive molecules, such
as D-serine, is achieved by using size exclusion layers which form a barrier for larger interfering
electroactive molecules (e.g., ascorbic acid). While in the past Nafion® was utilized as an exclusion
layer [44,56], Meta-phenylenediamine (mPD) has proven to be a better barrier against interfering
molecules as monoamines are attracted by Nafion® [45,46,58,59]. After electropolymerization of mPD
onto the MEA only small molecules like H2O2 can readily cross this layer and reach the platinum
sites. We tested our D-serine MEAs against AA and L-glutamate (Table 1) since both of them are
found at high concentrations in the same brain regions as D-serine, and glutamate is involved in the
release of both AA and D-serine [8,60–63]. Glutamate should not be detected by the D-serine-selective
MEAs as a different enzyme (glutamate oxidase) is required to transform glutamate into a measurable
compound, but AA is electroactive and therefore a possible interferent. Selectivity is the ratio of the
sensitivity for D-serine over the interferent and has to fulfill our criteria of being higher than 80:1.
This means an increase in interferent concentration above 80 µM would be necessary to produce a
signal corresponding to a 1 µM increase of D-serine [44]. Our RgDAAO coated MEAs effectively
blocked both AA and glutamate, with a mean selectivity for D-serine against AA and L-glutamate of
191.75 ± 19.55 and 521.3 ± 112.23, respectively (n = 12 and n = 10; mean ± SEM; Table 1).

3.3. Other D-Amino Acids

D-amino acids aside from D-serine can also be a substrate of D-amino acid oxidase. D-aspartate,
which is the second most abundant D-amino acid, is not detected by D-serine biosensors because it is
not a substrate of DAAO, but D-alanine, the third most abundant D-isomer found in the mammalian
brain, can be detected (e.g., RgDAAO MEAs had a sensitivity of 18.56 ± 1.6 pA/µM to D-alanine;
n = 12). Yet, the endogenous concentration of D-alanine in the brain is only 3% of the D-serine
concentration and can be thus considered negligible for in vivo measurements [28,64].

3.4. RgDAAO vs. pkDAAO

The choice of DAAO from a yeast, Rhodotorula gracilis (RgDAAO), over the mammalian DAAO
from porcine kidney (pkDAAO) was made given the previously reported superior enzymatic properties
of RgDAAO [65,66]. Other studies have demonstrated a tolerable sensitivity using pkDAAO [28],
but the parameters that were obtained from our first calibrations using pkDAAO did not fulfill
our criteria: the sensitivity of the pkDAAO coated MEAs to D-serine was 0.45 ± 0.2 pA/µM and
the LOD was 2.93 ± 0.7 µM (n = 4). Since the enzyme layers, BSA and glutaraldehyde layers were
inspected under a stereoscope (0.8×–4×; Olympus Deutschland GmbH. Hamburg, Germany), as for
all calibrated MEAs, the poor parameters obtained with pkDAAO cannot be attributed to peeling,
cracking, or swelling of the coatings, the insulation layer or the platinum sites per se. Consequently,
we employed D-amino acid oxidase from the yeast Rhodotorula gracilis for all further measurements.
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3.5. Freely Moving Measurement of D-Serine

Figure 3A depicts spontaneous D-serine transients recorded from the prefrontal cortex in a freely
moving animal. A close up of one transient is depicted in Figure 3B. These exemplary measurements
in a freely moving animal suggest that D-serine could be released into the extracellular space in fast
transients as has been reported for glutamate [41,43–45,56]. A number of 89 D-serine transients were
found in a 10 h recording, with a mean frequency of five per hour. Thus, we demonstrate that RgDAAO
coated MEAs can be used to record in vivo, but further measurements have to be performed on a larger
sample of animals to characterize any changes in basal D-serine levels and in the parameters of the
transients (e.g., amplitude, frequency, temporal occurrence) and relate them to behavioral states [32,42]
of freely moving animals.
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4. Conclusions

We demonstrate here a reliable in vitro protocol for preparing RgDAAO coated multisite MEAs
for fast and selective amperometric measurements of D-serine. Our preliminary results in the freely
moving recording support the need for a recording technique with a high temporal resolution to
detect fast D-serine dynamics in the mammalian brain. Further in vivo studies using freely moving
animals need to be conducted given the recent findings on the functions of D-serine within the central
nervous system.

Supplementary Materials: The following are available online at www.mdpi.com/2079-6374/8/1/20/s1,
Figure S1: In vitro calibration of one D-serine detecting Microelectrode Array (MEA) using 1 mM D-serine
challenges, Figure S2: Linearity (R2) curve obtained from the calibration of the RgDAAO coated D-serine detecting
MEA depicted in Figure 2, Table S1: In vitro calibration measurements for the RgDAAO coated D-serine detecting
MEAs using final concentrations of 1 µM D-serine in the solution media (n = 5; mean ± SEM), Table S2: In vitro
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calibration measurements obtained from the calibration of the RgDAAO coated D-serine detecting MEA depicted
in Figure 2.
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