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ABSTRACT OF THESIS 

 

 

NANOINDENTATION OF A ZINC METAL SOAP 

MIXTURE FOR USE IN A LASER PRINTER 

 

At the start of this project, the possible choices of metal soaps had already been 

narrowed to include some of the zinc soaps used in this project. These zinc soaps are 

mixtures of zinc stearate and zinc palmitate of varying ratios purchased from a supplier. 

Zinc soap was chosen as result of its common use in various industries as a lubricant and 

mold release, which implied potential benefits in an electrophotographic printing system. 

These potential benefits include, but are not limited to, a more efficient transfer from a 

photoconductive drum and protection of the drum from mechanical and chemical 

degradation. Nanoindentation of these soaps was implemented in an effort to characterize 

each soap mixture and compare how the soap types differed from one another. Each 

sample was indented under a variety of different maximum loads and at different holding 

times to observe effects on the modulus, hardness, and, creep. The mechanical properties 

measured were then used to help distinguish differences between each type and provide 

an insight as to how or why one mixture may be preferable over another. The data could 

be utilized in conjunction with further testing to be used in a simulation of an interface of 

interest. 

 

KEYWORDS: Zinc Stearate, Zinc Palmitate, nanohardness, zinc octadecanoate, zinc 

hexadecanoate 

 

 

George Alexander Nimick 

7/5/2015



 

 

NANOINDENTATION OF A ZINC METAL SOAP 

MIXTURE FOR USE IN A LASER PRINTER 

 

By 

George Alexander Nimick 

 

 

 

 

 

 

 

 

 

______Dr. Fuqian Yang_______ 

Director of Thesis 

  

______Dr. Fuqian Yang_______ 

Co-Director of Graduate Studies 

7/5/2015 

  



I would like to dedicate this work to my family and friends and the “peanut gallery” 

at Lexmark. Thank you for all of your support.



iii 
 

 

ACKNOWLEDGMENTS 

 

While the thesis herein was composed singularly, it was graced with the insights and 

guidance of many respected individuals.  In regards to the primary direction of this thesis, 

I am indebted to Dr. Fuqian Yang and Dr. Bhaskar Gopalanarayanan who both 

convincingly encouraged the pursuit of this endeavor and consistently made themselves 

available for guidance throughout the project’s duration allowing for a timely completion. 

Both advisors are resources of a great wealth of knowledge whose vastness I can only 

aspire to have one day.  

I would like to thank the Thesis Committee, consisting of Dr. John Balk and Dr. Matthew 

Beck, for their flexibility, insights, and challenging questions that further broadened my 

perspective and challenged my thinking. 

I am very grateful for the strong community at Lexmark International, Inc. and for their 

unparalleled support, especially Rick Hubert, Julie Jacobs, Jerry Fish, James Semler, 

Mike Lattuca, Matt Raszmann, Trey Gilliam, Kelly Killeen, Greg Selover, Jim Doeltz, 

Mary Kay, and others at Lexmark.  

I am also very grateful for the support I had from my parents and fiancée, Brooke 

Kennedy, who consistently provided guidance and support throughout my academic 

career and helped during trying times.  



 

iv 
 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ................................................................................................. iii 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

Chapter 1: Introduction and Overview ............................................................................... 1 

1.1 Introduction ............................................................................................................... 1 

1.2 Overview of the Thesis ............................................................................................. 4 

Chapter 2: Review of Literature ......................................................................................... 5 

2.1 Introduction ............................................................................................................... 5 

2.2 Metal Soaps and Zinc Stearate .................................................................................. 5 

2.3 Tribology ................................................................................................................. 10 

2.3.1 Lubrication .................................................................................................................... 10 

2.3.2 Friction .......................................................................................................................... 17 

2.3.3 Wear .............................................................................................................................. 21 

2.4 Contact Mechanics .................................................................................................. 26 

2.5 Nanoindentation ...................................................................................................... 34 

2.5.1 Nanohardness ................................................................................................................ 35 

2.5.2 Contact Area and Indentation Tips ............................................................................... 38 

2.5.3 Load-Displacement Curves and Contact Stiffness ........................................................ 40 

2.5.4 Influencing Factors and Other Considerations .............................................................. 42 

2.5.4.1 Area Correction Due to Indenter Geometry ............................................... 43 

2.5.4.2 Thermal Drift ............................................................................................. 44 

2.5.4.3 Other Influencing Factors .......................................................................................... 45 

2.5.4.4 Other Considerations ................................................................................. 46 

2.6 Surface Measurements ............................................................................................ 46 

2.6.1 Roughness Measurements ............................................................................................. 50 

Chapter 3: Experimental Techniques ................................................................................ 53 

Chapter 4: Results and Conclusions ................................................................................. 58 

4.1 Results and Discussion ............................................................................................ 58 

4.1.1 Liquid Chromatography Results ................................................................................... 58 

4.1.2 Nanoindentation Impressions ........................................................................................ 59 

4.1.3 Force-Displacement Curves .......................................................................................... 60 

4.1.4 Hardness and Combined Modulus ................................................................................ 61 

4.1.5 X-Ray Diffraction ......................................................................................................... 75 



 

v 
 

4.2 Conclusions ............................................................................................................. 78 

Chapter 5: Future Work .................................................................................................... 84 

Appendix I: Figures .......................................................................................................... 87 

Appendix II: Statistical Data ............................................................................................. 95 

REFERENCES ............................................................................................................... 108 

VITA ............................................................................................................................... 113 

  



 

vi 
 

LIST OF TABLES 

Table 1: Test matrix for the nanoindentation of each zinc soap ....................................... 57 

Table 2: Zinc Stearate to Zinc Palmitate Ratios for Re-melted Samples ......................... 58 

Table 3: Long spacing of samples using the peak near 6° 2θ as suggested by literature . 83 

 

  



 

vii 
 

LIST OF FIGURES 

Figure 1: TTT, CTT, TGT, and CGT molecular models where open circles are ascribed 

carbon or oxygen, and filled circles are hydrogen atoms. They have 

conformational disorder at the COO end .......................................................... 8 

Figure 2: Crystal Structure Models of C16/C18FA-Zn. Weight ratios of Stearic acid in 

these models are 0%, 30%, 50%, 70%, and 100%. Dot-line circles mean void 

areas in these models. ....................................................................................... 9 

Figure 3: Schematic representation of the fluid separating two surfaces ......................... 13 

Figure 4: Mechanism of lubrication by lamellar solids .................................................... 14 

Figure 5: Schematic illustration of mechanisms of frictional energy dissipation ............. 21 

Figure 6: Long-range attractive forces and short-range repulsive forces acting on an atom 

or molecules within a liquid or solid. Atom "B" on the surface must move 

closer to atoms just beneath the surface so that the resulting short-range 

repulsive force balances the long-range attractions from atoms just beneath 

and further beneath the surface ....................................................................... 28 

Figure 7: Schematic of the forces between atoms in a solid as a function of distance away 

from the center of the atom. Repulsive force acts over a very short distance. 

Attractive forces between atoms act over a very long distance. An atom at 

infinity has a higher potential energy than one at the equilibrium position .... 29 

Figure 8: Points on the indenter and specimen surfaces that have come into contact during 

loading. (a) full slip, (b) no slip, (c) partial slip (loading), (d) partial slip 

(unloading). In (d), reverse slip may occur, leading to residual stresses. ....... 32 

Figure 9: Indentation parameters for a) spherical, b) conical, c) Vickers, and d) Berkovich 

indenters (not to scale) .................................................................................... 39 

Figure 10: Various stylus types......................................................................................... 48 

Figure 11: Ra - arthimetical mean roughness according to ISO 4287 .............................. 51 

Figure 12: Representation of averaged depth of roughness parameter (Rz) definition 

according to DIN 4768.................................................................................... 52 

Figure 13: C-Laser DIC image of low force indents on the 56% stearate sample ............ 59 

Figure 14: C-Laser DIC image of high force indents on the 56% stearate sample .......... 60 

Figure 15: Force-displacement curves for the 95% zinc stearate sample at various holding 

times: (a) 20s, (b) 40s, (c) 100s, (d) 200s, (e) 400s ........................................ 60 

Figure 16: Variation of the reduced moduli with respect to maximum load and different 

holding times for indentations on a 95% zinc stearate sample. The error bars 

in the plot signify one standard deviation in either direction .......................... 64 

Figure 17: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the reduced modulus for the 95% zinc 

stearate sample ................................................................................................ 65 

Figure 18: Variation of the hardness with respect to maximum load and different holding 

times for indentations on the 95% zinc stearate sample. The error bars in the 

plot signify one standard deviation in either direction.................................... 66 



 

viii 
 

Figure 19: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the hardness for the 95% zinc stearate 

sample. ............................................................................................................ 66 

Figure 20: Variation of the contact depth with respect to maximum load and different 

holding times for indentations on the 95% zinc stearate sample. The error bars 

in the plot signify one standard deviation in either direction .......................... 67 

Figure 21: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the contact depth for the 95% zinc 

stearate sample. ............................................................................................... 68 

Figure 22: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the contact depth for the 95% zinc 

stearate sample. ............................................................................................... 69 

Figure 23: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the contact depth for the 73% zinc 

stearate sample. ............................................................................................... 69 

Figure 24: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the contact depth for the 56% zinc 

stearate sample. ............................................................................................... 69 

Figure 25: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the contact depth for the 53% zinc 

stearate sample. ............................................................................................... 69 

Figure 26: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the reduced modulus for the 95% zinc 

stearate sample ................................................................................................ 70 

Figure 27: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the reduced modulus for the 73% zinc 

stearate sample ................................................................................................ 70 

Figure 28: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the reduced modulus for the 56% zinc 

stearate sample ................................................................................................ 71 

Figure 29: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the reduced modulus for the 53% zinc 

stearate sample ................................................................................................ 71 

Figure 30: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the hardness for the 95% zinc stearate 

sample. ............................................................................................................ 72 

Figure 31: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the hardness for the 73% zinc stearate 

sample. ............................................................................................................ 72 

Figure 32: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the hardness for the 56% zinc stearate 

sample. ............................................................................................................ 72 



 

ix 
 

Figure 33: Statistical contour plot showing the relationship between the maximum 

applied load and the holding time on the hardness for the 53% zinc stearate 

sample. ............................................................................................................ 72 

Figure 34: Modulus vs Max Force and Percent ZnSt ....................................................... 73 

Figure 35: Modulus vs Holding Time and Percent ZnSt .................................................. 73 

Figure 36: Hardness vs Max Force and Percent ZnSt ....................................................... 73 

Figure 37: Hardness vs Holding Time & Percent ZnSt .................................................... 73 

Figure 38: Contact Depth vs Max Force and Percent ZnSt .............................................. 73 

Figure 39: Contact Depth vs Holding Time and Percent ZnSt ......................................... 73 

Figure 40: Normalized XRD of all prepared samples ...................................................... 75 

Figure 41: Zoomed in area of Figure 40 ........................................................................... 76 

Figure 42: Comparison of the XRD of the as-received bar and the melted samples of 95% 

zinc stearate ..................................................................................................... 77 

Figure 43: Comparison of the XRD of the as-received bar and the melted samples of 73% 

zinc stearate ..................................................................................................... 77 



 

1 
 

Chapter 1: Introduction and Overview 

 

1.1 Introduction 

 

Throughout the life of an electrophotographic imaging apparatus, several factors 

contribute to the degradation in imaging quality that include both mechanical and 

chemical deterioration. A common method for producing images in a laser printer is 

through the use of an electrically conductive cylinder with a photosensitive coating, 

commonly known as a photoconductor drum, in combination with a laser and toner. 

Component durability is often a challenge and one approach to reduce the wear of the 

photoconductor (PC) drum is to apply particulate masses of metal soap across its surface. 

These masses are deformed to produce a protective thin film on the PC drum surface in 

order to maintain the production of high quality images [1, 2]. Several critical interfaces 

exist that influence the formation of the thin film in this particular system. These include 

the applicator of the metal soap to the PC drum and the cleaning blade. 

The primary objective of this work is to characterize some of the necessary material 

properties of metal soap mixtures for use in modeling one or more of these interfaces to 

simulate the interaction of the components in the formation and the maintenance of the 

protective thin film. The nip of the cleaner blade is considered to be the location of one of 

the greatest sources of mechanical wear in this particular system [2]. The nip of the 

cleaner blade is the interface between the active cleaner blade edge and the tangential 

surface of the PC drum and would be a strong candidate for an interface in which to 

model some of the interactions that occur. 
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For an electrophotographic system, the creation of ions is necessary to form a charged 

layer on the surface of the PC drum, which is critical to the image generation process. In 

a system where an alternating current (AC) voltage is superimposed on a direct current 

(DC) voltage and applied in the presence of a PC drum, a large concentration of ions are 

generated. Although this is necessary, the ions produced are corrosive to the 

polycarbonate surface of the PC drum and leads to its chemical degradation. According to 

Ricoh patent US 7383013B2, the chemical deterioration of the surface occurs even 

without the presence of any mechanical wear. The resulting degradation of the 

polycarbonate surface occurs as a result of ozone, active oxygen and the bombardment of 

ions on the surface. This leaves the surface displaying evidence of molecular chain 

cleavage, which also results in a lesser degree of chain entanglement.  The applied thin 

film reduces the chemical deterioration of the polycarbonate by acting as a barrier against 

the factors that affect its chemical degradation [2]. 

Additionally, the PC drum endures a large amount of mechanical wear at the cleaner 

blade nip. This is not solely a result of the contact of the cleaner blade itself with the PC 

drum, but in conjunction with the particles that are present at the nip that act abrasively 

[3]. Several types of particles are present at the nip; the most predominant being toner 

and its “extra particulate additives” (EPAs). The EPAs typically consist of silica particles 

ranging in size with the largest typically being approximately 0.1 microns. However, 

even if 100% of the toner was transferred off of the PC drum surface, the additives would 

still remain in conjunction with other particles, such as paper dust and carrier particles, 

and would need to be removed as well [4]. Thus, a mechanical removal system, such as 

the cleaning blade, is necessary. 
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In addition to removing particles, the blade is typically used to also “refresh” the surface 

of the photoconductor drum by continually removing small amounts of the surface as it 

also becomes chemically degraded [3]. However, with the application of a thin film, the 

need to abrade the polycarbonate surface of the drum diminishes. Both the PC drum and 

the cleaner blade are abraded throughout their lifespan. As the cleaner blade is abraded, it 

cleans less and less effectively, which results in the degradation of the image quality [3]. 

The application of a thin film of metal soap assists the cleaning mechanism by lubricating 

the surface of the drum to permit more efficient transfer and to provide a physical barrier 

between the PC drum and the afore mentioned factors to reduce the amount of wear at the 

interface. The chemical degradation that typically occurs on the drum surface will then 

occur on this sacrificial film, which can be sheared and actively replenished [2].  

The application of the metal soap is expected to reduce the friction between the PC drum 

surface and the blade and extend both of their lifespans without impeding the designed 

print quality. A metal soap was chosen for the application because it fits the criteria as a 

remedial solution since, according to literature, they are widely known as lubricants and 

can be solidified to any form or shape to meet space and life requirements among many 

other properties [5-7]. The objective is therefore, to analyze some of material properties 

of a specific type of metal soap that consists of zinc stearate and zinc palmitate and 

analyze the potential differences caused by using different ratios of zinc stearate to zinc 

palmitate and discuss in a bit more depth its role and importance in the system by way of 

focusing on specific influential aspects of the system. 
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1.2 Overview of the Thesis 

 

The following chapters provide background regarding the experimental techniques used, 

the experimental approach taken and the results that were encountered. Chapter 2 

provides a literature review of metal soaps, solid lubricants in general, and highlights of 

tribology. Additionally, the nanoindentation technique will be described in regards to an 

overview of the contact mechanics and the extraction of some of the material properties. 

Chapter 4 subsequently contains the results from nanoindentations performed on various 

zinc soap mixtures, of which the experimental techniques are discussed in Chapter 3. 

Finally, in Chapter 5, recommendations for future work are made and how they would be 

useful in this endeavor. 
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Chapter 2: Review of Literature 

 

2.1 Introduction 

 

This chapter provides a general overview regarding the topics of metal soaps, solid 

lubricants, tribology and nanoindentation to provide background and insight to their 

relevance and importance to the experiments performed by the author that are herein 

discussed. 

 

2.2 Metal Soaps and Zinc Stearate 

 

Metal soaps are used and found in a variety of conditions. The necessary components are 

found naturally and can react together to spontaneously form or can be synthesized. 

Metal soaps are salts that are formed from non-alkali metals of differing valences and a 

carboxylic acid with an aliphatic tail, or fatty acid [8, 9]. “Traditional” soaps that are used 

for cleansing are water-soluble surfactants contain a metal cation from the alkali metals 

group, typically potassium or sodium. These differ in behavior from what is typically 

classified as a metal soap in that metal soaps are not water-soluble and have popular uses 

in many applications, most of which are industrial [8]. Since metal soaps are insoluble in 

water, they have been used as a waterproofing agent by many industries, such as in the 

construction industry for roads, buildings and the manufacturing of construction 

materials, as well as by paint, pharmaceutical and textile industries to prevent the 
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absorption of humidity or moisture in general [8]. However, due to the properties of 

metal soaps, they have been used for a wide variety of applications beyond their 

hydrophobic nature. They have been found to be exceptional mold release agents, 

especially for plastics and rubbers, as well as good lubricants in general. Not only are 

they used as lubricants in their solitary state, but can be combined with oils to form 

greases as a result of their ability to thicken certain substances. This property has been 

used to thicken certain paints and cosmetics, and to form ointments, plasters, and gels. 

They have also been used as a siccative for paints and inks to promote drying, curing 

and/or hardening. Small amounts have also been combined with “traditional” soaps to 

enhance their germicidal and antiseptic nature. This is not to be considered an exhaustive 

list, as many other uses have been found [8-16]. 

Fats and oils that are derived from plants and animals are common sources from which 

the necessary fatty acids are obtained. These fatty acids include, but are not limited to, 

stearic, palmitic, oleic, linoelic, and ricinoleic acids. As a result, this has been known to 

cause the formation of soaps naturally or unintentionally. For instance, in artwork that 

contains non-precious metal “leafs,” or paint films contain metal and oil, ionic metal 

compounds and fatty acid compounds react to form a metal soap spontaneously through 

an ion exchange, or saponification[8, 10]. Common metals soaps include those containing 

calcium, zinc, magnesium, copper, and aluminum. Of greatest interest in this paper are 

the metal soaps of zinc stearate and zinc palmitate. Stearic and palmitic acids are most 

commonly retrieved from the natural sources of tallow, lard and palm oil [8, 14]. As 

Gönen et al described in their paper, there are three primary methods in which metal 

soaps such as these are formed. These include 1) a precipitation process through double 
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decomposition, 2) a fusion process that involves the direct reaction of carboxylic acid 

with metal oxides, hydroxides, and carbonates or 3) a direct reaction of metals with 

molten fatty acids. An example of each reaction is found below. In an industrial setting, 

the first two methods are typically preferred since, in general, pure metals are not 

naturally found [9, 15]. 

 

2𝐶17𝐻35𝐶𝑂𝑂𝑁𝑎(𝑎𝑞) + 𝑍𝑛𝑆𝑂4 ∙ 7𝐻2𝑂(𝑎𝑞)

→ (𝐶17𝐻35𝐶𝑂𝑂)2𝑍𝑛(𝑠) + 𝑁𝑎2𝑆𝑂4(𝑎𝑞) + 7𝐻2𝑂(𝑙) 

( 1 ) 

 

 

𝑍𝑛 + 2𝐶17𝐻35𝐶𝑂𝑂𝐻(𝑙) → (𝐶17𝐻35𝐶𝑂𝑂)2𝑍𝑛(𝑙) + 𝐻2𝑂(𝑔) 
( 2 ) 

 

𝑍𝑛(𝑠) + 2𝐶17𝐻35𝐶𝑂𝑂𝐻(𝑙) → (𝐶17𝐻35𝐶𝑂𝑂)2𝑍𝑛(𝑙) + 𝐻2(𝑔) 
( 3 ) 

 

Zinc stearate and zinc palmitate are similar in some regards, in that their aliphatic chains 

only differ by two methylene groups, with zinc stearate being the larger of the two. Thus, 

their chemical formulas are 𝑍𝑛(𝐶18𝐻35𝑂2)2 and 𝑍𝑛(𝐶16𝐻31𝑂2)2 for zinc stearate and 

zinc palmitate respectively. This can also be generalized for all of the zinc soaps as 

𝑍𝑛(𝐶𝑛𝐻2𝑛+1𝐶𝑂𝑂)2 where n=11, 13, 15, 17, etc. Studies of zinc stearate and zinc 

palmitate have demonstrated that zinc stearate and zinc palmitate have a natural tendency 

to crystallize independently and when mixed with each other [17]. This has been visually 

observed by Sawada and Konaka upon their use of a jet mixing variant of the fusion 

process to precipitate particles of the soaps. The soaps were observed to be flake-like 

shaped with relatively high circularity that was maintained as the particles grew in size 

[17]. Their crystallinity was confirmed through X-ray diffraction by Sawada and Konaka 

[17]. Barman et al, used the Fourier transform of infrared spectroscopy (FTIR) to obtain 
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information regarding the conformations and subcell packing of the chains at various 

temperatures [12]. Other authors have also performed these tests and obtained similar 

results on these soaps and others that were formed in synthesis processes. These studies 

have also agreed that the zinc stearate and zinc palmitate form a tetrahedral crystal 

structure in reference to the location of the zinc atoms [16]. 

Stearic and palmitic acids are naturally saturated and linear acids. However, as shown by 

Ishioka, the configuration of the carboxylic group in its bonding to zinc governs the 

shape of the zinc soap molecule. Zinc stearate and palmitate are typically in an all-trans 

configuration, which eases the crystallization process, however, it can also be found in 

one of the forms below which consist of a combination of a trans, gauche and cis 

configuration, where C=cis, G=gauche and T=trans and the TTT configuration is the all-

trans case [18]. 

 

Figure 1: TTT, CTT, TGT, and CGT molecular models where open circles are ascribed carbon or oxygen, and filled 

circles are hydrogen atoms. They have conformational disorder at the COO end [18]. 

 

Furthermore, it has been claimed by Sawada based on gas sorption and XRD data that 

when zinc stearate and zinc palmitate are combined, their crystal structure remains the 
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same and only the long spacing changes as a result of the differing chain lengths. As a 

result, the zinc atoms maintain their general lattice positions and variably-sized voids are 

created between the chain pairs that are shorter than the longest, most predominant chain 

pair, depending on the mix ratio of stearate and palmitate soaps [17]. 

 

Figure 2: Crystal Structure Models of C16/C18FA-Zn. Weight ratios of Stearic acid in these models are 0%, 30%, 

50%, 70%, and 100%. Dot-line circles mean void areas in these models [17]. 

 

The combination of zinc stearate and zinc palmitate are of interest in this paper because 

they have been chosen to be incorporated a laser imaging apparatus as a lubricant and 

barrier. The zinc soap mixture is widely known as a lamellar solid as can be noted by its 

frequent use as a lubricant and its many claims in various solid lubricant books and 

literature. This is likely a result of its crystallographic nature and the type of crystal 

structure that it forms. The crystallographic nature lends itself to be anisotropic in that it 

shears easily along the plane between fatty acid chains and does not easily shear 

perpendicular to the plane of zinc atoms. Thus, this paper seeks to identify possible 

differences in the mechanical properties between mixtures of various ratios of stearate 

and palmitate. 



 

10 
 

 

2.3 Tribology 

 

The word tribology is derived from the Greek “tribos,” which is translated as sliding or 

rubbing. Thus, tribology is the study of friction, wear and lubrication [19]. 

 

2.3.1 Lubrication 

 

Lubricants are available in a plethora of forms and material properties and, depending on 

the application, it can be quite a challenge to find or develop a lubricant that satisfies all 

of one’s needs. Their fundamental purpose is to control friction and wear in a system and 

as a result their quality is critical as it can determine their performance through life; from 

the moment of initial application to its desired end. Lubricants are commonly recognized 

as oils and greases, but can also be in solid form. The choice of lubricant is often guided 

by the constraints of the application, which is why the material properties of both solid 

bodies in contact, as well as the lubricant, are crucial in controlling wear [19]. 

Since the primary type of lubricant had already been chosen for the system at the time 

that this project had begun, the focus of this paper will not be to validate the choice of 

lubricant, but to highlight some aspects that typically govern the choice of a lubricant and 

how they pertain to the lubricant chosen. This includes highlighting and examining the 

ratios of the two-part metal soap composition.  

The lubricant that was selected for this system is a solid lubricant rather than a fluid 

lubricant. Solid lubricants can be advantageous to certain systems, such as this one, 
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because of their “cleanliness” and their robustness in comparison to non-solid lubricants, 

such as oils and greases. Liquid lubricants are often messy in the sense that they can drip 

or be slung off of the area of interest fairly readily. Additionally, the coefficients of 

friction that result with the use of a solid lubricant are more stable across a wider range of 

temperatures and environments when compared with these other lubricant types. 

However, issues with solid lubricants can involve their limited lifespan, replenishment 

issues and degradation due to oxidation or aging. Additionally, they are generally poor 

thermal conductors and do not easily dissipate heat from the interface [6, 19]. 

Although the use of solid lubricants is primarily a result of their durability and their 

performance capabilities in cases where traditional lubricants cannot perform, the modern 

trend has increased their use to minimize the amount of liquid lubricants used, primarily 

because of environmental concerns. However, currently, there is not a single lubricant 

that can minimize friction and wear over a range of uses, temperatures or conditions. [6, 

7]. 

Solid lubricants can be classified in numerous ways depending upon what is desired from 

a lubricant and by the limitations of the system. Most generally, they are classified by 

whether their structure is lamellar or non-lamellar, but they can also be categorized based 

on their composition and structures. Examples would be lamellar, soft metals, oxides 

(mixed or single), carbon-based, organic/polymers, and mixtures [19].  

Two key considerations when choosing any type of lubricant is the relative speed of the 

contact surfaces and the temperature at which the lubricant is expected to operate at. For 

a liquid lubricant, these have a significant effect on its viscosity. Lubricants with a high 

viscosity often create thicker films, which results in greater separation between the 
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contacting surfaces. However, the greater the viscosity, the greater the resulting power 

losses are. This is a result of the increased amount of energy required to shear it, which 

also signifies that more heat is generated and subsequently resulting in an increase in the 

temperature of the contacting bodies. The temperature change can also influence the 

lubricant’s viscosity by reducing the viscosity and thus its ability to properly lubricate. 

This is more problematic with the use of oils since their viscosity can reduce by 

approximately 80% with a temperature change of only 25°C. A solid lubricant is 

typically more stable than an oil under a wide range of conditions, which is why solid 

lubricants are chosen over fluids for certain applications, including the application at 

hand [19].  

The dynamic or shear viscosity of a lubricant is essentially its resistance to shear flow 

and is represented as 𝜂. The dynamic viscosity can be found by separating two, flat 

parallel surfaces with a film of thickness ℎ and applying a force, 𝐹, to the upper surface. 

The amount of force required is impacted by the amount of surface area, 𝐴, in contact 

with the film and the velocity gradient through the film. The value of 𝜂 is in essence the 

proportionality constant relating the shear stress to the shear rate and can be expressed as 

shown below: 

 𝐹 = 𝜂𝐴
𝜕𝑢

𝜕ℎ
 ( 4 ) 

 

Rearranging: 

 
𝜂 =

𝐹

𝐴
/

𝜕𝑢

𝜕ℎ
 = 𝜏/

𝜕𝑢

𝜕ℎ
 ( 5 ) 
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where 𝜏 is the shear stress acting on the lubricant and  
𝜕𝑢

𝜕ℎ
 is the shear rate, or velocity 

gradient. The kinematic viscosity, 𝑣, is a ratio of the dynamic viscosity and the lubricant 

density, 𝜌 [20].  

 𝑣 =
𝜂

𝜌
 ( 6 ) 

 

Figure 3: Schematic representation of the fluid separating two surfaces [19]. 

 

The mechanism of adhesive wear is fairly common in contacting bodies and is reliant 

mostly on the adhesion between the bodies and the shear strength parallel to the contact 

surface. This mechanism is actually exploited in some solid lubricants. Some solids, 

namely lamellar solids, exhibit anisotropy of their mechanical properties and have a low 

shear stress along a particular direction or crystallographic plane. The atoms or molecules 

that lie in the same plane, or lamella, are packed closely together and strongly bonded. 

The spacing between planes, or lamellae, however, is relatively far apart and the 

interaction between the paired chains is also relatively weak.  Therefore, a lower shear 

force is required for forces parallel to these planes rather than perpendicular cleavage of 

layers. Although the continuous shearing of layers of a lubricant is readily visualized by 
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the concept of the laminar flow of a fluid, this is also somewhat representative of the 

nature of a lamellar solid in that there is assumed to be a no-slip boundary condition at 

the interface with the contact surfaces and a shear rate gradient through the lubricant’s 

thickness. Metal soaps, such as the zinc soap mixture of interest, are lamellar solids that 

behave in this manner [5, 19]. 

Additionally, strong adhesion between the lubricant and the contact surfaces is greatly 

desired, as well as a strong tolerance against chemical decomposition or degradation 

under the desired operating conditions.. Metal soaps, however, do not readily oxidize due 

to their chemical structure and are primarily dependent on the nature of the shear planes 

to lubricate effectively. 

Through electron diffraction, studies have demonstrated that lamellar solids tend to form 

preferentially oriented layers such that the lamellae lie parallel to the direction of motion 

causing low friction [5, 12]. Each lamella can be composed of a single plane one atom 

thick or several atoms thick, but metal soaps have an aliphatic tail and therfore each 

lamella consists of several atoms. The strong inter-atomic bonding and packing of a layer 

is essential for minimizing wear as it provides the large in-plane strength, which is 

characteristic of the plane of zinc atoms [5, 7, 19]. 

 

Figure 4: Mechanism of lubrication by lamellar solids [19]. 
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Solid lubricants, and lubricants in general, fill the troughs separating asperities on the 

same surface and between the contacting surfaces to create a boundary layer or film that 

separates the two bodies that would otherwise be in contact. Additionally, the “run-in” 

practice, (discussed in the wear section), facilitates the lubrication of the film by reducing 

the height of the asperities that the film has to overcome. The strong adhesion to the 

contact surface and the compliance of the film to the surface contours helps to prevent it 

from getting pushed out of the interface during extreme pressures.  

The deposition or formation of the films can also be critical for a lubricant to be effective. 

This primarily pertains to the necessary means to ensure proper adhesion of the lubricant 

to the contact surface. Assuming that the proper adhesion of the lubricant to the surface is 

not a concern, the studies performed by Deacon and Goodman demonstrated that the 

application method was not critical when comparing prior lamellae orientation through 

rubbing or brushing. Eventually, both cases will quickly result in preferential orientation 

of the lamellae and similar frictions. Solid lubricants can be applied in a variety of 

methods, including but not exclusively, through sprinkling, brushing, rubbing, 

burnishing, impregnating, vapor deposition, or through a carrier such as aerosol. The 

system of interest uses a brush applicator to apply the zinc soap to the PC drum [5, 7, 19, 

21]. 

Plastic deformation of the contact surfaces is still possible even with little to no contact 

between surfaces. Deacon and Goodman observed instances that indicated that the 

lubricant successfully distanced the contact surfaces, but transmitted enough pressure to 

deform the substrate’s prior abrasion lines. This was observed mostly with relatively thin 
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lubrication films with large applied loads, while the thicker films were thought to be able 

to disperse the pressure over a larger area resulting in only elastic deformation [5]. 

Some advantages of solid lubricants are that they are well suited for high load 

applications. Solid lubricants do not have the tendency to be forced out of the contact 

interface like fluid lubricants. Additionally, since solid lubricants function by the 

shearing of the solid, the contact load can facilitate the shearing of the lubricant if the 

shear strength is not adversely impacted by the normal load. Solid lubricants are also well 

suited for low speed applications where contact surfaces often penetrate fluid films. As 

mentioned previously, temperature has a much smaller effect on solids lubricants than 

non-solid lubricants in that the non-solid ones tend to change viscosity and film thickness 

very quickly with changes in temperature. In dirty or abrasive environments fluids or 

greases have a higher propensity of picking up and retaining particles than solid 

lubricants, which results in abrasive wear. Since solid lubricants do not flow like fluid 

ones, they are more suitable for intermittent use or with periods of extended storage. 

Solid lubricants are often lighter weight in comparison to a fluid sump, though 

replenishment with a solid lubricant can be more of a concern. The zinc soaps being 

utilized are electrically insulating, which helps specifically in maintaining the ability to 

retain charge on the surface for printing purposes.  
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2.3.2 Friction 

 

The phenomenon of friction is generally defined as being the resistance of motion 

between two objects in contact with one another or the increase in force that assists in 

inducing and/or maintaining their motion [22, 23]. The topic of friction has been a topic 

of interest for over hundreds of years, both in the effort to exploit is as well as reduce it 

[24, 25].  

Friction is generally independent of the speed of the motion between objects, as a first 

order approximation when examining a system at the macroscopic level. It can also be 

noted that neither the apparent contact area nor velocity appears as a variable in the 

Amontons’ Law relationship, 𝐹𝑓 = µ𝐿 . This simplified relationship is reasonable 

provided that there is a moderate load and moderate speed. [19]. 

Every surface has some degree of roughness and, as a result, the apparent contact area is 

orders of magnitude larger than the actual contact between the two or more objects. [25] 

Today, friction is still an area of interest in the development of emerging products and 

technologies, especially as it pertains to the extreme ends of the size scales [24]. Friction 

is utilized frequently every day; most obviously in the brakes of automobiles, in the 

ability to walk and grasp objects, and in the playing of string musical instruments. 

Friction can also have undesirable effects in some applications because of the wear that is 

induced and the energy that is consumed. In this particular instance, the detrimental 

effects of friction are the ones of interest as they have negative impacts on the 

components and the quality of the end product. 



 

18 
 

Friction is typically categorized into static and kinetic friction. As the names imply, static 

friction is the related to both the resistance and initiation of relative motion between two 

bodies in contact, whereas kinetic friction pertains to the resistance that occurs between 

two bodies in continued relative motion or the maintenance of that motion [26]. Static 

friction is generally greater than kinetic friction and can be thought of as the part of the 

“activation energy” to permit relative motion between two objects in contact. To some 

degree the resistive nature of friction is a matter of perspective or application. In regards 

to sliding, friction would appear to be resistive in nature. However, in regards to a roller 

imparting rotational motion on another roller, it is through friction that this is possible.  

Depending upon the focal point of interest, friction and its effects can be observed on the 

macroscopic scale or the microscopic scale. For many applications, friction is examined 

at the macroscopic scale and, therefore, it is typically assumed that the resulting friction 

processes in the contact area are isotropic and homogeneous in the contact region. These 

assumptions are generally acceptable since the details of the microscopic interactions do 

not greatly affect the behavior of the bulk material, depending upon the scale of the 

objects [23]. 

When examining a system macroscopically, the energy "losses" that are experienced due 

to friction are considered to be a conversion from bulk translational energy into thermal 

energy, with the assumption that there is no wear. The heat is then conducted into the 

bulk material and can result in an increase in temperature of the surfaces. It is critical to 

be mindful of this because it can result in phase changes or chemical changes of the 

surfaces or lubricant film, which can significantly change their behaviors [19]. The 



 

19 
 

frictional work performed is given by the following relationship, which is essentially 

Amontons' Law multiplied by the velocity [23].  

Examining the contact on a more microscopic level, it can be seen that the actual contact 

area, is much smaller than what appears to be the contact area macroscopically. Rather 

than the normal and frictional forces being evenly distributed across the apparent area, 

they are concentrated at the points that are in contact with one another. This, of course, is 

due to the inherent roughness of all surfaces and the material properties of the surfaces. 

Since frictional energy is concentrated at these asperities, this implies the frictional 

energy is dissipated at these points and, therefore, these asperities experience much 

higher temperatures than predicted with the simplified contact theory. This is important 

because of the surface changes that can be induced in the material [19, 23]. 

Not only is the geometric ‘fitting” and contact of the asperities important, when 

examining objects in contact at the microscopic level. The attractive force can also be 

quantified and become critical when considering adhesive contacts. This is especially the 

case as it pertains to extremely smooth surfaces, soft contact bodies, and/or microscopic 

systems, such as between a smooth and flexible cleaning blade against a polycarbonate 

surface in the system at hand [25]. 
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In many cases, the adhesive forces are negligible as a result of the inherent roughness of 

most surfaces and since there generally is not full contact between the two bodies, the 

force of adhesion is less than those governing the motion between the bodies. However, 

in some cases, such as when a smooth body comes into contact with a rough and rigid 

body, the adhesive force becomes appreciable. Considering such a case, the body will 

elastically deform to fill in the troughs of the surface roughness.  

This is an event that has been macroscopically observed with the cleaner blade and the 

PC drum surface. Without the presence of a substance or medium between the two 

working surfaces the edge of the cleaning blade will typically adhere to the surface of the 

PC drum as the drum rotates. However, if a lubricating medium such as a metal soap is 

placed in the contact interface, this creates a separation of the two surfaces and allows for 

relative motion due to the low shear planes. 
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2.3.3 Wear 

 

Wear and friction are very interrelated and their desired effect on the system can either be 

proportional or inversely proportional, depending upon the application. For instance, in a 

polishing or grinding application, both friction and wear are desired. However, in the case 

of pencil lead, wear is desired, but with minimal friction. For a braking application, the 

reverse is true; wear is ideally minimized, but not friction [19]. In many cases, including 

the present one of interest, wear and friction are undesirable and are considered to be one 

of the major causes of waste and performance loss for this and many other systems [19, 

27]. 

 

Figure 5: Schematic illustration of mechanisms of frictional energy dissipation [19] 

 

Several mechanisms of wear exist and can be generally categorized into four primary 

mechanisms of wear that include adhesion, abrasion, fatigue, and chemical. These are all 
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forms of wear that can occur in this subsystem of the printer and minimized through the 

use of a metal soap thin film.  

Wear due to adhesion usually involves the contact of a few asperities and then an 

increase in the amount of true contact area as relative motion continues between the two 

surfaces. Of course, fundamentally, this is a result of the forces of attraction between the 

atoms in contact, but is also largely influenced by the material selection. A soft material 

is more likely to comply about the surface features of the interfacing surface due to the 

nature of its low elastic modulus. As a result, the total adhesion between the two contact 

surfaces is greater because the attractive forces act on a larger area. This can also occur 

for stiff materials if the applied load is great enough. The surface asperities for stiff 

materials are likely to deform under high loads, which enables more contact between the 

two materials increasing the adhesion. Adhesion can also result in plastic deformation of 

components while the surfaces are in relative motion with each other. The use of a 

lubricant, such as a metal soap, at the contact interface is often employed in creating a 

boundary and to minimize adhesion between the contact surfaces. [19, 28]. 

 ‘Fatigue wear’ generally occurs in an event when the lubricant supplied is only partially 

effective (i.e. the lubricating film it too thin), and the wear that occurs is generally mild 

as a result of only partial contact between asperities. As these asperities are exposed to 

repetitive stresses, such as through impact, bending, or rolling, they experience fatigue 

and result in creep, surface cracking, or even cracking of the subsurface. For such cases, 

materials with an adequate fatigue strength and toughness should be utilized [19, 28]. 

In some instances, particles become trapped in the troughs between asperities, either in 

the presence or absence of a lubricating film, and can rapidly result in ‘abrasive wear’ of 
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one or both interfaces resulting from the grinding or pitting from the abrasive material. 

Furthermore, the material removed from the contacting surfaces by the abrasive particles 

can accumulate and become abrasive debris themselves. It is desirable that the contact 

surface(s) be at least as hard as the abrasive material(s). In general, it is advisable to 

choose materials with a high yield strength and high fracture toughness to prevent cracks 

due to fracture or fatigue, but usually a compromise is necessary. Erosion from particles 

impact is also prominent. For low angle particle impacts, hard and brittle materials are 

typically suitable, but with impact from high angle particles, great fracture toughness and 

ductility are more desirable [19, 28]. 

 Surfaces can also be influenced by chemical attack either due to the nature of the bodies 

in contact or the environment in which the system operates, as in the environment that the 

PC drum experiences. This is known as ‘corrosive wear’ or ‘oxidative wear’ depending 

on the chemical nature of the attack on the surface and usually is strongly dependent of 

the chemical potential of the surface or portions of the surface. Surface defects or 

impurities, especially in metals, can exacerbate this issue. There are many other types of 

wear that are not discussed here since the presence of wear will occur with nearly all 

types of contact between solid bodies. These are some select mechanisms of wear which 

are desired to be controlled in this system through the use of a zinc metal soap [19]. 

Certain measures can be taken to prepare contact surfaces for longer lifespans. 

Sometimes surfaces are “run-in” or “broken-in” by sliding contacting surfaces past each 

other at light loads to remove the peaks of the asperities or flattening them to smooth the 

surface. This reduces the coefficient of friction between the surfaces to one that would be 
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seen in a long-term steady state condition. This can then be combined with a lubricant to 

further reduce the friction [19].  

 

Material selection or design is critical to the minimization of wear and the general 

function of parts. It is best to identify the type of potential wear that surfaces of interest 

would experience so that materials can be chosen accordingly. Of course, it is always best 

to create a design that minimizes factors that affect wear, but wear some degree of wear 

is often unavoidable. In industrial situations material selection can often be a difficult 

task because of the complexity of the system(s) and of all factors that need to be 

accounted for, including ancillary factors, which can limit the selection. Although 

material selection is often done empirically, a more systematic approach can reduce time 

and cost by narrowing the possibilities and reducing the chance of overlooking any 

obvious factors. 

 In relatively simple cases, wear resistance can be achieved through the choice of a bulk 

material. However, surface treatments are often chosen due to their versatility and due to 

the complexity of systems. A surface treatment can be applied to nearly any material, but 

the material selection of the coating and its deposition are critical. Surface treatments can 

be in the form of a coating or an actual “treatment.” In both cases of surface materials and 

bulk materials, material structure, performance, processing and properties all play a 

crucial role in the characteristics of the material selected. Of course, ancillary factors, 

such as availability, chemical compatibility, ability to surface finish if required and 

operating environments also need to be taken into account when choosing a material [28]. 
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A large result of friction is the heat generated which can have a great effect on the 

friction and wear of the surface. Since the majority of the heat generated from dry contact 

is conducted through the asperities of the contacting surfaces and since the true contact 

area is orders of magnitude smaller than the apparent contact area, the heat becomes 

concentrated at these points. This is also exacerbated if the contact surfaces are poor 

thermal conductors. Despite extreme conditions, the temperatures generated typically 

cannot exceed the melting temperature of the bodies. The thermal mounds that result, 

however, can have significant increases in temperature that can modify the material 

properties of the surface by modifying the surface microstructuremodification of films, 

“frictional welding,”  volatilization, decomposition, or initiation of chemical reactions. 

Even if melting does not occur, the heat generated can supply enough energy for surface 

recrystallization to take place by supplying enough energy to promote atomic or 

molecular mobility so that the atoms or molecules can arrange themselves into larger 

crystals [19, 21, 23]. 
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2.4 Contact Mechanics 

 

With advancements of industry and manufacturing capabilities, namely the railroad at the 

time, interest grew regarding the calculation of exact stress values due to the extreme 

contact stresses that rail wheels and axles often experience and the proximity of these 

stress values to the yield stress of the steel used. As a result, several contact theories arose 

and have continued to be developed. In 1882, Heinrich Hertz pioneered the analysis of 

the contact between two solids. In an effort to derive some relationships, he examined the 

normal contact between curved bodies each with a different radius of curvature. Several 

theories were made subsequent to Hertz’s theory to improve it and to be more applicable 

to practical scenarios. Greenwood and Williamson, in 1966, developed a contact theory 

that described rough surfaces using spherical bumps with equal radii of curvature with 

asperities that varied according to a Gaussian distribution. It can be noted that that this 

parallels Hertz’s theory when examining the contact between asperities, but expands the 

nature of the analysis to a greater level in trying to more accurately predict the 

relationship between the true area of contact and load on a large scale through a more 

detailed analysis using the inclusion of small scale features. Bridging to the above 

sections, it was mentioned that every surface has some degree of surface 

texture/roughness. This perspective is critical because of the importance of being able to 

accurately and quickly determine the real contact area for a given situation, which is 

useful for properties such as electrical resistivity at an interface, heat transfer, friction, 

seals, etc. This is especially important in regards to the work performed as it pertains to 
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the nanoindentations as well as aspects of the system interfaces that are of interest [25, 

29, 30]. 

Using Hertz’s contact theory, the contact area is predicted to vary non-linearly as a 

function of compressive force where the area could be approximated with the following 

relationship:[31]  

 𝐴~𝐹𝑁

2
3 ( 7 ) 

This, however, disagreed with experimental results for randomly rough surfaces where 

the true contact area is much smaller than the apparent contact area. The experimental 

results indicated that the relationship between the true contact area and the compressive 

load is linear. This also supports the basis for Hooke’s Law, which will be discussed 

later. This relationship was also confirmed by Bush, Gibson and Thomas, as well as 

Persson who utilized Hertz’s contact theory, but used different methods for 

approximating the surface asperities and height distributions to more accurately calculate 

the real contact area [29, 31]. 

Although, the above theories demonstrate improvements and adjustments to the Hertzian 

contact theory, only the fundamentals of his theory will be discussed, since many of the 

other theories utilize his as a basis [29]. 

Prior to discussing Hertz’s contact theory, a slightly more in-depth view of normal 

contact will be discussed involving elastic and inelastic deformations at the atomic level. 

In connection with the previous section on friction and wear in regards to contact at the 

atomic level, it reasonable to assume that the modulus and strength of a body or material 

would be dependent upon the nature and strength of the chemical bonds that make it up.  
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Atoms in a solid experience both attractive and repulsive forces with respect to each 

other.  

 

Figure 6: Long-range attractive forces and short-range repulsive forces acting on an atom or molecules within a liquid 

or solid. Atom "B" on the surface must move closer to atoms just beneath the surface so that the resulting short-range 

repulsive force balances the long-range attractions from atoms just beneath and further beneath the surface [32]. 

The repulsive forces are a result of short-range Coulombic forces whereas the long-rang 

forces are a result of chemical bonds due to the filling or sharing of electron shells and 

the tendency to be in a lower energy state. A curve of this attraction/repulsion 

relationship with respect to distance can be seen in a generic curve in Figure 7; of course 

the actual shape of the curve is dependent upon the actual bond type. However, as can be 

seen from the curve, there is a near linear relationship between the distance between 

atoms and the force required to separate or compress atoms together for small 

displacements. This force-displacement curve, specifically the segment from equilibrium 

to the maximum force, can be approximated with a portion of a sine function in which the 

following relationship can be established: [32] 

 𝐹 = 𝐹𝑚𝑎𝑥 sin (
𝜋𝑥

2𝐿
) 

( 8 ) 
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where 𝐿 is the distance from the equilibrium position at the maximum force, or cohesive 

strength when one single atom is pulled away from another. Using the small angle 

approximation and considering the maximum force to be constant for a particular 

material, this can be simplified to  

 
𝐹 = 𝐹𝑚𝑎𝑥 (

𝜋𝑥

2𝐿
) = [

𝐹𝑚𝑎𝑥𝜋

2𝐿
] 𝑥 = 𝑘𝑥 ( 9 ) 

which takes the form of Hooke’s Law. This then can be rearranged into the form of stress 

and strain and modulus. However, as a result of crystallographic defects that commonly 

appear, materials do not exhibit these theoretical values in their bulk form and actual 

values are experimentally obtained. With these values, quantities such as strain potential 

energy can be calculated [32]. 

 

Figure 7: Schematic of the forces between atoms in a solid as a function of distance away from the center of the atom. 

Repulsive force acts over a very short distance. Attractive forces between atoms act over a very long distance. An atom 

at infinity has a higher potential energy than one at the equilibrium position. [32] 

 



 

30 
 

Scaling this concept back to a more macroscopic perspective, there will be a resultant 

displacement as a result of an applied load on a body or, in this case, a contact between 

two bodies. This displacement can be elastic or inelastic depending on the applied load 

and the strength of the material. Thus, there are two primary relationships of interest that 

are desired to be satisfied by contact theories which are the force-displacement 

relationships and the force-contact stress relationship. Continuing with Hertz’s contact 

theory, the assumptions he made upon founding his theory are summarized as follows: 

 The surfaces of the contacting bodies are continuous and smooth. 

 The bodies are in frictionless and non-adhesive contact and, therefore, only 

normal pressures are transmitted between the bodies in contact. 

 The resulting contact area is small in comparison to the radii of the contacting 

bodies and, therefore, the strains are small and the surfaces are considered non-

conforming. This allows for each surface to be treated as an elastic half-space 

 The governing differential equations for the bodies in static equilibrium should 

agree with the stresses and strains in the bodies. The stresses should approach 

zero at a large distance from the contact area. 

 Integrating the pressure distribution in the contact area is equal to the magnitude 

of the load acting on the two bodies. 

Additionally, it assumed in classical contact mechanics that the materials are isotropic 

and homogeneous. Using these assumptions, Hertz studied the contact between elastic 

solids and approximated their surface profiles in the vicinity of contact with quadratic 

functions. This was an approximation for surfaces with continuous curvature and can, 

therefore, be changed to something more suitable of the actual contact profile. For a 
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spherical body indenting a flat surface, he found a relationship between the elastic 

properties of the contacting bodies, the radius of the contacting body, 𝑅, and the applied 

load, 𝑃, to be: 

 𝑎3 =
3

4

𝑃𝑅

𝐸∗
 

( 10 ) 

where 𝑎 is the radius of contact and 𝐸∗ is the combined modulus of the contacting 

materials, or the reduced modulus. 

When calculating the stresses that result from contact, Hertz estimated the stresses 

through a body by calculating the stresses along the surface and axis of symmetry and 

then interpolating between them. Boussinesq then followed this analysis characterizing 

the stress fields for point contacts. The analysis of stress fields in elastic-plastic contacts 

becomes even more complicated as a result of the plastic deformation of both the yielding 

and the cracking effect [32].  

Although friction is neglected for many cases and may be an acceptable assumption, it is 

still important to understand the role of friction in a contact problem, apart from what has 

been noted in the section above. In a frictionless case, portions of both contacting bodies 

are compressed into their respective bodies and points on the surface and within the 

bodies are permitted to move with respect to each other resulting in internal 

forces/stresses. However, with the inclusion of a friction condition, incidents of no slip 

and partial slip occur that influence the behavior of contact. One case is the complete 

opposite of the frictionless condition in which there is a complete adhesion contact, or no 

slip. In this case, the points in contact are prevented from moving with respect to each 



 

32 
 

other as a result of the frictional forces. The alternative cases would then be cases of a 

partial slip condition that occurs in the loading or unloading case. In these cases, the 

applied load will cause some points in contact to overcome the frictional force and slip 

past each other while other points remain adhered to one another. Similarly, this also 

occurs during unloading. As the applied load is reduced, forces are balanced by internal 

forces, the applied load and friction. As the applied load is further reduced, a point is 

reached where the internal stresses overcome the friction at some contact points and 

allows for slip to occur at these points.  

 

Figure 8: Points on the indenter and specimen surfaces that have come into contact during loading. (a) full slip, (b) no 

slip, (c) partial slip (loading), (d) partial slip (unloading). In (d), reverse slip may occur, leading to residual stresses. 

[32] 

 

The contact mechanics described are applicable in both cases of interest as it pertains to 

the application of a zinc mixture soap and the characterization of its mechanical 

properties. The application of the metal soap involves the creation of stress fields in itself 

if we examine the deformation of a particle by the force of an elastomeric blade. If the 

adhesive force of the particle is greater than that imparted on it by the blade, the particle 
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will remain on the surface of the PCD and undergo shearing and compression. A large 

portion of the particle will be sheared off since it cannot fit beneath the blade and the 

remainder that was adhered to the drum will be compressed as a result of the blade force 

in the contact area of the blade nip. 
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2.5 Nanoindentation 

 

As alluded to above, Hertzian contact mechanics is pertinent to finding mechanical 

properties of materials such as modulus and hardness of a material and is often employed 

through the use of an indentation test on a material as a result of its speed and simplicity. 

In the early 1900’s, Brinell performed some of the first indentation tests in an attempt to 

characterize the plastic properties of materials. Soon after, this was adopted by many 

industries and a variety of different indentation techniques emerged. Indentation tests can 

now be in a macro-, micro-, and nanoindentation form. Initially, hardness measurements 

utilized optical imaging to determine the hardness of a material by examining the plastic 

deformation and the size and shape of the imprint caused by the indenter. However, in the 

1970’s, it was recognized that the elastic modulus of a material could be acquired from 

the load displacement curve, which encouraged the development of equipment that can 

continuously measure the load and displacement of the indenter [32, 33]. 

The development of the nanoindenter came from the desire to measure the mechanical 

properties of thin films and surface treatments which microhardness instruments were not 

capable of. The microindenters are not capable of applying a low enough force that could 

indent the material without having a measurement that was influenced by the substrate 

beneath the sample surface. The nanoindentation technique is a very useful one in this 

regard and a useful technique for measuring mechanical properties in general. It is able to 

measure loads on the order of nanonewtons and displacements of approximately 0.1nm. 

This allows for the measurements of very thin films and layers of films, which cannot be 
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performed by other indentation methods. The nanoindentation instruments are also fairly 

simple to use and are not costly to run, unlike some characterization equipment.  

As mentioned in part above, the primary purpose for using a nanoindenter is to quantify 

some of the mechanical properties of a material, a small volume of a material or 

superficial layer of a material. The most common properties that are measured in this 

fashion are modulus and hardness, though these can only be measured if some 

information is known about the material and the indenter [32].  

 

2.5.1 Nanohardness 

 

Measurements that are of critical importance in regards to finding these material 

properties, as well as others, are the displacement of the indenter tip with respect to the 

sample and the contact area. Using these measurements, Hertzian contact theory can be 

used to find the properties of interest, most directly in the case of a spherical indenter. As 

seen in the contact mechanics section, Equation ( 10 ) demonstrates the relationship that 

Hertz encountered between the contact radius, the indenter load and the elasticity of the 

contact. This is useful in conjunction with the mean contact pressure which is defined as 

 𝑝𝑚 =
𝑃

𝜋𝑎2
 

( 11 ) 

 

where 𝑃 is the normal load and 𝑎 is the radius of the contact circle. When combined with 

Equation ( 10 ), the mean contact pressure can be re-expressed as follows: 
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 𝑝𝑚 =
𝑃

𝜋𝑎2
= (

4𝐸∗

3𝜋
)

𝑎

𝑅
 

( 12 ) 

where 𝐸∗ is a combination of the modulus of the indenter and the sample. As might be 

suspected, the mean contact pressure if commonly called the ‘indentation stress’ and the 

term, 
𝑎

𝑅
, is the ‘indentation strain’. This alludes to the Hooke’s Law stress-strain 

relationship that is commonly acquired from typical uniaxial compression and tension 

tests. As a result of how the stress fields in an indentation are confined, the mean contact 

pressure that is exerted is greater than what is necessary to initiate yielding in a 

traditional uniaxial test and more readily produces plastic flow as a result of shear stress 

and the large hydrostatic component.  

The mean contact pressure is utilized to find the hardness, 𝐻, of a material at the point 

where its mean contact pressure  is constant and the applied load, 𝑃, is at a maximum. 

Thus, this is expressed as: 

 𝐻 =
𝑃

𝐴
 

( 13 ) 

where 𝐴 is the projected area of contact. This measurement of hardness is performed 

these conditions in an effort to perform a measurement where there is a fully developed 

plastic zone. The standard definition of hardness for nanoindentation is the Meyer 

hardness. The Brinell hardness number (BHN) gives a value of hardness based upon the 

actual area of contact rather than the projected area. This allows for a measurement that is 

independent of the load and only influenced by the material response.  
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The hardness of a material also relates to the yield strength of a material through the 

following approximation 

 𝐻 ≈ 𝐶𝑌 
( 14 ) 

where 𝑌 is the yield stress of the material and 𝐶 is the constraint factor that is dependent 

upon experimental parameters, such as the indenter and specimen types. Relationships 

have then been seen between the ratio of the material’s elastic modulus and yield stress, 

𝐸

𝑌
, in relation to the constraint factor. For instance, materials with a large ratio, such as 

metals, tend to have a constraint factor of about 3, whereas materials with a low ratio, 

such as glasses, tend to have a 𝐶 value of about 1.5 [32]. 

The condition of full plasticity in the area of consideration is critical in the hardness 

measurement of a material. Erroneous values of hardness are commonly reported from 

cases in which full plasticity has not yet developed, which essentially signifies that only 

the mean contact pressure was measured, since the value was not independent of the 

applied load. This is best exemplified by the indentation of a very elastic material, such 

as a rubber specimen. Most of the resulting deformation during an indentation would be 

elastic and very little plastic deformation, if any would occur. As a result, the mean 

contact pressure, or the apparent hardness, would be low and representative of the 

material’s resistance to elastic and plastic deformations. However, as a result of the 

material’s high resistance to plastic deformation, the true hardness is actually very high. 

The true hardness of a material is its resistance to plastic deformation with little to no 

elastic deformation or, in other words, the energy, 𝑈𝑝, required to plastically deform the 

indentation volume of material, 𝑉. 
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 𝐻 =
𝑈𝑝

𝑉
 

( 15 ) 

This can be derived by using the power law form of the load-displacement curve with the 

assumptions that the displacement of the residual impression is equal to the maximum 

displacement of the indenter and that the reduced modulus is infinite. This can then be 

integrated to find the work done on the system. Without showing the derivation, a general 

representation of the energy required to indent a material for an elastic-plastic case is: 

 𝑈𝑝 = (
1

3
√

1

𝜋 tan2 𝛼
)

1

√𝐻
𝑃3/2 

( 16 ) 

where α is the effective cone semi-angle [32]. 

 

2.5.2 Contact Area and Indentation Tips 

 

In order to accurately determine the true hardness value of a material, the area of contact 

must be known or able to be determined. Rather than using optical techniques to measure 

the residual impression created by the indenter, the nanoindenter, records the penetration 

depth and determines the projected the area of the indentation based on the geometry of 

the indenter and a calibration that is performed. The projected contact area is a direct 

result of the geometry of the indentation tip that is chosen. 

Various indentation tips exist that are utilized for various purposes and vary from sharp to 

blunt. The most common types of tips used are spherical and pyramidal indenters. In 
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regards to the pyramidal indenters, the Vickers and the Berkovich tips are the most 

widely used [34]. 

 

Figure 9: Indentation parameters for a) spherical, b) conical, c) Vickers, and d) Berkovich indenters (not to scale) [34] 

 

Due to their geometry, spherical indenters are directly applicable to the equations 

presented in the Hertzian contact theory and smoothly transition from elastic to elastic-

plastic deformation during the indentation. This geometry is best for soft specimens. One 

thing to note is that the radius of contact increases more quickly than the indentation 

depth as the load of the indenter is increased. It is important to recall that when 

measuring hardness, a fully developed plastic region is required for an accurate 

measurement, which should be kept in mind when using this tip since it is more likely to 

remain in the elastic regime [34]. 

The Berkovich indenter is the most commonly used pyramidal indenter and was the one 

used in this investigation. It is a three-sided pyramidal indenter tip which has the inherent 

advantage of being able easily get the three sides to meet at a point. The Vickers indenter 

is also a pyramidal indenter, but instead has four sides, which is more likely to have a line 

at the tip rather than a point. The geometry of the original Berkovich tip was such that it 

had the same actual contact area as the Vickers indenter, but it was changed so that the 



 

40 
 

face angle is 65.27° giving it the same projected area as the Vickers indenter since the 

mean contact pressure is used to find hardness, which is a function of the projected 

contact area [34]. 

For simplicity, pyramidal indenters are often treated as conical indenters in regards to the 

calculations performed as a result of the axis-symmetry of conical indenters and more 

simple nature of their representative equations. Equivalent cone angles are found for 

conical representation of a pyramidal indenter to exhibit the same projected area as a 

function of depth.  

The projected contact area of the Berkovich indenter is given by: 

 𝐴 = 3√3ℎ𝑐
2 tan2 𝜃 

( 17 ) 

where ℎ𝑐 is the contact depth and 𝜃 is the face angle of the indenter. Since the face angle 

is 65.27°, as previously mentioned, the projected contact area is 

 𝐴 = 24.494ℎ𝑐
2 ≈ 24.5ℎ𝑐

2 
( 18 ) 

Equating this to the projected contact area of a conical indenter, 

 𝐴 = 𝜋ℎ𝑐
2 tan2 𝛼 

( 19 ) 

the effective cone semi-angle, 𝛼, can therefore be found to be 70.3° [34]. 

 

2.5.3 Load-Displacement Curves and Contact Stiffness 
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The sequence of a nanoindentation typically involves the approach of an indenter tip to 

the sample surface, a ramp to a specified load or displacement, a holding period, and an 

unloading ramp back to zero, all while recording the force and penetration of the 

indenter. Especially with the use of a sharp pyramidal tip, such as the Berkovich tip, the 

loading portion of the load-displacement curve takes shape as the specimen undergoes 

elastic-plastic deformation. What occurs in the holding time that follows is partially 

influenced by the operator who specifies the duration of the holding time and whether the 

load or displacement is held at a constant value. During this period creep or relaxation in 

a material can be observed by recording the changes that occur during this segment. 

Following the holding period, unloading of the specimen occurs. It was observed by 

Doerner and Nix that the initial portion of the unloading curve was linear for a wide 

range of different materials. This is a result of the sample and indenter maintaining 

contact as the indenter slowly retracts, but maintaining the same contact area. As the 

contact area decreases, the unloading curve deviates from its linearity and becomes 

curved [34]. 

The slope of the linear portion of this segment therefore represents the linear elastic 

portion of the contact and is, therefore, representative of the contact stiffness, 
𝑑𝑃

𝑑ℎ
. 

 
𝑑𝑃

𝑑ℎ
= 2ℎ𝑐𝐸∗√

24.5

𝜋
 ( 20 ) 

where 𝐸∗ is combined elastic modulus of the indenter and specimen and ℎ𝑐 is the contact 

depth that represents the distance from the contact circle to the point of maximum 

penetration. The latter value can be found by indentifying the point at which the linear 

portion of the unloading curve would intercept the displacement axis [34].  
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The importance of the contact stiffness is that a close approximation of the elastic 

modulus of the material can be extracted. The contact stiffness provides a value of the 

reduced, or combined, modulus through the rearrangement of Equation ( 20 ). If the 

poission ratio of the specimen is known, then the elastic modulus of the specimen can 

then be computed through the following relationship. 

 
1

𝐸∗
=

(1 − 𝑣2)

𝐸
+

1 − 𝑣 ′2

𝐸′
 ( 21 ) 

The prime terms indicate the poisson ratio, 𝑣 ′, and elastic modulus, 𝐸′, of the sample and 

the un-primed terms are those of the indenter [34].  

The general method used to find the contact stiffness is the multiple-point unload method. 

The multiple-point unload method uses the slope tangent to the initial portion of the 

unloading curve to calculate the contact stiffness by fitting a tangent line to several of the 

initial unload points. This implies that this slope will not only be influenced by the 

reduced modulus, but also by the creep and hardness of the material, to some degree. This 

method is commonly used, especially when Berkovich indenter tips are used [34].  

 

2.5.4 Influencing Factors and Other Considerations 

 

As a result of the inherent scale of nanoindentation, the measurements that are taken 

through nanoindentation are only surface measurements and need to be treated 

accordingly before generalizing the results for the entire material or assuming that the 

behavior of the bulk material behaves in the same manner. Bulk materials often contain 
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defects that affect its strength and, additionally, depending upon the processing of the 

material, there could exist a large difference in properties between the outer layer and 

inner layers(s) in the material. The results from a test can also be influenced by factors, 

such as dislocations, grain sizes, voids and other near surface defects [34]. 

 

2.5.4.1 Area Correction Due to Indenter Geometry 

 

Other factors can also influence the accuracy of the measurements taken such as the 

indenter geometry. The indenter geometry is assumed to be ideal, but is rarely ever so. As 

a result, a correction factor is applied which is determined by either a direct method or 

indirect method of measuring the geometry of the actual indenter. The indenter can either 

be measured directly via methods, such as atomic force microscopy (AFM) or with 

scanning electron microscopy (SEM), however it is more common and practical to 

measure the indenter geometry indirectly by indenting a reference specimen whose 

elastic modulus and poisson ratio are known. The reference indentations then provide a 

reduced modulus which can then be used to find the actual projected area from 

 𝐴 = 𝜋 [
𝑑𝑃

𝑑ℎ

1

2𝛽𝐸∗]
2

 ( 22 ) 

where 𝛽 is the geometry correction factor, which is 1.034 for the Berkovich tip. This 

would then be applied as a ratio with respect to the ideal projected contact area, 𝐴𝑖, to the 

equation for hardness and reduced modulus to find their respective corrected values [34]. 

 𝐻 =
𝑃

𝐴
[
𝐴𝑖

𝐴
] ( 23 ) 
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𝐸∗ =
𝑑𝑃

𝑑ℎ

√𝜋

2𝛽√𝐴
√

𝐴𝑖

𝐴
  ( 24 ) 

An indenter with a tip radius that is larger than the ideal tip radius would have ratio of  
𝐴𝑖

𝐴
 

greater than one and a smaller tip radius would have a ratio less than one. Although the 

area correction can be expressed in many forms, it is often represented as a series in the 

following form 

 𝐴 = 𝐶1ℎ𝑐
2 + 𝐶2ℎ𝑐 + 𝐶3ℎ𝑐

1/2
+ 𝐶4ℎ𝑐

1/4
+ ⋯ ( 25 ) 

The first term of the expression presents the ideal area function followed by the 

correction terms. The deviation of the indenter geometry is more critical for shallow 

indentation depths and lessens as the penetration depth increases [34]. 

 

2.5.4.2 Thermal Drift 

 

Thermal drift is also an influencing factor to the measurements taken. Thermal changes 

of both the sample and the indenter can cause expansion or contraction in the materials 

which skews the measurement of the penetration depth of the indenter in  the sample. 

According to a study by Feng and Ngan, the effects of thermal drift on the calculation of 

the modulus is negligible if  

 
𝑡ℎ ≈

𝑆

|�̇�|
ℎ𝑐 ( 26 ) 
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where 𝑡ℎ is the cumulative time from the beginning of the test to the start of unloading, 𝑆 

is the contact stiffness, and �̇�, is the unloading rate. To correct for this, a low load indent 

is performed on the sample and maintained at that load to determine the thermal drift. A 

low load is chosen to minimize the influence of creep in the sample with the thermal 

drift. A drift rate is then determined and applied to indentation measurement [34, 35]. 

 

2.5.4.3 Other Influencing Factors 

 

There are several factors that can affect the data recorded by a nanoindentation 

instrument, which include the occurrence of material pile-up or sink-in, surface 

roughness, and rounding of the indenter tip. Other forms of error exist, but these are the 

most prominent. Depending upon the behavior of the material during indentation sink-in 

or pile-up of the material can occur. The behavior depends upon the ratio of the elastic 

modulus and the yield strength, 𝐸/𝑌. If the ratio is high, pile up is likely to occur for a 

strain hardening material, and if the ratio is low for either a strain-hardening or non-

strain-hardening material, sinking-in is more likely. Surface roughness and tip rounding 

logically play an important role in the measurement of the mechanical properties of the 

material as both influence the actual contact areas. The surface roughness of a material 

can effectively increase the contact area between the indenter and the sample, which 

effectively decreases the measured values, i.e. reduced modulus, etc. The rounding of the 

indenter tip can influence the indentation results, specifically hardness, of shallow 

measurements that are on the order of 50nm by reducing its ability to create a fully 
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developed plastic zone. This will therefore include elastic contact making the 

measurement more indicative of the mean contact pressure [34]. 

 

2.5.4.4 Other Considerations 

 

Nanoindentation can also be used to examine other properties of samples and materials. It 

can facilitate the estimation of the fracture toughness of materials at a small scale, 

including on thin films, through the utilization of tips that create high stress 

concentrations in the contact area. The cube corner indenter, which is three-sided 

pyramidal indenter, is recommended for estimating the fracture toughness of a material 

because it is capable of displacing three times as much material as a Berkovich indenter 

while using the same applied force, due to its geometry. The holding period of a sample 

can be used to measure the creep or relaxation of a material by maintaining a constant 

load or strain for a specified holding time. Additionally, if a nanoindenter is equipped 

with a tangential force sensor, nanoscratch, topography, wear, and friction measurements 

can be acquired [33, 34]. 

 

2.6 Surface Measurements 

 

As alluded to in the tribology and nanoindentation sections, the characteristics of a 

surface are of great importance in many applications, especially in much of today’s 

technology. One surface characteristic that has been of interest for quite some time for 
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various reasons is that of surface metrology. Relating to the topics discussed thus far, 

surface roughness is an important parameter as it pertains to friction and contact 

mechanics, in that it can give an indication of the true contact area with respect to the 

apparent contact area and the amount of interlocking between two surfaces. In regards to 

wear, if the surface topography is measured prior to use and after use, the measurements 

can be compared to examine the level of wear that occurred and any subsequent patterns 

that may be apparent. 

 Surface topography can be measured on a variety of scales and subsequently at different 

speeds. Prior to the development of modern equipment, the examination of surface 

finishes was done by “eye” and “thumbnail” and compared against reference surface 

finishes. This was useful to some degree, but, of course, qualitative. In an effort to gather 

quantitative measurements that were less subjective, devices were created that measured 

surfaces through two primary means that mimicked  those previously mentioned; either 

optically or via a stylus. These emerged to keep up with the demands of industry 

especially in the mass production of optical and machined components [36]. 

The stylus method was developed soonest and essentially involved the tracing of a stylus 

across a surface while recording the stylus’ movement. In the early twentieth century, 

two individuals created profilometers that were designed very similarly. The designs 

included a pivoting arm to which a stylus was attached. On the top of the cantilever, 

opposite the stylus, was a small mirror. As the stage that carried the sample moved, 

cantilever with the stylus would, as well, based on the surface features of the sample. 

This, in effect, caused the mirror to translate. An optical system focused a beam of light 

on the mirror which would then reflect the light onto photographic paper so that the 



 

48 
 

movement of the stylus could be recorded. This was the basic design of Gustav Schmalz 

and was the first commercial profilometer. Dr. P. Tomlinson’s was similar, but varied in 

that it was purely mechanical and it recorded the translated motion of the tip onto smoked 

glass. There were several issues that arose from this method, as could be expected with 

the first iteration of any development. Improvements to this technique were developed 

through the years by various people. These modifications included the oscillation of the 

tip in order to prevent its bending due to collisions with large surface features [36-39].  

Other stylus profilometers are caliper-like in that there are two arms. One arm touches a 

reference surface and the other touches the sample surface. For some of these 

instruments, the reference surface is the same as the sample surface with one arm that has 

a blunt stylus that acts as a mechanical filter and the other arm a sharp stylus that 

measures the surface features. The stylus for these instruments is generally a sharp, 

diamond-tipped stylus such that the tip is unlikely to get damaged or deformed. 

Unfortunately, one disadvantage to these profilometers is that because of the sharp stylus, 

it is prone to leaving tracks in the surface of the sample, especially those of soft materials. 

Another disadvantage is that the speed of measurement is limited by the speed of the 

stylus across the surface of the sample, which is restrictive so that the stylus does not skip 

over any surface features [37, 40]. 

 

Figure 10: Various stylus types [38]  
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To overcome some of the issues with contact based profilometry, some non-contact 

instruments were developed. One such instrument was based off of the scanning probe 

microscope, which functions based on the field emission current generated between the 

sharp tip of an electrically conductive probe and an electrically conductive surface based 

upon their relative separation. This was in conjunction with a control and feedback loop 

to control the position of the probe. Following advancements with the scanning tunneling 

microscope (STM) emerged another system for profilometry called the atomic force 

microscope (AFM). This technique can measure the surface properties of both conductive 

and non-conductive with extremely high resolution by scanning an “ultra-small probe 

tip” across the surface and measuring the forces exerted on the tip [38].  

The modern AFM is capable of three primary mode variants: contact mode, non-contact 

mode and tapping mode. Put simplistically, the AFM operates somewhat similarly to 

Schamlz’s profiler using a cantilever, a sharp tip and a relative motion between the 

sample and tip. The AFM uses a laser beam and diodes to detect the motion of the 

cantilever/tip. The attractive and repulsive forces are used to govern the motion of the tip. 

In contact mode, this is the primary signal of measurement, but for the tapping and non-

contact modes, the forces are used in the feedback loop to control the tip’s proximity to 

the surface of the sample. AFM’s are generally small and can easily be placed on a 

desktop, but they can also range in sizes large enough to measure large silcon wafers. 

Most AFM’s can only measure an area of about 100 square micrometers. Variants of the 

AFM allow for other properties to be measured, such as capillary effects, surface 

chemistry, surface charge, magnetic forces and more [39]. 
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Optical profilometers also measure a sample’s surface without contact and can do so 

rapidly. For this project, a confocal laser scanning microscope (CLSM) was also used to 

capture images of the indents on the surfaces and to measure the topography of the 

surfaces in regards to surface roughness. The CLSM focuses a laser beam onto an area of 

interest on a specimen. A spatial filter, typically consisting of a set of variably-sized 

pinholes oriented spirographically about an axis on a plate, filters any scattered light from 

above and below the focal plane of interest. The specimen is scanned vertically in a 

controlled manner and the maximum intensities for each height are compiled 

‘tomographic-like’ to construct a three-dimensional representation of the specimen 

surface. Depending upon the capabilities of the microscope, the sample could also be 

scanned in the x and y directions and stitched together. The information collected about 

the topography can then be used to calculate surface roughness parameters that 

characterize the size of the samples that was imaged. Various improvements and 

configurations exist depending upon the commercial unit. These typically involve ways 

to reduce noise in the measurement such as by optimizing mirror reflectivity and placing 

the laser more distant from sources of vibration and transmitting the laser beam by fiber 

optic. This method is fairly advantageous due to the speed in which surface 

measurements can be acquired in comparison to other profilometry methods and due to 

the fact that it is non-destructive [41-43]. 

2.6.1 Roughness Measurements 

 

Particular aspects of a surface’s topography are important depending upon the 

application. Therefore, a series of standard roughness values were devised to summarize 
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and standardize the topographical information of a sample’s surface. The arithmetic 

roughness value, or 𝑅𝑎, is by far the most commonly used and is an arithmetic average of 

the deviations in height about a center line within a certain evaluation length, see 

Equation ( 27 ). One issue is that surfaces can have considerably different topography, yet 

have the same 𝑅𝑎 value. Despite this, it can be useful to obtain a rough order of 

magnitude of the roughness and can be combined with other roughness parameters [44].  

 𝑅𝑎 =
1

𝑙𝑟
∫ |𝑍(𝑥)|

𝑙𝑟

0

𝑑𝑥 ( 27 ) 

 

Figure 11: Ra - arthimetical mean roughness according to ISO 4287 

 

The 𝑅𝑞 value examines the deviations in the roughness over a the evaluation length, or in 

essence an indication of the variation in 𝑅𝑎. 

 𝑅𝑞 = √
1

𝑙𝑟
∫ |𝑍2(𝑥)|

𝑙𝑟

0

𝑑𝑥 ( 28 ) 

Another common parameter is the 𝑅𝑧 parameter that averages the height difference 

between the lowest and highest points within an evaluation length. Two variants currently 

exist: 𝑅𝑧𝐷𝐼𝑁 and 𝑅𝑧𝐽𝐼𝑆. The 𝑅𝑧𝐷𝐼𝑁 parameter takes an average of the highest and lowest 
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points for each sampling length. This is a Deutsches Instiut für Normung (DIN) and an 

American Society of Mechanical Engineers (ASME) standard. The 𝑅𝑧𝐽𝐼𝑆 value is a 

Japanese Industrial Standard (JIN) and uses the 5 highest and lowest over the evaluation 

length. Many other parameters exist to characterize the other aspects of the roughness, 

such as peak counts, profile depths, etc., but these are the most frequently used. Often 

times these will be combined with an 𝑅𝑘 parameter to compare the likelihood of wear 

over its expected life based on roughness. 

 𝑅𝑧 =
1

𝑠
∑ 𝑌𝑖

𝑠

𝑖=1

 ( 29 ) 

Where 𝑠 is the number of sampling lengths and 𝑌𝑖 represents the difference in height 

between the maximum and minimum points each sampling length [45]. 

 

Figure 12: Representation of averaged depth of roughness parameter (Rz) definition according to DIN 4768 [45] 
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Chapter 3: Experimental Techniques 

 

Samples were created from a selection of metal soap bars that were purchased from a 

proprietary vendor. Initially, the composition ratio of stearate to palmitate was unknown 

for each bar purchased. They were claimed to have differing ratios of palmitate and 

stearate as suggested by the usage rate curves demonstrating distinct rate differences 

under the same conditions. Additionally, a powder of nearly pure zinc stearate was 

purchased from a separate vendor to create a reference sample for use as a comparison. 

The samples were created from the purchased soaps in order to perform several tests 

including, liquid chromatography (LC), surface roughness, x-ray diffraction (XRD), and 

nanoindentation.  

One of the primary objectives of this investigation is to examine the effect of the stearate 

to palmitate ratios on the mechanical properties of the selected zinc soaps through 

nanoindentation. In order to do so, each sample needed to be a solid of a reasonable size, 

each prepared in a similar fashion, have a top and bottom surface that are nominally 

parallel to one another, and have a surface roughness that would minimally influence the 

results. The first set of samples met the first three requirements in that they were of a 

reasonable size, both for handling with respect to the indentation depths and quantities, 

and in that they had fairly parallel surfaces from being injection molded in an 

approximately cuboid mold with low dimensional variation and controlled cooling times. 

However, the surface roughness was on the same order of magnitude as the indentation 

depths that were used, the exact process being unknown, and there was a significant 

amount of variation between indents of the same condition.  
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As a result, various samples were created in an attempt to meet these conditions, e.g. by 

melting the materials to form a puck and use surface tension for a level surface and by 

placing a clean glass side above the liquid (or soon to be liquid surface). These attempts 

were observed to have failed, likely as result of the samples’ crystallization and due to the 

contraction of the samples as they cooled. 

The samples that were utilized were formed by melting the material in a segment of a 

tube placed on a small tray. An aluminum tube was cut to an arbitrary length of 

approximately 30mm, which was chosen based on the fitment in the Hysitron 

TriboIndenter and for its ability to hold enough metal soap that would subsequently be 

able to melt and form adequately sized “pucks.” The tube had an inner diameter of 21mm 

and an outer diameter of 23.4mm. After being cut to size, each tube was sanded on 

opposing sides and deburred in an effort to make the ends reasonably smooth and parallel 

to one another. The tubes were subsequently cleaned and wiped with isopropyl alcohol 

(IPA) along with a segment of a glass slide and a small aluminum tray measuring 

44.3mm in diameter and with a height of 13mm.  

The glass slide was placed on the base of the aluminum container and the tube was then 

placed atop the slide. In a few instances, the edges of the tray were folded inward to 

prevent the tube from sliding around and off of the glass slide; this had been seen to 

happen as the zinc soap permeated between the tube and slide. The tubes were filled to 

the greatest extent possible with fragments of one mixture of zinc soap. The amount of 

mass added to the tubes was somewhat arbitrary. As previously mentioned, the quantity 

was primarily chosen so that the resulting pucks were of a size that could be easily 

handled and would be less likely to fracture. Due to the brittle nature of the soap, thin 
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samples were very prone to cracking during the cooling process and from handling. The 

thicker samples cracked as well but remained somewhat intact, which allowed them to be 

handled better and provide a large enough surface area on which the indentation could be 

performed. Additionally, during the melting process, the metal soap had a tendency to 

permeate between the glass slide and tube causing a loss of mass from inside the tube. 

Thus, a sufficient amount of material was needed such that the resulting mass within the 

tube was “adequate.”  

To perform the melt, the samples were placed on the metallic base of a conventional 

oven. The oven’s temperature was adjusted to 128 °C by ramping to the temperature in 

the course of about an hour. The temperature was not observed to have exceeded 131 °C 

and pressure was recorded to be between 28.8 and 29 inHg. The temperature was 

maintained for an hour after it was observed that the samples had melted. The samples 

were then carefully cooled and allowed to partially solidify on a metal shelf prior to being 

moved to a lab countertop, likely made of epoxy resin, where it completed equilibrating 

to ambient temperature. 

One sample was made from a purchased pulverized metal soap and required more time to 

melt, likely due to its powder form and the reduced heat transfer. This sample also did not 

have an ideal surface texture upon solidification and was, therefore, re-melted. This 

method of melting and cooling was successful in creating a smooth and reflective surface 

on the side of each sample that melted onto the glass slide, to which will be referred to as 

the “top” of the tube and sample. The opposite side of these samples was then adhered to 

the tube using either a two-part epoxy resin or cyanoacrylate so that the metal soap 

remained in position. Shortly after applying the adhesive, the sample was flipped over so 
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that the adhesive did not leach down and coat the sample surface. The samples were then 

prepared for the nanoindentation by adhering three steel discs to the “base” of the tube 

with epoxy-resin, so that the sample would better remain in position on the magnetic 

stage as the stage traversed. 

A test matrix of nanoindentations was performed on each sample that incorporated a 

prescribed loading time, holding time, maximum force and unloading rate. The maximum 

forces ranged from 1000µN to 5500µN and the holding time was varied between 20 

seconds and 400 seconds. The remaining parameters were held constant. Each test 

condition was repeated 12 times on the same sample for a total of 240 quasi-static 

nanoindentations per sample. This test matrix can be seen in Table 1 below.  

The nanoindentation was performed using the Berkovich indenter tip, (Hysitron TI-

0039), which has a tip radius of ~100nm when new. A calibration was performed by 

indenting a polycarbonate reference sample to establish an area function for the tip’s 

projected area. 

From these samples, the actual stearate to palmitate ratio for each was determined 

through a liquid chromatography (LC) test to verify that the compositions of each sample 

were indeed different. The surface roughness of each sample was determined using 

CLSM to examine several spot sizes in the vicinity of the nanoindentations and to 

confirm approximate contact depth. 

The samples that were created for the nanoindentations were slightly recessed below the 

edge of the aluminum tube. A separate set of samples were similarly created by preparing 

the samples in an aluminum tray, excluding the glass slide and aluminum tube. An XRD 
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test was performed on this second set of samples in an effort to avoid any difficulties 

capturing low angle X-rays that might have been impeded from the lip of the aluminum 

tube. The XRD data was collected to compare the crystallinity of the samples with 

respect to each other, the original bars and with data from literature.  

 

Table 1: Test matrix for the nanoindentation of each zinc soap 

Cell 

Number 

Loading Time 

(s) 

Max Load 

(µN) 

Holding Time 

(s) 

Unloading Rate 

(µN/s) 

1 5 1000 20 200 

2 5 1000 60 200 

3 5 1000 100 200 

4 5 1000 200 200 

5 5 1000 400 200 

6 5 2500 20 200 

7 5 2500 60 200 

8 5 2500 100 200 

9 5 2500 200 200 

10 5 2500 400 200 

11 5 4000 20 200 

12 5 4000 60 200 

13 5 4000 100 200 

14 5 4000 200 200 

15 5 4000 400 200 

16 5 5500 20 200 

17 5 5500 60 200 

18 5 5500 100 200 

19 5 5500 200 200 

20 5 5500 400 200 
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Chapter 4: Results and Conclusions 

 

4.1 Results and Discussion 

 

4.1.1 Liquid Chromatography Results 

 

The ratio of zinc stearate to zinc palmitate in each sample was determined by a liquid 

chromatography (LC) test, which confirmed that the samples each, indeed, did have a 

distinct zinc stearate to zinc palmitate ratio, as suggested by the vendor. Table 2 below 

shows the resulting ratios that were found from the re-melted samples created for the 

tests. 

Table 2: Zinc Stearate to Zinc Palmitate Ratios for Re-melted Samples 

Stearate to Palmitate 

53 : 47 

56 : 44 

76 : 27 

95 : 5 

 

The sample in the last row with 95% zinc stearate was purchased from a different vendor 

than the rest and is the sample that was purchased as a powder and the closest to being 

nearly 100% of either type of zinc soap. 
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4.1.2 Nanoindentation Impressions 

 

The residual impressions of the nanoindenter shown in Figure 13 and Figure 14 were 

imaged using an optical confocal microscope using differential interference contrast with 

circularly polarized light. The appearance of the surfaces differed from sample to sample 

in regards to the grain boundary definition and some of the surface defects present. 

However, in regards to the indentations, their features were similar between samples in 

that the low force indentations created a well defined plastic region and that the high 

force indentations did not seem to have a large amount of pile-up nor visible cracking at 

the corners. The two images below are of indentations on the 56% stearate sample. 

 

Figure 13: C-Laser DIC image of low force indents on the 56% stearate sample. 
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Figure 14: C-Laser DIC image of high force indents on the 56% stearate sample. 

4.1.3 Force-Displacement Curves 

  

Figure 15: Force-displacement curves for the 95% zinc stearate sample at various holding times: (a) 20s, (b) 40s, (c) 

100s, (d) 200s, (e) 400s 
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The resulting loading-unloading curves from the nanoindentation of the 95% zinc stearate 

(and 5% zinc palmitate) sample are shown in Figure 15 (a)-(e). It can be seen that the 

loading curves for a given holding time overlap one another. Since this portion of the 

curve represents the elasto-plastic deformation that occurs within the sample, the 

consistency that is indicated by the overlap of this portion of the curve suggests that the 

energy required to deform the sample was fairly constant between indents of the same 

holding time, but different maximum force. Additionally, the loading and unloading 

curves are smooth and continuous and do not appear to have any discontinuities. The 

force-displacement curves of the other samples appear very similar to Figure 15 in this 

regard and, although not shown here, the majority of the force-displacement curves of a 

single condition on a single sample overlapped each other also suggesting that the 

material surface and subsurface for each sample was homogeneous for the indentations 

under consideration. 

 

4.1.4 Hardness and Combined Modulus 

 

The values of the reduced modulus and the hardness for each indentation were calculated 

using the TriboScan software program by Hysitron in conjunction with the area function 

of the tip. The area function of the Berkovich tip was found to be 

 
𝐴 = 42.488ℎ𝑐

2 + 13552ℎ𝑐 + 0.1172ℎ𝑐
1/2

+ 0.049187ℎ𝑐
1/4

+  0.049187ℎ𝑐
1/8

+ 0.45051ℎ𝑐
1/16

+ 2.2261ℎ𝑐
1/32

 

( 30 ) 
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after calibrating it against a reference sample of polycarbonate. Ideally, the value of the 

first coefficient should be near that of an ideal indenter, which for a Berkovich tip is 24.5. 

As mentioned, no indenter is perfect and therefore it is recommended that this constant be 

within ± 5 with as few subsequent terms as possible. Comparatively, the area function 

presented in Equation ( 30 ) deviates from this significantly in that the coefficient exceeds 

the recommended bounds and the polynomial exhibits a high degree of freedom. 

Considering that a Berkovich tip is a common indenter tip and that this particular one has 

been utilized for a while, it is logical this large coefficient would be reflective of this. As 

long as the area function accurately represents the actual projected area of the tip, the 

results should not be impacted greatly. Additionally, indentations that are more shallow, 

on the order of 50-100nm, are more susceptible to being influenced by an irregular tip 

[34]. Since the indentations performed were in the range of 600-1700nm, a fully 

developed plastic region was able to be developed, leaving the potential blunting of the 

tip of minimal concern.  

If the tip was damaged, this would likely result in the area function poorly representing 

the actual area of the indenter tip, though the deeper indentations from the test may be 

less affected. An investigation of the tip condition will be pursued to see in what way it 

deviates from an ideal tip. If the tip is chipped or damaged in some sort of manner, the 

damage likely occurred prior to the testing because a calibration was performed prior to 

the testing of each sample and the coefficients marginally varied. Thus, even if the 

magnitudes are skewed as a result of tip damage, since the tip condition remained 
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constant for all the samples, the trends that were observed should be representative of the 

actual trends that exist inter-sample and intra-sample. 

Beginning with the 95% zinc stearate sample, the mechanical property data was 

subsequently compiled and a statistical analysis was performed to determine whether 

there was a statistically significant influence of the holding time and maximum applied 

load on the modulus. Using a 95% confidence interval, it appears that both the holding 

time and the maximum load have a statistically significant impact on the modulus. The 

R2 value for the initial model, however, was fairly low, approximately 64%. A Box-Cox 

plot was then created in an attempt to find a better model to fit the data. Despite a 

transformation of the data, the residual remained low. Looking at the residual plot, one 

point distinctly had a larger residual, which was the average modulus at 1000µN and 

100s holding time. Upon the exclusion of this point, the R2 value increased to about 88% 

indicating a better fit of the data. Additionally, the maximum load seemed to have the 

greater impact than that of the holding time. An example of this relationship can be seen 

in Figure 16 which shows the trend of the modulus with respect to the maximum load at 

each holding time. Although the trend regarding the increase in the reduced modulus with 

respect to holding time is a bit more difficult to discern than that of maximum load, it can 

be seen that, in general, the modulus does increase with an increase in holding time. 
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Figure 16: Variation of the reduced moduli with respect to maximum load and different holding times for indentations 

on a 95% zinc stearate sample. The error bars in the plot signify one standard deviation in either direction. 

 

Using a statistical contour plot, such as the one shown in Figure 17, the influence of the 

maximum load and holding time on the reduced modulus can be seen more clearly. The 

contour plot demonstrates that the greatest reduced modulus is achieved when both the 

applied maximum load and holding time are maximized for the tested range. 
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Figure 17: Statistical contour plot showing the relationship between the maximum applied load and the holding time 

on the reduced modulus for the 95% zinc stearate sample. 

 

A similar trend is seen in regards to the hardness of the 95% zinc stearate sample. A 

statistical analysis shows that both the maximum applied load and holding time of the 

indentations have a noteworthy effect on the hardness of the sample with an R2 value of 

approximately 89%. In this case, an increase in the maximum applied load also results in 

a higher hardness. However, the inverse relationship exists between the hardness and the 

holding time in that as the holding time increases, the hardness decreases. These 

relationships can be seen in the plot in Figure 18. 

Holding Time (s)

M
a
x
 F

o
rc

e
 (

µ
N

)

40035030025020015010050

5000

4000

3000

2000

1000

>  

–  

–  

–  

–  

–  

–  

–  

–  

<  

2.0

1.2

1.2 1.3

1.3 1.4

1.4 1.5

1.5 1.6

1.6 1.7

1.7 1.8

1.8 1.9

1.9 2.0

(GPa)

Modulus



 

66 
 

 

Figure 18: Variation of the hardness with respect to maximum load and different holding times for indentations on the 

95% zinc stearate sample. The error bars in the plot signify one standard deviation in either direction. 

 

 

Figure 19: Statistical contour plot showing the relationship between the maximum applied load and the holding time 

on the hardness for the 95% zinc stearate sample. 
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Additionally, the contact depth is also strongly connected to the applied maximum force 

and the holding time. As can be seen in Figure 20 and Figure 21, as the maximum applied 

force and the duration of the holding time increase, the contact depth also increases. As 

the contour plot demonstrates, the influence from the maximum force is the greatest 

factor. 

 

Figure 20: Variation of the contact depth with respect to maximum load and different holding times for indentations on 

the 95% zinc stearate sample. The error bars in the plot signify one standard deviation in either direction. 
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Figure 21: Statistical contour plot showing the relationship between the maximum applied load and the holding time 

on the contact depth for the 95% zinc stearate sample. 

 

During the holding period of the indentations on this sample, the contact depth was 

plotted with respect to the time with both axes zeroed to the beginning of the holding 

time. It was seen that the contact depth increased as a function of the holding time during 

this period, which indicates that creep occurred. Unfortunately, due to time constraints, 

the time constants for the creep were not calculated making it difficult to discern whether 

or not a trend exists between magnitudes of the maximum load and holding time on creep 

in the sample. There does not seem to be any clear visual cues that either the change in 

holding time or maximum load result in higher or lower creep rate. The supporting 

figures can be seen in the appendix. 
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In regards to the other three samples, they also behaved similarly to the 95% zinc stearate 

sample. In regards to contact depth, all of the samples had the greatest contact depth at 

the greatest maximum load and at the largest holding time. The maximum applied force 

was also the largest influence, which can be seen from the contour plots in that the bands 

of contact depth seem to stretch out with a minimal slope for each maximum load. 

  
 
Figure 22: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the contact depth for the 95% zinc 

stearate sample. 

Figure 23: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the contact depth for the 73% zinc 

stearate sample. 

 

  
 
Figure 24: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the contact depth for the 56% zinc 

stearate sample. 

Figure 25: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the contact depth for the 53% zinc 

stearate sample. 
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Likewise, the reduced modulus for all of the samples shows a general trend in which the 

greatest modulus is observed at the maximum applied load and holding time and the 

minimum is found at the other extremum.  The two middle compositions, the 73% and 

56% zinc stearate samples, behaved slightly differently from the other two. These two 

samples exhibited less of a change in modulus as the two parameters were varied and had 

more of a “flat modulus” range. This was especially the case for the 56% zinc stearate 

sample, which had the least modulus change of them all. 

  
 
Figure 26: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the reduced modulus for the 95% zinc 

stearate sample. 

Figure 27: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the reduced modulus for the 73% zinc 

stearate sample. 
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Figure 28: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the reduced modulus for the 56% zinc 

stearate sample. 

Figure 29: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the reduced modulus for the 53% zinc 

stearate sample. 

 

The trend observed regarding the influence of the parameters on hardness was also 

observed for the remaining samples. As before, the hardness consistently increased with 

the maximum applied and decreased as the holding period increased, leaving the 

maximum hardness values at the highest maximum applied force and the lowest holding 

time. Additionally, the range of hardness values under these conditions was fairly 

consistent across samples. 

 

Holding Time (s)

M
a
x
 F

o
rc

e
 (

µ
N

)

40035030025020015010050

5000

4000

3000

2000

1000

–  

–  

–  

–  

–  

<  1.2

1.2 1.3

1.3 1.4

1.4 1.5

1.5 1.6

1.6 1.7

(GPa)

Modulus

Holding Time (s)

M
a
x
 F

o
rc

e
 (

µ
N

)

40035030025020015010050

5000

4000

3000

2000

1000

>  

–  

–  

–  

–  

–  

–  

–  

–  

<  

2.0

1.2

1.2 1.3

1.3 1.4

1.4 1.5

1.5 1.6

1.6 1.7

1.7 1.8

1.8 1.9

1.9 2.0

(GPa)

Modulus



 

72 
 

 
 
Figure 30: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the hardness for the 95% zinc stearate 

sample.  

Figure 31: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the hardness for the 73% zinc stearate 

sample.  

 

  
 
Figure 32: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the hardness for the 56% zinc stearate 

sample. 

Figure 33: Statistical contour plot showing the 

relationship between the maximum applied load and the 

holding time on the hardness for the 53% zinc stearate 

sample.  

In regards to the relationship between samples, it does appear that the composition has a 

statistically significant influence on the modulus and hardness as can be seen from the 

following plots. In all of the charts below, there appears to be a quadratic relationship 

between the composition and dependent variables of interest. 
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Figure 34: Modulus vs Max Force and Percent ZnSt Figure 35: Modulus vs Holding Time and Percent ZnSt 

  
 

Figure 36: Hardness vs Max Force and Percent ZnSt Figure 37: Hardness vs Holding Time & Percent ZnSt 

  
 

Figure 38: Contact Depth vs Max Force and Percent ZnSt Figure 39: Contact Depth vs Holding Time and Percent 

ZnSt 
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The creep plots displaying the change in contact depth with respect to time for the 

remaining samples are not shown here, but the same observation made for the 95% zinc 

stearate sample applies to the rest. In summary, a distinct trend was not readily 

discernible from the contact depth versus time plots, however, the data could be used to 

determine the time constant for each creep plot so that the time constants could be 

compared and trends could be more easily observed. 
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4.1.5 X-Ray Diffraction 

 

Figure 40: Normalized XRD of all prepared samples 

 

As shown in Figure 40, the XRD of the samples showed that each exhibited peaks that 

were comparable to one another as discussed by Robinet et al, especially in the indicated 

ranges of 3 to 10° and 20 to 30° 2θ. No clear distinctions were seen in the 20 to 30° 2θ 

range and the peaks were of low intensity and the peak width of that region was fairly 

broadened. Slight shifts were seen between most of the curves in the first cluster of 

peaks, namely between the compositions that varied the most. If we examine a closer 

view of the region, as shown in Figure 41, it becomes visible that the peaks of the 53% 

and 56% zinc stearate samples have peaks that align most closely. Conversely, the other 
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two compositions of zinc soap have peaks that are shifted slightly to the right with 

respect to this pair. 

 

 

Figure 41: Zoomed in area of Figure 40 

 

A comparison of the XRD of a couple of samples was made with respect to results from 

the same material in bar form. The figures showing the comparison of the 56% zinc 

stearate sample and the 73% zinc stearate sample are shown below. As can be seen in 

both plots, the peaks for the same material align well despite their processing difference. 

The peaks for the bar also are more well-defined and have a greater intensity and more 

peaks are seen for the XRD of the bar than are seen in the XRD of the sample. 
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Figure 42: Comparison of the XRD of the as-received bar and the melted samples of 95% zinc stearate 

 

Figure 43: Comparison of the XRD of the as-received bar and the melted samples of 73% zinc stearate 
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4.2 Conclusions 

 

The uniformity of the loading and unloading curves, as exemplified by Figure 15, for 

each sample indicates that the surface and sub-surface structure are fairly homogeneous 

in the region tested. The elasto-plastic, or loading, region of each curve aligned very well 

with indents in other locations and under different loading conditions indicating that the 

elastic and plastic behavior of the material was very consistent along with the energy 

required to deform it. The smoothness and lack of discontinuities in these curves allude 

that defects, fracturing, and pressure-induced phase changes were not present in the depth 

range tested, which would otherwise be present in the curve as “pop-ins,” “pop-outs,” 

“shoulders,” or sudden horizontal lines in the loading or unloading regions [46, 47]. 

The general trend of an increasing modulus with increasing holding time for all of the 

samples suggests that the strain is an influencing factor. As can be seen in Figure 26 

through Figure 29, the contact depth increases as a result of both maximum force and 

holding time. The application of a load on the material, especially in a very localized 

region, imparts a localized stress which induces plastic strain of the material. This 

effectively also densifies the material, which is reasonably susceptible to densification as 

a result of the formation process and nature of the crystal structure. Upon examining 

microscope images of the nanoindentations, it appears that the majority of the 

indentations fell within a single grain and that the grains were generally large enough to 

accommodate them. Densification is therefore thought to occur within the crystal 

structure itself. As a result of this densification, the stiffness of the region also increases, 

which increases the reduced modulus. However, as mentioned before, the there was no 
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indication of a pressure-induced phase change as a result of the indentations since there 

were not any discontinuities visible on the force-displacement curves. This, to some 

degree supports the claim that the surface tested was not amorphous, since it is plausible 

that the pressure induced could change a region from amorphous to crystalline. This 

evidence is not sufficient in itself, since if it is amorphous this would only signify that a 

pressure induced phase change did not occur. More evidence leading to this claim is 

presented throughout this section. 

This densification hypothesis supports the trend of increasing hardness as a result of 

increasing maximum load in that the densification also likely results in strain hardening 

of the material. Since the true hardness is a measure of the resistance to plastic 

deformation and strain hardening creates resistance to further plastic deformation, it is 

logical that this would increase the hardness as the maximum load is increased. The 

decrease in the measured value of hardness, however, as a function of holding time is 

likely to be a result of creep. As could be seen from the contact depth versus time plots, 

the contact depth increased as the holding time increased, signifying the occurrence of 

creep. Since the measure of hardness is calculated using the projected contact area at the 

maximum load, the value is affected since creep increases the contact area at this load. 

Assuming that strain hardening is the driving mechanism, this would not occur if the 

samples were amorphous, which, again, indirectly supports the claim of poly-

crystallinity. 

As mentioned before, there appears to be a nonlinear relationship of the zinc stearate to 

zinc palmitate ratio in relation to the measured values. Although based on the collected 

data, this trend appears to be statistically significant, it is important to keep in mind that 
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only four compositions are reported here. Although a conclusion cannot be confidently 

drawn here, it is interesting to note that the sample nearest to 50% zinc stearate and the 

samples nearest to pure zinc stearate behaved differently than that other two 

compositions. This behavior might be in accordance with the crystal structure as 

discussed by Sawada and Konaka, but a deep investigation would be necessary to 

confirm this hypothesis.  The paper from Sawada and Konaka claims that the 

compositions that are nearer to 50% zinc stearate and 100% zinc stearate have a tendency 

to lack voids in their crystal structure whereas the compositions in between 50% and 

100% are more likely to inherently contain voids within the crystal structure due to the 

uneven balance between the two different metal salts as can be seen in Figure 2 [17]. This 

leaves the potential for voids to be created by the aligning of the shorter chains, or the 

palmitate chains, and stearate to palmitate chains since the long spacing is likely driven 

by the longest coupling of the stearate to stearate chain since it has the greater 

composition compared to the palmitate. It is possible that the increased probability of 

voids in the “intermediate” compositions, those between purity and 50%,  lower the 

overall modulus of the soap, which would be consistent with the results.  

As could be observed from Figure 34 through Figure 39, the quadratic relationship is 

seen for nearly every parameter. If indeed it is possible to observe the more “nano” 

effects of the crystal structure over the microstructure of the material, it could also be 

thought that the voids decrease the crystals resistance to plastic deformation and, 

therefore, would have a lower hardness than the structures with fewer or no voids. This 

relationship might be able to be seen in the plots of the creep behavior, but again it is 

difficult to confidently justify this statement without finding the creep time constants. 
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However, this relationship could be inferred from Figure 39 of the contact depth versus 

holding time and composition plot since the largest contact depth would be achieved at 

the end of the holding period. 

Upon examining the XRD patterns, the first thing to note is that there are seven well 

defined peaks below the 20° 2θ range, which is in accordance with the study by Robinet 

and Corbeil [9, 10]. In the 20° to 30° 2θ range, the peak definition is greatly lacking for 

the samples, but is more distinguished for the bars. 

The XRD patterns of the original bars were than compared those to the melted samples, 

which showed that the peaks of the melted samples aligned very well with those of the 

manufactured bar of the same composition despite the processing difference. This 

indicates that the degree of internal stress was the same in both cases despite one being 

created under the pressure of injection molding and the under in ambient pressure. 

Additionally, as can be seen in Figure 42 and Figure 43, the width of each comparable 

peak for both the prepared sample and the bar spanned the same 2θ range, but the 

intensity and definition of their peaks differed. The samples had shorter and less defined 

peaks than the bars did, and using Scherrer’s equation it can be found that the bars have a 

smaller full width at half maximum than the bars, indicating a smaller crystal size. This 

was expected as a result of the way the melted samples were cooled. Since the edges of 

the melted samples cooled fairly rapidly, the surface likely consists of several smaller 

crystals. The surface of each samples also has a distinct difference in appearance when 

compared to its center and is clearly seen through the cross-section near the surface. The 

surface appears somewhat translucent on the surface and, when looking at the cross-

section, it gradually transitions to a much more opaque appearance in the center. The fact 
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that there are peaks that align with the bars and XRD patterns from literature, affirms that 

there is some degree of crystallinity indicating that the samples could not be completely 

amorphous, if amorphous at all. The other noticeable distinction between the 

manufactured bars and the melted samples was the appearance of additional peaks and 

sharper peaks from manufactured bar in comparison to the melted samples in the 20° to 

30° 2θ range. Additionally, as mentioned before, there does appear to be observable grain 

boundaries evident on the surface, again supporting its crystalline nature. 

When comparing the prepared samples against each other, it can be seen that the peaks 

shift slightly with respect to each composition. This is also in accordance with literature 

which indicates that the group of peaks below 20° 2θ range are representative of the long 

spacing of the of the crystal [9, 10, 12, 13, 16, 17]. The long spacing of the crystal 

corresponds to the separation of the planes of zincs, which is directly related to the length 

of the fatty acid chains. As indicated by the paper by Sawada and Konaka, the long 

spacing also changes with the varied ratio of stearate and palmitate, as described before 

and shown in Figure 2 [17]. The shifts in the peaks agree with these claims with the near 

purity sample having peaks with the lowest 2θ value and the 53% zinc stearate sample 

with the largest 2θ value, though the 53% and 56% stearate peaks overlap fairly closely. 

This implies that the 95% zinc stearate sample should have the largest long-spacing and 

the 53% zinc stearate sample should have the shortest. The d-spacings are listed in Table 

3 and shows that the they decrease with decreasing percent zinc stearate, in accordance to 

the claim by Sawada and Konaka [17]. This is fairly remarkable considering that the 

stearate and palmitate only differ by two methylene groups. 
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Table 3: Long spacing of samples using the peak near 6° 2θ as suggested by literature 

Percent ZnSt d-spacing (Ang) 

95 43.9 

73 42.9 

56 41.9 

53 41.5 

 

  



 

84 
 

Chapter 5: Future Work 

 

As demonstrated by the x-ray diffraction results and other corroborating evidence, the 

bars and the samples that were created are both likely crystalline which supports that 

metal soap is likely lamellar, since a lamellar solid would have a crystalline structure. 

Although more evidence would need to be gathered to ultimately prove this, the evidence 

that has been gathered thus far aligns with the claims made by literature [9, 10, 12, 13, 

16, 17]. To further demonstrate its lamellar nature, it is recommended that future work be 

done to acquire data corresponding to its behavior under shear. As mentioned in the 

lubricant section, the particles that would be deposited on the PC drum would be need to 

self-align in a preferred orientation allowing for shear to occur on the least resistive 

planes, and would likely do so. Observing the behavior of these samples and/or those of 

the manufactured bars would hopefully display that relatively low values of shear stresses 

are required to shear the materials against themselves indicating their benefit as a solid-

lubricant. It would also be of interest to measure the shear stress as a function of load to 

see if there is any variation. 

Additionally, the seemingly high reduced modulus that these samples exhibit is likely 

beneficial to the ultimate goal of using this as a protective medium to the PC drum. As 

mentioned before, lamellar solids tend to require more force to cleave the soap 

perpendicular to their lamellae. With the fracture toughness related to the ratio of the 

elastic modulus and the hardness, it is possible that these soaps have a high fracture 

toughness and are able to protect the drum surface by preventing penetration of the film 
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layer. The use of the nanoindenter to determine the fracture toughness of these metal 

soaps would help in corroborating this claim.  

A greater examination of the creep and compliance information would likely be 

beneficial as often the printers exhibit stagnation periods. Performing the creep tests in a 

variety of different temperatures and humidities would also contribute to this. These 

would all tie back to being able to utilize this information in a representative model of an 

interface of this system, namely the applicator or cleaning blade interfaces. Furthermore, 

these tests could also be performed on samples or films that have been placed in an 

alternating current electric field to observe the effects this would have on the mechanical 

properties of the film. 

A compression test of the bar or representative sample would also assist in correlating 

between the behavior of the bulk material and the results from the nanoindentation. 

Although, since the particles deposited are on the order of the indentation, the 

nanoindentation results are likely to be more closely representative of what occurs at the 

interfaces of interest.  

Although this has not been thoroughly investigated, the bars have been seen to exhibit 

some notable internal porosity. This has been casually observed by the collection of toner 

particles in what appears to be micro-voids in the bar and on the surface microtome 

samples of the bars. This is speculated to be a result of the injection molding process, 

although this could be a result of “loose” fragments falling out of place to create cavities 

during use or handling. This could be investigated through the comparison of the density 

of re-solidified samples and the bars. This would also likely cause a distinct difference in 

the compression test of the bulk material with respect to the nanoindentation of the soap. 
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It would also be of great benefit to the creation of a model if the poisson ratio of the 

material were found. This would allow for values, such as the elastic modulus to be 

calculated from the data collected through nanoindentation. 
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Appendix I: Figures 

 

  
 

Figure 44: Modulus vs Max Force and Percent ZnSt Figure 45: Modulus vs Max Force and Percent ZnSt 

  
 

Figure 46: Hardness vs Max Force and Percent ZnSt Figure 47: Hardness vs Max Force and Percent ZnSt 
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Figure 48: Modulus vs Holding Time and Percent ZnSt Figure 49: Modulus vs Holding Time and Percent ZnSt 

  
 
Figure 50: Hardness vs Holding Time and Percent ZnSt Figure 51: Hardness vs Holding Time and Percent ZnSt 

 

 

  

Percent ZnSt

H
o

ld
in

g
 T

im
e
 (

s)

959085807570656055

400

350

300

250

200

150

100

50

>  

–  

–  

–  

–  

–  

<  1.3

1.3 1.4

1.4 1.5

1.5 1.6

1.6 1.7

1.7 1.8

1.8

(GPa)

Modulus

Percent ZnSt

H
o

ld
in

g
 T

im
e
 (

s)

959085807570656055

400

350

300

250

200

150

100

50

>  

–  

–  

–  

–  

<  34

34 36

36 38

38 40

40 42

42

(MPa)

Hardness



 

89 
 

  
 
Figure 52: Contact Depth vs Max Force and Percent ZnSt Figure 53: Contact Depth vs Max Force and Percent ZnSt 

  
 
Figure 54: Hardness vs Holding Time and Percent ZnSt Figure 55: Hardness vs Holding Time and Percent ZnSt 
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Figure 56: Creep vs Time for a Holding Time of 20s for 

the 95% Stearate Sample 
Figure 57: Creep vs Time for a Holding Time of 60s for 

the 95% Stearate Sample 

  
 
Figure 58: Creep vs Time for a Holding Time of 100s for 

the 95% Stearate Sample 
Figure 59: Creep vs Time for a Holding Time of 20s for 

the 95% Stearate Sample 

 

Figure 60: Creep vs Time for a Holding Time of 400s for 

the 95% Stearate Sample 

 

 

  



 

91 
 

  
 
Figure 61: Creep vs Time for a Max Load of 1000 µN for 

the 95% Stearate Sample 
Figure 62: Creep vs Time for a Max Load of 2500 µN for 

the 95% Stearate Sample 

  
 
Figure 63: Creep vs Time for a Max Load of 4000 µN for 

the 95% Stearate Sample 
Figure 64: Creep vs Time for a Max Load of 5500 µN for 

the 95% Stearate Sample 
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Figure 65: SEM Image of Berkovich Tip 
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Appendix II: Statistical Data 

 

 



 

96 
 

 



 

97 
 



 

98 
 

 



 

99 
 

 

 



 

100 
 

 



 

101 
 

 



 

102 
 

 



 

103 
 

 



 

104 
 

 



 

105 
 

 

 



 

106 
 

 



 

107 
 

  



 

108 
 

REFERENCES 

1. Kishi, Y., Lubricant applying device and image forming apparatus. 2010, Google 

Patents. 

2. Watanabe, K., et al., Image forming apparatus using a contact or a proximity type 

of charging system including a protection substance on a moveable body to be 

charged. 2008, Google Patents. 

3. Nakayama, N., et al., Analysis of a Blade Cleaning System for Reduction in Wear 

Rate Variation of the Photoreceptor. NIP & Digital Fabrication Conference, 

2010. 2010(1): p. 234-237. 

4. Molongoski, M. and J. Maher, Measuring Cleaning Performance in an 

Electrophotographic Process. NIP & Digital Fabrication Conference, 1999. 

1999(2): p. 601-603. 

5. Deacon, R.F. and J.F. Goodman, Lubrication by Lamellar Solids. Proceedings of 

the Royal Society of London A: Mathematical, Physical and Engineering 

Sciences, 1958. 243(1235): p. 464-482. 

6. Donnet, C. and A. Erdemir, Solid Lubricant Coatings: Recent Developments and 

Future Trends. Tribology Letters, 2004. 17(3): p. 389-397. 

7. Ali, E., Solid Lubricants and Self-Lubricating Films, in Modern Tribology 

Handbook, Two Volume Set. 2000, CRC Press. 

8. Bossert, R.G., The metallic soaps. Journal of Chemical Education, 1950. 27(1): p. 

10. 

9. Robinet, L. and M.-C. Corbeil, The Characterization of Metal Soaps. Studies in 

Conservation, 2003. 48(1): p. 23-40. 



 

109 
 

10. Corbeil, M.-C. and L. Robinet, X-ray powder diffraction data for selected metal 

soaps. Powder Diffraction, 2002. 17(01): p. 52-60. 

11. OTHER APPLICATIONS OF METAL SOAPS. Industrial Lubrication and 

Tribology, 1991. 43(1): p. 3-4. 

12. Barman, S. and S. Vasudevan, Melting of saturated fatty acid zinc soaps. J Phys 

Chem B, 2006. 110(45): p. 22407-14. 

13. Vold, R.D. and G.S. Hattiangdi, Characterization of Heavy Metal Soaps by X-Ray 

Diffraction. Industrial & Engineering Chemistry, 1949. 41(10): p. 2311-2320. 

14. Whitmore, W.F. and M. Lauro, Metallic Soaps—Their Uses, Preparation, and 

Properties. Industrial & Engineering Chemistry, 1930. 22(6): p. 646-649. 

15. Gönen, M., et al., Zinc Stearate Production by Precipitation and Fusion 

Processes. Industrial & Engineering Chemistry Research, 2005. 44(6): p. 1627-

1633. 

16. Barman, S. and S. Vasudevan, Mixed saturated-unsaturated alkyl-chain 

assemblies: solid solutions of zinc stearate and zinc oleate. J Phys Chem B, 2007. 

111(19): p. 5212-7. 

17. Sawada, K. and M. Konaka, Characterization of Fine Metallic Soap Particles by 

X-Ray Diffraction, Differential Scanning Calorimetry, and Specific Surface Area 

Analysis. Journal of Oleo Science, 2004. 53(12): p. 627-640. 

18. Ishioka, T., A. Kiritani, and T. Kojima, Infrared study on annealing effect on 

conformation of zinc stearate. Spectrochimica Acta Part A: Molecular and 

Biomolecular Spectroscopy, 2007. 66(4–5): p. 1048-1051. 



 

110 
 

19. Stachowiak, G.W. and A.W. Batchelor, Engineering tribology. 4. ed. 2014, 

Amsterdam u.a.: Butterworth-Heinemann. XXVIII, 852 S. 

20. Stachowiak, G.W. and A.W. Batchelor, 4 - Hydrodynamic Lubrication, in 

Engineering Tribology (Third Edition), G.W.S.W. Batchelor, Editor. 2006, 

Butterworth-Heinemann: Burlington. p. 103-204. 

21. Clauss, F.J., Solid Lubricants and Self-Lubricating Solids. 1972, Elsevier Science: 

Burlington. p. 1 online resource (279 pages). 

22. van Geffen, V., A study of friction models and friction compensation. DCT, 2009. 

118: p. 24. 

23. Dickson, P., Friction, in Shock Wave Science and Technology Reference Library, 

Vol. 5, B.W. Asay, Editor. 2010, Springer Berlin Heidelberg. p. 537-554. 

24. Matsuo, Y., D. Clarke, and S. Ozeki, Friction, in Phenolic Resins: A Century of 

Progress, L. Pilato, Editor. 2010, Springer Berlin Heidelberg. p. 345-361. 

25. Popov, V., Contact mechanics and friction: physical principles and applications. 

2010: Springer Science & Business Media. 

26. Carkner, C., Modeling Friction, Wear and Lubrication of Sliding Polyurethane 

and Polycarbonate Surfaces Representing Printer Components with Molecular 

Dynamics. 2013. 

27. Amiri, M. and M.M. Khonsari, On the Thermodynamics of Friction and Wear―A 

Review. Entropy, 2010. 12(5): p. 1021-1049. 

28. Smart, R.F. and J.C. Moore, Materials selection for wear resistance. Wear, 1979. 

56(1): p. 55-67. 



 

111 
 

29. Persson, B.J., Contact Mechanics for Randomly Rough Surfaces: On the Validity 

of the Method of Reduction of Dimensionality. Tribology Letters, 2015. 58(1): p. 

1-4. 

30. Greenwood, J.A. and J.B.P. Williamson, Contact of Nominally Flat Surfaces. 

Proceedings of the Royal Society of London A: Mathematical, Physical and 

Engineering Sciences, 1966. 295(1442): p. 300-319. 

31. Bush, A.W., R.D. Gibson, and T.R. Thomas, The elastic contact of a rough 

surface. Wear, 1975. 35(1): p. 87-111. 

32. Fischer-Cripps, A.C. and I. Mustafaev, Introduction to contact mechanics. 2000: 

Springer. 

33. Li, X. and B. Bhushan, A review of nanoindentation continuous stiffness 

measurement technique and its applications. Materials characterization, 2002. 

48(1): p. 11-36. 

34. Fischer-Cripps, A.C., Nanoindentation. 2011: Springer Science & Business 

Media. 

35. Feng, G. and A.H.W. Ngan, Effects of Creep and Thermal Drift on Modulus 

Measurement Using Depth-sensing Indentation. Journal of Materials Research, 

2002. 17(03): p. 660-668. 

36. Bennett, J., Characterization of Surface Roughness, in Light Scattering and 

Nanoscale Surface Roughness, A. Maradudin, Editor. 2007, Springer US. p. 1-33. 

37. Luk, F., V. Huynh, and W. North, Measurement of surface roughness by a 

machine vision system. Journal of physics E: Scientific instruments, 1989. 22(12): 

p. 977. 



 

112 
 

38. Whitehouse, D.J., Surface metrology. Measurement Science and Technology, 

1997. 8(9): p. 955. 

39. West, P.E., Introduction to Atomic Force Microscopy: Theory, Practice, 

Applications. 2006: P. West. 

40. Podgorkov, V., O. Drobysheva, and V. Semenov, Measuring the surface 

roughness of soft metals. Measurement Techniques, 1973. 16(7): p. 1070-1070. 

41. Al-Nawas, B., et al., Validation of three-dimensional surface characterising 

methods: scanning electron microscopy and confocal laser scanning microscopy. 

Scanning, 2001. 23(4): p. 227-31. 

42. Paddock, S.W., Confocal laser scanning microscopy. Biotechniques, 1999. 27: p. 

992-1007. 

43. Conroy, M. and J. Armstrong. A comparison of surface metrology techniques. in 

Journal of Physics: Conference Series. 2005. IOP Publishing. 

44. Leach, R., Optical measurement of surface topography. 2011: Springer. 

45. Amaral, M.M., et al. Roughness measurement methodology according to DIN 

4768 using optical coherence tomography (OCT). in SPIE Europe Optical 

Metrology. 2009. International Society for Optics and Photonics. 

46. Menčík, J., Uncertainties and errors in nanoindentation. Nanoindentation in 

Materials Science, InTech, Rijeka, 2012: p. 53-86. 

47. Byakova, A., S. Gnyloskurenko, and T. Nakamura, The role of foaming agent and 

processing route in the mechanical performance of fabricated aluminum foams. 

Metals, 2012. 2(2): p. 95-112. 

 



 

113 
 

VITA 

 

The author, George A. Nimick, attended Florida State University (FSU) where he 

completed a Bachelor of Science in Mechanical Engineering. Following the completion 

the completion of this degree, he attended the University of Kentucky (UK) to pursue a 

Master of Science in Material Science and Engineering while working part time at 

Lexmark International, Inc. The topic for this thesis was industry inspired through 

Lexmark in conjunction with UK to investigate an industry related topic while satisfying 

the requirements for the degree. 

  



 

114 
 

 

 


	NANOINDENTATION OF A ZINC METAL SOAP MIXTURE FOR USE IN A LASER PRINTER
	Recommended Citation

	NANOINDENTATION OF A ZINC METAL SOAP
	ABSTRACT OF THESIS
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1: Introduction and Overview
	1.1 Introduction
	1.2 Overview of the Thesis

	Chapter 2: Review of Literature
	2.1 Introduction
	2.2 Metal Soaps and Zinc Stearate
	2.3 Tribology
	2.3.1 Lubrication
	2.3.2 Friction
	2.3.3 Wear

	2.4 Contact Mechanics
	2.5 Nanoindentation
	2.5.1 Nanohardness
	2.5.2 Contact Area and Indentation Tips
	2.5.3 Load-Displacement Curves and Contact Stiffness
	2.5.4 Influencing Factors and Other Considerations
	2.5.4.1 Area Correction Due to Indenter Geometry
	2.5.4.2 Thermal Drift

	2.5.4.3 Other Influencing Factors
	2.5.4.4 Other Considerations


	2.6 Surface Measurements
	2.6.1 Roughness Measurements


	Chapter 3: Experimental Techniques
	Chapter 4: Results and Conclusions
	4.1 Results and Discussion
	4.1.1 Liquid Chromatography Results
	4.1.2 Nanoindentation Impressions
	4.1.3 Force-Displacement Curves
	4.1.4 Hardness and Combined Modulus
	4.1.5 X-Ray Diffraction

	4.2 Conclusions

	Chapter 5: Future Work
	Appendix I: Figures
	Appendix II: Statistical Data
	REFERENCES
	VITA

