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Abstract

To better understand clinical and neuropathological features of TDP-43 proteinopathies, data were 

analyzed from autopsied research volunteers who were followed in the National Alzheimer’s 

Coordinating Center (NACC) data set. All subjects (n=495) had autopsy-proven TDP-43 

proteinopathy as an inclusion criterion. Subjects underwent comprehensive longitudinal clinical 

evaluations yearly for 6.9 years before death on average. We tested whether an unsupervised 

clustering algorithm could detect coherent groups of TDP-43 immunopositive cases based on age 

at death and extensive neuropathologic data. Although many of the brains had mixed pathologies, 

four discernible clusters were identified. Key differentiating features were age at death and the 

severity of comorbid Alzheimer’s disease neuropathologic changes (ADNC), particularly neuritic 

amyloid plaque densities. Cluster 1 contained mostly cases with a pathologic diagnosis of 

frontotemporal lobar degeneration (FTLD-TDP), consistent with enrichment of frontotemporal 

dementia clinical phenotypes including appetite/eating problems, disinhibition and primary 

progressive aphasia (PPA). Cluster 2 consisted of elderly limbic-predominant age-related TDP-43 

encephalopathy (LATE-NC) subjects without severe neuritic amyloid plaques. Subjects in Cluster 

2 had a relatively slow cognitive decline. Subjects in both Clusters 3 and 4 had severe ADNC + 

LATE-NC; however, Cluster 4 was distinguished by earlier disease onset, swifter disease course, 

more Lewy body pathology, less neocortical TDP-43 proteinopathy, and a suggestive trend in a 

subgroup analysis (n=114) for increased C9orf72 risk SNP rs3849942 T allele (Fisher’s exact test 

p-value = 0.095). Overall, clusters enriched with neocortical TDP-43 proteinopathy (Clusters 1 

and 2) tended to have lower levels of neuritic amyloid plaques, and those dying older (Clusters 2 

and 3) had far less PPA or disinhibition, but more apathy. Indeed, 98% of subjects dying past age 

85 years lacked clinical features of the frontotemporal dementia syndrome. Our study revealed 

discernible subtypes of LATE-NC and underscored the importance of age of death for 

differentiating FTLD-TDP and LATE-NC.
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Introduction

TAR-DNA binding protein 43kDa (TDP-43) proteinopathy is present in up to 50% of brains 

in advanced age and has a strong association with cognitive impairment [39]. A working 

group recently suggested a classification system for limbic-predominant age-related TDP-43 

encephalopathy neuropathologic changes (LATE-NC) [39]. The terminology is parallel with 

the current classification of Alzheimer’s disease (AD), where the neuropathologic changes 

are termed ADNC [33]. Cross-sectional data have been interpreted to indicate that TDP-43 

proteinopathy occurs in a stereotypic, hierarchical spatiotemporal pattern in the brain [23, 

36]. In this hypothetical schema, which is the basis for the proposed neuropathologic staging 

of LATE-NC, TDP-43 deposition first appears in the amygdala, then the hippocampal 

formation, and in ~15% of the elderly, it may develop in frontal neocortex and other brain 

structures [22, 23, 36].

There is some controversy in the field as to the specific definitions and distinguishing 

features of LATE-NC, ADNC, and frontotemporal lobar degeneration with TDP-43 

proteinopathy (FTLD-TDP) [6, 21]. Compelling data indicate that some parallel or 

synergistic mechanisms occur in ADNC and LATE-NC, because the two pathologies are 

frequently comorbid [24]. However, many severe ADNC cases lack LATE-NC, and LATE-

NC can occur without ADNC (~75% of aged brains harbor ADNC, with or without 

comorbid LATE-NC) [39]. Further, the presence of LATE-NC is clinicopathologically 

impactful—ADNC + LATE-NC has a more severe clinical phenotype than ADNC without 

LATE-NC [38]. Thus, the LATE Working Group suggested that the diagnosis of LATE-NC 

be applied whether or not comorbid ADNC is present. In LATE-NC cases that lack severe 

ADNC, there is an open question about how LATE-NC is differentiated from FTLD-TDP. 

There are clear epidemiologic differences – LATE-NC is far more common than FTLD-TDP 

and affects older persons than FTLD-TDP [39]. Yet more work is required to generate 

criteria to differentiate between these two conditions.

A key question is whether clinical and pathologic features occur in predictable patterns in 

aged persons’ brains that would enable differentiation between LATE-NC, ADNC, and 

FTLD-TDP, or, alternatively, if the brain pathologies seem to occur in more random patterns, 

which would render classification problematic. These questions will become more important 

if future disease-specific therapeutic strategies are developed. Furthermore, the clinical 

features of cases with LATE-NC but lacking ADNC remain to be well described.

Here we examined if distinct and clinically relevant groups of TDP-43 cases could be 

identified using unsupervised clustering. We were interested to see how the pathology-

defined groups associated with clinical course and disease manifestations including 

neuropsychiatric symptoms (NPS). Standardized data from research participants who died 

and consented to autopsy at Alzheimer’s Disease Centers (ADCs) were compiled by the 

National Alzheimer’s Coordinating Center (NACC). Cases with TDP-43 immunoreactive 
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inclusions were analyzed along with other detailed data. Before coming to autopsy, research 

volunteers were followed longitudinally with detailed clinical visits, that allowed us to 

compare the cognitive and NPS trajectories between persons grouped by clustering 

algorithms that were based on age at death and neuropathologic findings.

Materials and methods

Participants

Thirty-eight United States (U.S.) ADCs contributed data through the March 2020 data freeze 

(https://www.alz.washington.edu/). Participants were excluded if at least one of 19 rare brain 

diseases were diagnosed (Supplementary Table 1) and were included if TDP-43 pathology in 

at least one brain region was observed (Supplementary Table 2). Autopsies were performed 

within each of the contributory ADCs. Research activities at individual ADCs were 

approved by their local Institutional Review Boards (IRB). Informed consent was obtained 

from all participants at the individual ADCs. No additional IRB approval was needed for this 

secondary analysis of de-identified data.

Neuropathologies for clustering

For clustering, we investigated neurodegenerative disease-associated neuropathologies 

including amyloid-β (Aβ) plaques, tau neurofibrillary tangles (NFTs), and α-synuclein (α-

syn) along with TDP-43 and autopsy-confirmed cerebrovascular pathologies. Data on brain 

region-specific TDP-43-immunoreactive inclusions were collected with response categories 

“no”, “yes”, “not assessed”, and “missing/unknown”. Each ADC used either phospho-

specific or non-phospho-specific antibodies as described in detail previously [26].

The recently proposed LATE-NC staging system characterizes the anatomical distribution 

TDP-43 proteinopathy based on three brain regions: amygdala, hippocampus, and neocortex 

[36, 39]. Accordingly, we included participants who had data on TDP-43 pathology in at 

least one of these brain regions in the subsequent analyses. For ADNC, we used the 

consensus “A, B, C” system [33]. Tau neurofibrillary degeneration was represented by 

ADNC Braak NFT stage categories B score: B0 = stage 0 (none), B1 = stage I or II, B2 = 

stage III or IV, and B3 = stage V or VI [10] and Aβ plaques were represented by ADNC 

neocortical neuritic plaque density ratings (C score: C0 = none, C1 = sparse, C2 = moderate, 

and C3 = frequent) [30], and ADNC Thal phase ratings for Aβ distribution (A score: Thal 

Aβ phase A0 to A5) [48]. As a proxy of severity of α-syn pathology, we used Lewy body 

pathology data with three categories: none; present in neocortical region; or present in non-

neocortical regions including brainstem, limbic, amygdala, and olfactory bulb. For 

cerebrovascular pathologies, data were available on cerebral amyloid angiopathy (none, 

mild, moderate, or severe), large infarcts or lacunar infarcts (no or yes), microinfarcts (no or 

yes), and arteriolosclerosis (none, mild, moderate, or severe). These parameters were 

described elsewhere [9] and the data dictionary is publicly available at https://

www.alz.washington.edu/WEB/forms_np.html.
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Other neuropathologies

Hippocampal sclerosis (HS) was determined by the variable of “hippocampal sclerosis of 

CA1 and/or subiculum (NPHIPSCL)” with four response categories: none, unilateral, 

bilateral, or present but laterality not assessed. We dichotomized the variable by collapsing 

unilateral, bilateral, and present but laterality not assessed. Presence of FTLD-TDP was 

determined by the variable NPFTDTDP (FTLD with TDP-43 pathology).

Cognitive tests

Cognitive data were drawn from the NACC Uniform Data Set (UDS) [51]. Mini Mental 

State Examination (MMSE) [17], and Montreal Cognitive Assessment (MoCA) [37] for 

global function, verbal fluency (Animal and Vegetable Naming) [34] for language/fluency 

function, Wechsler Memory Scale-Revised (WMS-R) Logical Memory – immediate and 

delayed [50] and Craft Story 21 Recall – immediate and delayed [12] for memory function 

(Supplementary Table 3). Since the MoCA and Craft Story 21 Recall – immediate and 

delayed were introduced in the NACC UDS version 3 from March 2015 (neuropsychological 

battery – form C2) instead of MMSE and WMS-R Logical Memory – immediate and 

delayed (neuropsychological battery – form C1), respectively, we transformed the new 

battery scores into equivalent old battery scores based on Monsell and colleagues’ crosswalk 

study [32]. We also included the Clinical Dementia Rating Scale (CDR) Sum of Boxes 

ratings with the cognitive test measures.

Neuropsychiatric symptoms (NPS) and primary progressive aphasia (PPA)

Neuropsychiatric symptoms (NPS) were measured in the UDS using the Neuropsychiatric 

Inventory (NPI-Q) [13]. Study co-participants (defined as someone who knows the 

participant well, usually a caregiver for persons with dementia) were asked if the following 

specific NPS were present in the past month prior to the study visit: delusions, 

hallucinations, agitation or aggression, depression/dysphoria, anxiety, elation/euphoria, 

apathy/indifference, disinhibition, irritability/lability, motor disturbance, nighttime 

behaviors, and appetite and eating problems. Primary progressive aphasia (PPA) was 

evaluated by clinicians (the variable name in UDS: NACCPPA) with “no” or “yes” rating 

categories in participants with cognitive impairment.

Genetics

Genetic data were obtained from Alzheimer’s Disease Genetics Consortium (ADGC), which 

were linked to clinical and neuropathological outcome data from the NACC data set. These 

data were from SNP platforms, and did not include tandem repeat expansion data. Moreover, 

those data were oriented toward downstream “AD vs non-AD” studies, and did not include 

substantial numbers of cases that were previously diagnosed as FTLD-TDP. We examined 

five putative risk single nucleotide polymorphisms (SNPs) that reported to be associated 

with TDP-43 related disease including FTLD-TDP, ALS, and HS: rs9637454 in KCNMB2 
located on chromosome 3q [8], rs1990622 in TMEM106B on chromosome 7p [5, 35, 44], 

rs3849942 in C9orf72 on chromosome 9p associated with increased hexanucleotide 

GGGGCC repeats [14, 20], rs704180 in ABCC9 on chromosome 12p [40], and rs5848 in 

GRN on chromosome 17q [15, 35, 41, 43].
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Statistical analysis

We first performed clustering using uniform manifold approximation and projection 

(UMAP), which is a nonlinear dimensionality reduction technique to model high-

dimensional data in a lower-dimensional space. Using data on the proteinopathies, 

cerebrovascular disease, and categorized age at death (< 65 years old (y.o.), ≥ 65 and < 85 

y.o., and ≥ 85 y.o.) data, similar cases were clustered as low-dimensional representations that 

closely match the topological structure of the data. The ages of 65 and 85 as cutoffs were 

selected as in prior studies of “early-onset” (< 65 y.o.) and “late-onset” (> 85 y.o.) disease, 

and we confirmed that around 25% cases who were clinically diagnosed as FTD died by age 

of 65 years and that almost all cases with clinical FTD and/or PPA died by age of 85 years 

(Fig. 1a). Each of the variables was dummy-coded (Supplementary Table 4). We used the 

Python package for UMAP available at https://umap-learn.readthedocs.io/en/latest/ [29]. We 

set the parameters of UMAP: metric = “dice” (for binary data), number of neighbors = 10, 

and number of components = 2 (i.e., embedded into two dimensions). We calculated 

McFadden’s pseudo coefficients of determination (R2) [28] and Akaike information criterion 

(AIC) to evaluate the contribution of each variable to clustering using a multinomial logistic 

regression model with the cluster category as the outcome. This was implemented with the 

“PseudoR2” function in the DescTools R package [45]. We also quantified the relative 

importance of variables for clustering assignments based on the conditional mean decreases 

in accuracy using a random forest and bagging ensemble algorithm. This approach takes into 

account correlations between variables using the “cforest” function in the party R package 

[18, 46, 47].

After creating the clusters, we conducted cross-sectional and longitudinal analyses for 

cognitive functions and NPS/PPA. For cross-sectional analysis, we retrieved cognitive test 

scores (continuous) and NPS/PPA (binary) data measured at the clinical last visit within 

three years of death, and then we performed pairwise comparisons in the means (for 

cognitive test scores) and the proportions (for NPS/PPA) between the clusters generated by 

UMAP technique. In modelling the longitudinal change in cognitive test scores over years, 

we used a non-linear mixed effects regression model with a logistic function [27] 

implemented in lme4 R package [7] to take into account variability between and within 

subjects and floor and ceiling effects on the scores. To examine whether the clusters were 

associated with development of NPS/PPA, we constructed unadjusted Kaplan-Meier curves 

for each of the symptoms and performed pairwise log rank tests between the curves of the 

clusters. All p-values from pairwise comparisons were corrected by Bonferroni-Holm. All 

statistical analyses were performed with R version 3.6.1 [42].

Results

After applying exclusion and inclusion criteria, 514 autopsied participants had TDP-43 

pathology in at least one of the regions: amygdala, hippocampus, and neocortex. Of these, 

495 participants, who had no missing data on proteinopathies and cerebrovascular diseases 

as shown in Fig. 1b, were included in the UMAP dimensionality reduction and clustering 

analyses (Supplementary Fig. 1). Among the included subjects, mean age at death was 80.8 

years (standard deviation (SD) = 10.3), 52.7% were women, and mean years of education 
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was 15.6 (SD = 3.1) (Supplementary Table 5). As expected, TDP-43 proteinopathy was most 

commonly observed in the amygdala (89.4% of cases), followed by hippocampus (84.3%) 

and neocortex (31.2%). ADNC pathology was also common: 60.0% of cases had frequent 

neuritic plaques (C3), 71.9% had Thal phase 5 (amyloid plaques in cerebellum; A3), and 

65.7% had severe NFTs (B3). Neocortical Lewy bodies were less common (12.7%). FTLD-

TDP was diagnosed in 21.6% of included cases, and 35.2% showed HS at autopsy 

(Supplementary Table 6).

We derived two UMAP embeddings for visualization, and four clusters were identified (Fig. 

1c). We conducted univariate multinomial regression with cluster membership (1–4) as the 

categorical outcome. McFadden’s pseudo R2 and AIC of each of the variables used in the 

UMAP are shown in Supplementary Table 7, and their relative importance for clustering are 

shown in Fig 1d. The most contributed variables for clustering were age at death and neuritic 

plaques (C score), whereas cerebrovascular diseases and Lewy body pathology had less 

contribution to clustering. The outcomes distributions are shown in Fig. 2. The full 

distribution plots for the other variables used in the UMAP approach and are in 

Supplementary Fig. 3 and Table 1. We confirmed the robustness of the clustering using five 

times repeated random subsampling validation of UMAP with 80% of the analytic 

participants (i.e., n = 495). As shown in Supplementary Fig. 2, the UMAP consistently 

reproduced the distinct clusters and thus was quite robust.

Cluster 1 included 103 participants (red colored points in Fig. 1c). The majority of 

participants in Cluster 1 died between 65 and 85 years of age (70.9%), with no neuritic 

amyloid plaques (74.8%), no or mild NFT burden (25.2% for B0 and 58.3% for B1), no 

Lewy body pathology (85.4%), and no cerebral amyloid angiopathy (86.4%). Cluster 2 

included 71 participants (blue colored points in Fig. 1c). In Cluster 2, 91.5% had sparse or 

moderate neuritic plaques (26.8% for sparse (C1) and 64.7% for moderate (C2)), 88.8% had 

moderate or severe NFT burden (46.5% for B2 or 42.3% for B3), and 77.5% had no Lewy 

body pathology. In both Clusters 3 and 4, more than 90% had frequent neuritic plaques (C3), 

and ~90% had severe NFT burden (B3). Almost all subjects in Cluster 3 died at 85 years or 

older, while the majority in Cluster 4 died between 65 and 85 years.

More than 90% in both Cluster 3 and 4 had TDP-43 in amygdala and more than 90% in both 

Cluster 1 and 2 had TDP-43 in hippocampus. The majority of participants in Cluster 1 had 

TDP-43 pathology in neocortex (76.7%) (Table 3 and Fig. 2b). We note that 77.8% in 

Cluster 1 did not have the APOE ε4 allele, whereas 72.7% in Cluster 4 had at least on APOE 
ε4 allele. The majority of Cluster 1 participants were diagnosed as FTLD-TDP (76.7%) and 

had lobar atrophy (70.6%) at autopsy. Although HS was present in 35.2% of the overall 

cases, there was no statistically significant difference in HS prevalence among the clusters 

(Table 2 and 3). Clustering distributions for HS, FTLD-TDP, and APOE ε4 allele were 

visualized and shown in Supplementary Fig. 4.

Next, we investigated cross-sectional differences and longitudinal changes over time in 

cognitive test scores. Supplementary Table 8 shows the crude mean and Fig. 3a and 

Supplementary Fig. 5 shows boxplots for cognitive test scores measured at the last visit 

within three years before death. Cluster 4 had the lowest scores for all the cognitive tests, 
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and global function (i.e., CDR Sum of Boxes and MMSE) scores were significantly lower 

than those in other clusters. Memory (as measured by Logical Memory – immediate and 

delayed) scores in Cluster 1 were higher than in other clusters. The scores of both Naming 

tests were higher in Cluster 1 compared to Cluster 4.

In participants who were diagnosed with cognitive impairment (impaired not MCI, MCI, or 

dementia) during the follow-up, non-linear mixed effects regression modelling was used to 

assess the longitudinal trajectory of change before and after the first diagnosis of cognitive 

impairment (Fig. 3b and Supplementary Fig. 6). Results showed that declines in cognitive 

function were underway prior to the first diagnosis of impairment. The declines were faster 

in Cluster 1, especially for MMSE and Naming tests.

Supplementary Table 9 and Supplementary Fig. 7 show the proportion of each of the 

neuropsychiatric symptoms observed at the last visit within three years before death by the 

clusters. The proportions of delusions and hallucinations were lower in Cluster 1 than in 

Cluster 4. Cluster 3 had a lower proportion of hallucinations than Cluster 4. The proportions 

of appetite and eating problems (a frequent symptom in ALS/FTD spectrum disorders [2]) 

and PPA in Cluster 1 were higher than in the other clusters. In terms of PPA subtypes, these 

data were mostly missing, so relatively few cases had specified subtypes of PPA. Among the 

9 cases specified to have exhibited semantic subtype of PPA, 7 were in Cluster 1, whereas 

among the 7 cases with logopenic subtype of PPA, 6 were in Cluster 4 (data not shown).

We further compared the probability of symptom-free survival among the clusters using two 

approaches regarding the time scale: age at visit until age at death and years since first 

diagnosed with cognitive impairment. We used the variable “NACCUDSD,” which codes the 

clinical syndromic diagnosis (normal, impaired not MCI, MCI, or dementia) at each UDS 

visit to identify whether and for how long the participants had cognitive impairment. Fig. 4 

and Supplementary Fig. 8 show Kaplan-Meier curves for each of the symptoms and the 

Bonferroni-Holm adjusted p-values for pairwise comparison between the clusters in the first 

approach (i.e., the x-axis indicates age at visit until age at death). The Kaplan- Meier curves 

for time to first appearance of delusions, hallucinations, agitation or aggression, elation or 

euphoria, disinhibition, irritability or lability, and appetite and eating problems in Cluster 4 

were significantly different from those in other clusters. In addition to these differences, the 

Kaplan- Meier curves of agitation or aggression, elation or euphoria, disinhibition, 

irritability or lability, and appetite and eating problems in Cluster 1 were significantly 

different from those in Clusters 2 and 3. The significant differences between Clusters 2 and 

3 were seen in anxiety, apathy or indifference, and nighttime behavior. All pairwise 

comparisons were significant in motor disturbance.

Fig. 5 and Supplementary Fig. 9 show Kaplan-Meier curves for each of the symptoms and 

the Bonferroni-Holm adjusted p-values for pairwise comparison between the clusters in the 

second approach to the timescale (i.e., the x-axis indicates years since first diagnosed as 

cognitive impairment). The Kaplan-Meier curve for hallucinations in Cluster 4 was 

significantly different from that in other clusters which was a similar result with the first 

approach. On the other hand, significant differences between Cluster 4 and Clusters 2 and 3 

were not seen in delusions. There were significant differences between Cluster 1 and the 
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other clusters in agitation or aggression, elation or euphoria, disinhibition, motor 

disturbance, appetite and eating problems, and PPA. Only anxiety and apathy or indifference 

showed significant differences between Clusters 2 and 3.

Finally, we examined the genetic associations with the clusters as shown in Supplementary 

Table 10. Of 495 included participants with TDP-43 pathology, a total of 114 had ADGC 

genotype data. Although we observed no significant genetic association with the clusters 

because of the small sample size, there was suggestive association in a subgroup analysis for 

more risk allele of C9orf72 SNP (rs3849942) in Cluster 4 compared to other clusters (two-

tailed Fisher’s exact test p-value was 0.095) (Supplementary Fig. 10).

Discussion

The clinical correlates of neuropathologically-defined groups were assessed among 

longitudinally followed research participants who had autopsy-proven TDP-43 

proteinopathy (n = 495). Using a dimension reduction technique, four discernible clusters 

were resolved based on detailed neuropathology and age at death. Findings in the four 

clusters of cases are summarized in Fig. 6 and Table 4. These results indicated that there are 

neuropathologically and clinically differentiable subsets of persons with age-related TDP-43 

proteinopathy.

Cluster 1 was highly enriched for cases that were clinically diagnosed with FTD syndrome, 

and were ultimately given a pathological diagnosis FTLD-TDP (Table 3). The participants in 

this cluster died at younger age and the majority had predominantly TDP-43 pathology 

without significant ADNC or Lewy body pathology (Fig. 6a). These patients also had a 

higher prevalence of appetite and eating problems, disinhibition, and PPA compared to other 

clusters (Fig. 6b). The association of appetite and eating problems in this cluster is intriguing 

given the association of these behaviors with FTD variants more so than in clinical AD [1, 

19]. Cluster 2 was enriched for cases with lower neuritic amyloid plaques, like Cluster 1, but 

did not show clinical features of FTD syndrome. The participants in Cluster 2 died at an 

older age and showed a more gradual cognitive decline.

Two clusters (Clusters 3 and 4) were enriched for severe comorbid ADNC (Table 1). Cluster 

4 showed a younger age of symptom onset and death. These patients tended to have more 

severe pathologies, including ADNC and Lewy body disease (Fig. 6a), and more NPS, 

especially higher proportion of hallucinations (Fig. 6b). We analyzed whether the higher 

proportion of hallucinations in Cluster 4 was attributable to neocortical Lewy body 

pathology -- there was not a statistically significant association between hallucinations and 

Lewy body pathology in Cluster 4 (17% with no Lewy body pathology reported 

hallucination, versus 27% with Lewy body pathology, p=0.38), although this conclusion was 

limited somewhat by sample size. The lack of a strong association between Lewy bodies and 

hallucinations in the Cluster 4 group may reflect a greater cortical and limbic density of 

neurofibrillary tangles, rather than differences in Lewy bodies, or overall Braak stage, as 

tangle density has been shown to associate with earlier onset of hallucinations in both AD 

and AD with co-morbid Lewy body disease [16].
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Our study design incorporated longitudinal clinical data from both before and after the onset 

of cognitive impairment. As expected, subjects in a FTLD-TDP-enriched case cluster 

showed clinical features of motor disturbance, disinhibition, apathy, and eating/appetite 

problems. There was also a trend for this cluster to be associated with PPA and more 

broadly-defined language dysfunction. The findings of the clinical features of the syndrome 

of FTD in Cluster 1 are reassuring with regard to the validity of the clustering results, 

because we did not factor in FTD (clinical) or FTLD (final pathological diagnosis) into our 

clustering algorithms. By contrast, the common forms of LATE-NC, as in Clusters 2–4, were 

not associated with a FTD clinical phenotype.

An important and controversial topic area is in how LATE-NC overlaps with, and is different 

from, FTLD-TDP and ADNC. Clinical and epidemiologic features are often used to help 

discriminate between different conditions, although a given disease (e.g., brain infarcts) can 

manifest clinically in a variety of ways. The clinical and pathological criteria that can 

definitely discriminate LATE-NC from FTLD-TDP have not yet been developed [39]. Here 

we found, in line with previous studies [39], that age of death was a differentiating factor. 

Among persons dying after age 85 years, 98% of persons with TDP-43 proteinopathy lacked 

FTD clinical syndrome or PPA. Diagnosing FTLD-TDP at autopsy for persons in this age 

group may therefore cause confusion for clinicians and family members. Otherwise, the 

generation of pathology-based criteria to differentiate FTLD-TDP from LATE-NC will 

probably require tools that are sharper than the parameters currently available in the NACC 

NP data set.

Differentiating LATE-NC and ADNC cases is in a sense easier, because the presence and 

severity of ADNC are defined independently of TDP-43 proteinopathy. However, age-related 

TDP-43 proteinopathy is often accompanied by comorbid ADNC [24], may be a part of the 

AD neuropathologic spectrum [49], and/or may “reflect impaired cellular function in end-

stage neurodegeneration” [21]. Further, a recently published study showed in a community-

based cohort that there was a common neuropathologic phenotype with comorbid Tau, Aβ, 

TDP-43 and Lewy body pathologies, corresponding with a relatively aggressive disease 

course [25]. Here, we found that Cluster 4 cases were indeed enriched for subjects with 

comorbid Tau, Aβ, TDP-43 and Lewy body pathologies. Further, this cluster had a swift 

disease course and also had a trend for enrichment in the C9orf72 risk allele in a subset 

analysis of 114 cases. This risk allele is associated with increased C9orf72 repeats including 

intermediate repeats which have been recently associated with corticobasal degeneration and 

altered autophagic flux [11]. Whether this risk allele is truly associated with Cluster 4 

requires additional analysis of larger cohorts.

Extensive data were factored into our clustering algorithm, including all “A” (Aβ Thal 

stages), “B” (Braak stages), and “C” (CERAD neuritic amyloid plaques, or NP densities) 

parameters. The clustering algorithm implicated NP densities as a key differentiating 

parameter. NPs were described by Alois Alzheimer as silver-impregnated “miliary foci” in 

the historic case report of Auguste Dieter [3] and remain a pathognomonic disease feature. 

In the present study, NP densities were a strong driver for the clustering algorithm, helping 

to differentiate Clusters 1 and 2 from the more ADNC-enriched Clusters 3 and 4. Cluster 2, 

for example, had no subject with high NP densities, although 84.5% of subjects in Cluster 2 
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had been given a diagnosis of Probable AD at final clinical examination. Cluster 2 also was 

enriched for neocortical TDP-43 proteinopathy, but longitudinal follow-up indicated a less 

severe clinical course and more subjects with final clinical diagnosis of MCI instead of 

dementia. This was an unexpected clue for neuropathologists about the importance of NP 

densities in aged brains. It also may provide clinicians with relevant information about 

clinical features associated with a lower burden of ADNC and a higher amount of TDP-43 

proteinopathy. Such an outcome is what is hoped for from a clustering algorithm, elucidating 

patterns that would not necessarily be revealed by descriptive statistics alone. Collectively, 

these observations highlight clinical-pathologic patterns that may help guide future 

refinements of diagnostic classification.

There are some limitations in our study, related to the NACC data set [9]. The ADCs tend to 

recruit highly educated Caucasian/white people; therefore, the results should be interpreted 

with caution when generalizing to other populations. Many of the ADC cohorts recruit from 

dementia clinics, and thus are highly enriched for FTLD cases, with lower numbers of 

LATE-NC. Individual ADCs may apply exclusion criteria related to mental illness, 

substance abuse, physical disability, or other prevalent conditions that decrease the number 

of autopsied participants and limit the generalizability of our results. The lack of 

methodologic standardization between the ADCs in terms of TDP-43 IHC methods and data 

collection at the clinical visits may have affected our results, as previously discussed [26]. 

There also was not statistical power to show subtle differences in the clinical features of 

FTLD-TDP and LATE-NC; the unequal sample sizes for these groups affects the power to 

detect differences. An additional limitation is that direct C9ORF72 repeat expansion data 

were not available for further analysis. Indeed, the observed trend for the C9orf72 associated 

SNP in Cluster 4 should be interpreted with caution as this polymorphism is associated with 

a Finnish haplotype block [31] and so future genetic analyses in larger cohorts are required 

to adjust for confounds associated with uneven population structures.

Although HS is often comorbid with LATE-NC [4, 39], HS was not a focus of the present 

study. There are no widely applied consensus-based criteria for HS neuropathologic 

diagnosis, which is problematic for a study where cases were worked up at dozens of 

different research centers. Moreover, HS is a nonspecific pathologic endpoint that is neither 

necessary nor sufficient for the diagnosis of LATE-NC [39].

Key strengths of the current study are the large number of cognitive and non-cognitive 

domains tested, the longitudinal assessments prior to death, and the state-of-the-art 

neuropathologic assessments (all 2014 and after) performed at high quality academic 

research centers. Further, the sample sizes of FTLD-TDP and LATE-NC cases lacking 

ADNC are relatively large for a study with longitudinal clinical assessments and autopsy 

confirmation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A clustering analysis was performed with an algorithm based on age at death and 
neuropathologies, using data on subjects with autopsy-confirmed TDP-43 proteinopathy (n = 
495).
As shown in panel (a), ~98% of subjects with TDP-43 proteinopathy, who died after age 85 

years, lacked clinical frontotemporal dementia (FTD) syndrome or primary progressive 

aphasia (PPA), so the 85 year old age cutoff was included in the clustering algorithm. The 

data used in the clustering are shown in panel (b). Uniform manifold approximation and 

projection (UMAP) visualization of clusters and relative importance of each variables for 

clustering was performed. Dimensionality reduction was performed based on age at death, 

proteinopathy, and cerebrovascular disease data as shown in panel (c). Numeric values (one 

to four) and colors (red, blue, green, purple) were assigned to each of the four clusters. The 

relative importance quantified by conditional mean decreases in accuracy which takes into 

account correlations between the variables shown in panel (d). NFT = neurofibrillary tangle
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Fig. 2. Distributions to the clusters for age at death, ADNC, and TPD-43 proteinopathy anatomic 
regions.
Features for clustering included age, Braak stages (B0-B3), and neuritic plaque densities 

(C0-C3). Shown in panel (a) are distributions by age at death of ≥ 85 years, Braak NFT 

stage V/VI (B3), and moderate and frequent neocortical neuritic plaques (C2 and C3). Not 

included in the clustering algorithm, were the anatomic location of the TDP-43 

proteinopathy (b). Note that a majority of cases had hippocampal TDP-43 pathology 

whereas neocortical TDP-43 pathology was enriched particularly in Cluster 1.
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Fig. 3. Mini-Mental State Examination (MMSE) scores, stratifying by cluster status.
In panel (a), boxplots are shown for test scores at last visit by clusters. * indicates the 

significant pairwise comparison between cluster means based on the Bonferroni-Holm 

adjusted p-value of less than 0.05. In panel (b), longitudinal trajectories for MMSE test 

scores are shown. The x-axis indicates years since first diagnosed with cognitive 

impairment, that is, x = 0 represents the year when initially diagnosed as either impaired not 

MCI, MCI, or dementia based on the variable “NACCUDSD” in NACC UDS. Negative 

values of the x-axis represent the number of years before the first diagnosis of cognitive 

impairment.
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Fig. 4. Kaplan-Meier curves and Bonferroni-Holm adjusted p-values from pairwise log rank test 
for age at visit.
The y-axis shows the symptom free probability and the x-axis indicates age at visit.
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Fig. 5. Kaplan-Meier curves and Bonferroni-Holm adjusted p-value from pairwise log rank test 
for years since diagnosed as cognitive impairment.
The y-axis shows the symptom free probability and the x-axis indicates years since first 

diagnosed with cognitive impairment, that is, x = 0 represents the year when initially 

diagnosed as either impaired not MCI, MCI, or dementia based on the variable 

“NACCUDSD” in NACC UDS. Negative values of the x-axis represent the number of years 

before first diagnosis of cognitive impairment. MCI = mild cognitive impairment; NACC = 

National Alzheimer’s Coordinating Center; UDS = Uniform Data Set; PPA = primary 

progressive aphasia; FTLD-TDP = frontotemporal lobar degeneration with TDP-43 

proteinopathy
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Fig. 6. Overall findings for each of four clusters.
Proportion of misfolded protein combinations in each of the clusters (a). Overall 

interpretation of the associated phenotypes for each of the clusters (b). C3 = frequent 

neocortical neuritic plaques; B3 = Braak NFT stage V or VI; LB = Lewy body; FTD = 

frontotemporal dementia clinical syndrome; ADNC = Alzheimer’s disease neuropathologic 

change; PPA = primary progressive aphasia
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Table 1.

Characteristics of the study subjects (n=495) on variables used in uniform manifold approximation and 

projection (UMAP) dimensionality reduction method by clusters, National Alzheimer’s Coordinating Center 

(NACC) data, March 2020 data freeze

Variable Cluster 1 (n = 103) Cluster 2 (n = 71) Cluster 3 (n = 114) Cluster 4 (n = 207)

Age at death, n (%)

 < 65 18 (17.5) 4 (5.6) 1 (0.9) 12 (5.8)

 ≥ 65 and < 85 73 (70.9) 6 (8.5) 0 (0) 195 (94.2)

 ≥ 85 12 (11.6) 61 (85.9) 113 (99.1) 0 (0)

Neuritic plaques (C score), n (%) 
a

 C0 77 (74.8) 6 (8.5) 5 (4.4) 1 (0.5)

 C1 14 (13.6) 19 (26.8) 1 (0.9) 2 (1.0)

 C2 12 (11.7) 46 (64.7) 0 (0) 15 (7.2)

 C3 0 (0) 0 (0) 108 (94.7) 189 (91.3)

Thal phase (A score), n (%) 
b

 A0 45 (43.7) 4 (5.6) 1 (0.9) 0 (0)

 A1 48 (46.6) 7 (9.9) 0 (0) 0 (0)

 A2 7 (6.8) 19 (26.8) 5 (4.4) 3 (1.4)

 A3 3 (2.9) 41 (57.7) 108 (94.7) 204 (98.6)

Braak NFT stage (B score), n (%) 
c

 B0 26 (25.2) 3 (4.2) 1 (0.9) 0 (0)

 B1 60 (58.3) 5 (7.0) 4 (3.5) 3 (1.4)

 B2 17 (16.5) 33 (46.5) 7 (6.1) 11 (5.3)

 B3 0 (0) 30 (42.3) 102 (89.5) 193 (93.2)

Lewy body pathology, n (%)

 No 88 (85.4) 55 (77.5) 58 (50.9) 73 (35.3)

 Others 13 (12.6) 14 (19.7) 44 (38.6) 87 (42.0)

 Neocortical 2 (1.9) 2 (2.8) 12 (10.5) 47 (22.7)

Cerebral amyloid angiopathy, n (%)

 None 89 (86.4) 31 (43.7) 17 (14.9) 32 (15.5)

 Mild 9 (8.7) 21 (29.6) 43 (37.7) 89 (43.0)

 Moderate 3 (2.9) 16 (22.5) 35 (30.7) 50 (24.2)

 Severe 2 (1.9) 3 (4.2) 19 (16.7) 36 (17.4)

Infarct and lacunes, n (%)

 No 96 (93.2) 58 (81.7) 98 (86.0) 185 (89.4)

 Yes 7 (6.8) 13 (18.3) 16 (14.0) 22 (10.6)

Microinfarcts, n (%)

 No 85 (82.5) 51 (71.8) 80 (70.2) 164 (79.2)

 Yes 18 (17.5) 20 (28.2) 34 (29.8) 43 (20.8)

Arteriolosclerosis, n (%)

 None 18 (17.5) 14 (19.7) 12 (10.5) 29 (14.0)
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Variable Cluster 1 (n = 103) Cluster 2 (n = 71) Cluster 3 (n = 114) Cluster 4 (n = 207)

 Mild 49 (47.6) 11 (15.5) 26 (22.8) 70 (33.8)

 Moderate 29 (28.2) 33 (46.5) 52 (45.6) 75 (36.2)

 Severe 7 (6.8) 13 (18.3) 24 (21.1) 33 (15.9)

a
C score: C0 = no, C1 = sparse, C2 = moderate, and C3 = frequent

b
A score: A0 = phase 0, A1 = phase 1 or 2, A2 = phase 3, and A3 = phase 4 or 5

c
B score: B0 = stage 0, B1 = stage I or II, B2 = stage III or IV, and B3 = stage V or VI

NFT = neurofibrillary tangle
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Table 2.

Demographic and clinical characteristics of the study subjects on variables not used in uniform manifold 

approximation and projection (UMAP) dimensionality reduction method by clusters, National Alzheimer’s 

Coordinating Center (NACC) data through the March 2020 data freeze (n = 495)

Variable Cluster 1 (n = 103) Cluster 2 (n = 71) Cluster 3 (n = 114) Cluster 4 (n = 207)

Age at death, mean ± SD 73.5 ± 10.4 88.9 ± 9.7 89.9 ± 5.0 76.6 ± 6.3

Gender, n (%)

 Men 47 (45.6) 35 (49.3) 44 (38.6) 108 (52.2)

 Women 56 (54.4) 36 (50.7) 70 (61.4) 99 (47.8)

Years of education, mean ± SD 15.9 ± 2.6 16.4 ± 3.0 14.8 ± 3.4 15.6 ± 3.0

Years of follow-up, mean ± SD 6.2 ± 3.1 7.5 ± 3.3 7.9 ± 3.1 6.5 ± 2.9

APOE genotype, n (%)

 -/- 70 (77.8) 38 (60.3) 48 (45.7) 50 (27.3)

 -/ε4 18 (20.0) 24 (38.1) 46 (43.8) 97 (53.0)

 ε4/ ε4 2 (2.2) 1 (1.6) 11 (10.5) 36 (19.7)

Clinical status at last visit, n (%)

 Normal 5 (4.8) 1 (1.4) 4 (3.5) 1 (0.5)

 Impaired-not-MCI 1 (1.0) 2 (2.8) 1 (0.9) 0 (0)

 MCI 7 (6.8) 9 (12.7) 2 (1.7) 2 (1.0)

 Dementia 90 (87.4) 59 (83.1) 107 (93.9) 204 (98.5)

Clinical diagnosis of AD at last visit, n (%)

 Normal 5 (4.8) 1 (1.4) 4 (3.5) 1 (0.5)

 Yes 29 (28.2) 60 (84.5) 100 (87.7) 183 (88.4)

 Cognitive impairment but not AD 69 (67.0) 10 (14.1) 10 (8.8) 23 (11.1)

Clinical diagnosis of FTD at last visit, n (%)

 Normal 13 (12.6) 12 (16.9) 7 (6.1) 3 (1.4)

 Yes 39 (37.9) 6 (8.5) 1 (0.9) 12 (5.8)

 Cognitive impairment but not FTD 51 (49.5) 53 (74.6) 106 (93.0) 192 (92.8)

SD = standard deviation; MCI = mild cognitive impairment; AD = Alzheimer’s disease; FTD = frontotemporal dementia
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Table 3.

Neuropathological characteristics of the study subjects on variables not used in uniform manifold 

approximation and projection (UMAP) dimensionality reduction method by clusters, National Alzheimer’s 

Coordinating Center (NACC) data through the March 2020 data freeze (n = 495)

Variable Cluster 1 (n = 103) Cluster 2 (n = 71) Cluster 3 (n = 114) Cluster 4 (n = 207)

TDP-43 pathology, n (%)

 Amygdala

  No 13 (16.0) 7 (13.5) 8 (8.8) 14 (8.1)

  Yes 68 (84.0) 45 (86.5) 83 (91.2) 158 (91.9)

 Hippocampus

  No 8 (8.2) 5 (7.2) 15 (13.3) 48 (23.4)

  Yes 90 (91.8) 64 (92.8) 98 (86.7) 157 (76.6)

 Neocortex

  No 21 (23.3) 42 (70.0) 86 (80.4) 156 (83.9)

  Yes 69 (76.7) 18 (30.0) 21 (19.6) 30 (16.1)

NIA-AA ADNC (ABC score)

 Not AD 45 (43.7) 4 (5.6) 1 (0.9) 0 (0)

 Low ADNC 56 (54.4) 10 (14.1) 5 (4.4) 3 (1.4)

 Intermediate ADNC 2 (1.9) 31 (43.7) 12 (10.5) 15 (7.2)

 High ADNC 0 (0) 26 (36.6) 96 (84.2) 189 (91.3)

FTLD-TDP, n (%)

 No 24 (23.3) 59 (83.1) 109 (95.6) 196 (94.7)

 Yes 79 (76.7) 12 (16.9) 5 (4.4) 11 (5.3)

Hippocampal sclerosis, n (%)

 No 68 (66.7) 41 (57.7) 69 (62.2) 139 (67.8)

 Yes 34 (33.3) 30 (42.3) 42 (37.8) 66 (32.2)

Whole brain weight (g), mean ± SD 1079.6 ± 175.8 1123.2 ± 201.1 1132.5 ± 158.2 1130.5 ± 159.7

Cerebral cortex atrophy, n (%)

 None 12 (15.0) 10 (14.3) 14 (12.7) 18 (9.2)

 Mild 16 (20.0) 28 (40.0) 39 (35.5) 57 (29.2)

 Moderate 20 (25.0) 21 (30.0) 42 (38.2) 66 (33.8)

 Severe 32 (40.0) 11 (15.7) 15 (13.6) 54 (27.7)

Lobar atrophy, n (%)

 None 25 (29.4) 50 (72.5) 86 (78.2) 150 (77.3)

 Yes 60 (70.6) 19 (27.5) 24 (21.8) 44 (22.7)

SD = standard deviation; NIA-AA = National Institute on Aging - Alzheimer’s Association; ADNC = Alzheimer disease neuropathologic change; 
FTLD-TDP = frontotemporal lobar degeneration with TDP-43 pathology
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Table 4.

Feature of each of the clusters

Cluster Feature

1 Enriched for FTLD-TDP and FTD clinically

2 Lower neuritic amyloid plaques, died at older age

3 Most with severe ADNC who died at older age

4 Most with severe ADNC who died at younger age

FTLD-TDP = frontotemporal lobar degeneration with TDP-43 proteinopathy; FTD = frontotemporal dementia; ADNC = Alzheimer’s disease 
neuropathologic change
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