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ABSTRACT OF THESIS 

 

In any power system, fault means abnormal flow of current. Insulation breakdown is 

the cause of fault generation. Different factors can cause the breakdown: Wires 

drifting together in the wind, Lightning ionizing air, wires with contacts of animals 

and plants, Salt spray or pollution on insulators. The common type of faults on a three 

phase system are single line-to-ground (SLG), Line-to-line faults (LL), double line-to-

ground (DLG) faults, and balanced three phase faults. And these faults can be 

symmetrical (balanced) or Unsymmetrical (imbalanced).In this Study, a technique to 

predict the zero crossing point has been discussed and simulated. Zero crossing point 

prediction for reliable transmission and distribution plays a significant role. Electrical 

power control switching works in zero crossing point when a fault occurs. The 

precision of measuring zero crossing point for syncing power system control and 

instrumentation requires a thoughtful approach to minimize noise and external signals 

from the corrupted waveforms A faulted current waveform with estimated faulted 

phase/s, the technique is capable of identifying the time of zero crossing point. Proper 

Simulation has been organized on MATLAB R2012a. 

 

KEYWORDS:  Zero Crossing Point, System Protection, Reliable Power Transmission, 

Fault Minimization, Fault Protection 
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Chapter 1 Introduction 

 

If a question is asked what the most important factor is at this moment to live on this 

earth, "Electricity" will probably be the answer from most of the surveys. But, to be 

sensible or to be more technical the answer would be reliable power system. This 

thesis includes a topic where an important thing for reliable power system has been 

discussed which can be mentioned as zero crossing estimation technique. Before the 

discussion will go into deeper, brief words will be exchanged about history of electric 

power system, components of electric power system and the importance of zero 

crossing in power system. 

 

1.1 History of Electric Power System 

 

In the early days or one might say at the beginning era of electricity, power systems 

were so small and localized. Among all the accomplished systems "The Pearl Street 

Station" in New York City was the first that connected a 100 V generator that burned 

coal to power a few hundred lamps in the neighborhood; it was founded by Thomas 

Edison and his company which was established in 1882 [12].  At the very beginning 

the station provided power around 3,000 lamps for 59 customers. Soon, many similar 

complete, independent and isolated systems were built throughout the country. The 

power station was run by direct current and operated at a single designated voltage. At 

that time for long-distance transmission it was not possible to transform Direct 

Current (DC) easily to the required higher voltages to minimize power loss; so it was 

obvious to have the maximum economical distance around half-a-mile (800 m) 

between the generating station and end user load [13]. To solve the issue, a number of 
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the AC equipment including generators and transformers were imported from Europe 

by George Westinghouse who was known an American entrepreneur and he hired 

engineers for experimenting with them for making a structure of commercial power 

system [18]. In July 1888, Westinghouse also purchased Nikola Tesla's US patents for 

a poly phase AC induction motor and hired Tesla for one year to be a consultant at 

the Westinghouse Electric & Manufacturing Company's Pittsburg labs to set up the 

AC motor [14,18]. 

From this lab, the first generator that used alternating current (AC) was built 

by William Stanley, Jr. Instead of flowing in one direction, its direction of electricity 

was backward and forward [18]. Alternating Current is being used almost exclusively 

worldwide today, but in the late 1800s it was hardly imaginable to use AC than DC. 

The major advantage of Alternating Current is that it is possible to transmit AC power 

as high voltage and convert it to low voltage to serve individual users using the step 

up and step down transformers [12]. From the late 1800s to ahead, a jumble of AC 

and DC grids popped up over the country, in direct competition with one another. By 

1930s regulated electric utilities became well-demonstrated, providing all three major 

aspects of electricity- generation, transmission, and distribution. 

1.2 Electric Power System Structure 

 

An electric power system can be defined as an electrical network that supplies 

residential and industrial area with power - this total power system can be named 

as the grid and generally can be divided into three basic or major parts: generators, 

transmission line and distribution system. Generators usually supply/produce the 

power; Transmission system carries the power from the generating stations to the load 

centers and the distribution system that makes flow the power to nearby houses and 
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industries.  Bulks of these systems are established on three-phase AC power which is 

basically the standard for large-scale power transmission and distribution throughout 

the present world. To deliver from generation plant to distribution station step up 

transformers are used so that voltage always remain up above of 110kV or equal to 

that as the distance from generation plant to distribution substation may long enough. 

Otherwise, signal might be distorted. Due to this voltage range transmission loss for 

long transmission line is less. After transmitting to the distribution substation step 

down transformers are used for delivering to the end users. 

 
 

 

 

 

 

 

Figure 1: Electric Power System Components 
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1.3 Importance of Zero crossing point in power System 

Due to the importance of zero crossing estimation point, we have to discuss about the 

importance of fault recognition first. In power system, fault infers the abnormality in 

electric current. In three-phase systems, a fault is usually engaged in one or more 

phases and ground, or may take place only between phases. In a "ground fault" or 

"earth fault", charge falls into the ground.  In a poly phase system, all the phases may 

be affected by a fault equally which is a "symmetrical fault". If only some phases are 

affected, it becomes more complicated to analyze the ensuing "asymmetrical fault" 

due to not applicable of the simplifying assumption of equal current magnitude in all 

phases. Here the term “Symmetrical components” comes to solve this issue. Faults 

may also be caused by either short circuits to ground or between conductors or may 

be caused by broken conductors in one or more phases which are known as open 

circuit fault. In a nutshell, if we describe the fault in types there are two kinds: 

symmetrical faults and asymmetrical faults. The definition of symmetric and 

asymmetric fault has been given. Due to the nature of asymmetric fault it can be 

divided in three types: line to line, line to ground and double line to ground fault. 

When such fault occurs, equipment used for power system protection operates to 

separate the circuit of the fault. According to the tenure of fault types there are two 

types: Transient and persistent. Transient fault is a temporary fault in nature which 

usually occurs for a very short time and restores then. Faults in overhead lines are 

generally transient in nature too. Typical examples of Transient faults are: 

momentarily tree contacts, Bird and other animal contacts, lightning strike and 

conductor cashing. Persistent fault doesn’t appear when the power is disconnected. 

This kind of fault happens due to mechanical damage in underground lines [16]. 

Among two types of faults we care mostly concerned about the asymmetric faults 
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because of the system imbalanced, and this is not easy to resolve. The studies and 

detection of these faults are necessary to ensure that the reliability and stability of the 

power system. Protection system consists of instrumental transformers, relays and 

circuit breaker. If the secondary windings current of the instrument transformer 

exceeds the “pick value” then the relay contacts close automatically, this then causes 

the circuit breaker to open. So, Information retrieved from the instrumental 

transformers make the relay and circuit breaker work for power system protection.  

In Mathematics, a "zero-crossing" is a point where the sign of a function changes (e.g. 

from +ve to -ve), due to the crossing of the axis (zero value) in the graph of that 

function. In alternating current (AC), the “zero crossing point” is the certain point at 

which there is no voltage posed. In a sine wave or other simple waveform, in each 

cycle this naturally occurs twice. Zero crossing point estimation is important in 

electrical power system control. When a fault occur in transmission line, Electric Arc 

happens, system gets unbalanced, and this fault needs to be minimized soon as the 

fault signal is consisted of voltage spike and electrical noise which may create 

damage of the equipment(Circuit Breaker/ Switch) depending on the fault. More 

specifically, if the arc is secondary it can hamper in Ultra High Voltage (UHV) 

transmission line. If the secondary arc is not put out quickly, the circuit breaker will 

be reclosed the trouble in arc light， which continues affecting the stability of system 

[17]. In Alternating Current, the significant point is to separate the circuit at zero 

crossing point next to the fault occurring point to lessen the damages. In system 

protection, if we can detect the zero crossing point next to the fault occurring point 

and synchronize the fault occurring time with the breaker, the circuit will be separated 

at the zero crossing point which can minimize the noise effect or damage in the 

transmission line. There are two types of noise: noise on power lines and noise 
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emitted into open spaces caused by arc. The zero crossing function is effective against 

both types of noise. AC type Relays turns “ON” at the zero crossing point of the AC 

sinusoidal wave form, prevents high inrush currents when switching to inductive or 

capacitive loads. 
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Chapter 2 Literature review 

 

The power system, as a whole, is a complex dynamic system. The voltage and current 

phasors are widely used for monitoring and control in a large interconnected power 

system. Voltage and current phasors in power system network undergo through a 

dynamic variation under system disturbances and faults. Fast prediction of rate of 

change of these phasors and acceleration of changes will find direct applications in 

system protection and stability prediction. A fault signal is consisted of fundamental 

and harmonic components that can be represented as sinusoidal function and DC 

decaying components, which is expressed as decaying exponential function [1,2], 

known as DC-Offset. To calculate the fault signal it is utmost important to get the 

values of the phasors. Discrete Fourier Transform, Walsh, Harr, Least Square or 

Kalman filtering have been used for phasor estimation [3-5], which usually suppress 

the dc offset too. 

 

In paper [6], a modified dynamic phasor estimation method was proposed to estimate 

a phasor that changes magnitude according to time during the transient period. 

Envelope of a phasor was estimated by assuming an input signal inclusive of a Taylor 

series of fundamental frequency component and high frequency components.  A 

decaying dc offset is a non-periodic signal and has a relatively wide range frequency 

spectrum with larger distribution at lower frequencies. Since conventional full-cycle 

DFT cannot effectively attenuate the lower frequency components, unwanted errors in 

forms of overshoot and decaying oscillations result in the magnitude and angle of the 

estimated phasor, paper [7] has described an extemporized DFT based phasor 

algorithm. This paper first presents a new method in which the decaying dc 

parameters are estimated by averaging the current signal over the power system cycle. 
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However, instead of the direct use of decaying dc magnitude and time constant, two 

interim variables are defined to reduce the amount of computation. Second, a new 

method is proposed to compensate the current phasor estimated by full-cycle DFT in 

the phasor domain using very few basic mathematical operations. Moreover, in this 

paper, the standard performance indices used in control theory and signal processing 

including rise time, settling time, and overshoot have been adopted to compare the 

proposed algorithm with the full-cycle DFT, cosine and mimic filter (a high-pass or 

band pass filter which can completely remove the decaying dc offset only when the 

time constant of the dc offset matches with the presumed one) DFT algorithms. An 

improved DFT method has been discussed in paper [1]. Using the odd and even 

samples of fault signal after DFT it has shown the calculation of amplitude and phase 

of harmonic and exponential component. Paper [8] presented a novel adaptive mimic 

filter (AMF) to eliminate the decaying DC component effect on phasor estimation. 

The key idea is to use an adaptive algorithm to obtain the decaying time constant of 

the signal; thereby the digital mimic filter parameters are readjusted. As a result, the 

decaying DC component may be completely filtered out. The proposed phasor 

estimation algorithm combines the AMF with the Full-Cycle discrete Fourier 

Transform (FCDFT) algorithm. Paper [9] is about calculating impedances from 

digitized voltages and currents sampled of a faulted waveform. This paper presents a 

novel algorithm which is based on the least error squares curve matching technique. 

The algorithm assumes that the input is consisted of a fundamental frequency 

component, a decaying d. c. and harmonics of defined order. The decay rate of the d. 

c. component is not assumed in advance because it is affected both by the resistance 

of the arc at the fault and the effective resistance of the system. The paper describes 

the least squares approach for developing a digital filter which explicitly takes 
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account the decaying d. c. components in the system voltages and currents. The 

concept of pseudo-inverse which has been used in developing the algorithm is also 

presented. 

 

Beside those, several methods of calculating zero crossing point next to the fault has 

been discussed in [10], these are: Pre-Detection Low Pass filtering, Post Processing 

Signal Conditioning, Simple Optical Isolated Semiconductor Devices, Zero-Crossing 

Detection by Interpolation, Comparator Circuits with Fixed Hysteresis, Comparator 

Output Frequency Filtering. 

 

All those description are ended by calculating the magnitude of the dc offset and the 

peak value of the definite harmonic component. And here the next step of the 

formulation starts to calculate the time of zero crossing point.  
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Chapter 3 Theoretical Discussion for Zero Crossing Estimation 

 

To solve the problem of zero crossing point estimation there are several points like 

components of faulted voltage/current wave, Faults in the transmission line and 

sequence components to solve the unbalanced system. Least square method has been 

used here to solve the zero crossing point [9]. 

3.1 Fault wave fundamentals 

 

Fundamental and harmonic components in fault current/voltage can be represented as 

sinusoidal functions, and the decaying dc component is expressed as a decaying 

exponential function [1,9]. The equation is: 

                       /

1 2 0

1

(t) K (n t )
N

t

n n

n

I e K Sin  



                                                 (3.1)  

Where, is the instantaneous Current at time t; 

  is the time constant of the decaying d. c. component; 

is the highest order of the harmonic component present in the signal; 

 is the fundamental frequency of the system; 

 is the magnitude of the d. c. offset of t=0; 

 is the peak value of the nth harmonic component and 

is the phase angle of the nth harmonic component. 

 can be expanded by Taylor series as below : 

                      /

2 3

1 1
1 /

2! 3!

t t t
e t 

 

                                                                   (3.2)

                  

In real world, present in fault voltages and currents there are no even harmonics. Also, 

signal conditioning equipment which usually contains analog filters, blocks the higher 

 tI



N

0

1K

nK 2

n

e
t /
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order harmonics to reach the relay [9]. First three terms have been used and assumed 

here to expand the equation. The signal conditioning equipment will block the fifth 

and higher order harmonics in an effective manner and no even harmonics will be 

presented in the input, a current sampled at definite time t can be expressed by 

Equation 3.3 which is an abbreviated form of Equation 3.1.  

     1
1 1 21 0 1 23 0 32

( ) ( ) 3
2!

Kt t
I t K K K Sin t K Sin t   

 
                               (3.3)                                        

Equation (3.4) is obtained by expanding and, using 

trigonometric formulation of Sin(A+B) and substituting in Equation 3.3. 

 
       

     

1
1 1 21 0 1 21 1 02

23 0 3 23 0 3

( ) ( )
2!

3 3

Kt t
I t K K K Sin t Cos K Sin Cos t

K Sin t Cos K Cos t Sin

   
 

   

    

 

             (3.4)                                        

Now for calculating the unknowns and applying mathematical formulations we will 

organize equation (3.4) in a formation of matrix.  Suppose, 

1 1X K                 (3.5)                                       
 

 2 21 1X K Cos  (3.6)                                       
 

 3 21 1X K Sin             (3.7)                                        

 4 23 3X K Cos             
(3.8)                                       

 

 5 23 3X K Sin  (3.9)                                       
 

1
6

K
X




  

(3.10)                                       
 

1
7 22

K
X


  

         (3.11)                                        

and, 

11 1A   (3.12)                                        

)( 10  tSin )3( 30  tSin
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 12 0A Sin t  (3.13)                                        

 13 0A Cos t  (3.14)                                        

 14 03A Sin t  (3.15)                                        

 15 03A Cos t  (3.16)                                        

16A t  (3.17)                                        

2

16A t  (3.18)                                        

  

So, now we can write equation (3.4) as 

           11 1 12 2 13 3 14 4 15 5 16 6 17 7I t A X A X A X A X A X A X A X      
 
                    (3.19)                                        

Then depending on time, we can have the equations of I (t1), I (t2), I (t3), and so on. 

And using these sample currents we can make a model of matrix to get the unknowns 

in X. The equation (3.19) can be written in a format of matrix as below: 

                                                       
1 7 7 1m m

I A X
  

     
     

     

                                        (3.20)                                                                                                   

We can easily retrieve the fault currents what we will discuss in the later part of the 

theory and we know the values of matrix A, which can be predetermined and depends 

on the values of sampling rate and the time reference. Using the values we can get the 

solution of X which is consisted of the magnitude of the dc offset and magnitude & 

phase angle of the harmonic components. From the dimension of the matrix, we can 

easily see that we need at least seven current samples from the faulted signal. If we 

take seven values and it becomes a square matrix, then we can use inverse of the 

matrix. But, for more accuracy we may take some more values. And the matrix A 

becomes rectangular matrix. Here, we must have to use the mathematical constraints 

that we can't do inverse of a rectangular matrix. So, here comes the function of pseudo 
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inverse, which can be referred as Moore –Penrose pseudo inverse. A common use of 

the Moore –Penrose pseudo-inverse (hereafter, just pseudo inverse) is to compute a 

best fit'(least squares) solution to a system of linear equations that lacks a unique 

solution. We usually represent pseudo-inverse by representing A
+
. 

 

So, the value of unknowns can be determined as follows: 

              

     
T

X A I                                                 (3.21) 

3.2 Sequence Components & Fault Types 

 

Here comes the usage of current samples. Now, faulted current samples can be taken 

from any type of fault like single line to ground fault, Line to Line fault, double line 

to ground fault. To discuss about these faults, we must have to review the symmetrical 

component theories cause it is utmost useful to solve the unbalanced three phase 

circuits. For these theories Glover, Sharma & Overbye's book [11] and Grainger ,John 

J., Stevenson, William D.’s [16] can be referred. We will infer some parts of these 

books. 

Assume that a set of three-phase voltages designated Va, Vb, and Vc is given. 

According to Fortescue, these phase voltages are resolved into the following three sets 

of sequence components: 

1. Zero-sequence components, consisting of three phasors with equal magnitudes 

and with zero phase displacement, as shown in Figure 2(a) 

2.  Positive-sequence components, consisting of three phasors with equal 

magnitudes, ±120
ᴼ
 phase displacement, and positive sequence, as in Figure 2(b) 
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3. Negative-sequence components, consisting of three phasors with equal 

magnitudes, ±120
ᴼ
 phase displacement, and negative sequence, as in Figure 2(c) 

 

Figure 2: Resolving phase voltages/currents into three sets of sequence components 

[11] 

 

An unbalanced three phase system can easily be transformed from n related phasors can 

be translated to n systems of balanced phasors by using this sequence network called 

symmetric component. Three voltage sequences of each phase are designated as Va0, 

Vb0, and Vc0 for zero Sequence,   Va1, Vb1, and Vc1 for positive Sequence and Va2, Vb2, 

and Vc2 for negative Sequence. Relationship between phases and sequences can be 

described by the following matrix: 

                                   

0

2

1

2

2

1 1 1

1

1

a

b

c

V V

V a a V

V a a V

     
     


     
          

                                         (3.22) 

Where, 01 120 ( 1/ 2) j( 3 / 2)a         

a. Zero Sequence 

Component 

b. Positive Sequence 

Component 

c. Negative Sequence 

Component 

Va1 

Vc1 

Vb1 

Va2 Vb2 

Vc2 

Va0 

Vb0 

Vc0 
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By applying inverse of the above matrix, we can get as follows: 

                                                

0

2

1

2

2

1 1 1
1

1
3

1

a

b

c

V V

V a a V

V a a V

     
     


     
          

                                      (3.23)                                            

Similarly, the relationship for current is as below: 

                                                 

0

2

1

2

2

1 1 1

1

1

a

b

c

I I

I a a I

I a a I

     
     


     
          

                                         (3.24)           

and  

                                               

0

2

1

2

2

1 1 1
1

1
3

1

a

b

c

I I

I a a I

I a a I

     
     


     
          

                                (3.25) 

Where, Three current sequences of each phase are designated as Ia0, Ib0, and Ic0 for zero 

Sequence, Ia1, Ib1, and Ic1 for positive Sequence and Ia2, Ib2, and Ic2 for negative 

Sequence. Now, Different kinds of faults will be discussed. We will be using the 

theories from Granger and Stevenson's book [16] power system analysis and Glover, 

Sharma and Overbye's book [12] power system design and analysis for different fault 

type discussion. 
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3.2.1 Phase to ground Fault 

 

Consider a single line-to-ground fault from phase a to ground at the general three-

phase bus shown in Figure 3. In general, we include fault impedance Zf. In the case of 

a bolted fault, Zf =0, whereas for an arcing fault, Zf is the arc impedance.

                                               Figure 3: Phase a to ground Fault  

In the case of a transmission-line insulator flashover, Zf includes the total fault 

impedance between the line and ground, including the impedances of the arc and the 

transmission tower, as well as the tower footing if there are no neutral wires. The 

sequence network diagram is as below: 

 

Figure 4: Interconnected sequence networks (Phase to ground faults) [11] 

 
 

Z0 

Z1 

Z2 

3Zf 

Vf 

+ 

 - 
V0 

+ 

V1 

 - 

+ 
V2 

 - 

M 

Zf 
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For the ease of equation mapping we will consider the fault from phase a to ground, 

whereas it can be arbitrarily chosen in any phase. The conditions from Figure 3 are 

expressed by the following equations:                                    
 

0bI 
  

            (3.26) 

0cI 
 

            (3.27) 

ag a fV I Z
 

            (3.28) 

Now, from the symmetrical component equation (3.25), we can write,  

                                        

0

2

1

2

2

1 1 1
1

1 0
3

1 0

aI I

I a a

I a a

     
     


     
              

                                           (3.29) 

And from equation (3.22) and equation (3.24) in equation (3.28), it is clear that 

                                                  
 0 1 2 0 1 2 fV V V I I I Z    

                               
(3.30) 

From equation (3.29) and equation (3.30), 

Fault condition in sequence domain, 0 1 2I I I  , and     0 1 2 13 fV V V Z I    

So, from the above equations and Figure 4 we can write,  

                                                0 1 2

0 1 2 3

F

f

V
I I I

Z Z Z Z
  

                               
(3.31) 

And now from equation (3.31) it can be easily derived that,   

                                                                 (3.32)        

Finally,                              
0 1 2

3

3

F
ag f

f

V
V Z

Z Z Z Z


  

                                         

(3.33) 

Now, we can have phase to ground voltage/current samples in different time instants. 

Using those voltage/current samples we can get the value of X from equation (3.21).  

 

f

F
a

ZZZZ

V
IIII

3

3

210

210



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3.2.2 Phase to Phase Fault 

 

For the ease of theory, we are considering a fault from phase b to phase c shown in 

Figure 5. Here, the fault impedance is Zf between phase b to phase c. The conditions 

at bus M are, 

                                                        0aI                                                         (3.34) 

                                                       c bI I                                                       (3.35) 

                                                   
bg cg f bV V Z I                                                (3.36) 

 

                                 Figure 5: Phase b to Phase c Fault 

Using the conditions, from equation 3.25, we can write- 

                      

 

 

0

2 2

1

2

2
2

0
1 1 1 0

1 1
1

3 3
1

1

3

b b

c

b

I

I a a I a a I

I a a I

a a I

 
 

       
         
       
            

 
                                 (3.37) 

From equation 3.22 & 3.24 in equation 3.36, we can write, 

                2 2 2

0 1 2 0 1 2 0 1 2fV a V aV V aV a V Z I a I aI                            (3.38) 

Equation (3.38) can be simplified as below, 

0 0I 
 
and 2 1I I  , which can be referred as- 

                    2 2 2

1 2 1fa a V a a V Z a a I       =>  1 2 1fV V Z I                (3.39) 

M 

Zf 
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            Figure 6: Interconnected Sequence network (Phase to Phase) [11] 

From Figure 6 of interconnected sequence network, we can conclude: 

                              
1 2 0

1 2

, 0F

F

V
I I I

Z Z Z
   

 
                                           (3.40) 

Transforming equation (3.40) in phase domain using equation (3.24) and using 

identity  2 3a a j   , the fault current in phase b is 

           2 2

0 1 2 1 1

1 2

3
3 F

b

F

j V
I I a I aI a a I j I

Z Z Z


       

 
                           (3.41),  

                                                                0aI                                                       (3.42), 

and                              2 2

0 1 2 1c bI I aI a I a a I I                                      (3.43) 

 

3.2.3 Double Phase to ground Fault 

 

A double line to ground fault from phase b to phase c to ground through fault 

impedance Zf has been shown in Figure 7. It is must to have the following conditions 

in case of phase b to phase c to ground type fault: 

                                                                                   0aI                                                                                 (3.44) 

                                                                               cg bgV V                                                                                             (3.45) 

+ 

- 

V1 

+ 

V2 

- 

Z1 I1 Z2 

+ 

- 

I2 Zf 

Vf 
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 bg f b cV Z I I                                                                             (3.46) 

Using equation (3.24) in equation (3.44) and using equation (3.22) in equation (3.46), 

we can write respectively- 

                                                          0 1 2 0I I I                                                  (3.47) 

                                          2 2

0 1 2 0 1 2( ) ( )V aV a V V a V aV                                  (3.48) 

Simplifying that, we can conclude it with, 

                                                                2 1V V                                                    (3.49) 

 

Figure 7: Phase b to C to Ground fault  

Now plotting equation (3.22) & (3.24) in (3.46), we can write 

                2 2 2

0 1 2 0 1 2 0 1 2( ) fV a V aV Z I a I aI I aI a I                                  (3.50) 

Using the Identity 2 1a a    and equation (3.50), it can be written as 

                                                 0 1 0 1 22fV V Z I I I                                         (3.51) 

Using equation (3.47), we can simplify (3.51) as below: 

                                                 0 1 0(3 )fV V Z I                                                     (3.52) 

M 

Zf 

M 
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So, Equation (3.47), (3.49) and (3.52) summarize the fault conditions in sequence 

network. 

 

           Figure 8: Interconnected Sequence network (Double Phase to ground) [11] 

Zero, Positive and Negative sequence networks have been connected in parallel in the 

fault terminal in Figure 8 where 3ZF  has been connected in series with zero sequence. 

Sequence fault current can be retrieved from the circuit. 

                            
   

1

1 2 0 2 0

1

0 2

/ / 3 3

3

F F

f f

f

V V
I

Z Z Z Z Z Z Z
Z

Z Z Z

 
     
   

   
               

 (3.53), 

                                                        0

2 1

0 2

3
( )

3

f

f

Z Z
I I

Z Z Z


 

 
                                (3.54) 

       and                                           2
0 1

2 0

( )
3 f

Z
I I

Z Z Z
 

 
                              (3.55) 

Using equation (3.53), (3.54) & (3.55), we get the fault currents at phase domain. 

3.3 Unknown Parameters calculation of Faulted Wave 

 

Using equation (3.5) and (3.6), we can retrieve the value of 21 23 1 3, , ,K K   and after 

having the following formulation: 



- 

V1 
V2 

- 

Z1 3ZF 

+ 

- 

+ 
+ 

I2 

VF 

I3 

I1 

Z0 

Z1 

V0 
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                                               32
21

1 1

XX
K

Cos Sin 
                                               

                                                 => 3
1

2

X
Tan

X
   

                                             => 1 3
1

2

( )
X

Tan
X

                                                    (3.56) 

Similarly, we can have 1 5
3

4

( )
X

Tan
X

   from equation (3.8) and (3.9) which can be 

written as below: 

                                     54
23

3 3

XX
K

Cos Sin 
                                             (3.57) 

 &  can lead to calculate the value . 

To get the value of  we can write from equation (3.10) and (3.11), 

2

1 6 72K X X   
 

                                            => 1

6

K

X
                                                       (3.58)       

From the above equation (3.35) we can easily estimate the roots of   

Now, after having all those values/unknowns of X we can write, I (t) = 0 to solve the 

function for getting the value of t at what instant the current will have a value of zero.  

So, the equation that we need to solve is- 

   1
1 1 21 0 1 23 0 32

( ) ( ) 3 0
2!

Kt t
K K K Sin t K Sin t   

 
                              (3.59) 

The equation that has been stated above is a continuous function of t. from the 

mathematical definition of continuous function; we know continuous function is a 

function where a small change in the independent variable produces a small change in 

the output of the function. Here, depending on time (t) function changes. We have to 

1 3 2321 & KK




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solve, at which point of t the value of the function is zero. To solve this function we 

will use the computational method in mat lab. 
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Chapter 4 Evaluation Study  

 

4.1 Introduction to Simulation Steps 

 

In this section, we will talk about the implementation of the discussed theories. We 

have simulated an equivalent circuit that we discussed in the theoretical part. A 60 Hz 

power system model has been used for this study. The simulated power system 

consists of two generators at the two ends and a 177.1000-mile/285.13 km 

transmission line. Sampling frequency has been considered as 7680 Hz. Generator 

information and line parameters are presented in Table 1 and Table 2. Base values of 

500kV and 100MVA are utilized in the per unit system.  The simulated system has 

been portrayed in Figure 9. 

 
Figure 9: Schematic Diagram of the System 

 

        Table 1: Source Parameters 

Generator 
Voltage

 

(kV) 

Positive-sequence 

Impedance 

(p.u) 

Zero-sequence 

Impedance 

(p.u) 

G1  (3.408+j9.033)×10
-3

 (3.059+j9.178)×10
-3

 

G2  (51.758+j2.944)×10
-3

 (.144+j3.023)×10
-3

 

                

          Table 2: Transmission line parameters 

Positive Sequence Impedance 

(Ω/mile) 

Zero Sequence Impedance 

(Ω/mile) 

.4982- j 6.8156×10
5
 .06241+ j 2.1993×10

5
 

     

005

005
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The voltage/current samples from this circuit will be used in unknown parameters 

calculation from the faulted wave equation. In this simulation, the zero crossing 

parameter is time (t) which we need to calculate. We need to calculate the time using 

the unknown parameters at which point function changes the sign. Here the function 

is a continuous function and we have used the “fzero” command to calculate the zero 

of the function. 

4.2 Waveforms under Different Fault Conditions 

Some typical voltage and/or current waveforms under different fault conditions and 

fault resistances are presented in this subsection using simulation through MATLAB 

script and Simulink. For each fault type, Using Fault resistance (Zf) .01 ohms and 

ground resistance .01 ohms we will see the results of zero crossing point. The total 

simulation lasts for 0.167 seconds, and the fault occurs at 0.0333 second as the 

transition times were fixed there. We will also simulate the things with a different 

transitions time at .05 seconds.  

4.2.1 Phase A to Ground Fault 

 

The following Figure 10 & Figure 11 represent fault voltage and current waveforms 

respectively, under phase a to ground fault. From the simulation, we have seen that 

the fault has been occurred at .0333 second which is visible from the graphs. Here, the 

system gets unbalanced.  

 

Figure 10: Three phase Ground to Fault Voltage Graph (AG Fault, Zf = .01 ohm) 
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Figure 11: Three phase Ground to Fault Current Graph (AG Fault, Zf = .01 ohm, 

Transition=.0333s) 

 

Figure 12: Phase a to Ground Fault Current Graph (Retrieved from Simulink) 

Parameters from faulted wave equation, those will be used for calculating zero 

crossing point time calculation right after the fault occurrence has been specified 

below:  

Table 3: Faulted wave function parameters (Phase a to ground) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 57.8859 V 

Peak value of the 1st harmonic component (  ) 60.209 V 

Peak value of the 3rd harmonic component (  ) -0.041713 V 

Phase angle of the 1st harmonic component ( ) -72.1633 º 

Phase angle of the 3rd harmonic component ( ) -51.1167 
o
 

Time constant of the decaying d. c. component  ( ) 0.0085469 s 

 

By using the unknown parameters of faulted wave current those have been retrieved 

we can calculate the zero crossing time next to the faulted point which has been 
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depicted in Figure 13. This current wave symbolizes phase a to ground fault. This 

symbolizes the zero crossing point at .0123s. So, the zero crossing point for real 

transmission line would be at (.0333+.0123) s = .0456 s 

 

Figure 13: Phase a to ground fault zero crossing point 

Now using different transition time we will see the zero crossing point. This transition 

time has been designated at .05 seconds. 

 

Figure 14: Three phase Ground to Fault Current Graph (AG Fault, Zf = .01 ohm, 

Transition=.05s) 

 

Figure 15: Phase a to Ground Fault Current Graph (Retrieved from Simulink) 
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Unknown parameters for Figure 15 are: 

Table 4: Faulted wave function parameters (Phase a to ground) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 57.8759 V 

Peak value of the 1st harmonic component (  ) 60.197 V 

Peak value of the 3rd harmonic component(  ) -0.044714 V 

Phase angle of the 1st harmonic component ( ) -72.1706 º 

Phase angle of the 3rd harmonic component ( ) -51.455 
o
 

Time constant of the decaying d. c. component   ( ) 0.0085557s 

 

Now using these parameters, we can calculate the zero crossing time next to the 

faulted point which has been depicted in Figure 16 where the zero crossing point 

shows at .0123s. That implies in the Simulink diagram zero crossing point would be at 

(.05+.0123) s=.0623s 

 

Figure 16: Phase a to ground fault zero crossing point 
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4.2.2 Phase B to Ground Fault 

 

Alike phase a to ground, three phase voltage and current waveforms under phase b to 

ground fault have been depicted below in Figure 17 & Figure 18.Here the fault occurs 

in .0333s, which is the transition time. 

 

Figure 17: Three phase Ground to Fault Voltage Graph (BG Fault, Zf = .01 ohm) 

    

Figure 18: Three phase Ground to Fault Current Graph (BG Fault, Zf = .01 ohm, 

Transition time=.0333s) 

 

Figure 19: Phase b to Ground Fault Current Graph (Retrieved from Simulink) 
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Parameters from faulted wave equation, those will be used for calculating zero 

crossing point time calculation right after the fault occurrence has been specified 

below after taking samples from Figure 19. 

 

Table 5: Faulted wave function parameters (Phase b to ground) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) -13.2289  V 

Peak value of the 1st harmonic component(  ) -59.639 V 

Peak value of the 3rd harmonic component (  ) 0.074298 V 

Phase angle of the 1st harmonic component ( ) -11.9721 º 

Phase angle of the 3rd harmonic component ( ) -8.3778 º 

Time constant of the decaying d. c. component ( ) 0.0066779 s 

 

By using the unknown parameters of faulted wave current those have been retrieved 

we can calculate the zero crossing time next to the faulted point which has been 

depicted in Figure 20. This current wave symbolizes phase b to ground fault. Here the 

zero crossing time is .0090 s. So, the zero crossing time at the transmission line is 

(.0333+.0090) s = .0423 s 
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Figure 20: Phase b to ground fault zero crossing point 

 

4.2.3 Phase C to Ground Fault 

 

Similar to other phase to ground fault type, three phase voltage and current 

waveforms under phase c to ground fault have been depicted below in Figure 21 & 

Figure 22. Here the fault occurs in .0335s. 

 

Figure 21: Three phase Ground to Fault Voltage Graph (CG Fault, Zf = .01 ohm) 
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Figure 22: Three phase Ground to Fault Current Graph (CG Fault, Zf = .01 ohm, 

Transition time=.0333s) 

 

Figure 23: Phase c to Ground Fault Current Graph (Retrieved from Simulink) 

Parameters from faulted wave equation, those will be used for calculating zero 

crossing point time calculation right after the fault occurrence has been specified 

below after taking samples from Figure 23. 
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Table 6: Faulted wave function parameters (Phase c to ground) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) -44.616 V 

Peak value of the 1st harmonic component (  ) 60.0983 V 

Peak value of the 3rd harmonic component (  ) -0.055446 V 

Phase angle of the 1st harmonic component ( ) 48.3847 
o
 

Phase angle of the 3rd harmonic component ( ) 27.5579 º 

Time constant of the decaying d. c. component  ( ) 0.0093423 s 

 

By using the unknown parameters of faulted wave current those have been retrieved 

we can calculate the zero crossing time next to the faulted point which has been 

depicted in Figure 24. This current wave symbolizes phase c to ground fault. Here, the 

zero crossing point is at .0049 s. So, at the transmission line zero crossing point would 

be at (.0333+.0049) s =.0382 s. 

 

Figure 24: Phase c to ground fault zero crossing point 

4.2.4 Phase A to Phase B Fault 

 

Using phase a to phase b fault, derived three phase voltage and current curve has been 

portrayed in Figure 25 & Figure 26, respectively. Here, from the simulation we got 
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that the fault occurred at .0336 second. The curves also represent that the fault time is 

near .03 second.  

 

Figure 25: Three phase a to phase b fault Voltage Graph (AB Fault, Zf = .01 ohm) 

 

 

Figure 26: Three phase a to phase b fault current Graph (AB Fault, Zf = .01 ohm, 

Transition time=.0333s) 
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Figure 27:  Phase a to phase b type fault (Phase a, retrieved from simulink) 

 

Figure 28:  Phase a to phase b type fault (Phase b, retrieved from simulink) 

Parameters from faulted wave equation of phase a (Figure 27) and phase b (Figure 28), 

those will be used for calculating zero crossing point time calculation right after the 

fault occurrence has been specified below:  
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Table 7: Faulted wave function parameters (Phase a) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 26.794 V 

Peak value of the 1st harmonic component(  ) 41.2787 V 

Peak value of the 3rd harmonic component(  ) 0.029954 V 

Phase angle of the 1st harmonic component( ) -37.1705 
o
 

Phase angle of the 3rd harmonic component( ) 84.292 
o
 

Time constant of the decaying d. c. component   ( ) 0.0078781 s 

 

Table 8: Faulted wave function parameters (Phase b) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) -26.7939 V 

Peak value of the 1st harmonic component(  ) -41.0677 V 

Peak value of the 3rd harmonic component(  ) -0.029964 V 

Phase angle of the 1st harmonic component( ) -38.0023 
o
 

Phase angle of the 3rd harmonic component( ) 84.2214 
o
 

Time constant of the decaying d. c. component   ( ) 0.0078782 s 

 

By using the unknown parameters of faulted wave current of phase a, those have been 

retrieved we can calculate the zero crossing time next to the faulted point which has 

been depicted in Figure 29.  This current wave symbolizes phase a current in phase a 

to phase b type fault. 
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Figure 29:  Phase a to Phase b fault zero crossing point (Phase a) 

By using the unknown parameters of faulted wave current of phase b, those have been 

retrieved we can calculate the zero crossing time next to the faulted point which has 

been depicted in Figure 30.  This current wave symbolizes phase b current in phase a 

to phase b type fault. 

 

Figure 30:  Phase a to Phase b fault zero crossing point (Phase b) 

From the theory of phase a to phase b type fault we know, which can be 

clearly observed in Figure 29 & Figure 30. So, it is clearly verified that the method 

worked well properly. We also found that both have the same zero crossing point after 

the fault occurrence. It’s .0105 second. Now, It can be clearly mentioned that the zero 

crossing point at the transmission line that has been used in the simulation is 

(.0333+.0105) s =.0438 s. The joint graph of phase a and phase b under the phase a to 

phase b type fault, will make the observation much more clear which has been 

presented below: 
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Figure 31:  Phase a to Phase b fault zero crossing point (Phase a and phase b) 

4.2.5 Phase B to Phase C Fault 

 

Similar to phase a to phase b, derived three phase voltage and current curve has been 

portrayed in  Figure 31 & Figure 32, respectively. Here, from the simulation we got 

that the fault occurred at .0333 second. The curves also represent that the fault time is 

near .03 second.  

 

Figure 32: Three phase b to phase c fault Voltage Graph (BC Fault, Zf = .01 ohm) 

 

Figure 33: Three phase b to phase c fault current Graph (BC Fault, Zf = .01 ohm) 
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Figure 34: Phase b to phase c type fault (Phase b, retrieved from simulink) 

 

Figure 35: Phase b to phase c type fault (Phase c, retrieved from simulink) 

Parameters from faulted wave equation of phase b (Figure 34) and phase c (Figure 35), 

those will be used for calculating zero crossing point time calculation right after the 

fault occurrence has been specified below in Table 9 & Table 10:  

Table 9: Faulted wave function parameters (Phase b) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 14.814 V 

Peak value of the 1st harmonic component(  ) -41.4267 V 

Peak value of the 3rd harmonic component(  ) -0.066072  V 

Phase angle of the 1st harmonic component( ) 21.9242 
o
 

Phase angle of the 3rd harmonic component( ) 12.5931 
o
 

Time constant of the decaying d. c. component   ( ) 0.0075692 s 
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Table 10: Faulted wave function parameters (Phase c) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) -14.8146 V 

Peak value of the 1st harmonic component(  ) 41.196 V 

Peak value of the 3rd harmonic component(  ) 0.066105 V 

Phase angle of the 1st harmonic component ( ) 21.1058 
o
 

Phase angle of the 3rd harmonic component( ) 12.5776 
o
 

Time constant of the decaying d. c. component   ( ) 0.0075686 s 

 

By using the unknown parameters of faulted wave current of phase b and phase c, 

those have been retrieved we can calculate the zero crossing time next to the faulted 

point which has been depicted in Figure 36 & Figure 37.  This current wave 

symbolizes phase b and phase c current under phase b to phase c type fault. 

 

Figure 36: Phase b to Phase c fault zero crossing point (Phase b) 

1K

21K

23K

1

3



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-50

-40

-30

-20

-10

0

10

20

30

40

50

 

 

phase b

zero



 

41 
 

 

Figure 37: Phase b to Phase c fault zero crossing point (Phase c) 

From the theory of phase b to phase c type fault we know, which can be 

clearly observed in Figure 36 & Figure 37. So, it is clearly verified that the method 

worked properly.  We found that both have the same zero crossing point after the fault 

occurrence. It’s .0070 second. So, the transmission line zero crossing time after the 

fault would be (.0333+.0070) s = .0403 s. The joint graph of phase b and phase c 

under the phase b to phase c type fault, will make the observation much more clear 

which has been presented below: 

 

Figure 38: Phase b to Phase c fault zero crossing point (Phase b and phase c) 
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4.2.6 Phase A to Phase C Fault  

 

Similar to other phase to phase fault type, derived three phase voltage and current 

curve has been portrayed in Figure 39 & Figure 40 respectively under phase a to 

phase c type fault. Here, from the simulation we got that the fault occurred at .0333 

second. The curves also represent that the fault time is near .03 second as other 

curves. 

 

Figure 39: Three phase a to phase c fault Voltage Graph (AC Fault, Zf = .01 ohm) 

 

Figure 40: Three  phase a to phase c fault Current Graph (AC Fault, Zf = .01 ohm) 
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Figure 41: Phase a to phase c type fault (Phase a, retrieved from simulink) 

 

Figure 42: Phase a to phase c type fault (Phase c, retrieved from simulink) 

 

Parameters from faulted wave equation of phase a (Figure 41) and phase c (Figure 42), 

those will be used for calculating zero crossing point time calculation right after the 

fault occurrence has been specified below in Table 11 and Table 12. 
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Table 11: Faulted wave function parameters (Phase a) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 42.2008 V 

Peak value of the 1st harmonic component(  ) -42.4196 V 

Peak value of the 3rd harmonic component (  ) -0.072562 V 

Phase angle of the 1st harmonic component ( ) 80.082 
o
 

Phase angle of the 3rd harmonic component  ( ) -18.3045 
o
 

Time constant of the decaying d. c. component   ( ) 0.0077117 s 

 

Table 12: Faulted wave function parameters (Phase c) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) -42.2016 V 

Peak value of the 1st harmonic component (  ) 42.6402 V 

Peak value of the 3rd harmonic component (  ) 0.072608 V 

Phase angle of the 1st harmonic component ( ) 80.8835 
o
 

Phase angle of the 3rd harmonic component       ( ) -18.2589
o
 

Time constant of the decaying d. c. component   ( ) 0.0077112 s 

 

By using the unknown parameters of faulted wave current of phase a and phase c, 

those have been retrieved, we can calculate the zero crossing time next to the faulted 

point which has been depicted in Figure 43 & Figure 44.  This current wave 

symbolizes phase a and phase c current under phase a to phase c type fault. 
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Figure 43: Phase a to Phase c fault zero crossing point (Phase a) 

 

Figure 44: Phase a to Phase c fault zero crossing point (Phase c) 

 

From the theory of phase a to phase c type fault we know, which can be 

clearly observed in Figure 43 and Figure 44. So, it is clearly verified that the method 

worked well properly like other phase to phase fault type. Here, we found that both 

have very close zero crossing point after the fault occurrence. It’s 5.3890×10
-05

 

second for phase a and 1.5267×10
-05

 second for phase c. The joint graph of phase a 

and phase c under the phase a to phase c type fault, will make the observation much 

more clear which has been presented below: 
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Figure 45: Phase b to Phase c fault zero crossing point (Phase b and phase c) 

 

4.2.7 Phase A to Phase B to Ground Fault 

 

Here, phase to phase to ground type faults and their zero crossing will be checked. 

Phase a to phase b to ground is taken into account in this section. As other fault types, 

in the simulation, we have set the fault time at .0333 s. Phase voltage and current has 

been depicted in the following diagrams which shows that, the fault occurred near .03 

second. 

 

Figure 46: Three phase a to phase b to ground fault Voltage Graph (AC Fault, Zf = .01 

ohm) 
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Figure 47: Three phase a to phase b to ground fault Current Graph (AC Fault, Zf = .01 

ohm) 

 

Figure 48: Phase a to phase b to ground type fault (Phase a, retrieved from simulink) 

 

Figure 49: Phase a to phase b to ground type fault (Phase b, retrieved from simulink) 
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Parameters from faulted wave equation of phase a (Figure 48) and phase b (Figure 49), 

those will be used for calculating zero crossing point time calculation right after the 

fault occurrence has been specified below: 

Table 13: Faulted wave function parameters (Phase a) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 27.1777 V 

Peak value of the 1st harmonic component (  ) 41.243 V 

Peak value of the 3rd harmonic component (  ) 0.030824 V 

Phase angle of the 1st harmonic component ( ) -39.9608 
o
 

Phase angle of the 3rd harmonic component ( ) 68.9803
o
 

Time constant of the decaying d. c. component   ( ) 0.0079793 s 

 

Table 14: Faulted wave function parameters (Phase b) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) -27.1764 V 

Peak value of the 1st harmonic component (  ) -41.0311 V 

Peak value of the 3rd harmonic component (  ) -0.03087 V 

Phase angle of the 1st harmonic component ( ) -40.7928
o
 

Phase angle of the 3rd harmonic component  ( ) 68.807
o
 

Time constant of the decaying d. c. component   ( ) 0.0079803 s 
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By using the unknown parameters of faulted wave current of phase a and phase b, 

those have been retrieved, we can calculate the zero crossing time next to the faulted 

point which has been depicted in Figure 50 and Figure 51.  This current wave 

symbolizes phase a and phase b current under phase a to phase b to ground type fault. 

We found that both have the same zero crossing point after the fault occurrence. It’s 

.0106 second. So, the transmission line zero crossing time after the fault would be 

(.0333+.0106) s = .0439 s. 

 

Figure 50: Phase a to Phase b to ground fault zero crossing point (Phase a) 

 

 

Figure 51: Phase a to Phase b to ground fault zero crossing point (Phase b) 
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If we join the zero crossing of phase a to phase b to ground, Figure 52 will represent 

that. 

 

Figure 52: Phase a to Phase b to ground fault zero crossing point (Phase a and phase 

b) 

 

4.2.8 Phase B to Phase C to Ground Fault 

 

Similar to phase a to phase b to ground fault type, we have done simulation for phase 

b to phase c to ground fault. As other fault types, in the simulation, we have set the 

fault time at .0333 s. Phase voltage and current has been depicted in the following 

diagrams which shows that, the fault occurred near .03 second. 

 

Figure 53: Three phase b to phase c to ground fault Voltage Graph (AC Fault, Zf = .01 

ohm) 
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Figure 54: Three phase b to phase c to ground fault Current Graph (AC Fault, Zf = .01 

ohm) 

 

Figure 55: Phase b to phase c to ground type fault (Phase b, retrieved from simulink) 

 

Figure 56: Phase b to phase c to ground type fault (Phase c, retrieved from simulink) 
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Parameters from faulted wave equation of phase b (Figure 55) and phase c (Figure 56), 

those will be used for calculating zero crossing point time calculation right after the 

fault occurrence has been specified below in Table 15 & Table 16: 

Table 15: Faulted wave function parameters (Phase b) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 14.814 V 

Peak value of the 1st harmonic component (  ) -41.4267 V 

Peak value of the 3rd harmonic component (  ) -0.066072 V 

Phase angle of the 1st harmonic component ( ) 21.9242
o
 

Phase angle of the 3rd harmonic component       ( ) 12.5931
o
 

Time constant of the decaying d. c. component   ( ) 0.0075692 s 

 

Table 16: Faulted wave function parameters (Phase c) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) -14.8146 V 

Peak value of the 1st harmonic component (  ) 41.196 V 

Peak value of the 3rd harmonic component (  ) 0.066105 V 

Phase angle of the 1st harmonic component ( ) 21.1058
o
 

Phase angle of the 3rd harmonic component  ( ) 12.5776
o
 

Time constant of the decaying d. c. component   ( ) 0.0075686s 
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By using the unknown parameters of faulted wave current of phase b and phase c, 

those have been retrieved; we can calculate the zero crossing time next to the faulted 

point which has been depicted in Figure 57 & Figure 58.  This current wave 

symbolizes phase b and phase c current under phase b to phase c to ground type fault. 

We found that both have the same zero crossing point after the fault occurrence. It’s 

.0070 second. So, the transmission line zero crossing time after the fault would be 

(.0333+.0070) s = .0403 s. 

 

Figure 57: Phase b to Phase c to ground fault zero crossing point (Phase b) 

 

Figure 58: Phase b to Phase c to ground fault zero crossing point (Phase c) 

 

If we join the zero crossing of phase b to phase c to ground, Figure 59 will represent 

that. 
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Figure 59: Phase b to Phase c to ground fault zero crossing point (Phase b and phase 

c) 

 

4.2.9 Phase A to Phase C to Ground Fault 

 

Similar phase to phase to ground fault type, we have done simulation for phase a to 

phase c to ground fault. As other fault types, in the simulation, we have set the fault 

time at .0333 s. Phase voltage and current has been depicted in the following diagrams 

which shows that, the fault occurred near .03 second. 

 

Figure 60: Three phase b to phase c to ground fault Voltage Graph (ACG Fault, Zf = 

.01 ohm) 
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Figure 61: Three Phase a to phase c to ground fault Current Graph (ACG Fault, Zf = 

.01 ohm) 

 

Figure 62: Phase a to phase c to ground type fault current graph (Phase a, retrieved 

from simulink) 

 

Figure 63: Phase a to phase c to ground type fault current graph (Phase c, retrieved 

from simulink) 
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Parameters from faulted wave equation of phase a (Figure 62) and phase c (Figure 63), 

those will be used for calculating zero crossing point time calculation right after the 

fault occurrence has been specified below: 

Table 17: Faulted wave function parameters (Phase a) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 42.2008 V 

Peak value of the 1st harmonic component (  ) -42.4196 V 

Peak value of the 3rd harmonic component (  ) -0.072562 V 

Phase angle of the 1st harmonic component ( ) 80.082
o
 

Phase angle of the 3rd harmonic component ( ) -18.3045
o
 

Time constant of the decaying d. c. component  ( ) 0.0077117 s 

 

Table 18: Faulted wave function parameters (Phase c) 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) -42.2016 V 

Peak value of the 1st harmonic component (  ) 42.6402 V 

Peak value of the 3rd harmonic component (  ) 0.072608 V 

Phase angle of the 1st harmonic component ( ) 80.8835
o
 

Phase angle of the 3rd harmonic component       ( ) -18.2589
o
 

Time constant of the decaying d. c. component   ( ) 0.0077112 s 
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By using the unknown parameters of faulted wave current of phase a and phase c, 

those have been retrieved, we can calculate the zero crossing time next to the faulted 

point which has been depicted in Figure 64 & Figure 65.  This current wave 

symbolizes phase a and phase c current under phase a to phase c to ground type fault. 

Here, we found that both have very close zero crossing point after the fault 

occurrence. It’s 5.3893×10
-05

 second for phase a and 1.5257×10
-05

 second for phase c. 

 

Figure 64: Phase a to Phase c to ground fault zero crossing point (Phase a) 

 

Figure 65: Phase a to Phase c to ground fault zero crossing point (Phase c) 
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If we join the zero crossing of phase a to phase c to ground, figure 66 will represent 

that. 

 

Figure 66: Phase a to Phase c to ground fault zero crossing point (Phase a and phase 

c) 

4.3 Second zero crossing point 

 

In any case, if we miss the zero crossing point next to the fault occurring point, we 

must have to separate the circuit at next most zero crossing point. The faulted wave 

signal is a sinusoidal signal.  So, the distance it crosses from the origin to meet the 

first zero crossing, if we add the same distance it will cross for the second zero 

crossing. The following graph shows the second zero crossing point. Here, we have 

used the data table and curve from phase a to ground fault. 

 

Figure 67:  Two zero crossing point in a sequence (Phase a to ground fault) 
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4.4 Separation of the circuit at Zero Crossing 

 

In this section, we have used balanced three phase fault to determine the zero crossing 

point and how it works in using of breaker in the transmission line. Figure 68 

represents a current graph of balanced three phase fault.  

 

Figure 68: Current Graph in Three Phase balanced fault 

If we integrate a three phase breaker and synchronize the fault time with the breaker 

time, it will be tripped the next zero crossing point after the fault occurring point.  The 

above figure depicts that the fault occurred near .03 seconds.  Based on the zero 

crossing point time of each phase we can select which phase to open first in the 

breaker. 

 

Figure 69: Balanced Fault (Phase A, Zero Crossing Time= .0121 s) 
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Figure 70: Balanced Fault (Phase B, Zero Crossing Time=0.0090 s) 

 

 
Figure 71: Balanced Fault (Phase C, Zero Crossing Time= 4.1554e-06 s) 

 

From the above figures, It is clearly visible that Phase C has the first Zero Crossing after the 

fault. So, for phase C breaker will be opened 1
st
 and the other two phases will not remain 

same after opening phase C breaker. Comparison of Figure 72 with Figure 68 reveals 

that. 

 

Figure 72: Balanced Fault (Three Phase, After Opening Breaker for Phase C) 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-60

-40

-20

0

20

40

60

 

 

phase b

zero

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-60

-40

-20

0

20

40

60

 

 

phase c

zero

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-60

-40

-20

0

20

40

60

80

Time(Seconds)

Cu
rre

nt(
A)

 

 

phase a

phase b

phase c



 

61 
 

Now, whichever has the first zero crossing time in between Phase A and Phase B, will 

be tripped.  

 

Figure 73: Balanced Fault (Phase A, after Opening Breaker for Phase C, Zero 

Crossing Time=1.8403e-04) 
 

 

Figure 74: Balanced Fault (Phase B, After Opening Breaker for Phase C, Zero 

Crossing Time=0.0083) 
   

From Figure 73 and Figure 74, we can come to a decision to trip Phase A first.  After 

opening breaker for Phase A there will be some change in phase B current profile. 

                

Figure 75: Balanced Fault (Three Phase, After Opening Breaker for Phase C & Phase 

A) 
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 Figure 76 depicts the zero crossing for Phase B. 

 

Figure 76: Balanced Fault (Phase B, After Opening Breaker for Phase C & Phase A, 

Zero Crossing Time=0.0090) 
 

After opening Phase B, the total current profile curve after the fault occurring point will be 

represented by, 

 

Figure 77: Balanced Fault (Three Phase, After Opening Breaker for Phase C , Phase A 

and Phase B sequentially) 

 

4.5 Verification of the method with typical values 

 

The method we proposed has been verified by using some typical values for unknown 

parameters for zero crossing estimation point which are mentioned in table 12. 
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Table 19: Typical parameters for unknown values 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 100
 
V

 

Peak value of the 1st harmonic component (  ) 150  V 

Peak value of the 3rd harmonic component (  ) 10  V 

Phase angle of the 1st harmonic component ( ) 10
o
 

Phase angle of the 3rd harmonic component ( ) 30
o
 

Time constant of the decaying d. c. component   ( ) .1000 s 

 

These parameters can be placed in the faulted wave equation as following: 

     0 02

100
100 100( ) ( ) 150 2 10 10 2 3 30

2!

t t
I t Sin t Sin t 

 
               (4.5.1) 

Here, the fundamental frequency is 60 Hz. Using matlab the value of t has been 

gained here, which is 0.0089 s. We assumed current sample zero in a particular time 

instant to get the value of t at zero crossing. We can verify this solution by using the 

back calculation from the samples of the graph, that we retrieved using the above 

information. The graph has been depicted below: 
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Figure 78:  Faulted wave using the typical parameters 

Now using time and current samples from the graph above, using equation 3.21 we 

can calculate the unknown parameters for zero crossing time calculation next to the 

fault occurrence. These have been stated in the following table: 

Table 20: Unknown parameters from the back calculation 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 100.002 V
 

Peak value of the 1st harmonic component (  ) 212.1325 V 

Peak value of the 3rd harmonic component (  ) 14.1421 V 

Phase angle of the 1st harmonic component ( ) 10
o
 

Phase angle of the 3rd harmonic component ( ) 30
o
 

Time constant of the decaying d. c. component   ( ) 0.09997s 

 

Placing these values in the faulted wave function we can represent a curve which is 

pictured in Figure 79. 
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Figure 79: Faulted wave using the parameters from back calculation 

 

Pattern of the graph is same as Figure 78. Here, the zero crossing time from the back 

calculation has been found in .0089 second. This can be clarified as accurate as the 

original. So, the verification method was correct in accordance to the procedure. 

We can use some more typical values to get ensured of the method of this back 

calculation. Such typical values for unknown parameters have been stated in the 

following table. 

Table 21: Typical parameters for unknown values 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 140
 
V 

Peak value of the 1st harmonic component (  ) 200  V 

Peak value of the 3rd harmonic component (  ) 20  V 

Phase angle of the 1st harmonic component ( ) 12
o
 

Phase angle of the 3rd harmonic component ( ) 36
o
 

Time constant of the decaying d. c. component   ( ) .2000 s 

 

Again if we place the parameters in the equation we will get something as below: 
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     0 02

140
140 140( ) ( ) 200 2 12 20 2 3 36

2!

t t
I t Sin t Sin t 

 
              (4.5.2) 

Using the same procedure as the previous one and assuming fundamental frequency 

of 60 Hz and current sample zero at a particular time instant, we can get the value of t 

= 0.0088s. The graph has been depicted in Figure 80 . 

 

Figure 80: Faulted wave using the typical parameters 

Now using time and current samples from the graph above, using equation 21 we can 

calculate the unknown parameters for zero crossing time calculation next to the fault 

occurrence. These have been stated in the following table: 

Table 22: Unknown parameters from the back calculation 

Parameter Value 

Magnitude of the d. c. offset of t=0  ( ) 140.0004 V 

Peak value of the 1st harmonic component (  ) 282.8428 V 

Peak value of the 3rd harmonic component (  ) 28.2843 V 

Phase angle of the 1st harmonic component ( ) 12
o
 

Phase angle of the 3rd harmonic component ( ) 36
o
 

Time constant of the decaying d. c. component   ( ) 0.19998 s 
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We can represent a curve in the faulted wave function using these values which is 

pictured in Figure 81. 

Alike the 1
st
 example, Figure 80 and Figure 81 also looks alike and here in Figure 81, 

the zero crossing time is .0088 s which differs slightly from Figure 81. 

 

Figure 81: Faulted wave using the parameters from back calculation 

 

So, from the verification we can come to a decision that the methodology we have 

used throughout the evaluation study, it’s a working method. 
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Chapter 5 Conclusion 

 

When a fault occurs, the first priority is to minimize the fault as soon as 

possible to lessen the damage. Proper Estimation of Zero Crossing point is utmost 

important for proper relaying or controlling of power system. A technique based on 

least square method has been discussed to determine the parameters to calculate the 

zero crossing point in this thesis. Every possible faults in Line to Line (L-L), Line to 

Ground (L-G) and Double Line to Ground (DL-G) has been used in the simulation to 

fulfill the study and the method has been verified by typical parameters and breaker 

whether it puts off at the zero crossing and separates the circuit or not. Simulation 

studies have demonstrated that the procedure is quite accurate. 
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APPENDIX 

 

 Taylor Series: ........
!3!2

1
!

3

0

2






xx
x

n

x
e

n

n
x for all x                       (A.1) 

 Trigonometric rule: CosASinBSinACosBBASin  )(            (A.2)

  

 In any matrix multiplication generally AX is not equal to XA because they 

might have different dimensions.                                                  (A.3)

  

 In transpose matrix, TTT BAAB )(               (A.4) 

 Consider m linear equation n unknowns in least square method where m>n 

                                                    
11

][][][



mnnm

YXA                                               (A.5) 

 If A  is full column rank, meaning rank(A) , that is, AAT
is not 

singular, then A
 
 is a left inverse of , in the sense that n

T IAA  . We have 

the closed-form expression 

                                          TT AAAA 1)(                                               (A.6) 

  

 If A  is full row rank, meaning rank(A) ,, that is, 
TAA  is not singular, 

then A  is a right inverse of , in the sense that . We have the closed-form 

expression 

                                           1)(   TT AAAA                                               (A.7) 

 If  is square, invertible, then its inverse is 
1  AA                                (A.8) 

  Neutral Current, cban IIII                                                                 (A.9) 

  Neutral Current, 03II n                                                                           (A.10) 

 In a balanced Y connected system 0nI                                                  (A.11) 

 

mn 

nm 
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