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ABSTRACT OF DISSERTATION

THE PARTITION LATTICE IN MANY GUISES

This dissertation is divided into four chapters. In Chapter 2 the Sn−1-equivariant homology
groups of upper order ideals in the partition lattice are computed. The homology groups
of these filters are written in terms of border strip Specht modules as well as in terms of
links in an associated complex in the lattice of compositions. The classification is used in
Section 2.15 to compute the Sn−1-equivariant homology of many well-studied subcomplexes
of the partition lattice, including the d-divisible partition lattice and the Frobenius complex.
In Chapter 3 the box polynomial Bm,n(x) is defined in terms of all integer partitions λ that
fit in an m by n box. The real roots of the box polynomial are completely characterized,
and an asymptotically tight bound on the norms of the complex roots is also given. An
equivalent definition of the box polynomial is given via applications of the finite difference
operator ∆ to the monomial xm+n. The box polynomials are also used to find identities
counting set partitions with all even or odd blocks, respectively. Chapter 4 extends results
from Chapter 3 to give combinatorial proofs for the ordinary generating function for set
partitions with all even or all odd block sizes, respectively. This is achieved by looking at
a multivariable generating function analog of the Stirling numbers of the second kind using
restricted growth words. Chapter 5 introduces a colored variant of the ordered partition
lattice, denoted Qα

n, as well an associated complex known as the α-colored permutahedron,
whose face poset is Qα

n. Connections between the Eulerian polynomials and Stirling numbers
of the second kind are developed via the fibers of a map from Qα

n to the symmetric group
Sn.
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Chapter 1 Preliminaries

1.1 Introduction

Well, the beginning, that is
dead and buried.

Celia
As You Like It, I.2.241

This thesis is comprised of four main sections. Chapter 1 collects prerequisites. As Celia
opines in the opening quote for this chapter, nothing in this preliminary chapter is my own
work. Chapter 2 examines the topology and representation theory of a large class of filters
in the partition lattice Πn. In particular, the homology groups of filters in the partition
lattice are determined explicitly in terms of an associated complex ∆ living in the poset of
compositions of n. A major tool used in Chapter 2 will be to convert topological data from
the partition lattice Πn to the ordered partition lattice Qn using Quillen’s Fiber Lemma,
which will be discussed further in Section 1.7. In particular, the first main result is Theo-
rem 2.6.3, where the homology groups of a large class of filters in the ordered set partition
poset Qn are determined. The topological information of Theorem 2.6.3 is transferred to Πn

in Theorem 2.11.5 using Quillen’s Fiber Lemma.
Chapter 3 explores the box polynomials, a polynomial defined in terms of all integer

partitions λ that fit in the m by n box. Many algebraic and combinatorial properties of
these polynomials are established, including a characterization of their real roots, as well
as asymptotics of their complex roots in Section 3.3. Additionally, connections between the
box polynomials and set partitions are pursued in Section 3.2.

Chapter 4 extends results from Chapter 3 to give combinatorial proofs for the ordinary
generating function for set partitions with all even or all odd block sizes, respectively. As
explained in the introduction to Chapter 4, this is achieved by looking at a multivariable
generating function analog of the Stirling numbers of the second kind, i.e., a generalization
of the ordinary generating function in Equation (1.2.3), via restricted growth words.

Lastly, Chapter 5 introduces a colored generalization of the ordered partition lattice Qn

as well as a colored generalization of the permutahedron. In particular, we allow each block
of the ordered set partition to have one of α colors, and impose a new cover relation where
adjacent blocks of the ordered set partition can only be merged if they have the same color.
Unfortunately, as the genesis of an idea is often sacrificed in the editing of a mathematical
paper, it is worth noting here that all of Chapter 5 began with Exercise 33 of Chapter 1 of
Stanley’s treatise [36].

While at first glance these chapters seem unrelated, the common theme that binds them
is the partition lattice Πn in its many guises, explaining the title of this dissertation. In
Chapters 2 and 4 the partition lattice is the main actor, while in Chapter 5 the partition
lattice appears in its ordered form, Qn. In Chapter 3 integer partitions take the spotlight.

Each subsequent chapter will begin with a brief introduction of the history of the problem,
as well as an introduction to the relevant mathematical notation and terminology. That being

1



said, the material of Chapter 1 will sometimes be re-introduced in other chapters. Lastly, to
emulate a great early American mathematical paper by Sylvester [40], each chapter begins
with a Shakespearean quote related to the content therein.

We begin our chapter with preliminaries on the Stirling numbers of the second kind.

1.2 Stirling Numbers

Much of this thesis is devoted to the combinatorics of the partition lattice, Πn. For this
reason it is only fitting that we begin our narrative with a history of set partitions.

Let [n] = {1, 2, . . . , n} denote the n-set. A partition of [n] is a disjoint union of subsets
B1, B2, . . . , Bk such that ∪ki=1Bi = [n]. According to Knuth, [44], set partitions were first
studied systematically by the Japanese around 1500. In a popular parlour game of the time,
genji-ko, five unknown incense were burned and players were asked to identify which of the
scents were the same, and which were different. The number of outcomes of this game is 52,
the number of set partitions of the five set [5], or in modern parlance, the fifth Bell number
B5 = 52. Diagrams were soon developed to model the 52 set partitions of [5]; see [44, pg. 25].

For a set partition π = {B1, . . . , Bm} of [n] we call each Bi a block of π. We denote a break
in blocks with a vertical bar |. As an example, we write the set partition {{1, 2, 4}, {3, 5}}
of [5] as 124|35. We write set partitions with elements ordered least to greatest from left to
right within a block. We then order the blocks by their least element from left to right.

The Stirling Number of the second kind, S(n, k), named after Scottish mathematician
James Stirling, enumerates set partitions of [n] into k blocks. The Stirling numbers satisfy
the recursion

S(n+ 1, k) = k · S(n, k) + S(n, k − 1), (1.2.1)

which is easily seen by keeping track of which block the element n + 1 joins. Additionally,
the Stirling numbers have initial conditions S(0, 0) = 1 and S(n, 0) = 0 for n ≥ 1.

We will now record some closed forms and generating functions for the Stirling numbers
which will be used in Chapters 3 and 4.

To obtain a closed form for S(n, k) we count surjections from [n] to [k] for n ≥ k in two
ways. A surjection from [n] to [k] determines a set partition of [n] into k parts, thus all
surjections are counted by k! · S(n, k). By inclusion/exclusion the number of surjections is
counted by

∑k
i=0(−1)k−i

(
k
i

)
in, yielding

S(n, k) =
1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in. (1.2.2)

The ordinary generating function for S(n, k) is given by∑
n≥k

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
, (1.2.3)

see [36, Eq.1.94(c)]. Equation (1.2.3) is proven in sub-section 4.2 using restricted growth
words ; see [7]. By equating coefficients in Equation (1.2.3), it follows that

S(n+ k, k) = hk(1, 2, . . . , n), (1.2.4)

2



where hk is the degree k homogeneous symmetric function.
The exponential generating function for S(n, k) is given by

∑
n≥k

S(n, k)
xn

n!
=

(ex − 1)k

k!
. (1.2.5)

Equation (1.2.5) is proven with the composition principle of exponential generating functions.

1.3 Posets

A partially ordered set P , colloquially referred to as a poset, is a set endowed with a binary
relation ≤ satisfying the following:

• (reflexive) For each p ∈ P we have p ≤ p.

• (antisymmetric) If p ≤ q and q ≤ p then p = q.

• (transitive) If p ≤ q and q ≤ r then p ≤ r.

Noticeably lacking from the definition of a partially ordered set is that any two elements
be related by ≤. If two elements p and q are not related via ≤, we say that p and q are
incomparable elements. As an example, a and b of Figure 1.1 are incomparable. For more
poset terminology, see Chapter 3 of [36].

Example 1.3.1 (The Boolean algebra). Consider the collection of subsets of the n-set [n]
ordered by inclusion. This forms a poset called the Boolean algebra, Bn. Note that {1, 2, 3}
and {2, 3, 4} are incomparable elements in B4 as neither is a subset of the other.

A chain in a poset P is a collection of elements that are totally ordered. The size of a
chain is defined to be the number of elements in the chain.

If p ≤ q and there is no element r 6= q such that p ≤ r ≤ q we say that q covers p. We
represent posets graphically with the Hasse diagram. The Hasse diagram of a poset P is a
graph with a node for each element of P and with edges given by the covering relations in P .

Given two posets P and Q we define the direct product poset P ×Q on the collection of
pairs (p, q), for p ∈ P and q ∈ Q, with order relation given by (p1, q1) ≤ (p2, q2) if and only
if p1 ≤P p2 and q1 ≤Q q2.

In a poset P we let the meet of two elements p and q be the collection of maximal mutual
lower bounds of p and q. Equivalently, we define the join of p and q in P to be the collection
of minimal mutual upper bounds of p and q.

A lattice is a poset P such that any two elements p and q have a unique meet and join.
In a lattice we let a ∧ b denote the meet of a and b, and we let a ∨ b denote the join of a
and b. Figure 1.1 shows the Hasse digram of a non-lattice. Notice that both c and d are
meets for a and b, and therefore a and b do not have a unique meet.

Let P and Q be posets. A function f : P −→ Q is a poset map if r ≤P s implies
f(r) ≤Q f(s). Posets P and Q are isomorphic as posets if there is an invertible poset map
f : P −→ Q whose inverse f−1 is also a poset map. We indicate poset isomorphism in the
usual way, P ∼= Q.

3



a b

c d

Figure 1.1: A non-lattice.

We will now introduce an important poset invariant, the Möbius function.
Let P be a locally finite poset, that is, a poset where each interval [p, q] is finite. Let

I be the collection of all intervals [p, q] in P . Let I(P ) denote the collection of maps from
I −→ C. For ease of notation, for f ∈ I(P ) applied to the interval [p, q] we write f(p, q)
rather than f([p, q]).

We now give I(P ) an algebra structure, called the incidence algebra of P . Let addition
and ring subtraction in I(P ) be defined pointwise, and define the algebra multiplication to
be given by convolution. Specifically, if f, g ∈ I(P ) then f ∗ g applied to the interval [p, q] is
given by:

(f ∗ g)(p, q) =
∑
p≤s≤q

f(p, s)g(s, q).

It can be shown that the identity for the incidence algebra is given by the function that takes
value one on trivial intervals [p, p] and is zero on intervals [p, q] for p < q. We denote this
function by δ.

The zeta function ζ ∈ I(P ) is identically 1 on all intervals. The Möbius function is the
inverse to the zeta function, that is, µ ∗ ζ = ζ ∗ µ = δ. The Möbius function is defined
recursively via:

• µ(p, p) = 1

• µ(p, q) = −
∑

p≤s<q µ(p, s)

While the Möbius function is an element of the incidence algebra and thus is a complex-
valued function on the set of intervals in P , if the poset P is bounded, meaning P has a
unique minimal element 0̂ and a unique maximal element 1̂, we write µ(P ) to indicate the
value of the Möbius function on the interval P = [0̂, 1̂].

The Möbius function is clearly a poset invariant, i.e. if P ∼= Q then µ(P ) = µ(Q),
and is therefore an interesting number to keep track of. Using the definition of the Möbius
function to compute µ(P ) can be tedious, thus we now record two theorems that are helpful
for computing µ(P ) and are used throughout this dissertation.

Theorem 1.3.2 (Weisner’s Theorem). Let P be a lattice. Let a ∈ P such that a 6= 1̂. Then
the following holds: ∑

x:x∧a=0̂

µ([x, 1̂]) = 0.

4



1|2|3

12|3 13|2 1|23

123

Figure 1.2: The Partition Lattice Π3

We also record Philip Hall’s Theorem, which relates the Euler characteristic of the order
complex of P := P − {0̂, 1̂} to the Möbius function of P . For the definition of the order
complex of P , see Section 1.7. Furthermore, recall that for ∆ a simplicial complex, the
reduced Euler characteristic of ∆, denoted χ̃, is given by the alternating sum of its face
numbers χ̃(∆) =

∑
i≥−1(−1)ifi(∆).

Theorem 1.3.3 (Philip Hall’s Theorem). Let P be a bounded poset. Let P := P − {0̂, 1̂}.
Then its Möbius function is given by µ(P ) = χ(4(P )).

1.4 The Partition Lattice and Integer Partitions

The collection of set partitions of [n], denoted Πn, is called the partition lattice. The cover
relation in Πn is given by σ ≺ τ if exactly two blocks of σ were merged to form τ . With this
cover relation Πn is graded with minimal element 1|2| · · · |n and maximal element 123 · · ·n.

We indicate that a set partition σ has k blocks by writing |σ| = k. A set partition σ ∈ Πn

has rank k if |σ| = n − k, and thus the number of elements of rank k in Πn is counted by
the Stirling number S(n, n − k). The maximal element 12 · · ·n of Πn has one block, and
therefore the rank of Πn is n− 1.

For σ = B1|B2| · · · |Bk in Πn, the upper order ideal {τ ∈ Πn| τ ≥ σ} is isomorphic to Πk,
since we can think of the k blocks of σ as the elements {1, 2, . . . , k} which we must merge
to move up in Πn. Analogously, the lower order ideal {τ ∈ Πn| τ ≤ σ} is isomorphic to
Π|B1|×Π|B2|× · · · ×Π|Bk|, since to move down from σ in Πn we must break up the blocks of
σ independently.

The Möbius function µ(Πn) can be computed with Weisner’s Theorem 1.3.2. Note that
since 0̂ ∧ a = 0̂, we can rewrite Weisner’s Theorem as

µ([0̂, 1̂]) = −
∑

x:x∧a=0̂,x 6=0̂

µ([x, 1̂]). (1.4.1)

Let a be the coatom 12 · · · (n − 1)|n in Πn. The collection of non-zero set partitions τ
such that τ∧a = 0̂ consists of atoms with unique doubleton block {i, n} for 1 ≤ i ≤ n−1. As
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{1, 1, 1, 1}

{1, 1, 2}

{2, 2}{1, 3}

{4}

Figure 1.3: I4, the poset of integer partitions of 4.

there are n− 1 such atoms, and as each interval [τ, 1̂] ∼= Πn−1, by Weisner’s Theorem (1.4.1)
we have that µ(Πn) = −(n− 1) · µ(Πn−1). Therefore, by induction,

µ(Πn) = (−1)n−1(n− 1)!. (1.4.2)

A large portion of this thesis is devoted to sub-posets of the partition lattice Πn. To sort
set partitions by block size, we introduce the notion of type.

Let In be the poset of integer partitions of n. The elements of In are multisets of positive
integers {i1, i2, . . . , ik} such that i1 + i2 + · · · + ik = n. The cover relation in In is given by
adding of (not necessarily adjacent) parts, that is, {i1, i2, . . . , ik} ≺ {i1 + i2, . . . , ik}. Note
that the minimal element of In is {1, 1, . . . , 1} and maximal element is {n}. As an example,
see Figure 1.3.

For a set partition σ ∈ Πn we define the type of σ, denoted type(σ), as the integer partition
of n given by the cardinality of the blocks of σ. As an example, type(14|25|3) = {1, 2, 2} ∈ I5.
It is worth noting that type : Πn −→ In is a poset map.

With the type of a set partition defined, we can create sublattices of Πn by type. As an
example, the d-divisible partition lattice, denoted Πd

n, is the collection of all set partitions in
Πn whose type has all parts divisible by d. In other words, the d-divisible partition lattice
consists of all set partitions with block sizes divisible by d.

1.5 Ordered Set Partitions and Compositions

In this section we consider the ordered equivalent of Section 1.4.
An ordered set partition of the set [n] is a disjoint union of the set [n] into blocks where

the order between the blocks matters. To distinguish from ordinary set partitions, we write
ordered set partitions in parentheses with commas indicating a break in blocks. For example,
(13, 245) and (245, 13) are distinct ordered set partitions of [5].

The collection of ordered set partitions of n, denoted Qn, has a poset structure with cover
relation given by the merging of adjacent blocks. We record the cover relation for Qn here:

(B1, B2, B3, . . . , Bk) ≺ (B1, B2, . . . , Bi ∪Bi+1, . . . , Bk) (1.5.1)
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(1, 2, 3) (1, 3, 2) (3, 1, 2) (3, 2, 1) (2, 3, 1) (2, 1, 3)

(12, 3) (1, 23) (13, 2) (3, 12) (23, 1) (2, 13)

(123)

Figure 1.4: The Ordered Partition Lattice Q3

Figure 1.4 shows the Hasse diagram for the ordered partition lattice Q3. Notice Qn does not
have a unique minimal element, but rather has n! minimal elements, one for each permutation
of [n]. This shows that Qn is not a lattice.

To make Qn into a lattice we artificially adjoin a minimal element 0̂. The poset Qn∪{0̂}
is now a lattice and we can compute µ(Qn∪{0̂}) using Philip Hall’s formula, Theorem 1.3.3,
since Qn ∪ {0̂} is the face lattice of the permutahedron Pn. We postpone this calculation
until Chapter 5.

Additionally, using Figure 1.4 as an example, we see that intervals in the poset Qn are
isomorphic to Boolean algebras.

In analogy to unordered set partitions, we again need to define the type of an ordered
set partition. For this notion we need the poset of compositions of n, denoted Comp(n).

A composition of n is an ordered list (i1, i2, . . . , ik) of positive integers such that i1 +
i2 + · · ·+ ik = n. We denote the collection of compositions of n by Comp(n) and we endow
Comp(n) with a poset structure with cover relation given by adding of adjacent parts.

To reflect that the order amongst the blocks in Qn matters, we say that the type of an
ordered set partition σ ∈ Qn is the composition of n given by the cardinality of its blocks
in order. For example, type((12, 345)) = (2, 3) ∈ Comp(5). Continuing the analogy from
Section 1.4, the map type : Qn −→ Comp(n) is also a poset map.

The poset of compositions of n is well-behaved. In fact, there is a poset isomorphism
Comp(n) ∼= Bn−1, where Bn−1 is the Boolean algebra on n−1 elements. The isomorphism is
given by mapping the composition (c1, c2, . . . , ck) to the subset of [n−1] given by the partial
sum of the first k−1 parts of ~c, that is, ~c corresponds to {c1, c1 + c2, . . . , c1 + c2 + · · ·+ ck−1}.

Lastly, we mention there is a well-behaved map from f : Qn −→ Πn, known as the
forgetful map. The map f is defined as you might expect. Let (A1, A2, . . . , Ak) ∈ Qn, then
f is given by:

f((A1, A2, . . . , Ak)) = A1|A2| . . . |Ak (1.5.2)

The forgetful map will be a crucial tool used to help characterize the topology of sub-posets
of the partition lattice Πn in Chapter 2.
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1.6 Permutations and Descents

The symmetric group Sn is the collection of permutations of the n-set [n] under composition.
We will refer to permutations in one line notation. For α ∈ Sn we write α1α2 . . . αn where
αi = α(i). As an example, 231 ∈ S3 is the map given by 1 7→ 2, 2 7→ 3, and 3 7→ 1.

A descent of a permutation α ∈ Sn is an index 1 ≤ i ≤ n such that αi > αi+1. The
descent set of α, denoted DES(α), is the set of indices {i1, i2, . . . , ik} where α has descents.
Using the isomorphism Bn−1

∼= Comp(n) of Section 1.5, we can equivalently define the
descent composition of α to be the composition ~c = (i1, i2 − i1, . . . , ik − ik−1, n − ik). We
call the parts of the descent composition ~c the runs of α since they correspond to increasing
runs in the one line notation of α.

For α = 231 the descent set of α is DES(231) = {2} and the descent composition of
α = 231 is ~c = (2, 1).

Let S = {i1, . . . , ik} be a subset of [n − 1]. We define α(S) to be the number of per-
mutations σ in Sn such that DES(σ) ⊆ S. Suppose S corresponds to the composition
~c = (c1, . . . , ck+1) in Comp(n). Choosing a permutation σ ∈ Sn with possible descents in
the set S is equivalent to first choosing a subset of size c1 from [n] and writing it in increasing
order to form the first run of σ. From the remaining n− c1 integers choose a subset of size c2

and write in increasing order to form the second run of σ, and so on. The permutation σ
created can only possibly have descents coming from the set S = {i1, i2, . . . , ik}. Therefore,
α(S) is given by the multinomial coefficient:

α(S) =

(
n

c1, c2, . . . , ck+1

)
. (1.6.1)

For notational convenience, we sometimes write the multinomial coefficient in Equation (1.6.1)
as
(
n
~c

)
.

Analogously, define βn(S) to be the number of permutations σ ∈ Sn such that DES(σ) =
S. Since α(S) =

∑
T⊆S β(S), by inclusion/exclusion we obtain:

β(S) =
∑
T⊆S

(−1)|S/T |α(T ). (1.6.2)

The notation α(S) and β(S) comes from the rank selection literature; see [36, Cor.3.1,3.2 ].

1.7 Poset Topology

Sections 1.2 through 1.5 have laid much of the poset-theoretic groundwork to be used
throughout this dissertation. We now discuss topological considerations and how we at-
tribute topological properties to posets. For further details see Wachs’ overview article [43].

Recall an abstract simplicial complex ∆ is a collection of sets that is closed under subsets,
that is, if σ ∈ ∆ and if τ ⊆ σ then we must have that τ ∈ ∆. The dimension of a face σ ∈ ∆
is given by |σ| − 1. We call the elements σ ∈ ∆ of dimension 0 the vertices of ∆.

For an abstract simplicial complex ∆ there is a closely related topological space called the
geometric realization of ∆, denoted |∆|, that allows us to attribute topological properties
to abstract simplicial complexes just as the order complex allows us to give topological
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ab ac bc

abc

∆ F(∆)

Figure 1.5: The 2-dimensional simplex ∆ and its face poset B3/{0̂}.

properties to posets. Except for exceptional cases which we will avoid, we treat ∆ and its
geometric realization |∆| as interchangeable. For a complete discussion of the geometric
realization, see [43].

We now introduce the order complex of a poset P .

Definition 1.7.1. Let P be a poset. The order complex of P , denoted 4(P ), is the abstract
simplicial complex whose i-dimensional faces are the chains of size i+ 1 in P .

Definition 1.7.1 is best illustrated with an example, see Figure 1.7. Note that the elements
of P , which are chains of size 1, correspond to the vertices of 4(P ), which are 0-dimensional
faces. The order complex allows us to give topological attributes to posets. Throughout this
dissertation, as well as in the topological combinatorics literature, any topological charac-
teristic of P is the corresponding notion applied to 4(P ).

A poset P that has a minimal element 0̂ or a maximal element 1̂ will have a contractible
order complex 4(P ), and therefore we often remove 1̂ or 0̂ from P to ensure that 4(P ) has
non-trivial topology. We let P denote P − {0̂, 1̂}.

Much of topological combinatorics is concerned with classifying the homotopy type of
a poset P . Techniques for determining the homotopy type of P include discrete Morse
matchings and EL-labelings. Both of these techniques rely on labeling the edges of the
Hasse diagram of P while avoiding certain forbidden structures.

We now introduce discrete Morse theory. For a complete introduction see Forman [15].
The goal of discrete Morse theory is to characterize the homotopy type of an abstract sim-
plicial complex ∆. In order to do this we introduce the face poset of ∆ and discuss a special
partial matching on the Hasse diagram of the face poset.

Definition 1.7.2. Let ∆ be an abstract simplicial complex. The face poset of ∆, denoted
F(∆), is the poset of non-empty simplices of ∆ ordered by set inclusion.

As an example, let ∆ be the two-dimensional simplex in R2. Then F(∆) is the Boolean
algebra B3 − {0̂}, as is illustrated in Figure 1.5.
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For a simplicial complex Γ we have the following relationship between Γ and its face
poset F(Γ):

Proposition 1.7.1. Let Γ be a simplicial complex. The order complex of the face lattice
F(Γ) is the barycentric subdivision of Γ. In particular, there is a homotopy equivalence
Γ ' 4(F(Γ)).

Given two simplicial complexes ∆ and Γ with distinct vertex sets we define the join of
∆ and Γ, denoted ∆ ∗ Γ, to be the abstract simplicial complex given by

∆ ∗ Γ = {δ ∪ γ : δ ∈ ∆, γ ∈ Γ}.

Note that if dim(∆) = m and dim(Γ) = n, then dim(∆ ∗ Γ) = (m + 1) + (n + 1) − 1 =
m+ n+ 1.

Definition 1.7.3. A partial matching M of a poset P is a collection of edges from the Hasse
diagram of P such that each element of P is in at most one edge of the matching M . In
other words, if the Hasse diagram of P is thought of as a graph, then a partial matching on
P is simply a graph matching.

Consider the edges of the Hasse diagram of P as initially oriented down, meaning if a ≺ b
in P we think of the edge as pointing down from b to a in the Hasse diagram. Now, suppose
P has a partial matching M , à la Definition 1.7.3. Orient the edges from M upward. If the
newly oriented Hasse diagram has no directed cycles, then we say that the matching M of
P is a discrete Morse matching. An unmatched element of P is called a critical element.

We now demonstrate the topological implications of a discrete Morse matching with a
theorem from Forman [15].

Theorem 1.7.2 (Forman). Let ∆ be an abstract simplicial complex. Suppose there is a
discrete Morse matching on the face poset F(∆). Additionally, suppose there are ci critical
elements of F(P ) of dimension i ≥ 0, where the dimension of an element of F(∆) refers to
the dimension of the corresponding simplex in ∆. Then ∆ is homotopy equivalent to a CW
complex with ci cells of dimension i.

In general, a discrete Morse matching with a small number of critical cells is desirable
as then all of the topological information of ∆ is stored in a smaller, more computationally
manageable complex.

Example 1.7.3. Figure 1.6 shows a simplicial complex ∆, its face poset F(∆), and a discrete
Morse matching on F(∆) with critical cells c and bd marked in red. Our Morse matching
has one critical cell of dimension 0 and one critical cell of dimension 1. Theorem 1.7.2 gives
that ∆ is homotopy equivalent to a complex with one zero cell and one cell of dimension
one, which of course is the one-dimensional sphere S1.

We now record a theorem that gives a sufficient condition for a discrete Morse matching.
We will then note the homotopy type of the truncated partition lattice Πn coming from a
discrete Morse matching.
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Figure 1.6: A simplicial complex ∆, its face poset F(∆), and a discrete Morse matching
with critical cells c and bd.

Theorem 1.7.4 (Kozlov;Patchwork Theorem, Theorem 11.10 [18]). Let φ : P −→ Q be
an order preserving poset map. Assume on each fiber φ−1(q) we have an acyclic matching.
Then the union of these matchings is an acyclic matching for P .

As its name suggests, Theorem 1.7.4 allows us to build acyclic matchings up from smaller
matchings. Using the Patchwork Theorem, Kozlov computes:

Theorem 1.7.5 (Kozlov;Theorem 11.18 [18]). 4(Πn) '
∨

(n−1)! S
n−3.

The wedge in Theorem 1.7.5 arises because the matching used to prove the theorem has
only one critical cell of dimension 0, and therefore the resulting complex must be a wedge.

We see Theorem 1.7.5 illustrated in Figure 1.2 for n = 3. Notice if 0̂ and 1̂ are removed
from Π3, what remains is a wedge of two zero-dimensional spheres.

While we will not be using EL-labelings, it is worth noting that both Gessel [2] and
Wachs [41] have EL-labelings of the truncated partition lattice Πn that recover Theo-
rem 1.7.5.

We end the section with a brief discussion of Quillen’s Fiber Lemma.
Suppose P and Q are posets with a poset map f : P −→ Q. Quillen’s fiber lemma states

that if the preimage of each principle lower order ideal in Q is contractible, then 4(P ) and
4(Q) are homotopy equivalent.

Theorem 1.7.6 (Quillen Fiber Lemma). Let f : P −→ Q be a poset map such that for each
q ∈ Q the order complex 4(f−1(Q≤q)) is contractible. Then 4(P ) and 4(Q) are homotopy
equivalent.

Additionally, there is an equivariant version of Theorem 1.7.6, which we state in Sec-
tion 1.8.

1.8 Simplicial Homology

We now review the rudiments of simplicial homology. For a more complete introduction,
see [18].
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Figure 1.7: A poset P and its order complex 4(P ).

Let ∆ be an abstract simplicial complex. The dimension of an element σ ∈ ∆ is given by
dim(σ) = |σ| − 1. Equivalently, define the dimension of the complex ∆ to be the maximum
dimension over all faces σ ∈ ∆.

Let ∆ be an n-dimensional abstract simplicial complex. For each 1 ≤ k ≤ n let Ck
be the complex vector space with basis given by the faces of ∆ of dimension k, that is,
Ck = 〈σ : σ ∈ ∆, dim(σ) = k〉. The vector space Ck is called the k’th-chain space of ∆. The
elements of Ck are called chains.

Let σ = {a0, a1 . . . , ak} be a k-dimensional face of ∆. We define a map ∂k : Ck −→ Ck−1,
called the differential, on the basis elements of Ck by:

∂({a1, . . . , ak+1) =
k∑
i=0

(−1)i{a1, a2, . . . , ai−1, âi, ai+1, . . . , ak+1}. (1.8.1)

Note that ∂k is indeed a map into chains of one lower dimension since removing any element
from σ = {a0, . . . , ak} ∈ Ck must still be in ∆ as simplicial complexes are closed under
inclusion. Moreover, we extend ∂k to all chains linearly. We can now string together these
differentials to obtain Equation (1.8.2).

0 Ck Ck−1 Ck−2 · · ·C2 C1 C0 0
∂k ∂k−1 ∂2 ∂1

(1.8.2)

It is routine to show that the composition ∂i−1◦∂i = 0, allowing us to define the i’th homology
group of ∆.

Definition 1.8.1. Let ∆ be a simplicial complex of dimension k. Using Equation (1.8.2)
we define the i’th homology group of ∆ by

Hi(∆) = ker ∂i/ im ∂i+1.
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Figure 1.8: An isomorphism of representations.

The i’th-reduced homology, denoted H̃i(∆), of the complex ∆ agrees with Definition 1.8.1

for each i ≥ 1, but at i = 0 the rank of H̃0(∆) is 1 less than the rank of H0(∆).
If G is a group that acts on P such that the G action on P is a poset map for each

g ∈ G, then this action of G on P descends to a representation of G on the homology groups
H̃i(4(P )). For a brief introduction to group representations, see Section 1.9.

In Chapter 2 we will have the symmetric group Sn acting on the partition lattice by
permutation. This action descends to a Sn–representation on the homology groups of the
order complex H̃(Πn). A tool that will help us compute these representations is Quillen’s
equivariant fiber lemma:

Theorem 1.8.1 (Equivariant Quillen Fiber Lemma). Let f : P −→ Q be a G-poset map

such that 4(f−1(Q≤q)) is acyclic for each q ∈ Q. Then H̃k(4(P )) and H̃k(4(Q)) are
isomorphic as G-representations for all k.

1.9 Representations of the Symmetric Group

In this section we will give a brief introduction to the representations of finite groups. In
particular, we will look at representations of the symmetric group on n elements, denoted
by Sn. Much of what is discussed in this section can be found in Chapters one and two of
Sagan [32]. The content of this section will be used, and expanded upon, in Sections 2.5
and 2.13.

Recall that the General Linear Group over a vector space V , denoted GL(V ), is the group
of invertible linear transformations from V to V under composition.

A representation of a group G is a group homomorphism ρ : G −→ GL(V ) for V a vector
space over the complex numbers C. The dimension of ρ is given by dim(V ). A representation
of G on V lets G act on V by g · v := ρ(g)(v).

Two representations of G on V and W are isomorphic as representations if there is a linear
isomorphism of vector spaces α : V −→ W such that the diagram of Figure 1.9 commutes
for each g ∈ G.

A representation ρ : G −→ GL(V ) is irreducible if the only subspaces of V fixed under
the action of G are 0 and V . Otherwise, we say the representation is reducible.

We now give two examples of representations of an arbitrary group G and discuss whether
or not they are irreducible.

Example 1.9.1. The trivial representation of G on a vector space V is given by g · v = v
for all v ∈ V . As every element v ∈ V is fixed under the trivial representation, the trivial
representation is irreducible if and only if V is one dimensional.
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Figure 1.9: The border strip B(~c ) associated with the composition ~c = (2, 3, 1).

Example 1.9.2. The regular representation of a group G is defined as follows. Let G be a
finite group. Let C[G] = 〈eg : g ∈ G〉 be the complex vector space of dimension |G| with
basis elements given by group elements. Let G act on C[G] by g ·

∑
i αiegi =

∑
i αieg·gi .

Consider the one dimensional subspace H spanned by
∑

G eg. The action of G fixes H, and
thus the regular representation of G is irreducible if and only G is the trivial group on one
element, or G = 〈e〉.

Suppose V and W are both G-representations. We form a G-representation on the direct
sum V ⊕W by g · (v, w) = (g · v, g · w).

Additionally, for G a finite group, any finite dimensional representation of G over a field
of characteristic 0, such as C, decomposes as a direct sum of irreducible representations.

Theorem 1.9.3 (Maschke’s Theorem). Let G be a finite group. Let ρ be a finite dimensional
complex representation of G on V . Then V is isomorphic as a G-representation to the direct
sum

⊕m
i=1 Vi, where each Vi is irreducible.

Theorem 1.9.3 shows that studying representations of G can be accomplished by under-
standing the irreducible representations of G. Moreover, using character theory, see Sections
1.8 through 1.10 of [32], it can be shown that the number of irreducible representations of
G, up to isomorphism of representations, is given by the number of conjugacy classes of G.

The conjugacy classes of the symmetric group Sn are characterized by cycle type, and
are therefore enumerated by the number of integer partitions of n. Each partition λ of n
determines an irreducible representation of Sn called the Specht module, denoted Sλ. The
construction of the Specht module is discussed in Section 2.5.

The dimension of the Specht module Sλ is given by the number of standard Young
tableaux of shape λ, often denoted fλ. With character theory or with the beautiful RSK
algorithm, see Section 3.1 of [32], one obtains the formula:∑

λ`n

(fλ)2 = n! (1.9.1)

In Chapter 2 we will classify the Sn−1 action on the reduced homology groups of arbitrary
filters in the partition lattice not in terms of Specht modules, but rather border strip Specht
modules. We now discuss the construction of the border strip Specht module.

Let ~c = (c1, . . . , ck) be a composition of n. A border strip of shape ~c, denoted B(~c ), is
a skew shape whose ith row has length ci and whose ith and (i + 1)st columns overlap in
precisely one position. See Figure 1.9. A filling of a border strip B(~c ) is a way to place the
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numbers 1, 2, . . . , n in the shape B(~c ). Once filled with the numbers 1, 2, . . . , n we call the
border strip a border strip tableau. The symmetric group acts on tableau t by relabeling.
Two border strip tableaux of shape ~c are row equivalent if they have the same entries in
each row. An equivalence class of tableaux under row equivalence is called a tabloid, and is
denoted [t]. The symmetric group acts on tabloids by σ · [t] = [σ · t].

We define the permutation module MB(~c ) to be the vector space with basis given by
tabloids of shape ~c. The dimension of MB(~c ) is the multinomial

(
n
~c

)
. For a tableau t, the

collection of permutations that leave the columns of t fixed is called the column stabilizer,
denoted SC

~c .
Define the polytabloid to be an element in the permuation module MB(~c ) given by the

alternating sum et =
∑

γ∈SC
~c

(−1)γ · [γ · t]. The border strip Specht module is the span of the

polytabloids in MB(~c ). It can be shown, see [32], that a basis for the Specht module SB(~c ) is
given by et for t a standard tableau of shape ~c, meaning the tableau increases from left to right
in rows and increases down columns. The only way for t to be a standard tableau of shape ~c
is if reading the filling of B(~c ) from southwest to northeast gives a permutation with descent
composition ~c. Therefore, dim(SB(~c )) = βn(~c ), where βn(~c ) is defined in Equation (1.6.2).

Unlike the Specht modules, the border strip Specht modules are in general reducible
representations of Sn, but can be rectified to a direct sum of irreducible Specht modules
using the sliding game jeu de taquin, see Appendix A.1.2 of [35].

Copyright© Dustin Hedmark, 2017.
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Chapter 2 Filters in the Partition Lattice

Like to a double cherry,
seeming parted, But yet an
union in partition

Helena
A Midsummer Night’s Dream,

III.2.1249-50

2.1 Introduction

In Section 1.4 we introduced the partition lattice Πn. In Section 1.7 we discussed topological
properties of posets, and in particular, we saw that a discrete Morse matching can be used
to characterize the homotopy type of 4(Πn), see Theorem 1.7.5. In this chapter we will
classify the topology and Sn−1 action on certain sub-posets of the partition lattice Πn. Our
main tool will be the equivariant version of Quillen’s fiber lemma, see Theorem 1.8.1.

We begin with a history of work done on the d-divisible partition lattice, that is, the
collection of partitions in Πn having all block sizes divisible by d. After a discussion of the
history of the d-divisible partition lattice we transition into our plan of attack for computing
the homology of filters in the partition lattice.

Work on the d-divisible partition lattice began with Sylvester’s physics dissertation [39],
where he considered the even partition lattice, or equivalently, all set partitions with all
even sized block. Sylvester computed the Möbius function of this lattice and showed that it
equals, up to a sign, the tangent number, or equivalently the number of permutations in Sn

with descent set {2, 4, . . . , n − 2}. The name tangent number comes from the fact that the
exponential generating function for alternating permutations, or permutations in Sn with
descents at all odd or all even positions, respectively, is given sec (x) + tan (x), see [36,
Proposition 1.6.1].

Stanley then introduced the d-divisible partition lattice. This is the collection of all set
partitions with blocks having size divisible by d, denoted by Πd

n. He showed that the Möbius
function is, up to a sign, the number of permutations in the symmetric group Sn−1 with
descent set {d, 2d, . . . , n− d}; see [34].

Wachs [41] and Sagan [31] independently proved that the poset Πd
n∪{0̂} is EL-shellable,

and thus the homotopy type of the complex 4(Πd
n − {1̂}) is a wedge of spheres of the same

dimension. Additionally, Wachs gave explicit matrices for the action of Sn on this homology.
Calderbank, Hanlon and Robinson [9] continued work on the order complex 4(Πd

n−{1̂})
by giving generating functions for the Sn characters acting on the unique non-vanishing
homology group of the d-divisible partition lattice, as well as the generating function for Sn

characters on partition lattice where all blocks have size 1 mod d. Additionally, Calderbank,
Hanlon, and Robinson proved a conjecture of Stanley’s stating that the restriction of the Sn
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action on the top homology of the even partition lattice to Sn−1 is given by the border strip
Specht module B((d, d, . . . , d, d− 1)).

Ehrenborg and Jung [12] further generalized the d-divisible partition lattice by defining
a subposet Π∗~c of Πn for a composition ~c of n. The subposet Π∗~c reduces to the d-divisible
partition lattice when the composition ~c is given by ~c = (d, d, . . . , d). Their work on the filter
Π∗~c consists of three main results. First, they showed that the Möbius function of Π∗~c ∪ {0̂}
equals, up to a given sign, the number of permutations in Sn ending with the element n with
descent composition ~c. Second, they showed that the order complex4(Π∗~c−{1̂}) is homotopy
equivalent to a wedge of spheres of the same dimension. Lastly, if ~c = (c1, c2, . . . , ck), they
proved that the action of Sn−1 on the top homology group of 4(Π∗~c − {1̂}) is given by the
Specht module corresponding to the composition (c1, c2, . . . , ck − 1).

In this chapter we continue this research program by considering a more general class of
filters in the partition lattice. A filter F in a poset P is an upper order ideal, i.e., if x ∈ F
and x ≤ y, then y ∈ F . Let ∆ be a filter in the poset of compositions. Since the poset
of compositions is isomorphic to a Boolean algebra, the filter ∆ under the reverse order is
a lower order ideal and hence can be viewed as the face poset of a simplicial complex. We
define the associated filter Π∗∆ in the partition lattice. This definition extends the definition
of Π∗~c . In fact, when ∆ is a simplex generated by the composition ~c the two definitions agree.

Our main result is that we can determine all the reduced homology groups of the order
complex 4(Π∗∆ − {1̂}) in terms of the reduced homology groups of links in ∆ and in terms
of Specht modules of border shapes; see Theorem 2.11.5. The proof proceeds by induction
on the simplicial complex ∆ and builds up the isomorphism of Theorem 2.6.3 using Mayer–
Vietoris sequences. As our main tool, we use Quillen’s fiber lemma to translate topological
data from the filter Q∗∆ to the filter Π∗∆. Our base case relies on a result of Ehrenborg and
Jung describing the homology for the complex Q∗~c .

We also present a proof of our main result, Theorem 2.6.3, using an equivariant poset
fiber theorem of Björner, Wachs and Welker [4]. Even though this approach is concise, it
does not yield an explicit construction of the isomorphism of Theorem 2.6.3. In particular,
our hands-on approach using Mayer–Vietoris sequences yields a view of how the homology
groups of 4(Π∗∆ − {1̂}) are changing as the complex ∆ is built up. Once again, a previous
result of Ehrenborg and Jung is needed to apply the poset fiber theorem of Björner, Wachs
and Welker.

Our main result yields explicit expressions for the reduced homology groups of the com-
plex 4(Π∗∆ − {1̂}), most notably when ∆ is homeomorphic to a ball or to a sphere. The
same holds when ∆ is a shellable complex. We are able to describe the homotopy type of
the order complex 4(Π∗∆ − {1̂}) using the homotopy fiber theorem of Björner, Wachs and
Welker. Again, when ∆ is homeomorphic to a ball or to a sphere, we obtain that Π∗∆ is a
wedge of spheres. We are also able to lift discrete Morse matchings from ∆ and its links to
form a discrete Morse matching on the filter of ordered set partitions Q∗∆.

In Sections 2.15 through 2.17 we give a plethora of examples of our results. We consider
the case when our complex ∆ is generated by a knapsack partition to obtain a previous
result of Ehrenborg and Jung. In Section 2.16 we study the case when Λ is a semigroup
of positive integers and we consider the filter of partitions whose block sizes belong to the
semigroup Λ. When Λ is generated by the arithmetic progression a, a+ d, a+ 2d, . . . we are
able to describe the reduced homology groups of the associated filter in the partition lattice.
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The particular case when d divides a was studied by Browdy [5], where the filter Λ consists
of partitions whose block sizes are divisible by d and are greater than or equal to a. Finally,
in Section 2.17 we study the filter corresponding to the semigroup generated by two relative
prime integers. Here we are able to give explicit results for the top and bottom reduced
homology groups.

Other previous work in this area is due to Björner and Wachs [3]. Additionally, Sundaram
studied the subposet of the partition lattice defined by a set of forbidden block sizes using
plethysm and the Hopf trace formula; see [37, 38].

We end the chapter by posing questions for further study.

2.2 Integer and set partitions

We define an integer partition λ to be a finite multiset of positive integers. Thus the multiset
λ = {λ1, λ2, . . . , λk} is a partition of n if λ1+λ2+· · ·+λk = n. Sometimes it will be necessary
to consider the multiplicity of the elements of the partition λ. We then write

λ = {λm1
1 , λm2

2 , . . . , λmpp },

where we tacitly assume that λi 6= λj for two different indices i 6= j.
Let In be the set of all integer partitions of n. We make In into a partial order where the

cover relation is adding two parts, that is, in terms of multisets

{λ1, λ2, λ3, . . . , λk} ≺ {λ1 + λ2, λ3, . . . , λk}.

Note that the composition {1, 1, . . . , 1} is the minimal element and {n} is the maximal
element in the partial order.

Let Πn denote the set of all set partitions of [n] = {1, 2, . . . , n}. Define a partial order
on Πn by merging blocks, that is,

{B1, B2, B3, . . . , Bk} ≺ {B1 ∪B2, B3, . . . , Bk}.

The poset Πn is in fact a lattice. Let |π| denote the number of blocks of the partition π.
Furthermore, for a set partition π = {B1, B2, . . . , Bk} define its type to be the integer
partition of n given by the multiset type(π) = {|B1|, |B2|, . . . , |Bk|}.

The symmetric group Sn acts on subsets of [n] by relabeling the elements. Similarly, the
symmetric group Sn acts on the partition lattice by relabeling. Let π = {B1, B2, . . . , Bk}
be a set partition. Then the action is given by α · π = {α(B1), α(B2), . . . , α(Bk)}. Finally,
when we speak about the action of the symmetric group Sn−1, we view the group Sn−1 as
the subgroup {α ∈ Sn : αn = n} of the symmetric group Sn.

2.3 Compositions and ordered set partitions

A composition ~c = (c1, c2, . . . , ck) of n is an ordered list of positive integers such that c1 +
c2 + · · ·+ ck = n. Let Comp(n) be the set of all compositions of n. Furthermore, introduce
the cover relation given by adding adjacent entries, that is,

(c1, . . . , ci, ci+1, . . . , ck) ≺ (c1, . . . , ci + ci+1, . . . , ck).
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This makes Comp(n) into a poset, and it is isomorphic to the Boolean algebra on n − 1
elements. Note that (1, 1, . . . , 1) and (n) are the minimal and maximal elements of Comp(n),
respectively. Also, we define the type of a composition ~c = (c1, c2, . . . , ck) to be the integer
partition type(~c ) = {c1, c2, . . . , ck} of n. Furthermore, let |~c | denote the number of parts of
the composition ~c.

We now review terminology from Section 1.6.
For a composition ~c = (c1, c2, . . . , ck) of n, the multinomial coefficient is given by(

n

~c

)
=

(
n

c1, c2, . . . , ck

)
=

n!

c1! · c2! · · · ck!
.

For α ∈ Sn, let the descent set of α, denoted by Des(α), be the subset of [n−1] given by
Des(α) = {i ∈ [n−1] : α(i) > α(i+1)}. Throughout this chapter it will be more convenient
to consider Des(α) as a composition of n, that is, if Des(α) = {i1 < i2 < · · · < ik}, then we
consider Des(α) as a composition of n given by Des(α) = (i1, i2 − i1, . . . , ik − ik−1, n − ik).
Note that the identity permutation 12 · · ·n has descent composition (n).

Let βn(~c ) be the number of permutations α in Sn such that Des(α) = ~c. Likewise,
define β∗n(~c ) to be the number of permutations α in Sn with descent composition ~c and
α(n) = n. Observe that (

n− 1

c1, . . . , ck−1, ck − 1

)
=

∑
~d∈Comp(n)

~c≤~d

β∗n(~d ), (2.3.1)

is the Comp(n) analog of Equation 1.6.2.
An ordered set partition σ = (C1, C2, . . . , Cp) of [n] is a list of non-empty sets, or blocks,

such that the set {C1, C2, . . . , Cp} is a partition of the set [n], where the order of the blocks
now matters. Furthermore, let |σ| denote the number of blocks in the ordered set partition σ.

Let Qn be the set of all ordered set partitions on the set [n]. Introduce a partial order
on Qn where the cover relation is joining adjacent blocks, that is,

(C1, . . . , Ci, Ci+1, . . . , Cp) ≺ (C1, . . . , Ci ∪ Ci+1, . . . , Cp).

Observe that the poset Qn has the maximal element ([n]), along with n! minimal elements,
namely the ordered set partitions ({α1}, {α2}, . . . , {αn}), one for each permutation α ∈ Sn.
Moreover, every interval in Qn is a Boolean algebra.

Define the type of an ordered set partition σ = (C1, C2, . . . , Ck) to be the composition
of n given by listing the cardinalities of its blocks, that is, type(σ) = (|C1|, |C2|, . . . , |Ck|).

Definition 2.3.1. For a permutation α ∈ Sn and a composition ~d = (d1, d2, . . . , dk) of n,

let σ(α, ~d ) denote the unique ordered set partition in Qn of type ~d whose elements are given,
in order, by the permutation α, that is,

σ(α, ~d ) = ({α(1), . . . , α(d1)}, {α(d1 + 1), . . . , α(d2)}, . . . , {α(dk−1 + 1), . . . , α(n)}).

Finally, the symmetric group Sn acts on ordered set partitions by relabeling, that is

α · (C1, C2, . . . , Ck) = (α(C1), α(C2), . . . , α(C1)).
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(1,2,1)

(3,1) (1,3)

(4)

• •
(3,1) (1,3)

(1,2,1)

∆

Figure 2.1: The filter F = 〈(1, 2, 1)〉 ⊆ Comp(4) and its realization as a simplicial poset
∆ := F ∗ in Comp(4)∗.

2.4 Topological considerations

Recall a simplicial complex ∆ is a finite collection of sets such that the empty set belongs
to ∆ and ∆ is closed under inclusion. We will find it easier to view a simplicial complex as
a partially ordered set ∆ with additional conditions.

Definition 2.4.1. Let ∆ be a poset such that

• ∆ has a unique minimal element 0̂

• every interval [0̂, x] for x ∈ ∆ is a Boolean algebra.

Then we say that ∆ is a simplicial poset.

Notice that a poset P is simplicial if P is the face poset of a simplicial complex. Fur-
thermore, note that the second condition in the definition of a simplicial poset makes the
poset ∆ ranked, since every saturated chain between the minimal element 0̂ and an element
x has the same length. Thus the dimension of an element x is defined by its rank minus
one, that is, dim(x) = ρ(x)− 1. Note that this is in analogy to the dimension of a face σ in
a simplicial complex ∆ being given by dim(σ) = |σ| − 1.

A filter in a poset P is an upper order ideal. Hence if F is a filter in P , then the
dual filter F ∗ in P ∗ is now a lower order ideal. In particular, if ∆ ⊆ Comp(n) is a filter,
since upper order ideals in Comp(n) are Boolean algebras, the dual of ∆ is a simplicial
poset in the dual space Comp(n)∗, which has cover relation given by splitting rather than
merging. To emphasize that we have dualized, we use ≤∗ to denote the order relation in the
dualized Comp(n). See Figure 2.1 for an example.

Lastly, the link of a face F in a simplicial complex ∆ is given by lkF (∆) = {G ∈ ∆ :
F ∪G ∈ ∆, F ∩G = ∅}. However, working with the poset definition of a simplicial complex,
we have the following equivalent definition of the link: lkx(∆) = {y ∈ ∆ : x ≤ y}, that is,
the link is the principle filter generated by the face x. One advantage of this definition is
that we do not have to relabel the faces when considering the link.
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From now on our simplicial complex ∆ will be a filter in the composition lattice Comp(n),
with the dual order ≤∗.

Let Ck(Comp(n)) be the linear span of all compositions of n into k + 2 parts. We
obtain a chain complex by defining the boundary map as follows. Define the map ∂k,j :
Ck(Comp(n)) −→ Ck−1(Comp(n)) by

∂k,j(c1, . . . , cj, cj+1, . . . , ck+2) = (c1, . . . , cj + cj+1, . . . , ck+2).

Then the boundary map on Comp(n) is given by ∂k =
∑k+1

j=1(−1)j−1 · ∂k,j.
Consider the dual order on the set of ordered set partitions Qn. For ∆ ⊆ Comp(n) a

complex, let Q∆ = {τ ∈ Qn : type(τ) ∈ ∆}. The filter Q∆ is also a simplicial poset, so we
refer to Q∆ as a complex.

Define Ck(Qn) to be the linear span of all ordered set partitions of [n] with k+ 2 blocks.

The boundary map ∂k : Ck(Qn) −→ Ck−1(Qn) on Qn is given by ∂k(σ(α, ~d )) = σ(α, ∂k(~d )),

where ∂k(~d ) is the boundary map applied to the composition ~d in Ck(Comp(n)), and where
σ(α,~c ) is given in Definition 2.3.1. This boundary map is inherited by the subcomplex Q∆.

Finally, for simplicial complexes ∆ and Γ in Comp(n) and Comp(m) respectively, their
join is defined to be poset

∆ ∗ Γ = {~c ◦ ~d : ~c ∈ ∆, ~d ∈ Γ},

where ◦ denote the concatenation of compositions. Note that the join ∆ ∗ Γ has the com-
position (n,m) as its minimal element. Furthermore, we have the following basic lemma on
Morse matchings of joins of complexes.

Lemma 2.4.1. Let ∆ and Γ be two complexes in Comp(n) each having a discrete Morse
matching. Let ∆c and Γc be the sets of critical cells of ∆ and Γ, respectively. Then the
join ∆ ∗ Γ has a Morse matching where the critical cells are

{~c ◦ ~d : ~c ∈ ∆c, ~d ∈ Γc}.

2.5 Border strips and Specht modules

A border strip B is a connected skew-shape which does not contain a two by two square.
For each composition ~c = (c1, c2, . . . , ck) there is a unique border strip such that the number
of boxes in the ith row is given by ci and every two adjacent rows overlap in one position.
Denote this border strip by B(~c ). See Figure 1.9 for an example.

In an analogous fashion, for a composition ~c ∈ Comp(n) we define the border shape A(~c )
to be the skew-shape whose ith row has length ci such that the rows of A(~c ) are non-
overlapping.

Let Ri be the interval [c1 + · · ·+ ci−1 + 1, c1 + · · ·+ ci−1 + ci]. The row stabilizer of the
border strip B(~c ) is the subgroup SR1 ×SR2 × · · · ×SRk of the symmetric group Sn.

Since the poset Comp(n) of all compositions of n is a Boolean algebra, every composition
has a complementary composition ~c c. To obtain the complement of a composition write
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every part of the composition as a sum of 1s and then exchange the plus signs with the
commas. Similarly, the column stabilizer is defined as the row stabilizer of the border strip
of the complementary composition. More precisely, let (d1, d2, . . . , dp) be the complementary
composition ~c c and let Ki be the interval [d1 + · · ·+ di−1 + 1, d1 + · · ·+ di−1 + di]. Then the
column stabilizer is the subgroup SC

~c = SK1 ×SK2 × · · · ×SKp . See Figure 1.9.
We now review some basic representation theory of the symmetric group. For a less terse

introduction, see [32, Chapter 3]. A border strip tableau t of shape ~c is a filling of the border
strip B(~c ). In Figure 1.9 we look at the border strip tableau B(~c ) for ~c = (2, 3, 1). Note that
the row stabilizer is the group S~c = S[1,2]×S[3,5]×S[6,6]. Note that ~c = (1 + 1, 1 + 1 + 1, 1)
so that the complementary composition is ~c c = (1, 1 + 1, 1, 1 + 1) = (1, 2, 1, 2). Hence the
column stabilizer is SC

~c = S[1,1] ×S[2,3] ×S[4,4] ×S[5,6].
A border strip tabloid, denoted [t], is a border strip tableau under row equivalence.

Define the permutation module, MB(~c ), to be the vector space with basis elements given by
all tabloids of shape B(~c ). A polytabloid for the border strip ~c is defined by the alternating
sum et =

∑
γ∈SC

~c
(−1)γ · [γ · t], where SC

~c is the column stabilizer of the tableau t of shape ~c.

Lastly, the Specht module, denoted SB(~c ), is the subspace ofMB(~c ) generated by polytabloids.
The dimension of the Specht module SB(~c ) is given by the descent set statistics βn(~c ), while
the dimension of the permutation module MB(~c ) is given by the multinomial coefficient

(
n
~c

)
.

We now define two operations on compositions. The motivation comes from the asso-
ciated Specht and permutation modules. For a composition ~c = (c1, . . . , ck−1, ck) let ~c − 1
denote the composition (c1, . . . , ck−1, ck − 1) if ck ≥ 2, and otherwise let ~c − 1 denote the
empty composition. Similarly, let ~c/1 denote the composition (c1, . . . , ck−1, ck − 1) if ck ≥ 2,
and otherwise let ~c/1 denote the composition (c1, . . . , ck−1). Note that ~c/1 is always a com-
position of n− 1 if ~c is a composition of n.

For a composition ~c of n let B∗(~c ) denote the border strip B(~c − 1). In our results
the associated Specht module is SB

∗(~c ) and the group action is by Sn−1. We can think of
this Specht module as a submodule of SB(~c ) spanned by all standard Young tableaux where
the northeastern-most box is filled with n. Note that when the composition ends with the
entry 1, there are no such standard Young tableaux, and hence SB

∗(~c ) is the zero module.
If we require the tabloids that span the permutation module MB(~c ) to have the filling

n in the northeastern-most box, we obtain the submodule MB#(~c ). With this in mind, we
make the definition B#(~c ) = B(~c/1). Similarly, we define the shape A#(~c ) = A(~c/1).

Furthermore, the dimensions of the Specht module SB
∗(~c ) and the permutation mod-

ule MB#(~c ) are β∗n(~c ) and
(
n
~c/1

)
, respectively. Additionally, we have the decomposition

MB#(~c ) ∼=Sn−1

⊕
~c≤~d

SB
∗(~d ),

which is the representation theoretic analogue of equation (2.3.1). Please see Lemma 2.13.3
for a proof.

2.6 The simplicial complex Q∗∆

We now define the simplicial complex Q∗∆, which will serve us as an important stepping stone
to understanding the topology of a large class of filters in the partition lattice. We make the
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transition from Q∗∆ to the partition lattice using Quillen’s Fiber Lemma, see Theorem 1.8.1.
Note that by considering the reverse orders in Comp(n) and in Qn we obtain two simplicial
posets. Hence for ∆ a non-empty filter in Comp(n), we view ∆ as a simplicial complex under
the reverse order ≤∗. See the discussion in Section 2.4.

Definition 2.6.1. Let ∆ be a filter in Comp(n), that is, let ∆ be a simplicial complex
of compositions of n. Define Q∗∆ to be all ordered set compositions whose type is in the
complex ∆ and whose last block contains the element n, that is,

Q∗∆ = {σ = (C1, C2, . . . , Ck) ∈ Qn : type(σ) ∈ ∆, n ∈ Ck}.

Note that we view Q∗∆ as a simplicial complex. Our purpose is to study the reduced
homology groups of this complex.

Recall that the link of a composition ~c in ∆ is the filter

lk~c (∆) = {~d ∈ ∆ : ~d ≤∗ ~c },

where ≤∗ is the reverse of the partial order of Comp(n). Since lk~c(∆) is now a simplicial
poset with minimal element ~c, we have a dimension shift from ∆ to lk~c(∆) given by

dimlk~c(∆)(~d ) = dim∆(~d )− |~c |+ 1 (2.6.1)

for ~d ∈ lk~c (∆).

Remark 2.6.1. The symmetric group Sn−1 acts on Q∗∆ by permutation, whereas the action
of Sn−1 on the complex ∆ is the trivial action, meaning for any α ∈ Sn−1 the action of α
on a composition ~d ∈ ∆ is given by α · ~d = ~d. Therefore, as an Sn−1 module, the homology
of lk~c (∆) will be a direct sum of one dimension trivial representations of Sn−1.

Furthermore, the type map from Q∗∆ to ∆ respects the Sn−1 action, since the two ordered
set partitions σ and α · σ have the same type for σ ∈ Qn and α ∈ Sn−1.

A special case of Q∗∆ is when the simplicial complex ∆ is a simplex, that is, ∆ is generated
by one composition ~c. This case was studied by Ehrenborg and Jung in [12]. Their results
are given below.

Theorem 2.6.2 (Ehrenborg–Jung). Let ~c be a composition of n into k parts. Then the
complex Q∗~c is a wedge of β∗n(~c ) spheres of dimension k − 2. Furthermore, the top homol-

ogy group H̃k−2(Q∗~c) is isomorphic to the Specht module SB
∗(~c ) as an Sn−1-module. This

isomorphism φ : SB
∗(~c ) −→ H̃k−2(Q∗~c) is given by

φ (et) =
∑
γ∈SC

~c

(−1)γ · σ(α · γ,~c ),

where the permutation α ∈ Sn is obtained by reading the entries of the tabloid t from south-
west to northeast and attaching the element n at the end.
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Note that Ehrenborg and Jung formulated their result in terms of pointed set partitions.
That is, our notation Q∗~c is their notation ∆~d, where ~d = (c1, . . . , ck−1, ck−1). They allow the
last entry of a composition to be zero and similarly the last entry of an ordered set partition
to be empty. Moreover, our notation Π∗~c is in their notation Π•~d.

We can now state the main result of this section.

Theorem 2.6.3. Let ∆ be a simplicial complex of compositions of n. Then the ith reduced
homology group of the simplicial complex Q∗∆ is given by

H̃i(Q
∗
∆) ∼=

⊕
~c∈∆

H̃i−|~c |+1(lk~c (∆))⊗ SB∗(~c ).

Furthermore, this isomorphism holds as Sn−1-modules.

We will prove Theorem 2.6.3 at the end of Section 2.9.

2.7 The homomorphism φ∆
i

In this section and the next two sections we present a proof of Theorem 2.6.3 using induction
and Mayer–Vietoris sequences. The induction basis is when ∆ is generated by a single
composition ~c in Comp(n), and the proof of the basis follows from Theorem 2.6.2. The
induction step is to assume that Theorem 2.6.3 holds for ∆, Γ, and the intersection ∆ ∩ Γ,
and to show that it also holds for the union ∆ ∪ Γ. This step requires Mayer–Vietoris
sequences. Finally, since any simplicial complex is a union of simplices, Theorem 2.6.3 holds
for arbitrary simplicial complexes ∆ in Comp(n).

We begin by defining the isomorphism of Theorem 2.6.3 explicitly. Section 2.8 covers the
induction basis, whereas Section 2.9 covers the induction step.

Throughout this chapter we will let i~c denote the shift i− |~c |+ 1.

Definition 2.7.1. Let D~c
i (∆) be the tensor product Ci~c (lk~c (∆))⊗MB#(~c ) where Cj(lk~c (∆))

is the jth chain group of the link lk~c (∆). Let D~c (∆) be the chain complex whose ith chain
group is D~c

i (∆) and whose boundary map is ∂ ⊗ id. Lastly, let D(∆) be the chain complex
with ith chain group

⊕
~c∈∆D

~c
i (∆) with the differential

⊕
~c∈∆ ∂ ⊗ id.

Definition 2.7.2. Define the chain complex E~c(∆) analogous to D~c(∆) of Definition 2.7.1
above by replacing the permutation module MB#(~c ) with the Specht module SB

∗(~c ). We also
have the corresponding chain complex E(∆) with the same differential.

Lemma 2.7.1. The homology of the chain complexes D(∆) and E(∆) are given by

H̃i(D(∆)) ∼=
⊕
~c∈∆

H̃i~c (lk~c (∆))⊗MB#(~c ),

H̃i(E(∆)) ∼=
⊕
~c∈∆

H̃i~c (lk~c (∆))⊗ SB∗(~c ).

Proof. The homology of the chain complex D~c(∆) is given by ker(∂i~c ⊗ id)/ im(∂i~c+1⊗ id) ∼=
(ker(∂i~c) ⊗MB#(~c ))/(im(∂i~c+1) ⊗MB#(~c )) ∼= ker(∂i~c)/ im(∂i~c+1) ⊗MB#(~c ) ∼= H̃i~c(lk~c(∆)) ⊗
MB#(~c ). The analogous result holds for E~c(∆) and the lemma follows by direct summing.
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For the rest of this section we let t denote a tabloid in the permutation module MB#(~c )

and α ∈ Sn is the permutation obtained by reading the entries of the tabloid t in increasing
order from southwest to northeast and adjoining the element n at the end.

Definition 2.7.3. The Sn−1-action on D~c
i (∆) is given by τ ·(~d⊗t) = ~d⊗(τ ◦t), for τ ∈ Sn−1

and ~d⊗ t a basis element of D~c
i (∆) = Ci~c(lk~c(∆))⊗MB#(~c ).

Notice that Definition 2.7.3 states that Sn−1 acts on D~c
i (∆) by acting trivially on the

chain group Ci~c(lk~c(∆)) and by relabeling on MB#(~c ).

Definition 2.7.4. For a simplicial complex ∆ and a composition ~c in ∆ define the map

φ∆,~c
i : Ci~c(lk~c(∆))⊗MB#(~c ) −→ Ci(Q

∗
∆),

on basis elements by φ∆,~c
i (~d⊗ t) = σ(α, ~d ).

Since ~d ∈ Ci~c(lk~c(∆)) is a basis element, we know that ~d is a simplex of lk~c(∆) of
dimension i~c = i− |~c |+ 1, and thus by the dimension shift in equation (2.6.1), we have that

|~d | = i + 2, so that φ∆,~c
i (~d ) = σ(π, ~d ) is an ordered partition of dimension i. Lastly, since

tabloids in MB#(~c ) have n in the last block, we are guaranteed that φ∆,~c
i (~d ) ∈ Ci(Q∗∆).

Lemma 2.7.2. The map φ∆,~c
i : Ci~c(lk~c(∆))⊗MB#(~c ) −→ Ci(Q

∗
∆) respects the Sn−1-action.

Proof. Let τ ∈ Sn−1 and ~d⊗ t be a basis element of Ci~c(lk~c(∆))⊗MB#(~c ). Then we have

φ∆,~c
i (τ · (~d⊗ t)) = φ∆,~c

i (~d⊗ (τ · t)) = σ(τ · α, ~d ) = τ · σ(α, ~d ) = τ · φ∆,~c
i (~d⊗ t).

Lemma 2.7.3. The map φ∆,~c
i is an equivariant chain map between the complexes D~c (∆)

and Ci(Q
∗
∆). That is, the following diagram commutes:

D~c
i (∆)

φ∆,~c
i
��

∂⊗id
// D~c

i−1(∆)

φ∆,~c
i−1
��

Ci(Q
∗
∆) ∂ // Ci−1(Q∗∆)

Proof. Recall that the boundary map ∂ of Comp(n) as well as the boundary map ∂ of Q∗∆
are given in Section 2.4. Let ~d⊗ t ∈ Ci~c(lk~c(∆))⊗MB#(~c ). Tracing first right then down we
obtain:

φ∆,~c
i−1 ◦ (∂ ⊗ id)(~d⊗ t) = φ∆,~c

i−1(∂(~d )⊗ t) = σ(α, ∂(~d )).

Next, we trace down then right to obtain the same result:

∂ ◦ φ∆,~c
i (~d⊗ t) = ∂(σ(α, ~d )) = σ(α, ∂(~d )).

The equivariance of φ∆,~c
i is a consequence of Lemma 2.7.2.

Lemma 2.7.4. The map φ∆,~c
i induces a map

φ∆,~c
i : H̃i~c(lk~c (∆))⊗MB#(~c ) −→ H̃i(Q

∗
∆)

given by φ∆
i (~d ⊗ t) = σ(α, ~d ), for ~d ∈ Ci~c(lk~c (∆)) a cycle.
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Proof. Since φ∆,~c
i is an equivariant chain map between the chain complexesD~c (∆) and Ci(Q

∗
∆)

by Lemma 2.7.3, the result follows.

From now on, the use of the bar to indicate the quotient in passing from the chain space
to the homology group will be suppressed for ease of notation.

Definition 2.7.5. Define the map φ∆
i from Di(∆) =

⊕
~c∈∆D

~c
i~c

(∆) to Ci(Q
∗
∆) by adding all

the φ∆,~c
i maps together, that is,

φ∆
i =

∑
~c∈∆

φ∆,~c
i . (2.7.1)

Observe that φ∆
i restricts to a map from Ei(∆) to Ci(Q

∗
∆). Therefore φ∆

i also induces a

map from H̃i(E(∆)) =
⊕

~c∈∆ H̃i~c (lk~c (∆))⊗ SB∗(~c ) to H̃i(Q
∗
∆) using Lemma 2.7.4.

2.8 The main theorem

We can now state the missing isomorphism of Theorem 2.6.3.

Definition 2.8.1. Let Ki(∆) =
⊕

~c∈∆ H̃i~c (lk~c (∆)) ⊗ SB∗(~c ). Notice this is the right-hand
side of Theorem 2.6.3.

Remark 2.8.1. Note that Lemma 2.7.1 tells us that the homology of the complex E(∆)

is K(∆). That is, H̃i(E(∆)) ∼=Sn−1 Ki(∆). In fact, we introduced the notation K(∆) for
brevity, in order to keep the upcoming commutative diagrams readable.

We now present the main theorem of the section.

Theorem 2.8.2. Let ∆ be a subcomplex of Comp(n). Then the map

φ∆
i : Ki(∆) −→ H̃i(Q

∗
∆)

is an Sn−1-equivariant isomorphism.

Notice that Lemma 2.7.3 says that equation (2.7.1) is a well defined map from the ho-
mology of E(∆), which by Lemma 2.7.1 is Ki(∆), to the homology Hi(Q

∗
∆).

Our proof of Theorem 2.6.3 is by induction on the simplicial complex ∆. The induction
basis is when ∆ is a simplex, including the case when ∆ is the empty simplicial complex.

Proposition 2.8.3 (Base case for Theorem 2.6.3). Assume that ∆ is a filter in Comp(n)
generated by one composition, that is, ∆ is a simplicial complex. Then Theorem 2.6.3 holds
for ∆.

Proof. Suppose that ∆ ⊆ Comp(n) is generated by a composition ~d = (d1, d2, . . . , dk).
Theorem 2.6.2 states that Q∗∆ only has reduced homology in dimension k− 2. Additionally,
Theorem 2.6.2 states that the action of Sn−1 on the top homology of Q∗∆ is given by the

border shape Specht module SB
∗(~c ), that is, H̃k−2(Q∆) ∼=Sn S

B∗(~c ).

Next we show that φ∆
i : Ki(∆) −→ H̃i(Q

∗
∆) is an isomorphism for all i. When i 6= k − 2

both sides are the trivial module, that is, Ki(∆) = 0 = H̃i(Q
∗
∆) and hence the map φ∆

i is
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directly an isomorphism. Now assume that i = k − 2. Since all the links lk~c(∆) for ~c <∗ ~d
are contractible, we have

Kk−2(∆) =
⊕
~c∈∆

H̃k−2−|~c |+1(lk~c(∆))⊗ SB∗(~c ) = H̃−1(lk~d (∆))⊗ SB∗(~d ).

Notice that lk~d (∆) consists only of the composition ~d itself, so that the (−1)-dimensional

reduced homology group H̃−1(lk~d (∆)) is the homology of the chain space C−1(lk~d (∆)),

which is the one dimensional vector space with the generator ~d. Therefore, the map φ∆
k−2 :

H̃−1(lk~d (∆))⊗ SB∗(~d) −→ H̃k−2(Q∗∆) is given by

~d⊗ et = ~d⊗

∑
γ∈SC

~d

(−1)γ · [γ · t]

 7−→ ∑
γ∈SC

~d

(−1)γ · σ(α · γ, ~d ).

But this is an isomorphism by Theorem 2.6.2.

As a direct corollary we have that Theorem 5.3.2 holds for the empty simplex {(n)} ⊆
Comp(n).

Corollary 2.8.4. Theorem 5.3.2 holds for the empty simplicial complex, that is, the simpli-
cial complex consisting only of the composition (n).

Proof. Apply Proposition 2.8.3 to the simplicial complex ∆ generated by the composition (n)
in Comp(n).

2.9 The induction step

As any simplicial complex is a union of smaller simplicial complexes, we prove that Theo-
rem 5.3.2 holds for the complex ∆ ∪ Γ ⊆ Comp(n), assuming that Theorem 5.3.2 holds for
∆, Γ, as well as the intersection ∆ ∩ Γ.

Lemma 2.9.1. The following two identities hold for the link: lk~c (∆ ∩ Γ) = lk~c (∆) ∩ lk~c (Γ)
and lk~c (∆ ∪ Γ) = lk~c (∆) ∪ lk~c (Γ).

Lemma 2.9.2. The following two identities hold for the ordered set partition poset: Q∗∆∩Γ =
Q∗∆ ∩Q∗Γ and Q∗∆∪Γ = Q∗∆ ∪Q∗Γ.

The proofs of these two lemmas are straightforward.
Before we begin the proof of Theorem 5.3.2, let us remind ourselves of Definition 2.7.1.

That is, for each composition ~c in ∆ we have the chain complex D~c(∆) whose ith chain
group is D~c

i (∆) = Ci~c(lk~c(∆))⊗MB#(~c ). Furthermore, D(∆) is the chain complex obtained
by direct summing D~c(∆) over all ~c ∈ ∆.

We now begin the proof of the induction step of Theorem 5.3.2.
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Lemma 2.9.3. For ~c ∈ ∆∩Γ the following diagram is commutative, and its rows are exact.

0 // D~c
i (∆ ∩ Γ)

φ∆∩Γ,~c
i
��

// D~c
i (∆)⊕D~c

i (Γ)

φ∆,~c
i ⊕φΓ,~c

i
��

// D~c
i (∆ ∪ Γ)

φ∆∪Γ,~c
i
��

// 0

0 // Ci(Q
∗
∆∩Γ) // Ci(Q

∗
∆)⊕ Ci(Q∗Γ) // Ci(Q

∗
∆∪Γ) // 0

Proof. The horizontal maps in the above diagram are given by the construction of the Mayer–
Vietoris sequence applied to lk~c (∆∪Γ) = lk~c (∆)∪lk~c (Γ) in the top row, and Q∗∆∪Γ = Q∗∆∪Q∗Γ
in the bottom row. The top horizontal maps have also been tensored with the identity map
on the Specht modules. As the Specht module is free, both the top and bottom rows of the
diagram remain exact.

We show commutativity of the left square, as the right square is analogous. Let ~d⊗ α ∈
Ci~c(∆ ∩ Γ)⊗MB#(~c ) be a basis element. First we trace right then down to obtain:

~d⊗ α 7−→ (~d⊗ α)⊕−(~d⊗ α) 7−→ σ(α, ~d )⊕−σ(α, ~d ).

We obtain the same result by first tracing down then right:

~d⊗ α 7−→ σ(α, ~d ) 7−→ σ(α, ~d )⊕−σ(α, ~d ).

Lemma 2.9.4. For each ~c ∈ ∆− Γ, we have the commutative diagram with exact rows:

0 // 0 //

0
��

D~c
i (∆) id //

φ∆
i ⊕0

��

D~c
i (∆) //

φ∆∪Γ
i

��

0

0 // Ci(Q
∗
∆∩Γ) // Ci(Q

∗
∆)⊕ Ci(Q∗Γ) // Ci(Q

∗
∆∪Γ) // 0

Proof. The left-hand square commutes trivially. We show the right-hand square commutes
by first tracing right then down:

~c⊗ π 7−→ ~c⊗ π 7−→ σ(π,~c ).

Now we trace down then right:

~c⊗ π 7−→ σ(π,~c )⊕ 0 7−→ σ(π,~c ) + 0 = σ(π,~c )

Exactness of the rows in the diagram follows from Lemma 2.9.3, as the bottom row has
remained unchanged.

Notice that we can replace ∆− Γ in Lemma 2.9.4 with Γ−∆, which we will need in the
following proof.

Lemma 2.9.5. The following diagram is commutative, and its rows are exact.

0 // Di(∆ ∩ Γ)

φ∆∩Γ
i
��

// Di(∆)⊕Di(Γ)

φ∆
i ⊕φΓ

i
��

// Di(∆ ∪ Γ)

φ∆∪Γ
i
��

// 0

0 // Ci(Q
∗
∆∩Γ) // Ci(Q

∗
∆)⊕ Ci(Q∗Γ) // Ci(Q

∗
∆∪Γ) // 0
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Proof. The proof is by taking direct sums of the previous two short exact sequences. First,
take the direct sum of the diagram in Lemma 2.9.3 for each ~c ∈ ∆ ∩ Γ. Next, take the
resulting short exact sequence of chain complexes and take its direct sum with the diagram
in Lemma 2.9.4 for each ~c ∈ ∆−Γ. Finally, switch ∆ and Γ in Lemma 2.9.4 and direct sum
the resulting diagram with the diagram from Lemma 2.9.4 for each ~c ∈ Γ−∆. Observe that
the second row of the diagram remains the same throughout this process. Also, note that
the top row is exact as it is the direct sum of exact sequences. All together, this yields the
desired commutative diagram.

Proposition 2.9.6. The following diagram is commutative, and its rows are exact.

0 // Ei(∆ ∩ Γ)

φ∆∩Γ
i
��

// Ei(∆)⊕ Ei(Γ)

φ∆
i ⊕φΓ

i
��

// Ei(∆ ∪ Γ)

φ∆∪Γ
i
��

// 0

0 // Ci(Q
∗
∆∩Γ) // Ci(Q

∗
∆)⊕ Ci(Q∗Γ) // Ci(Q

∗
∆∪Γ) // 0

Proof. Since Ei(∆) is a subspace of Di(∆), it follows from Lemma 2.9.5 that the diagram
is commutative. Furthermore, that the second row is exact also follows from this lemma. It
remains to show that the first row is exact. However, this follows by the same reason that
the first row of Lemma 2.9.5 is exact, but with the permutation module MB#(~c ) replaced
with the Specht module SB

∗(~c ).

Proposition 2.9.7 (Induction step of Theorem 5.3.2). Assume that Theorem 5.3.2 holds for
the simplicial complexes ∆, Γ, and the intersection ∆ ∩ Γ. Then Theorem 5.3.2 also holds
for the union ∆ ∪ Γ.

Proof. Consider the diagram of short exact sequences of chain complexes given in Proposi-
tion 2.9.6. Use the zig-zag lemma to obtain the Mayer–Vietoris sequence:

· · · // Ki(∆ ∩ Γ)

φ∆∩Γ
i
��

// Ki(∆)⊕Ki(Γ)

φ∆
i ⊕φΓ

i
��

// Ki(∆ ∪ Γ)

φ∆∪Γ
i
��

// · · ·

· · · // H̃i(Q
∗
∆∩Γ) // H̃i(Q

∗
∆)⊕ H̃i(Q

∗
Γ) // H̃i(Q

∗
∆∪Γ) // · · ·

The assumption that Theorem 5.3.2 holds for the complexes ∆ ∩ Γ, ∆, and Γ implies that
φ∆∩Γ
i and φ∆

i ⊕ φΓ
i are isomorphisms. The five-lemma now implies that φ∆∪Γ

i is also an
isomorphism. Furthermore, φ∆∪Γ

i is an Sn−1-equivariant map by Lemma 2.7.2.

We have now proven Theorem 5.3.2, and hence Theorem 2.6.3, by induction. The base
case was proven in Proposition 2.8.3, and the induction step was proven in Proposition 2.9.7.

2.10 Alternate Proof of Theorem 2.6.3

As mentioned in the introduction, we now give an alternate proof of Theorem 2.6.3 using a
poset fiber theorem of Björner, Wachs and Welker [4].
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Theorem 2.10.1. Let ∆ be a simplicial complex of compositions of n. Then the ith reduced
homology group of the simplicial complex Q∗∆ is given by

H̃i(Q
∗
∆) ∼=

⊕
~c∈∆

H̃i−|~c |+1(lk~c (∆))⊗ SB∗(~c ).

Furthermore, this isomorphism holds as Sn−1-modules.

Proof. Consider the two posets ∆ and Q∗∆ with the reverse order ≤∗ and the poset map

type : Q∗∆ − {([n])} −→ ∆− {(n)}.

Observe that the type map respects the action of the symmetric group Sn−1. Now the inverse
image type−1(∆≤∗~c) is the filter Q∗~c . Since Q∗~c only has reduced homology in dimension |~c |−2
by Theorem 2.6.2, we have that the fiber4(type−1(∆≤∗~c)) is (|~c |−3)-acyclic, where |~c |−3 is
the length of the longest chain in type−1(∆<∗~c). Hence Theorem 9.1 of [4] applies. Since Sn−1

acts trivially on ∆ (see Remark 2.6.1), we have that the stabilizer StabSn−1(~c ) is in fact the
whole group Sn−1. Thus there is no representation to induce and we have that:

H̃i(Q
∗
∆) ∼=Sn−1 H̃i(∆)⊕

⊕
~c∈∆−{(n)}

H̃|~c |−2(type−1(∆≤∗~c))⊗ H̃i−|~c |+1((∆− {(n)})>∗~c)

∼=Sn−1 H̃i(∆)⊕
⊕

~c∈∆−{(n)}

SB
∗(~c ) ⊗ H̃i−|~c |+1(lk~c (∆)),

where the first summand corresponds to ~c = (n) and the trivial representation SB
∗(n), proving

the result.

2.11 Filters in the set partition lattice

In Theorem 2.6.3 we characterized each homology group of Q∗∆, a subspace of ordered set
partitions. We will now translate the topological data we have gathered on Q∗∆ into data on
the usual partition lattice Πn.

Recall that Q∗∆ is the collection of ordered set partitions, containing n in the last block,
whose type is contained in the simplicial complex ∆ ⊆ Comp(n). Recall that the for-
getful map of Equation (1.5.2) is given by forgetting the order between blocks, that is,
f((C1, C2, . . . , Ck)) = {C1, C2, . . . , Ck}.

Definition 2.11.1. Let Π∗∆ ⊆ Πn be the image of Q∗∆ under the forgetful map f .

Lemma 2.11.1. Suppose that F is a filter in the integer partition lattice. Let ∆F be the
filter of compositions given by {~c ∈ Comp(n) : type(~c ) ∈ F}. Then the associated filter
Π∗∆F

in the partition lattice is given by {π ∈ Πn : type(π) ∈ F}.

Proof. Choose π ∈ Πn such that type(π) ∈ F , with π = {B1, B2, . . . , Bk} where we suppose
n ∈ Bk. The ordered set partition τ = (B1, B2, . . . , Bk) is an element of Q∗∆n

, since type(τ) =
type(π) ∈ F . Hence π is in the image of the forgetful map f . The other direction is clear.
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Remark 2.11.2. In general, taking the image of a filter ∆ ⊆ Comp(n) under the map
type does not define a filter in the integer partition lattice In. For example, consider the
simplex ∆ in Comp(6) generated by (3, 2, 1). Note that type(∆) consists of the four partitions
{{3, 2, 1}, {3 + 2, 1}, {3, 2 + 1}, {3 + 2 + 1}} = {{3, 2, 1}, {5, 1}, {3, 3}, {6}}. But this is not
a filter in I6 since it does not contain the partition {4, 2}.

Lemma 2.11.3. The forgetful map f : Q∗∆ −→ Π∗∆ respects the Sn−1-action.

Proof. Let α ∈ Sn−1 and σ = (C1, . . . , Ck) ∈ Q∗∆. Then we have that

f(α · σ) = f((α(C1), . . . , α(Ck))) = {α(C1), . . . , α(Ck)} = α · f(σ).

The Sn−1 action on Π∗∆ extends to the chains in the order complex 4(Π∗∆ − {1̂}).
For a statement of the equivariant version of the Quillen Fiber Lemma, please see [43,

Theorem 5.2.2].

Proposition 2.11.4. The forgetful map f : Q∗∆ − {1̂} −→ Π∗∆ − {1̂} = P satisfies the
condition of Quillen’s Equivariant Fiber Lemma, see Theorem 1.8.1. In particular, for a
partition π = {B1, B2, . . . , Bk} in P , the order complex 4(f−1(P≥π)) is the barycentric
subdivision of a cone, and is therefore contractible and acyclic.

Proof. Let Bk be the block of the partition π that contains the element n. Note that because
every ordered partition in Q∗∆ must have the element n in its last block, we must have that
each ordered set partition in the fiber f−1(π) has the set Bk as its last block. Furthermore,
the last block of each ordered set partition in f−1(P≥π) contains the block Bk.

We claim that f−1(P≥π) is a cone with apex ([n] − Bk, Bk). Let σ ∈ f−1(P≥π) be the
ordered set partition σ = (C1, . . . , Cp−1, Cp). Note that the number of blocks of σ, p, is greater
than or equal to 2 as we have removed the maximal element 1̂ from Q∗∆. If Cp = Bk then the
face σ contains the vertex ([n]−Bk, Bk). If Cp ) Bk then both σ and the vertex ([n]−Bk, Bk)
are contained in the face (C1, . . . , Cp−1, Cp − Bk, Bk) in f−1(P≥π). Hence f−1(P≥π) is the
face poset of a cone with vertex ([n]−Bk, Bk), and therefore 4(f−1(P≥π)) is the barycentric
subdivision of a cone, and hence contractible and acyclic, by Proposition 1.7.1.

Combining Proposition 2.11.4 with Theorem 2.6.3, we have the following result for the
homology of the order complex 4(Π∗∆ − {1̂}).

Theorem 2.11.5. The ith reduced homology group of the order complex of Π∗∆−{1̂} is given
as an Sn−1-module as

H̃i(4(Π∗∆ − {1̂})) ∼=Sn−1

⊕
~c∈∆

H̃i−|~c |+1(lk~c (∆))⊗ SB∗(~c ).

Remark 2.11.6. Suppose that lk~c (∆) has reduced homology in dimension j. Then Theo-
rem 2.11.5 tells us that this reduced homology contributes to dimension j + |~c | − 1 of the
reduced homology of the order complex of Π∗∆ − {1̂}.

We end the section with a discussion of Morse matchings in the link lk~c (∆). Assume

that the link lk~c(∆) has a discrete Morse matching with critical cell ~d, which also contributes

to the reduced homology of lk~c(∆). For instance, this case occurs if ~d is a facet. Similarly,
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~d will contribute to the reduced homology of lk~c(∆) if ~d is a homology facet of a shelling.

In either case, the critical cell ~d contributes to the reduced homology of 4(Π∗∆ − {1̂}) in

dimension dimlk~c(∆)(~d ) + |~c | − 1 = dim∆(~d ) = |~d | − 2, by equation (2.6.1). Note that this
dimension is independent of the composition ~c.

2.12 Consequences of the main result

As the title of this section suggests, we will now derive results from Theorem 2.11.5 using
topological data from ∆.

Theorem 2.12.1. Assume that ∆ is homeomorphic to a k-dimensional manifold with or
without boundary. Then the reduced homology of the order complex 4(Π∗∆−{1̂}) is given by

H̃i(4(Π∗∆ − {1̂})) ∼=Sn−1 H̃i(∆)⊗ 1Sn−1 for i < k,

and the top dimensional homology is given by

H̃k(4(Π∗∆ − {1̂})) ∼=Sn−1 H̃k(∆)⊗ 1Sn−1 ⊕
⊕

~c∈ Int(∆)

SB
∗(~c ),

where 1Sn−1 is the trivial representation of Sn−1, and the direct sum is over the interior faces
of the manifold ∆. Moreover, these isomorphisms hold as Sn−1-modules.

Proof. Since ∆ is homeomorphic to a k-dimensional manifold, we may apply the comment
preceding Proposition 3.8.9 of [36], which states that for any ~c ∈ ∆, where ~c is not the empty
composition (n), we have that lk~c (∆) has the homology groups of a sphere of dimension
k − |~c | + 1 if ~c is on the interior of ∆, or the homology groups of a ball of dimension
k− |~c |+ 1 if ~c is on the boundary. Hence if ~c is on the boundary of ∆ it does not contribute
to the reduced homology of ∆(Π∗∆ − {1̂}). If instead ~c is in the interior of ∆ then it will
contribute to the reduced homology group of dimension (k − |~c | + 1) + |~c | − 1 = k, the
top homology of the complex, by Remark 2.11.6. Finally, observe that the composition (n)
contributes to all homology groups of 4(Π∗∆ − {1̂}) when ∆ has homology, and that the
Specht module SB

∗(n) is the trivial representation 1Sn−1 .

We now give two immediate corollaries of Theorem 2.12.1, namely when ∆ is a sphere or
a ball.

Corollary 2.12.2. Suppose that ∆ is homeomorphic to a sphere of dimension k. Then the
order complex 4(Π∗∆ − {1̂}) only has homology in dimension k, which is given by:

H̃k(4(Π∗∆ − {1̂})) ∼=Sn−1

⊕
~c∈∆

SB
∗(~c ).

Corollary 2.12.3. Suppose that ∆ is homeomorphic to a ball of dimension k. Then the
order complex 4(Π∗∆ − {1̂}) only has homology in dimension k, which is given by:

H̃k(4(Π∗∆ − {1̂})) ∼=Sn−1

⊕
~c∈Int(∆)

SB
∗(~c ).
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Next we obtain a result about 4(Π∗∆ − {1̂}) when ∆ is shellable.

Proposition 2.12.4. Suppose that ∆ is a shellable complex of dimension k. Then the order
complex 4(Π∗∆ − {1̂}) only has reduced homology in dimension k, which is given by:

H̃k(4(Π∗∆ − {1̂})) ∼=Sn−1

⊕
~c∈∆

β̃k−|~c |+1(lk~c(∆)) · SB∗(~c ).

Proof. Note that the face ~c has dimension |~c | − 2. Hence the link lk~c(∆) has dimension
k−dim(~c )−1 = k−|~c |+1, by Equation (2.6.1). Since the link is shellable, all of its reduced
homology is in dimension k − |~c | + 1 and this contributes only to the reduced homology of
dimension k of 4(Π∗∆ − {1̂}) by Remark 2.11.6.

2.13 The representation ring

The representation ring R(G) of a group G is the free abelian group with generators given
by representations V of G, modulo the subgroup generated by V + W − V ⊕W . Elements
of the representation ring are called virtual representations, because summands can have
negative coefficients. For finite groups, complete reducibility implies R(G) is just the free
abelian group generated by the irreducible representations V of G.

Remark 2.13.1. Suppose G acts trivially on the space V . Then V ⊗W ∼=G dim(V ) ·W in
the representation ring R(G).

Proof. Since G acts trivially on V we know that V ∼=G Cdim(V ). Thus, V ⊗W ∼=G Cdim(V ) ⊗
W ∼=G dim(V ) ·W.

In the representation ring we can compute the alternating sum of the homology groups of
4(Π∗∆−{1̂}), which we do in the following proposition. This can be seen as Sn−1-analogue
of the reduced Euler characteristic.

Proposition 2.13.2. As virtual Sn−1-representations we have that⊕
i≥−1

(−1)i · H̃i(4(Π∗∆ − {1̂})) ∼=
⊕
~c∈∆

(−1)|~c |−1 · χ̃(lk~c (∆)) · SB∗(~c ).

Proof. We begin the proof by applying alternating sums to both sides of Theorem 2.11.5.⊕
i≥−1

(−1)i · H̃i(4(Π∗∆ − {1̂})) ∼=
⊕
i≥−1

(−1)i ·
⊕
~c∈∆

H̃i−|~c |+1(lk~c (∆))⊗ SB∗(~c )

∼=
⊕
~c∈∆

⊕
i≥−1

(−1)i · β̃i−|~c |+1(lk~c (∆)) · SB∗(~c )

∼=
⊕
~c∈∆

(−1)|~c |−1 ·
⊕
j≥−1

(−1)j · β̃j(lk~c (∆)) · SB∗(~c )

∼=
⊕
~c∈∆

(−1)|~c |−1 · χ̃(lk~c (∆)) · SB∗(~c ),

where the second step is by Remark 2.13.1, since Sn−1 acts trivially on H̃i−|~c |+1(lk~c (∆)).
Furthermore, in the last step we used that the alternating sum of the Betti numbers is the
reduced Euler characteristic.
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The next lemma is straightforward to prove using jeu-de-taquin; see [32] or [35, A.1.2].

Lemma 2.13.3. The permutation module MB#(~c ) is equal to the direct sum over all border

strip Specht modules SB
∗(~d ) for ~d ≤∗ ~c. That is,

MB#(~c ) ∼=Sn−1

⊕
~d≤∗ ~c

SB
∗(~d ).

Proof. Recall that the border strip of shape A#(~c ) was defined in Section 2.5.
We have the isomorphism SA

#(~c ) ∼=Sn−1 M
A#(~c ) because the rows of the shape A(~c/1)

are non-overlapping, thus polytabloids of shape A(~c/1) are tabloids of shape A(~c/1). Ad-
ditionally, we have MA#(~c ) ∼=Sn−1 MB#(~c ), since tabloids are defined as row equivalence
classes of tableaux and A(~c/1) and B(~c/1) have the same rows. Combining these two Sn−1-
isomorphisms yields MB#(~c ) ∼= SA

#(~c ).
Now consider the k−1 empty boxes situated to the left of every row in the Specht module

defined by the shape A#(~c ), but above the last box of the previous row. For each of these
boxes perform a jeu-de-taquin slide into this box.

For each slide, there are two alternatives. If the slide is horizontal, it moves the upper
row one step to the left such that the two rows overlap in one position. If the slide is vertical
then every entry in the lower row moves one step up.

After performing all the k − 1 slides the result is a border shape of shape B#(~c ), where

the composition ~c is less than or equal to the composition ~d in the dual order.

Proposition 2.13.2 can also be proved using the Hopf trace formula; see [43, Theorem
2.3.9].

Second proof of Proposition 2.13.2. Recall that H̃i(4(Π∗∆ − {1̂})) ∼= H̃i(Q
∗
∆). By applying

the Hopf trace formula we have that⊕
i≥−1

(−1)i · H̃i(Q
∗
∆) ∼=

⊕
i≥−1

(−1)i · Ci(Q∗∆)

∼=
⊕
~d∈∆

(−1)|
~d | ·MB#(~d )

∼=
⊕
~d∈∆

(−1)|
~d | ·
⊕
~c≤∗ ~d

SB
∗(~c )

∼=
⊕
~c∈∆

∑
~d≥∗~c
~d∈∆

(−1)|
~d | · SB∗(~c )

∼=
⊕
~c∈∆

(−1)|~c |−1 ·
∑
~d≥∗~c
~d∈∆

(−1)|
~d |−|~c |−1 · SB∗(~c ).

Notice that in the second isomorphism we have used that the chain space Ci(Q
∗
∆) has basis

given by all ordered set partitions into i+ 2 parts with type in ∆. This is equivalent to the

direct sum over all permutation modules MB#(~d ) where ~d ∈ ∆ is a composition of n into
i+ 2 parts. The remaining step is to observe that the inner sum of the last line is given by
the reduced Euler characteristic χ̃(lk~c(∆)).
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We observe that in the case when the order complex 4(Π∗∆ − {1̂}) has all its reduced
homology concentrated in one dimension, the proof of Proposition 2.13.2 using the Hopf
trace formula gives a shorter proof of our main result, Theorem 2.11.5.

Lastly, by taking dimension on both sides of Proposition 2.13.2 we obtain the reduced
Euler characteristic of 4(Π∗∆ − {1̂}).

Corollary 2.13.4. The reduced Euler characteristic of 4(Π∗∆ − {1̂}) is given by

χ̃(4(Π∗∆ − {1̂})) =
∑
~c∈∆

(−1)|~c |−1 · χ̃(lk~c (∆)) · β∗n(~c ).

Note that this corollary extends Theorem 3.1 from [13].

2.14 The homotopy type of Π∗∆

We turn our attention to the homotopy type of the order complex4(Π∗∆−{1̂}). By combining
the poset fiber theorems of Quillen [29] and Björner, Wachs and Welker [4] we obtain the
next result. Recall that ∗ denotes the (free) join of complexes.

Theorem 2.14.1. The order complex of Π∗∆−{1̂} is homotopy equivalent to the complex of
ordered set partitions Q∗∆, that is, 4(Π∗∆−{1̂}) ' Q∗∆. Furthermore, the following homotopy
equivalence holds

Q∗∆ ' 4(∆− {(n)}) ∨ {Q∗~c ∗ lk~c(∆) : ~c ∈ ∆− {(n)}},

where ∨ denotes identifying each vertex ~c in 4(∆−{(n)} with any vertex in Q∗~c. In the case
when the complex ∆ is connected then the homotopy equivalence simplifies to

Q∗∆ '
∨
~c∈∆

Q∗~c ∗ lk~c(∆).

Proof. The first homotopy equivalence follows by applying Quillen’s fiber lemma to the
forgetful map f , which yields 4(Π∗∆−{1̂}) ' 4(Q∗∆−{1̂}) ∼= Q∗∆, since 4(Q∗∆−{1̂}) is the
barycentric subdivision of Q∗∆.

The second homotopy equivalence, in both cases, follows by Theorem 1.1 in [4], with
the same reasoning as in the proof of Theorem 2.6.3. Furthermore, when ~c = (n) then the
complex Q∗~c is the empty complex, which is the identity for the join.

Corollary 2.14.2. Let ∆ be a connected simplicial complex. Assume furthermore, that each
link (including ∆) lk~c(∆) is a wedge of spheres. Then the order complex 4(Π∗∆ − {1̂}) is
also a wedge of spheres. Furthermore, the number of i-dimensional spheres is given by the
sum ∑

~c∈∆

β∗n(~c ) · β̃i−|~c |+1(lk~c (∆)), (2.14.1)

where β̃j denotes the jth reduced Betti number.

Next we have the homotopy versions of Corollaries 2.12.2 and 2.12.3. To prove the
next two corollaries, we are again using the comment preceding Proposition 3.8.9 of [36] to
determine the reduced Betti numbers of the links.
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Corollary 2.14.3. Suppose that ∆ is homeomorphic to a sphere of dimension k. Then the
order complex 4(Π∗∆ − {1̂}) is a wedge of k-dimensional spheres and the number of spheres
is given by the sum: ∑

~c∈∆

β∗n(~c ).

Corollary 2.14.4. Suppose that ∆ is homeomorphic to a ball of dimension k. Then the
order complex 4(Π∗∆ − {1̂}) is a wedge of k-dimensional spheres and the number of spheres
is given by the sum: ∑

~c∈Int(∆)

β∗n(~c ).

We end this section with a discussion of how we can lift discrete Morse matchings from
the links of ∆ to the complex of order set partitions Q∗∆.

Definition 2.14.1. For an ordered set partition σ = (C1, C2, . . . , Ck) of n, where Ci =
{ci,1 < ci,2 < · · · < ci,ji} and |Ci| = ji, define the permutation perm(σ) ∈ Sn to be the
elements of the blocks written out in the order of the blocks, that is,

perm(σ) = c1,1, c1,2, . . . , c1,j1 , c2,1, c2,2, . . . , ck,jk .

Define the descent set of an ordered set partition σ to be Des(σ) = Des(perm(σ)).
Observe that the descent composition of an ordered set partition is an order preserving map
from the poset of ordered set partitions Qn to the poset of compositions Compn, that is,
Des : Q∗n −→ Comp(n) is a poset map.

Lemma 2.14.5. Let ∆ be a filter in the composition poset Comp(n). For the order preserving
map Des : Q∗∆ −→ ∆ the poset fiber Des−1(~c ) is the (poset) direct sum of β∗n(~c ) copies of the

poset lk~c (∆) = {~d ∈ ∆ : ~d ≤∗ ~c }.

Proof. Let σ be an ordered set partition and assume that the ith block Ci is the disjoint
union of the two non-empty sets X and Y such that max(X) < min(Y ). Observe now
that the two ordered set partitions σ and (. . . , Ci−1, X, Y, Ci+1, . . .) have the same descent
composition, since there is no descent between blocks X and Y .

Let ~c be a composition in the filter ∆. For any ordered set partition τ in the fiber
Des−1(~c ) we know that τ has descent composition ~c, that is, Des(τ) = ~c. As τ can only have
descents between blocks, we know the minimal elements of Des−1(~c ) have the form σ(α,~c ),
for α ∈ Sn satisfying Des(α) = ~c and αn = n. To remain in the same fiber as these minimal
elements, we are free to break blocks as in previous paragraph, hence

Des−1(~c ) = {σ(α, ~d ) : ~c ≤∗ ~d, ~d ∈ ∆, Des(α) = ~c, αn = n}.

Notice that the poset lk~c (∆) is isomorphic to the poset {σ(α, ~d ) : ~d ≤ ~c, ~d ∈ ∆} for a fixed
permutation α ∈ Sn satisfying Des(α) = ~c and αn = n. Finally, for a composition ~e ∈ lk~c (∆)
and a permutation β ∈ Sn different from α such that Des(β) = ~c and βn = n, consider the

two ordered set partitions σ(β,~e ) and σ(α, ~d ), where ~d ∈ lk~c (∆). By examining the first
increasing run in the permutations α and β where their elements differ, we conclude that the
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two ordered set partitions σ(β,~e ) and σ(α, ~d ) are incomparable. Thus the fiber Des−1(~c )
is a direct sum of copies of the poset lk~c (∆), one for each permutation α in Sn satisfying
Des(α) = ~c and α(n) = n.

Theorem 2.14.6. Let ∆ be a simplicial complex of compositions such that every link lk~c (∆)
has a Morse matching where the critical cells are facets of the link lk~c (∆). Then the simplicial
complex Q∗∆ has a Morse matching, where the number of i-dimensional critical cells is given
by equation (2.14.1).

Proof. Apply the Patchwork Theorem [18, Theorem 11.10] to the poset map Des : Q∗∆ −→ ∆.
By Lemma 2.14.5, each fiber is a direct sum of links of ∆, each of which has a Morse
matching, where each critical cell is a facet. Hence Q∗∆ is homotopy equivalent to a wedge of
spheres, and thus the order complex 4(Π∗∆ − {1̂}) is also a wedge of spheres. The number
of i-dimensional critical cells of Q∗∆ in the fiber Des−1(~c ) is the number of critical cells of
dimension i−|~c |+ 1 in the link lk~c (∆) times the number of copies of the link, that is β∗n(~c ).
By summing over all compositions ~c in ∆ the result follows.

Now suppose that ∆ is a shellable complex, in the broader non-pure sense. Then each
link in ∆ is also shellable, and thus for each link there exists a discrete Morse matching
whose critical cells are facets of the link; see Chapter 12 of [18].

Corollary 2.14.7. If ∆ is a non-pure shellable complex then Theorem 2.14.6 applies and
the simplicial complex Q∗∆ has a Morse matching where the number of i-dimensional critical
cells is given by equation (2.14.1).

Proof. This follows directly from two observations: (i) a non-pure shellable complex has
a Morse matching with all critical cells being facets (ii) each link of a non-pure shellable
complex is non-pure shellable. See Section 12.1 in [18].

2.15 Examples

In this section we use Theorem 2.11.5 and its consequences from Section 2.12 to derive results
about various filters Π∗∆.

Example 2.15.1. Let ~d be a composition of n into k+2 parts and let ∆ be the simplex gener-
ated by ~d. Since the simplex is homeomorphic to the k dimensional ball, by Corollary 2.12.3
we have that the kth reduced homology group is given by

H̃k(4(Π∗∆ − {1̂})) ∼=Sn−1 S
B∗(~d ),

since the only face of ∆ in the interior of ∆ is the facet ~d. This example illustrates Theo-
rems 5.3 and 7.4 in [12]. Moreover, this is the base case of the authors’ proof of Theorem 2.6.3
using the Mayer–Vietoris sequence.

Example 2.15.2. Let ~d be a composition into k+ 3 parts and let ∆ be the boundary of the
simplex generated by ~d, that is, ∆ is homeomorphic to a k-dimensional sphere. Then ∆ is
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shellable and the order complex 4(Π∗∆ − {1̂}) is a wedge of k-dimensional spheres. Now by
Corollary 2.12.2 we have that the kth reduced homology group is given by

H̃k(4(Π∗∆ − {1̂})) ∼=Sn−1

⊕
~c<∗ ~d

SB
∗(~c ) ∼=Sn−1 M

B#(~d )/SB
∗(~d ).

Note that we have used Lemma 2.13.3 to express the permutation module MB#(~d ) as a direct
sum of Specht modules.

Example 2.15.3. Let ~d be a composition of n into k + r parts, where r ≥ 1. Let ∆ be the
k-skeleton of the simplex generated by the composition ~d. Note that ∆ is shellable, so by
Corollary 2.14.7 the order complex 4(Π∗∆ − {1̂}) is a wedge of k-dimensional spheres. By
Proposition 2.12.4 we have the following calculation in the representation ring:

H̃k(4(Π∗∆ − {1̂})) ∼=Sn−1

⊕
~c<~d
|~c |≤k+2

(
k + r − |~c | − 1

k − |~c |+ 2

)
· SB∗(~c ), (2.15.1)

where we have used that β̃k−|~c |+1(lk~c (∆)) = (−1)k−|~c |+1 · χ̃(lk~c (∆)) since lk~c (∆) is shellable.
Lastly, we also used a basic identity on the alternating sum of binomial coefficients, which
arises in computing the Euler characteristic of the link.

Example 2.15.4 (The d-divisible partition lattice with minimal elements removed). Let
n be a multiple of d. Consider the boundary of the simplex generated by the composi-
tion (d, d, . . . , d) of n. Then ∆ is a (n/d − 3)-dimensional simplicial complex, and Π∗∆ is
the d-divisible partition lattice without its minimal elements. By applying Example 2.15.2
we obtain that 4(Π∗∆ − {1̂}) is a wedge of (n/d − 3)-dimensional spheres and the reduced

homology group is given by H̃n/d−3(Π∗∆ − {1̂}) ∼=Sn−1 M
B#(d,...,d,d)/SB

∗(d,d,...,d).

Setting d = 1 in the last example shows that the action of Sn−1 on the reduced homology
group of 4(Πn − {0̂, 1̂}) is MB#(1,...,1,1) = MB(1,...,1), which is the regular representation
of Sn−1.

Example 2.15.5 (The truncated d-divisible partition lattice). To generalize Example 2.15.4
and specialize Example 2.15.3, let n = (k + r) · d and consider the k-skeleton of the simplex
generated by the composition (d, d, . . . , d) of n. Here Π∗∆ consists of all set partitions in the
d-divisible partition lattice with at most k+2 parts. Directly we have that the order complex
4(Π∗∆ − {1̂}) is a wedge of k-dimensional spheres and its k-dimensional reduced homology
is given by equation (2.15.1).

Examples 2.15.4 and 2.15.5 are both rank selected subposets of the d-divisible partition
lattice, which is (pure) shellable, and thus by Stanley [33], each of these complexes are (pure)
shellable.

Example 2.15.6. An integer partition λ = {λm1
1 , λm2

2 , . . . , λ
mp
p } of the non-negative integer n

is called knapsack if all the sums
∑p

i=1 ei ·λi, where 0 ≤ ei ≤ mi, are distinct. In other words,
λ is knapsack if ∣∣∣∣∣

{
p∑
i=1

ji · λi : 0 ≤ ji ≤ mi

}∣∣∣∣∣ =

p∏
i=1

(mi + 1).
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For a knapsack partition λ into k−1 parts of n−m, where m < n, define ∆λ,m to be the sim-
plicial complex ∆λ,m which has the facets (c1, c2, . . . , ck−1, ck) where type(c1, c2, . . . , ck−1) = λ
and the last part ck is m. Then the complex ∆λ,m is homeomorphic to a (k− 2)-dimensional
ball; see the proof of Theorem 4.4 in [13]. Applying Corollary 2.12.3, we obtain the following
result:

H̃k−2(4(Π∗∆λ,m
− {1̂})) ∼=Sn−1

⊕
~c∈Int(∆λ,m)

SB
∗(~c ).

Furthermore, the set of interior faces of ∆λ,m is given by compositions ~c in ∆λ,m such that
when each part of ~c is written as a sum of parts of λ, those parts are distinct. This example
is Theorem 10.3 in [12]. Moreover, ∆λ,m is shellable, so Theorem 2.14.6 yields a Morse
matching of Q∗∆λ,m

; see Theorem 8.2 of [12].

2.16 The Frobenius complex

We now consider a different class of examples stemming from [11]. Let Λ be a semigroup
of positive integers, that is, a subset of the positive integers which is closed under addition.
Let ∆n be the collection of all compositions of n whose parts belong to Λ, that is,

∆n = {(c1, . . . , ck) ∈ Comp(n) : c1, . . . , ck ∈ Λ}.

Since Λ is closed under addition, we obtain that ∆n is a filter in the poset of compositions
Comp(n) and hence we view it as a simplicial complex. This complex is known as the
Frobenius complex; see [11]. Using Lemma 2.11.1 the associated filter in the partition lattice
is given by

ΠΛ
n = {{B1, . . . , Bk} ∈ Πn : |B1|, . . . , |Bk| ∈ Λ}.

Let Ψn be the generating function

Ψn =
∑
i≥−1

β̃i(∆n) · ti+1.

Observe that for a composition ~c in ∆n we have that the link lk~c(∆n) is given by the join

lk~c(∆n) = ∆c1 ∗∆c2 ∗ · · · ∗∆ck . (2.16.1)

Hence we can apply the Künneth theorem to obtain that the ith reduced Betti number of
the link is given by

β̃i(lk~c (∆n)) = [ti+1]Ψc1 ·Ψc2 · · ·Ψck .

Hence using Theorem 2.11.5, the ith reduced Betti number of the order complex4(ΠΛ
n−{1̂})

is given in the representation ring of Sn−1 by

H̃i(4(ΠΛ
n − {1̂})) ∼=Sn−1

∑
~c

[ti~c+1]Ψc1 ·Ψc2 · · ·Ψck · SB
∗(~c ),

where the sum is over all compositions ~c = (c1, c2, . . . , ck) of n.
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A more explicit approach is possible when the complex ∆n has a discrete Morse matching.
By combining equation (2.16.1), Lemma 2.4.1, and a Morse matching from [11], we create
a Morse matching on every link. We will see this method in the remainder of this section.

We continue by studying one concrete example. Let a and d be two positive integers.
Let Λ be the semigroup generated by the arithmetic progression

Λ = 〈a, a+ d, a+ 2d, . . .〉.

Since for j ≥ a we have that a+ j · d = d · a+ a+ (j − a) · d, the semigroup is generated by
the finite arithmetic progression

Λ = 〈a, a+ d, a+ 2d, . . . , a+ (a− 1)d 〉.

Clark and Ehrenborg proved that the Frobenius complex ∆n is a wedge of spheres of different
dimensions; see [11, Theorem 5.1]. Observe that their result is formulated in terms of sets,
instead of compositions. However, the two notions are equivalent via the natural bijection
given by sending a composition (c1, c2, . . . , ck) of n to the subset {c1, c1+c2, . . . , c1+· · ·+ck−1}
of the set [n− 1]. To state their result, let A be the set {a+ d, a+ 2d, . . . , a+ (a− 1) · d}.

Proposition 2.16.1. For n in the semigroup Λ, there is a discrete Morse matching on the
Frobenius complex ∆n such that the critical cells are compositions ~c = (c1, . . . , ck) character-
ized by

(i) All but the last entry of the composition belongs to the set A, that is, c1, . . . , ck−1 ∈ A.

(ii) The last entry ck belongs to {a} ∪ A.

Furthermore, all the critical cells are facets.

Proof. When a and d are relative prime, that is, gcd(a, d) = 1, this result is Lemma 5.10
in [11]. When a and d are not relative prime, the result follows by scaling down the three
parameters a, d and n by a′ = a/ gcd(a, d), d′ = d/ gcd(a, d) and n′ = n/ gcd(a, d). Now
the result applies the semigroup Λ′ = 〈a′, a′ + d′, a′ + 2d′, . . .〉 and its associated Frobenius
complex ∆′n′ . However, this complex is isomorphic to ∆n by sending the composition ~c =
(c1, . . . , ck) in ∆′n′ to the composition gcd(a, d)·~c = (gcd(a, d)·c1, . . . , gcd(a, d)·ck) in ∆n.

Corollary 2.16.2. The order complex 4(ΠΛ
n − {1̂}) is a wedge of spheres.

Proof. Since ∆n has a discrete Morse matching where each critical cell is a facet, ∆n is
homotopy equivalent to a wedge of spheres. Furthermore, by equation (2.16.1) we know that
every link of ∆n is a wedge of spheres. Finally, by Corollary 2.14.2 we obtain the result.

Next we need to extend Lemma 2.13.3 to collect Specht modules together. We call the
sum c1 + c2 + · · ·+ cj an initial sum of a composition ~c = (c1, c2, . . . , ck) for 1 ≤ j ≤ k.

Definition 2.16.1. For an interval [~d,~b ] in the lattice of compositions Comp(n) let B∗(~d,~b )
be the skew-shape where the row lengths are given by d1, d2, . . . , dr−1, dr−1 and if the initial
sum d1 + · · · + dj is equal to an initial sum of the composition ~b− 1, then jth row and the

(j + 1)st row overlap in one column. All other rows of B∗(~d,~b ) are non–overlapping.
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Table 2.1: The reduced homology groups of the order complex 4(Π
〈3,5,7〉
n −{1̂}) for the even

cases n = 8, 10, 12 and 14.

n H̃0 H̃2

8 ⊕ 0

10 ⊕ ⊕ 0

12 ⊕

14 ⊕

⊕ ⊕

As an example, if ~d = (2, 5, 4, 1, 3, 2) and ~b = (2 + 5 + 4, 1 + 3, 2), then B∗(~d,~b ) is the
border strip with row lengths 2, 5, 4, 1, 3 and 2 − 1 = 1 which overlaps between the rows of
length 4 and 1 and the rows of length 3 and 1. Note that B∗(~d, (n)) = A∗(~d ).

The proof of the next lemma is the same as the proof of Lemma 2.13.3, that is, it uses
jeu-de-taquin moves where two adjacent rows do not overlap.

Lemma 2.16.3. Let ~b and ~d be two compositions in Comp(n) such that ~d ≤ ~b. Then the

Specht module SB
∗(~d,~b) is given by the direct sum

SB
∗(~d,~b) ∼=Sn−1

⊕
~d≤~c≤~b

SB
∗(~c ).

In order to state the main result for the semigroup Λ = 〈a, a + d, a + 2d, . . .〉 and the
associated filter in the partition lattice, we need one last definition.

Definition 2.16.2. For a composition ~d of n with entries in the set {a} ∪ A, let ~b(~d ) be

the composition greater than or equal to ~d obtained by adding runs of entries of ~d together
where each run ends with the entry a.

As an example, for a = 3, d = 2 we have A = {5, 7}. Hence for the composition
~d = (5, 3, 7, 5, 3, 3, 7, 5) we obtain ~b(~d ) = (5 + 3, 7 + 5 + 3, 3, 7 + 5) = (8, 15, 3, 12).

Remark 2.16.4. Observe that the skew-shape SB
∗(~d,~b(~d )) has the row lengths d1, . . . , dr−1, dr−

1 and satisfies the condition that di = a if and only if there is overlap between ith and (i+1)st
rows. See Definition 2.16.1.

Theorem 2.16.5. Let a and d be two positive integers and let ΠΛ
n be the filter in the par-

tition lattice Πn where each partition π consists of blocks whose cardinalities belong to the
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semigroup Λ generated by the arithmetic progression a, a + d, . . . , a + (a − 1) · d. Then the
ith reduced homology group of the order complex 4(ΠΛ

n − {1̂}) is given by the direct sum

H̃i(4(ΠΛ
n − {1̂})) ∼=Sn−1

⊕
~d

SB
∗(~d,~b(~d )),

where the sum is over all compositions ~d into i+ 2 parts such that every entry belongs to the
set {a} ∪ A = {a, a+ d, a+ 2 · d, a+ (a− 1) · d}.

Proof. Let ~c be a composition in the complex ∆n. Using the Morse matching given by
Proposition 2.16.1 and Lemma 2.4.1, we obtain that a critical cell ~d in the link lk~c(∆n) =

∆c1 ∗∆c2 ∗ · · · ∗∆ck is a composition ~d ≤ ~c where the entries of ~d belong to the set {a} ∪A.

Furthermore, in the run of entries of ~d that sums to the entry ci of the composition ~c, only
the last entry of the run is allowed to be equal to a. Using Theorem 2.11.5 we have

H̃i(4(ΠΛ
n − {1̂})) ∼=Sn−1

⊕
~c∈∆n

H̃i−|~c |+1(lk~c (∆n))⊗ SB∗(~c ).

∼=Sn−1

⊕
~c∈∆n

⊕
~d

SB
∗(~c ),

where the inner sum consists of compositions ~d satisfying the above conditions and with
|~d | = i+ 2. By changing the order of summation we obtain

H̃i(4(ΠΛ
n − {1̂})) ∼=Sn−1

⊕
~d

⊕
~c

SB
∗(~c ),

where the outer direct sum is over all compositions ~d of n into i+ 2 parts where each part is
in the set {a}∪A and the inner direct sum is over all compositions ~c greater than ~d, obtained

by adding runs of entries of ~d where an entry equal to a can only be at the end of a run.

The inner direct sum is hence given by the Specht module SB
∗(~d,~b(~d)) by Remark 2.16.4 and

Lemma 2.16.3, and therefore the result follows.

Corollary 2.16.6. The order complex4(ΠΛ
n−{1̂}) only has non-vanishing reduced homology

in dimension i when n ≡ (i+ 2) · a mod d for d ≥ 2.

Proof. Since all entries in the set {a}∪A are congruent to a modulo d, we have n =
∑i+2

j=1 dj ≡
(i+ 2) · a mod d.

In Tables 2.1 and 2.2 we have explicitly calculated the reduced homology groups for the
order complex 4(Π

〈3,5,7〉
n − {1̂}) for 8 ≤ n ≤ 15, that is, when a = 3 and d = 2. Instead of

writing out the notation SB
∗(~d,~b ) for the Specht modules we have drawn the associated border

shapes. Observe that when a row has three boxes, there is overlap with the row above. For
a = 3 and d = 2 Corollary 2.16.6 implies that the order complex only has non-vanishing
homology in dimensions of the same parity as n.
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Table 2.2: The reduced homology groups of the order complex 4(Π
〈3,5,7〉
n − {1̂}) for the odd

cases n = 9, 11, 13 and 15.

n H̃1 H̃3

9 0

11 ⊕ ⊕ 0

13 ⊕ ⊕ 0

⊕ ⊕ ⊕ 0

⊕ ⊕

15 ⊕ ⊕ ⊕

⊕

Example 2.16.7. When the integer d divides the integer a, the homology groups of ΠΛ
n

have been studied. In this case, the filter ΠΛ
n consists of all partitions where the block sizes

are divisible by d and the block sizes are greater than or equal to a. This filter was studied
by Browdy [5], and our Theorem 2.16.5 reduces to her result; see Corollary 5.3.3 in [5].

Example 2.16.8. The previous example is particularly nice when d = 1. Then the semi-
group Λ is given by Λ = {n ∈ P : n ≥ a} and the filter ΠΛ

n consists of all partitions where
1, 2, . . . , a − 1 are forbidden block sizes. In this case it follows by Billera and Meyers [1]
that ∆n is non-pure shellable. Additionally, Björner and Wachs [3] gave an EL-labeling of
ΠΛ
n ∪ {0̂}. This order complex was also considered by Sundaram in Example 4.4 in [37].

Finally, we note that Wachs [42] has plethystic recurrences for the Sn representations on
the homology groups of the filters in Examples 2.16.7 and 2.16.8.

2.17 The partition filter Π
〈a,b〉
n

Let a and b be two relatively prime integers greater than 1. Let Π
〈a,b〉
n be the filter in Πn

generated by all partitions whose block sizes are all a or b. As an example, Π
〈2,3〉
n consists of

all partitions in Πn with no singleton blocks. The corresponding complex ∆n in Comp(n)
consists of all compositions of n whose parts are contained in the set 〈a, b〉 = {i · a + j · b :
a, b ∈ N}. When a = 2 and b = 3 the complex ∆n is known as the complex of sparse sets;
see [11, 19].

Following Theorem 4.1 in [11], we define the set A = {n ∈ P : n ≡ 0, a, b or a+b mod ab}
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and the function h : A −→ Z≥−1 as follows:

h(n) =


2n
ab
− 2 if n ≡ 0 mod ab,

2(n−a)
ab
− 1 if n ≡ a mod ab,

2(n−b)
ab
− 1 if n ≡ b mod ab,

2(n−a−b)
ab

if n ≡ a+ b mod ab.

(2.17.1)

Then Theorem 4.1 in [11] states that ∆n is either homotopy equivalent to a sphere or is
contractible, according to

∆n '

{
Sh(n) if n ∈ A,
point otherwise.

Using equation (2.16.1) we see that if ~c ∈ ∆n has any part not in A, then lk~c (∆n) is
contractible. If each part of ~c is in A, then lk~c (∆n) ' Sh(c1) ∗ · · · ∗ Sh(ck) = Sh(~c ), where we
define h(~c ) = k − 1 +

∑k
j=1 h(cj) for compositions ~c with all parts in A, since the join of an

n-dimensional sphere and an m-dimensional sphere is an (n + m + 1)-dimensional sphere.
Note that h(~c ) is undefined for all other compositions.

For a composition ~c = (c1, . . . , ck) of n with all of its parts in A, let dim(~c ) denote the

dimension of the reduced homology of4(Π
〈a,b〉
n −{1̂}) to which the composition ~c contributes.

That is, dim(~c ) is given by

dim(~c ) = h(~c ) + k − 1 =
k∑
i=1

h(ci) + 2k − 2. (2.17.2)

We can apply Theorem 2.11.5 to obtain

Theorem 2.17.1. Let 2 ≤ a < b with gcd(a, b) = 1. Then the ith reduced homology group

of 4(Π
〈a,b〉
n −{1̂}) is given by the direct sum of Specht modules

⊕
~c∈Fi S

B∗(~c ), where Fi is the
collection of compositions ~c of n where all the parts are in the set A with dim(~c ) = i.

Proof. We directly have

H̃i(∆(Π〈a,b〉n − {1̂})) ∼=Sn−1

⊕
~c∈∆

H̃i~c(lk~c (∆n))⊗ SB∗(~c )

∼=Sn−1

⊕
~c∈Fi

H̃i~c (Sh(~c ))⊗ SB∗(~c )

∼=Sn−1

⊕
~c∈Fi

SB
∗(~c ).

We now describe the top and bottom reduced homology of the order complex ∆(Π
〈a,b〉
n −

{1̂}). We begin with the top homology.

Proposition 2.17.2. Let 2 ≤ a < b with gcd(a, b) = 1. Let r be the unique integer such

that 0 ≤ r < a and n ≡ rb mod a. Then the top homology of 4(Π
〈a,b〉
n − {1̂}), which occurs

in dimension (n− r(b−a))/a−2, is given by the direct sum of Specht modules
⊕

~c∈R S
B∗(~c ),

where R is the collection of compositions ~c of n where exactly r of the parts are equal to b or
a+ b, and the remaining parts are all equal to a.
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Proof. We present two procedures that will change a composition ~c into another composi-
tion ~c ′ such that the dimension of contribution from ~c ′ is greater than the contribution of ~c,
that is, dim(~c ) < dim(~c ′). The compositions which we cannot improve with this procedure
are those described in the statement of the proposition.

We now describe the first replacement procedure. If the composition ~c has a part of the
form

(i) jab, replace it with jb a’s,

(ii) jab+ a, replace it with (jb+ 1) a’s,

(iii) jab+ b, replace it with jb a’s and one b,

(iv) jab+ a+ b, replace it with (jb+ 1) a’s and one b,

to obtain a new composition ~c ′. We claim that dim(~c ′) − dim(~c ) = (b − a) · j. We check
the computation in the case (iv), the other three cases are similar. The difference dim(~c ′)−
dim(~c ) only depends on the parts affected and the number of them. Hence

dim(~c ′)− dim(~c ) = [(jb+ 1) · h(a) + h(b) + 2(jb+ 2)]− [h(jab+ a+ b) + 2]

= [jb+ 2]− [2j + 2] = (b− a) · j > 0,

using that h(a) = h(b) = −1 and h(jab + a + b) = 2j. Hence this procedure increases the
dimension.

Iterating this procedure we obtain a new composition with all the parts of the form a, b
and a+ b.

The second replacement procedure is as follows. Assume that there are a parts of the
composition ~c that are different from a. Assume that p of these parts are equal to a + b,
and hence a− p of them are equal to b. Replace these a parts with b+ p parts equal to a to
obtain a new composition ~c ′.

dim(~c ′)− dim(~c ) = [(b+ p) · h(a) + 2(b+ p)]− [p · h(a+ b) + (a− p) · h(b) + 2a]

= [b+ p]− [a+ p] = b− a > 0.

Hence the new composition ~c ′ contributes to a homology of dimension b−a > 0 greater than
the composition ~c does.

Iterating the last procedure, we are left with a composition ~c where the number of parts
different from a is at most a− 1. By considering the equation c1 + · · ·+ ck = n modulo a, we
obtain the number of parts different from a is given by the integer r from the statement of
the proposition. Additionally, switching between one part of a+ b and the two parts a and b
does not change the dimension of the contribution of the composition. Finally, we compute
the contribution of the composition (a, . . . , a︸ ︷︷ ︸

(n−br)/a

, b, . . . , b︸ ︷︷ ︸
r

) to obtain the desired dimension.

Corollary 2.17.3. Let 2 ≤ a < b with gcd(a, b) = 1. Assume that n is divisible by a.

Then the top homology of 4(Π
〈a,b〉
n − {1̂}), which occurs in dimension n/a− 2, is the Specht

module SB
∗(a,a,...,a).

45



Proof. When a divides n, then the integer r of Proposition 2.17.2 is 0. Thus the only
contribution to reduced homology in dimension n/a− 2 is given by (a, a, . . . , a).

We now turn our attention to the bottom reduced homology.

Proposition 2.17.4. Let 3 ≤ a < b with gcd(a, b) = 1. Let r and s be the two unique
integers such that

n ≡ rb mod a, 0 ≤ r < a, n ≡ sa mod b and 0 ≤ s < b.

Then the bottom reduced homology of 4(Π
〈a,b〉
n −{1̂}) occurs in dimension 2· n−sa−rb

ab
+r+s−2,

and is given by the direct sum of Specht modules SB
∗(~c ) over all compositions ~c such that the

number of parts of ~c of the form j · ab+ a and j · ab+ a+ b is s and the number of parts of
the form j · ab+ b and j · ab+ a+ b is r.

Proof. Just as in Proposition 2.17.2, we will define replacement procedures, where our goal
now is to decrease the dimension of the homology that our composition contributes to, rather
than increase it, as was the case in Proposition 2.17.2.

The first procedure takes b parts of the composition ~c of the form jab+a and jab+a+b and
subtracts a from each of these b parts, and adjoins a new part ab. Notice that the resulting
new composition ~c ′ remains a composition of n. Observe that h(jab) = h(jab + a) − 1,
h(jab + b) = h(jab + a + b) − 1, and h(ab) = 0. Hence the dimension ~c ′ contributes to is
dim(~c ′) =

∑k+1
i=1 h(c′i)+2(k+1)−2 =

∑k
i=1 h(ci)−b+2(k+1)−2 = dim(~c )−b+2 < dim(~c ).

There is one small caveat. In the procedure, replacing a part a with 0 we obtain a
weak composition, that is, we can introduce zero entries. Note the natural extension of
the function h satisfies h(0) = −2. Assume that ~c ′ has a zero entry, say in its last entry,
and let ~c ′′ be the (weak) composition with this last entry removed. Then we have that
dim(~c ′) =

∑k+1
i=1 h(c′i) + 2(k + 1) − 2 =

∑k
i=1 h(c′′i ) + 2k − 2 = dim(~c ′′). Thus zero entries

can be removed without changing the dimension.
The second procedure is symmetric to the first in the two parameters a and b. That is, it

takes a parts of the composition ~c of the form jab+b and jab+a+b and subtracts b from each
of these a parts and adjoins a new part ab. Now we have dim(~c ′) = dim(~c )−a+2 < dim(~c ),
using the fact that a ≥ 3.

Iterating these two procedures we obtain a composition which has at most b− 1 parts of
the form jab+a and jab+a+ b, and at most a− 1 parts of the form jab+ b and jab+a+ b.
Hence this composition satisfies the condition of the statement of the proposition. Finally,
one has to observe that all such composition contribute to the same dimension.

Corollary 2.17.5. Assuming 3 ≤ a < b, gcd(a, b) = 1 and that n is divisible by ab. Then

the bottom reduced homology of the order complex 4(Π
〈a,b〉
n −{1̂}) is given by the permutation

module MB#(ab,...,ab,ab) = MB(ab,...,ab,ab−1).

Proof. Now we have r = s = 0. Hence the compositions only have parts of the form j · ab.
The result follows from Lemma 2.13.3.

We end with a complete description in the case when a = 2.
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Proposition 2.17.6. Let b be odd and greater than or equal to 3. Then the ith reduced
homology of 4(Π

〈2,b〉
n − {1̂}) is given by the direct sum of Specht modules SB

∗(~c ) over all
compositions ~c with all parts congruent to 0 or 2 mod b, where exactly (b(i+ 2)− n)/(b− 2)
entries of ~c are congruent to 2 modulo b. The bottom reduced homology occurs in dimension
dn/be − 2. Furthermore, when b divides n the bottom reduced homology is given by the
permutation module MB#(b,...,b,b) = MB(b,...,b,b−1).

Proof. Since a = 2 the expression for h(n) in equation (2.17.1) reduces to h(n) = dn/be − 2
and the set A reduces to {n ∈ P : n ≡ 0, 2 mod b}. Let ~c be a composition of n into k parts,
where each part belongs to the set A. Furthermore, assume that ~c has s entries congruent
to 2 modulo b. The contribution of ~c to the reduced homology of 4(Π

〈2,b〉
n − {1̂}), given by

equation (2.17.2), is in dimension

dim(~c ) =
k∑
i=1

h(ci) + 2k− 2 =
k∑
i=1

⌈ci
b

⌉
− 2 =

∑k
i=1 ci + s · (b− 2)

b
− 2 =

n+ s · (b− 2)

b
− 2.

Solving for s in this equation yields the desired expression.
For real numbers x and y we have the inequality dxe+dye ≥ dx+ye. Hence we obtain the

lower bound on the dimension of the homology: dim(~c ) =
∑k

i=1

⌈
ci
b

⌉
− 2 ≥

⌈
n
b

⌉
− 2. When b

divides n the only way to obtain equality in the previous inequality is when all the parts of
the composition are divisible by b. Hence the bottom reduced homology group is the direct
sum over all compositions ~c of n where each part is divisible by b, that is, (b, b, . . . , b) ≥∗ ~c.
Hence we obtain the permutation module MB#(b,...,b,b) = MB(b,...,b,b−1) by Lemma 2.13.3.

2.18 Concluding remarks

With Theorem 2.11.5 we have been able to classify the action of Sn−1 on the top homology
of 4(Π∗∆−{1̂}) for any complex ∆ ⊆ Comp(n). In the case when 4(Π∗∆−{1̂}) is shellable,
is there an EL-labeling of Π∗∆ ∪ {0̂} that realizes this shelling order?

Is there a way we can classify the Sn-action on the homology groups of 4(Π∗∆ − {1̂}),
rather than the Sn−1-action? Browdy described the matrices representing the action of Sn

on the cohomology groups of the filter with block sizes belonging to the arithmetic progression
k · d, (k + 1) · d, . . .; see [5, Section 5.4].

The partition lattice is naturally associated with the symmetric group, that is, the Cox-
eter group of type A. Miller [20] has extended the results about the filter Π∗~c to other root
systems. Hence it is natural to ask if our results for the filter Π∗∆ can be extended to other
root systems.

Is there a non-pure shelling of the Frobenius complex generated by a and b? Alternatively,
is there a Morse matching for this Frobenius complex such that all the critical cells are facets?
While we do have this property for Λ defined by an arithmetic progression as in Section 2.16,
unfortunately the general matching given in [11] does not have this property.

Lastly, all of our results are based upon ∆ being a filter in the composition lattice
Comp(n). What if we remove the filter constraint? That is, let Ω be an arbitrary collection
of compositions of n not containing the extreme composition (n). Define Q∗Ω to be all
ordered set partitions σ = (C1, C2, . . . , Ck) such that type(σ) ∈ Ω and containing n in the
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last block Ck. Let ΠΩ be the image of Q∗Ω under the forgetful map f . What can be said
about the homology groups and the homotopy type of the order complex 4(ΠΩ)? We need
to understand the topology of the links lk~c (Ω), even though these links are not simplicial
complexes.
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Chapter 3 Box Polynomials

Here is a box; I had it from the
queen: What’s in’t is precious

Pisanio
Cymbeline Act III.4.1934-5

3.1 Box polynomials

In Chapter 3 we examine a one variable polynomial Bm,n(x) defined using all integer parti-
tions that fit in an m by n grid. The intersection between Chapter 2 and Chapter 3 is of
course set partitions. In Section 3.2 we will see that the box polynomial Bm,n evaluated at
−n/2 enumerates set partitions of m+ n into n blocks of odd size.

We begin in Section 3.1 by introducing the polynomials of our study. We proceed by
giving alternate forms of the box polynomials and using these to prove properties about their
real and complex roots.

Lastly, for coherence reasons I mention that we were led to study these polynomials by
way of the excedance matrix, see Section 3.4. If this chapter were presented in chronological
order it would begin with Section 3.4.

We now give the definition of the box polynomial Bm,n(x).

Definition 3.1.1. The box polynomial is defined by the sum

Bm,n(x) =
∑

λ⊆m×n

m∏
i=1

(x+ λi),

where the sum is over all partitions λ = (0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm ≤ n), that is, all partitions
with m parts and each part at most n.

Example 3.1.1. Let m = n = 2. Using the table in Table 3.1 we see that B2,2(x) =
6x2 + 12x+ 7.

Another way to express the box polynomials is in terms of the complete symmetric
function hm. It follows from Definition 3.1.1 that Bm,n(x) = hm(x, x+1, . . . , x+n). Directly
from this expression we have that the box polynomial evaluated at x = 0 is given by the
Stirling number of the second kind, that is,

Bm,n(0) = S(m+ n, n), (3.1.1)

Bm,n(1) = S(m+ n+ 1, n+ 1). (3.1.2)

Furthermore, using the complete symmetric function also yields the generating function∑
m≥0

Bm,n(x) · tm =
1

(1− x · t) · (1− (x+ 1) · t) · · · (1− (x+ n) · t)
. (3.1.3)
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Table 3.1: The box polynomial B2,2(x). The table lists all partitions λ that fit in the 2× 2
box, upper left justified.

λ
∏m

i=1(x+ λi)

∅ x2

x2 + x

x2 + 2x+ 1

x2 + 2x

x2 + 3x+ 2

x2 + 4x+ 4

B2,2(x) = 6x2 + 12x+ 7

Note that the box polynomial Bm,n(x) has degree m and the sum defining this polynomial
has

(
m+n
m

)
terms, since each partition λ fitting in the m by n box can be specified uniquely by

a lattice walk from (0, 0) to (m,n) with east and north steps. Just as the binomial coefficients
satisfy the Pascal recursion we have the following recursion for the box polynomials.

Proposition 3.1.2. The box polynomial Bm,n(x) satisfies the recursion

Bm,n(x) = x ·Bm−1,n(x) +Bm,n−1(x+ 1),

with initial conditions Bm,0(x) = xm and B0,n(x) = 1.

Proof. The initial conditions are straightforward to verify. The recursion follows the same
reasoning as the Pascal recursion. Either the first part λ1 of the partition λ is 0 or greater
than or equal to 1. In the first case we have λ = (0) ◦µ where µ is a partition contained in a
(m−1)×n box and ◦ denotes concatenation. Here we have

∏m
i=1(x+λi) = x ·

∏m−1
i=1 (x+µi).

Summing over all µ yields x ·Bm−1,n(x). In the second case, λ = (ν1 + 1, ν2 + 1, . . . , νm + 1)
where ν is contained in a m × (n − 1) box. Now

∏m
i=1(x + λi) =

∏m−1
i=1 (x + 1 + νi) and

summing over all ν yields Bm,n−1(x+ 1).

We continue by giving a different derivation of the box polynomials, namely as the image
of the forward difference operator. We begin by defining the relevant polynomial operators.
Let E be the shift operator given by E(p)(x) = p(x + 1). Let ∆ be the forward difference
operator defined by ∆ = E − Id, so, ∆(p(x)) = p(x + 1) − p(x). Note that the difference
operator is shift invariant, that is, ∆ ◦ E = E ◦ ∆. Finally, let x be the operator given by
x(p(x)) = x · p(x), that is, it multiplies by the variable x.

Lemma 3.1.3. For all non-negative integers n, ∆n ◦ x = x ◦∆n + n · E ◦∆n−1.
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Proof. When n = 0 there is nothing to prove. Begin by observing that

∆(x·p(x)) = (x+1)·p(x+1)−x·p(x) = x·
(
p(x+1)−p(x)

)
+p(x+1) = x◦∆(p(x))+E(p(x)),

and hence the identity holds for n = 1. The general case follows by induction using the case
n = 1 in the induction step.

We now give the operator interpretation of the box polynomials.

Theorem 3.1.4. The box polynomial Bm,n(x) satisfies Bm,n(x) = ∆n(xm+n)/n!.

Proof. The proof is by induction on m and n. The base case m = 0 or n = 0 is straight-
forward. Using the recursion of Proposition 3.1.2 and the induction hypothesis we have
that

Bm,n(x) = x ·Bm−1,n(x) +Bm,n−1(x+ 1)

= x(Bm−1,n(x)) + E(Bm,n−1(x))

= 1/n! · x ◦∆n(xm−1+n) + 1/(n− 1)! · E ◦∆n−1(xm+n−1)

= 1/n! · (x ◦∆n + n · E ◦∆n−1)(xm+n−1)

= 1/n! ·∆n ◦ x(xm+n−1),

where the last step is Lemma 3.1.3, completing the induction.

A different and direct proof of Theorem 3.1.4 is as follows.

Second proof of Theorem 3.1.4. Using the relation ∆x = x∆ + E each occurence of ∆ in
∆nxm+n can be moved to the right until it either cancels an x and the pair becomes a shift
operator E, or it reaches all the way to the right. Because ∆(1) is zero, the last case vanishes.
Since the order of the n x’s that become the shift operator E does not matter, we divide by
n! on both sides and obtain that

1/n! ·∆nxm+n(1) =
∑

p0+p1+···+pn=m

xp0Exp1E · · ·Expn(1).

Let λ be the partition which has pi parts equal to i. Then the term xp0Exp1E · · ·Expn(1)
is indeed the product

∏m
j=1(x + λi) and the result follows by observing that the condition

p0 + p1 + · · ·+ pn = m is equivalent to the partition λ satisfying λ ⊆ m× n.

By the binomial theorem applied to ∆ = E− I, the nth power of the difference operator
∆n is given by

∑n
r=0(−1)n−r ·

(
n
r

)
· Er. Therefore, the box polynomial is given by:

Bm,n(x) =
1

n!
·

n∑
r=0

(−1)n−r ·
(
n

r

)
· (x+ r)m+n. (3.1.4)

Lemma 3.1.5. The derivative of the box polynomial Bm,n(x) satisfies

d

dx
Bm,n(x) = (m+ n) ·Bm−1,n(x).
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Proof. The derivative operator d
dx

commutes with the difference operator ∆. Therefore,

d

dx
Bm,n(x) =

d

dx

1

n!
·∆n(xm+n) = (m+ n) · 1

n!
·∆n(x(m−1)+n) = (m+ n) ·Bm−1,n(x).

Alternatively, Definition 3.1.1 of the box polynomials can be used to prove Lemma 3.1.5.
Let λ be a partition contained in the m × n box. Removing one arbitrary entry yields a
partition µ in a (m − 1) × n box. Let us write this relationship as λ ∼ µ. Note that given
µ ⊆ (m− 1)× n there are m + n possible partitions λ such that λ ∼ µ, as there are m + n
possible entries to insert in µ. Now apply the product rule to Definition 3.1.1 and change
the order of summation:

d

dx
Bm,n(x) =

∑
λ⊆m×n

d

dx

m∏
i=1

(x+ λi)

=
∑

λ⊆m×n

∑
λ∼µ

m−1∏
i=1

(x+ µi)

=
∑

µ⊆(m−1)×n

∑
λ∼µ

m−1∏
i=1

(x+ µi)

= (m+ n) ·Bm−1,n(x).

Proposition 3.1.6. The box polynomials satisfy Bm,n(−n− x) = (−1)m ·Bm,n(x). That is,
Bm,n(x) is even about x = −n/2 when m is even, and Bm,n(x) is odd about x = −n/2 when
m is odd.

Proof. This result follows from equation (3.1.4) by substituting r to n−r and pulling out the
sign (−1)m. Alternatively, it follows from the definition of the box polynomials by changing
the partition λ to the complementary partition λ∗ = (n − λm, n − λm−1, . . . , n − λ1) and
observing that the product

∏m
j=1(−n− x+ λj) is given by (−1)m ·

∏m
j=1(x+ λ∗j).

We now use equation (3.1.4) to give yet another form for the box polynomials.

Corollary 3.1.7. The box polynomial Bm,n(x) has a closed form given by

Bm,n(x) =
m∑
j=0

(
m+ n

j

)
· S(m+ n− j, n) · xj.
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Proof. By equation (3.1.4) we have that the box polynomial is given by:

Bm,n(x) =
1

n!
·

n∑
r=0

(−1)n−r ·
(
n

r

)
· (x+ r)m+n

=
1

n!
·

n∑
r=0

(−1)n−r ·
(
n

r

)
·
m+n∑
j=0

(
m+ n

j

)
· rm+n−j · xj

=
m+n∑
j=0

(
m+ n

j

)
· 1

n!
·

n∑
r=0

(−1)n−r ·
(
n

r

)
· rm+n−j · xj

=
m+n∑
j=0

(
m+ n

j

)
· S(m+ n− j, n) · xj,

where in the last step we used a classical identity for the Stirling numbers, see (1.2.2). Note
that S(m+ n− j, n) is zero when j > m and hence the upper bound of the sum is m.

Lemma 3.1.8. For non-negative integers m, n1 and n2 we have the identity

Bm,n1+n2+1(x) =
m∑
k=0

Bk,n1(x) ·Bm−k,n2(x+ n1 + 1).

Proof. Any partition λ ⊆ m× (n1 + n2 + 1) can be written uniquely as the concatenation of
the two partitions µ and ν+n1 + 1 where µ ⊆ k×n1, ν ⊆ (m−k)×n2, and ν+n1 + 1 shifts
every entry of ν with n1 + 1. By summing over all possibilities the identity follows.

Lemma 3.1.9. For m and n non-negative integers we have:

Bm,n−1(−n) = (−1)m · S(m+ n, n).

Proof. We can extend the sum over all partitions λ ⊆ m× (n− 1) to the sum λ ⊆ m× n by
noticing that all new terms are in fact 0. That is,

Bm,n−1(−n) =
∑

λ⊆m×(n−1)

m∏
i=1

(λi − n) =
∑

λ⊆m×n

m∏
i=1

(λi − n) = Bm,n(−n) = (−1)m ·Bm,n(0).

The last step is Proposition 3.1.6 and then apply Equation (3.1.1).

3.2 Connection with set partitions

Earlier we observed that the box polynomial Bm,n(x) evaluated at x = 0 and x = 1 yields
the Stirling numbers of the second kind, which enumerates set partitions. In this section we
consider other evaluations of the box polynomial that also enumerate various flavors of set
partitions.
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Proposition 3.2.1. For n ≥ 2, the box polynomial evaluated at x = −1, Bm,n(−1), enu-
merates the number of the set partitions of the set {1, 2, . . . ,m + n} into n blocks such that
no block contains two consecutive integers and the elements 1 and m + n do not belong to
the same block.

Proof. Consider the set {1, 2, . . . ,m + n} as the congruence classes modulo m + n, that
is, Zm+n. In other words, the element m + n is followed by 1. Let A be a subset of
{1, 2, . . . ,m + n}. Then the number of set partitions π of [m + n] such that if i belongs to
A then i and i+ 1 belong to the same block of π is given by S(m+ n− |A|, n), since we can
first choose a set partition of Zm+n − A and then insert i ∈ A into the same block as i + 1.
Hence by inclusion-exclusion the desired number of set partitions is given by∑

A⊆Zm+n

(−1)|A| · S(m+ n− |A|, n) =
m+n∑
j=0

(
m+ n

j

)
· (−1)j · S(m+ n− j, n). (3.2.1)

Observe that when the variable j exceeds m, the associated term vanishes. Now the result
follows by Corollary 3.1.7.

It is immediately clear that the box polynomial evaluated at minus one, aka the right
side of Equation (3.2.1), should have an interpretation via inclusion/exclusion. While it
is not difficult to prove an identity with inclusion/exclusion if you know what are you are
trying to count, it can be difficult to figure out what it is you are counting. While I knew
Proposition 3.2.1 should have an inclusion/exclusion proof, the idea to count set partitions
avoiding i and i+ 1 in the same block came as follows.

Let x = −1 in Equation (3.1.3) to get a generating function for Bm,n(−1). This generating
function has been studied, namely as a Monthly problem posed by Knuth entitled “Partitions
of a circular set”, [17]. After matching up generating functions, the proof of Proposition 3.2.1
became clear.

The next three propositions will rely on the notion of restricted growth words. For a
complete introduction, please see Section 4.2.

Proposition 3.2.2. Let r be a positive integer. Then the box polynomial evaluated at x = r,
Bm,n(r), is the number of set partitions of m+n+ r into n+ r blocks such that the elements
1 through r all belongs to different blocks.

Proof. Set x = r in the generating function in Equation (3.1.3) to obtain∑
m≥0

Bm,n(r) · tm =
1

(1− r · t) · (1− (r + 1) · t) · · · (1− (r + n) · t)
. (3.2.2)

Observe that this is generating function of the number of restricted growth words of the form

w = 12 · · · r · ur · (r + 1) · ur+1 · · · (r + n) · ur+n, (3.2.3)

where ui is a word in the letters 1 through i, as is shown in Section 4.2. Furthermore,
restricted growth words w, of the form shown in Equation 3.2.3, with the sum of the lengths
l(ur) + l(ur+1) + · · · + l(ur+n) equaling m, are in bijection with set partitions of m + n + r
into n + r blocks such that 1, 2, . . . , r all belong to separate blocks. The result now follows
by equating coefficients.
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Proposition 3.2.2 is illustrated in Example 3.2.3 below.

Example 3.2.3. Let m = 1, n = 2, and r = 2. We evaluate the box polynomial B1,2(x) at
2.

Using Definition 3.1.1, B1,2(x) = (x+ 0) + (x+ 1) + (x+ 2) = 3x+ 3, since the partitions
λ fitting in the 1× 2 box are the partitions ∅, (1), (2).

Proposition 3.2.2 states that B1,2(2) counts sets partitions of m+ n+ r = 1 + 2 + 2 = 5
into n + r = 2 + 2 = 4 parts such that 1 and 2 are in separate blocks. There are

(
5
2

)
= 10

set partitions of 5 into 4 blocks, since each such set partition has a unique doubleton block.
Since 1 and 2 need to be in different blocks, there are 10− 1 = 9 such set partitions. Lastly,
notice that B1,2(2) = 3(2) + 3 = 9.

Proposition 3.2.4. Let r be a positive integer. Then the box polynomial evaluated at x = r,
Bm,n(r), is given by the sum

Bm,n(r) =
r−1∑
i=0

s(r, r − i) · S(m+ n+ r − i, r + n),

where s(r, i) denotes the (signed) Stirling number of the first kind.

Proof. By Equation (3.2.2) we have that∑
m≥0

Bm,n(r) · tm =
(1− t) · (1− 2 · t) · · · (1− (r − 1) · t)
(1− t) · (1− 2 · t) · · · (1− (r + n) · t)

(3.2.4)

=

(
r−1∑
i=0

s(r, r − i) · ti
)
· 1

(1− t) · (1− 2 · t) · · · (1− (r + n) · t)
(3.2.5)

In Equation (3.2.5) we have used that p(t) = (t−1) . . . (t− (r−1)) =
∑r−1

k=0 s(r, k)tk, see [36,
Proposition 1.3.7]. Therefore, the polynomial with reversed coefficients, or tn−1p(1/t), is
given by

r−1∑
i=0

s(r, r − i) · ti = (1− t) · (1− 2 · t) · · · (1− (r − 1) · t).

Lastly, notice that the right side of Equation (3.2.5) is the generating function for Stirling
numbers of the second kind, see Equation (1.2.3).

The coefficient of tm follows by multiplying these two generating functions.

Proposition 3.2.5. Let r be a positive integer such that n ≥ 2r. In this case, the box
polynomial Bm,n(x) evaluated at the integer −r enumerates set partitions into n − r parts
such that the minimal element of the block Bi is congruent to i mod 2 for 1 ≤ i ≤ r.

Proof. Once again, set x = −r in Equation (3.1.3) to obtain:∑
m≥0

Bm,n(−r) · tm =
1

(1 + r · t) · (1 + (r − 1) · t) · · · (1 + t) · (1− t) · · · (1− (n− r) · t)
.

(3.2.6)
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As n ≥ 2r, we have that n − r ≥ r. This means we can pair terms in Equation (3.2.6) to
obtain:∑
m≥0

Bm,n(−r)tm =
1

(1− t2) · (1− (2t)2) · · · (1− (rt)2) · (1− (r + 1) · t) · · · (1− (n− r) · t)
.

(3.2.7)
The right side of Equation (3.2.7) is the generating function for restricted growth words of
the form

w = 1u12u2 · · · rur(r + 1)ur+1 · · · (n− r)un−r,

such that the lengths of the ui are even for 1 ≤ i ≤ r.
Since the lengths of ui are even for 1 ≤ i ≤ r, this means that l(1u12u2 . . . iui) has the

same parity as i. In other words, the minimal element of the (i+ 1)’st block of the partition
is even if i is even and odd if i is odd, for 1 ≤ i ≤ r.

If the lengths of uj sum to m, that is l(u1) + · · · + l(un−r) = m, then the right side of
Equation (3.2.7) is the generating function for set partitions of m+n−r into n−r parts such
that the minimal element of the ith block Bi has the same parity as i, for 1 ≤ i ≤ r+ 1.

Example 3.2.6. Let m = 1, n = 3, and r = 1. As 3 ≥ 2 · 1, Proposition 3.2.5 states that
B1,3(−1) counts set partitions of m+ n− r = 3 into n− r = 2 blocks such that the minimal
element of the first block is odd and the minimal element of the second block is even. The
minimal element of the first block is always 1, which is odd, thus we only need that the
minimal element of the second block is even. There are two such partitions, 1|23 and 13|2.
Lastly, B1,3(x) = 4x+ 6 and B1,3(−1) = 2.

Remark 3.2.7. Let’s look at the box polynomial Bm,n(−1) for n at least 2. Combining
Proposition 3.2.1 and Proposition 3.2.2, there is a bijection between set partitions of m+ n
into n blocks such that i and i+1 are in different blocks, including 1 and n, and set partitions
of m+ n− 1 into n− 1 blocks such that the smallest element of the second block is even. A
combinatorial proof of this bijection can be found in the solution to [36, Problem 108].

Proposition 3.2.8. Let n be at least two. The sum

m+n∑
j=2

Bm+n−j,j(−1)

counts set partitions of m+ n with no singleton blocks.

Proof. Using Proposition 3.2.1 at r = −1, the box polynomial Bm,n(−1) counts set partitions
of m + n into n blocks such that i and i + 1 are in different blocks, including 1 and m + n.
Therefore, Bm+n−j,j(−1) counts set partitions of m+n−j+j = m+n into j blocks avoiding
i and i+ 1 being in the same block. The result now follows by summing over all block sizes
and with [36, Problem 108 part (b)].

Example 3.2.9. Let m = n = 2. Proposition 3.2.8 says that

B2,2(−1) +B1,3(−1) +B0,4(−1)
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counts set partitions of [4] with no singleton blocks. The above sum, easily computed by
hand with Definition 3.1.1, is 4. On the other hand, the four set partitions of [4] with no
singleton blocks are 12|34, 13|24, 14|23, and 1234.

We now transition into a connection between the box polynomials and chromatic poly-
nomials of graphs. Using the chromatic polynomial of the cycle on n-vertices a new proof
of Proposition 3.2.1 is given in Proposition 3.2.11. Additionally, an enumeration of the set
partitions of [n] avoiding i and i+ 1 in the same block for 1 ≤ i ≤ n− 1, in terms of the box
polynomial, is given via the chromatic polynomial of the path graph in Proposition 3.2.12.

Proposition 3.2.10. Let G be a graph on vertex set [n]. Then the number of set partitions
of [n] into k blocks such that adjacent vertices of G are in different blocks is given by

1

k!
·∆k(χ(G;x))|x=0,

where χ(G; t) is the chromatic polynomial of the graph G.

Proof. Observe that the chromatic polynomial χ(G; t) enumerates ordered set partitions
into t (possibly empty) blocks where the blocks are independent sets of G. The latter
partitions are ordered since any collection of t independent sets of G can be colored in t!
ways, and blocks can be empty as a coloring of G with k colors may not use all k colors. By
inclusion-exclusion, the number of ordered sets partitions into k blocks where the blocks are
non-empty independent sets is given by the alternating sum

∑k
i=0(−1)k−i ·

(
k
i

)
·χ(G; i), since(

k
i

)
· χ(G; k− i) counts set partitions of n into k parts with blocks forming independent sets

of G with at least i empty blocks.
The result follows by removing the order between the blocks, that is, dividing by k!.

Finally, express the result in terms of the forward difference operator ∆ applied k times.

Note that the empty graph, or the graph on n-vertices with no edges, has chromatic
polynomial tn. Combining this with Proposition 3.2.10 reproduces Equation (1.2.2):

S(n, k) = 1/k! ·∆k(xn)|x=0 = 1/k! ·
k∑
i=0

(−1)k−i ·
(
k

i

)
· in. (3.2.8)

Furthermore, since the chromatic polynomial of a cycle of length n is given by χ(Cn; t) =
(t− 1)n + (−1)n · (t− 1), we have the following consequence.

Corollary 3.2.11. The number of set partitions of [n] into k ≥ 2 blocks such that the
elements i and i+ 1 are in different blocks, including 1 and n, is given by the box polynomial
Bn−k,k(x) evaluated at x = −1.

Proof. By Proposition 3.2.10 the sought after enumeration is given by:

1

k!
·∆k ((x− 1)n + (−1)n · (x− 1))|x=0 =

1

k!
·∆k ((x− 1)n)|x=0

=
1

k!
·∆k (xn)|x=−1,
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which is the box polynomial Bn−k,k(x) evaluated at x = −1 by Theorem 3.1.4. Note that
we have used that ∆k((−1)n · (x − 1)) = 0 since k ≥ 2 which is greater than the degree of
(x− 1).

Note that Corollary 3.2.11 can also be shown by letting m = n − k and n = k in
Proposition 3.2.1.

We now record one more proposition using a known chromatic polynomial, namely the
chromatic polynomial for the path on n vertices, Pn.

Proposition 3.2.12. The box polynomial Bn−k,k−1(x) evaluated at x = 0, or equivalently
the Stirling number S(n − 1, k − 1), counts set partitions of n into k parts such that i and
i+ 1 are in different blocks (not including 1 and n).

Proof. Apply Proposition 3.2.10 to the path graph, Pn, with chromatic polynomial given by
χ(Pn;x) = x(x − 1)n−1. Notice that χ(Pn, x) = x(x − 1)n−1, where x is the multiplication
by x operator.

Since ∆kx = x∆k + k ·∆k−1E, for E the shift operator E(p(x)) = p(x+ 1), by Proposi-
tion 3.2.10 we have:

1

k!
·∆k(x(x− 1)n−1) =

1

k!
·
(
x∆k(x− 1)n−1|x=0 + k ·∆k−1E((x− 1)n−1)|x=0

)
=

1

(k − 1)!
∆k−1(xn−1)|x=0,

where 1
(k−1)!

∆k−1(xn−1)|x=0 = Bn−k,k−1(0), or equivalently the Stirling number S(n−1, k−1),

by Equation (3.1.1).

Remark 3.2.13. By summing over all k, Proposition 3.2.12 gives that the collection of all
set partitions of [n] such that i and i + 1 are not in the same block for 1 ≤ i ≤ n − 1 is∑n

k=2 S(n− 1, k − 1) = B(n− 1), the n− 1st Bell number. Once again, this reproduces the
bijection of [36, Exercise 108 part (a)].

Proposition 3.2.14. The expression 2m · Bm,n(−n/2) is the number of set partitions of a
set of cardinality m+ n into n blocks of odd size, denoted by Tm+n,n.

Proof. Using (3.1.4) evaluated at x = −n/2 yields

2m ·Bm,n(−n/2) =
1

2n · n!
·

n∑
r=0

(−1)n−r ·
(
n

r

)
· (2r − n)m+n. (3.2.9)

The exponential generating function for partitions with n blocks with odd cardinalities is
sinh(x)n/n! = (ex−e−x)n/(2n·n!). Using the binomial theorem and considering the coefficient
of xm+n/(m+ n)! yields the right hand side of Equation (3.2.9).

From Proposition 3.1.6 it follows that when m is odd the box polynomial Bm,n has −n/2
as a root of odd multiplicity. This also follows from Proposition 3.2.14 since there are no
such set partitions when m is odd. However, when m is even and greater than or equal to
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2 there are at least
(
m+n
n−1

)
such partitions, namely consider the set partitions with n − 1

singleton blocks and one block of size m+1. Hence −n/2 is not a root of the box polynomial
when m ≥ 2 is even. Finally, returning to the case when m is odd, we know that the root
−n/2 does not have multiplicity greater than 1, since this would imply by Lemma 3.1.5 that
its derivative Bm−1,n(−n/2) has a root at −n/2, contradicting the fact that m− 1 is even.

We now return to discuss the number of set partitions where all the blocks have odd
cardinality. We begin to express this number in terms of Stirling numbers of the second
kind.

Corollary 3.2.15. For n even, the ordinary generating function for the numbers Tm+n,n is
given by ∑

m≥0

Tm+n,n · tm =
1

(1− 22 · t2) · (1− 42 · t2) · · · (1− n2 · t2)
.

Proof. By Proposition 3.2.14 and the generating function in Equation (3.1.3) we have that∑
m≥0

Tm+n,n · tm =
∑
m≥0

Bm,n(−n/2) · (2t)m

=
1

(1 + n/2 · 2t) · (1 + (n/2− 1) · 2t) · · · (1− (n/2− 1) · 2t) · (1− n/2 · 2t)
.

The last step is combine factors using (1 + k · t) · (1− k · t) = 1− k2 · t2.

By equating coefficients of tm of Corollary 3.2.15. we have an immediate corollary.

Corollary 3.2.16. For m and n both even, the number Tm+n,n is given by the complete
symmetric function

Tm+n,n = hm/2(22, 42, . . . , n2).

We will reprove this result in Chapter 4 using restricted growth words and integer walks.
We now look at another consequence of Equation (3.1.3).

Corollary 3.2.17. Let n be an even integer. Then the number of set partitions of a set of
cardinality m + n into n blocks of odd size is given by the following convolution of Stirling
numbers of the second kind

Tm+n,n = 2m ·
m∑
k=0

(−1)k · S(k + n/2, n/2) · S(m− k + n/2, n/2).

Proof. We factor the generating function for 2−m · Tm+n,n as∑
m≥0

Tm+n,n · (t/2)m =
1

(1− t2) · (1− 22 · t2) · · · (1− (n/2)2 · t2)

=
1

(1 + t) · (1 + 2 · t) · · · (1 + n/2 · t)
· 1

(1− t) · (1− 2 · t) · · · (1− n/2 · t)
.
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The second factor is the generating function for the Stirling numbers S(m + n/2, n/2), see
equation (1.2.3). The first factor is the generating function for (−1)m ·S(m+n/2, n/2). The
result follows since the product of generating functions corresponds to the convolution of the
coefficients.

A second proof is using Proposition 3.2.14 and Lemma 3.1.8 with n = (n/2−1)+n/2+1,

Tm+n,n = 2m ·Bm,n(−n/2)

= 2m ·
m∑
k=0

Bk,n/2−1(−n/2) ·Bm−k,n/2(0)

= 2m ·
m∑
k=0

(−1)k · S(k + n/2, n/2) · S(m− k + n/2, n/2),

where the last step is equation (3.1.1) and Lemma 3.1.9.
For a different approach to these set partitions using restricted growth words, see Chap-

ter 4.

3.3 Bounds on the roots

We now discuss the location of the roots of the box polynomial Bm,n(x).

Theorem 3.3.1. All roots of the box polynomial Bm,n(x) have real part −n/2.

Proof. If the polynomial p(x) has roots all with real part a, then the polynomial ∆(p(x))
has roots with all real parts a − 1/2. This statement is due to Pólya [27], who stated
it as an exercise which was solved by Obreschkoff [25]. (For a more general statement,
see Lemma 9.13 in [28].) Applying this result n times to the polynomial xm+n yields the
result; see Theorem 3.1.4.

Example 3.3.2. When n = 1 the roots of the box polynomial Bm,1(x) = (x+ 1)m+1−xm+1

are given by

−1

2
+ i · 1

2
·

sin
(

2π·j
m+1

)
cos
(

2π·j
m+1

)
− 1

for 1 ≤ j ≤ m. Note that the largest imaginary part is about (m+ 1)/2π.

Example 3.3.3. When n = 2 the real roots of the box polynomial Bm,2(x) are of the form
−1 + i · u where u = v√

1−v2 and v is a root of the equation Tm+2(v) = vm+2, where the Tm+2

is the Chebyshev polynomial of the first kind.

Example 3.3.4. For small values of m the imaginary part of the roots of the box polynomial
Bm,n(x) are listed in Table 3.2.

Theorem 3.3.5. The imaginary parts of the roots of the box polynomial Bm,n(x) are bounded
above by mn/π and below by −mn/π.
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Table 3.2: The imaginary parts of the roots of Bm,n for small m.

m

1 0

2 ±
√
n/12

3 0, ±
√
n/4

4 ±
√

30n±
√

150n2+30n
120

5 0,±
√

10n±
√

5n2+3n
24

Proof. Assume that x = −n/2 + i · y where y ≥ mn/π. For 0 ≤ λj ≤ n we have that the
real part of x + λj lies in in the closed interval [−n/2, n/2]. Hence the argument of x + λj
is bounded by

π/2− π/2

m
< π/2− arctan

(
n/2

mn/π

)
≤ arg(x+ λj) ≤ π/2 + arctan

(
n/2

mn/π

)
< π/2 +

π/2

m
,

where we used the inequality arctan(θ) < θ for θ positive. Thus the argument of the product∏m
j=1(x+ λj) is bounded by

(m− 1) · π/2 < arg

(
m∏
j=1

(x+ λj)

)
< (m+ 1) · π/2.

Hence for all partitions λ the products
∏m

j=1(x + λj) all lie in the same open half plane.
Therefore their sum, which is the box polynomial Bm,n(x), also lies in this open half plane.
Thus Bm,n(x) is non-zero, proving the upper bound. The lower bound follows by complex
conjugation.

A different bound is obtained as follows.

Theorem 3.3.6. All the roots zj of the box polynomial Bm,n(x) lie in the annulus with inner

radius n/2 and outer radius S(m+ n, n) · (2/n)m−1 ·
(
m+n
n

)−1
, that is,

n/2 ≤ |zj| ≤
S(m+ n, n)

(n
2
)m−1 ·

(
m+n
n

) .
Proof. The inner radius follows since all roots have real part −n/2 by Theorem 3.3.1. Let
z1, z2, . . . , zm be the roots of the box polynomial Bm,n(x). Then we know that the product
(−1)m · z1z2 · · · zm is the ratio of the constant term S(m+n, n) over the leading term

(
m+n
m

)
,

that is, S(m+ n, n) ·
(
m+n
m

)−1
. We obtain the upper bound as follows:

|zj| =
∏
k 6=j

|zk|−1 · S(m+ n, n) ·
(
m+ n

m

)−1

≤ (2/n)m−1 · S(m+ n, n) ·
(
m+ n

m

)−1

.
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Proposition 3.3.7. The inner and outer radii of the annulus in Theorem 3.3.6 are asymp-
totically equivalent as n tends to infinity, that is,

S(m+ n, n)

(n
2
)m−1 ·

(
m+n
n

) ∼ n/2.

Proof. Note that the Stirling number of the second kind S(m+ n, n) is given by

S(m+ n, n) =
∑

λ1,...,λk≥2∑k
i=1 λi=k+m

(
n+m∑k
i=1 λi

)
· p(λ1, . . . , λk),

where λ1, . . . , λk are the cardinalities of the non-singleton blocks and p(λ1, . . . , λk) does not
depend on n. As a polynomial in n, the only term in this expression with maximal degree
corresponds to λ1 = · · · = λm = 2. This corresponds to counting set partitions into m pairs
and n−m singleton blocks, of which there are

(
n+m
2m

)
· (2m− 1)!!. Hence the Stirling number

and the leading terms are asymptotically equivalent, that is,

S(m+ n, n) ∼
(
n+m

2m

)
· (2m− 1)!! ∼ n2m · (2m− 1)!!

(2m)!
=

n2m

2m ·m!
∼ (n/2)m ·

(
n+m

m

)
,

where we used m! ·
(
n+c
m

)
∼ nm twice. The last statement is equivalent to the proposition.

Conjecture 3.3.8. The imaginary part of the roots of the box polynomial Bm,n(x) is bounded
by O(m ·

√
n).

3.4 The excedance matrix

The excedance algebra is defined as the quotient

Z〈a,b〉/(ba− ab− a− b). (3.4.1)

It was introduced by Clark and Ehrenborg [11] and motivated by Ehrenborg and Ste-
ingŕımsson’s study of the excedance set statistic in [14]. For a permutation π = π1π2 · · · πn+1

in the symmetric group Sn+1 define its excedance word u = u1u2 · · ·un by uj = b if πj > j
and uj = a otherwise. In other words, the letter b encodes where the excedances occur in
the permutation. Let the bracket [u] denote the number of permutations in the symmetric
group with excedance word u. The bracket is the excedance set statistic and it satisfies the
recursion [u ·ba ·v] = [u ·ab ·v]+ [u ·a ·v]+ [u ·b ·v]; see [14, Proposition 2.1]. This recursion
is the motivation for the excedance algebra. Also note that we have the initial conditions
that [a · u] = [u · b] = [u] and [1] = 1.

Consider the polynomial E(m,n) which is the sum of all ab-words with exactly m a’s and
n b’s. For instance, E(2, 2) is given by aabb + abab + abba + baab + baba + bbaa. After
the quotient of equation (3.4.1) every element in the excedance algebra can be expressed
in the standard basis {aibj}i,j≥0. Let cm,ni,j be the coefficient of aibj in the expansion of
E(m,n), that is,

E(m,n) =
∑

0≤i≤m
0≤j≤n

cm,ni,j · ai · bj.
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Similarly for any polynomial u in the excedance algebra, define the coefficients ci,j(u) by

u =
∑
0≤i,j

ci,j(u) · ai · bj.

Let the excedance matrix M(m,n) be the (m+ 1)× (n+ 1) matrix whose (i, j) entry is cm,ni,j

with rows and columns indexed from 0 to m, respectively, 0 to n. For instance, M(2, 2) is
the matrix

M(2, 2) =


0 4 7

4 14 12

7 12 6

 ,

since we have the expansion E(2, 2) = 6 · aabb + 12 · aab + 7 · aa + 12 · abb + 14 · ab + 4 ·
a + 7 ·bb + 4 ·b. By symmetry we know that M(n,m) is the transpose of M(m,n), that is,
cn,mj,i = cm,ni,j .

Proposition 3.4.1. The sum over all entries of the excedance matrix M(m,n) is the Eule-
rian number A(m+ n+ 1, n+ 1).

Proof. Note that the bracket u 7−→ [u] is a linear functional on the excedance algebra.
Hence the bracket [E(m,n)] enumerates the number of permutations in the symmetric group
Sm+n+1 with n excedances, that is, A(m + n + 1, n + 1). By expanding E(m,n) into the
standard basis we have [E(m,n)] =

∑
i,j c

m,n
i,j · [aibj], which is the sum of all the matrix

entries since [aibj] = 1.

We apply Lemma 2.6 of [11] to the sum of monomials E(m,n) to obtain the following
result.

Lemma 3.4.2. The alternating sums of the southwest to northeast diagonals in the excedance
matrix satisfy

∑
i+j=k(−1)i · cm,ni,j = 0 for k < m+n. Furthermore, the last entry is given by

cm,nm,n =
(
m+n
m

)
.

Proof. Lemma 2.6 of [11] states that if u is an ab-word with m a’s and n b’s, then∑
i+j=k(−1)i · ci,j(u) = δm+n,0. Summing this results over all such monomials yields the

result.

We now prove a recursion for the entries of the excedance matrix.

Proposition 3.4.3. The entries of the excedance matrix M(m,n) satisfy

cm,ni,j = cm,n−1
i,j−1 +

n∑
k=j

(
k

j

)
· cm−1,n
i−1,k +

n∑
k=j

(
k

j − 1

)
· cm−1,n
i,k .

Proof. One way to obtain the coefficient of aibj, or the entry cm,ni,j of M(m,n), is by post-

multiplying monomials of the form aibj−1 by b, which yields the first term cm,n−1
i,j−1 of the

proposition.
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Note that a monomial of the form ai−1bk can yield aibj for k ≥ j by post-multiplication
by a. As the a moves past each of the k b’s at the end of ai−1bk, we choose k− j of the ba
pairs to become a, and all other pairs become ab. This eliminates k − j copies of b and no
copies of a, leaving one term of the form aibj, yielding the middle sum

∑n
k=j

(
k
j

)
· cm−1,n
i−1,k .

Finally, we can obtain aibj by post-multiplying a monomial of the form aibk by a, for
k ≥ j. Note that the power of a is the same in aibj and aibk, so, as we are post multiplying
by a, we need to eliminate one copy of a and k − j copies of b as we move the a past the k
copies of b. Eliminating the copy of a must be the last step, so we choose one of the first
j b’s from the left to become an a. Suppose we choose the l’th b to become an a. Of the
remaining k− l b’s to the right of the l’th b, choose k− j of them to become a’s. This yields
the coefficient

∑j
l=1

(
k−l
k−j

)
=
(
k
j−1

)
in the final sum of the proposition.

We now make certain entries of the excedance matrix M(m,n) explicit.

Corollary 3.4.4. The two entries cm,n1,0 and cm,n0,1 of the excedance matrix M(m,n) are given
by the Eulerian number A(m+ n− 1, n).

Proof. For a polynomial v in the excedance algebra, observe that when expanding v · b
into the standard basis, there is no a term, that is, c1,0(v · b) = 0. If we further assume
that v has no constant term, we obtain c1,0(a · v) = 0. Finally, Corollary 2.5 in [11] states
that c1,0(b · v · a) = [v]. (Note that their indexes are reversed, that is, our ci,j(u) is their
cm−i,n−j(u).) Using the identity

E(m,n) = a · E(m− 2, n) · a + a · E(m− 1, n− 1) · b
+ b · E(m− 1, n− 1) · a + b · E(m,n− 2) · b,

and applying the linear functional u 7−→ c1,0(u) we obtain

c1,0(E(m,n)) = c1,0(b · E(m− 1, n− 1) · a) = [E(m− 1, n− 1)].

This last expression enumerates the number of permutations in the symmetric group Sm+n−1

with n− 1 excedances. Finally, Lemma 3.4.2 implies cm,n1,0 = cm,n0,1 .

We now come to the connection between the excedance matrix and the box polynomials.

Proposition 3.4.5. The box polynomial Bm,n(x) is given by
∑m

j=0 c
m,n
j,n · xj.

Proof. Since we are only interested in the last column of the excedance matrix, we are only
interested in terms with n b’s. In other words, when replacing ba by ab + a + b we can
directly throw out the term a. That is, we replace the relation with ba = ab+b = (a+1) ·b.
Iterating this relation yields

E(m,n) =
∑

p0+p1+···+pn=m

ap0 · b · ap1 · b · · ·b · apn

=
∑

p0+p1+···+pn=m

ap0 · (a + 1)p1 · · · (a + n)pn · bn.

Now by applying the linear functional L(aibn) = xi we have L(E(m,n)) = Bm,n(x) by
Definition 3.1.1.
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By Corollary 3.1.7 we directly have

Corollary 3.4.6. The entries in the last column of the excedance matrix M(m,n) are given
by cm,nj,n =

(
m+n
j

)
· S(m + n − j, n), while the entries in the last row are given by cm,nm,j =(

m+n
j

)
· S(m+ n− j,m).

For instance, the (m− 1, n− 1) entry of the excedance matrix is given by

cm,nm−1,n−1 = cm,nm−2,n + cm,nm,n−2

=

(
m+ n

m− 2

)
· S(n+ 2, n) +

(
m+ n

n− 2

)
· S(m+ 2,m)

=

(
m+ n

m

)
· m · (m− 1)

(n+ 2) · (n+ 1)
·
(

3 ·
(
n+ 2

4

)
+

(
n+ 2

3

))
+

(
m+ n

m

)
· n · (n− 1)

(m+ 2) · (m+ 1)
·
(

3 ·
(
m+ 2

4

)
+

(
m+ 2

3

))
=

(
m+ n

m

)
·m · n · 3mn−m− n

12

3.5 Concluding remarks

Is there a way to prove that the Eulerian numbers are unimodal using the excedance set
statistic? One possible approach is as follows. Let E(m,n) be the set of all ab-monomials
with m a’s and n b’s. Is there an injective function ϕ : E(m,n) −→ E(m + 1, n− 1) for all
m < n such that [u] ≤ [ϕ(u)]? If such a function ϕ exists, the unimodality of the Eulerian
numbers follows by summing over all monomials u in E(m,n).

A candidate function ϕ(u) is defined by factoring u as v · w, where v has exactly one
more a than b’s. Then let ϕ(v ·w) = v∗ ·w, where ∗ reverses the word and the bar exchanges
a’s and b’s. This function works for small length words, however at length 22 there is a
counterexample, namely:

u = b5ababa5bababa2 · a,
ϕ(u) = b2ababab5ababa5 · a,

and [u] = 150803880738467413 which is greater than [ϕ(u)] = 150373062932169969.
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Chapter 4 Set Partitions into Even and Odd Parts

You’re an odd man; give even
or give none.

Cressida
Troilus and Cressida,

IV.5.2642

4.1 Introduction

In this chapter we examine the ordinary generating function for set partitions of an m + n
set into n blocks of odd or even cardinality, respectfully. This work spawned from work on
the box polynomials in Section 3.2. In particular, Corollary 3.2.15 and Corollary 3.2.16 are
proven combinatorially using restricted growth words, introduced in Section 4.2, and lattice
path arguments.

As this section deals largely with the Stirling numbers of the second kind, we begin with
a brief review of Section 1.2.

The Stirling numbers of the second kind S(n, k) enumerate partitions of the set [n] =
{1, 2, . . . , n} into k blocks. They satisfy the ordinary generating function identity of Equa-
tion (1.2.3), which we recall in Equation (4.1.1) below:∑

n≥k

S(n, k) · tn−k =
1

(1− t) · (1− 2t) · · · (1− kt)
. (4.1.1)

Recall that the complete symmetric function hm(x1, x2, . . . , xk) satisfies the generating func-
tion identity ∑

m≥0

hm(x1, x2, . . . , xk) · tm =
1

(1− x1t) · (1− x2t) · · · (1− xkt)
.

The expression S(n, k) = hn−k(1, 2, . . . , k) for the Stirling numbers of the second kind follows
directly. For a reference on Stirling numbers see [36, Section 1.9].

Let Tn,k and Un,k denote the number of set partitions of the set [n] into k blocks where
each block has odd, respectively even, cardinality. These numbers have been well-studied in
the literature. The classical approach is via their exponential generating functions sinh(t)k/k!
and (cosh(t) − 1)k/k! or via a more bijective route; see [10, 30], [6], respectively. We study
the ordinary generating functions of these numbers using restricted growth words and mul-
tivariate generating functions.

We will use the natural bijection between partitions and restricted growth words. Our
first step is to generalize (4.1.1) to a multivariate generating function. Next, by picking up the
terms where all the powers are even/odd, we obtain expressions for the ordinary generating
function of partitions with each block size being odd, respectively even. By viewing these
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expressions as sums over walks on the integers, we give explicit product expressions for them.
Here we use homogeneous bivariate generating functions, making the proofs of the essential
identities straightforward. We end with a few open questions.

4.2 Restricted growth words

A restricted growth word, which we abbreviate as RG-word, is a word u = u1u2 · · ·un with the
entries in the positive integers such that uj ≤ max(0, u1, u2, . . . , uj−1) + 1 for all 1 ≤ j ≤ n.
The notion of RG-words was introduced by Milne; see [21, 22, 23]. More recently, they
appear in the papers [7, 8].

Let RG(n, k) denote the set of all RG-words of length n with largest entry k. The set
RG(n, k) is in bijection with the set partitions of the set {1, 2, . . . , n} into k blocks. Namely,
given an RG-word u = u1u2 · · ·un, construct a partition by letting elements i and j be in the
same block if ui = uj. Hence the cardinality of RG(n, k) is given by the Stirling number of
the second kind S(n, k). We compute the RG-word for a partition π ∈ Π9 in Example 4.2.1
below.

Example 4.2.1. Consider the set partition π ∈ Π9 given by π = 135|2|468|79. Elements
within each block are ordered least to greatest, while the blocks are ordered in increasing
order of the smallest element in each block from left to right. The RG word of π is given
by u(π) = 121313434. Notice that u4 = 3 since 4 is in block 3 of π. Also, note that
u(π) ∈ RG(9, 4).

Definition 4.2.1. For an RG-word u = u1u2 · · ·un in RG(n, k), let xu be the monomial
xc11 · · · x

ck
k , where for all i, ci is one less than the number of times the letter i appears in u.

In particular, Definition 4.2.1 implies that if u = u1u2 · · ·un then the total degree of xu
is n− k. We compute an example of a monomial xu in Example 4.2.2 below.

Example 4.2.2. Consider π of Example 4.2.1. We computed u(π) = 121313434, and thus
xu(π) = x2

1x
0
2x

2
3x

1
4.

We begin by generalizing equation (4.1.1) to a multivariate version.

Theorem 4.2.3. For a non-negative integer k the sum of the monomial of an RG-word over
all RG-words with largest entry k is given by∑

n≥k

∑
u∈RG(n,k)

xu =
1

(1− x1) · (1− x1 − x2) · · · (1− x1 − x2 − · · · − xk)
.

Proof. Every RG-word u has a unique factorization u = 1 · w1 · 2 · w2 · · · k · wk, where wi
is a word with entries 1 through i. For any word w, let x(w) be the monomial where the
power of xi is the number of times i appears in w. Note that xu is given by the product
x(w1) · x(w2) · · ·x(wk). The result now follows by the sum∑

wi

x(wi) =
1

1− x1 − x2 − · · · − xi
,

where wi ranges over all words with entries 1 through i.
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Note that by setting xi = qi we obtain a q-analogue of equation (4.1.1) which is due to
Gould [16]; see also Theorem 4.1 in [7].

Let RGodd(n, k) denote the set of RG-words u in which each letter occurs an odd number
of times and let RGeven(n, k) denote the set of RG-words u in where each letter occurs an
even number of times. By the bijection between RG-words and set partitions we have that
|RGodd(n, k)| = Tn,k and |RGeven(n, k)| = Un,k.

Theorem 4.2.4. The multivariate generating functions for RGodd(n, k) and RGeven(n, k)
are given by ∑

n≥k

∑
u∈RGodd(n,k)

xu =
1

2k
·
∑
~c

F (c1x1, c2x2, . . . , ckxk), (4.2.1)

∑
n≥k

∑
u∈RGeven(n,k)

xu =
1

2k
·
∑
~c

c1 · c2 · · · ck · F (c1x1, c2x2, . . . , ckxk), (4.2.2)

where the sums are over all vectors ~c = (c1, c2, . . . , ck) ∈ {−1, 1}k and F (x1, x2, . . . , xk) is
the generating function in Theorem 4.2.3.

Proof. This result follows from the fact that the RG-words in RGodd(n, k) have monomials
with all even powers, and the words in RGeven(n, k) have monomials with all odd powers.

Let’s concentrate on the first sum. Suppose xu = xα1
1 x

α2
2 . . . xαkk is a monomial in

F (x1, x2, . . . , xk), the generating function of Theorem 4.2.3. Additionally, let Ou = {i :
αi is odd}. For a composition ~c, let O~c denoted the collection {i : ci = −1}. The monomial
xu has coefficient −1 in the sum F (c1x1, . . . , ckxk) for O~c ⊆ Ou and |O~c | odd. In the same
way, the monomial xu will have coefficient +1 in the sum F (c1x1, . . . , ckxk) for O~c ⊆ Ou and
|O~c | even. As there is a bijection between subsets of Ou of even and odd size, the overall
contribution of the monomial xu in Equation (4.2.1) is 0 if Ou 6= ∅. If xu has all even powers,
then xu has coefficient +1 in F (c1x1, . . . , ckxk) for each composition ~c ∈ {−1, 1}k, and thus
it contributes xu to Equation (4.2.1) since we divide by 2k, the number of such compositions
~c. Therefore, Equation (4.2.1) counts monomials with all even exponents.

Analogously, Equation 4.2.2 counts monomials with all odd exponents. Mimic the argu-
ment of the previous paragraph, but let Eu denote the collection of indices i such that xi
has an even power in xu. Now the only monomials that contribute to Equation (4.2.2) have
all odd exponents.

4.3 Generating functions

Let Wk(a) be the set of all one-dimensional walks of length k starting at a taking steps either
−1 or 1. That is, Wk(a) = {(a0, a1, . . . , ak) ∈ Zk+1 : a0 = a, ai − ai−1 ∈ {−1, 1}}. Define
the generating functions Gk(s, t) and G±k (s, t) over the set of walks beginning at 0 and of
length k by the sums

Gk(s, t) =
1

2k
·
∑

~a∈Wk(0)

1

(s− a0t) · (s− a1t) · · · (s− akt)
(4.3.1)

68



G±k (s, t) =
1

2k
·
∑

~a∈Wk(0)

(−1)(k−ak)/2

(s− a0t) · (s− a1t) · · · (s− akt)
(4.3.2)

Proposition 4.3.1. The generating functions Gk(s, t) and G±k (s, t) satisfy the recursions

Gk+1(s, t) =
Gk(s− t, t) +Gk(s+ t, t)

2s
,

G±k+1(s, t) =
G±k (s− t, t)−G±k (s+ t, t)

2s
,

with the initial condition G0(s, t) = G±0 (s, t) = 1/s.

Proof. Observe that the substitution s 7−→ s− j · t translates the sequence (a0, a1, . . . , ak) j
steps up, that is,

Gk(s− j · t, t) =
1

2k
·
∑

~a∈Wk(j)

1

(s− a0t) · (s− a1t) · · · (s− akt)
. (4.3.3)

Each walk ~a ∈ Wk+1(0) has a0 = 0 and a1 = 1 or a1 = −1. Therefore, we split the
summands of Equation 4.3.1 according to a1 = 1 or a1 = −1. The last k + 1 coordinates of
each ~a ∈ Wk+1(0) is an element of Wk(1) or Wk(−1), and thus by Equation (4.3.3) we have
that

Gk+1(s, t) =
Gk(s− t, t) +Gk(s+ t, t)

2s
,

where we divide by s since each summand of Gk+1(s, t) has a factor or 1/s that the summands
of Gk(s− t, t) and Gk(s+ t, t) both lack. Additionally, we divide by 2 since each ~a ∈ Wk(1)
and each ~a ∈ Wk(−1) has length k.

The same proof applies to G±k (s, t) by considering the difference

G±k (s− t, t)−G±k (s+ t, t).

Proposition 4.3.2. The generating functions Gk(s, t) and G±k (s, t) are given by the products

Gk(s, t) =
k∏

i=−k
i≡k mod 2

(s− i · t)−1, (4.3.4)

G±k (s, t) = (2k − 1)!! · tk ·
k∏

i=−k

(s− i · t)−1. (4.3.5)
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Proof. Let gk(s, t) be the right-hand side of equation (4.3.4). We would like to prove that
Gk(s, t) and gk(s, t) are equal. Observe first that G0(s, t) = 1/s = g0(s, t). Next observe
that

1

(s− (k + 1)t)
+

1

(s+ (k + 1)t)
=

2s

(s− (k + 1)t)(s+ (k + 1)t)
.

Multiply both sides of the latter equality by gk−1(s, t), yielding gk(s − t, t) + gk(s + t, t) =
2 · s · gk+1(s, t). This shows that gk(s, t) satisfies the same recurrence relations as Gk(s, t).

Let g±k (s, t) be the right-hand side of equation (4.3.5). We have that G±0 (s, t) = 1/s =
g±0 (s, t). Now consider the difference

1

(s− (k + 1)t)(s− kt)
− 1

(s+ (k + 1)t)(s+ kt)
=

2s · (2k + 1)t

(s− (k + 1)t)(s− kt)(s+ kt)(s+ (k + 1)t)
.

Multiply both sides by (2k − 1)!! · tk ·
∏k−1

i=−k+1(s− i · t)−1. This yields the recursion g±k (s−
t, t)− g±k (s+ t, t) = 2 · s · g±k+1(s, t).

Combining these results yields the following generating functions.

Theorem 4.3.3. For a non-negative integer k the ordinary generating function for the num-
ber of RG-words where each entry occurs an odd or even number of times is Gk(1, t) or
G±k (1, t), respectively. That is,

∑
n≥k

Tn,k · tn−k =
k∏

i=−k
i≡k mod 2

(1− i · t)−1,

∑
n≥k

Un,k · tn−k = (2k − 1)!! · tk ·
k∏

i=−k

(1− i · t)−1.

Proof. In Theorem 4.2.4, set x1 = · · · = xk = t. Recall the monomial xu has exponents
xαii where αi is one fewer than the number of times i appears in the RG-word u. Hence
the substitution x1 = · · · = xk = t turns xu into tn−k. Therefore, the left-hand side of
Equation (4.2.1) and Equation (4.2.2) become the generating functions for the cardinality
of RGodd(n, k), respectively RGeven(n, k).

Next, under the substitution x1 = · · · = xk = t the right-hand side of Equation (4.2.1)
becomes

1

2k

∑
~c

F (c1t, c2t, . . . , ckt)

=
1

2k

∑
~c∈{−1,1}k

1

1− c1t
· · · 1

1− c1t− c2t− · · · − ckt
.

Note that the sum above is Gk(1, t). Therefore we have

∑
n≥k

Tn,k · tn−k =
k∏

i=−k
i≡k mod 2

(1− i · t)−1
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by Proposition 4.3.2. In the signed case we use that the sign c1 · · · ck is given by (−1)(k−ak)/2.

When k is even the generating function for Tn,k is given by∑
n≥k

Tn,k · tn−k =
1

(1− 22 · t2) · (1− 42 · t2) · · · (1− k2 · t2)
.

Similarly, for k odd we have∑
n≥k

Tn,k · tn−k =
1

(1− 12 · t2) · (1− 32 · t2) · · · (1− k2 · t2)
.

The generating function for Un,k is given by

∑
n≥k

Un,k · tn−k =
(2k − 1)!! · tk

(1− 12 · t2) · (1− 22 · t2) · · · (1− k2 · t2)
.

We now obtain the following expressions in terms of the complete symmetric function.

Corollary 4.3.4. The number of RG-words with odd, respectively even, number of each
entry is given by

Tn,k =

{
hn−k

2
(22, 42, . . . , k2) k even,

hn−k
2

(12, 32, . . . , k2) k odd,

Un,k = (2k − 1)!! · hn
2
−k(1

2, 22, . . . , k2).

Using the recurrence hm(x1, . . . , xk) = xk ·hm−1(x1, . . . , xk)+hm(x1, . . . , xk−1), this corol-
lary yields the classical recurrences for Tn,k and Un,k.

4.4 Concluding remarks

Is there a bijective proof of Corollary 4.3.4? Is there a multivariate refinement of Theo-
rem 4.3.3? For instance, is there a q-analogue of this theorem?

For more information on the poset and topological structure of partitions with all blocks
odd/even, see [9, 34, 41].
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Chapter 5 Alpha Colored Partition Lattice and Fiber Theorems

5.1 Introduction

This chapter grew out of exercise 33 of Chapter 1 of Stanley’s text [36]. The problem is
to prove that if An(x) is the classical Eulerian polynomial, then 1/2 · An(2) counts the
number of ordered set partitions of n, or |Qn| in the notation of this thesis. My proof
of this exercise involved examining the fibers of a map from Qn to Sn, which yielded a
generalization, Theorem 5.3.2, by coloring blocks in Qn in a particular manner. This chapter
builds a coherent narrative around Theorem 5.3.2 by creating a colored analog of the ordered
partition lattice Qn.

We begin with a brief history of the Eulerian polynomials and a discussion of the layout
of this chapter.

The Eulerian polynomials have a long and rich history in combinatorics. Euler first
defined the Eulerian polynomials as the numerator for the generating function of the n’th
powers, that is, the degree n polynomial satisfying An(x) = (1 − x)n+1

∑
k≥0 k

nxk. Equiv-
alently, the Eulerian polynomials can be defined as a sum over descents in the symmetric
group Sn, namely as An(x) =

∑
π∈Sn x

1+d(π), for d(π) the number of descents of π. Yet an-
other way to arrive at the Eulerian polynomials is as the h-polynomial of the permutahedron
Pn.

In this chapter we define the α-colored ordered partition lattice, denoted Qα
n, for α a

positive integer. In Section 5.2 we introduce the poset structure of Qα
n and give an alternate

combinatorial interpretation of the poset. We then proceed in Section 5.3 to prove the α-
colored analog of the fiber theorem from Chapter 1 exercise 33 of Stanley [35]. Moreover, just
as the face poset of the permutahedron is the ordered set partition lattice Qn, we construct
a polytopal complex called the α-colored permutahedron with face poset Qα

n.

5.2 Preliminaries

We begin with a discussion of the lattice of compositions of n, denoted Comp(n), as well as
a discussion of the ordered partition lattice, Qn. Throughout this chapter, we denote the
n-set by [n] = {1, 2, . . . , n}.

Definition 5.2.1 (Comp (n)). Let Comp(n) denote the poset of ordered integer partitions of
n into non-negative parts, with cover relation given by adding adjacent parts. The minimum
and maximum elements of Comp (n) are 0̂ = (1, 1, . . . , 1) and 1̂ = (n) respectively. For a
composition ~c = (c1, c2, . . . , ck) we refer to ci as the i’th part of ~c.

Let Qn denote the poset of ordered set partitions on n objects. In contrast to the usual
partition lattice Πn, order among the blocks in Qn matters. The cover relation in Qn is given
by the merging of adjacent blocks.

The type of an ordered set partition τ = (B1, B2, . . . , Bk) inQn is defined to be the compo-
sition of n given by the cardinality of the blocks of τ in order, or type(τ) = (|B1|, |B2|, . . . , |Bk|)
in Comp(n).
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Definition 5.2.2 (α-colored partition lattice). Let α be a positive integer. Let Qα
n be the

collection of ordered set partitions where each block has one of α colors, with the last block
a fixed color. The cover relationship in Qα

n is given by the merging of adjacent blocks of
the same color.

We still let the type of τ ∈ Qα
n to be the composition of n given by the cardinality of the

blocks of τ in order, forgetting about the colors.

Remark 5.2.1. There is a clear bijection between elements of Qα
n and ordered set partitions

where we color the breaks between the blocks of the partition, namely by coloring bars
between blocks the color of the block to its left and forgetting the color of the last block.

Example 5.2.2. Let n = 5 and α = 2. Instead of having two colors, we will let our blocks
be hatted or bald, and force our last block to be hatted. Four distinct elements of Q2

5 are
1̂2̂3̂|4̂5̂, 123|4̂5̂, 4̂5̂|1̂2̂3̂ and 45|1̂2̂3̂. Alternatively, using the interpretation of Remark 5.2.1

the elements of Qα
n can be thought of as having colored bars | and |̂, yielding the respective

elements 123̂|45, 123|45, 45̂|123, and 45|123. The dictionary between the two interpretations
is given below:

1̂2̂3̂|4̂5̂←→ 123̂|45

123|4̂5̂←→ 123|45

4̂5̂|1̂2̂3̂←→ 45̂|123

45|1̂2̂3̂←→ 45|123.

While Qα
n is primarily introduced as a means to develop the α-colored permutahedron Pα

n ,
we remark that just as ordered set partitions are an important tool in the computation of
the composition of ordinary generating functions, the poset Qα

n is an indexing poset for the
n-fold composition of ordinary generating functions. This suggests another interpretation
of Qα

n.
When α = 1, Q1

n is the usual ordered partition lattice, which we think of as lists of sets.

When α = 2, with “colors” | and |̂ as in Example 5.2.2, then Q2
n can be thought of as lists

of lists of sets, where |̂ denotes a comma in an outer list and | denotes a comma in an inner
list. Continuing in this fashion, we can think of Q3

n as lists of lists of lists of sets, and so
on. The use of the terminology lists of lists of sets comes from Motzkin’s paper [24]. This
correspondence is demonstrated in the following example.

Example 5.2.3. Let n = 5 and α = 2, with bars | and |̂. Then:

1̂|23|45←→ {1, {23, 45}}

45|1̂|23←→ {{45, 1}, 23}
45|1|23←→ {{45, 1, 23}}
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Proposition 5.2.4. The exponential generating function for the cardinality of the α-colored
ordered partition lattice is given by∑

n≥1

|Qα
n|
n!

xn =
ex − 1

1− α(ex − 1)
.

Proof. We use the composition principle of exponential generating functions. The α-colored
ordered partition lattice can be described as a composition of two structures on the set [n],
namely, an inner non-empty structure given by ex − 1, and an outer α-colored permutation
structure with generating function given by x/(1− α · x).

5.3 α-colored ordered set partitions, Eulerian polynomials, and the permuta-
hedron.

In this section we demonstrate the close relationship between the Eulerian polynomials and
the permutahedron. By means of Theorem 5.3.2, we show that the Eulerian polynomial
computes the Euler characteristic of the permutahedron. The key ingredient to the proof
is that the face lattice of the permutahedron Pn is the ordered set partition lattice Qn.
In Section 5.4 we will mirror the analogy between the permutahedron and the Eulerian
polynomial with a new polytopal complex which we call the α-colored permutahedron,.

We now proceed with the definition of descents in the symmetric group Sn and of the
permutahedron.

This paragraph is a brief restatement of the content of Section 1.6. For a permutation
π ∈ Sn, the descent set of π is given by D(π) = {i ∈ [n − 1] : π(i) > π(i + 1)}. We let
d(π) be the number of descents of π, or d(π) = |D(π)|. It will often be more advantageous
to think of the descent set of π as a composition of n in the usual way, and thus we define:

Definition 5.3.1. Let the descent set of π in the symmetric group Sn be given by the
set {i1, i2, . . . , ik}. We convert this descent set into the descent composition of π by D(π) =
(i1, i2 − i1, . . . , ik − ik−1, n− ik).

We now define the Eulerian polynomial, as in Chapter 1 of [36].

Definition 5.3.2. An(x) =
∑

π∈Sn x
1+d(π) is the Eulerian polynomial.

Note that deg(An(x)) = n since the permutation n(n − 1)(n − 1) · · · 21 has descents at
all n− 1 possible positions, thus it contributes x(n−1)+1 = xn to An(x).

Recall that the permutahedron, Pn, is the (n−1)-dimensional polytope obtained by taking
the convex hull of the permutations of Sn in Rn. The d-dimensional faces of Pn are in one
to one correspondence with ordered set partitions of n into n − d parts. For example, the
vertices of Pn are given by permutations in Sn, which are in bijection with ordered set
partitions of n into n = n − 0 parts. We note that the interior of Pn, of dimension n − 1,
must then be in bijection with ordered set partitions of n into n− (n− 1) = 1 part. In other
words, Pn is contractible.

In parallel to Proposition 5.4.5 to come in Section 5.4, we now demonstrate that the Euler
characteristic of the permutahedron Pn can be computed with the Eulerian polynomialAn(x).
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We do this by counting the elements of the α-colored ordered partition lattice Qα
n with the

Eulerian polynomial in Theorem 5.3.2. Recall that the Stirling number of the second kind,
S(n, k), is the number of partitions of n into k non-zero blocks.

In Corollary 5.3.1 we will use that the face lattice of the permutahedron Pn is the dual of
the ordered set partition lattice Qn∪{0̂}. With this fact, we note here that the Möbius func-
tion µ(Qn ∪ {0̂}) is easily retrieved from equation (5.3.1) using Philip Hall’s Theorem 1.3.3.

Corollary 5.3.1. The Euler characteristic of Pn can be computed from the Eulerian poly-
nomial An(x).

Proof. Given that the face lattice of the permutahedron is the dual of the ordered set par-
tition lattice yields

χ(Pn) =
n−1∑
k=0

(−1)kfk(Pn) =
n−1∑
k=0

(−1)kS(n, n− k) · (n− k)! = 1, (5.3.1)

since Pn is contractible. Note by reindexing we have that

χ(Pn) =
n∑
k=0

(−1)kS(n, k)k!

for n even and when n is odd we raise (−1)k−1 rather than k. Also, we use upper bound n
since S(n, 0) = 0.

Using Theorem 5.3.2 we have that:

n∑
k=0

S(n, k)k!αk−1 = (α + 1)n/α · An(α/(α + 1))

= (α + 1)n/α ·
∑
π∈Sn

(α/(α + 1))1+d(π)

= (α + 1)/α · L+
(α + 1)n

α
· αn

(α + 1)n

= (α + 1)/α · L+ αn−1,

where L is all summands of An(α/(α+ 1)) except for the term corresponding to the reverse
identity permutation, that is, the permutation with descents at all possible n− 1 positions.
Lastly, let α = −1 to obtain

∑n
k=0 S(n, k)k!(−1)k−1 = (−1)n−1. The latter sum is the Euler

characteristic of Pn when n is odd, and when n is even the Euler characteristic of Pn is
obtained by multiplying both sides of the latter sum by −1. In both the even and odd case,
the Euler characteristic is 1.

We now proceed to the main theorem of this section. The idea of the proof of The-
orem 5.3.2 is to examine the fibers of a map from the α-colored partition lattice to the
symmetric group Sn.
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Theorem 5.3.2. The following identity holds between the Eulerian polynomial and the Stir-
ling numbers of the second kind:

(α + 1)n

α
An

(
α

α + 1

)
=

n∑
k=0

S(n, k)k!αk−1.

Proof. We construct a map P : Qα
n −→ Sn given by writing out the elements of each block

of an α-colored ordered set partition in increasing order, then considering this string as a
permutation in one line notation in Sn. We will think of elements in Qα

n as having bars with
one of α colors, as discussed in Remark 5.2.1.

Let π ∈ Sn such that d(π) = k. Any α-colored ordered set partition in the fiber P−1(π)
must have α-colored breaks at the descents of π, but otherwise it is free to have α-colored
breaks at any position. Therefore, between ascents of π we can place a bar | with one of α
colors, or we can not place a bar, giving us (α + 1) choices for building an element of the
fiber P−1(π) at each ascent of π. At the descents of π we must have a bar | that can have
one of α colors, so we have αd(π) choices in total for the color combinations of these bars.

Putting it all together, if the descent runs of π have sizes d1, d2, . . . , dd(π)+1, then we have
that

|P−1(π)| = (α + 1)d1−1(α + 1)d2−1 · · · (α + 1)dd(π)+1−1αd(π)

= (α + 1)d1+d2+···+dk+1−(k+1)αd(π)

= (α + 1)n−k−1αd(π)

= (α + 1)n−d(π)−1αd(π).

Since P is surjective we have that the union of the fibers is Qα
n, thus:

|Qα
n| =

∑
π∈Sn

|P−1(π)|

=
∑
π∈Sn

(α + 1)n−d(π)−1αd(π)

= (α + 1)n(1/α)
∑
π∈Sn

(α + 1)−d(π)−1αd(π)+1

= (α + 1)n(1/α)
∑
π∈Sn

(α/(α + 1))1+d(π)

= (α + 1)n(1/α)An(α/(α + 1)).

Finally, we note that the cardinality of Qα
n is given by |Qα

n| =
∑n

k=0 S(n, k)k!αk−1, since the
number of α-colored ordered set partitions into k blocks is counted by k! ·S(n, k) times αk−1,
with the latter term accounting for the α possible colors of the k − 1 breaks.

Note that Theorem 5.3.2 recovers Theorem 5.3 of [26], as Petersen [26] defines the Eu-
lerian polynomial as An(x) =

∑
π∈Sn x

d(π). Moreover, when Theorem 5.3.2 is viewed as
a polynomial in α, each side of the statement of the theorem can be interpreted as the
generating function for the faces of the braid arrangement H(n) per Theorem 5.3 of [26].
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Corollary 5.3.3. The Eulerian polynomial An evaluated at 1/2 times 2n equals the number
of ordered set partitions of n, that is, 2n · An(1/2) = |Q1

n| = |Qn|.

The result follows by letting α = 1 in Theorem 5.3.2 and by the symmetry of the Eulerian
polynomials. Additionally, Corollary 5.3.3 recaptures Exercise 33 of Chapter 1 of [36].

We now give a non-topological consequence of Theorem 5.3.2.
Recall Euler’s generating function definition for the Eulerian polynomials:∑

k≥0

knxk =
An(x)

(1− x)n+1
. (5.3.2)

Using Theorem 5.3.2 and Equation (5.3.2) we obtain the following corollary.

Corollary 5.3.4. For α ∈ C with Re(α) > −1/2 the following holds:

∞∑
k=0

kn
(

α

α + 1

)k
= (α + 1) · α

n∑
k=0

S(n, k)k!αk−1.

The condition Re(α) > −1/2 is needed since the power series on the left side of Equa-
tion 5.3.2 has radius of convergence 1 by the ratio test.

5.4 The construction of Pα
n

When α = 1, Qα
n is the usual ordered partition lattice, where the number of elements in Qn

of rank i count the (n − i)-dimensional faces of the permutahedron, Pn. In this section we
define an analogous polytopal complex Pα

n whose (n − i)-dimensional faces are counted by
the elements of rank i in Qα

n. We call Pα
n the α-colored permutahedron, see Definition 5.4.1.

Over the course of this section we will see that Pα
n has many similarities to the usual

permutahedron Pn. Namely, the face lattice of Pα
n is Qα

n, while the face lattice of Pn is Qn.
Furthermore, Proposition 5.4.5 shows that the Euler characteristic of Pα

n can be computed
with the Eulerian polynomial An(x) in a similar fashion to Corollary 5.3.1. Lastly, the
components of Pα

n are products of permutohedra, and therefore Pα
n is a union of contractible

components, just as Pn is contractible.
Keeping in mind that the face lattice of Pα

n should be Qα
n, we reverse engineer the

construction of Pα
n by describing the facets of the polytopal complex–each of which will

determine a unique connected component of the complex.
Let ~c = (c1, c2, . . . , ck) be a composition of n. Recall the multinomial coefficient

(
n
~c

)
=(

n
c1,c2,...,ck

)
. Notice that there are (α− 1)k−1 ·

(
n
~c

)
elements of Qα

n of type ~c with no adjacent
blocks of the same color. This is because each α-colored ordered set partition of type ~c has
blocks sizes given by ci, and since we want no adjacent blocks of the same color, we have
α−1 choices for the penultimate block Bk−1, since it can not match the fixed color of the last
block. Coloring blocks from right to left in this fashion gives us that there are (α−1)k−1 ·

(
n
~c

)
elements of Qα

n of type ~c with no adjacent blocks of the same color.
For each of these alternating color ordered partitions we define a facet P|c1|×P|c2|×· · ·×

P|ck| of Pα
n . Since our goal is to define a polytopal complex Pα

n with face lattice Qα
n, defining

facets of Pα
n in this manner makes sense. This is because an α-colored ordered set partition
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Figure 5.1: P 2
3 with “colors” bald and hatted.
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τ of type ~c with alternating colors is not covered by any element in Qα
n per Definition 5.2.2,

and thus should correspond to a facet of Pα
n .

Moreover, any element τ ′ ∈ Qα
n with τ ′ ≤ τ can be formed by splitting blocks of τ and by

flipping blocks of τ of the same color. This splitting and flipping can be done independently,
and since the faces of the usual permutahedron Pn are enumerated by the ordered partition
lattice Qn, the face lattice of the component P|c1| × P|c2| × · · · × P|ck| will be the lower order
ideal generated by its defining alternating color ordered set partition τ of type ~c in Qα

n. Since
our components are disjoint, this construction will yield f(Pα

n ) = Qα
n, and gives the following

definition.

Definition 5.4.1 (α-colored permutahedron). Let Pα
n be the polytopal complex with (α−

1)k−1 ·
(
n
~c

)
disjoint facets P|c1|×P|c2|×· · ·×P|ck| for each composition ~c = (c1, c2, . . . , ck) of n.

Each of these facets is labeled by a unique α-colored ordered partition, τ , of type ~c with no
adjacent blocks of the same color.

The lower dimensional faces of codimension i in the facet labeled by τ are labeled by
α-colored ordered set partitions in the lower order ideal generated by τ in Qα

n into |τ | + i
parts. By virtue of construction, we have that the face lattice of Pα

n is given by Qα
n, that is

f(Pα
n ) = Qα

n.

We now look at an example.

Example 5.4.1. Figure 5.1 shows P 2
3 . Per Definition 5.4.1, P 2

3 has facets labeled by 2-
colored ordered set partitions with alternating colors, which we mark as bald blocks and
hatted blocks. Instead of a fixed last color, we force the last block of each 2-colored ordered
set partition to be hatted. We now compute the facets of P 2

3 using Lemma 5.4.2. The
compositions of three are (1, 1, 1), (1, 2), (2, 1) and (3). Since

(
3

1,1,1

)
= 6,

(
3

2,1

)
= 3,

(
3

1,2

)
= 3

and
(

3
3

)
= 1, there are 6 facets of type (1, 1, 1), 3 facets of type (2, 1), 3 facets of type (1, 2),

and 1 facet of type (3). Each of these facets must be alternating in color with last color
hatted.

We now list relevant topological properties of Pα
n .
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Lemma 5.4.2. The number of components of Pα
n is given by∑

~c∈Comp (n)

(α− 1)|~c |−1 ·
(
n

~c

)
. (5.4.1)

Recall |~c | denotes the number of parts of ~c.

The above sum enumerates all elements of Qα
n with adjacent blocks having different colors.

Since each of these partitions determine a component, the result follows.

Corollary 5.4.3. The number of connected components of Pα
n is the total number of faces

in Pα−1
n .

We can view equation (5.4.1) as summing over all (α− 1)-colored ordered set partitions
of type ~c, and the result follows from Lemma 5.4.2.

Corollary 5.4.4. The Euler characteristic χ(Pα
n ) can be counted in two ways as

n∑
k=0

(−1)kS(n, n− k) · (n− k)! · αn−k−1 =
∑

~c∈Comp (n)

(α− 1)|~c |−1 ·
(
n

~c

)
. (5.4.2)

Since Pα
n is a union of contractible components, Lemma 5.4.2 counts the Euler charac-

teristic of Pα
n . We can also count the Euler characteristic by the alternating sum of the face

numbers of Qα
n, which is the left hand side of (5.4.2).

Note that letting α = 1 in Equation (5.4.2) recaptures that the usual permutahedron is
contractible, and thus has Euler characteristic 1, since composition ~c on the right side of
Equation (5.4.2) vanishes except for ~c = (n). For the composition of n into one part we have
(1− 1)|~c |−1 ·

(
n
n

)
= 00 · 1 = 1.

Lastly, to complete the analogy between Pα
n and the usual permutahedron Pn, we show

that the Eulerian polynomial can also be used to compute the Euler characteristic χ(Pα
n ),

just as we showed the Eulerian polynomial can be used to compute χ(Pn) in Corollary 5.3.1.

Proposition 5.4.5. The Euler characteristic of Pα
n is given by

χ(Pα
n ) =

(α− 1)n

α
An

(
α

α− 1

)
.

Proof. This proof will mimic the proof of Theorem 5.3.2.
Consider the restriction of the map P : Qα

n −→ Sn to partitions alternating in color. We
denote this map PA. Since partitions alternating in colors are the facets of Pα

n , and as each
facet determines a unique connected component, the sum

∑
π∈Sn |P

−1
A (π)| will give us our

desired Euler characteristic.
For a fixed π ∈ Sn, the size of the fiber P−1

A (π) is given by

|P−1
A (π)| =

∑
~d≤D(π)

(α− 1)|
~d |−1,
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as we are allowed to add breaks between descents of π while maintaining alternating colors.
Therefore,

χ(Pα
n ) =

∑
π∈Sn

|P−1
A (π)|

=
∑
π∈Sn

∑
~d≤D(π)

(α− 1)|
~d |−1

= (α− 1)n−1
∑
π∈Sn

∑
~d≤D(π)

(1/(α− 1))n−|
~d |.

Notice that the last sum
∑

~d≤D(π)(α − 1)n−|
~d | is the rank generating function for the lower

order ideal generated by D(π) = ~c = (c1, c2, . . . , ck) in Comp(n), evaluated at α − 1. As
lower order ideals in Comp(n) are products of Boolean algebras, we may express this inner
sum as a product of rank generating functions for corresponding Boolean algebras:

χ(Pα
n ) = (α− 1)n−1

∑
π∈Sn

∑
~d≤D(π)

(1/(α− 1))n−|
~d |

= (α− 1)n−1
∑
π∈Sn

k∏
i=1

FBci (1/(α− 1))

= (α− 1)n−1
∑
π∈Sn

k∏
i=1

(1 + 1/(α− 1))ci−1

= (α− 1)n−1
∑
π∈Sn

(
α

α− 1

)n−k
=

(α− 1)n

α
An

(
α

α− 1

)
.

Observe we have used that the rank generating function of the Boolean Algebra Bn is given
by FBn(x) = (1 + x)n−1. While some steps at the end of the calculation have been omitted,
the reader may see Theorem 5.3.2 for similar reasoning.

A different proof of Proposition 5.4.5 uses the symmetry of the Eulerian polynomials.
Namely, by Corollary 5.4.3, the Euler characteristic of Pα

n is given by the number of faces in
Pα−1
n , which has face poset Qα−1

n . Theorem 5.3.2 says that |Qα−1
n | = αn

α−1
An(α−1

α
). Now use

that An(x) = 1
xn+1An(1/x), which is the symmetry of An(x), to obtain Proposition 5.4.5.

Copyright© Dustin Hedmark, 2017.
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