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APPROXIMATION OF SOLUTIONS TO THE MIXED DIRICHLET-NEUMANN
BOUNDARY VALUE PROBLEM ON LIPSCHITZ DOMAINS

We show that solutions to the mixed problem on a Lipschitz domain Ω can be ap-
proximated in the Sobolev space H1(Ω) by solutions to a family of related mixed
Dirichlet-Robin boundary value problems which converge in H1(Ω), and we give a
rate of convergence. Further, we propose a method of solving the related problem
using layer potentials.
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Chapter 1 Introduction

1.1 Statement and History of the Mixed Problem

Let Ω ⊆ Rd be a bounded Lipschitz domain, D ⊆ ∂Ω a relatively open subset of
∂Ω, N = ∂Ω \ D̄ the complementary open set in ∂Ω, and Λ = D̄ ∩ N̄ the shared
boundary of D and N , and consider the mixed problem, also known as Zaremba’s
problem, with homogeneous Dirichlet data for the Laplacian:

−∆u = f on Ω

u = 0 on D
∂u
∂ν

= g on N.

(MP)

For u ∈ C2(Ω)∩C1(Ω̄), −∆u := −
∑d

j=1
∂2u
∂x2j

denotes the Laplacian and ∂u
∂ν

:= ∇u · ν
denotes the normal derivative of u, where ν is the outward-pointing unit normal
vector field on ∂Ω. On a Lipschitz domain Ω, ν is defined σ-a.e. on ∂Ω, where σ
denotes (d− 1)-dimensional surface measure.

In 1977, Dahlberg [7] studied the pure Dirichlet problem on Lipschitz domains,
and in 1981 Jerison and Kenig [16] extended these results to more general elliptic
operators and obtained regularity results. In 1979 Dahlberg [8] published a survey of
his results up to that point pertaining to the pure Dirichlet problem for the Laplacian.
Verchota [40] studied the Dirichlet problem with data having one derivative in Lp(∂Ω)
in 1984 by appealing to the method of layer potentials, thus extending the results
of Jerison and Kenig [17]. Dahlberg, Kenig and Verchota [6] obtained results in
1986 analogous to those of Dahlberg [7] on the Dirichlet problem for the so-called
biharmonic operator ∆2.

Regularity results on the pure Neumann problem for the Laplacian on Lipschitz
domains were first studied in 1981 by Jerison and Kenig [17] in the case where the
Neumann data is in L2(∂Ω). In the same paper, the authors also studied regularity for
the Dirichlet problem with data having one derivative in L2(∂Ω). In 1987 Dahlberg
and Kenig [9] considered optimal conditions for the solvability of the pure Neumann
problem on a Lipschitz domain when the data lies in Lp(∂Ω), including endpoint
results involving Hardy spaces on ∂Ω.

In lecture notes published in 1994, Kenig [19] states the Lp mixed problem as an
open problem. Indeed, certain difficulties arise when studying the mixed problem,
even when Ω is smoother than Lipschitz. For example, let Ω ⊂ R2 be a bounded
smooth domain in the upper half plane whose boundary contains the segment [−1, 1]×
{0}, choose D,N ⊆ ∂Ω which satisfy [−1, 0) × {0} ⊆ D and (0, 1] × {0} ⊆ N , and

set u(x1, x2) := Re(
√
z) = r

1
2 cos θ

2
, where r =

√
x2

1 + x2
2 and tan θ = x2

x1
. Since u is

the real part of a function holomorphic on C \ {0}, we have −∆u = 0 on Ω. Further,
u satisfies the boundary conditions ∂u

∂ν
= 0 on N ∩ ([−1, 1]× {0}) and u = 0 on

D ∩ ([−1, 1]× {0}). However, ∂u
∂ν

and ∇u are not in Lp(∂Ω) for any p ≥ 2. Indeed,
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on D ∩ ([−1, 1]× {0}) we have

∂u

∂ν
= −1

2
|x1|−

1
2 − |∇u|,

hence, for any 0 < ε < 1 the integral∫
D∩([−ε,ε]×{0})

∣∣∣∣∂u∂ν
∣∣∣∣p dσ ≥ 1

4

∫ ε

0

1

xp/2
dx

diverges. We can also construct for any p > 2 domains where the mixed problem has
no solution if we insist on |∇u| being in Lp(∂Ω) even non-tangentially (cf. Kenig [18]
for relevant examples). In 1997, Savaré [34] showed that solutions of the homogeneous

mixed problem are, however, in the Besov space B
3/2
2,∞(Ω). In this same paper, Savaré

studies the effects of perturbation of the set D on solutions of the mixed problem.
Since 1994, much work has been done regarding the Lp mixed problem. In 1994,

Brown [2] gave mild conditions on ∂Ω and the Dirichlet data for which Ω admits a
solution u to the mixed problem satisfying ∇u ∈ L2(∂Ω) non-tangentially. Under
the same restrictions on ∂Ω, Sykes and Brown [37] prove existence and uniqueness of
solutions for 1 < p < 2, assuming the Dirichlet data and Neumann data are elements
of L1,p(D) and Lp(N), respectively. The results of Brown [2] and Sykes and Brown
[37] are valid when d ≥ 3. Lanzani, Capogna, and Brown [21] extended these results
to hold when d = 2, but only in Lipschitz hypergraphs with Lipschitz constant less
than 1. In 2012, Ott and Brown [30] give sufficient conditions on D, N and Λ so that
for a general bounded Lipschitz domain Ω and an exponent p0 > 1 depending on Ω,
existence and uniqueness of solutions to the Lp mixed problem is guaranteed when
p ∈ (1, p0). In particular, Ott and Brown [30] require that Λ locally be the graph of
a Lipschitz function ϕ : Rd−2 → R. In 2013, Taylor, Ott and Brown [38] improve the
previous result by replacing the condition on Λ with an Ahlfors regularity condition
which is less restrictive.

1.2 Formulation and History of the Approximate Mixed Problem

Formally, (MP) can be written with a single boundary condition{
−∆u = f on Ω

χN
∂u
∂ν

+ χDu = χNG on ∂Ω,

where χD and χN are the characteristic functions of D and N , respectively, and G
satisfies G|N = g. Now, suppose for some small ε > 0 we set χεN to be a continuous
approximation of χN which is 0 on D, non-zero on N , and 1 when dist(x,D) > ε, and
set a = 1− χεN . The questions we look to answer are as follows: Do solutions of the
Robin problem converge to solutions of the mixed problem in some function space as
ε → 0? If so, at what rate? Also, is there any advantage to using this method of
approximation?

Before answering these questions, we first formulate the problem more rigorously.
If we once again impose the Dirichlet boundary condition u = 0 on D, we can divide

2



both sides of the boundary condition by χεN on N , leaving us with the so-called
approximate mixed problem 

−∆uε = f on Ω

uε = 0 on D
∂uε
∂ν

+ aεuε = g on N,

(AMP)

where aε :=
1−χεN
χεN

. Note that uε now depends on the parameter ε, and satisfies a

Robin boundary condition on N .
In the case d ≥ 3, Medková [27] considers the Robin problem{

−∆u = 0 in Ω,
∂u
∂ν

+ bu = f on ∂Ω

when ∂Ω is piecewise smooth, obtaining a solution by layer potentials under certain
conditions on b and f . Lanzani and Shen [23] obtain existence and uniqueness of
solutions to the Lp Robin problem

−∆u = 0 in Ω,
∂u
∂ν

+ bu = f ∈ Lp(∂Ω) on ∂Ω,

(∇u)∗ ∈ Lp(∂Ω)

for 1 < p ≤ 2 and b a given non-negative function on ∂Ω satisfying b ∈ Ld−1(∂Ω) ∩
Lq(∂Ω) for some q > 2. Here (∇u)∗ is the non-tangential maximal function of ∇u,
defined for x ∈ ∂Ω by

(∇u)∗(x) := sup
y∈Γ(x)

|∇u(y)|,

where

Γ(x) := {z ∈ Ω : |x− z| < 2 dist(z, ∂Ω)}

is the interior non-tangential approach region. Lanzani and Mendez [22] give cor-
responding results for the inhomogeneous equation −∆u = g, and Agranovich [1]
extends these results to general strongly elliptic systems of equations. In most of the
above publications, the Robin function b is assumed to be at least in Ld−1(∂Ω). One
of the novelties of our results is that aε is not in general an element of Ld−1(N). In
certain cases we have aε ∈ Lp(∂Ω) for at least one p > 1, but in others we do not
even have aε ∈ L1(∂Ω). In the latter cases, certain layer-potential results which hold
for the former no longer apply.

Later we shall see that when aε ∈ Lp(∂Ω) for some p > 1, (AMP) is a compact
perturbation of (MP). As far as can be easily determined, many similar perturbation
problems appear in the literature, none of which are precisely (AMP). In 1996,
Costabel [5] studies a similar problem on smooth domains in R2:

−∆uε = f in Ω
∂uε
∂nu

= 0 on N

ε∂uε
∂ν

+ uε = g on D.

3



The author is able to determine an asymptotic expansion of uε in terms of ε, as well
as estimates near Λ = {c1, c2} which describe how uε approximates the singularities
in the limiting mixed problem. Given operators A,B : X → X on a Banach space
X, Friedman [12] considers equations of the form

εAuε +Buε = fε,

and discusses the rate at which solutions uε converge to a solution u0 ∈ X of the
equation Bu0 = f0 as fε → f0. Paltsev [31] studies equations with mixed Dirichlet
and Robin data of the form

Lu(x) + µ2q(x) = f(x) on Ω,

u = g on D,
∂u
∂ν

+ bu = h on N,

where L is an elliptic operator in divergence form, µ ∈ C is a parameter which may
have large modulus, q0 is a given constant, and q(x) ≥ q0 > 0 is a given function.
However, the effect of µ on solutions u is only discussed in the sense that large µ
results in a rapid rate of convergence for iterative methods of approximating u.

1.3 Main Results

Our first result is a Hardy inequality on H1
D(Ω) which holds when D satisfies the

corkscrew condition (2.3) defined in Section 2.1 (cf. Hardy [15] and Grisvard [14]).

Lemma 1.1 (Hardy Inequality). Suppose D satisfies the corkscrew condition (2.3).
If u ∈ H1

D(Ω), then there is a constant C depending only on d and D such that∫
N

(Tru)2

δ
dσ ≤ C

∫
Ω

|∇u|2 dx.

Though not difficult to prove, Lemma 1.1 proves to be the key estimate for study-
ing (AMP). In particular, it implies the following existence and uniqueness theorem
based on the famous lemma of Lax and Milgram [24].

Theorem 1.2 (Existence and Uniqueness). Suppose D ⊆ ∂Ω satisfies the corkscrew

condition (2.3). Let f ∈ H−1
D (Ω) and g ∈ H̃−1/2(N), and let aε be a standard family

of functions. Take a0 to be identically 0 on ∂Ω. There is an ε0 > 0 and a constant C
not depending on ε such that for each 0 ≤ ε < ε0, a unique weak solution uε ∈ H1

D(Ω)
of (AMP) (or (MP) in the case ε = 0) exists which satisfies

‖uε‖H1(Ω) ≤ C
(
‖f‖H−1

D (Ω) + ‖g‖H−1/2(N)

)
. (1.1)

Under some extra regularity assumptions on f , g, and Λ, we obtain our next main
result at the end of Chapter 3, which is an upper bound on the rate at which solutions
of (AMP) converge to those of (MP).
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Theorem 1.3. Suppose D satisfies the corkscrew condition (2.3), Λ satisfies the
Ahlfors regularity condition (2.4), aε is a standard family of functions, f ∈ Lq(Ω) for
some q > d

2
, and g ∈ Lp(N) for some p > d − 1. If uε ∈ H1

D(Ω) is a weak solution
of (AMP), u0 ∈ H1

D(Ω) is a weak solution of (MP), and 0 < ε < ε0, then there is a
constant C not depending on ε such that

‖uε − u0‖H1(Ω) ≤ Cε1+α.

Note that Theorem 1.3 essentially answers the first two questions asked imme-
diately before stating AMP rigorously: Do solutions of the Robin problem converge
to solutions of the mixed problem in some function space as ε → 0? If so, at what
rate? Its proof relies on the fact that weak solutions of (AMP) are globally Hölder
continuous uniformly in ε. Interior estimates were proven independently by Ennio
De Giorgi [10] and John Nash [29] in 1957, and again by Jürgen Moser [28] in 1960.
Also in 1960, Stampacchia [35] applied the method of De Giorgi [10] and Nash [29] to
prove that weak solutions to (MP) are in fact Hölder continuous up to the boundary.
A.F.M. ter Elst and Rehberg [39] give a thorough treatment of Hölder continuity of
solutions to (MP) under more general conditions on Ω and D than what we use.

Our final main results concern integral representation of uε ∈ H1
D(Ω). Theorem

1.4 says that if we can solve a certain system of boundary integral equations, then we
have a representation formula for weak solutions of (MP) and (AMP), and Theorem
1.5 confirms that the aforementioned system is in fact uniquely solvable.

Theorem 1.4. Let f ∈ H−1
D (Ω−), g ∈ H−1/2(N), and aε a standard family of

functions. Set aε to be identically 0 when ε = 0. Choose ΓD ∈ H̃1/2(N) and

ΓN ∈ H−1/2(∂Ω) with g := ΓN |N . Define hε =
[
hD,ε
hN,ε

]
∈H∗ε by

hD,ε :=

(
−TrGf +A(aεΓD − ΓN)− 1

2
(ΓD − CΓD)

)∣∣∣∣
Dε

, and

hN,ε :=

(
−∂

−

∂ν
Gf +

1

2

(
g + aεΓD + B(aεΓD − ΓN)

)
−DΓD

)∣∣∣∣
N

.

For fixed ε, 0 ≤ ε < ε0, if ψε :=
[
ψD,ε
ψN,ε

]
∈Hε solves the system of integral equations

Aεψε = hε, (1.2)

then the weak solution uε ∈ H1
D(Ω−) of (AMP) has integral representation

uε = Gf + SL (ψD,ε − aεψN,ε + ΓN − aεΓD)−DL(ψN,ε + ΓD) on Ω−.

Conversely, if uε ∈ H1
D(Ω−) solves (AMP), then ψε :=

[
ψD,ε
ψN,ε

]
∈Hε given by

ψD,ε :=
∂−uε
∂ν

+ aε Tr− uε − ΓN and ψN,ε := Tr− uε − ΓD

solves the system (1.2).
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Theorem 1.5. Let 0 ≤ ε < ε0. If aε ∈ Lp(∂Ω) for some p > 1, the map Aε : Hε →
H∗ε has a bounded inverse A−1

ε : H∗ε →Hε, and the system Aεψε = hε has a unique
solution for each hε ∈Hε.

Copyright c© Morgan Schreffler, 2017.
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Chapter 2 Notation and Weak Formulation of the Approximate Mixed
Problem

In this chapter, we develop the notation and preliminary results required to state
precisely the weak formulations of (MP) and (AMP). Section 2.1 deals with the
geometric requirements on Ω, D, and N . In Section 2.2 we define Sobolev spaces on
Rd, Ω, and subsets of ∂Ω). Of particular interest are the spaces H1

D(Ω), H̃1/2(∂Ω),
and their duals. Section 2.2 concludes with our main estimate, a Hardy inequality on
N . We wrap up the chapter with Section 2.3, in which we give the weak formulations
of (MP) and (AMP), and prove existence and uniqueness of weak solutions to both.

2.1 Lipschitz Domains

For x = (x′, xd) ∈ Rd−1 ×R, M > 0, and r > 0, define coordinate cylinders

Zr(x) := {(y′, yd) ∈ Rd−1 ×R : |y′ − x′| < r, |yd − xd| < (1 + 2M)r}.

We say Ω ⊂ Rd is a Lipschitz domain with constant M if ∂Ω is compact and for each
x ∈ ∂Ω there is an rx > 0 and a Lipschitz function ψx : Rd−1 → R with constant M
such that (after a possible rigid change of coordinates)

Ωrx(x) := Ω ∩ Zrx(x) = {(y′, yd) ∈ Rd−1 ×R : yd > ψx(y
′)} ∩ Zrx(x), and (2.1)

Ψrx(x) := ∂Ω ∩ Zrx(x) = {(y′, yd) ∈ Rd−1 ×R : yd = ψx(y
′)} ∩ Zrx(x). (2.2)

Since ∂Ω is compact, we can always choose a collection of finitely many cylinders
{Zr0(xj)}Jj=1 and a corresponding collection {ψxj}Jj=1 of Lipschitz functions satisfying

∂Ω =
⋃J
j=1 Ψr0(xj), where r0 is chosen small enough so that conditions (2.1) and (2.2)

are still met by Ω4r0 and Ψ4r0 , respectively. Note that the measure of a coordinate
cylinder is 2(1 + 2M)ωd−1r

d, where ωd−1 is the measure of the unit ball in Rd−1.
When an estimate depends on the specific choice of cylinders and Lipschitz functions
in addition to the Lipschitz constant M and the constants in (2.3) and (2.4) below,
we say that our estimate depends on the global character of Ω.

Remark. Since ∂Ω is compact, Rd\∂Ω may be unbounded, though it can have at most
one unbounded component. In Chapter 3 we work almost exclusively with bounded
Lipschitz domains, but in Chapter 4 we discuss both bounded and unbounded do-
mains. When a distinction must be made, we let Ω− denote an arbitrary bounded
Lipschitz domain, and Ω+ := Rd \ Ω− the complementary unbounded domain.

Remark. By Rademacher’s theorem [32] a Lipschitz function ψ : Rd−1 → R with
constant M is differentiable a.e. with |∇ψ| ≤ M . Hence, ∂Ω has a well-defined
surface measure σ and for σ-a.e. x ∈ ∂Ω there is a well-defined tangent plane to Ω
with unit normal vectors ±ν. We shall adopt the convention of choosing ν to point
out of Ω− and into Ω+.
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Let D ⊆ ∂Ω be nonempty and relatively open in ∂Ω, N := ∂Ω\D̄, and Λ = D̄∩N̄
the shared boundary of D and N . Set δ(x) := dist(x,Λ). We say that the set D
satisfies the corkscrew condition if there are constants C > 1 and R0 > 0 such that

∀ ` ∈ Λ, 0 < r < R0, ∃ x ∈ D such that |x− `| < r and δ(x) >
r

C
. (2.3)

We say Λ is Ahlfors (d−2)-regular if there are constants C ≥ 1 and R0 > 0 such that

1

C
rd−2 ≤ Hd−2(Br(`) ∩ Λ) ≤ Crd−2 ∀ ` ∈ Λ and 0 < r < R0, (2.4)

where Hd−2 denotes (d − 2)-dimensional Hausdorff measure and Br(`) is a ball of
radius r centered at `. We will always indicate when conditions (2.3) and (2.4) are
necessary.

2.2 Sobolev Spaces

2.2.1 Sobolev Spaces on Ω

Let 1 ≤ p ≤ ∞. The Sobolev spaces W 1,p(Rd) are those u ∈ Lp(Rd) with finite norm

‖u‖W 1,p(Rd) :=
(
‖u‖p

Lp(Rd)
+ ‖∇u‖p

Lp(Rd)

) 1
p
, 1 ≤ p <∞, and

‖u‖W 1,∞(Rd) := ‖u‖L∞(Rd) + ‖∇u‖L∞(Rd),

where ∇u denotes the weak gradient of u. The dual space of W 1,p(Rd) is denoted
W−1,p(Rd), and has norm

‖u‖W−1,p(Rd) := sup
{
| 〈u, v〉p | : v ∈ W 1,p(Ω), ‖v‖W 1,p(Rd) = 1

}
,

where 〈·, ·〉p : W−1,p(Rd) × W 1,p(Rd) → R denotes the dual pairing. Note that

C∞c (Rd) is dense in W±1,p(Rd) for 1 ≤ p <∞.
We define spaces W 1,p(Ω) to be the restriction spaces

W 1,p(Ω) := {u = U |Ω : U ∈ W 1,p(Ω)},

whose norms are given by

‖u‖W 1,p(Ω) := inf{‖U‖W 1,p(Rd) : U ∈ W 1,p(Rd), U |Ω = u}.

The dual space of W 1,p(Ω) is denoted W−1,p
0 (Ω), and consists of those elements

F ∈ W−1,p(Rd) with suppF ⊆ Ω̄. The dual pairing is denoted 〈·, ·〉p,Ω : W−1,p
0 (Ω)×

W 1,p(Ω) → R, and is given by 〈F, u〉p,Ω := 〈F,U〉p, where U ∈ W 1,p(Rd) is any

element of W 1,p(Rd) such that U |Ω = u. It is important to note that, as the next
example indicates, F ∈ W−1,p

0 (Ω) may be a non-zero distribution on Rd which is sup-
ported on ∂Ω, a set with d-dimensional measure 0. This will become more apparent
in Section 2.3.2, as well as Chapter 4.
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Example. Consider the distribution F ∈ C∞c (Rd)∗ given by 〈F, u〉2,Ω :=
∫
∂Ω

Tru dσ,

where the space H1/2(∂Ω) and the trace operator Tr : W 1,2(Ω) → H1/2(∂Ω) are
discussed in more detail in Section 2.2.2. On the one hand, if U ∈ C∞c (Rd) is
supported away from ∂Ω, then 〈F, u〉2,Ω = 〈F,U〉2 = 0, implying suppF ⊆ ∂Ω. On

the other hand, for all u ∈ W 1,2(Ω) we have∣∣∣∣∫
∂Ω

Tru dσ

∣∣∣∣ ≤ (∫
∂Ω

1 dσ

) 1
2
(∫

∂Ω

|Tru|2 dσ
) 1

2

≤ Cσ(∂Ω)
1
2‖u‖W 1,2(Ω),

implying ‖F‖W−1,2(Rd) ≤ Cσ(∂Ω)
1
2 .

Now, consider the space Ŵ 1,p(Ω) := {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω)} with norm

‖u‖Ŵ 1,p(Ω) :=
(
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

) 1
p
, 1 ≤ p <∞, and

‖u‖Ŵ 1,∞(Ω) := ‖u‖L∞(Ω) + ‖∇u‖L∞(Ω).

Since Ω is a Lipschitz domain, there is a bounded extension operator E : Ŵ 1,p(Ω)→
W 1,p(Rd) satisfying (Eu)|Ω = u for all u ∈ Ŵ 1,p(Ω) (cf. Calderón [3] or the mono-
graph of Stein [36, p. 181]). The existence of such an operator guarantees W 1,p(Ω) =
Ŵ 1,p(Ω) and that these spaces have equivalent norms, since

‖u‖W 1,p(Ω) ≤ ‖Eu‖W 1,p(Rd)

≤ C‖u‖Ŵ 1,p(Ω)

≤ C‖u‖W 1,p(Ω).

Since these spaces are equal, we discard the notation Ŵ 1,p(Ω) and write W 1,p(Ω)
when writing about either space.

Given a σ-measurable subset F ⊆ ∂Ω and 1 ≤ p <∞, let W 1,p
F (Ω) be the closure

in W 1,p(Ω) of the set of functions in C∞(Ω̄) which vanish on a neighborhood of F̄ , and
let W−1,p

F (Ω) denote the dual of W 1,p
F (Ω). In the special cases F = ∅ and F = ∂Ω,

we write W 1,p
∅ (Ω) =: W 1,p(Ω), W−1,p

∅ (Ω) =: W−1,p
0 (Ω), W 1,p

∂Ω (Ω) =: W 1,p
0 (Ω), and

W−1,p
∂Ω (Ω) =: W−1,p(Ω).

The spaces W 1,p(Ω) are Banach spaces, and the space W 1,2(Ω) is in fact a Hilbert
space when endowed with the inner product

(u, v)H1(Ω) :=

∫
Ω

(uv +∇u · ∇v) dx.

For this reason, we denote H±1(Rd) := W±1,2(Rd), H±1(Ω) := W±1,2(Ω), and
H±1
F (Ω) := W±1,2

F (Ω). When considering the case p = 2, we drop p from our dual
pairings and write 〈·, ·〉 : H−1(Rd)×H1(Rd)→ R and 〈·, ·〉Ω : H−1

D (Ω)×H1
D(Ω)→ R.

Throughout the sequel we will make use of estimates on functions u ∈ H1
D(Ω)

which involve only the seminorm ‖∇u‖L2(Ω). The following simple lemma states that
‖∇(·)‖L2(Ω) is, in fact, a norm on H1

D(Ω) equivalent to ‖ · ‖H1(Ω) when D satisfies a
weak condition.
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Lemma 2.1 (Poincaré inequality on W 1,p
D (Ω)). Let ∅ 6= D ⊆ ∂Ω be relatively open

and intersect every component of ∂Ω. There is a constant C depending only on d, D,
Ω, and p, such that ∫

Ω

up dx ≤ C

∫
Ω

|∇u|p dx ∀ u ∈ H1
D(Ω). (2.5)

Proof. Suppose estimate (2.5) does not hold. Then we may construct a sequence
{un}∞n=1 ⊂ W 1,p

D (Ω) such that ‖un‖W 1,p(Ω) = 1 and ‖un‖Lp(Ω) ≥ n‖∇u‖Lp(Ω) for every
n ∈ N. By passing to a subsequence, we can assume {un} converges in Lp(Ω) to
some u ∈ Lp(Ω) satisfying ‖u‖W 1,p(Ω) = 1. However, since ‖∇un‖Lp(Ω) ≤ 1

n
, we have

∇u = 0 a.e. in Ω, i.e., u is a constant function. The only constant function in W 1,p
D (Ω)

is 0, which contradicts the fact that ‖u‖W 1,p(Ω) = 1.

2.2.2 Sobolev Spaces on ∂Ω

Let H1/2(∂Ω) be those elements of L2(∂Ω) with finite seminorm

|ϕ|H1/2(∂Ω) :=

(∫
∂Ω

∫
∂Ω

|ϕ(x)− ϕ(y)|2

|x− y|d
dσ(x) dσ(y)

) 1
2

. (2.6)

A norm on H1/2(∂Ω) is given by

‖ϕ‖H1/2(∂Ω) :=
(
‖ϕ‖2

L2(∂Ω) + |ϕ|2H1/2(∂Ω)

) 1
2
.

Now, consider the trace map Tr : C(Ω̄) → C(∂Ω) given by Tru = u|∂Ω. It is well-
known (cf. the monograph of McLean [26, pp. 100-102]) that Tr has a continuous
extension Tr : H1(Ω) → H1/2(∂Ω) with continuous right inverse P : H1/2(∂Ω) →
H1(Ω). It follows that there is a constant C depending on ∂Ω which satisfies

1

C
‖ϕ‖H1/2(∂Ω) ≤ ‖Pϕ‖H1(Ω) ≤ C‖ϕ‖H1/2(∂Ω) ∀ ϕ ∈ H1/2(∂Ω),

i.e., ‖ · ‖H1/2(∂Ω) and ‖P (·)‖H1(Ω) are equivalent norms on H1/2(∂Ω). Moreover, the
space H1

0 (∂Ω) can be characterized as the closed supspace {u ∈ H1(Ω) : Tru = 0},
and if D ⊆ ∂Ω satisfies the corkscrew condition, H1

D(Ω) is the space of those u ∈
H1(Ω) with zero trace on D.

Similar to what we did in Section 2.2.1, given a σ-measurable set F ⊆ ∂Ω, we
define spaces

H1/2(F ) := {Φ|F : Φ ∈ H1/2(∂Ω)}

and

H̃1/2(F ) := {u ∈ H1/2(∂Ω) : suppu ⊆ F̄}.
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The space H̃1/2(F ) inherits the norm from H1/2(∂Ω), while the space H1/2(F ) is given
the norm

‖u‖H1/2(F ) := inf{‖U‖H1/2(∂Ω) : U |F = u}.

Note that if D ⊆ ∂Ω is open, H̃1/2(N) = {Tru : u ∈ H1
D(Ω)}.

Let H−1/2(∂Ω) denote the dual of H1/2(∂Ω) with norm

‖ψ‖H−1/2(∂Ω) := sup{| 〈ψ, ϕ〉∂Ω | : ϕ ∈ H1/2(∂Ω), ‖ϕ‖H1/2(∂Ω) = 1},

where 〈·, ·〉∂Ω : H−1/2(∂Ω) × H1/2(∂Ω) → R is the dual pairing. Given F ⊆ ∂Ω

relatively open, we define spaces H−1/2(F ) and H̃−1/2(F ) and their norms in the

same fashion as H1/2(F ) and H̃1/2(F ) are given above. Observe that if ∅ 6= D (
D̄ ( ∂Ω and D satisfies the corkscrew condition (2.3), the dual spaces H±1/2(D)∗

and H±1/2(N)∗ are isometrically isomorphic to H̃∓1/2(D) and H̃∓1/2(N), respectively
(cf. the monograph of McLean [26, pp. 92, 99]).

2.2.3 Hardy Inequality

The main estimate we will use in the sequel is the following Hardy inequality on N .
See the monograph of Grisvard [14, p. 33] for an analogous result.

Lemma 2.2 (Hardy Inequality). Suppose D satisfies the corkscrew condition (2.3).
If u ∈ H1

D(Ω), then there is a constant C depending only on d and D such that∫
N

(Tru)2

δ
dσ ≤ C

∫
Ω

|∇u|2 dx. (2.7)

Proof. First recall that Tr : H1(Ω) → H1/2(∂Ω) is continuous, so if u ∈ H1
D(Ω) we

have the estimate∫
N

|Tru(y)|2
∫
D

|x− y|−d dσ(x) dσ(y) ≤
∫
∂Ω

∫
∂Ω

|Tru(x)− Tru(y)|2

|x− y|d
dσ(x) dσ(y)

≤ ‖Tru‖2
H1/2(∂Ω)

≤ C

∫
Ω

|∇u|2 dx.

Fix y ∈ N and note that δ(y) > 0. Further, because Λ is closed, there is a point
`y ∈ Λ such that |y−`y| = δ(y). Then, since D satisfies the corkscrew condition there
is a constant C > 1 independent of y and a point ỹ ∈ D such that |ỹ− `| < δ(y) and
Bδ(y)/C(ỹ) ∩ N̄ = ∅, i.e., Ψδ(y)/C(ỹ) = D ∩Bδ(y)/C(ỹ) ⊆ D ∩B3δ(y)(y). Hence,∫

D

|x− y|−d dσ(x) ≥
∫
D∩B3δ(y)(y)

|x− y|−d dσ(x)

≥ 3−dδ(y)−dσ(D ∩B3δ(y)(y))

≥ 3−dδ(y)−dσ(Ψδ(y)/C(ỹ))

≥ C1−d3−dωd−1δ(y)−1,

which gives the desired result.
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2.3 The Approximate Mixed Problem

In Chapter 1 we took a very informal approach to formulating (AMP). In Section
2.3.2 we give a rigorous definition to the normal derivative ∂u

∂ν
of a function u ∈ H1(Ω),

and in Section 2.3.1 we give precise general conditions on aε which will ensure that
(AMP) has a consistent weak formulation, that a unique weak solution uε ∈ H1

D(Ω)
of (AMP) exists, and that for such a weak solution estimate (1.1) is valid.

2.3.1 Standard Families of Functions

Let Λε := {x ∈ N : 0 < δ(x) < ε} and Dε := D̄ ∪ Λε. Fix µ ∈ (0, 1] and ε0 > 0, and
for each 0 < ε < ε0, consider an example function aε : ∂Ω→ R given by

aε(x) :=

{
εµ−δ(x)µ

δ(x)µ
, 0 < δ(x) ≤ ε,

0, otherwise.
(2.8)

Observe that for 0 < ε < ε0, aε satisfies the following general conditions:

supp aε ⊆ Λε, (2.9)

0 ≤ aε ≤
(ε
δ

)µ
σ-a.e. on Λε, and (2.10)

|aε+h(x)− aε(x)| ≤ Cµε
µ−1

δ(x)µ
|h| for all x ∈ N, |h| < ε, 0 < ε+ h < ε0. (2.11)

Further, for each x ∈ N , the function ãx : (0, ε0)→
[
0,

εµ0
δ(x)µ

)
given by ãx(ε) := aε(x)

satisfies

ãx ∈ C∞
(
(0, δ(x)) ∪ (δ(x), ε0)

)
∩ C0,1(0, ε0) with

∣∣∣∣dkãdεk
∣∣∣∣ ≤ Cµε

µ−k

δµ
, k = 0, 1, . . . .

(2.12)

In general if a family of functions {aε}ε>0 satisfies conditions (2.9) and (2.10), we say
aε is a standard family of functions. If in addition {aε}ε>0 satisfies condition (2.11),
we say aε is a continuous standard family, and if aε satisfies condition (2.12) we say
aε is a smooth standard family.

Remark. When aε is a standard family, the Hardy inequality implies for each 0 < ε <
ε0 that the operator ϕ 7→ aεϕ is bounded as a map from H̃1/2(N) to H̃−1/2(N).

2.3.2 The Laplacian and Normal Derivative

For u ∈ C2(Ω) the Laplacian of u, written −∆u, is given by

−∆u :=
d∑
j=1

∂2u

∂x2
i

.
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Now let u ∈ H1(Ω). Clearly the above definition no longer makes sense as an element
of L2(Ω), but if we define −∆u ∈ H−1(∂Ω) as the distribution given by

〈−∆u, v〉Ω =

∫
Ω

∇u · ∇v dx, v ∈ H1
0 (Ω),

then we have a definition which is consistent with the usual integration by parts
formula when u ∈ C2(Ω) and v ∈ C1

c (Ω). If we have the added assumptions u ∈ C2(Ω̄)
and v ∈ C1(Ω̄), integration by parts yields Green’s identity∫

Ω±
(−∆u)v dx =

∫
Ω±
∇u · ∇v dx±

∫
∂Ω

∂u

∂ν
v dσ,

where ∂u
∂ν

:= ∇u|∂Ω · ν is the normal derivative of u. Note the sign change due to our
choice of ν. Once again we cannot use this formula directly for general u ∈ H1(Ω),
since ∇u ∈ L2(Ω) does not have a well-defined trace on the set ∂Ω of d-dimensional
measure 0. Thus we need to be careful in defining ∂u

∂ν
. The following lemma allows

us to extend the notion of a normal derivative to elements of H1(Ω).

Lemma 2.3 (Green’s Identity for H1(Ω)). Suppose u ∈ H1(Ω) and F ∈ H−1
0 (Ω)

satisfy −∆u = F on Ω, i.e., 〈−∆u, v〉Ω = 〈F, v〉Ω for all v ∈ H1
0 (Ω). If Ω is bounded,

then there is an element g− ∈ H−1/2(∂Ω) uniquely determined by u and F such that

‖g−‖H−1/2(∂Ω) ≤ C
(
‖u‖H1(Ω) + ‖F‖H−1

0 (Ω)

)
, (2.13)

and for all v ∈ H1(Ω) satisfies

〈F, v〉Ω =

∫
Ω

∇u · ∇v dx−
〈
g−,Tr v

〉
∂Ω
. (2.14)

If Ω is unbounded, then there is an element g+ ∈ H−1/2(∂Ω) for which the estimate
(2.13) holds and which satisfies for every v ∈ H1(Ω) the identity

〈F, v〉Ω =

∫
Ω

∇u · ∇v dx+
〈
g+,Tr v

〉
∂Ω
. (2.15)

In either case, we refer to g− or g+ as the normal derivative of u with respect to F .

Remark. We have the two separate equations (2.14) and (2.15) to ensure that g− = g+

when u ∈ C2
c (Rd), which is consistent with our convention of having ν point out of

a bounded domain Ω− and into its unbounded complementary domain Ω+.

Proof of Lemma 2.3. Let P : H1/2(∂Ω)→ H1(Ω) be a continuous right inverse of the
trace map Tr : H1(Ω)→ H1/2(∂Ω) (See Section 2.2.2), and define g ∈ H−1/2(∂Ω) by

〈g, ϕ〉∂Ω =

∫
Ω

∇u · ∇(Pϕ) dx− 〈F, Pϕ〉Ω , ∀ ϕ ∈ H1/2(∂Ω).
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Clearly | 〈g, ϕ〉∂Ω | ≤ ‖P‖(‖∇u‖L2(Ω) + ‖F‖H−1
0 (Ω)) whenever ‖ϕ‖H1/2(∂Ω) = 1, which

proves the estimate (2.13). Next, for v ∈ H1(Ω) set v0 := v − P (Tr v) ∈ H1
0 (Ω). By

how we defined g, and the fact that −∆u = F on Ω, we have

〈F, v〉Ω = 〈−∆u, v0〉Ω + 〈F, P (Tr v)〉Ω

=

∫
Ω

∇u · ∇v dx−
∫

Ω

∇u · ∇[P (Tr v)] dx+ 〈F, P (Tr v)〉Ω

=

∫
Ω

∇u · ∇v dx− 〈g,Tr v〉∂Ω .

Finally, suppose g̃ ∈ H−1/2(∂Ω) also satisfies (2.14) for all v ∈ H1(Ω). Then for all
ϕ ∈ H1/2(∂Ω), 〈g − g̃, ϕ〉∂Ω = 〈g − g̃,Tr(Pϕ)〉∂Ω = 0, i.e., g = g̃.

Remark. As we mentioned in Section 2.2.1, even if F, F̃ ∈ H−1
0 (Ω) satisfy F = F̃ on

Ω, F − F̃ may still be a non-zero distribution on Rd supported in ∂Ω. Hence the
distribution g ∈ H−1/2(∂Ω) indeed depends upon both u and the choice of F . Thus,
when refering to the normal derivative of u ∈ H1(Ω), we are referring specifically to
the normal derivative of u with respect to the distribution

F =

{
−∆u on Ω,

0 on Rd \ Ω.

2.3.3 Weak Formulation, Existence and Uniqueness

Recall from Chapter 1 the mixed problem (MP)
−∆u0 = f on Ω

u0 = 0 on D
∂u0
∂ν

= g on N,

and for a standard family aε, the approximate mixed problem (AMP)
−∆uε = f on Ω

uε = 0 on D
∂uε
∂ν

+ aεuε = g on N.

For f ∈ H−1
D (Ω) and g ∈ H̃−1/2(N), we call u0 ∈ H1

D(Ω) a weak solution of (MP) if∫
Ω

∇uε · ∇ϕdx = 〈f, ϕ〉Ω + 〈g,Trϕ〉∂Ω ∀ϕ ∈ H1
D(Ω),

and we call uε ∈ H1
D(Ω) a weak solution of (AMP) if∫

Ω

∇uε · ∇ϕdx+

∫
N

aε Truε Trϕdσ = 〈f, ϕ〉Ω + 〈g,Trϕ〉∂Ω ∀ϕ ∈ H1
D(Ω).

Here, 〈·, ·〉Ω and 〈·, ·〉∂Ω denote dual pairings on H−1
D (Ω) and H̃−1/2(N), respectively.
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Theorem 2.4 (Existence and Uniqueness). Suppose D ⊆ ∂Ω satisfies the corkscrew

condition (2.3). Let f ∈ H−1
D (Ω) and g ∈ H̃−1/2(N), and let aε be a standard family

of functions. Take a0 to be identically 0 on ∂Ω. There is an ε0 > 0 and a constant C
not depending on ε such that for each 0 ≤ ε < ε0, a unique weak solution uε ∈ H1

D(Ω)
of (AMP) (or (MP) in the case ε = 0) exists which satisfies

‖uε‖H1(Ω) ≤ C
(
‖f‖H−1

D (Ω) + ‖g‖H−1/2(N)

)
. (2.16)

Proof. Fix θ > 1 and 0 ≤ ε < ε0 ≤ 1
θC

, where C is the constant in the Hardy
inequality (2.7). Let F ∈ H−1

D (Ω) be the distribution given by 〈F, v〉Ω := 〈f, v〉Ω +
〈g,Tr v〉∂Ω, and define the bilinear form Bε : H1

D(Ω)×H1
D(Ω)→ R by

Bε[u, v] :=

∫
Ω

∇u · ∇v dx+

∫
N

aε TruTr v dσ.

We will show that Bε is bounded and coercive on H1
D(Ω).

We first prove coercivity of Bε. Since aε is a standard family, condition (2.10) on
aε and Lemma 2.2 imply that

Bε[u, u] >

∫
Ω

|∇u|2 − ε0

∫
N

Tru2

δ
dσ

≥
(

1− 1

θ

)
‖∇u‖2

L2(Ω).

To deduce boundedness of Bε, we appeal again to the Hardy inequality (2.7) to
compute for all u, ϕ ∈ H1

D(Ω)

Bε[u, v] ≤
∫

Ω

|∇u||∇v|+ ε0

∫
N

uϕ

δ
dσ

≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) +
1

θC

(∫
N

u2

δ

) 1
2
(∫

N

v2

δ

) 1
2

≤
(

1 +
1

θ

)
‖∇u‖L2(Ω)‖∇v‖L2(Ω).

Hence, by the Lax-Milgram theorem there is a unique u ∈ H1
D(Ω) satisfying Bε[u, v] =

〈F, v〉Ω for all v ∈ H1
D(Ω).

Finally, since uε ∈ H1
D(Ω) satisfies Bε[uε, uε] = 〈F, uε〉Ω, it follows from coercivity

that

‖∇uε‖2
L2(Ω) ≤

θ

θ − 1
Bε[uε, uε]

=
θ

θ − 1
〈F, uε〉Ω

≤ θ

θ − 1

(
‖f‖H−1

D (Ω) + ‖g‖H−1/2(N)

)
‖uε‖H1(Ω).

Dividing by ‖∇uε‖L2(Ω), we arrive at estimate (2.16).

Copyright c© Morgan Schreffler, 2017.
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Chapter 3 Asymptotic Expansion in ε of Solutions to (AMP)

The goal of this chapter is to prove Theorem 1.1. To do so, we first prove a Sobolev
inequality which holds uniformly on a family of star-shaped convex domains, as well
as a trace theorem, both of which will be used throughout the chapter. Next, we intro-
duce the notation of the so-called “B-spaces” found in Ladyzhenskaya and Ural’tseva
[20, pp. 81-95], and we show that elements of B(Ωr(x), γ, Q) are in fact Hölder contin-
uous. Then we prove that weak solutions of (AMP) satisfy a Caccioppoli inequality,
after which we adapt the famous result of De Giorgi [10], Nash [29], and Moser [28],
to deduce that weak solutions uε ∈ H1

D(Ω) of (AMP) have finite L∞(Ω) norm inde-
pendent of ε, and are in fact in C0,α(Ω) for some α ∈ (0, 1]. Finally, we conclude by
deriving an upper bound for the rate at which uε converges to u0 in H1(Ω) as ε→ 0,
and discuss an asymptotic expansion of uε in ε. Unless noted otherwise, Ω ⊂ Rd will
always be taken to be a bounded Lipschitz domain with constant M .

3.1 Preliminary Inequalities

3.1.1 Sobolev Inequality on Star-shaped Convex Domains

First, let us state what it means for a bounded open set Υ ⊆ Rd to be star-shaped
Lipschitz convex and star-shaped with respect to a ball. We say Υ is star-shaped
Lipschitz convex with constant M , scale r, and star-center x if there is a Lipschitz
function ϕ : Sd−1 → [1, 1 +M ] with Lipschitz constant M such that

Υ =
{
y ∈ Rd : |x− y| < rϕ(ŷ)

}
,

and we say Υ is star-shaped convex with respect to a ball Br(x) if we have

(1− t)y + tz ∈ Υ ∀ y ∈ Br(x), z ∈ Υ, t ∈ [0, 1].

Remark. When defining a Lipschitz domain, we chose to consider intersections with
cylinders rather than balls precisely because for each x ∈ ∂Ω, the set Ωr(x) is star-
shaped convex with respect to the ball Br/4

(
x′, ψx(x

′) + (2M + 1/2)r
)
⊆ Ωr(x).

This fact will be crucial in Sections 3.2 and 3.3, where Lemma 3.4 and Corollary 3.5
are used extensively. See Appendix A for more information concerning star-shaped
domains.

The main results of this subsection are Lemma 3.4 and Corollary 3.5. To obtain
them, we first prove a series of three intermediate lemmas. Recall that ωd denotes
the measure of the unit ball in Rd.

Lemma 3.1 (Poincaré inequality on star-shaped convex domains). Let 1 ≤ p < ∞
and suppose u ∈ W 1,p(Υ), where Υ ⊆ Rd is star-shaped convex with constant M and
scale r. Let ωd denote the volume of the unit ball in Rd, and ūG := |G|−1 ∫

G
u(x) dx

16



the average of u on G. If F,G ⊆ Υ are measurable with |G| > 0, then

‖u− ūG‖Lp(F ) ≤
2d+1(1 +M)d |Υ|

d+p−2
dp |F |

1
dp

ω
1/d
d |G|

d−1
dp

‖∇u‖Lp(Υ). (3.1)

Proof. Without loss of generality we assume Υ is star-shaped with respect to every
point in a ball BCr centered at the origin, and that u ∈ W 1,p(Υ) ∩ C1(Υ). By the
fundamental theorem of calculus, if y 6= x, x ∈ Υ, and y ∈ BCr, we have

u(y)− u(x) =

∫ |y−x|
0

∂

∂s
[u(x+ sω)] ds, ω :=

y − x
|y − x|

∈ Sd−1. (3.2)

Taking the average of (3.2) over y ∈ BCr gives

ūBCr − u(x) =
1

|BCr|

∫
BCr

∫ |y−x|
0

ω · ∇u(x+ sω) ds dy. (3.3)

Now, define V : Rd → R to be |∇u| on Υ and 0 elsewhere. From (3.3) we deduce

|ūBCr − u(x)| ≤ 1

|BCr|

∫
BCr

∫ |y−x|
0

V (x+ sω) ds dy

≤ C
1

ωdrd

∫
B2C(1+M)r(x)

∫ ∞
0

V (x+ sω) ds dy

= C
1

ωdrd

∫ 2C(1+M)r

0

∫
Sd−1

∫ ∞
0

V (x+ sω) ds dω td−1 dt

= C
2d(1 +M)d

dωd

∫ ∞
0

∫
Sd−1

V (x+ sω)

sd−1
dω sd−1 ds

= C
2d(1 +M)d

dωd

∫
Υ

|∇u(y)|
|x− y|d−1

dy.

Set t =
(
|F |
ωd

)1/d

so that |Bt(0)| = |F |. It is well-known (cf. the monograph of Gilbarg

and Trudinger [13, p. 159]) that∫
F

|x− y|1−d dx ≤
∫
Bt(0)

|x|1−d dx

= tdωd

= dω
1−1/d
d |F |1/d .

17



Hence,

‖u− ūBCr‖
p
Lp(F ) ≤ C

[
2d(1 +M)d

dωd

]p ∫
F

∣∣∣∣∫
Υ

|∇u(y)|
|x− y|d−1

dy

∣∣∣∣p dx
≤ C

[
2d(1 +M)d

dωd

]p
×

×
∫
F

[(∫
Υ

1

|x− y|d−1
dy

) p−1
p
(∫

Υ

|∇u(y)|p

|x− y|d−1
dy

) 1
p

]p
dx

≤ C

[
2d(1 +M)d

dωd

]p
×

×
(
dω

1−1/d
d |Υ|

1
d

)p−1
∫

Υ

(∫
F

1

|x− y|d−1
dx

)
|∇u(y)|p dy

≤ C
[
2d(1 +M)d |Υ|

p−1
dp |F |

1
dp ω

−1/d
d

]p
‖∇u‖pLp(Υ).

Next, we invoke the previous estimate two times to deduce

‖u− ūG‖Lp(F ) ≤ ‖u− ūBCr‖Lp(F ) + ‖ūG − ūBCr‖Lp(F )

≤ 2dC(1 +M)d |Υ|
p−1
dp |F |

1
dp ω

−1/d
d ‖∇u‖Lp(Υ) +

|F |
1
p

|G|
1
p

‖u− ūBCr‖Lp(G)

≤ 2dC(1 +M)d |Υ|
p−1
dp |F |

1
dp ω

−1/d
d

[
1 +

(
|F |
|G|

) d−1
dp

]
‖∇u‖Lp(Υ).

Finally, since |F | ≤ |Υ| and 1 ≤ |Υ|
|G| , we obtain

|Υ|
p−1
dp |F |

1
dp

ω
1/d
d

[
1 +

(
|F |
|G|

) d−1
dp

]
≤ 2
|Υ|

d+p−2
dp |F |

1
dp

ω
1/d
d |G|

d−1
dp

,

from which (3.1) now follows.

Lemma 3.2. Let 1 ≤ p <∞ and suppose u ∈ W 1,p
T (Υ), where Υ ⊆ Rd is star-shaped

convex with constant M and scale r, and T ⊆ ∂Υ satisfies σ(T ) ≥ crd−1 for some c
independent of r. There is a constant C depending only on c, d,M , and p such that

‖u‖Lp(Υ) ≤ Cr‖∇u‖Lp(Υ).

Proof. Without loss of generality, we assume that u ∈ W 1,p
T (Υ) ∩ C1(Ῡ), and that Υ

has star-center 0. By the fundamental theorem of calculus, for y ∈ T , ŷ := y
|y| ∈ Sd−1

and s ∈ [0, rϕ(ŷ)) we know

u(sŷ) = −
∫ rϕ(ŷ)

s

d

dt
[u(tŷ)] dt

= −
∫ rϕ(ŷ)

s

∇u(tŷ) · ŷ dt.
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Let T̄ := {sy : s ∈ [0, 1), y ∈ T} and T̂ := {ŷ : y ∈ T}. Integrating over T̄ we obtain∫
T̄

u(x) dx = −
∫
T̂

[∫ rϕ(ŷ)

0

(∫ ϕ(ŷ)

s

∇u(tŷ) · ŷ dt

)
sd−1 ds

]
dσ(ŷ)

= −
∫
T̂

[∫ rϕ(ŷ)

0

(∫ t

0

sd−1 ds

)
∇u(tŷ) · ŷ dt

]
dσ(ŷ)

= −1

d

∫
T̂

∫ rϕ(ŷ)

0

∇u(tŷ) · (tŷ)td−1 dt dσ(ŷ)

= −1

d

∫
T̄

∇u(x) · x dx.

Now let Φ(y) := |y|
rϕ(ŷ)

. Observe that the level sets Φ−1(s) of Φ are precisely s∂Υ :=

{sy : y ∈ Υ}. We compute

|∇Φ(x)| =
∣∣∣∣ x̂r
[

1

ϕ(x̂)
− x̂ · ∇ϕ(x̂)

ϕ(x̂)2

]
− ∇ϕ(x̂)

rϕ(x̂)2

∣∣∣∣
≤ ϕ(x̂) + 2|∇ϕ(x̂)|

rϕ(x̂)2

≤ 2(1 +M)

r
.

To estimate |T̄ |, we appeal to the coarea formula to obtain

|T̄ | =
∫ 1

0

∫
Φ−1(s)

1

|∇Φ(y)|
dσ(y) ds

=

∫ 1

0

∫
T

1

|∇Φ(y)|
sd−1 dσ(y) ds

≥ r

2d(1 +M)
σ(T )

≥ crd

2d(1 +M)
.

Hence, we may estimate the average of u on T̄ by

|ūT̄ | =
1

|T̄ |

∣∣∣∣∫
T̄

u(x) dx

∣∣∣∣
≤ 2(1 +M)

crd

∫
T̄

|∇u(x)||x| dx

≤ 2(1 +M)2

crd−1

∫
T̄

|∇u(x)| dx.
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Finally, by Lemma 3.1 with F = Υ and G = T̄ , as well as the previous estimate and
Hölder’s inequality, we deduce

‖u‖Lp(Υ) ≤ ‖u− ūT̄‖Lp(Υ) + ‖ūT̄‖Lp(Υ)

≤ C
2d+1(1 +M)d |Υ|

d+p−2
dp |F |

1
dp

ω
1/d
d |T̄ |

d−1
dp

‖∇u‖Lp(Υ) + |ūT̄ | |Υ|
1
p

≤ 2d+1C
(
2c−1dωd

) d−1
dp (1 +M)

dp+d+p−1
p r‖∇u‖Lp(Υ)

+ 2c−1(1 +M)
2p+d
p ω

1/p
d r

d
p
−d+1‖∇u‖L1(Υ)

≤
[
2d+1C

(
2c−1dωd

) d−1
dp (1 +M)

dp+d+p−1
p + 2c−1(1 +M)2+dωd

]
r‖∇u‖Lp(Υ).

Lemma 3.3 (Extension Lemma). Suppose Υ ⊆ Rd is star-shaped convex with con-
stant M and scale r. For 1 ≤ p < ∞ there is an extension operator E : W 1,p(Υ) →
W 1,p(Rd) such that

‖∇(Eu)‖Lp(Rd) ≤ C

(
1

r
‖u‖Lp(Υ) + ‖∇u‖Lp(Υ)

)
,

where C depends only on d,M and p.

Proof. Assume Υ has star-center 0. For x 6= 0 set x̂ := x
|x| ∈ Sd−1 and let

x∗ :=
x̂

|x|
r2ϕ(x̂)2

denote the reflection of x over ∂Υ. Observe that (x∗)∗ = x for all x 6= 0, x∗ = x iff
x ∈ ∂Υ, and x ∈ Rd \ Ῡ iff x∗ ∈ Υ \ {0}. If u : Ῡ→ R, we define u∗ : Rd \Υ→ R by
u∗(x) := u(x∗). Fix η ∈ C∞c (Rd) so that η ≡ 1 on B(1+M)r, η ≤ 1, supp η ⊆ B(2+2M)r,
and |∇η| ≤ C

r
. Define an extension operator E on W 1,p(Υ) ∩ C1(Ῡ) by

Eu(x) :=

{
u(x), x ∈ Ῡ

η(x)u∗(x), x ∈ Rd \Υ.

Observe that Eu ∈ Cc(Rd). Further, when x ∈ Rd \ Ῡ we have

∇(Eu)(x) = ∇η(x)u∗(x) + η(x)[J(x∗)](x)∇u(x∗),

where [J(x∗)](x) is the d× d Jacobian matrix of x∗ defined in Lemma A.4. Now, by
the estimates of Lemma A.4 and a change of variables, we write∫

Rd\Υ
|∇η(x)||u∗(x)|p dx ≤ Cp

rp

∫
B(2+2M)r\Υ

|u∗(x)|p dx

≤ Cp

rp

∫
Υ\{0}

|u(x)|p| det[J(x∗)]| dx

≤ Cp

rp
d! 5d(3M + 1)2d

∫
Υ\{0}

|u(x)|p dx,
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and ∫
Rd\Υ

|η(x)[J(x∗)]∇u(x∗)|p dx ≤ 5p(3M + 1)2p

∫
B(2+2M)r\Υ

|∇u(x∗)|p dx

≤ 5p(3M + 1)2p

∫
Υ\{0}

|∇u(x)|p| det[J(x∗)]| dx

≤ d! 5p+d(3M + 1)2(p+d)

∫
Υ\{0}

|∇u(x)|p dx.

Hence, we have ‖∇(Eu)‖Lp(Rd) ≤ C
(

1
r
‖u‖Lp(Υ) + ‖∇u‖Lp(Υ)

)
. This fact, in conjunc-

tion with our earlier observation that Eu ∈ Cc(Rd), also confirms Eu ∈ W 1,p(Rd).

We are now equipped to prove our main results for the subsection.

Lemma 3.4. Let 1 ≤ p < d and suppose u ∈ W 1,p
T (Υ), where Υ ⊆ Rd is star-shaped

convex with constant M and scale r, and T ⊆ ∂Υ satisfies σ(T ) ≥ crd−1 for some c
independent of r. There is a constant C depending only on c, d,M , and p such that

‖u‖
L

dp
d−p (Υ)

≤ C‖∇u‖Lp(Υ).

Proof. Clearly ‖u‖
L

dp
d−p (Υ)

≤ ‖Eu‖
L

dp
d−p (Rd)

holds. By the usual Sobolev inequality,

followed by Lemmas 3.3 and 3.2, we conclude

‖Eu‖
L

dp
d−p (Rd)

≤ C‖∇(Eu)‖Lp(Rd)

≤ C

(
1

r
‖u‖Lp(Υ) + ‖∇u‖Lp(Υ)

)
≤ C‖∇u‖Lp(Υ).

Corollary 3.5. Let x ∈ ∂Ω and 0 < r < r0. For u ∈ W 1,1(Ω), let Ωk,r(x) := {y ∈
Ωr(x) : u(y) > k}. If ` > k, then

(`− k) |Ω`,r(x)|1−1/d ≤ C
|Ωr(x)|

|Ωr(x) \ Ωk,r(x)|

∫
Ωk,r(x)\Ω`,r(x)

|∇u(y)| dy, (3.4)

where C depends only on d and M . Moreover, if D ⊆ ∂Ω satisfies the corkscrew
condition (2.3), u ∈ W 1,1

D (Ω), Ψr/2(x) ∩ D 6= ∅, and k ≥ 0, then the estimate is
uniform, that is,

(`− k) |Ω`,r(x)|1−1/d ≤ C

∫
Ωk,r(x)\Ω`,r(x)

|∇u(y)| dy, (3.5)

where C depends only on d, and M .
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Proof. As we remarked at the beginning of the section, Ωr is star-shaped with respect
to every point in a ball BCr(y) contained within Ωr. To obtain 3.4, set p = 1, F = Ω`,r,
G = Ωr \ Ωk,r, and Υ = Ωr, and apply Lemma 3.1 to the function

v(x) :=


0, u(x) < k

u(x)− k, k ≤ u(x) ≤ `

`− k, ` < u(x)

and divide by |Ω`,r|. Observe that v̄G = 0 and ∇v = χΩk,r\Ω`,r∇u.
To obtain estimate (3.5), we first note that the corkscrew condition on D and

our assumption that Ψr/2(x) ∩ D 6= 0 guarantees σ(D ∩ Ψr(x)) ≥ crd−1 for some c
depending only on d and M . Further, the assumption that k ≥ 0 ensures that the
function v defined above satisfies v ∈ W 1,1

D∩Ψr(x)(Ωr(x)). The desired estimate now

follows by applying Lemma 3.4 with p = 1 and Υ = Ωr(x) to the function v.

3.1.2 Trace Theorem

To prove that solutions of (AMP) are Hölder continuous, we will require an inequality
which states that the Lp

∗
-norm of uε on Ψr(x) is controlled by the Lp-norm of ∇uε on

Ωr(x), where p∗ depends only on d and p. The following lemma fills this requirement.

Lemma 3.6 (Trace Theorem). Let 0 < r < r0. Suppose v ∈ W 1,τ (Ω) for 1 ≤ τ <

d, and η ∈ C∞c (Zr(x)). Then Tr(ηv) ∈ L
(d−1)τ
d−τ (Ψr(x)), and there is a constant C

depending only on d,M , and τ such that

‖Tr(vη)‖
L

(d−1)τ
d−τ (Ψr(x))

≤ C‖∇(vη)‖Lτ (Ωr(x)).

Proof. We begin by proving the case 1 < τ < d. Without loss of generality we assume
x = 0 and write Ψr and Ωr. We may choose a constant unit vector w ∈ Rd such that
w · ν ≥ δ > 0 σ-a.e. on Ψr, where ν is the outward-pointing unit normal to Ω. Set
Q = (d−1)τ

d−τ and sgn(x) to be 1 when x > 0, −1 when x < 0, and 0 when x = 0. By
the divergence theorem and Hölder’s inequality,

δ‖Tr(vη)‖Q
LQ(Ψr)

≤
∫

Ψr

w · ν|Tr(vη)|Q dσ

=

∫
Ωr

Q|vη|Q−1 sgn(vη)w · ∇(vη) dx

≤ Q‖|vη|Q−1‖Lτ ′ (Ωr)‖∇(vη)‖Lτ (Ωr),

where τ ′ = τ
τ−1

. Now note that (Q − 1)τ ′ = dτ
d−τ , which is precisely the exponent

which appears in the Sobolev inequality of Lemma 3.4. Hence,

δ‖Tr(vη)‖Q
LQ(Ψr)

≤ CQ‖∇(vη)‖Q−1
Lτ (Ωr)

‖∇(vη)‖Lτ (Ωr).

Dividing by δ and raising both sides to the 1/Q power gives the desired result.
In the case τ = 1, we have τ ′ = ∞ and Q = 1, which greatly simplifies the

above calculations as we no longer require the use of Hölder’s inequality to obtain
the desired estimate.
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As a corollary to Lemma 3.6, we now state a fractional order Sobolev inequality
which holds on H1/2(∂Ω).

Corollary 3.7 (Fractional-order Sobolev inequality). Suppose ϕ ∈ H1/2(∂Ω). Then

ϕ ∈ L
2(d−1)
d−2 (∂Ω), and there is a constant C depending only on the global character of

Ω such that

‖ϕ‖
L

2(d−1)
d−2 (∂Ω)

≤ C‖ϕ‖H1/2(∂Ω).

Proof. Recall that P : H1/2(∂Ω) → H1(Ω) denotes a bounded right inverse of the
trace map Tr. Let {Zr0(xj)}J1 be as in the definition of a Lipschitz domain. Let
ηj ∈ C∞c (Z2r0(xj)) satisfy ηj ≡ 1 on Zr0(xj), 0 ≤ ηj ≤ 1, and |∇ηj| ≤ A

r0
for some

constant A > 0. By Lemma 3.6 we have

‖ϕ‖
L

2(d−1)
d−2 (∂Ω)

≤
J∑
j=1

‖Tr(Pϕ)‖
L

2(d−1)
d−2 (Ψr0 (xj))

≤
J∑
j=1

‖Tr(ηjPϕ)‖
L

2(d−1)
d−2 (Ψ2r0 (xj))

≤ C
J∑
j=1

‖∇(ηjPϕ)‖L2(Ω)

≤ CJ

(
A

r0

‖∇(Pϕ)‖L2(Ω) + C‖Pϕ‖L2(Ω)

)
≤ C‖Pϕ‖H1(Ω)

≤ C‖ϕ‖H1/2(∂Ω).

3.2 B-spaces and Hölder Continuity

Suppose D ⊆ ∂Ω satisfies the corkscrew condition (2.3). Given γ > 0, 0 < r < r0, and
Q > d

2
, we say u ∈ B(Ωr(x), γ, Q) if u ∈ H1

D(Ω) ∩ L∞(Ω), and for all Ωs(y) ⊆ Ωr(x),
ς ∈ (0, 1), and k as below we have∫

Ωk,s−ςs(y)

|∇u|2 ≤ γ

[
1

ς2s2(1− d
2Q)

sup
Ωk,s(y)

(u− k)2 + 1

]
|Ωk,s(y)|1−

1
Q . (3.6)

Here, k ∈ R if ∂Ωs(y) ∩Dε = ∅ and k ≥ 0 if ∂Ωs(y) ∩Dε 6= ∅.
In this section, we will closely follow the exposition given in the monograph of La-

dyzhenskaya and Ural’tseva [20, pp. 81-95], though much of the notation is changed.
The goal of this section is to show that elements u ∈ B(Ωr(x), γ, Q) are Hölder con-
tinuous. We begin by proving Lemma 3.8, a technical result which describes how
supΩr(x)(u − k) reacts to changes in r, assuming certain size conditions on |Ωk,r(x)|
and supΩk,r(x)(u − k). We then use the aforementioned lemma to prove a result de-
scribing the oscillation of u on Ωr(x), from which Hölder continuity follows.
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Lemma 3.8. Let x ∈ ∂Ω, 0 < r < r0, and suppose D ⊆ ∂Ω satisfies the corkscrew
condition (2.3). If u ∈ B(Ωr(x), γ, Q) and k is as in the definition of this space,
then there is a number θ1 > 0 depending only on d, γ, M , p, and q, such that if

|Ωk,r| ≤ θ1r
d and H := supΩk,r

(u− k) ≥ r1− d
2Q , then

∣∣Ωk+H/2,r/2

∣∣ = 0, i.e.,

sup
Ωr/2(x)

(u− k) ≤ H

2
.

Proof. Fix Ωr(x) and k, and let u ∈ B(Ωr(x), γ, Q). As usual, we suppress the point
x in our notation and write Ωr and Ωk,r. For i = 0, 1, 2, . . ., set

ri =
r

2
+

r

2i+1
and ki = k +

H

2
− H

2i+1
.

Set ςi = ri−ri+1

ri
∈ (0, 1). Note that ri − ςiri = ri+1 and ki+1 − ki = H/2i+2. Thus,

substituting ri for s and ςi for ς in formula (3.6), we obtain∫
Ωki,ri+1

|∇u|2 ≤ γ

 r
d
Q

i

(ri − ri+1)2
sup

Ωki,ri

(u− ki)2 + 1

 |Ωki,ri |
1− 1

Q

≤ γ
(
r
d
Q
−222i+4H2 + 1

)
|Ωki,ri |

1− 1
Q . (3.7)

By Corollary 3.5 we have for some constant C1

(ki+1 − ki)
∣∣Ωki+1,ri+1

∣∣1− 1
d ≤ C1

∣∣Ωri+1

∣∣∣∣Ωri+1
\ Ωki,ri+1

∣∣ ∫
Ωki,ri+1

\Ωki+1,ri+1

|∇u| dy. (3.8)

Now, choose θ1 ≤ (M+1)ωd−1

2d+1d
. A geometric argument shows |Ωρ| ≥ (M+1)ωd−1

d
ρd for any

0 < ρ ≤ r, so if |Ωk,r| ≤ θ1r
d, then∣∣Ωki,ri+1

∣∣ ≤ |Ωk,r|

≤ 1

2

(M + 1)ωd−1

d

(r
2

)d
≤ 1

2

∣∣Ωr/2

∣∣
≤ 1

2

∣∣Ωri+1

∣∣ .
Hence, we deduce from (3.8) the estimate

H

2i+2

∣∣Ωki+1,ri+1

∣∣1− 1
d ≤ 2C1

∫
Ωki,ri+1

|∇u| dy

≤ 2C1

(∫
Ωki,ri+1

|∇u|2 dy

) 1
2

|Ωki,ri |
1
2

≤ 2C1γ
1/2
(
r
d
Q
−222i+4H2 + 1

) 1
2 |Ωki,ri |

1− 1
2Q .
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Rearranging constants then gives us∣∣Ωki+1,ri+1

∣∣1− 1
d ≤ 2i+3C1γ

1/2
(
r
d
Q
−222i+4 +H−2

) 1
2 |Ωki,ri |

1− 1
2Q .

Now, if H ≥ r1− d
2Q , i.e., H−2 ≤ r

d
Q
−2, we may write∣∣Ωki+1,ri+1

∣∣1− 1
d ≤ 22i+6C1γ

1/2r
d
2Q
−1 |Ωki,ri |

1− 1
2Q . (3.9)

Dividing both sides of (3.9) by rd−1 and raising both sides to the d
d−1

power, we obtain∣∣Ωki+1,ri+1

∣∣
rd

≤
(
26C1γ

1/2
) d
d−1

(
2

2d
d−1

)i( |Ωki,ri |
rd

)1+ 2Q−d
2Q(d−1)

. (3.10)

Since 2Q− d > 0, by choosing

θ1 = min

{
(M + 1)ωd−1

2d+1d
, 2

12dQ
d−2Q

+
8dQ2(1−d)
(2Q−d)2 C

2dQ
d−2Q

1 γ
dQ
d−2Q

}
,

we may conclude from Proposition 3.9 below that
∣∣Ωki+1,ri+1

∣∣ → 0 as i → ∞, i.e.,∣∣Ωk+H/2,r/2

∣∣ = 0 as desired.

Proposition 3.9 (Lemma 4.7 of Ladyzhenskaya and Ural’tseva [20, p. 66]). Let
C, α > 0 and B > 1 be fixed constants, and suppose a non-negative sequence {xi}∞i=0

satisfies the recursion relation

xi+1 ≤ BiCx1+α
i for all i = 0, 1, . . . .

If x0 ≤ B−
1
α2C−

1
α , then xi ≤ B−

1+iα

α2 C−
1
α , and consequently xi → 0 as i→∞.

Lemma 3.10 (Oscillation Lemma). Suppose D ⊆ ∂Ω satisfies the corkscrew con-
dition. There exists a natural number s so that for any x ∈ ∂Ω, 0 < r < r0, and
u ∈ B(Ω4r(x), γ, Q), at least one of the following holds:

osc
Ωr(x)

u ≤ 2sr1− d
2Q (3.11)

osc
Ωr(x)

u ≤
(
1− 21−s) osc

Ω4r(x)
u. (3.12)

Here oscE u := supE u− infE u is the oscillation of u on the set E.

Proof. First, note oscE u = oscE(−u), so it suffices to prove the lemma for u or −u.
Also, as usual we suppress the point x in our notation and write Ωr, Ω4r, etc.... Define

Mr := sup
Ωr

u,

mr := inf
Ωr
u,

M̄r :=
Mr +mr

2
,

Or := Mr −mr = osc
Ωr
u,

O := O4r, and

At :=

{
y ∈ Ω2r : M4r −

O
2t
< u(y) ≤M4r −

O
2t−1

}
.

25



Set kt := M4r− O2t and observe that At = Ωkt,2r \Ωkt+1,2r and kt+1−kt = O
2t+1 . Finally,

let θ1 be the constant from Lemma 3.8, C1 the max of the two constants of Corollary

3.5, C0 = 2d+6− 2d+1
Q · 5C2

1γω
2−1/Q
d−1 (1 +M)2− 1

Q , and

s = max

{
4,

C0

θ
2−2/d
1

+ 3

}
.

Now, let u ∈ B(Ω4r(x), γ, Q) and suppose (3.11) does not hold, i.e., Or > 2sr1− d
2Q .

This implies r1− d
2Q < O/2s ≤ O/2t for t ≤ s. Combined with the facts |Ω4r| ≤

|Z1| (4r)d = 22d+1ωd−1(1 +M)rd, d/Q− 1 < 1, and (3.6), we deduce∫
Ωkt,2r

|∇u|2 dy ≤ γ

[
4(4r)

d
Q
−2 sup

Ωkt,4r

(u− kt)2 + 1

]
|Ωkt,4r|

1− 1
Q

≤ γ

[
4
d
Q
−1

(
O
2t

)2

+ r2(1− d
2Q)

]
r2( d

2Q
−1) |Ω4r|1−

1
Q

≤ γ

(
O
2t

)2 [
4
d
Q
−1 + 1

]
4d(1− 1

Q) |Z1|1−
1
Q rd−2

≤ 22d+1− 2d+1
Q · 5γω1−1/Q

d−1 (1 +M)1− 1
Q

(
O
2t

)2

rd−2. (3.13)

We now consider the following two cases: Ω2r ∩Dε = ∅ and Ω2r ∩Dε 6= ∅. In both
cases, we claim (

O
2t+1

)2 ∣∣Ωkt+1,2r

∣∣2− 2
d ≤ C2

1 |At|
∫

Ωkt,2r

|∇u|2 dy. (3.14)

On the one hand, when Ω2r ∩Dε = ∅ the sign of k and ` are irrelevant and, after pos-
sibly replacing u with −u, we may assume

∣∣ΩM̄4r,2r

∣∣ ≤ 1
2
|Ω2r|. Referring to estimate

(3.4) from Corollary 3.5, we obtain

O
2t+1
|Ω`,2r|1−

1
d ≤ C1

∫
At

|∇u| dy (3.15)

by observing that
∣∣Ωkt+1,2r

∣∣ ≤ ∣∣ΩM̄4r,2r

∣∣ ≤ 1
2
|Ω2r| and arguing as in the proof of

Lemma 3.8. On the other hand, when Ω2r ∩Dε 6= ∅ we assume M̄4r ≥ 0, replacing u
with −u if necessary, to ensure kt ≥ 0 for all t. Under this assumption, the condition∣∣ΩM̄4r,2r

∣∣ ≤ 1
2
|Ω2r| is not necessarily true. However, we may instead use estimate

(3.5) from Corollary 3.5 to obtain estimate (3.15). In each case, since At ⊆ Ωkt,2r we
may apply the Cauchy-Schwarz inequality to (3.15) to obtain (3.14).

Now, combining estimates (3.13) and (3.14) and dividing by
( O

2t+1

)2
, we obtain

for each t ≤ s− 3∣∣Ωks−2,2r

∣∣2− 2
d ≤

∣∣Ωkt+1,2r

∣∣2− 2
d

≤ 22d+3− 2d+1
Q · 5C2

1γω
1−1/Q
d−1 (1 +M)1− 1

Q |At| rd−2. (3.16)
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Summing (3.16) as t goes from 1 to s− 3 yields

(s− 3)
∣∣Ωks−2,2r

∣∣2− 2
d ≤ 22d+3− 2d+1

Q · 5C2
1γω

1−1/Q
d−1 (1 +M)1− 1

Q

∣∣Ωk1,2r \ Ωks−2,2r

∣∣ rd−2

≤ 23d+4− 2d+1
Q · 5C2

1γω
2−1/Q
d−1 (1 +M)2− 1

Q r2d−2

= C0(2r)2d−2.

From the above estimate and our choice of s, we immediately obtain∣∣Ωks−2,2r

∣∣ ≤ θ1(2r)d.

As in Lemma 3.8, set

H := sup
Ωks−2,2r

(u− ks−2) .

We now consider what happens when H < (2r)1− d
2Q and when H ≥ (2r)1− d

2Q . In the
first case, our initial assumption that (3.11) does not hold gives us

M2r < M4r −
O

2s−2
+ 21− d

2Q r1− d
2Q

< M4r −
O

2s−2
+ 21− d

2Q
Or
2s

≤M4r −
O

2s−1
,

from which (3.12) follows immediately. In the second case, we refer to Lemma 3.8 in
order to obtain

Mr ≤M4r −
O

2s−2
+

1

2

(
M2r −M4r +

O
2s−2

)
≤M4r −

O
2s−1

,

which is precisely (3.12).

Theorem 3.11 (Hölder continuity of functions in B(Ωr(x), γ, Q)). Let x ∈ ∂Ω and
0 < r < r0. If u ∈ H1

D(Ω) is in B(Ωr(x), γ, Q), then oscΩρ(x) u ≤ C
(
ρ
r

)α
for each

0 < ρ ≤ r, where α = min
{

1− d
2Q
,− log4(1− 21−s)

}
∈ (0, 1) and s is as in Lemma

3.10.

Proof. By Lemma 3.10, either (3.11) or (3.12) holds (with r replaced by ρ in each).
In the first case, by choosing C = 2sr1−d/(2Q) and α = 1− d

2Q
we deduce oscΩr(x) u ≤

C
(
ρ
r

)α
, and the theorem follows easily. Thus, we assume (3.12) holds.

Observe that s does not depend on r, so we may iterate this inequality to obtain

osc
Ω
r/4k

u ≤
(
1− 21−s)k osc

Ωr
u, k = 1, 2, . . . .
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Choose α = − log4 (1− 21−s) so that the above becomes

osc
Ω
r/4k

u ≤ 4−kα osc
Ωr
u

≤ 2 · 4α‖u‖L∞(Ω)4
−α(k+1).

Now, let 0 < ρ ≤ r and let k be such that 4−k−1 ≤ ρ
r
< 4−k. It follows that

osc
Ωρ
u ≤ osc

Ω
r/4k

u

≤ 2 · 4α‖u‖L∞(Ω)4
−α(k+1)

≤ C
(ρ
r

)α
.

Note that C = 4α+ 1
2‖u‖L∞(Ω) is independent of ρ and r.

3.3 Hölder Continuity of Solutions to (AMP)

From the previous section, we know that the problem of proving Hölder continuity of
solutions uε ∈ H1

D(Ω) to (AMP) can be reduced to showing that uε ∈ B(Ωr0(xj), γ, Q)
for each xj from the definition of a Lipschitz domain (See Section 2.1). To do this,
we will first prove a Caccioppoli inequality on uε which holds when f and g are in
certain Lp spaces. From this inequality we deduce that uε ∈ L∞(Ω) uniformly in ε,
and shortly thereafter, that uε ∈ C0,α, where α and ‖uε‖C0,α are independent of ε.

Lemma 3.12 (Caccioppoli Inequality). Suppose D ⊆ ∂Ω satisfies the corkscrew
condition (2.3), aε is a standard family of functions, f ∈ Lq(Ω) for some q > d

2
, and

g ∈ Lp(N) for some p > d − 1. Let uε ∈ H1
D(Ω) be a weak solution of (AMP) and

y ∈ ∂Ω. If Ψr(y) ∩Dε 6= ∅ let k ≥ 0; otherwise, let k ∈ R be arbitrary. The positive
part of uε − k, denoted v = (uε − k)+, satisfies∫

Ωk,r(y)

η2|∇v|2 dx ≤ C

(∫
Ωk,r(y)

v2|∇η|2 dx+ ‖f‖2
q |Ωk,r|1−

2
q

+ 2
d + ‖g‖2

p |Ωk,r|
2
τ
−1

)

whenever η ∈ C1
c (Zr(y)) satisfies η ≥ 0 on Zr(y). Here, Ωk,r(y) := {x ∈ Ωr(y) : uε >

k}, and τ = dp
dp−d+1

. Note that C depends only on d, M , p and q.

Proof. Without loss of generality, we assume y = 0 and drop the dependence on y
from our notation, writing Ωk,r rather than Ωk,r(y). First, observe that v ∈ H1(Ω)
satisfies ∇v = ∇uε when uε > k and ∇v = 0 when uε < k, but may not necessarily be
an element of H1

D(Ω) if k < 0. By how we chose k and η, however, ϕ := η2v ∈ H1
D(Ω)

is a valid test function to use in the weak formulation of (AMP). Using Hölder’s

28



inequality and Cauchy’s inequality with ε = 1
2
, we obtain the estimate∫

Ω

∇uε · ∇ϕdx =

∫
Ωk,r

η2∇v · ∇v dx+ 2

∫
Ωk,r

vη(∇v · ∇η) dx

≥
∫

Ωk,r

η2|∇v|2 dx− 2

∫
Ωk,r

v|η||∇v||∇η| dx

≥
∫

Ωk,r

η2|∇v|2 dx

− 2

(∫
Ωk,r

v2|∇η|2 dx

) 1
2
(∫

Ωk,r

|η|2|∇v|2 dx

) 1
2

≥ 1

2

∫
Ωk,r

η2|∇v|2 dx− 1

2

∫
Ωk,r

v2|∇η|2 dx.

By the above calculation, and the fact that uε is a weak solution of (AMP), we deduce∫
Ωk,r

η2|∇v|2 dx ≤
∫

Ωk,r

v2|∇η|2 dx+ 2

∫
Ωk,r

∇uε · ∇(η2v) dx

≤ 2

(∫
Ωk,r

v2|∇η|2 dx+

∫
Ωk,r

|f |vη2 dx+

∫
N

|g|Tr(vη2) dσ

−
∫

Ψr∩N
aε Tr(uε) Tr(vη2) dσ

)
.

Now, if Ψr ∩ Λε = ∅ then aε = 0 on N ∩Ψr. If, on the other hand, Ψr ∩ Λε 6= ∅, the
assumptions aε ≥ 0 and k ≥ 0 guarantee aε Truε Tr vη2 ≥ 0. In each case we obtain
−
∫
N∩Ψr

aε Truε Tr vη2 dσ ≤ 0, giving us

∫
Ωk,r

η2|∇v|2 dx ≤ 2

(∫
Ωk,r

v2|∇η|2 dx+

∫
Ωk,r

|f |vη2 dx+

∫
N

|g|Tr(vη2) dσ

)
.

Now, if d ≥ 3 let t = 2, and if d = 2 let t ∈ [1, 2) ∩
(

2q
3q−2

, 2
)

be arbitrary.

These conditions guarantee that the inequality 1− 1
q
− 1

t
+ 1

d
> 0 holds for all d ≥ 2.

Using Hölder’s inequality, the Sobolev inequality of Lemma 3.4 with t as above, and
Cauchy’s inequality, we estimate
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∫
Ωk,r

|f |vη2 dx ≤

(∫
Ωk,r

|f |q dx

) 1
q
(∫

Ωk,r

|vη|
dt
d−t dx

) 1
t
− 1
d

|Ωk,r|1−
1
q
− 1
t
+ 1
d

≤ C‖f‖Lq(Ω)

(∫
Ωk,r

|∇(vη)|t dx

) 1
t

|Ωk,r|1−
1
q
− 1
t
+ 1
d

≤ C‖f‖Lq(Ω)

(∫
Ωk,r

|∇(vη)|2 dx

) 1
2

|Ωk,r|
1
2
− 1
q

+ 1
d

≤ 1

8

∫
Ωk,r

|∇(vη)|2 dx+ 2C2‖f‖2
Lq(Ω) |Ωk,r|1−

2
q

+ 2
d

≤ 1

4

∫
Ωk,r

(
η2|∇v|2 + v2|∇η|2

)
dx+ 2C2‖f‖2

Lq(Ω) |Ωk,r|1−
2
q

+ 2
d .

Thus,∫
Ωk,r

η2|∇v|2 dx ≤ C

(∫
Ωk,r

v2|∇η|2 dx+ ‖f‖2
Lq(Ω) |Ωk,r|1−

2
q

+ 2
d +

∫
N

|g|Tr(vη2) dσ

)
.

Next, observe that p = τ(d−1)
d(τ−1)

for τ = dp
dp−d+1

∈
[
1, d

d−1

)
⊆ [1, 2), and p

p−1
is

precisely (d−1)τ
d−τ . By two more applications of Hölder’s inequality, as well as the trace

inequality in Lemma 3.6 with τ as above and Cauchy’s inequality, we deduce∫
N

|g|Tr(vη2) dσ ≤
(∫

N

|g|p dσ
) 1

p
(∫

N

|Tr(vη)|
p
p−1 dσ

)1− 1
p

≤ C‖g‖Lp(N)

(∫
Ωk,r

|∇(vη)|τ dx

) 1
τ

≤ C‖g‖Lp(N)

(∫
Ωk,r

|∇(vη)|2 dx

) 1
2

|Ωk,r|
1
τ
− 1

2

≤ λ

∫
Ωk,r

|∇(vη)|2 dx+
C2

4λ
‖g‖2

Lp(N) |Ωk,r|
2
τ
−1

≤ 2λ

∫
Ωk,r

(
η2|∇v|2 + v2|∇η|2

)
dx+

C2

4λ
‖g‖2

Lp(N) |Ωk,r|
2
τ
−1 .

Hence, when λ is chosen small enough we obtain the desired estimate.

Theorem 3.13. Suppose D satisfies the corkscrew condition (2.3), aε is a standard
family of functions, f ∈ Lq(Ω) for some q > d

2
, g ∈ Lp(N) for some p > d − 1, and

uε ∈ H1
D(Ω) is a weak solution of (AMP). For each Ωr0(xj) as in the definition of Ω

as a Lipschitz domain, there is a constant C not depending on ε such that

‖uε‖L∞(Ωr0 (xj)) ≤ C
(
‖f‖Lq(Ω) + ‖g‖Lp(N)

)
. (3.17)
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Proof. Let ρ = 2r0. As in Chapter 2, we may assume without loss of generality that
xj = 0 and write Zρ, Ωρ and Ωk,ρ without dependence on xj. Let v := (uε − k)+ for
k ≥ 0. To find an upper bound for uε, we will show that there is a k such that v = 0
a.e. in Ωρ/2. To find a lower bound for uε, we observe that −uε solves (AMP) with
f and g replaced by −f and −g, respectively, so we may apply the argument that
follows to (−uε − k)+ for k ≥ 0.

Choose η ∈ C1
c (Zρ) so that 0 ≤ η on Zρ. By Hölder’s inequality, followed by

Lemmas 3.4 and 3.12, we obtain∫
Ωk,ρ

|vη|2 dx ≤

(∫
Ωk,ρ

|vη|
2d
d−2 dx

)1− 2
d

|Ωk,ρ|
2
d

≤ C

∫
Ωk,ρ

|∇(vη)|2 dx |Ωk,ρ|
2
d

≤ C

(∫
Ωk,ρ

v2|∇η|2 dx |Ωk,ρ|
2
d + ‖f‖2

q |Ωk,ρ|1−
2
q

+ 4
d + ‖g‖2

p |Ωk,ρ|
2
τ
−1+ 2

d

)
.

Since q > d
2

it follows that 4
d
− 2

q
> 0, and since τ ∈ (1, d

d−1
) we have 2

τ
− 1 + 2

d
> 1.

Set θ := min
{

2
d
, 2
τ

+ 2
d
− 2, 4

d
− 2

q

}
> 0 and k0 := max

{
1, ‖u+

ε ‖2
L2(Ω)

}
. If k ≥ k0,

then Tchebyshev’s inequality implies

|Ωk,R| ≤
1

k

∫
Ωk,R

u+
ε dx ≤

1

k

∫
Ω

(u+
ε )2 dx ≤ 1,

so for all k ≥ k0 we have∫
Ωk,ρ

|vη|2 dx ≤ C

[∫
Ωk,ρ

v2|∇η|2 dx+
(
‖f‖2

q + ‖g‖2
p

)
|Ωk,ρ|

]
|Ωk,ρ|θ . (3.18)

Now, for 0 < r < R ≤ ρ choose η ∈ C∞c (Zρ) so that η ≡ 1 on Zr, η ≡ 0 outside
of ZR, 0 ≤ η ≤ 1 and |∇η| ≤ C

R−r on Zρ. If k ≥ k0, we deduce from (3.18) that∫
Ωk,r

(uε − k)2 dx ≤ C

[
1

(R− r)2

∫
Ωk,R

(uε − k)2 dx+
(
‖f‖2

q + ‖g‖2
p

)
|Ωk,R|

]
|Ωk,R|θ .

(3.19)

Let h > k ≥ k0. Since Ωh,R ⊆ Ωk,R and uε−k
h−k ≥ 1 on Ωh,R, we have

|Ωh,R| =
∫

Ωh,R

1 dx

≤
∫

Ωh,R

uε − k
h− k

dx

≤ 1

(h− k)2

∫
Ωk,R

(uε − k)2 dx.
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Therefore, if h > k ≥ k0 and ρ
2
≤ r < R ≤ ρ, estimate (3.19) gives us

∫
Ωh,r

(uε − h)2 dx ≤ C

(
1

(R− r)2
+
‖f‖2

q + ‖g‖2
p

(h− k)2

)
1

(h− k)2θ

(∫
Ωk,R

(uε − k)2 dx

)1+θ

.

(3.20)

Set I(h, r) =
∫

Ωh,r
(uε − h)2, and let k > 0 be fixed. For j = 0, 1, . . ., define

kj := k0 + k − k

2j
,

rj :=
ρ

2
+

ρ

2j+1
.

Observe that kj − kj−1 = k
2j

and rj−1 − rj = ρ
2j+1 . We show by induction on j that

I(kj, rj) ≤
I(k0, r0)

γj
, j = 0, 1, . . . , (3.21)

where γ := 2
2(1+θ)
θ > 1.

In the base case j = 0, (3.21) clearly holds, so assume the induction hypothesis
I(kj−1, rj−1) ≤ I(k0, r0)/γj−1 holds for some j > 0. By (3.20), we may write

I(kj, rj) ≤ C

(
1

(rj−1 − rj)2
+
‖f‖2

q + ‖g‖2
p

(kj − kj−1)2

)
1

(kj − kj−1)2θ
I(kj−1, rj−1)1+θ

= C

(
22j+2

ρ2
+

22j(‖f‖2
q + ‖g‖2

p)

k2

)
22jθ

k2θ
I(kj−1, rj−1)1+θ

≤ C ·
k2 + ρ2(‖f‖2

q + ‖g‖2
p)

ρ2k2(1+θ)
· 22j(1+θ) · I(kj−1, rj−1)1+θ. (3.22)

Next, by our induction hypothesis we have

I(kj−1, rj−1)1+θ ≤
(
I(k0, r0)

γj−1

)1+θ

≤ I(k0, r0)θ

γjθ−(1+θ)
· I(k0, r0)

γj
.

Placing this into (3.22), we obtain

I(kj, rj) ≤ Cγ1+θ ·
k2 + ρ2(‖f‖2

q + ‖g‖2
p)

ρ2k2
· I(k0, r0)θ

k2θ
· 22j(1+θ)

γjθ
· I(k0, r0)

γj
.

By how we chose γ, it follows that 22j(1+θ)

γjθ
= 1. Further, as k →∞ we have

k2 + ρ2(‖f‖2
q + ‖g‖2

p)

ρ2k2
→ 1

ρ2
and

I(k0, r0)

k2
→ 0.
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Choosing k = max

{
ρ(‖f‖2

q + ‖g‖2
p)

1/2,

√
21/θI(k0,r0)

ρ1/θ

}
guarantees that for all j,

γ1+θ ·
k2 + ρ2(‖f‖2

q + ‖g‖2
p)

ρ2k2(1+θ)
· I(k0, r0)θ ≤ 1.

This completes the induction proof.
Hence, as j →∞ we find I(kj, rj)→ 0, i.e., I(k0 + k, ρ/2) = 0. Consequently,(

sup
Ωρ/2

uε

)2

≤ C
(
‖f‖2

q + ‖g‖2
p + I(k0, r0)

)
,

and since I(k0, r0) ≤ ‖uε‖2
L2(Ω) ≤ C(‖f‖q + ‖g‖p), we also have estimate (3.17).

Theorem 3.14. Suppose D satisfies the corkscrew condition (2.3), aε is a standard
family of functions, f ∈ Lq(Ω) for some q > d

2
, and g ∈ Lp(N) for some p > d−1. If

uε ∈ H1
D(Ω) is a weak solution of (AMP), then uε ∈ B(Ωr0(xj), γ, Q) for each Ωr0(xj)

as in the definition of Ω as a Lipschitz domain. Here Q depends only on d, p, and q,
and γ depends only on d, ‖f‖q, ‖g‖p, M , p, q, and r0.

Proof. Fix Ωs(y) ⊆ Ωr(x) and ς ∈ (0, 1). Throughout the proof Ωs and Ωk,s will
always be centered at y. Let η ∈ C∞(Zs(y)) be a cutoff function satisfying η ≡ 1 on
Zs−ςs(y), 0 ≤ η ≤ 1 and |∇η| ≤ C0

ςs
on Zs(y). Set v := (uε − k)+ ∈ H1(Ω) denote the

positive part of uε − k. By Lemma 3.12 and how we chose η, we know∫
Ωk,s−ςs

|∇v|2 dx ≤
∫

Ωk,s

η2|∇v|2 dx

≤ C

(∫
Ωk,s(y)

v2|∇η|2 dx+ ‖f‖2
q |Ωk,s|1−

2
q

+ 2
d + ‖g‖2

p |Ωk,s|
2
τ
−1

)

≤ C

(
1

s2ς2
|Ωk,s| sup

Ωk,s

v2 + ‖f‖2
q |Ωk,s|1−

2
q

+ 2
d + ‖g‖2

p |Ωk,s|
2
τ
−1

)
,

where τ ∈
(
1, d

d−1

)
solves p = τ(d−1)

d(τ−1)
. Choose Q := min

{
q, τ

2(τ−1)

}
= min

{
q, dp

2(d−1)

}
.

We make a number of observations:

• Both 1− 1
q

and 2
τ
− 1 are bounded below by 1− 1

Q
,

• q > d
2

by assumption, and p > d− 1 implies τ
2(τ−1)

> d
2
, so Q > d

2
,

• |Ωk,s| ≤ |Zs| = 2(1+M)ωd−1s
d, where ωd−1 is the Lebesgue measure of the unit

ball in Rd−1, and

• |Ωk,s| ≤ |Zr0| = 2(1 +M)ωd−1r
d
0.
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Based on these observations, we conclude∫
Ωk,s−ςs

|∇v|2 dx ≤ C

[
|Z1|

1
Q

ς2s2(1− d
2Q

)
sup
Ωk,s

v2 + ‖f‖2
q |Zr0 |

2
d
− 2
q

+ 1
Q

+ ‖g‖2
p |Zr0|

2
τ

+ 1
Q
−2

]
|Ωk,s|1−

1
Q

≤ γ

(
1

ς2s2(1− d
2Q

)
sup
Ωk,s

(u− k)2 + 1

)
|Ωk,s|1−

1
Q .

3.4 Approximating Solutions to the Mixed Problem

Proposition 3.15 (Lemma 2.2 of Taylor, Ott and Brown [38, p. 2900]). Suppose
D ⊆ ∂Ω satisfies the corkscrew condition (2.3) and Λ satisfies the Ahlfors regularity
condition (2.4). If x ∈ Λ and −1 < s < ∞, then there is a constant C depending
only on M and d such that for 0 < ε < ε0,

1

C
εd−1+s ≤

∫
Ψε(x)

δ(y)s dσ(y) ≤ Cεd−1+s.

Corollary 3.16. Suppose D ⊆ ∂Ω satisfies the corkscrew condition (2.3) and Λ
satisfies the Ahlfors regularity condition (2.4). There is a constant C depending only
on d, M , and Hd−2(Λ) so that∫

Λε

δ(y)s dσ(y) ≤ Cεs+1.

Proof. Let Nε be the smallest natural number such that there exists a collection of
Nε points {xn}Nεn=1 ⊂ Λ so that Λ ⊆

⋃Nε
n=1 Ψε(xn). It follows that Λε ⊆

⋃Nε
n=1 Ψ2ε(xn).

Since Λ is (d− 2)-Ahlfors regular, it follows that Nε = O(ε2−d) as ε→ 0. Hence, by
Proposition 3.15 we conclude∫

Λε

δs dσ ≤
Nε∑
n=1

∫
Ψε(xn)

δs dσ

≤ Cε2−dεd−1+s

= Cεs+1.

Corollary 3.17. Suppose D satisfies the corkscrew condition (2.3), Λ satisfies the
Ahlfors regularity condition (2.4), aε is a standard family of functions, f ∈ Lq(Ω) for
some q > d

2
, and g ∈ Lp(N) for some p > d− 1. If uε ∈ H1

D(Ω) is a weak solution of
(AMP) and 0 < ε < ε0, then there is a constant C not depending on ε such that∫

Λε

(Truε)
2

δ
dσ ≤ Cε2α,

where α ∈ (0, 1) is the minimum exponent obtained from Theorem 3.11.
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Proof. Since Truε vanishes on D by assumption, and is Hölder continuous with ex-
ponent α on ∂Ω by Theorem 3.11, we know |Truε| ≤ Cδα, where C does not depend
on ε. Finally, since −1 < 2α− 1 we may conclude from Corollary 3.17∫

Λε

(Truε)
2

δ
dσ ≤ C

∫
Λε

δ2α−1 dσ

≤ Cε2α.

Theorem 3.18. Under the same hypotheses as Corollary 3.17, if uε ∈ H1
D(Ω) is a

weak solution of (AMP) and u0 ∈ H1
D(Ω) is a weak solution of (MP), then there is

a constant C not depending on ε so that

‖uε − u0‖H1(Ω) ≤ Cε1+α.

Proof. Recall that since u0 ∈ H1
D(Ω) is a weak solution of (MP) and uε ∈ H1

D(Ω) is
a weak solution of (AMP), for all ϕ ∈ H1

D(Ω) we have∫
Ω

∇u0 · ∇ϕdx =

∫
Ω

fϕ dx+

∫
N

gTrϕdσ (3.23)

and ∫
Ω

∇uε · ∇ϕdx+

∫
N

aε Truε Trϕdσ =

∫
Ω

fϕ dx+

∫
N

gTrϕdσ. (3.24)

Let ϕ := u0 − uε ∈ H1
D(Ω). Subtracting (3.24) from (3.23) yields∫

Ω

∇(u0 − uε) · ∇(u0 − uε) dx =

∫
Λε

aε Truε Tr(u0 − uε) dσ.

Then, by Lemmas 2.7 and 3.17, we write∫
Ω

|∇(uε − u0)|2 dx ≤ ε

∫
Λε

|Truε||Tr(u0 − uε)|
δ

dσ

≤
(∫

Λε

|Truε|2

δ
dσ

) 1
2
(∫

N

|Tr(u0 − uε)|2

δ
dσ

) 1
2

≤ Cε1+α

(∫
Ω

|∇(u0 − uε)|2 dx
) 1

2

.

Dividing both sides by
(∫

Ω
|∇(uε − u0)|2 dx

)1/2
gives the desired result.

Lemma 3.19. Suppose in addition to the hypotheses of Corollary 3.17 that aε is a
continuous family of functions (See (2.11)). If uε, uε+h ∈ H1

D(Ω) are weak solutions
of (AMP) for 0 < ε < ε0, 0 < ε + h < ε0, and |h| < ε, then there is a constant C
not depending on ε or h so that

‖uε+h − uε‖H1(Ω) ≤ C|h|
(
‖f‖Lq(Ω) + ‖g‖Lp(N)

)
.
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Proof. Let ϕ := uε+h − uε ∈ H1
D(Ω). Then uε+h, uε ∈ H1

D(Ω) satisfy∫
Ω

∇uε+h · ∇ϕdx+

∫
N

aε+h Truε+h Trϕdσ =

∫
Ω

fϕ dx+

∫
N

gTrϕdσ (3.25)

and ∫
Ω

∇uε · ∇ϕdx+

∫
N

aε Truε Trϕdσ =

∫
Ω

fϕ dx+

∫
N

gTrϕdσ, (3.26)

respectively. Subtracting equation (3.26) from (3.25) yields∫
Ω

|∇ϕ|2 dx = −
∫
N

(aε+h Truε+h − aε Truε) Trϕdσ

= −
∫
N

(aε+h − aε) Truε+h Trϕdσ −
∫
N

aε|Trϕ|2 dσ.

Now, recall from Theorem 2.4 that the bilinear form Bε[u, ϕ] =
∫

Ω
∇u · ∇ϕdx =∫

N
aε TruTrϕdσ is coercive on H1

D(Ω) whenever 0 < ε < ε0. In conjunction with
condition (2.11) for a continuous family aε and the Hardy inequality, this implies that
for some C > 0 we have

C‖∇ϕ‖2
L2(Ω) ≤ ‖∇ϕ‖2

L2(Ω) +

∫
N

aε|Trϕ|2 dσ

= −
∫
N

(aε+h − aε) Truε+h Trϕdσ

≤ Cµ|h|
∫
N

|Truε+h||Trϕ|
δ

dσ

≤ Cµ|h|
(∫

N

|Truε+h|2

δ
dσ

) 1
2
(∫

N

Trϕ2

δ
dσ

) 1
2

≤ Cµ|h|‖∇uε+h‖L2(Ω)‖∇ϕ‖L2(Ω)

≤ Cµ|h|
(
‖f‖H−1

D (Ω) + ‖g‖H−1/2(N)

)
‖∇ϕ‖L2(Ω).

Dividing the above inequality by C‖∇ϕ‖L2(Ω) completes the proof.

3.5 Asymptotic Expansion of uε in ε

Suppose aε ≥ 0 is a smooth standard family of functions. We now consider weak
solutions for the following boundary value problem:∫

Ω

∇(u′ε) · ∇ϕdx+

∫
N

aε Tr(u′ε) Trϕdσ = −〈a′ε Truε,Trϕ〉N . (3.27)

Here, a′ε : ∂Ω→ R is the function given by a′ε(x) := ∂ãx
∂ε

(ε), and ãx(ε) was defined in
(2.12). In the case of the example function (2.8), we have

a′ε(x) :=

{
µεµ−1

δ(x)µ
, 0 < δ(x) ≤ ε,

0, otherwise,
(3.28)
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which satisfies the bound 0 ≤ a′ε(x) ≤ µ/δ(x) for all x ∈ ∂Ω \ Λ.
By the Hardy inequality and the fact that uε ∈ H1

D(Ω) is known, a′ε Truε ∈
H−1/2(N) with norm uniformly bounded in ε by

‖a′ε Truε‖H−1/2(∂Ω) ≤ Cµ‖∇uε‖L2(Ω)

≤ Cµ
(
‖f‖H−1

D (Ω) + ‖g‖H−1/2(N)

)
.

Hence, each u′ε ∈ H1
D(Ω) is a well-defined weak solution of (AMP) with f = 0 and

g = a′ε Truε, that is, 
−∆u′ε = 0 on Ω

u′ε = 0 on D
∂u′ε
∂ν

+ aεu
′
ε = −a′ε Truε on N.

(AMP′)

The problem (AMP′) and its weak formulation (3.27) are the result of formally dif-
ferentiating (AMP) with respect to ε. We now wish to know in what sense u′ε can
be understood as a derivative of uε, and whether there is a u′0 ∈ H1

D(Ω) such that
‖u′ε − u′0‖H1(Ω) → 0 as ε→ 0. The following two theorems address these questions.

Theorem 3.20. Under the same hypotheses as Corollary 3.17, there is a constant C
not depending on ε so that

‖u′ε‖H1(Ω) ≤ Cεα.

Proof. Since u′ε ∈ H1
D(Ω) is a weak solution of (AMP′), for some C0 > 0 we have by

the Hardy inequality, Theorem 3.14, and Corollary 3.16

C0‖∇u′ε‖2
L2(Ω) ≤

∫
Ω

|∇u′ε|2 dx+

∫
N

aε|Tru′ε|2 dσ

= −
∫
N

a′ε Truε Tru′ε dσ

≤ εµ−1

∫
Λε

|Truε||Tru′ε|
δµ

dσ

≤ Cεµ−1+α

∫
Λε

|Tru′ε|
δµ

dσ

≤ Cεµ−1+α

(∫
Λε

δ1−2µ dσ

) 1
2
(∫

Λε

|Tru′ε|
δµ

dσ

) 1
2

≤ Cεα‖∇u′ε‖L2(Ω).

Theorem 3.21. Suppose that in addition to the hypotheses of lemma 3.19, aε is a
smooth family of functions (See (2.12)). If u′ε ∈ H1

D(Ω) is a weak solution of (AMP′),
then there is a constant C depending on ε such that

‖uε+h − uε − hu′ε‖H1(Ω) ≤ C|h|1+α.
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Proof. Without loss of generality, assume h > 0. Let ϕ := uε+h− uε− hu′ε ∈ H1
D(Ω).

Then uε+h, uε, and hu′ε satisfy, respectively,∫
Ω

∇uε+h · ∇ϕdx+

∫
N

aε+h Truε+h Trϕdσ =

∫
Ω

fϕ dx+

∫
N

gTrϕdσ, (3.29)∫
Ω

∇uε · ∇ϕdx+

∫
N

aε Truε Trϕdσ =

∫
Ω

fϕ dx+

∫
N

gTrϕdσ, (3.30)

and ∫
Ω

∇(hu′ε) · ∇ϕdx+

∫
N

aε Tr(hu′ε) Trϕdσ = −
∫
N

ha′ε Truε Trϕdσ. (3.31)

Subtracting (3.30) and (3.31) from (3.29) and adding
∫
N
aε+h|Trϕ|2 dσ yields

C‖∇ϕ‖2
L2(Ω) ≤ ‖∇ϕ‖2

L2(Ω) +

∫
N

aε+h|Trϕ|2 dσ

= −
∫
N

(aε+h − aε − ha′ε) Truε Trϕdσ

− h
∫
N

(aε+h − aε) Tr(u′ε) Trϕdσ

≤
∫

Λε

|aε+h − aε − ha′ε||Truε||Trϕ| dσ

+

∫
Λε+h\Λε

|aε+h − aε − ha′ε||Truε||Trϕ| dσ

+ |h|
∫
N

|aε+h − aε||Tr(u′ε)||Trϕ| dσ

=: I1 + I2 + I3.

Now, for x ∈ Λε we appeal to condition (2.12) for a smooth family aε to write

|aε+h(x) − aε(x) − ha′ε(x)| ≤ Cµεµ−2

δ(x)µ
h2, and when x ∈ Λε+h \ Λε we write aε(x) =

a′ε(x) = 0 and |aε+h(x)−aε(x)−ha′ε(x)| = aε+h(x) ≤ Cµεµ−1

δ(x)µ
. Thus, by Corollary 3.17

and the fact that 0 < h < ε we have

I1 ≤ Cµε
−1h2

∫
Λε

|Truε||Trϕ|
δ

dσ

≤ Cµε
−1h2

(∫
Λε

|Truε|2

δ
dσ

) 1
2
(∫

Λε

|Trϕ|2

δ
dσ

) 1
2

≤ Cµε
α− 1

2h
3
2‖∇ϕ‖L2(Ω)

≤ Cµh
1+α‖∇ϕ‖L2(Ω),
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and

I2 ≤ Cµh

∫
Λε+h\Λε

|Truε||Trϕ|
δ

dσ

≤ Cµh

(∫
Λε+h\Λε

|Truε|2

δ
dσ

) 1
2
(∫

Λε+h\Λε

|Trϕ|2

δ
dσ

) 1
2

≤ Cµh
(
(ε+ h)2α − ε2α

) 1
2 ‖∇ϕ‖L2(Ω)

≤ α
1
2Cµh

3
2 εα−

1
2‖∇ϕ‖L2(Ω)

≤ α
1
2Cµh

1+α‖∇ϕ‖L2(Ω).

Finally, we estimate I3 ≤ Cµh
2
(
‖f‖H−1

D (Ω) + ‖g‖H−1/2(N)

)
‖∇ϕ‖L2(Ω) as in the proof

of Theorem 3.19. Hence,

‖∇ϕ‖L2(Ω) ≤ C
(
‖f‖H−1

D (Ω) + ‖g‖H−1/2(N) + 1
)
h1+α.

Remark. In Theorems 3.20 and 3.21 above, it suffices to let aε be merely a “once-
differentiable family,” i.e., a continuous family for which condition (2.12) holds for
k = 0 and 1, but not for k ≥ 2.

Copyright c© Morgan Schreffler, 2017.
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Chapter 4 Solving the Approximate Mixed Problem by Layer Potentials

The goal of this chapter is to establish a method for finding weak solutions of (AMP)
by the method of layer potentials. Section 4 introduces the single- and double-layer
potential operators as bounded operators on Sobolev spaces. In Section 4.1.4, we find
a system of boundary integral equations which are equivalent to (AMP), and show
that the system is uniquely solvable on an appropriate function space, provided the
exponent µ from Section 2.3.1 is in the interval (0, 1).

4.1 Layer Potentials

This section lays the groundwork for the chapter’s main results. We begin with some
notation, then deduce a representation formula for solutions u ∈ H1(Ω) of −∆u = f .
We conclude by obtaining estimates on the layer potentials.

4.1.1 Preliminary Notation

Recall that Ω− denotes a bounded Lipschitz domain and Ω+ := Rd \ Ω̄ its comple-
mentary unbounded domain. Also recall our use of ωd to denote the measure of the
unit ball in Rd. Let Tr± : H1(Ω±) → H1/2(∂Ω) and ∂±

∂ν
: H1(Ω±) → H−1/2(∂Ω) be

the one-sided trace and normal derivatives, respectively. Note that ∂±

∂ν
may not nec-

essarily be a continuous operator due to the dependence of ∂±u
∂ν

on −∆u (See Section
2.3.2). If u ∈ L2(Rd) and u|Ω± ∈ H1(Ω±), we denote the jumps in the trace and
normal derivative of u by

[u]∂Ω := Tr+ u− Tr− u and

[
∂u

∂ν

]
∂Ω

:=
∂+u

∂ν
− ∂−u

∂ν
,

respectively. If such a u satisfies [u]∂Ω = 0 or
[
∂u
∂ν

]
= 0, we usually drop the sign on

the operator and write Tru or ∂u
∂ν

. Observe that u ∈ H1(Rd) if and only if [u]∂Ω = 0.
Further, since we have adopted the convention of choosing ν to always point out of
Ω− and into Ω+, we have

[
∂v
∂ν

]
∂Ω

= 0 for all v ∈ C∞c (Rd). Recall, however, that there
is a sign change in Green’s identity (Lemma 2.3).

The two-sided trace Tr : H1(Rd)→ H1/2(∂Ω) and normal derivative ∂
∂ν

: H1(Rd)→
H−1/2(∂Ω) give rise to well-defined adjoint operators Tr∗ : H−1/2(∂Ω) → H−1(Rd)
and

(
∂
∂ν

)∗
: H1/2(∂Ω)→ H−1(Rd), respectively, given by

〈Tr∗ ψ, v〉Rd = 〈ψ,Tr v〉∂Ω ∀ ψ ∈ H−1/2(∂Ω), v ∈ H1(Rd), and〈
∂∗ϕ

∂ν
, v

〉
Rd

=

〈
∂v

∂ν
, ϕ

〉
∂Ω

∀ ϕ ∈ H1/2(∂Ω), v ∈ H1(Rd).

Observe that supp Tr∗ ψ ⊆ ∂Ω and supp ∂∗ϕ
∂ν
⊆ ∂Ω for all ψ ∈ H−1/2(∂Ω) and ϕ ∈

H1/2(∂Ω). Indeed, if we choose v ∈ C∞c (Rd) supported away from ∂Ω, the above
definitions give 〈Tr∗ ψ, v〉Rd =

〈
∂∗ϕ
∂ν
, v
〉
Rd = 0. Thus, when it is convenient to do so

we may consider Tr∗ ψ and ∂∗ϕ
∂ν

as elements of H−1
0 (Ω±) rather than H−1(Rd).
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4.1.2 Representation Formula

Let G : C∞c (Rd) → C∞(Rd) be an operator which satisfies −∆(Gu) = u = G(−∆u)
for every u ∈ C∞c (Rd). It can be shown (cf. the monographs of Evans [11] and
Gilbarg & Trudinger [13]) that Gu(x) =

∫
Rd G(x − y)u(y) dy is such an operator,

where the convolution kernel G : Rd \ {0} is given by

G(z) :=

{
− 1

2π
ln
(
|z|
R

)
, d = 2, R > 0

1
d(d−2)ωd

|z|2−d, d ≥ 3.

The function G (and often the operator G) is called the fundamental solution of −∆.
Note that G has a natural extension G : (C∞(Rd))∗ → (C∞0 (Rd))∗ given by

〈Gψ, ϕ〉Rd := 〈ψ,Gϕ〉Rd , ψ ∈ (C∞(Rd))∗, ϕ ∈ C∞0 (Rd).

Now, define the single- and double-layer potential operators SL : H−1/2(∂Ω) →
C∞(Rd)∗ and DL : H1/2(∂Ω)→ C∞(Rd)∗ by

SLψ := G Tr∗ ψ, ψ ∈ H−1/2(∂Ω), and DLϕ := G ∂
∗ϕ

∂ν
, ϕ ∈ H1/2(∂Ω),

respectively. The following theorem gives a representation formula for solutions of
Poisson’s equation.

Theorem 4.1 (Representation Formula). Let u = u+ + u− ∈ L2(Rd) and f = f+ +
f− ∈ H−1(Rd), where u± ∈ H1(Ω±) and f± ∈ H−1

0 (Ω±), and suppose −∆u± = f±

on Ω±. If suppu and supp f are compact, then

u = Gf − SL

[
∂u

∂ν

]
∂Ω

+ DL[u]∂Ω on Rd. (4.1)

In particular, if u+ = 0 and f+ = 0, formula (4.1) reduces to

u = Gf + SL
∂−u

∂ν
−DL Tr− u on Rd. (4.2)

Proof. By Green’s identity, for each v ∈ H1(Rd) we have on the one hand∫
Rd

∇u · ∇v dx =

∫
Ω+

∇u · ∇v dx+

∫
Ω−
∇u · ∇v dx

=

〈
∂−u

∂ν
,Tr v

〉
∂Ω

−
〈
∂+u

∂ν
,Tr v

〉
∂Ω

+
〈
f+, v

〉
Ω+ +

〈
f−, v

〉
Ω−

= 〈f, v〉Rd −
〈[

∂u

∂ν

]
∂Ω

,Tr v

〉
∂Ω

,
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and on the other hand∫
Rd

∇u · ∇v dx =

∫
Ω+

∇u · ∇v dx+

∫
Ω−
∇u · ∇v dx

=

〈
∂v

∂ν
,Tr− u

〉
∂Ω

−
〈
∂v

∂ν
,Tr+ u

〉
∂Ω

+ 〈−∆v, u〉Ω+ + 〈−∆v, u〉Ω+

= 〈−∆v, u〉Rd −
〈
∂v

∂ν
, [u]∂Ω

〉
∂Ω

.

Then, since −∆ is formally self-adjoint on Rd, we deduce

〈−∆u, v〉Rd = 〈f, v〉Rd −
〈[

∂u

∂ν

]
∂Ω

,Tr v

〉
∂Ω

+

〈
∂v

∂ν
, [u]∂Ω

〉
∂Ω

= 〈f, v〉Rd −
〈

Tr∗
[
∂u

∂ν

]
∂Ω

, v

〉
Rd

+

〈(
∂

∂ν

)∗
[u]∂Ω , v

〉
Rd

.

Thus, we have shown that −∆u ∈ H−1(Rd) is given by

−∆u = f − Tr∗
[
∂u

∂ν

]
∂Ω

+

(
∂

∂ν

)∗
[u]∂Ω on Rd. (4.3)

Finally, since suppu and supp f are compact we can apply G to both sides of (4.3)
to obtain formula (4.1). Equation (4.2) is an obvious consequence.

4.1.3 Mapping Properties and Jump Relations

Since we saw in Section 2.3.2 that −∆u ∈ H−1
0 (Ω) whenever u ∈ H1(Ω), we can say

that in a certain sense that the Laplacian −∆ “takes away two derivatives” from the
function on which it operates. The next lemma, in contrast, essentially says that G
“gives two extra derivatives” to the objects on which it operates, and will help us to
prove Lemmas (4.3) and (4.4).

Lemma 4.2. Let η1, η2 ∈ C∞c (Rd) be fixed. There is a constant C depending on d,
η1, and η2 (and the choice of G when d = 2) such that for all u ∈ H−1(Rd),

‖η1Gη2u‖H1(Rd) ≤ C‖u‖H−1(Rd).

Proof. As noted in Chapter 2, C∞c (Rd) is dense in H−1(Rd), so it suffices to prove
the estimate when u ∈ C∞c (Rd). Further, by the Riesz representation theorem,
‖u‖H−1(Rd) = ‖u‖H1(Rd) in this case.

Now, suppose η1, η2 are supported in balls BR1(0), BR2(0), respectively, and let
x ∈ BR1(0). When d ≥ 3, ∫

BR2
(0)

|x− y|2−d dy ≤ 1

2
dωdR

2
2,
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and when d = 2,∫
BR2

(0)

∣∣∣∣ln |x− y|R

∣∣∣∣ dy ≤
{

1
4
(R1 +R2)2

[
2 ln R

R1+R2
+ 1
]
, R1 +R2 ≤ R,

1
4
(R1 +R2)2

[
2 ln R1+R2

R
− 1
]

+ 1
4
R2, R1 +R2 > R.

Hence,

|η1Gη2u(x)|2 =

∣∣∣∣η1(x)

∫
Rd

G(x− y)η2(y)u(y) dy

∣∣∣∣2
≤ ‖η2‖2

∞|η1(x)|2
(∫

BR1+R2

|G(x− y)| dy

)(∫
BR1+R2

|G(x− y)||u(y)|2 dy

)
,

and by Fubini’s theorem,

‖η1Gη2u‖L2(Rd) ≤ C‖η1‖∞‖η2‖∞

(∫
BR1

∫
BR1+R2

|G(x− y)||u(y)|2 dy

) 1
2

≤ C‖η1‖∞‖η2‖∞‖u‖L2(Rd).

Finally,

‖∇[η1Gη2u](x)‖L2(Rd) ≤ ‖∇(η1)Gη2u(x)‖L2(Rd) + ‖η1G(∇η2)u(x)‖L2(Rd)

+ ‖η1Gη2(∇u)(x)‖L2(Rd)

≤ C (‖∇η1‖∞ ‖η2‖∞ + ‖η1‖∞ ‖∇η2‖∞) ‖u‖L2(Rd)

+ C‖η1‖∞‖η2‖∞ ‖∇u‖L2(Rd) .

Hence, we have

‖η1Gη2u‖H1(Rd) ≤ C‖u‖H1(Rd)

as desired.

Lemmas 4.3 and 4.4 are originally due to Costabel [4], though we use much of the
notation found in the monograph of McLean [26].

Lemma 4.3 (Mapping Properties and Jump Relations for SL). Fix η1 ∈ C∞c (Rd).
The single-layer potential gives rise to continuous operators

η1 SL : H−1/2(∂Ω)→ H1(Rd), (4.4)

Tr SL : H−1/2(∂Ω)→ H1/2(∂Ω), and (4.5)

∂±

∂ν
SL : H−1/2(∂Ω)→ H−1/2(∂Ω), (4.6)

and satisfies for all ψ ∈ H−1/2(∂Ω) the jump relations

[SLψ]∂Ω = 0 and

[
∂

∂ν
SLψ

]
∂Ω

= −ψ. (4.7)
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Proof. Let ψ ∈ H−1/2(∂Ω) and let η2 ∈ C∞c (Rd) be a cutoff function which is 1 on a
neighborhood of Ω−. By Lemma 4.2 and the fact that Tr : H1(Rd)→ H1/2(∂Ω) and
Tr∗ : H−1/2(∂Ω)→ H−1(Rd) are bounded, we have

‖η1 SLψ‖H1(Rd) = ‖η1G Tr∗ ψ‖H1(Rd)

≤ C‖Tr∗ ψ‖H−1(Rd)

≤ C‖ψ‖H−1/2(∂Ω),

and

‖Tr SLψ‖H1/2(∂Ω) = ‖Tr η2 SLψ‖H1/2(∂Ω)

≤ C‖η2 SLψ‖H1(Rd)

≤ C‖ψ‖H−1/2(∂Ω),

and thus properties (4.4) and (4.5) are established. Property (4.4) also gives the first
jump relation of (4.7), since η2 SLψ ∈ H1(Rd) implies [SLψ]∂Ω = [η2 SLψ]∂Ω = 0.

Now, since supp(Tr∗ ψ) ⊆ ∂Ω we have −∆(SLψ) = 0 on Ω−, implying by (2.13)
from Lemma 2.3 that∥∥∥∥∂−∂ν SLψ

∥∥∥∥
H−1/2(∂Ω)

=

∥∥∥∥∂−∂ν [η2 SLψ]

∥∥∥∥
H−1/2(∂Ω)

≤ C‖η2 SLψ‖H1(Ω−)

≤ C‖ψ‖H−1/2(∂Ω).

This is property (4.6) for ∂−

∂ν
SLψ. To obtain the analogous result for ∂+

∂ν
SLψ, we first

observe that −∆(η2 SLψ) = −(∆η2) SLψ− 2∇η2 ·∇(SLψ) on Ω+. Let η3 ∈ C∞c (Rd)
be 1 on a neighborhood of supp η2 and satisfy ‖η3‖∞ ≤ 1 and ‖∇η3‖∞ ≤ 1. Then
Lemmas 2.3 and 4.2 give∥∥∥∥∂+

∂ν
SLψ

∥∥∥∥
H−1/2(∂Ω)

=

∥∥∥∥∂+

∂ν
[η2 SLψ]

∥∥∥∥
H−1/2(∂Ω)

≤ C(‖η2 SLψ‖H1(Ω+) + ‖(∆η2) SLψ‖H1(Ω+)

+ ‖∇η2 · ∇ SLψ‖L2(Ω+))

≤ C
(
‖ψ‖H−1/2(∂Ω) + ‖∇η2 · ∇(η3Gη3 Tr∗ ψ)‖L2(Ω+)

)
≤ C

(
‖ψ‖H−1/2(∂Ω) + ‖η3Gη3 Tr∗ ψ‖H1(Rd)

)
≤ C

(
‖ψ‖H−1/2(∂Ω) + C‖Tr∗ ψ‖H−1(Rd)

)
≤ C‖ψ‖H−1/2(∂Ω).

Finally, we prove the jump relation for
[
∂
∂ν

SLψ
]
∂Ω

from (4.7). Let u = η2 SLψ

and suppose Ω′ is the neighborhood of Ω− on which η2 = 1. On the one hand,
−∆u = Tr∗ ψ on Ω′ by the definition of G. On the other hand, −∆u = −Tr∗

[
∂u
∂ν

]
∂Ω

+(
∂
∂ν

)∗
[u]∂Ω by formula (4.3). Since we have already shown that [u]∂Ω = 0, and we

know
[
∂u
∂ν

]
∂Ω

=
[
∂
∂ν

SLψ
]
∂Ω

, we deduce

Tr∗
(
ψ +

[
∂

∂ν
SLψ

]
∂Ω

)
= 0 on Rd.
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Hence,
〈
ψ +

[
∂
∂ν

SLψ
]
∂Ω
, v
〉
Rd = 0 for all v ∈ H1(Rd), i.e.,

[
∂
∂ν

SLψ
]
∂Ω

= −ψ.

Lemma 4.4 (Mapping Properties and Jump Relations for DL). Fix η1 ∈ C∞c (Rd).
The double-layer potential gives rise to continuous operators

η1 DL : H1/2(∂Ω)→ H1(Ω±), (4.8)

Tr±DL : H1/2(∂Ω)→ H1/2(∂Ω), and (4.9)

∂

∂ν
DL : H1/2(∂Ω)→ H−1/2(∂Ω), (4.10)

and satisfies for all ϕ ∈ H1/2(∂Ω) the jump relations

[DLϕ]∂Ω = ϕ and

[
∂

∂ν
DLϕ

]
∂Ω

= 0. (4.11)

Proof. By Theorem 2.4, for each ϕ ∈ H1/2(∂Ω) the Dirichlet problem{
−∆u = 0 on Ω−,

u = ϕ on ∂Ω−

has a unique solution uϕ ∈ H1(Ω−) with ‖uϕ‖H1(Ω−) ≤ C‖ϕ‖H1/2(∂Ω). Set ũϕ ∈
L2(Rd) to be uϕ on Ω− and 0 on Ω+, so that [ũϕ]∂Ω = −ϕ and

[
∂ũϕ
∂ν

]
∂Ω

= −∂−uϕ
∂ν

. By

the representation formula (4.2) we have

DLϕ = SL
∂−uϕ
∂ν
− ũϕ on Rd.

We also have −∆ũϕ = 0 on Ω−, which gives
∥∥∥∂−uϕ∂ν

∥∥∥
H−1/2(∂Ω)

≤ C‖uϕ‖H1(Ω−) ≤
C‖ϕ‖H1/2(∂Ω) by Lemma 2.3. Hence, the mapping property (4.4) gives

‖η1 DLϕ‖H1(Ω−) ≤
∥∥∥∥η1 SL

∂−uϕ
∂ν

∥∥∥∥
H1(Rd)

+ ‖ũϕ‖H1(Ω−)

≤ C

∥∥∥∥∂−uϕ∂ν

∥∥∥∥
H−1/2(∂Ω)

+ ‖uϕ‖H1(Ω−)

≤ C‖ϕ‖H1/2(∂Ω),

and

‖η1 DLϕ‖H1(Ω+) ≤
∥∥∥∥η1 SL

∂−uϕ
∂ν

∥∥∥∥
H1(Rd)

+ ‖ũϕ‖H1(Ω+)

≤ C

∥∥∥∥∂−uϕ∂ν

∥∥∥∥
H−1/2(∂Ω)

≤ C‖ϕ‖H1/2(∂Ω),
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which confirms property (4.8). Property (4.9) then follows immediately from the
boundedness of the trace maps Tr± : H1(Ω±)→ H1/2(∂Ω). To prove (4.10), we again
appeal to Lemma 2.3, as well as property (4.6), to write∥∥∥∥∂±∂ν DLϕ

∥∥∥∥
H−1/2(∂Ω)

≤
∥∥∥∥∂±∂ν SL

∂−uϕ
∂ν

∥∥∥∥
H−1/2(∂Ω)

+

∥∥∥∥∂±ũϕ∂ν

∥∥∥∥
H−1/2(∂Ω)

≤ C

∥∥∥∥∂−uϕ∂ν

∥∥∥∥
H−1/2(∂Ω)

≤ C‖ϕ‖H1/2(∂Ω).

Finally, we prove the jump relations (4.11). By the mapping properties (4.7) for the

single-layer potential,
[
SL ∂−uϕ

∂ν

]
∂Ω

= 0 and
[
∂
∂ν

SL ∂−uϕ
∂ν

]
∂Ω

= −∂−uϕ
∂ν

. Hence,

[DLϕ]∂Ω =

[
SL

∂−uϕ
∂ν

]
∂Ω

− [ũϕ]∂Ω

= ϕ

and [
∂

∂ν
DLϕ

]
∂Ω

=

[
∂

∂ν
SL

∂−uϕ
∂ν

]
∂Ω

−
[
∂ũϕ
∂ν

]
= −∂

−uϕ
∂ν

+
∂−uϕ
∂ν

= 0.

Corollary 4.5. The operators

A := Tr SL : H−1/2(∂Ω)→ H1/2(∂Ω),

B :=
∂+

∂ν
SL +

∂−

∂ν
SL : H−1/2(∂Ω)→ H−1/2(∂Ω),

C := Tr+ DL + Tr−DL : H1/2(∂Ω)→ H1/2(∂Ω), and

D := − ∂

∂ν
DL : H1/2(∂Ω)→ H−1/2(∂Ω)

are all bounded. Further, B and C satisfy the jump relations

∂±

∂ν
SLψ =

1

2
(∓ψ + Bψ), and (4.12)

Tr±DLϕ =
1

2
(±ϕ+ Cϕ) (4.13)

for all ψ ∈ H−1/2(∂Ω) and ϕ ∈ H1/2(∂Ω).
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4.1.4 The Associated System of Boundary Integral Equations

The main result of this subsection is Theorem 4.6, in which we derive a system
of boundary integral equations associated with (AMP), aptly named the associated
system, whose solution (or solutions) determine the weak solution of (AMP). We
begin by defining bounded operators

AεDD : H̃−1/2(D)→ H1/2(Dε) BND : H̃−1/2(D)→ H−1/2(N)

CεDN : H̃1/2(N)→ H1/2(Dε) DNN : H̃1/2(N)→ H−1/2(N)

by

AεDDψ := (Aψ)|Dε and BNDψ := (Bψ)|N for ψ ∈ H̃−1/2(D),

and

CεDNϕ := (Cϕ)|Dε and DNNϕ := (Dϕ)|N for ϕ ∈ H̃1/2(N).

For 0 < ε < ε0 let aε be a standard family of functions as in (2.9) and (2.10),

and for ε = 0 let a0 be identically 0 on ∂Ω. Let Hε = H̃−1/2(Dε) × H̃1/2(N) and
H∗ε = H1/2(Dε)×H−1/2(N), and for ϕ := [ ϕDϕN ] ∈Hε and ψ :=

[
ψD
ψN

]
∈H∗ε let

〈ψ,ϕ〉Dε×N := 〈ψD, ϕD〉Dε + 〈ψN , ϕN〉N .

Define operators Aε
0,Aε,Kε : Hε →H∗ε by

Aε
0 =

[
AεDD −1

2
CεDN

1
2
BND DNN

]
, Kε =

[
0 −Aaε
0 −1

2
Baε

]
, and Aε = Aε

0 +Kε,

where the operators Aaε and Baε are understood to be the composition of the mul-
tiplication operator ψ 7→ aεψ with A and B, respectively.

Theorem 4.6. Let f ∈ H−1
D (Ω−), g ∈ H−1/2(N), and aε a standard family of

functions. Set aε to be identically 0 when ε = 0. Choose ΓD ∈ H̃1/2(N) and

ΓN ∈ H−1/2(∂Ω) with g := ΓN on N . Define hε =
[
hD,ε
hN,ε

]
∈H∗ε by

hD,ε :=

(
−TrGf +A(aεΓD − ΓN)− 1

2
(ΓD − CΓD)

)∣∣∣∣
Dε

, and

hN,ε :=

(
−∂

−

∂ν
Gf +

1

2

(
g + aεΓD + B(aεΓD − ΓN)

)
−DΓD

)∣∣∣∣
N

.

For fixed ε, 0 ≤ ε < ε0, if ψε :=
[
ψD,ε
ψN,ε

]
∈Hε solves the system of integral equations

Aεψε = hε, (4.14)

then the weak solution uε ∈ H1
D(Ω−) of (AMP) has integral representation

uε = Gf + SL (ψD,ε − aεψN,ε + ΓN − aεΓD)−DL(ψN,ε + ΓD) on Ω−. (4.15)
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Conversely, if uε ∈ H1
D(Ω−) is a weak solution of (AMP), then ψε :=

[
ψD,ε
ψN,ε

]
∈ Hε

given by

ψD,ε :=
∂−uε
∂ν

+ aε Tr− uε − ΓN and ψN,ε := Tr− uε − ΓD (4.16)

solves the system 4.14.

Proof. Suppose ψε ∈ Hε solves the system (4.14), and let uε be given by (4.15) on
Ω−. It follows easily from how we defined G that −∆uε = f on Ω−, and from the
mapping properties (4.4) and (4.8) that uε ∈ H1(Ω−).

By the definition of A and the jump relation (4.13) from Corollary 4.5 we have

Tr− uε = TrGf + Tr SL(ψD,ε − aεψN,ε + ΓN + aεΓD)− Tr−DL(ψN,ε + ΓD)

= TrGf +A (ψD,ε − aεψN,ε + ΓN − aεΓD) +
1

2
(ψN,ε + ΓD − CψN,ε − CΓD)

= −
(
−TrGf +A(aεΓD − ΓN)− 1

2
(ΓD − CΓD)

)
+

(
AψD,ε −

(
Aaε +

1

2
C
)
ψN,ε

)
+

1

2
ψN,ε.

Restricting to Dε and recalling that ψε solves (4.14), we obtain

Tr− uε = −hD,ε +AεDDψD,ε −
(
Aaε +

1

2
CεDN

)
ψN,ε +

1

2
ψN,ε

=
1

2
ψN,ε. (4.17)

In particular, this implies Tr− uε = 0 on D, i.e., uε ∈ H1
D(Ω−).

It remains to show that uε satisfies the boundary condition ∂−uε
∂ν

+ aεuε = g on
N . By the definition of D and the identity (4.12) from Corollary 4.5 we have

∂−uε
∂ν

=
∂−

∂ν
Gf +

∂−

∂ν
SL(ψD,ε − aεψN,ε + ΓN − aεΓD)− ∂

∂ν
DL(ψN,ε + ΓD)

=
∂−

∂ν
Gf +

1

2
(I + B)

(
ψD,ε − aεψN,ε + ΓN − aεΓD

)
+D(ψN,ε + ΓD)

= −
(
−∂

−

∂ν
Gf +

1

2

(
ΓN + aεΓD + B(aεΓD − ΓN)

)
−DΓD

)
+

1

2
BψD,ε +

(
D − 1

2
Baε
)
ψN,ε + ΓN +

1

2
ψD,ε −

1

2
aεψN,ε.

Restricting to N and recalling that ψε solves (4.14), we compute

∂−uε
∂ν

= −hNε +
1

2
BNDψD,ε +

(
DNN −

1

2
Baε
)
ψN,ε + g − 1

2
aεψN,ε.
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Finally, 1
2
aεψN,ε = 0 on N \ Dε by the definition of aε, and 1

2
aεψN,ε = aε Tr− uε on

N ∩Dε by (4.17). Hence,

∂−uε
∂ν

+ aε Tr− uε = g on N

as desired.
Conversely, suppose uε ∈ H1

D(Ω−) is a weak solution of (AMP) on Ω− and let
ψε be given by (4.16). Set u = 0 and f = 0 on Ω+. Since uε satisfies the boundary
conditions of (AMP), it follows that ψε ∈Hε, and by (4.2) we have the representation
formula (4.15). We now work through the previous calculations in reverse, with ψε

given by (4.16), to conclude that ψε indeed solves the system (4.14).

Remark. In Theorem 4.6, if we choose ΓD to be identically 0 on ∂Ω, the only depen-
dence hε has on ε is the space Hε in which hε lies.

4.2 Unique Solvability of the Associated System when d ≥ 3

Concisely, Theorem 4.6 states that if we can solve the system (4.14) then we can pro-
duce a weak solution uε ∈ H1

D(Ω−) of (AMP) and, conversely, that we can construct
a solution of (4.14) given a weak solution of (AMP). Thus, Theorem 2.4 guarantees
that at least one solution of (4.14) exists, but says nothing about the uniqueness of
such a solution. We address this issue presently.

To show that for fixed 0 ≤ ε < ε0 we can uniquely solve (4.14), we begin
by showing that Aε

0 is coercive on Hε and positive and bounded below on a sub-
space V ⊆ Hε, i.e., 〈Aε

0ψ,ψ〉Dε×N ≥ c‖ψ‖Hε − C‖ψN‖L2(∂Ω) for all ψ ∈ Hε and
〈Aε

0ψ,ψ〉Dε×N ≥ C‖ψ‖2
V for all ψ ∈ V . To accomplish this, we begin by showing

that the operator AεDD is positive and bounded below on H̃−1/2(D), and the opera-

tor DNN is positive and bounded below on H̃1/2(N) ∩ (kerDNN)⊥. We conclude by
showing that CDN and BND act as adjoints of each other in a certain sense.

Next, we show that Kε : Hε → H∗ε is compact, and thus the operator Aε :
Hε → H∗ε is Fredholm and has index 0. We finish the section and the chapter by
proving thatAε : Hε →H∗ε is injective, and thus the systemAεψε = h has a unique
solution ψε ∈Hε for each h ∈H∗ε and 0 ≤ ε < ε0 by the Fredholm alternative.

4.2.1 Positive Definiteness of the Operator AεDD
To show that AεDD is positive and bounded below, we prove that it is Fredholm of
index 0, then show that kerAεDD = {0}, at which point we deduce the desired result
from the Fredholm alternative.

Lemma 4.7. For d ≥ 2, A : H−1/2(∂Ω)→ H1/2(∂Ω) is Fredholm of index 0.

Proof. Let η ∈ C∞c (Rd) be identically 1 on a neighborhood of Ω−, ψ1, ψ2 ∈ H−1/2(∂Ω),
and set u = η SLψ1 and v = η SLψ2. By the jump relations (4.7) for the single-layer
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potential, as well as Green’s identity (Lemma (2.3)), we have

〈ψ2,Aψ1〉∂Ω =

〈
∂−v

∂ν
− ∂+v

∂ν
,Tru

〉
∂Ω

=

∫
Rd

∇u · ∇v dx− 〈−∆v, u〉Ω+ .

LetK : H−1/2(∂Ω)→ H1/2(∂Ω) be given by 〈ψ2, Kψ1〉∂Ω := −〈−∆v, u〉Ω+−
∫
Rd uv dx

and write A0 := A−K so that

〈ψ1,A0ψ1〉∂Ω = ‖u‖2
H1(Rd).

To complete the proof, we will show that A0 is positive definite and K is compact.
Since −∆(SLψ1) = 0 on Rd \ ∂Ω, by the jump relation

[
∂u
∂ν

]
∂Ω

= −ψ1 we deduce in
similar fashion to how we proved (4.6)

‖ψ1‖2
H−1/2(∂Ω) =

∥∥∥∥∂−u∂ν − ∂+u

∂ν

∥∥∥∥2

H−1/2(∂Ω)

≤ C‖u‖2
H1(Rd),

from which positive definiteness of A0 immediately follows, since

〈ψ1,A0ψ1, 〉∂Ω ≥ C‖ψ1‖2
H−1/2(∂Ω).

When ψ1 ∈ C(∂Ω), the operator 〈ψ2, K1ψ1〉∂Ω := 〈−∆v, u〉Ω+ can be written as an
integral operator

K1ψ1(z) =

∫
∂Ω

K(z, y)ψ1(y) dσ(y),

where

K(z, y) =

∫
Ω+

−∆x(η(x)G(x, z))η(x)G(x, y) dx.

The integral kernel K is C∞ in a neighborhood of ∂Ω× ∂Ω, since G ∈ C∞(Rd \ {0})
and −∆v is compactly supported in Ω+. From this we may conclude that K1 is
densely defined as a Hilbert-Schmidt integral operator, and consequently is compact.

It is beyond the scope of the main text to prove that the operatorK2 : H−1/2(∂Ω)→
H1/2(∂Ω) given by 〈ψ2, K2ψ1〉∂Ω :=

∫
Rd uv dx is compact. The relevant result is

Lemma B.3 which can be found in Appendix B.

Lemma 4.8. For d ≥ 3, A : H−1/2(∂Ω)→ H1/2(∂Ω) is positive definite, i.e.,

〈ψ,Aψ〉∂Ω ≥ C‖ψ‖2
H−1/2(∂Ω) ∀ ψ ∈ H−1/2(∂Ω).
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Proof. We begin in similar fashion to how we proved Lemma 4.7. Let ψ1, ψ2 ∈ C(∂Ω),
set u = SLψ1 and v = SLψ2, and let ρ > 0 be large enough that Ω− ⊂ Bρ(0). Let
νr(x) = x

r
denote the outward unit normal to Br(0) at the point x ∈ ∂Br(0). By

Green’s identity, we have

〈ψ2,Aψ1〉∂Ω =

∫
Bρ(0)

∇u · ∇v dx+

∫
Bρ(0)

u
∂v

∂νρ
dσ.

For x /∈ ∂Ω we have

u(x) =

∫
∂Ω

G(x− y)ψ1(y) dσ(y)

=
1

d(2− d)ωd

∫
∂Ω

ψ1(y)

|x− y|d−2
dσ(y),

and

∂v

∂νr
(x) =

∫
∂Ω

νr(x) · ∇xG(x, y)ψ2(y) dσ(y)

=
1

rdωd

∫
∂Ω

x · (x− y)

|x− y|d
ψ2(y) dσ(y).

Here, ∇xG(x, y) denotes the gradient of G(x, y) with respect to x. Observe that for
r = |x| > 2ρ and |y| < ρ < r

2
,

|u(x)| ≤
2d−2σ(∂Ω)

1
2‖ψ1‖L2(∂Ω)

d(d− 2)ωd
r2−d

and ∣∣∣∣ ∂v∂νr (x)

∣∣∣∣ ≤ 2d−1σ(∂Ω)
1
2‖ψ2‖L2(∂Ω)

dωd
r1−d.

Hence, ∣∣∣∣∫
Br(0)

u
∂v

∂νr
dσ

∣∣∣∣ ≤ σ(∂Ω)‖ψ1‖L2(∂Ω)‖ψ2‖L2(∂Ω)

d2(d− 2)ω2
d

r3−2dσ(∂Br(0))

=
σ(∂Ω)‖ψ1‖L2(∂Ω)‖ψ2‖L2(∂Ω)

d(d− 2)ωd
r2−d.

Letting r →∞ we conclude 〈ψ2,Aψ1〉∂Ω =
∫
Rd∇u · ∇v dx.

The fact that 〈ψ1,Aψ1〉∂Ω ≥ 0 follows immediately from the above calculation.
Moreover, if 〈ψ1,Aψ1〉∂Ω = 0 then |∇u| = 0 on Rd \ ∂Ω. As a consequence of the
jump relations (4.7), −ψ1 =

[
∂u
∂ν

]
∂Ω

= 0, so A is strictly positive, i.e., 〈ψ1,Aψ1〉∂Ω > 0
when ψ1 6= 0. From this observation we gain kerA = {0}, and since A is Fredholm
of index 0 by Lemma 4.7, A is bijective and therefore has a bounded inverse A−1 :
H1/2(∂Ω)→ H−1/2(∂Ω) by the inverse mapping theorem.
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Next, for each ψ1 ∈ H−1/2(∂Ω) we have

‖ψ1‖H−1/2(∂Ω) = ‖A−1Aψ1‖H−1/2(∂Ω)

≤ C1‖Aψ1‖H1/2(∂Ω),

i.e., ‖Aψ1‖H1/2(∂Ω) ≥ C1‖ψ1‖H−1/2(∂Ω). For ψ1 6= 0 this gives

C1 ≤
‖Aψ1‖H1/2(∂Ω)

‖ψ1‖H−1/2(∂Ω)

= sup
ψ2∈H−1/2(∂Ω)

ψ2 6=0

| 〈Aψ1, ψ2〉∂Ω |
‖ψ1‖H−1/2(∂Ω)‖ψ2‖H−1/2(∂Ω)

≤ sup
ψ2∈H−1/2(∂Ω)

ψ2 6=0

√
〈Aψ1, ψ1〉∂Ω

√
〈Aψ2, ψ2〉∂Ω

‖ψ1‖H−1/2(∂Ω)‖ψ2‖H−1/2(∂Ω)

≤ C2

√
〈Aψ1, ψ1〉∂Ω

‖ψ1‖H−1/2(∂Ω)

,

i.e., 〈Aψ1, ψ1〉∂Ω ≥ C‖ψ1‖2
H−1/2(∂Ω)

as desired.

Remark. The inequality

| 〈Aψ1, ψ2〉∂Ω | ≤
√
〈Aψ1, ψ1〉∂Ω

√
〈Aψ2, ψ2〉∂Ω

relies on the fact that A is self-adjoint and strictly positive

Corollary 4.9. For d ≥ 3, AεDD : H̃−1/2(D)→ H1/2(Dε) is positive definite.

Proof. This is clear from the fact that

〈ψ,AεDDψ〉Dε = 〈ψ,Aψ〉∂Ω .

4.2.2 Positive Definiteness of the Operator DNN
This subsection proceeds much as Section 4.2.1 did. First we prove that DNN is
Fredholm of index 0, then show that kerDεNN is the set of functions constant on each

component of ∂Ω, and that DNN is positive definite on H̃1/2(N) ∩ (kerDNN)⊥.

Lemma 4.10. When d ≥ 2, D : H1/2(∂Ω)→ H−1/2(∂Ω) is coercive, i.e.,

〈Dϕ, ϕ〉∂Ω ≥ c‖ϕ‖2
H1/2(∂Ω) − C‖ϕ‖

2
L2(∂Ω) ∀ ϕ ∈ H1/2(∂Ω),

hence D is Fredholm with index 0.
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Proof. The proof follows similarly to that of Lemma 4.7. Let η ∈ C∞c (Rd) be iden-
tically 1 on a neighborhood of Ω−, ϕ1, ϕ2 ∈ H1/2(∂Ω), and set u = ηDLϕ1 and
v = ηDLϕ2. By the jump relations (4.11) for the double-layer potential, as well as
Green’s identity, we have

〈Dϕ1, ϕ2〉∂Ω =

〈
∂u

∂ν
,Tr− v − Tr+ v

〉
∂Ω

=

∫
Ω−
∇u · ∇v dx+

∫
Ω+

∇u · ∇v dx− 〈−∆u, v〉Ω+ .

The jump relations (4.11) also imply

‖ϕ1‖2
H1/2(∂Ω) = ‖Tr+ u− Tr− u‖H1/2(∂Ω)

≤ c
(
‖u‖2

H1(Ω−) + ‖u‖2
H1(Ω+)

)
.

Now, let K : H1/2(∂Ω) → H−1/2(∂Ω) be given by 〈Kϕ1, ϕ2〉∂Ω := −〈−∆u, v〉Ω+ −∫
Rd uv dx so that

〈Dϕ1, ϕ1〉∂Ω = ‖u‖2
H1(Ω−) + ‖u‖2

H1(Ω+) + 〈Kϕ1, ϕ1〉∂Ω

≥ c‖ϕ1‖2
H1/2(∂Ω) + 〈Kϕ1, ϕ1〉∂Ω .

We showed in the proof of Lemma 4.7 that the operator K1 : H1/2(∂Ω)→ H−1/2(∂Ω)
given by 〈K1ϕ1, ϕ2〉∂Ω = −〈(−∆u, v〉Ω+ is an integral operator whose kernel is C∞ on
a neighborhood of ∂Ω× ∂Ω. Here, we use this fact to assert that K1 is also bounded
as an operator from L2(∂Ω) to H1/2(∂Ω), i.e.,

| 〈K1ϕ1, ϕ1〉∂Ω | ≤ C‖ϕ1‖2
L2(∂Ω).

Finally, by Lemma B.4 we conclude that the operator K2 : H1/2(∂Ω) → H−1/2(∂Ω)
given by 〈K2ϕ1, ϕ2〉∂Ω := −

∫
Rd uv dx satisfies

| 〈K2ϕ1, ϕ1〉∂Ω | ≤ C‖ϕ1‖2
H−1/2(∂Ω)

≤ C‖ϕ1‖2
L2(∂Ω),

and therefore,

〈Dϕ1, ϕ1〉∂Ω ≥ c‖u‖2
H1(Ω−) − C‖ϕ1‖2

L2(∂Ω).

Lemma 4.11. Suppose ∂Ω has K components, denoted ∂Ω1, . . . , ∂ΩK. Let χn be the
characteristic function of ∂Ωn, and let

V :=

{
ϕ ∈ H1/2(∂Ω) :

∫
∂Ωk

ϕdσ = 0, 1 ≤ k ≤ K

}
.

When d ≥ 3, D : H1/2(∂Ω)→ H−1/2(∂Ω) is positive definite on V , i.e.,

〈Dϕ, ϕ〉∂Ω ≥ ‖ϕ‖
2
H1/2(∂Ω) ∀ ϕ ∈ V.
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Proof. The proof begins almost identically to that of Lemma 4.8. Let ϕ1, ϕ2 ∈
H1/2(∂Ω), set u = DLϕ1 and v = DLϕ2, and let ρ > 0 be large enough that
Ω− ⊂ Bρ(0). Let νr(x) = x

r
denote the outward unit normal to Br(0) at the point

x ∈ ∂Br(0). By Green’s identity, we have

〈Dϕ1, ϕ2〉∂Ω =

∫
Bρ(0)\∂Ω

∇u · ∇v dx+

∫
Bρ(0)

v
∂u

∂νρ
dσ.

For x /∈ ∂Ω we have

v(x) =

∫
∂Ω

∂G

∂νy
(x− y)ϕ2(y) dσ(y)

=
1

dωd

∫
∂Ω

ν(y) · (x− y)

|x− y|d
ϕ2(y) dσ(y),

and

∂u

∂νr
(x) =

1

rωd

∫
∂Ω

(
x · ν(y)

d|x− y|d
− x · (x− y)ν(y) · (x− y)

|x− y|d+2

)
ϕ1(y) dσ(y).

Hence, |v(x)| = O(|x|1−d) and
∣∣∣ ∂u∂νr (x)

∣∣∣ = O(|x|−d) as |x| → ∞, i.e.,
∣∣∣∫Bρ(0)

v ∂u
∂νρ

dσ
∣∣∣ =

O(ρ−d) as ρ→∞. By letting ρ→∞ we obtain

〈Dϕ1, ϕ2〉∂Ω =

∫
Rd\∂Ω

∇u · ∇v dx.

The fact that 〈Dϕ1, ϕ1〉∂Ω ≥ 0 follows immediately. Moreover, if 〈Dϕ1, ϕ1〉∂Ω = 0
then u = DLϕ1 is constant on each component of Rd \ ∂Ω. Consequently, Dϕ1 =
− ∂
∂ν

DLϕ1 = 0, and for some real numbers a1, . . . , aK we have

ϕ1 = [u]∂Ω =
K∑
k=1

akχk.

Observe that the only such ϕ1 which is an element of V is ϕ1 = 0.
Up to this point, we have shown that V = H1/2(∂Ω) ∩ (kerD)⊥, where the or-

thogonal complement is taken with respect to the L2(∂Ω) inner product, and that
ϕ ∈ V \ {0} implies 〈Dϕ, ϕ〉∂Ω > 0. Hence, by a similar argument to that which con-
cluded the proof of Lemma 4.8, the bounded, self-adjoint, positive-definite, Fredholm
operator D|V : V → H−1/2(∂Ω) of index 0 is positive and bounded below on V , i.e.,

〈Dϕ, ϕ〉∂Ω ≥ ‖ϕ‖
2
H1/2(∂Ω) ∀ ϕ ∈ V.

Corollary 4.12. Given K, ∂Ω1, . . . , ∂ΩK, and χ1, . . . , χK as in Lemma 4.11, let

V :=

{
ϕ ∈ H̃1/2(N) :

∫
∂Ωn

ϕdσ = 0, 1 ≤ k ≤ K, ∂Ωk ∩D = ∅
}
.

When d ≥ 3, DNN : H̃1/2(N)→ H−1/2(N) is positive definite on V , i.e.,

〈DNNϕ, ϕ〉N ≥ ‖ϕ‖
2
H1/2(∂Ω) ∀ ϕ ∈ V.
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Proof. The inclusion (H̃1/2(N) ∩ kerD) ⊆ kerDNN is obvious, so suppose ϕ ∈
kerDNN . On the one hand, DNNϕ = 0 on N , and on the other, ϕ = 0 on D̄.
Therefore, we have 〈Dϕ, ϕ〉∂Ω = 〈DNNϕ, ϕ〉N = 0, i.e., kerDNN = (H̃1/2(N)∩kerD).
Now, ϕ ∈ kerDNN implies ϕ is identically 0 on any component of ∂Ω which has
nonempty intersection with D. On the remaining components, ϕ|∂Ωk is identically
equal to a constant ak. Finally, for all ϕ ∈ V ,

〈DNNϕ, ϕ〉N = 〈Dϕ, ϕ〉∂Ω

≥ C‖ϕ‖2
H1/2(∂Ω).

4.2.3 Positive Definiteness of the Operator Aε
0

Lemma 4.13. For d ≥ 2, the operator C : H1/2(∂Ω) → H1/2(∂Ω) is the adjoint of
B : H−1/2(∂Ω)→ H−1/2(∂Ω), i.e., for ϕ ∈ H1/2(∂Ω) and ψ ∈ H−1/2(∂Ω) we have

〈ψ, Cϕ〉∂Ω = 〈Bψ, ϕ〉∂Ω .

Proof. Let u ∈ H1(Rd), ϕ := Tru ∈ H1/2(∂Ω), and ψ ∈ H−1/2(∂Ω). First observe
that ∇G(z) = −z

dωd|z|d
is locally integrable on Rd, since for any U ⊂ Rd contained in

a ball Br(0) we have
∫
U
|G(z)| dz ≤ r. Hence, the functions x 7→

∫
Ω±
∇xG(x − y) ·

∇u(x) dx are continuous on Rd. Now when y ∈ Ω± we have by Green’s identity∫
Ω+

∇xG(x− y) · ∇u(x) dx = ∓
∫
∂Ω

∂G

∂νz
(z − y) Tru(z) dσ(z)

= ∓DLψ(y).

By another application of Green’s identity we obtain〈
∂±

∂ν
SLψ, ϕ

〉
∂Ω

= ∓
∫

Ω±
∇ SLψ · ∇u dx

= ∓
∫

Ω±
〈ψ,∇xG(x− ·) · ∇u(x)〉∂Ω dx

= ∓
〈
ψ,

∫
Ω±
∇xG(x− ·) · ∇u(x) dx

〉
∂Ω

=
〈
ψ,Tr±DLϕ

〉
∂Ω
.

Taking the sum of both cases gives the desired result.

Corollary 4.14. For d ≥ 2, ϕ ∈ H̃1/2(N) and ψ ∈ H̃−1/2(D), the maps CεDN :

H̃1/2(N)→ H1/2(Dε) and BND : H̃−1/2(D)→ H−1/2(N) satisfy

〈ψ, CεDNϕ〉Dε = 〈BNDψ, ϕ〉N .

Proof. Since ψ is supported in D̄ and ϕ = 0 on D̄, we compute

〈ψ, CεDNϕ〉Dε = 〈ψ, CεDNϕ〉∂Ω

= 〈BNDψ, ϕ〉∂Ω

= 〈BNDψ, ϕ〉N .
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Corollary 4.15. Let V = ({0} × kerDNN)⊥ = H̃−1/2(D)× (kerDNN)⊥ ⊆ Hε. For
d ≥ 3, Aε

0 : Hε →H∗ε is coercive on Hε and positive and bounded below on V , i.e.,

〈Aε
0ψ,ψ〉Dε×N ≥ c‖ψ‖Hε − C‖ψN‖L2(∂Ω) ∀ ψ ∈Hε, and

〈Aε
0ψ,ψ〉Dε×N ≥ C‖ψ‖Hε ∀ ψ ∈ V .

Consequently, Aε
0 is Fredholm of index 0.

Proof. First, by Corollaries 4.9 and 4.14, as well as Lemma 4.10, we write

〈Aε
0ψ,ψ〉Dε×N = 〈ψD,AεDDψD〉Dε −

1

2
〈ψD, CεDNψN〉Dε

+
1

2
〈BNDψD, ψN〉N + 〈DNNψN , ψN〉N

≥ C‖ψD‖2
H−1/2(∂Ω) + c‖ψN‖2

H1/2(∂Ω) − C‖ψN‖
2
L2(∂Ω),

which proves coercivity. Next, AεDD and DNN are self-adjoint, so 〈Aε
0ψ,ψ〉Dε×N ≥

0. Moreover, if 〈Aε
0ψ,ψ〉Dε×N = 0, then 〈ψD,AεDDψD〉Dε = 〈DNNψN , ψN〉N = 0,

implying ϕ ∈ V by Corollaries 4.9 and 4.12.

Remark. In particular, Corollary 4.15 says that if D intersects every component of
∂Ω, then Aε

0 is positive and bounded below on Hε, i.e.,

〈Aε
0ψ,ψ〉Dε×N ≥ C‖ψ‖Hε ∀ ψ ∈Hε.

4.2.4 Compactness of the Operator Kε

Lemma 4.16. The embedding H̃1/2(N) ↪→ L2
(
N, 1

δµ
dσ
)

is compact for µ ∈ [0, 1),
but is not compact for µ = 1.

Proof. Let µ ∈ [0, 1) be fixed, and let {Fn}∞n=1 ⊂ H̃1/2(N) be a bounded sequence.
Since H1/2(∂Ω) is compactly embedded in L2(∂Ω), by passing to a subsequence we
can assume ‖Fn − F‖L2(∂Ω) → 0 as n → ∞ for some F ∈ L2(∂Ω). By Hölder’s
inequality, we compute∫

N

|Fn − F |2
1

δµ
dσ ≤

(∫
N

|Fn − F |2
1

δ
dσ

)µ(∫
N

|Fn − F |2 dσ
)1−µ

≤ C‖Fn − F‖2µ

H1/2(∂Ω)
‖Fn − F‖2(1−µ)

L2(∂Ω).

Since ‖Fn−F‖H1/2(∂Ω) is bounded and ‖Fn−F‖L2(∂Ω) → 0 as n→∞, it follows that

Fn → F in L2
(
N, 1

δµ
dσ
)
.

When µ = 1, we can always find a bounded sequence {Fn}∞n=1 ⊂ H̃1/2(N) which
has no convergent subsequence in L2

(
N, 1

δ
dσ
)
. As a particular counterexample, let

Ω ⊆ Rd be a bounded Lipschitz domain with Λ, N ⊂ ∂Ω such that Λ ⊇ [0, 1]d−2×{0}2

and N ⊇
⋃∞
n=0 Q̄n, where Qn := (0, 2−n)d−2× (2−n, 21−n)×{0}. Now, fix F ∈ C∞(Ω̄)
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so that supp(F |∂Ω) ⊂⊂ Q0, ‖F‖L2(∂Ω) = 1, and ‖F‖2
H1/2(∂Ω)

= C, and set Fn(x) :=

2
(d−2)n

2 F (2nx). We compute∫
∂Ω

|Fn(x)|2 dσ(x) = 2(d−2)n

∫
Qn

|F (2nx)|2 dσ(x)

= 2−n
∫
Q0

|F (u)|2 du

= 2−n,

and

|Fn|2H1/2(2−n∂Ω) =

∫
2−n∂Ω

∫
2−n∂Ω

|Fn(x)− Fn(y)|2

|x− y|d
dσ(x) dσ(y)

= 2(d−2)n

∫
2−n∂Ω

∫
2−n∂Ω

|F (2nx)− F (2ny)|2

|x− y|d
dσ(x) dσ(y)

= 2−dn
∫
∂Ω

∫
∂Ω

|F (u)− F (v)|2

|2−n(u− v)|d
dσ(u) dσ(v)

=

∫
∂Ω

∫
∂Ω

|F (u)− F (v)|2

|u− v|d
dσ(u) dσ(v)

= C − 1.

Hence, ‖Fn‖2
H1/2(∂Ω)

= C − 1 + 2−n ≤ C for all n = 0, 1, . . .. However,∫
N

|Fn(x)|2

δ(x)
dσ(x) = 2(d−2)n

∫
Qn

|F (2nx)|2

δ(x)
dσ(x)

≥ 2(d−1)n−1

∫
Qn

|F (2nx)|2 dσ(x)

=
1

2

∫
Q0

|F (u)|2 dσ(u)

=
1

2
.

Moreover, observe that supp(Fm|∂Ω) ∩ supp(Fn|∂Ω) = ∅ when m 6= n, i.e.,

‖Fm − Fn‖2
L2(N,δ−1 dσ) = ‖Fm‖2

L2(N,δ−1 dσ) + ‖Fn‖2
L2(N,δ−1 dσ)

≥ 1

We have thus shown that {Fn}∞1 has no Cauchy subsequence in L2
(
N, 1

δ
dσ
)
, and

hence the injection H̃1/2(N) ↪→ L2
(
N, 1

δ
dσ
)

is not compact.

Corollary 4.17. If µ ∈ [0, 1), the operator Kε : H → H∗ is compact for each
0 < ε < ε0.
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Proof. First, we observe that aε : L2(N, δ−µ dσ) → L2(N, δµ dσ). Indeed, if ψ ∈
L2(N, δ−µ dσ), then

‖aεψ‖2
L2(N,δµ dσ) =

∫
N

|aεψ|2δµ dσ

≤ ε2µ

∫
N

|ψ|2

δµ
dσ

≤ ε2µ‖ψ‖2
L2(N,δ−µ dσ).

Now, by Lemma 4.16 we have that the injection i : H̃1/2(N) ↪→ L2(N, δ−µ dσ) is
compact. Further, it is well-known that the adjoint of a compact operator is compact,
hence the adjoint i∗ : L2(N, δµ dσ) ↪→ H−1/2(N) is also compact. Hence, the operator

aε = i∗ ◦ aε ◦ i : H̃1/2(N) → H−1/2(N) is compact. The compactness of Kε follows
immediately.

Corollary 4.18. If µ ∈ [0, 1), the operator Aε : H → H∗ is Fredholm of index 0.

Proof. By Corollaries 4.15 and 4.17, Aε is the sum of a coercive operator and a
compact operator, implying Aε is Fredholm of index 0.

Theorem 4.19. Let 0 ≤ ε < ε0 and µ ∈ [0, 1). The map Aε : Hε → H∗ε has a
bounded inverse A−1

ε : H∗ε →Hε, and the system Aεψε = hε has a unique solution
for each hε ∈Hε.

Proof. Since Corollary 4.18 says Aε is Fredholm of index 0, by the Fredholm alter-
native it suffices to show that Aε is injective, i.e., kerAε = {0}.

Suppose ψ ∈ Hε solves the homogeneous system Aεψε = 0. By Theorem 4.6,

for any f ∈ H−1
D (Ω), ΓN ∈ H−1/2(N) and ΓD ∈ H̃1/2(D) satisfying(
−TrGf +A(aεΓD − ΓN)− 1

2
(ΓD − CΓD)

)
= 0 on Dε, and(

−∂
−

∂ν
Gf +

1

2

(
g + aεΓD + B(aεΓD − ΓN)

)
−DΓD

)
= 0 on N,

the function uε ∈ H1
D(Ω−) given by

uε = Gf + SL (ψD,ε − aεψN,ε + ΓN − aεΓD)−DL(ψN,ε + ΓD) on Ω− (4.18)

is a weak solution of (AMP) with data f and g = ΓN |N given above. In particular,
uε = SL(ψD,ε − aεψN,ε)−DLψN,ε solves the interior homogeneous problem

∆uε = 0 on Ω−

uε = 0 on D
∂uε
∂ν

+ aεuε = 0 on N.

(4.19)

Theorem 2.4 then implies that uε = 0 on Ω−.
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Now, set uε := SL(ψD,ε − aεψN,ε) − DLψN,ε on Rd. By definition, −∆uε = 0 on
Ω+. Further, the jump relations (4.7) and (4.11) imply [uε]∂Ω = −ψN,ε = 0 on D and[

∂uε
∂ν

]
∂Ω

= aεψN,ε − ψD,ε

= −[aεuε]∂Ω − ψD,ε,

i.e.,
[
∂uε
∂ν

+ aεuε
]
∂Ω

= 0 on N . Hence, uε solves the exterior homogeneous problem
∆uε = 0 on Ω+

uε = 0 on D
∂uε
∂ν

+ aεuε = 0 on N.

Finally, as we showed in the proofs of Lemmas 4.8 and 4.11, u(x) = O(|x|2−d) as
|x| → ∞. Given this estimate near∞, we deduce that uε = 0 on Ω+, from which the
conclusion ψD,ε = ψN,ε = 0 on ∂Ω follows immediately.
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Chapter 5 Future Problems

First, in Theorem 3.18 we obtained an upper bound on ‖uε − u0‖H1
D(Ω), but did not

produce a similar estimate for ‖ψε −ψ0‖Hε , if such an upper bound exists. Also, in
Chapter 4 we did not consider solvability of Aεψε = hε when d = 2.

Next, we considered only the equation −∆u = f for the sake of simplicity. A
future project will be to show that much (if not all) of Chapters 2, 3, and 4 remain
valid when −∆ is replaced by an arbitrary elliptic operator L in divergence form
with, say, bounded and measurable coefficients. Certainly the results still hold if
L = − div(A∇(·)), with A a positive-definite d × d constant matrix, but difficulties
arise in Chapter 4 when dealing with fundamental solutions. These difficulties will
be a source of additional results.

Also, we only considered homogeneous boundary data, again in the interest of
simplicity. Consider a solution uε ∈ H1(Ω) of the fully inhomogeneous problem

−∆uε = f on Ω

uε = gD on D
∂uε
∂ν

+ aεuε = gN on N.

Let w ∈ H1(Ω) be an arbitrary function which satisfies Trw = gD on D, and let
vε = uε − w ∈ H1

D(Ω). We then have vε satisfying the approximate mixed problem
−∆vε = f̃ on Ω

vε = 0 on D
∂vε
∂ν

+ aεvε = g̃ on N,

where f̃ = f + ∆w and g̃ = gN − ∂w
∂ν
−aεw. The problem which arises is the fact that

aεw does not make sense in general as an element of H−1/2(N). This is detrimental
because it means we cannot use our approximation scheme for general Dirichlet data
gD ∈ H1/2(D). However, if Trw|D ∈ H1/2(D) can be made into an element of H̃1/2(D)
by extending by zero, then aεw does make sense as an element of H−1/2(N). The
questions to address are these: Is the “extension property” described above necessary
to make aεw make sense? Can we alter our approximation scheme enough to take
a wider range of Dirichlet data while still maintaining the rate of convergence from
Theorem 3.18?

Finally, though we mentioned Lp problems extensively in Chapter 1, we did not
find any such estimates for (AMP). Thus, a possible source of future work would
be to formulate (AMP) as an Lp approximate mixed problem and attempt to find
non-tangential estimates on the gradient of solutions. As a related thought, can we
show that solutions of (AMP) are smoother than those of (MP)? If so, does this
translate to numerical methods being more effective or converging more quickly to
solutions of (AMP)?

Copyright c© Morgan Schreffler, 2017.
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Chapter A Facts Regarding Star-Shaped Convex Domains

A.1 Equivalence of the Definitions of Star-Shaped Domains

In Section 3.1.1 we proved a number of inequalities which hold either on star-shaped
Lipschitz convex domains, or domains which are star-shaped convex with respect to
a ball. Recall that Υ ⊆ Rd is star-shaped Lipschitz convex with constant M and scale
r if there is a point x ∈ Rd and a Lipschitz function ϕ : Sd−1 → [1, 1 + M ] with
Lipschitz constant M such that

Υ =
{
y ∈ Rd : |x− y| < rϕ(ŷ)

}
, (A.1)

and Υ is star-shaped convex with respect to a ball Br(x) if we have

(1− t)y + tz ∈ Υ ∀ y ∈ Br(x), z ∈ Υ, t ∈ [0, 1]. (A.2)

If Ω ⊂ Rd is a Lipschitz domain with constant M , the sets Ωr(x) given by (2.1) are
in fact star-shaped convex with respect to the ball Br/4(x′, ψx(x

′) + (2M + 1
2
)r). See

Figure A.1 below.

x x x xx x x xx x

Figure A.1: The sets Ωr(x) are star-shaped convex with respect to a ball.

As the next two lemmas show, the definitions given above are in fact equivalent.
In general, for a domain Υ the values of r in definitions (A.1) and (A.2) will not be
the same.

Lemma A.1. Suppose Υ is star-shaped convex with respect to every point in a ball
Br(x). Then there is a number M depending only on r and R := supy∈Υ |x− y| > r
such that Υ is star-shaped Lipschitz convex with constant M and scale r.
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Proof. Without loss of generality we may assume x = 0. For y ∈ Rd \ {0}, set
y = (y′, yd) ∈ Rd−1×R and ŷ := y

|y| = (ŷ′, ŷd) ∈ Sd−1. By our initial assumption that

Υ is star-shaped convex with respect to the origin, for each ŷ ∈ Sd−1 there is a unique
number ϕ(ŷ) ∈

[
1, R

r

]
such that r ŷ ϕ(ŷ) ∈ ∂Υ. Now, let ed = (0, 0, . . . , 0, 1) ∈ Rd

and consider Figure A.2 below.

∂Υ

rϕ(ed)

r
2

θ

Figure A.2: Bounds for the constant M

Since ϕ(ed) ≥ 1 we have r/2
rϕ(ed)

≤ 1
2
. Now let

Γ :=
{

(1− t)rϕ(ed)ed + tz : z ∈ Br/2(0), t ∈ [0, 1]
}
,

and let Γ1 be the solid cone with boundary given by

∂Γ1 :=

{
z ∈ Rd :

r|z′|
R− r

+
zd

rϕ(ed)
= 1, zd < ϕ(ed)

}
.

Observe that Γ ⊆ Ῡ by our initial assumption on Υ, and

Γ = Br/2(0) ∪
(

Γ1 ∩
{
|z′| < r

2
cos θ

})
= Br/2(0) ∪

(
Γ1 ∩

{
zd <

1

2
sin θ

})
.

When ẑd ≥ 1
2
≥ sin θ and |ẑ′| ≤

√
3

2
≤ cos θ, we have

ϕ(ẑ)− ϕ(ed) ≥ 1− ϕ(ed)

≥ r|ẑ′|ϕ(ed) + (R− r)ẑd
(R− r)ϕ(ed)

− ϕ(ed)

=
(R− r)ϕ(ed)(1− ẑd − r|ẑ′|ϕ(ed)

2

r|ẑ′|ϕ(ed) + (R− r)ẑd

≥ −2r|ẑ′|ϕ(ed)
2

R− r

≥ −2R2

r(R− r)
|ẑ − ed|.
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The above calculation gives us a lower bound for ϕ(ẑ)− ϕ(ed) in a neighborhood of
ϕ(ed), and a similar calculation with cones lying outside of Υ gives a corresponding
upper bound. Thus we have |ϕ(ẑ) − ϕ(ed)| ≤ C|ẑ − ed| for ẑ near ed. For a general
point y ∈ ∂Υ, by rotating Υ about the origin we can assume ŷ = ed and perform the
previous calculations without any loss of generality.

Lemma A.2. Suppose Υ is star-shaped Lipschitz convex with constant M and scale
r as in (A.1). If x is the star-center, then there is a number s depending on M and
r so that Υ is star-shaped convex with respect to the ball Bs(x).

Proof. If Υ has scale r, then rΥ = {ry : y ∈ Υ} has scale 1, so without loss of
generality we may assume r = 1. Using the same notation as in the proof of Lemma
A.1, let us restrict our attention to the portion of Sd−1 where |ẑ′| ≤ 1

2
and ẑd ≥

√
3

2
,

i.e., |ẑ′| = sinθ and ẑd = cos θ for some θ ∈
(
−π

6
, π

6

)
. In this way,

|ẑ′| = sin θ

≤
√

sin2 θ + (1− cos θ)2

= |ẑ − ed|

=
√

sin2 θ + (1− cos θ)2

≤
√

2 sin θ

=
√

2|ẑ′|.

It follows that the set

Γ1 :=

{
z ∈ Rd : |ẑ′| ≤ 1

2
, |ẑ′| ≤ 1

2M
(ϕ(ed)− |z|)

}
∪B1(0)

is a subset of Υ. See Figure A.3

Γ1

Υ

Figure A.3: The shaded set Γ1 inside the star-shaped Lipschitz convex domain Υ,
with dotted lines to emphasize star-shaped convexity.
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Note that the ball tangent to the boundary of the solid cone

Γ2 =

{
z : |ẑ′| ≤ 1

2M
(ϕ(ed)− |z|)

}
is B√2

2

(0) and is contained in Υ. By rotating Υ about the origin so that ŷ = ed, we

can see that this ball will be contained in Γ2 when ed is replaced by ŷ above. Thus,
Υ is in fact star-shaped convex with respect to the ball B√2

2

(0).

A.2 Estimates on the Reflection of x over ∂Υ

Lemma A.3. Suppose ϕ : Sd−1 → [1,M+1] is Lipschitz with constant M . There is a
function Φ : Rd → R which is Lipschitz with constant 3M + 1 such that Φ(x̂) = ϕ(x̂)
for all x̂ ∈ Sd−1.

Proof. For x ∈ Rd, let x̂ = x
|x| and set

Φ(x) :=

{
|x|ϕ(x̂) if x 6= 0

0 if x = 0.

For x ∈ Rd and y = 0 we clearly have |Φ(x)−Φ(y)| ≤M |x− y|, so assume x, y 6= 0.
We compute

|Φ(x)− Φ(y)| = ||x|ϕ(x̂)− |y|ϕ(ŷ)|
= ||x|ϕ(x̂)− |x|ϕ(ŷ) + |x|ϕ(ŷ)− |y|ϕ(ŷ)|
≤ |x||ϕ(x̂)ϕ(ŷ)|+ ||x| − |y|||ϕ(ŷ)|
≤M |x||x̂− ŷ|+ (M + 1)|x− y|

= M

∣∣∣∣x|y| − y|y|+ y|y| − y|x|
|y|

∣∣∣∣+ (M + 1)|x− y|

≤M |x− y|+M ||x| − |y||+ (M + 1)|x− y|
= (3M + 1)|x− y|.

Lemma A.4. Let ϕ,Φ be as in Lemma (A.3), and set x̂ := x
|x| for x 6= 0. We write

∇ϕ(x̂) := ∇Φ(x)|Sd−1 and ϕxi(x̂) := Φxi(x)|Sd−1 for 1 ≤ i ≤ d, all of which are
defined σ-a.e. on Sd−1. Suppose Υ ⊆ Rd is star-shaped convex with constant M and
scale r, with ϕ as its defining Lipschitz function. Let

x∗ :=
x̂

|x|
r2ϕ(x̂)2

denote the reflection of x over ∂Υ. The d×d Jacobian matrix [J(x∗)] of x∗ has entries

[J(x∗)](x)ij = r2

(
−2xixj
|x|4

[
ϕ(x̂)∇ϕ(x̂) · x̂+ ϕ(x̂)2

]
+

2xj
|x|3

ϕ(x̂)ϕxi(x̂) +
δij
|x|2

ϕ(x̂)2

)
.

(A.3)
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Moreover, for x /∈ Υ the entries of [J(x∗)] satisfy the estimate

|[J(x∗)](x)ij| ≤ 5(3M + 1)2, (A.4)

and the determinant consequently satisfies the crude estimate

| det[J(x∗)](x)| ≤ d!5d(3M + 1)2d. (A.5)

Proof. The formula (A.3) comes from direct computation. Further, x /∈ Υ implies
|x| ≥ r, giving us the estimate (A.4) by appealing to Lemma A.3. The estimate (A.5)
follows by induction on d.

Remark. The estimate (A.4) can be improved to

|[J(x∗)](x)ij| ≤ (15M + 7)(M + 1),

improving the estimate (A.5) as well. However, the estimate in Lemma A.4 is suffi-
cient for our purposes.

Copyright c© Morgan Schreffler, 2017.
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Chapter B Sobolev Spaces Hs(∂Ω) and H t(Ω) for −1 < s < 1 and −3
2
< t < 3

2

Let 0 < s < 1, −3
2
< t < 3

2
, and τ = t− btc. Define seminorms |ϕ|Hs(∂Ω) and |u|Hτ (Ω)

by

|ϕ|Hs(∂Ω) =

(∫
∂Ω

∫
∂Ω

|ϕ(x)− ϕ(y)|2

|x− y|d−1+2s
dσ(x) dσ(y)

) 1
2

, and

|u|Hτ (Ω) =

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2τ
dσ(x) dσ(y)

) 1
2

,

respectively. For 0 < s, t < 1 we define Hs(∂Ω) and H t(Ω) as the spaces of all
ϕ ∈ L2(∂Ω) with finite norms

‖ϕ‖Hs(∂Ω) :=
(
‖ϕ‖2

L2(∂Ω) + |ϕ|2Hs(∂Ω)

) 1
2

‖u‖Ht(Ω) :=
(
‖u‖2

L2(Ω) + |u|2Ht(Ω)

) 1
2
.

When 1 < t < 3
2
, the space H t(Ω) is the space of all u ∈ H1(Ω) with finite norm

‖u‖Ht(Ω) :=
(
‖u‖2

H1(Ω) + |∇u|2Hτ (Ω)

) 1
2
.

When s = 1
2

and t = 1, we have the usual Sobolev spaces H1/2(∂Ω) and H1(Ω). Let
H0(∂Ω) = L2(∂Ω) and H0(Ω) = L2(Ω), and let H−s(∂Ω) and H−t(Ω) denote the
duals of Hs(∂Ω) and H t(Ω), respectively, for 0 ≤ s < 1 and 0 ≤ t < 3

2
.

Proposition B.1 (Rellich [33]). If −1 < s1 < s2 < 1 and −3
2
< t1 < t2 <

3
2
, then

the inclusions Hs2(∂Ω) ↪→ Hs1(∂Ω) and H t2(Ω) ↪→ H t1(Ω) are compact.

Next, by a result originally due to Costabel [4] we can improve the mapping
properties of Lemma 4.3 by extending them to a range of Sobolev spaces.

Proposition B.2 (Theorem 6.12 (i) and Exercise 6.4 of Mclean [26, pp. 205+206]).
Let η ∈ C∞c (Rd). For 0 < s < 1, the single- and double layer potentials SL and DL
give rise to bounded operators

η SL : H−s(∂Ω)→ Hs+ 1
2 (Rd) and ηDL : H−s(∂Ω)→ H

1
2
−s(Ω±).

We are now prepared to prove that the operator K2 : H−1/2(∂Ω) → H1/2(∂Ω)
from the proof of Lemma 4.7 is in fact compact.

Lemma B.3. Fix a function η ∈ C∞c (Rd) which is 1 on a neighborhood of Ω−,
let ψ1, ψ2 ∈ H−1/2(∂Ω), and set u := η SLψ1, v := η SLψ2. The operator K :
H−1/2(∂Ω)→ H1/2(∂Ω) given by 〈ψ2, Kψ1〉∂Ω :=

∫
Rd uv dx is compact.
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Proof. Observe that for 0 < s < 1, Hs(∂Ω) ⊆ H−s(∂Ω), i.e., ‖ψ2‖H−s(∂Ω) ≤ C‖ψ2‖Hs(∂Ω).
Fix 0 < s < 1 and suppose ‖ψ2‖Hs(∂Ω) = 1. By the Cauchy-Schwarz inequality and
Proposition B.2,

|〈ψ2, Kψ1〉∂Ω| ≤ ‖u‖L2(Rd)‖v‖L2(Rd)

≤ ‖u‖
Hs+1

2 (Rd)
‖v‖

Hs+1
2 (Rd)

≤ C‖ψ1‖H−s(∂Ω)‖ψ2‖H−s(∂Ω)

≤ C‖ψ1‖H−s(∂Ω).

Thus, we have shown that ‖Kψ1‖Hs(∂Ω) ≤ C‖ψ1‖H−s(∂Ω), i.e., K is bounded as a
map from H−s(∂Ω) to Hs(∂Ω). Finally, by Proposition B.1 we conclude that K :
H−1/2(∂Ω)→ H1/2(∂Ω) is compact, since for 1

2
< s < 1,

K = H−1/2(∂Ω) ↪→ H−s(∂Ω)
K−→ Hs(∂Ω) ↪→ H1/2(∂Ω).

Lemma B.4. Fix a function η ∈ C∞c (Rd) which is 1 on a neighborhood of Ω−,
let ϕ1, ϕ2 ∈ H1/2(∂Ω), and set u := ηDLϕ1, v := ηDLϕ2. The operator K :
H1/2(∂Ω)→ H−1/2(∂Ω) given by 〈Kϕ1, ϕ2〉∂Ω :=

∫
Rd uv dx is bounded as an operator

from H−1/2(∂Ω)→ H1/2(∂Ω).

Proof. By the Cauchy-Schwarz inequality and Proposition B.2, we have

〈Kϕ1, ϕ2〉∂Ω ≤ ‖u‖L2(Ω−)‖v‖L2(Ω−) + ‖u‖L2(Ω+)‖v‖L2(Ω+)

≤ C‖ϕ1‖H−1/2(∂Ω)‖ϕ2‖H−1/2(∂Ω).

Hence, ‖Kϕ1‖H1/2(∂Ω) ≤ C‖ϕ1‖H−1/2(∂Ω) as desired.
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[39] A. F. M. ter Elst and J. Rehberg. Hölder estimates for second-order operators
on domains with rough boundary. Adv. Differential Equations, 20(3-4):299–360,
2015.

70



[40] Gregory Verchota. Layer potentials and regularity for the Dirichlet problem for
Laplace’s equation in Lipschitz domains. J. Funct. Anal., 59(3):572–611, 1984.

71



Vitae

EDUCATION

• Ph.D., Mathematics, University of Kentucky, expect to graduate May 2017.

– Thesis Topic: Approximation of Solutions to the Mixed Dirichlet Neumann
Boundary-Value Problem on Lipschitz Domains

– Thesis Advisor: Dr. Russell Brown

– Written Exams passed January 2014

– Oral Exam passed December 2014

• M.A., Mathematics, University of Kentucky, December 2013.

• B.A., Mathematics, Millersville University, Millersville, Pennsylvania, May 2011.

– Minor: Philosophy

– Cum Laude

– Senior Thesis Topic: Fixed-Point Theorems in Topology and Geometry

– Senior Thesis Advisor: Dr. Ronald Umble

RESEARCH INTERESTS

Mixed Problem, Robin Problem, Layer Potentials, Approximation, Sobolev Spaces

TEACHING EXPERIENCE

• 2011-Present Teaching Assistant, University of Kentucky Department of Math-
ematics

– Primary Instructor of MA 109, MA 111, MA 112, and MA 114.

– Recitation Instructor for MA 113, MA 114, MA 123, and MA 213.

– Substitute Instructor for MA 214 and MA 471.

• Summers of 2012, 2013, 2014, 2016, Primary Instructor, Freshman Summer
Program (FSP) through the Center for Academic Resources and Enrichment
Services (CARES), University of Kentucky

WORK EXPERIENCE

• Summer 2012, Assisted in writing web homework, University of Kentucky

Proofread questions and tested answers to Calculus I and II problems for math-
class.org, a web-based homework system used at the University of Kentucky.

AWARDS AND HONORS

72



• Recipient of a Max Steckler Fellowship, 2011, awarded by the Graduate School
of the University of Kentucky for the 2011-2012 academic year.

• Received 10 points in the William Lowell Putnam Mathematical Competition,
December 2010.

• Awarded Course Honors (roughly equivalent to an A+) in MATH 393 (Number
Theory) and MATH 566 (Complex Variables) at Millersville University.

SERVICE

• Co-chair, Math Department Graduate Student Council (GSC), University of
Kentucky August 2013-May 2014. Responsibilities include representing the
graduate student body at faculty meetings, hosting departmental teas, greeting
and guiding visiting potential graduate students, and raising funds.

• Spring 2010-Spring 2011, Tutor, Millersville University Athletics Department

Tutored student athletes in a group setting. Particularly, athletes with a C or
lower in their current math class were required to spend two or more hours a
week in my sessions. Courses covered include Algebra, Trigonometry, Calculus
I and II, and Survey of Mathematical Ideas.

• Spring 2010-Spring 2011, Tutor, Millersville Office of Learning Services

Gave individual supplemental instruction to students with documented learn-
ing disabilities. Courses covered include Contemporary Math, Calculus, and
Introductory Statistics.

• Spring 2008-Spring 2009, Tutor, Harrisburg Area Community College

Tutored students in group and individual settings in the “Math Lab.” Courses
covered include Beginning, Intermediate, and College Algebra, Trigonometry,
the Calculus sequence, and Linear Algebra.

CONFERENCES, PROGRAMS, AND PRESENTATIONS

• Presented Proof of a Hardy Inequality on the Boundary of Lipschitz Domains
to the UK Math Department Analysis/PDE Seminar (October 15, 2013)

• Attended the Fourth Ohio River Analysis Meeting at the University of Kentucky
(March 2014)

• Attended the 2014 NSF-CBMS Conference on Inverse Scattering and Trans-
mission Eigenvalues at the University of Texas at Arlington (May 27-31 2014)

• Presented Solving the Mixed Problem on Lipschitz Domains by the Method of
Layer Potentials to the UK Math Department Analysis/PDE Seminar (Decem-
ber 2, 2014)

• Attended the Fifth Ohio River Analysis Meeting at the University of Cincinnati
(March 2015)

73



• Attended the Sixth Symposium on Analysis and PDEs at Purdue University
(June 1-4, 2015)

• Participated in the IMA Mathematical Modeling in Industry Workshop at the
University of Minnesota (August 5-14, 2015)

• Attended the Nineteenth Annual Rivière-Fabes Symposium on Analysis and
PDE at the University of Minnesota (April 15-17, 2016)

• Attended the Seventy-Seventh Midwest PDE Seminar at the University of
Cincinnati (May 7-8, 2016)

• Attended MAA MathFest 2016 in Columbus, OH (August 3-6, 2016)

• Presented Generalized Functions at the University of Kentucky (Graduate Stu-
dent Colloquium, September 14, 2016)

• Presented Approximation of Solutions to the Mixed Problem on Lipschitz Do-
mains at the University of Kansas (Prairie Analysis Seminar, September 16-17,
2016)

• Presented Approximation of Solutions to the Mixed Problem on Lipschitz Do-
mains at Florida Gulf Coast University (SEARCDE, November 5-6, 2016)

• Attended 2017 Joint Mathematics Meetings in Atlanta, GA (January 4-7, 2017)

• Presented Approximation of Solutions to the Mixed Problem on Lipschitz Do-
mains at the University of Cincinnati (Ohio River Analysis Meeting 7, March
25-26, 2017)

74


	Approximation of Solutions to the Mixed Dirichlet-Neumann Boundary Value Problem on Lipschitz Domains
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Figures
	1 Introduction
	1.1 Statement and History of the Mixed Problem
	1.2 Formulation and History of the Approximate Mixed Problem
	1.3 Main Results

	2 Notation and Weak Formulation of the Approximate Mixed Problem
	2.1 Lipschitz Domains
	2.2 Sobolev Spaces
	2.2.1 Sobolev Spaces on 
	2.2.2 Sobolev Spaces on 
	2.2.3 Hardy Inequality

	2.3 The Approximate Mixed Problem
	2.3.1 Standard Families of Functions
	2.3.2 The Laplacian and Normal Derivative
	2.3.3 Weak Formulation, Existence and Uniqueness


	3 Asymptotic Expansion in  of Solutions to (AMP)
	3.1 Preliminary Inequalities
	3.1.1 Sobolev Inequality on Star-shaped Convex Domains
	3.1.2 Trace Theorem

	3.2 B-spaces and Hölder Continuity
	3.3 Hölder Continuity of Solutions to (AMP)
	3.4 Approximating Solutions to the Mixed Problem
	3.5 Asymptotic Expansion of u in 

	4 Solving the Approximate Mixed Problem by Layer Potentials
	4.1 Layer Potentials
	4.1.1 Preliminary Notation
	4.1.2 Representation Formula
	4.1.3 Mapping Properties and Jump Relations
	4.1.4 The Associated System of Boundary Integral Equations

	4.2 Unique Solvability of the Associated System when d3
	4.2.1 Positive Definiteness of the Operator ADD
	4.2.2 Positive Definiteness of the Operator DNN
	4.2.3 Positive Definiteness of the Operator `39`42`"613A``45`47`"603Abold0mu mumu AAAAAA0
	4.2.4 Compactness of the Operator `39`42`"613A``45`47`"603Abold0mu mumu KKKKKK


	5 Future Problems
	A Facts Regarding Star-Shaped Convex Domains
	A.1 Equivalence of the Definitions of Star-Shaped Domains
	A.2 Estimates on the Reflection of x over 

	B Sobolev Spaces Hs() and Ht() for -1<s<1 and -32<t<32
	Bibliography
	Vitae

