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Psychopathy to Altruism:
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Spectrum
James W. H. Sonne1* and Don M. Gash2
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The age-old philosophical, biological, and social debate over the basic nature of
humans as being “universally selfish” or “universally good” continues today highlighting
sharply divergent views of natural social order. Here we analyze advances in biology,
genetics and neuroscience increasing our understanding of the evolution, features
and neurocircuitry of the human brain underlying behavior in the selfish–selfless
spectrum. First, we examine evolutionary pressures for selection of altruistic traits
in species with protracted periods of dependence on parents and communities for
subsistence and acquisition of learned behaviors. Evidence supporting the concept
that altruistic potential is a common feature in human populations is developed.
To go into greater depth in assessing critical features of the social brain, the two
extremes of selfish–selfless behavior, callous unemotional psychopaths and zealous
altruists who take extreme measures to help others, are compared on behavioral traits,
structural/functional neural features, and the relative contributions of genetic inheritance
versus acquired cognitive learning to their mindsets. Evidence from population groups
ranging from newborns, adopted children, incarcerated juveniles, twins and mindfulness
meditators point to the important role of neuroplasticity and the dopaminergic reward
systems in forming and reforming neural circuitry in response to personal experience
and cultural influences in determining behavior in the selfish–selfless spectrum. The
underlying neural circuitry differs between psychopaths and altruists with emotional
processing being profoundly muted in psychopaths and significantly enhanced in
altruists. But both groups are characterized by the reward system of the brain shaping
behavior. Instead of rigid assignment of human nature as being “universally selfish” or
“universally good,” both characterizations are partial truths based on the segments of
the selfish–selfless spectrum being examined. In addition, individuals and populations
can shift in the behavioral spectrum in response to cognitive therapy and social and
cultural experience, and approaches such as mindfulness training for introspection and
reward-activating compassion are entering the mainstream of clinical care for managing
pain, depression, and stress.
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INTRODUCTION

In the mid-1800s, the French Philosopher Auguste Comte
constructed the word altruism from the Latin alteri (“others”)
to name his vision of a moral call to place the needs
of others over one’s self-interests. Altruism has since been
defined in many senses, including an extreme selflessness in
undertaking actions benefiting others without evident self-
benefit and incurring personal risk. The conundrum created by
Comte’s concept continues to reverberate through social debate,
philosophy, theology, and biology, highlighting complex issues
in the spectrum of behavior ranging from extreme selfishness to
extreme selflessness (Ricard, 2015). The very concept of altruism
raises important issues underlying two sharply divergent views of
natural social order.

Philosophical, political and biological arguments on whether
humans are naturally selfish or unselfish have flared for
centuries and continue today. Thomas Hobbes contending in his
work Leviathan printed in 1651 supporting strong Monarchist
governments and running through current culture in Ayn Rand’s
popular works assert there is a natural “universal selfishness”
manifest in humans, with all behaviors characterized as altruistic
being in reality actions that in some measure were in the
actor’s best interest. Rand’s continuing influence on political
discourse can be seen in the powerful American Speaker of
the House and former Vice Presidential candidate Paul Ryan’s
attribution of Rand’s Atlas Shrugged as formative in developing
his political principles (Weiner, 2012). In Biology, the Oxford
University Lecturer and popular science author Richard Dawkins
has proclaimed, “We are survival machines – robot vehicles
blindly programmed to preserve the selfish molecules known as
genes” (Dawkins, 1976).

Sharply alternate opinions more supportive of Comte’s vision
have also resonated for centuries and continue unabated. Two
highly influential 18th century philosophers David Hume and
Jean Jacques Rousseau argued that by nature humankind is
unselfish. A contention strongly supported today by the prolific
neuroscientist and popular science author Richard Davidson
(Davidson, 2015). A middle position emphasizing a dual nature
for humankind was presented in the 15th century essay by Pico
della Mirandola Oration on the Dignity of Man, asserting that we
can shape our own destiny by freely choosing whether to descend
into brutish behavior or rise to the superior orders of the divine.
This is a vision expanded upon by the Dalai Lama who wrote
that “the most important thing in this existence of ours is to do
something that can be of benefit to others. What we need more
than anything is to develop an attitude of altruism – that is really
what gives meaning to life” (Dalai Lama, 2007).

The second debate invariably accompanying any discourse
on altruistic behavior is what is due to nature versus nurture.
To better understand the scientific basis for addressing such
profound social and philosophical issues, here we examine the
biology and neurological basis of human altruism. We analyze the
neural systems and the role of heredity, both genetic and neuron-
based (cultural and social), in the development of behavior in the
selfish–selfless spectrum, with the goal of discovering how and
why portions of the population experience dramatically differing

levels of empathy and compassion that strongly influence their
worldview and role in society.

EVOLUTION OF THE PROSOCIAL BRAIN

The term “altruism” has meant many different things in different
times and places. Since Comte’s moral call to place the needs of
others above one’s own needs, different disciplines have applied
different definitions, and the semantics are themselves a necessary
starting point (West et al., 2007). Group selection theory explains
behavior such as kin sacrifice in terms of gene survival as
opposed to individual survival (Simon et al., 2013; Gardner,
2015). Therefore, according to this evolutionary theory, related
individuals will be more likely to perform altruistic acts and
decrease their own survival if it benefits the survival of a related
individual that carries many of the same genes. This theory is
supported by extensive evidence in the literature of preferential
treatment of kin (Madsen et al., 2007), while others argue that
group selection is an emergent property of natural selection by
individual fitness (Zhang et al., 2014; Kennedy et al., 2018). One
question is how kin-preference is identified and conferred by an
organism. Kin-preference may be a function of the extensive time
spent with and proximity to the relative as opposed to an ability
to identify genetic relatedness, as argued by cases of cronyism
and altruistic preference for close friendships (Stewart-Williams,
2008). From an evolutionary biology perspective, “altruism” or
empathic acts could be selected for culturally as a sign of fitness
(Taborsky et al., 2016), as attested to by examples of prosocial
behavior for non-relatives across the animal kingdom (Field and
Leadbeater, 2016; Wilkinson et al., 2016). A more semantically
“true” form of altruism may have its roots in the parental instinct
to care for offspring, and may explain why empathic behavior
is more commonly observed in species with protracted periods
of pre-adult growth (Preston, 2013) requiring extended rearing
and the resultant passing of learned behaviors, called acquired
cognitive learning, as well as “neuron-based heredity,” including
social and cultural factors that may have genetic and cognitive
elements (Gash and Deane, 2015), to come into play. Thus, the
importance of passing to kin the learned behaviors promoting
culturally selected traits of compassion may counterbalance the
selective value of genes promoting extreme selfish behavior (Bell
et al., 2009).

The concept of altruism as an enhanced parental instinct relies
on the evolution of several factors in both the altruist and the
recipient: signaling of kinship status and need for compassion,
recognition by kin of the signals, and donation-behavior by
the kin (Sinervo et al., 2006). While this behavioral signaling
mechanism may underlie parental instinct and compassion
which is probabilistically directed toward kin, it is possible that
simple parental behaviors – such as offspring retrieval, sustenance
and shelter sharing, and emotional comforting – are behavior
patterns of signaling-recognition-action that have been enhanced
by evolutionary mechanisms (Preston, 2013) resulting in broader
altruistic behavior from prosocial brains with greater capacity for
receiving and passing on experience and acquired information.
And as recent studies have shown, parenting-associated prosocial
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helping behaviors not only enhance the survival of the offspring,
but also promotes better health, slower decline in functioning
levels and lower risk of mortality for care-givers (Brown and
Brown, 2015). Collectively, the evidence indicating prosocial
altruistic capability provides for complex interactions that have
come to form the foundation of our civil, societal interactions
(Matusall, 2013). Social interactions often extend not only to
members of our families, but to other members of our own social
species, and often to members of other domesticated species on
which we depend for our survival and social well-being.

THE SELFISH–SELFLESS SPECTRUM

Human evolution, especially since the separation from the last
common ancestor shared with the great apes, is posited to have
been driven by bipartite hereditary processes involving genetic
and neuron-based systems (social and cultural heredity) (Gash
and Deane, 2015). The development of large interactive social
groups that share resources and work cooperatively toward
accomplishing common goals distinguishes humans from the
other great apes. The survival and success of large cooperative
societies requires most of their members to mute their innate
selfish drives and strengthen their selfless behavior. Converging
evidence that will be reviewed here strongly supports that
complex combinations of genetic and neuronal factors, including
parenting, underlie the spectrum of selfish–selfless behaviors.
Given the gaps in knowledge in this multidisciplinary area of
research, we propose the spectrum be initially plotted as an
inverted U-shaped curve with the x-axis representing the range
from extreme selfishness to extreme selflessness and the y-axis
representing the percent population at each point (Figure 1). We
also propose that the extreme selfishness end of the spectrum
is exemplified by callous-uncaring psychopaths and the extreme
selflessness end by zealous altruists that take extreme measures to
help others. We hypothesize that the landscape and peak of the
curve shifts for given populations based on social and cultural
factors (neuronal-based heredity) and genetic makeup.

CULTURAL AND BIOLOGICAL
INFLUENCES ON THE
SELFISH–SELFLESS SPECTRUM

Differences in degrees of altruistic and prosocial behavior have
long been noted between cultures. In one classic study published
in 1975 that observed children’s behavior across six different
cultures, it was found that 100% of children between the ages
of 3 and 10 exhibited altruistic or prosocial behavior in Kenya,
contrasted with only 8% in the United States (Whiting et al.,
1975). Furthermore, this difference was linked to a cultural
difference between the groups, especially in family function.
Prosocial children were correlated with families where the
women contributed economically and where the children were
assigned tasks within the home. Supporting these observations
is a study by Eisenberg and Mussen (1989) that found that
Mexican children, Hopi children, and Israeli children were

FIGURE 1 | Selfish–selfless spectrum. The spectrum of human behavior from
extreme selfishness to extreme selflessness is plotted here as an inverted
U-Shaped curve. Social and cultural factors influencing perceptions are
posited to shift the curve for individuals and populations to the left (e.g., racial
hatred) or the right (e.g., compassion training). Illustrated by Matt Hazard.

more prosocial than middle-class American children (Eisenberg
and Mussen, 1989). Finally, Robarcheck and Robarcheck (1992)
compared two cultures in environmentally similar conditions
but with drastically different cultures, the cooperative Semai
in the Malaysian rainforest and the individualistic and war-
like Waorani from the Amazon (Robarcheck and Robarcheck,
1992). The Semai people exhibit prosocial and altruistic behavior,
whereas the Waorani behave selfishly and reportedly save
themselves if faced with danger as opposed to helping members
of their society or family. These and other studies implied
that societies that tend to focus on individual achievement and
“success” result in children that are less prosocial and that exhibit
fewer altruistic tendencies. Using the Price equation, researchers
mathematically estimated that culture (neuron-based heredity)
has more than one order of magnitude greater influence than
genes on altruism and prosocial behavior at the population level
(Bell et al., 2009).

Some studies have attempted to identify how the depth of
social interactions an individual has is reflected in the gross
anatomical structure of the human brain. For instance, a positive
correlation has been recorded between the number of individuals
a person regularly interacts with and the size of their amygdala
bilaterally (adjusted for total intracranial volume), but not the
hippocampus. This correlation also held true for the number of
different social groups to which a person belongs, not just the
number of friends with whom an individual interacts (Bickart
et al., 2011). The amygdala is responsible for many automatic
processes that influence social cognition (Adolphs, 2009) ranging
from the more mundane such as fear, vigilance (Whalen, 1999)
and alertness (Whalen, 2007) to the parsing and evaluation
of facial features (Adolphs et al., 1994; Winston et al., 2002;
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Adolphs et al., 2005; Schiller et al., 2009) in conjunction with the
fusiform cortex (Hadjikhani and de Gelder, 2003; Britton et al.,
2008). The amygdala may play a central role in regulating an
individual’s aversion to or propensity for social interaction based
on the activation of the brain’s reward mechanisms during the
reading of facial expressions and the subsequent regulation of
comfort in social situations.

An interesting sub-population is political orientation, which
is increasingly recognized as having a genetic as well as a
social and cultural influence (Kandler et al., 2012; Hatemi and
McDermott, 2012), including dopamine neurochemical receptor
variant expression (Settle et al., 2010). In these sub-populations
we again see the role of the amygdala in making social-based
snap judgments when presented with images of faces. Bilateral
amygdalar activation recorded by fMRI positively predicts a
participant’s snap decision to vote for a person based solely on
appearance, a phenomenon that was observed across cultures
(Rule et al., 2010). Schreiber et al. (2013) found increasing brain
activity in the right amygdala amongst Republican voters versus
increased anterior insular activation in Democrats, suggesting
different limbic processes are involved in reaching decisions in
a risk-taking task. These findings were supported in separate
studies by Kanai et al. (2011) reported that the gray matter
volume of the right amygdala was observed to be larger in
individuals self-described as more conservative, contrasted with
those self-described as more liberal who exhibited greater gray
matter volume in the anterior cingulate cortex (ACC).

The ACC is involved in many executive level brain functions,
including reward-based decision making, error detection, and
conflict monitoring. An example of a task that activates the error
detection/conflict monitoring function of the ACC is the “Stroop
task” (Pardo et al., 1990). In this task the name of a color is
written in a different color of ink, for example the word “RED”
is written in blue ink, and the subject is asked to name the
word and ignore the color of the ink (or vice versa). This task
activates the ACC. The ACC also may serve as an evaluative role
after effortful error commission, producing emotional distress
associated with the act of producing an error (Bush et al., 2000).
Thus, the ACC is thought to be responsible for adapting behavior
in response to the production of errors (Luu and Pederson,
2004). The perigenual region of the ACC may also play a role
in modulating the reward mechanisms in a way perceived as
gratitude at the relief of a stressor (Fox et al., 2015) and as the
result of positive social interactions (Van den Bos et al., 2007).
As a part of the social species, these functions may be critical in
maintaining alliances and raising offspring through a protracted
stage of dependency.

In one study (Christoy-Moore, 2016), subjects’ donations to
individuals based solely on profiles listing socio-economic status
were recorded (called the Dictator Game) and then activity levels
in the subjects’ brains were measured by functional magnetic-
resonance imaging (fMRI) while observing video of a human
hand being punctured by a hypodermic needle, touched by a
cotton swab, or static without stimulation (called the Needle
Test). Subjects’ offers to low socio-economic status players in
the Dictator Game were positively correlated with the subject’s
own Empathic Concern score determined by questionnaire.

A correlation was also observed between offers and blood-
oxygen level dependent increases in fMRI activation of the
primary somatosensory cortex and other associated areas during
the observation of the painful hand stimulation, supporting
a hypothesis of empathic behavior as a form of “self-other
resonance” as a result of “neural resonance” between individuals.
While undergoing fMRI the subjects were then asked to imitate
faces that were displayed to them. The subjects who donated
more money to low socio-economic players tended to exhibit
greater levels of BOLD increases in fMRI in the left amygdala and
also the left fusiform cortex which is a region responsible for facial
processing and implicated in empathy.

Kim et al. (2010) observed a genetic variation on the oxytocin
receptor gene OXTR at rs53576 between cultures (Kim et al.,
2010). In individualistic European Americans a guanine (G) is
more prevalent at this position, but in collectivist East Asians an
adenine (A) is more common. Oxytocin is a neurohormone that
is primarily involved in stimulating contractions of the uterine
wall during childbirth and the milk “let-down” reflex of lactation
during nursing. Oxytocin also acts on the central nervous
system for brain development and to regulate behavior including
maternal behaviors such as infant response and protection,
and other social behaviors including bonding, trusting, and
encouraging generosity (Yang et al., 2013). Nasally administered
oxytocin reduces fear and anxiety (Kirsch et al., 2005), increases
trust (Kosfeld et al., 2005), reduces xenophobic outgroup
rejection (Marsh et al., 2017), increases monogamous behavior
(Scheele et al., 2012), increases empathy (Sheng et al., 2013)
and conformity with in-group members (Stallen et al., 2012).
Some benefits of oxytocin beyond promoting positive social
interactions include anti-inflammatory effects and indications
for quicker wound healing (Gouin et al., 2010). It is being
investigated as a treatment for the social deficits of autism (Dadds
et al., 2014a), however, the efficacy reported in initial studies
has been mixed with results ranging from modest benefits to no
observed improvements (Young and Barrett, 2015).

Vasopressin has also been identified as a possible regulator
of compassionate behavior. Human studies of individuals that
exhibit strong sibling bonding (Bachner-Melman et al., 2005) and
pair bonding (Walum et al., 2008) have identified that increases in
the length of vasopressin 1a receptor repeat sequences 1 and 3 are
linked to these behaviors in these sub-groups. Vasopressin, also
called antidiuretic hormone or arginine vasopressin hormone
(AVP), is a neurohormone that controls the antidiuretic effect
through water reabsorption in the kidneys’ nephrons and by
controlling the constriction of blood vessels. In terms of social
behavior, central vasopressin receptors AVPR1a in the ventral
pallidum of the prairie vole are necessary for pair bonding and
partner selection (Lim and Young, 2004) by activating the reward
circuitry during mating (Pitkow et al., 2001). This and other
central AVP receptors have been shown to play critical roles in
social recognition and interpretation of social cues as well as
related stress pathways in knockout mouse models (Bielsky et al.,
2004; Wersinger et al., 2004).

In addition to the strong evidence in animal studies that
oxytocin and vasopressin are two neurohormones which play
important roles in social behavior and the resultant reward and
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stress pathways that support those behaviors, there is increasing
research supporting the hypothesis that genetic variants of OXTR
and AVPR1a are predictive of humans displaying greater degrees
of altruistic, empathic and compassionate behavior traits within
population sub-groups. For example, Poulin et al. (2012) have
reported that the amount of individual involvement in charitable
activity and civic duties correlated with genetic variants. As
expected, it was found that those with the OXTR rs53576 G
to A variation or AVPR1a RS1/RS3 long to short variation
were more likely to exhibit “prosocial” behavior by being more
trusting of strangers, contributing more to charitable activities
and participating in more civic duties.

EXTREME SELFISHNESS: CRIMINAL
PSYCHOPATHY

Callous-unemotional criminal psychopaths epitomize extreme
antisocial behavior. These individuals are characterized by
aggression and violence with a long criminal record and frequent
incarceration. Their core behavioral pattern of pervasively
violating the rights of others without remorse can begin as early as
3 years of age and continue into adulthood (Hare, 2006; Gao and
Raine, 2010; APA, 2013). In the United States, they are estimated
to represent 16% of male prisoners (Kiehl and Hoffman, 2011).
In England and Wales, the estimates are lower, close to 8% of
men and 2% of women (Coid et al., 2009b), perhaps due to
cultural differences between the countries. Serial killers fall into
this category. However, by maintaining an outwardly normal
persona, they can often evade detection and arrest for periods
running into decades.

The spectrum of personality disorders classified as
psychopathic is much broader than those on the extremist
criminal end. Psychopaths can be separated into two groups –
unsuccessful and successful (Gao and Raine, 2010). The
unsuccessful are the callous-uncaring criminals. Successful
psychopaths are a more diverse group ranging from ruthless con
artists to leading statesmen (Dutton, 2016). Both unsuccessful
and successful psychopaths can exhibit varying combinations of
traits, which collectively predict their behavioral patterns. With
the legal and societal problems created by criminal psychopaths,
most research has been focused on defining their psychological
features and neurobiology. The current criteria for determining if
someone is a criminal psychopath is the Psychopathy Checklist-
Revised (Hare, 2003; Babiak and Hare, 2006), which is crafted
for clinical and legal use, emphasizing antisocial and criminal
behaviors. It is used worldwide and its influence is seen in
the gold standard for clinical diagnosis, the 5th Edition of the
American Psychiatric Association’s Diagnostic and Statistical
Manual of Mental Disorders (APA, 2013) where psychopathy is
described as a synonym for Antisocial Personality Disorder (see
Table 1).

As Hare developed his PCL-R as a research tool based largely
on his experience in analyzing criminals, its use more broadly
in formulating public policy, in business and in conducting
unbiased social research is controversial (Skeem et al., 2011).
Also, it has raised a major scientific issue. Is psychopathy

TABLE 1 | PCI-R: psychopathy criminal focus (APA, 2013).

• Core features: Callous-unemotional – lacking empathy and lacking remorse
for mistreating others.

• Frequently breaking the law, being arrested.

• Pervasive dishonesty, chronic lying.

• Dysfunctional planning.

• Impulsive, irritable and aggressive behavior.

• Fearless, reckless and irresponsible, endangering self and others.

a monolithic disorder (qualitative), or is it a syndrome
with multiple interacting factors determining the extent and
phenotypic expression (quantitative)? To more fully evaluate the
hypothesis of multiple interacting factors, an alternate rating scale
to the PCL-R has been developed, the Psychopathic Personality
Inventory-Revised (PPI-R, see Table 2) designed and validated to
measure more affective and interpersonal traits and to be used
in both criminal and non-criminal populations without a priori
assumptions of antisocial and criminal behavior (Skeem et al.,
2011; Dutton, 2016; Sorman et al., 2016).

While the two different rating scales overlap in measures
such as meanness (e.g., callous and unemotional, coldhearted),
antisocial behavior (e.g., pervasive dishonesty, Machiavellian self-
interest) and poor planning skills, PPI-R includes the positive
traits of boldness (social dominance, immunity to stress and fear).

While all unsuccessful psychopaths are by definition criminals,
as mentioned before, successful psychopaths on the PPI-R scale
are found in politics, medicine and business. Their actions range
from criminal to courageous, as evidenced by the high PPI-R
scores of national leaders of World War II: Franklin D. Roosevelt,
Winston Churchill, and Adolph Hitler (Dutton, 2016). Roosevelt
and Churchill were powerful leaders whose bold, hardnosed
(coldblooded) actions were instrumental in the survival and
success of their social order; Hitler’s leadership epitomizing
callousness, lack of remorse and blame externalization was
disastrous for all of Europe and led to notorious crimes against
humanity.

As successful psychopaths can intelligently conceal their
psychopathic traits, their number in the population is difficult
to detect. In one large population survey, the prevalence of
successful (i.e., no criminal record) psychopathic individuals
living in households in England was 0.6% (Coid et al., 2009a). In
the professional world of politicians, businessmen, doctors and
lawyers, the number may be much higher. In their book Snakes
in Suits: When Psychopaths go to Work, industrial psychologist

TABLE 2 | PPI-R: psychopathy positive and negative features (Skeem et al., 2011;
Dutton, 2016).

• Coldblooded
• Powerful social dominance
• Fear immunity
• Stress immunity
• Machiavellian self-interest
• Rebellious non-conformity
• Blame externalization
• Carefree living (no planning)

Frontiers in Psychology | www.frontiersin.org 5 April 2018 | Volume 9 | Article 575

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00575 April 17, 2018 Time: 17:39 # 6

Sonne and Gash Neurobiology of the Selfish–Selfless Spectrum

Babiak and criminal psychologist Hare (Babiak and Hare, 2006)
estimated 3.5% of professionals in business possess strong
psychopathic traits. While some professionals with psychopathic
traits are criminals, others benefit the social order by boldly
leading changes needed for cultures to adapt to ever changing
environmental, economic, and political conditions.

NEUROBIOLOGY OF PSYCHOPATHY

Dysfunctional emotional processing is a defining feature of
psychopathy (Anderson et al., 2017), from lacking empathy
to possessing immunity to stress and fear. Meta-analyses of
26 studies found emotional recognition of facial expressions
and vocal cues was significantly impaired in young and adult
psychopaths for all of the basic emotions: anger, disgust, fear,
happiness, sadness, and surprise (Dawel et al., 2012). Their
inability to recognize fear and sadness was especially pronounced,
but they also exhibit reduced neural response to laughter
(O’Nions et al., 2017). Such blunted emotions affect perceptions,
thought processes and actions toward others, fostering both
boldness and lack of remorse. Dysfunctional emotions also affect
another trait of criminal psychopaths – deeply flawed reasoning,
including moral judgment.

Three of the sites in the brain responsible for criminal
psychopathic behavior are also principal components of the
neural circuitry for normal social-emotional processing: the
prefrontal cortex (PFC), amygdala, and hypothalamus (Figure 2).
Psychopathic behavior resulting from injury or disease implicates
the ventromedial PFC (vmPFC) as a critical node for prosocial
behavior; its dysfunction resulting in antisocial behavior
(Anderson et al., 1999; Barrash et al., 2000; Trebuchon et al.,
2013). The enlarged prefrontal cortex is the neocortical (i.e.,
evolutionarily newest) region of the human brain responsible for
top down, executive control; while the amygdala is the part of
the allocortical (i.e., evolutionarily old) cortex that, as discussed
earlier, integrates sensory and acquired information, including
facial features, to assess threat levels. In the mammalian brain,
the PFC is richly networked with the amygdala (McDonald
et al., 1999), with neurons in the cerebral neocortex sending
fibers to connect with neurons in the amygdala embedded in
the rostral temporal lobe (Stein et al., 2007). Like most neural
assemblages in the brain, it is a two-way street with amygdaloidal
neurons sending fibers to the cerebral cortex. The amygdala in
turn is richly interconnected with the hypothalamus (Herman,
2012), another evolutionarily ancient brain region that regulates
homeostasis and autonomic nervous system activity (Jansen et al.,
1995) and controls neuroendocrine functions including secretion
of oxytocin and vasopressin into the systemic circulation (Carter,
2014).

The association between medial prefrontal cortex (PFC)
dysfunction and psychopathic behavioral features including
lack of empathy and remorse, dishonesty, and poor planning
and decision-making skills, has been extensively documented
since the index case of Phineas T. Gage in 1848 (Harlow,
1868; Damasio et al., 1994). Since then, there has been an
abundance of research supporting the role of the PFC in

social processing and behavior regulation (Anderson et al.,
1999; Grossman, 2013). In individuals with pronounced conduct
control problems, numerous studies have shown the amygdala
is smaller along with less gray matter volume in the frontal and
temporal cortices (Yang et al., 2010; Rogers and De Brito, 2016).
Hypoactive amygdala responses to stimuli of others in distress
are characteristic of children with the callous-unemotional trait
and associated with aggressive behavior (Lozier et al., 2014).
Humans with bilateral amygdala lesions have impaired learning
of fear and responding to eminent danger (Bach et al., 2015;
Klumpers et al., 2015). Bilateral amygdala lesions in rhesus
monkeys have significantly blunted stress responses (Raper et al.,
2013). These findings strongly link the behavioral traits of the
callous-unemotional trait, boldness, and fear/stress immunity to
amygdala functions.

The hypothalamus is intimately involved as the control center
of the brain for autonomic responses and regulation of sex
hormones and the secretion of oxytocin, cortisol, and vasopressin
into the bloodstream. Low oxytocin levels have been linked
with callous-unemotional scores in adolescents (Levy et al.,
2017). Supporting this link are other studies indicating that
inactivation of the oxytocin receptor by DNA methylation is
correlated with an increased risk of callous-unemotional traits
(Cecil et al., 2014). Children and adolescents with the callous-
unemotional trait exhibit reduced cortisol response (von Polier
et al., 2013; Grotzinger et al., 2018) perhaps explaining increased
boldness/impulsivity, and are at high risk for developing
into criminal psychopaths (Kahn et al., 2013; Kimonis et al.,
2016). As discussed earlier, oxytocin and vasopressin are two
neurohormones that have essential roles in social behavior and
the resultant reward and stress pathways that support those
behaviors (Poulin et al., 2012).

The neural circuitry for the Impulsive-Antisocial dimension
of psychopathy overlaps with that for Boldness, but differs in
important details. The size of the striatum, a major component
of the basal ganglia, is larger in Impulsive-Antisocial individuals
(Korponay et al., 2017), especially the putamen and the nucleus
accumbens in the ventral striatum, the reward center of the brain
(Figure 3).

Dopamine release from ventral tegmental area dopamine
neurons innervating the nucleus accumbens is an essential
component of the reward circuitry (Sesack and Grace, 2010;
Kahn and Shohamy, 2013). In functional MRI studies, the
ventral striatum including the nucleus accumbens displays robust
activation in criminal psychopaths in game tasks involving
rewards (Pujara et al., 2014). The nucleus accumbens is a major
component of the limbic system (Morgane et al., 2005), the
part of the human brain that provides emotional processing
and motivational information to the enlarged, more deeply
layered areas of the prefrontal cerebral cortex (Shnitko and
Robinson, 2014). Other interacting centers include the amygdala
and hippocampus (de la Mora et al., 2010).

As recently emphasized by Reidy et al. (2017), reward-
dominant learning and decision making in callous-unemotional
individuals with strong Impulsive-Antisocial traits can explain
their extremely violent behavior, their hair-trigger response for
evoking rage or anger (the fight component of “Fight or Flight”
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FIGURE 2 | Prefrontal cortex-amygdala-hypothalamic circuitry. The prefrontal cortex-amygdala-hypothalamus axis has a pivotal role in social-emotional processing.
Developmental disorders and injuries effecting its neural assemblages and circuitry can lead to antisocial behaviors characterizing psychopathy. (A) In this
parasagittal view of the human brain, the spatial relationships and neural connectivity between the prefrontal cortex (PFC), amygdala (Amy), and hypothalamus (Hyp)
are illustrated. Lesions involving the ventromedial PFC (vmPFC) are especially disruptive of prosocial behavior. Note the central role of the amygdala in the circuitry
linking the prefrontal cortex and hypothalamus in the emotional processing network. Also see its intimate integration of the amygdala with the head of the
hippocampus (Hip), which initiates and consolidates cognitive memory and learning processes in the brain. (B) Here is a schematic based on the generic mammalian
brain to illustrate the multiple actions taken by the hypothalamus when a “Fight or Flight” response is triggered by cortical-amygdala interactions signaling high levels
of risk or immediate danger, including life or death situations. Neurons in the hypothalamus terminating in the pituitary release oxytocin (OT), vasopressin (VP) and
adrenocorticotropic hormone (ACTH) into the systemic circulation. The sympathetic nervous system is fully activated via the hypothalamus, including by a direct
neural projection to the adrenal medulla stimulating release of epinephrine (EPI, adrenalin) and norepinephrine (NEP, noradrenalin) into the blood stream. ACTH
stimulates the release of the stress hormone cortisol (COR) from the adrenal cortex. The physiological responses include hyperarousal, focused vision, increased
heart rate and blood pressure, blood shunted to the muscles, and suppression of digestion and appetite. Illustrated by Matt Hazard.

FIGURE 3 | Dopamine reward system of the brain. (A) Dopamine neurons in the ventral tegmental area (VTA) directly innervate the nucleus accumbens (NAc),
prefrontal cortex (PFC), amygdala (Amy), and hippocampus (Hip) (de la Mora et al., 2010; Kahn and Shohamy, 2013; Shnitko and Robinson, 2014). As in most
neural networks, connectivity between the nuclei goes both ways. Dopamine release from the VTA promotes feelings of satisfaction, pleasure and euphoria,
rewarding and motivating behavior. Dopamine release from the substantia nigra in the striatum modulates motor functions. (B) While the neurocircuitry modulating
the VTA and NAc is complex, major projections from the PFC, Amy and Hip to the VTA and NAc have been identified (Sesack and Grace, 2010). This is consistent
with known modulation of reward system dopaminergic activity being influenced by goal-directed behavior (PFC), emotions and feelings (Amy) and
experience/memories (Hip) (Sesack and Grace, 2010). Illustrated by Matt Hazard.

behavior). In these individuals, rage and impulsivity with reduced
fear from the amygdala evokes pleasure – dopamine release in the
nucleus accumbens.

The absence of normal fear and stress responses is analogous
to removing the brakes on a bulldozer. Boldness and greatly
muted fear with positive reinforcement from the reward system
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of the brain is the result. For criminal psychopaths, it leads
to clashing violently with others and taking risks that lead to
incarceration, debilitating injuries or death.

NATURE VERSUS NURTURE IN
PSYCHOPATHY

Based on parent reported data on 5092 twins, genetically modeled
inheritance for the core feature of psychopathy – callousness
and unemotional trait – was 70% (Henry et al., 2016). A smaller
more recent study examining the reliability of parent reported
data refines the estimate to 47% (Moore et al., 2017). For the
traits of Boldness and Impulsive-Antisociality, twin studies have
reported inheritance in the 40–50% range (Blonigen et al., 2005)
and indicating the two traits were not linked genetically and differ
in their neurobiology.

Some progress has been made in identifying genes associated
with features of psychopathy. Consistent with data reported
throughout this review that oxytocin has a prominent role in
promoting prosocial human behavior, two independent studies
have recently found a high association between an oxytocin
receptor gene and callous-unemotional traits (Beitchman et al.,
2012; Dadds et al., 2014b). Endogenous oxytocin is important
in neural development including neural circuitry (Carter, 2014),
making it difficult to predict the effects from administration of
exogenous oxytocin to the adult brain after critical periods in
brain development. Initial studies indicate nasal administration
of oxytocin increases aggressive behavior in normal adults
(Ne’eman et al., 2016) and adults with antisocial personality
disorder (Alcorn et al., 2015).

Role of Neuron-Based Heredity in
Psychopathy
To what extent can neuronal-based heredity – learned
societal and cultural traits – compensate for strong genetic
psychopathic predispositions? This acquisition of social and
cultural information begins before birth (Partanen et al., 2013)
as newborns recognize their mother’s voice and can distinguish
it from a stranger’s voice (Beauchemin et al., 2011). Prenatal
development and functioning of neural systems is evident after
birth with the pattern of crying of newborns shaped by their
native language (Mampe et al., 2009). Positive parental support
and maternal behavior is exceptionally important during these
critical periods. Chaotic home environments, negative parental
behavior and mothers with strong callous-unemotional traits
can affect their fetus’s and infant’s emotional and cognitive
development (Fontaine et al., 2011; Hyde et al., 2016; Viding and
Pingault, 2016).

In a study of 561 children adopted within several days after
birth where severe callous-unemotional maternal behavior was
replaced by strong positive support, major effects were found in
altering behavior (Hyde et al., 2016). Having a biological mother
with severe callous-unemotional behavior predicted the same
traits in their children at 27 months of age, even though they had
not been parenting them after adoption. Positive reinforcement
by the adoptive mother significantly mitigated the expression

of callous-unemotional behavior in their adopted child. The
effect was dose-dependent, adoptive mothers with high positive
reinforcement completely buffered the expression of the callous-
unemotional behavior at 27 months (Hyde et al., 2016; Viding and
Pingault, 2016). Follow-up studies over time will be extremely
important to assess the efficacy of early positive parenting on
adolescent and adult behavior patterns.

Even with the caveat that longer longitudinal studies are
needed, the malleability of callous-unemotional behavior in early
childhood is encouraging. But as a developmental neural disorder
with structural neuroanatomical abnormalities (Cope et al., 2014)
and impaired functional connectivity (Harenski et al., 2018),
how long is the window of opportunity open for therapeutic
intervention for criminal psychopaths? Working with juvenile
delinquents, over half of whom had committed a serious violent
felony, a program at the Mendota Juvenile Treatment Center in
Wisconsin using intensive therapy balancing punishment for bad
behavior with rewards for improved behavior was able to reduce
the number of crimes by over 35% perpetrated by the trainees
over a 4–5 years period after release, compared to a treatment-as-
usual control group (Caldwell and Van Rybroek, 2005; Caldwell,
2011). While the effects on violent behavior were impressive,
there remained a significant risk for aggressive behavior injuring
others.

The Mendota Center approach of effectively reinforcing
the reward center of the brain for improved behavior, while
providing negative reinforcement for bad behavior, is now being
tested elsewhere for younger adolescents with strong callous-
unemotional traits (Hagerty, 2017). However, treatments for
adult criminal psychopaths have been notoriously ineffective and
upon release 90% commit another violent crime within 20 years
(Anderson and Kiehl, 2014).

EXTREME SELFLESSNESS: ZEALOUS
ALTRUISM

Placing the interests of others above one’s own safety occurs
so regularly in the United States and the rest of the world
that it garners little media attention (Ricard, 2013, 2015). Only
when there is serious injury or death of the Good Samaritans
does it make the news, such as in May 2017 when a crazed
man approached two young women on a commuter train
in Portland, Oregon brandishing a knife and screaming anti-
Muslim insults. Three strangers rushed to rescue the girls. Two
died and the third was seriously injured (Kristof, 2017). As
the list of Carnegie Medal recipients for Extraordinary Civilian
Heroism shows (CarnegieHero.Org, 2017), altruists range from
adolescents to aged adults. Some are very young like 10 year-
old Kiera Larsen who saved a 2-year old child from being run
over by a car that then struck and killed her. They can be
old, like 72 year-old Louis Scharold who braved intense heat
from burning, wrecked trucks to reach through the broken
windshield of one vehicle to pull the dazed driver to safety.
Twelve of the 94 Carnegie Medal Recipients in 2016 lost their
lives in trying to save others. Again, routine altruistic actions
are commonplace and seldom make the news, but extraordinary
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risks taken by some can and do lead to injury and death.
These zealous altruists on the extreme end of the spectrum are
those who take extreme measures to help others, unnecessarily
placing themselves in harm’s way, such as anonymous living
kidney donors that partake in surgery to donate an organ to an
unrelated and unknown recipient they will never meet (Tong
et al., 2012).

Altruism can be impulsive suggesting instinctive reactions
as in the preceding cases, or premeditated by choosing to help
others in ways that are knowingly risky indicating involvement
of executive functions, such as the actions of David Eubank,
the American Aid Worker who rescued a young girl, the lone
survivor of about 70 civilians massacred by ISIS fighters as
they tried to free Mosul in June of 2017. Braving sniper fire
with some support from Iraqi and US Forces, Eubank ran into
the street, picked the girl up and brought her back to safety
(Yuccas, 2017). Eubank has repeatedly chosen to go to war-
ravaged areas in Asia to aid children and others in need. Less
dramatic, but equally extreme premeditated acts of generosity
are those of altruists who donate one of their kidneys to help
an unknown anonymous patient (Marsh et al., 2014), placing
their own lives at risk from complications of elective surgery and
the removal of an organ. Other less risky altruistic premeditated
actions include being a blood donor or donating bone marrow for
transplantation.

Thus, the conundrum of altruism – taking risks by placing the
interests of others, often strangers, beyond one’s self-interest –
seems to directly violate the “survival of the fittest” principle of
gene-based evolution. Darwin noted both sides of the issue in
The Descent of Man. He astutely recognized that selfishness was
a roadblock to human social evolution, “Selfish and contentious
people will not cohere, and without coherence nothing can be
effected.” However, Darwin continued, writing, “He who was
ready to sacrifice his life, as many a savage has been, rather than
betray his comrades, would often leave no offspring to inherit his
noble nature” (Darwin, 1871). Darwin (1871) proposed that as
ancestral human reasoning and foresight powers increased, the
benefits of reciprocal social assistance would become obvious and
gradually lead to inherited reciprocal benevolence.

Darwin seems to have been justified, as just discussed there is
strong evidence for both instinctive and cognitive benevolence in
our species. This evolution has occurred thanks to a capability
of the mind Darwin did not anticipate. Namely, our species
possesses enhanced mind-reading skills to understand our own
thoughts and emotions and what others are thinking and feeling
(Heyes and Frith, 2014; de Waal and Preston, 2017). Affective
perception of other’s emotions includes the six basic emotional
states visualized by facial expressions and body language: anger,
fear, surprise, sadness, disgust, and happiness. Feeling and
understanding the emotions of others, the recognition of signals
of need, sets the stage for perception-based actions such as
benevolence and compassion.

With mind-reading skills at work, two major interactive
factors appear to be crucial for promoting and maintaining broad
levels of cooperation within human populations. The first, as
hypothesized by Batson et al. (1981, 1983), Toi and Batson (1982)
and tested in a series of studies, is a strong link between empathy

and altruism. A linkage that has been repeatedly replicated
(Persson and Kajonius, 2016) and further modeled and linked
with oxytocin by Zak and Barraza (2013). The second factor
is punishment of those violating social norms (Fowler, 2005).
The efficacy of punishment as in promoting cooperation has
been controversial. However, a meta-analysis of punishment
and cooperation in 18 societies found punishment strongly
promoted cooperation in societies with high trust levels (Balliet
and Van Lange, 2013). Also as Mussweiler and Ockenfels (2013)
have demonstrated, perceived similarity promotes altruistic
cooperation as well as evoking increased punishment for norm
violations. The result, they suggest, enhances the ability for
similar individuals to build strong, stable socially cooperative
groups.

NEUROBIOLOGY OF ALTRUISM

Implicit mind reading skills (gene-based) are present by the first
4–7 months of life with normally developing infants making
face-to-face communication that activates the medial prefrontal
cortex (Grossman et al., 2008; Kovacs et al., 2010; Urakawa et al.,
2015). Most or all neurocognitive mind reading skills are acquired
and strongly shaped by culture (neuron-based), with the early
stages of learning similar to those of learning to read (Heyes and
Frith, 2014). Infants are very vulnerable, so development of the
ability to distinguish between those who can help versus those
who may pose a risk is essential. Strong evidence from many
research groups indicates that the majority of infants as early as
6–10 months of age prefer and selectively approach individuals
displaying intentional prosocial behavior (Hamlin and Wynn,
2011; Holvoet et al., 2016; Van de Vondervoort and Hamlin,
2017). Also by 1–2 years of age, simple reciprocal interactions
elicit an early form of altruistic behavior, the child helping the
experimenter or a stranger obtain an object clearly out of their
reach (Barragan and Dweck, 2014). By 5 years of age, children
are capable of sharing with others and anticipating reciprocation
(Sebastian-Enesco and Warneken, 2015).

Altruism goes well beyond reciprocation by compassionately
helping a stranger with no apparent self-benefit and at some
risk to one’s own being. Neuroimaging studies have provided
important insights into the neural networks underlying the
behavioral linkage between empathy and compassion. As defined
by de Waal and Preston (2017), empathy is a “term for all
processes that emerge from the fact that observers understand
others’ states by activating their own personal, neural, and
mental representations of that state.” Empathy then is a
passive state of feeling. Physical pain or distress, and empathy
from witnessing pain both activate the same higher brain
areas, the anterior insula and anterior to mid cingulate cortex
(Figure 4) (Lamm et al., 2007, 2011). Depending on the
type of distress, other brain areas such as the primary motor
and somatosensory cortices are recruited to simulate in the
observer the neural activity in distressed individual: a vivid
example of the continuing theater of the mind envisioned
by the founder of modern psychology William James over
100 years ago where one’s own thoughts and sensations
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FIGURE 4 | Active cortical sites for fear, distress, and empathy. Two deep cortical regions, the anterior insula and anterior cingulate cortex are strongly activated
when feeling fear and empathy. Both are strongly interconnected with the amygdala (Stein et al., 2007). (A) The insula lies beneath the temporal and cortical lobes
and can be seen by separating the two lobes. (B) The anterior cingulate gyrus is the deepest cortical region of the prefrontal cortex (PFC) as seen in this sagittal
section, and caps the anterior corpus callosum. Illustrated by Matt Hazard.

are blended with ongoing experience to produce emotions
and feelings. Empathy for another in extreme pain can be
extremely painful (Fitzgibbon et al., 2010; Ricard, 2015).
Intense and repeated exposure to distress can lead to severe
emotional and health problems including empathetic distress
and post-traumatic stress syndrome (APA, 2013; Klimecki et al.,
2014).

As opposed to the passive state of empathy, compassion is
taking action to help others, including other species, in distress.
Synonyms for compassion that help define it are benevolence,
kindness and sympathy. Compassionate actions activate the
reward system of the brain, the ventral striatum and the
dopaminergic ventral tegmental area, as well as the medial
orbitofrontal cortex (Klimecki et al., 2014). The positive affect
from compassion not only reinforces benevolent behavior, but
can also calm painful empathetic feelings (Figure 5).

Neuroimaging studies on adult Europeans making decisions
on altruistic giving have identified two strongly engaged
brain areas. Activity in anterior insula predicted generosity in
individuals influenced by emotional empathy, while activity
in the temporoparietal cortical junction was associated with
cognitive empathetic giving (Tusche et al., 2016). Another study
taking a similar approach testing young European adults reported
that volume of gray matter in the right temporoparietal cortical
junction was strongly positively correlated with the maximal
acceptable cost for an altruistic action (Morishima et al., 2012).
The results from both studies are supportive of the concept of
altruistic potential being a common feature in populations and
that can be evoked by empathetic feelings.

Another approach for identifying brain areas engaged in
altruistic giving is that taken by Marsh et al. (2014) using
neuroimaging to quantify structural and functional differences

between Zealous Altruists (individuals who had donated one
of their kidneys for transplant recipients) and Criminal
Psychopaths. Brain size can be larger than normal controls in
zealous altruists and, even controlling for the brain volume, the
right amygdala is larger (Marsh et al., 2014). As reviewed earlier,
in psychopaths with conduct control dysfunction, the amygdala
is smaller along with less gray matter volume in the frontal
and temporal cortices (Yang et al., 2010; Pardini et al., 2014;
Rogers and De Brito, 2016). In contrast to psychopathy where
responses to all facial expressions of emotion are muted, altruists
show an enhanced responsiveness to fearful facial expressions
and diminished responsiveness to anger (Marsh et al., 2014).

The neural pathways involved in compassion are similar to
those for impulsive-antisocial behavior. In this instance, prosocial
compassionate behavior rather than antisocial behavior activates
the dopamine reward system of the brain. The same neural
systems are engaged (hippocampus, ventral striatum and ventral
tegmental area, prefrontal cortex and amygdala). The major
difference between prosocial and antisocial behavior is likely
embedded in the perception of social order. This difference
is wittily broached in a letter by Walpole (1769) in which he
declared, “this world is a comedy to those that think; a tragedy
to those that feel – a solution of why Democritus laughed and
Heraclitus wept.” For altruists, the full capability for processing
and integration of sensory and acquired information in the
reading and feeling of emotions of others engenders taking
positive actions – compassion – that mitigates the altruist’s own
distress and reflexively activates the reward system. With the
muted neurocircuitry for basic emotions in criminal psychopaths,
taking action in the form of violent aggression actives the
anger/fight component of the Fight or Flight response reflexively
activating the reward system.
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FIGURE 5 | Benevolence pathway. (A) Empathy involves literally feeling another’s pain. An individual with empathic responsiveness upon seeing and or hearing
others in pain mirrors that pain in their brain, activating the same higher cortical brain areas activated by fear, the anterior insula and mid-to-anterior cingulate cortex.
Intense exposure to a stressful event or repeated exposure to stress in others can lead to burnout, empathy fatigue or PTSD. (B) Compassion activates the reward
system of the brain and can significantly calm empathetic feelings of fear and pain. Therefore compassion and benevolence elicit positive feelings. Altruism not only
benefits the recipient, but also benefits the altruist by rewarding their behavior with feelings of satisfaction. Illustrated by Matt Hazard.

NATURE VERSUS NURTURE IN
ALTRUISM

Given that altruistic behavior can be expressed by large segments
of the population as discussed earlier, the genes underlying
altruism may be commonplace. This includes genes for central
dopaminergic systems engaged in the reward system and genes
for oxytocin receptors that promote development of the social
brain with strong capabilities for communication and mind
reading of emotions (Donaldson and Young, 2008; Carter, 2014;
Heyes and Frith, 2014).

If genes underlying altruism are the norm, then it can
be predicted that gene variants and mutations resulting
in dysfunctional and antisocial behavior can be used to
identify gene networks that are good candidates for promoting
altruistic behavior. With the Callous-Unemotional trait found
in individuals at high risk for violent criminal behavior, genetic
variants in the oxytocin receptor have been identified as discussed
earlier. Dysfunctional social behavior is also found with the
overexpression of oxytocin. Williams Syndrome, which results
from the loss of 28 genes, features dysregulation of oxytocin and
vasopressin secretion by the hypothalamic-pituitary system (Dai
et al., 2012). Baseline plasma levels of oxytocin are three-times
higher and vasopressin levels 0.30% higher in Williams Syndrome
than in controls. Individuals with Williams Syndrome possess
cognitive deficits with behavior characterized by diminished
social anxiety and fearfulness, readily approaching, socially
interacting with and trusting strangers (Jarvinen et al., 2013).
However, they experience difficulty interacting with peers and

have high non-social anxiety. With cognitive deficits and overly
trusting of others these individuals cannot live independently.

Several hundred genes, many of them rare copy variations,
have been implicated as risk factors for dysfunctions in
communication and mind reading that characterize autism
spectrum disorders (Pinto et al., 2014; Sahin and Sur, 2015).
The large number is consistent with the broad heterogeneity of
symptoms and their expression in autism. While alterations in
oxytocin stimulatory proteins, oxytocin plasma levels and genetic
variance in oxytocin receptors have been reported as risk factors
for autism (Jacobson et al., 2014; LoParo and Waldman, 2015),
clinical trials on the efficacy of oxytocin therapy has found only
modest benefits or no positive effects (Young and Barrett, 2015).
Collectively, the genetics underlying psychopathy, Williams
disease and autism indicate that no one gene is responsible for the
development of the human prosocial brain, but a broad network
of interacting genes found in normal populations set the stage for
the second system of heredity (neuron-based) to sculpt prosocial
brain functions.

Role of Neuron-Based Heredity in
Altruism
The human genome containing around 20,000 protein-encoding
genes can provide the basic blueprint for brain development,
but training and experiences in the early years from infancy
through childhood are crucially important in sculpting brain
development and function. As discussed earlier, prosocial
behavior is displayed by most infants and preschool children.
Culture plays a major role in enhancing and strengthening
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prosocial behavior. Even where genetic inheritance of the callous-
unemotional trait is a significant risk factor for developing
criminal psychopathic behavior, especially in chaotic, uncaring
environments, expression of risky behavior can be muted by early
adoption and raising with strong positive parenting.

The typical experience for a newborn is rapid bonding with a
loving mother providing intensive high-attentive care. When this
does not happen and there is profound social deprivation early in
life, such as institutionalization in an orphanage, prosocial brain
development is severely compromised. Connectivity between the
prefrontal cortex and amygdala is altered and the amygdala-
hypothalamic-pituitary stress axis affected (Gee et al., 2013;
McLaughlin et al., 2014). The constellation of problems found
in institutionalized children include: smaller brain size with
reduced cortical thickness, deficits in cognitive and language
functions, problems with emotional regulation, and increased
risk for psychotic symptoms (Tottenham et al., 2010; McLaughlin
et al., 2014; Trotta et al., 2015; Bick and Nelson, 2017).

From these studies we see that development plays an
important role in cultivating behavior, and that early intervention
can help recover normal development, even impacting adolescent
criminals. How much of this is learning and how much is
developmental determinism? Studies of economic games such as
the Prisoner’s Dilemma indicate wide differences in the display
of prosocial behavior in single and iterative play (Fehr and
Schmidt, 2003). However, a study of 102 adults participating in
a repetitive Social Gambling Task indicated that an individual’s
ability to learn how their actions impacted another’s outcome
led to more prosocial behavior (Kwak et al., 2014). In this
context, learners were defined as those who made choices
resulting in economic gain, whether for themselves or others,
and is mathematical in nature. On a neuroscientific basis,
learning occurs with the release of dopamine in the reward
and reinforcement centers of the brain including regions of
the striatum, such as the nucleus accumbens, from the ventral
tegmental area and substantia nigra. Rodents have been observed
to learn the conditions of an experimental shock more quickly
after vicariously observing other rodents receive the shock during
such conditioning experiments. These rodents vicariously learn
the conditions of the experimental shock more rapidly if they
also have experienced the shock for themselves, regardless of
whether that shock was experienced within the context of the
conditioning experiment or not (Sanders et al., 2013; Lahvis,
2017). Rodents that had these vicarious learning experiences
while hearing pain-induced vocalizations in others exhibited
increased activation of both dopamine and serotonin circuitry
and the ACC (Kim et al., 2014) suggesting both empathy
and learning through limbic systems and dopaminergic reward
mechanisms. These studies on vicarious or empathic learning
are supported by studies in humans showing experience of a
painful stimulus increases empathy in human observers (Eklund
et al., 2009; Preis and Kroener-Herwig, 2012) which coincide
with BOLD fMRI data indicating that the perception of pain
in others is neurologically similar to the actual sensation of
pain (Preis et al., 2015). Participation in the Zurich Prosocial
Game, a computer-based compassion training game that requires
cooperation, has been shown to increase helping behavior in

human subjects 5 days after training (Leiberg et al., 2011),
suggesting long-term processing and learning through reward
mechanisms. Reflecting on gratitude increases scores on a
self-report measure of altruistic values and coincides with
increased BOLD fMRI activation in the nucleus accumbens
and vmPFC (Karns et al., 2017) indicating involvement of the
mesolimbic dopamine pathway for reward and reinforcement
learning of altruistic behavior (Strobel et al., 2011). Further
supporting the role of social learning as important in the
cultivation of prosocial behavior are studies linking oxytocin,
previously described for its prosocial and parental functions,
with dopamine circuitry. Oxytocin receptors and dopamine
receptors coexist in the striatum, medial PFC, substantia
nigra and ventral tegmental area (Skuse and Gallagher, 2009).
Intranasal oxytocin in normal humans appeared to increase
the reward for reciprocated cooperation through increased
activation of the dopamine-activated, reward-linked nucleus
accumbens during repeated iterations of Prisoner’s Dilemma
game (Rilling et al., 2012) which supports the role of oxytocin
and dopamine learning pathways in trust and reciprocation
behavior.

Thus social and cultural behaviors and activities are
mechanisms for not only training the brain beginning in
prenatal life, they are also principal components in determining
brain development and dopaminergic reinforcement learning
in the adult. Empathy and compassion are feelings with basic
genetic and neural underpinnings crucial for the development of
large interacting social communities characterizing our species.
Successful cultures have strong and effective implicit and explicit
mechanisms for promoting and enhancing empathetic and
compassionate behavior. Empathy and compassion are core
values in most, if not all, of the world’s major religions. Buddhist
methods for training the mind through meditation and yoga
(Tomasino et al., 2014) are an example of positive approaches
to enhance empathy and compassion that have been secularized
and entered mainstream Western culture and medicine through
mindfulness practices (Gotink et al., 2015).

While this review has focused on those populating the
extremes of the social, behavioral, and cognitive spectrums, the
question remains as to whether individuals within a cultural
norm can alter their behavior to become more compassionate
and display less selfish behavior. For this non-clinical cohort
there exists an interesting non-clinical approach encompassed
by mindfulness-based and compassion meditation. In one
BOLD fMRI based study of expert and novice compassion
meditators, an increase in activity was observed in the ACC,
amygdala, and the insular cortex (among other regions) of
expert meditators during meditation compared with non-
meditative rest in response to negative emotional sounds (Lutz
et al., 2008), indicating that compassion meditation increased
activation of these emotion-processing limbic regions that
are connected to the prefrontal cortex (also see Fox et al.,
2016). These include regions implicated in the selfish–selfless
spectrum as outlined previously in this text. The degree
of activation of these regions also correlated with the self-
reported depth of meditation and the degree of meditative
training, indicating that additional experience activates these
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regions of the brain to a greater degree. Some groups have
attempted to bring this practice to the clinical psychology setting
(Fox et al., 2016). One study found that 12 weeks of mindfulness-
based intervention with compassion meditation in a group with
social anxiety disorder resulted in a significant improvement
in social anxiety symptoms, depression, social adjustment, and
enhancement of compassion, all compared to a control group
that was placed on a waiting list at the beginning of the study
(Koszycki et al., 2016).

In the general population, mindfulness-based practices have
been reported to promote a plethora of effects on the whole body:
reducing stress hormones, reducing inflammation, promoting
pain relief and wound healing (Hofmann et al., 2011; Lutz et al.,
2013; Zeidan et al., 2015; Rosenkranz et al., 2016). Other forms
of meditation including concentrative eye-gazing and controlled
breathing have been shown to result in voluntary activation
of components of the sympathetic nervous system, changes in
plasma catecholamine and serum cortisol concentrations, and
an attenuation of the innate immune response as measured by
plasma cytokines (Kox et al., 2014) and IL-6 markers (Pace et al.,
2009). The study of altruism and psychopathy has implications
beyond these traits, as similar brain regions are affected in Post-
Traumatic Stress Disorder (Keding and Herringa, 2016; Rinne-
Albers et al., 2017). Yoga and controlled eye movement therapies,
called Eye Movement Desensitization and Reprocessing (EMDR),
are techniques used for post-traumatic stress (Zepeda Méndez
et al., 2018) and recognized by APA (2017) and United States
Department of Veterans Affairs (2017). This suggests meditative
or contemplative practices can affect acquired cognitive traits,
including promoting unselfish behavior.

SUMMARY

Altruism as envisioned by Auguste Comte exists in the general
population and in zealous altruists who anchor the benevolence
end of the Selfish–Selfless Spectrum. Advances in genetics,
psychology, and neurobiology have increased our understanding
of social neurocircuitry in the human brain, providing critical
insights into resolving ongoing philosophical, biological, and

social debate over “universal selfishness” or “universal goodness”
characterizing human behavior. Both positions are partial truths
based on the components of the Selfish–Selfless Spectrum being
observed. As a lens into the social brain, the extremes of
the Selfish–Selfless Spectrum defined by callous, unemotional
psychopaths and dynamic, zealous altruists reveal the importance
of both genetic and neuron-based heredity systems and reward
processes in strongly influencing actions toward others and
cooperative behavior. Critically, individuals with genes associated
with developing dangerous social disorders such as callous,
unemotional traits have the potential to modify those conditions
using cognitive therapeutic interventions (e.g., strong positive
parenting, compassion training) to change where they reside
on the social spectrum. Evidence from population groups
ranging from incarcerated juveniles, adopted children, twins,
and meditators point to the important role of neuroplasticity
and reward learning circuitry in forming and reforming of
neural connections that determine our behavior. Success with
treatment programs promoting positive behavior via the brain
reward system in these diverse groups suggests promise as a
therapeutic approach to mitigating violent, destructive behavior.
Approaches involving introspection and promoting acts of
compassion that activate the reward system, such as mindfulness
training, are entering the mainstream of clinical treatment for
pain management, depression, stress, and behavior modification.
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