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Research Article
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Japanese encephalitis virus (JEV) is one of approximately 70 flaviviruses, frequently causing symptoms involving the central nervous
system.Mutations of its genomic RNA frequently occur during viral replication, which is believed to be a force contributing to viral
evolution. Nevertheless, accumulating evidences show that some JEV strains may have actually arisen from RNA recombination
between genetically different populations of the virus. We have demonstrated that RNA recombination in JEV occurs unequally in
different cell types. In the present study, viral RNA fragments transfected into as well as viral RNAs synthesized in mosquito cells
were shown not to be stable, especially in the early phase of infection possibly via cleavage by exoribonuclease. Such cleaved small
RNA fragments may be further degraded through an RNA interference pathway triggered by viral double-stranded RNA during
replication inmosquito cells, resulting in a lower frequency of RNA recombination inmosquito cells compared to that which occurs
in mammalian cells. In fact, adjustment of viral RNA to an appropriately lower level in mosquito cells prevents overgrowth of the
virus and is beneficial for cells to survive the infection. Our findings may also account for the slower evolution of arboviruses as
reported previously.

1. Introduction

Japanese encephalitis (JE) is an important mosquito-borne
viral disease, occasionally causing encephalitic symptoms
[1]. Nowadays, it is extensively distributed in most Asian
countries and was also recently reported from Australia
[2]. The JE virus (JEV) is one of some 70 members of
the genus Flavivirus belonging to the family Flaviviridae
[3], the genome of which contains a linear, single-stranded
positive-sense RNA (∼11 kb long) that encodes 3 structural
proteins including nucleocapsid (C), membrane (preM/M),
and envelope (E) proteins, as well as 7 nonstructural proteins
(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) [4]. Due
to lack of a proofreading mechanism and an inability to
repair errors during RNA synthesis, spontaneous mutations
frequently occur which contribute to the formation of genet-
ically diversified populations or so-called “quasispecies” in
flaviviruses including the JEV [5].

Maintenance of genetic diversity theoretically reduces
the rapid loss of fitness via Muller’s ratcheting during viral
passage from one host to another [6], which provides benefits
to a virus that is adapting to a new niche or selective regimen
of its environment [7]. Possibly, this feature differentially
occurs in different types of host cells [8]. In addition to
gene mutations [9], RNA recombination, at least in some
cases, can also serve as a factor helping a virus escape from
accumulated deleterious effects in a viral population [10]. In
other words, RNA recombination may serve as an alternate
means to generate genetic changes [11] and likely produces
a new form of RNA comprising genetic information from
multiple sources [12].

The viral RNA recombination was first reported in the
poliovirus, a picornavirus [13], and subsequently in a vari-
ety of viruses that infect humans, animals, plants, and
bacteria [14–18]. Therefore, a new virus may be gener-
ated through RNA recombination between different strains.
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Among arboviruses, at least the western equine encephalitis
virus is believed to be a recombinant virus that arose
from distant viral progenitors, including an eastern equine
encephalitis virus-like virus and a Sindbis-like virus [19]. As a
result, the ability to form unpredictable recombinant strains
or species between virus populations is of considerable con-
cern [20], particularly the possibility of RNA recombination
occurring from cocirculated live-attenuated vaccine strains
and wild viruses during synthesis of new RNAs [21, 22].

Flaviviruses naturally comprise multiple genotypes or
strains [23, 24], making them likely to undergo RNA recom-
bination. The first RNA recombination of the JEV was
proposed based on a bioinformatics analysis [17]. Further-
more, RNA recombination was found to occur unequally in
mosquito and mammalian cells [25]. Herein, we provided
evidences of RNA recombination of the JEV that occurs at a
lower frequency in mosquito cells, which may, at least partly,
contribute to evolution of the virus [26].

2. Materials and Methods

2.1. Viruses and Cell Lines. Three strains of the JEV, including
Nakayama (the vaccine strain), T1P1-S1 (a small plaque clone
from the T1P1 strain) [27], and CJN-S1 (a small plaque clone
from the CJN strain, a kind gift fromDr.M. H. Ho, Academia
Sinica, Taipei, Taiwan), were used in this study. Of these,
further purification via the plaque-picking method to select
T1P1-S1 and CJN-S1 strains was implemented as part of the
present study [27]. The viruses were propagated in C6/36
mosquito cells and titrated in baby hamster kidney- (BHK-
) 21 cells. Both cell lines were maintained as previously
described [27].

2.2. Virus Titration. Virus titers were determined bymeans of
a plaque assay of BHK-21 cells following descriptions in our
previous report [27]. Calculation of virus titers was based on
the number of formed plaques, expressed as plaque-forming
units (pfu)/mL.

2.3. Reverse Transcriptase-Polymerase Chain Reaction (RT-
PCR). To detect viral infection in cells, extracted RNA was
applied to perform RT with the reverse primer at 42∘C for
30min to generate complementary (c) DNA. PCR cycling
was then carried out using the forward primer which was
subsequently run to amplify a gene fragment with a size of
529 bp under the following conditions: 25 cycles of 95∘C for
30 s, 60∘C for 30 s, and 72∘C for 1min. The primers used to
amplify specific regions are presented in individual sections
below. All procedures in this portion of the study followed
our previous description [25].

2.4. Assay for Coinfection and RNA Recombination of
Viral Strains. Coinfection of JEV strains was verified by
a method described in our previous report [25]. In brief,
extracted viral RNAs were applied to perform the RT-
PCR with the primer pair, 10-36F (5󸀠-CTGTGTGAACTT
CT TGGCTTAGTATCG-3󸀠) and 850-877R
(5󸀠-CAGTTTTCATGAGATATCGTGTGTGGC-3󸀠).

Fragments (868 bp) amplified from JEV strains simultane-
ously infecting BHK-21 or C6/36 cells were subjected to
restriction fragment length polymorphism (RFLP) with
the restriction enzyme RsaI to verify coinfection. A pattern
showing fragments of 219, 401, and 248 bp represented T1P1-
S1 infection, while that showing fragments of 219 and 649 bp
represented CJN-S1 infection. Those exhibiting all size of
fragments indicated that both viral strains had coinfected
a single cell. In addition, RFLP using specific restriction
enzymes as shown in our previous report [25] was used to
verify RNA recombination between viral strains in a single
cell. In some experiments for assay of RNA recombination,
RFLP was carried out by using cells cultured in the presence
of an exoribonuclease inhibitor (3󸀠-phosphoadenosine-5󸀠-
phosphate, PAP) (Sigma-Aldrich, St. Louis, MO, USA).

2.5. Construction of the Plasmid p(+)T1P1-5󸀠3󸀠-Untranslated
Region- (UTR-) I. In order to evaluate RNA recombination
between genomic RNA and a transfected RNA sequence,
the p(+)T1P1-5󸀠3󸀠-UTR-1 plasmid was constructed as de-
scribed here. Viral RNA derived from the T1P1 strain
of the JEV was used as a template to generate DNA
fragments corresponding to the 5󸀠- or 3󸀠-end of genomic-
sense RNA. To prepare the 5󸀠-end sequence, a
primer (5󸀠-CTGCCAAGCATCCAGCCAAGTA-3󸀠,
complementary to nt 895∼916 of the 5󸀠-end of the
T1P1 genome) was used for RT to synthesize the
first-strand cDNA. Subsequently, another primer (5󸀠-
TAATACGACTCACTATAGAGAAGTTTATCTGTGTG-3󸀠)
containing a partial sequence of the T7 polymerase promoter
used as a tag (italicized) at the 5󸀠-end (nt 1∼18) of the
T1P1 5󸀠-end sequence was used in the PCR to amplify a
934 bp DNA fragment. In the meantime, the primer 5󸀠-
GTGTTCTTCCTCACCACCAGCTAC-3󸀠 (nt 10,946∼10,969
at the 3󸀠-end of the T1P1 genome) was used for RT to generate
cDNA. Another primer (5󸀠-GAAAATTATGTTGACTAC-
3󸀠, corresponding to the sequence nt 10,320∼10,337) was
subsequently used for the PCR under conditions described
above to amplify a 650 bp DNA fragment. Both types of
PCR products were separately digested with the restriction
enzyme, AatII; the resultant DNA fragments were ligated
to form subgenomic DNA which contained both 5󸀠-end
(nt 1∼599) and 3󸀠-end (nt 10,367∼10,969) sequences.
Subsequently, the subgenomic DNAs were cloned into
pGEM-T (Promega, Madison, WI, USA) to form a plasmid
designated p(+)T1P1-5󸀠3󸀠-UTR-I which contained an insert
of a 1202 bp fragment.

2.6. Construction of the p(+)5󸀠3󸀠-UTR-II Plasmid. In order
to see the stability of viral fragments in host cells, the
p(+)5󸀠3󸀠-UTR-II plasmid was constructed. To construct
the plasmid, the pT1P1-5󸀠3󸀠-UTR was used as a tem-
plate, and the PCR was performed under conditions
described above with the primers 5󸀠-TAATACGACTCA-
CTATAGAGAAGTTTATCTGTGTG-3󸀠 (the italics indi-
cate a partial T7 polymerase promoter sequence) and
5󸀠-AAGATATCGTGTTCTTCCTCAC CACC-3󸀠 (the ital-
ics indicate an EcoRV restriction enzyme site). The PCR
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products were digested with SpeI and AatII to delete a
fragment fromnt 178∼599; the resultantDNA fragments were
then treated with Klenow Fragment enzyme (Fermentas,
Hanover, MD, USA) and ligated to form subgenomic DNA
which only contained the 5󸀠- and 3󸀠-UTRs of the T1P1
genome. Subsequently, the subgenomic DNAs were cloned
into pGEM-T (Promega, Fitchburg, WI, USA) to form
plasmids designated p(+)5󸀠3󸀠-UTR-II.

2.7. Preparation of the Positive (+) and Negative (−) Sense
5󸀠-End RNA Sequences and Derived dsRNA. Both (+) and
(−) sense 5󸀠-end RNA sequences were prepared from the
pT1P1-5󸀠3󸀠-UTR-II plasmid. In preparation of the (+) sense
5󸀠-end RNA sequence, the plasmid was linearized by NdeI
and transcribed with T7 RNA polymerase using an in
vitro transcription system (Fermentas). The RNA products
(599 bp)were extractedwith phenol-chloroform, precipitated
in ethanol, and then stored in a deep freezer until used
for transfection. To prepare the (−) sense 5󸀠-end RNA
sequence, the plasmid was first linearized, and the 3󸀠-end
sequence of the subgenomic DNA was deleted with NdeI.
The resultant linear forms of the plasmid were religated and
then redigested with SacII. The products were transcribed
with T7 RNA polymerase using an in vitro transcription
system (Fermentas) to generate the (−) sense 5󸀠-end RNA
sequence which was harvested as done for the (+) sense
5󸀠-end RNA sequence. To prepare dsRNA, positive- and
negative-stranded RNA described from pT1P1-5󸀠3󸀠-UTR-II
were mixed together, incubated at 95∘C for 5min and then
4∘C for 10min. Ultimately, 2𝜇L RNase was added to cleave
single-stranded RNA that failed to anneal in the mixture.
The product was used to evaluate degradation of dsRNA
fragments in host cells.

2.8. Transfection of dsRNA or the (+) sense 5󸀠-end RNA
Sequence and Viral Infection in Cells. Transfection of dsRNA
or (+) sense 5󸀠-end RNA-I prepared from the plasmids (+)
pT1P1-5󸀠3󸀠-UTR-II was carried out in BHK-21 and C6/36
cells. At 5 h posttransfection (hpt), cells were infected with
the Nakayama strain of the JEV, at an MOI of 5. The
detailed procedure followed a previous description, from
which efficacy of transfection was demonstrated [25].

2.9. Assessment of RNA Stability by an RT-PCR. Sequences
derived from (+)5󸀠3󸀠-UTR-II RNA were transfected into
cells either treated or untreated with an exoribonuclease
inhibitor (3󸀠-phosphoadenosine-5󸀠-phosphate, PAP) (Sigma-
Aldrich, St. Louis, MO, USA) and incubated for 5 h. RNAwas
extracted with the TRIzol reagent (5 PRIME, Gaithersburg,
MD, USA), and then DNAse (Promega) was added to delete
interference of genomic DNA. RT was subsequently run
in a mixture containing 4 𝜇g RNA, 1 𝜇L 100mM random
hexamer primer, and 1𝜇L 10mM dNTP, and double-distilled
(dd) H

2
O water was added to bring the volume up to

12 𝜇L. This was heated at 65∘C for 5min, allowed to stand
at 4∘C for 2min, and then 4 𝜇L 5x first-strand buffer, 2 𝜇L
dithiothreitol (DTT), 1 𝜇L of an RNase inhibitor (RNase
OUTTM; Invitrogen, Carlsbad, CA, USA) were added. After

incubation at room temperature for 5min, 1 𝜇L of reverse
transcriptase M-MLV (Invitrogen) was added and allowed to
react for 1 h at 37∘C, followed by 15min at 75∘C. The cDNA
produced was then used for the subsequent PCR under the
conditions described above. The primers used for the PCR
included the 5󸀠-UTR (5󸀠-AGAAGTTTATCTGTGTGAAC-
3󸀠) and 3󸀠-UTR (5󸀠-AGATCCTGTGTTCTTCC-3), which
generated PCR products predicted to be 907 bp. To assess
integration of dsRNA, the same cDNA and primer pair
described above were used to amplify a fragment 807 bp long.

2.10. Assay for RNA Recombination from Transfected as
well as Infected Cells. BHK-21 and C6/36 cells transfected
with transcribed RNA fragments were then infected by the
Nakayama strain of the JEV. Total RNA extracted from cells
that had been transfected with (+) sense 5󸀠-end RNA-1 was
run for RT using a primer (850-877R: 5󸀠-TCAGTTTTC-
ATGAGATATCGTGTGTGGC-3󸀠) complementary to the
sequence of nt 850∼877. Amplification using the forward
primer (RVF1: 5󸀠-GCGGGATTTAATACGACTCACTAT-
AG-3󸀠) which is a partial sequence of the plasmid that
serves as a tag and the reverse primer (RVR1/nt 516∼538: 5󸀠-
CTGCAATATCCGTATTGTTGAC-3󸀠) produced a specific
region comprised of 564 nt.The reverse primer used here was
specific for the Nakayama strain. As a result, the fragments
amplified by this primer pair must represent a strain of
genetic recombination.

2.11. Measurement of Viral RNA Accumulated in Cells Infect-
ed by the JEV. Viral replication was validated by RNA
accumulation through a real-time RT-PCR with cDNAs
reverse-transcribed from extracted RNA of infected (at an
MOI of 1) or uninfected C6/36 and BHK-21 cells. The primer
pairs TS1-F/TS1R (5󸀠-TGTGGCTTGCGAGCTTGGCAG-
3󸀠/5󸀠-ACATGTAGCCGACGTCGATT-3󸀠) and CJN1-
F/CJN1R (5󸀠-TGTGGCTTGCGAGCTTGGCTA-3󸀠/5󸀠-
ACATGTAGCCGACGTCTATC-3󸀠) were used to amplify
specific regions of the T1P1-S1 and CJN-S1 strains,
respectively. Levels of 18S rRNA designed from the genome
of C6/36 or BHK-21 cells were also amplified as an internal
control as our previous report [25]. Results are expressed as
the relative quantities, so fold change was used to represent
the amount of viral RNA that accumulated at each time point
of infection. To monitor synthesis of viral RNA including
positive and negative strands in a time course in C6/36 cells,
viral RNA extracted from infected cells (0∼15 hpi) was used
to run RT-PCR as the procedures described previously [27].
As above, 18S rRNA designed from the genome of C6/36
cells was also amplified as an internal control. The amplified
cDNA fragment was then identified by running the PCR
product on a 2% (w/v) agarose gel.

2.12. Statistical Analysis. Yates’ chi-square test was used to
assess the frequency of RNA recombination in cells coin-
fected by two virus strains or transfected by viral RNA
fragments.
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Figure 1:The schematic sketch designed to identify RNA recombination between viral strains. A fragment (868 bp) comprised of the C/preM
junction (nt 10∼877) of viral RNA extracted from coinfected BHK-21 or C6/36 cells was amplified, cloned, and then used for an RFLP analysis
with SmaI orAlw44I. Two and one recombinant form(s) were, respectively, identified in selected samples from BHK-21 and C6/36 cells, when
they were coinfected with the T1P1-S1 and CJN-S1 strains of the Japanese encephalitis virus.

Table 1: Identification of RNA recombination of the Japanese encephalitis virus based on a fragment (868 bp) comprised of the C/preM
junction (nt 10∼877) of viral RNA extracted from coinfected BHK-21 or C6/36 cells using an RFLP analysis with restriction enzymes SmaI
or Alw44I.

Treatment BHK-21 cells C6/36 cells
Number of detection Number of recombination Number of detection Number of recombination

Coinfected viral genomic RNA 98 20 (20.4%) 38 5 (13.1%)
Mixed RNA∗ 44 2 (4.5%) 39 3 (7.7%)
Stastistical analysis∗∗ 𝑃 < 0.05 𝑃 > 0.05

∗Mixed RNAwas amixture of RNAs separately extracted from T1P1-S1 and CJN-S1 strains of the Japanese encephalitis virus, being used as the internal control.
∗∗Yates’ chi-square test was used to assess the difference of RNA recombination in cells coinfected by two virus strains at 5% level of significance.

3. Results

3.1. RNA Recombination in BHK-21 Cells and C6/36
Cells. Viral RNA extracted from single infectious centers
(ICs) which were randomly selected and picked out from
infected BHK-21 or C6/36 cells was subjected to an RsaI
RFLP assay as described in our previous report. The result
reveals that different strains of the JEV can coinfect a single
BHK-21 or C6/36 cell. The C/preM junction comprising
868 nucleotides (nt 10∼877) of viral RNA extracted from
BHK-21 or C6/36 cells coinfected with the TaP1-S1 and
CJN-S1 strains was cloned and used for the SmaI-Alw44I
RFLP analysis (Figure 1). The recombinant forms of the
viral genome were actually identified in BHK-21 and C6/36
cells, when they were coinfected by the 2 strains of the JEV.
Totally, 20 recombination clones (20.4%) were found from
98 clones coinoculated with the 2 strains in BHK-21 cells
while being 5 out 38 (13.1%) in C6/36 cells (Table 1).
Probability of occurring RNA recombination was signif-
icantly different, compared with the mixed RNA control,
in BHK-21 cells while being nonsignificant in C6/36
cells (Table 1). In other words, the frequency of RNA
recombination is significantly higher in BHK-21 cells than in
C6/36 cells.

3.2. Recombination between Genomic RNA and a Trans-
fected RNA Fragment of the Virus. A 564 bp fragment was
significantly amplified in BHK-21 and C6/36 cells which were
infected by the JEV (Nakayama strain) following transfection
with the (+)5󸀠3󸀠-UTR-I RNA plasmid, although a light band
was also shown in the control group that contained a mixture
of RNAs extracted from transfected cells.A specific fragment
of viral RNA (529 bp) was amplified as an internal control
in all groups with viral infection. In addition, no fragment
presenting an artifact of RNA recombination was shown
in the control groups of mock treatment (neither infection
nor transfection), transfection with only the (+)5󸀠3󸀠-UTR
RNA-I plasmid, or infection with only a single strain. An
image-density analysis revealed recombination in BHK-21
cells to be 10.7-fold higher than that of the control group,
while it was 7.73-fold higher in C6/36 cells, suggesting
that RNA recombination may occur in both mammalian
and mosquito cells. However, a slightly lower frequency of
RNA recombination was eventually shown in mosquito cells
(Figure 2).
3.3. Enzymatic Effect on RNA Stability Modulates RNA
Recombination betweenGenomic RNA and a Transfected RNA
Fragment of the Virus. The RNA recombination rate was
shown to have increased to a higher level in BHK-21 cells
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Figure 2: RNA recombination between genomic RNA and a transfected RNA sequence. No fragment was seen in tests with RNA
extracted from cells following mock treatment (with neither infection nor transfection), virus infection only, or transfection only. Although
amplification of a 564 bp fragment showing RNA recombination was present in the control group which contained a mixture of RNAs
extracted from infected and transfected cells, RNA recombination was significantly elevated in BHK-21 and C6/36 cells infected by the
Japanese encephalitis virus (Nakayama strain) following transfection with the (+)5󸀠3󸀠-UTR-I plasmid RNA. According to the image-density
analysis, it seems that RNA recombination occurred less frequently in mosquito cells. A specific fragment of viral RNA (529 bp) was used as
an internal control in all groups with viral infection.

Viral RNA (529bp)

Recombinant RNA (564bp)
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Figure 3: Status of RNA recombination after inhibition by exoribonuclease with PAP (3󸀠-phosphoadenosine-5󸀠-phosphate, an inhibitor of
exoribonuclease). (a) The RNA recombination rate increased to a higher level in BHK-21 cells after treatment with PAP, compared to that
of untreated cells. In contrast, no effect of PAP on increasing RNA recombination of the virus was shown in C6/36 cells despite a very
low level of RNA recombination still being observed. Viral RNA was not affected after treatment with PAP, suggesting exoribonuclease-
mediated degradation of transfected RNA fragments might increase RNA recombination of the virus strains, especially in mammalian cells.
(b) Treatment with PAP in C6/36 cells did not cause degradation of the transfected (+) RNA fragment at 3 h until 6 h after transfection at
which a partial effect appeared.

treated with PAP, the inhibitor of exoribonuclease, compared
to untreated cells. In contrast, no effect of PAP on increasing
RNA recombination was seen in C6/36 cells; only a low level
of RNA recombination was found in this test (Figure 3(a)).
Looking at transfected viral fragment (+) RNA in C6/36
cells treated with PAP, enzymatic cleavage by exoribonuclease
did not occur at 3 h after transfection while it evidently
decreased preservation of such RNA fragment at 6 h after
transfection in mosquito cells (Figure 3(b)). Viral genomic
RNA was not affected when treated with PAP in both cell
types (Figure 3(a)), implying that the transfected viral RNA
fragment may not be further degraded by exoribonuclease
mostly inmammalian cells; which leads to a higher possibility
of occurring RNA recombination in such cells.

3.4. Assessment to the Enzymatic Effect onRNARecombination
in Mosquito Cells with Coinfection by Two Different Virus
Strains. When we coinfected T1P1-S1 and CJN-S1 strains of
JEV into C6/36 cells and treated with PAP, only 1 of 30
clones occurred RNA recombination while 4 out of 31 clones
occurred in the control group (without treatment with PAP).

The RNA recombination rate did not change significantly
(𝑃 value = 0.370; Yates’ chi-square test) in coinfected C6/36
cells and even their function of exoribonuclease was inhibited
and thus unable to dissolve viral RNA (Table 2). The result
implicated that the low level of viral RNA at the early phase of
infection may not be fully exoribonuclease-mediated but, as
above, is probably contributed by the RNAi-dependent effect.

3.5. Fate of Transfected dsRNA Fragments in Mosquito Cells.
The dsRNA intermediates are generally formed during virus
replication in host cells, however, which may be cleaved
in invertebrate cells. Through an RT-PCR, a corresponding
segment of RNA (807 bp) was detected in C6/36 cells imme-
diately after transfection (0 hpt) with a fragment of dsRNA
derived from (+) or (−) 5󸀠3󸀠-UTRRNA; however, it had faded
by 3 and 6 hpt (Figure 4). This suggests that transfected
dsRNAs may have been cleaved and presumably generated
short interfering (si)RNAs which were not shown on the gel.
It suggested that a part of viral RNAs may be degraded at the
early phase of infection, likely to modulate virus growth, in
mosquito cells.
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