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RESEARCH Open Access

Effect of niacin monotherapy on high
density lipoprotein composition and
function
Scott M. Gordon1*† , Marcelo J. Amar2†, Kianoush Jeiran2, Michael Stagliano2, Emma Staller2, Martin P. Playford3,
Nehal N. Mehta3, Tomas Vaisar4 and Alan T. Remaley2

Abstract

Background: Niacin has modest but overall favorable effects on plasma lipids by increasing high density
lipoprotein cholesterol (HDL-C) and lowering triglycerides. Clinical trials, however, evaluating niacin therapy for
prevention of cardiovascular outcomes have returned mixed results. Recent evidence suggests that the HDL
proteome may be a better indicator of HDL’s cardioprotective function than HDL-C. The objective of this study was
to evaluate the effect of niacin monotherapy on HDL protein composition and function.

Methods: A 20-week investigational study was performed with 11 participants receiving extended-release niacin
(target dose = 2 g/day) for 16-weeks followed by a 4-week washout period. HDL was isolated from participants at
weeks: 0, 16, and 20. The HDL proteome was analyzed at each time point by mass spectrometry and relative
protein quantification was performed by label-free precursor ion intensity measurement.

Results: In this cohort, niacin therapy had typical effects on routine clinical lipids (HDL-C + 16%, q < 0.01; LDL-C −
20%, q < 0.01; and triglyceride − 15%, q = 0.1). HDL proteomics revealed significant effects of niacin on 5 proteins:
serum amyloid A (SAA), angiotensinogen (AGT), apolipoprotein A-II (APOA2), clusterin (CLUS), and apolipoprotein L1
(APOL1). SAA was the most prominently affected protein, increasing 3-fold in response to niacin (q = 0.008).
Cholesterol efflux capacity was not significantly affected by niacin compared to baseline, however, stopping niacin
resulted in a 9% increase in efflux (q < 0.05). Niacin did not impact HDL’s ability to influence endothelial function.

Conclusion: Extended-release niacin therapy, in the absence of other lipid-modifying medications, can increase
HDL-associated SAA, an acute phase protein associated with HDL dysfunction.

Keywords: Niacin, Vitamin B3, High density lipoprotein, Apolipoproteins, Proteomics, Serum amyloid a, Cholesterol
efflux
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Background
The cholesterol content of HDL (HDL-C) is an estab-
lished biomarker for estimating risk of cardiovascular
disease (CVD). This is based on the observations from
the Framingham Heart Study and the subsequent “HDL
hypothesis” suggesting that increasing HDL-C would
provide protection against atherosclerosis [1, 2]. Over
the last several decades, a variety of strategies have been
evaluated for therapeutic elevation of HDL-C. Most re-
cently, several trials evaluating cholesterol ester transfer
protein (CETP) inhibitors have failed to reduce clinical
events [3]. These results have called into question the
relevance of HDL’s cholesterol content in the ability to
protect against CVD and have helped the field to under-
stand the distinction between HDL-C and HDL
function.
In addition to cholesterol, HDL carry other lipid and

protein cargo that likely play a more direct role in ather-
oprotection [4]. HDL carries about 100 different proteins
with a wide range of known roles in inflammation, co-
agulation, and lipid transport [5, 6]. For the majority of
these proteins, their impact on HDL function is not
understood, but it has been suggested that these proteins
can confer additional atheroprotective properties on
HDL [7, 8]. It may be that the association of some of
these proteins with HDL results in a paracrine-like ef-
fect, whereby HDL transports these proteins to specific
tissues or cell types to achieve a physiological response.
In this way, an increase in HDL size or particle number
may also correlate with increased net protein transport
and therefore a better paracrine-like effect, independent
of cholesterol content. While HDL is generally thought
of as protective, there is a growing body of literature that
supports the existence of dysfunctional or pro-
inflammatory HDL. These particles are generated under
systemic inflammatory conditions and have impaired
capacity for cholesterol efflux and reverse cholesterol
transport, important atheroprotective functions of HDL
that have been associated with reduced CVD events [9].
The impaired functionality of these particles is driven by
replacement of the core HDL protein apolipoprotein A-I
(apoA-I) with the acute phase protein serum amyloid A
(SAA).
Niacin (vitamin B3) has a favorable impact on plasma

lipid profile. Dosing at 1–2 g/day can have a modest ef-
fect on HDL-C, typically resulting in a 20% increase,
while also reducing triglycerides and low-density lipo-
protein cholesterol (LDL-C). Early evaluations of niacin
monotherapy in reduction of cardiovascular disease ap-
peared to be promising. In the 1960’s, the Coronary
Drug Project, a randomized placebo-controlled second-
ary prevention study, demonstrated a benefit of niacin
monotherapy with reduced cardiovascular mortality at 5
year and 15 year follow ups [10]. These findings were

detectable despite a documented low adherence to nia-
cin treatment. Modern forms of extended-release niacin
and co-treatments, such as laropiprant, have been devel-
oped to reduce the flushing side effect of the treatment
with the goal to improve adherence. More recent studies
have examined the effect of extended-release niacin in
combination with LDL-C lowering statins on cardiovas-
cular outcomes in high-risk populations. Most notably,
the AIM-HIGH (niacin + simvastatin) and HPS2-Thrive
(niacin +laropiprant + statin) studies concluded that nia-
cin did not offer additional benefit when added to stand-
ard statin therapy [11, 12]. The question of how niacin
might differently affect HDL composition or function in
the presence or absence of statins has not been
answered.
The present study aimed to test the hypothesis that

niacin has a direct effect on HDL composition and func-
tion by examining the effect of extended-release niacin
monotherapy on HDL protein composition and function
in a cohort of healthy volunteers who were not taking
lipid modifying medications or supplements.

Methods
Subject recruitment and niacin administration
This pilot study took place at the National Institutes of
Health Clinical Center. Male and female volunteers, who
were not taking lipid modifying medications, were re-
cruited to participate in this 20-week investigational
study. Applicants were screened using the criteria listed
in Table 1. After screening, enrolled volunteers received
the dietary supplement Rugby® Extended Release Niacin
(250 mg/tablet). An initial two week run-in period was
used to slowly increase the dose from 500mg/day up to
the target 2000mg/day (Fig. 1). The target dose was
maintained for 14 weeks followed by a 4-week washout
period.
The National Heart, Lung, and Blood Institute’s

Institutional Review Board approved this study. All vol-
unteers provided written informed consent for participa-
tion. ClinicalTrials.gov identifier: NCT02322203.

Clinical lipid measurements
Blood was collected at baseline and during weeks: 2, 16
(niacin), and 20 (washout). Serum/Plasma was stored at
-80 °C until analysis. Approximately 40 mL of fasting
blood samples were collected at each visit and used to
perform routine laboratory tests including a lipid panel,
ApoA-I, and ApoB protein measurements and lipopro-
tein NMR profile. All tests were performed in the De-
partment of Laboratory Medicine in the NIH Clinical
Center (CC). Some of the collected blood was utilized
for the in vitro cholesterol efflux assay and endothelial
function test.
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HDL proteome analysis
Serum was thawed and filtered using 0.45 μm centrifugal
filter units prior to purification of HDL on an Akta Pure
FPLC system as previously described [5, 13]. Briefly,
serum was separated over two Superdex 200 columns ar-
ranged in series at a flow rate of 0.5 mL/min. Fractions
(0.5 mL/fraction) were collected and HDL-containing
fractions pooled to produce total HDL for each subject.
Lipid removal agent (LRA) was used to isolate HDL
from lipid-free proteins. HDL proteins were subjected to
trypsin digest while bound to LRA and peptides col-
lected by washing. Peptides were desalted using ZipTips
according to manufacturer's protocol, dried, and stored

at − 20 °C. Dried peptide was reconstituted in 20 μL of
water with 0.1% formic acid and 5 μL analyzed on an
Orbitrap Fusion Lumos mass spectrometer (Thermo Sci-
entific, Waltham (MA), USA). Sample was injected via a
nanospray source over a 60 min. gradient from 5 to 70%
acetonitrile followed by a 5 min. washing step at 90%
acetonitrile. Solvent injection blank runs were performed
between each sample to prevent sample carryover.
Label-free quantification of proteins was performed

using MaxQuant software (version 1.6.0.16) [14, 15].
Raw files generated by the mass spectrometer were
loaded into MaxQuant and searched against a subset
database containing known HDL binding proteins using
the incorporated Andromeda search engine. Settings in-
cluded fixed carbamidomethyl modification and variable
methionine oxidation. False discovery rates for peptide
and protein were both set to 1%. These settings identi-
fied and produced quantification results for 71 proteins.
This data was processed by exclusion of proteins which
were not detected in at least 75% of subjects leaving 63
quantified proteins for comparison across treatment
phases (Supplementary Table 1).

Cholesterol efflux capacity
HDL efflux capacity was measured as previously de-
scribed [13]. Assays were performed using the J774 mur-
ine macrophage cell line. Cells were plated (3 × 105 cells/
well) and loaded with 2 μCi of 3H-cholesterol/mL for
twenty-four hours. ATP-binding cassette transporter A1
(ABCA1) expression was stimulated by sixteen-hour in-
cubation with 0.3 mmol/L 8-(4-chlorophenylthio)-cAMP.
ApoB-depleted plasma (2.8%) was added to the efflux
medium and incubated for four hours. Efflux of radio-
active cholesterol from the cells was quantified by liquid
scintillation counting. Efflux % was calculated using the
following formula: (μCi of 3H-cholesterol in media con-
taining 2.8% apoB-depleted subject plasma-μCi of 3H-
cholesterol in plasma-free media / μCi of 3H-cholesterol
in media containing 2.8% apoB-depleted pooled control
plasma-μCi of 3H-cholesterol in pooled control plasma-

Fig. 1 Study design. Schematic of the time course of the study. After qualifying for the study, eligible participants had a baseline visit followed by
a two-week run in period where extended-release niacin was escalated to the target dose of 2000mg/day. Tolerance was evaluated after week 2.
Target dose was maintained until week 16 followed by a 4 week washout period. Research blood collected at baseline, week 16, and week 20
was used for lipoprotein proteome and functional assays

Table 1 Subject Inclusion/Exclusion Criteria

Inclusion Criteria
● Males and females who are at least 18 years of age at time of
enrollment, with fasting HDL-C below 60mg/dL.
● Subject understands the investigational nature of the study and
provides written, informed consent.

Exclusion Criteria
● Subjects taking any lipid modification therapy, including but not
limited to statins, fibrates and bile acid sequestrants.
● Subjects taking fish oil or any other supplements, which in the
investigator’s opinion may interfere with the study.
● Subjects with acute liver disease or active peptic ulcer disease.
● Subjects with elevated uric acid levels or gout
● Pregnancy or women currently breastfeeding.
● Female subjects taking hormonal contraceptives or hormone
replacement therapy may be included in this study only if they have
been on a stable dose for at least 3 months.
● BMI less than 18.5
● Subjects with weight that varies greater than 20% over the past 3
months
BAS, antibiotics, anticoagulants, anticonvulsants, antiarrhythmic,
Cyclosporine, Mycophenolate and Synthroid. Subjects with chronic
diarrhea, gastric bypass or lap band procedures, ostomies, bowel
motility problems, or other conditions that could affect intestinal fat
absorption.
● Subjects initiating new medications or patients on multiple
medications may also be excluded.
● Inability to swallow tablets
● Patients with a history of type I or type II diabetes or HbA1c > 6.5%.
● Volunteers may also be excluded, if in the opinion of the study
investigators, they have some other condition or disorder that may
adversely affect the outcome of the study or the safety of the volunteer.
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free media). The pooled control plasma was obtained
from five healthy adult volunteers. All assays were per-
formed in duplicate. Efflux data from two subjects was
excluded from analysis due to severe outliers during
measurement at one or more study phase time points.
Outliers were detected by the ROUT method with a Q
threshold of 2%.

Endothelial function assay
Primary bovine aortic endothelial cells (BAEC) were
used for the studies of HDL effect on endothelial func-
tion as described previously [16]. Cells were cultured in
RPMI 1640 supplemented with 10% fetal bovine serum
(Hyclone Laboratories, Logan, UT) and 12 μg/mL of
bovine brain extract (Clonetics, Walkersville, MD), L-
glutamine (2 mM), sodium pyruvate (1 mM) and nones-
sential amino acids in the presence of penicillin (100
units/mL) and maintained at 37 °C in 5% CO2. For the
assays, the cells were plated in 24-well plates at 37 °C in
5% CO2. Prior to the assay, the cells were serum starved
overnight (18 h) in media containing 0.1% FBS. The
BAEC cells were then treated with 50 μg/mL HDL for
30 min and cell lysates were harvested in the presence of
protease and phosphatase inhibitors. The cell lysates
were run on 4–12% SDS-PAGE gels, transferred to pvdf
membranes, and assayed by Western blot analysis for:
phospho-Ser1179 eNOS (equivalent to human
Ser1177) (Cell Signaling Technology, #9571), total
eNOS (Thermo, 9DF10), Ser473 phos-Akt (Cell Sig-
naling Technology, #4060) and total Akt (Cell Signal-
ing Technology, #9272). The blots were scanned and
the densitometry measurements from each gel were
first normalized to a pooled normal HDL which was
included in a random position on every gel to correct
for gel-to-gel variability. Subsequently, for each sam-
ple, the signal of phosphorylated protein was normal-
ized to total eNOS and Akt, respectively. To calculate
% activation the corrected and normalized data was
then normalized to the values obtained from control
samples incubated with vehicle alone, and percent
change relative to the control treatment condition
was calculated.

Statistical analysis
Statistical analyses were performed using GraphPad
Prism software (version 7.05). For plasma lipid and lipo-
protein measures, proteomics data, and HDL function
assays, comparisons across study time points were per-
formed by repeated measures one-way ANOVA with
Geisser-Greenhouse correction and FDR correction by
the method of Benjamini, Krieger, and Yekutieli. FDR
adjusted q-values are reported. Values < 0.05 are consid-
ered statistically significant.

Results
Effect of niacin on plasma lipids and lipoprotein particles
Eleven volunteers completed this 20-week investigational
study of extended-release niacin monotherapy (Fig. 1).
Baseline characteristics are presented in Table 2. The co-
hort was 55% male with an average age of 40.4 years. At
baseline, participants had normal blood pressure and
were moderately overweight with a BMI of 28.8.
Plasma lipids were measured at baseline, on niacin (16

weeks on niacin), and after washout (4 weeks after
stopping niacin). Total cholesterol was lowered by niacin
(− 11%, q < 0.01) and returned to baseline during wash-
out (Fig. 2a). The decrease in total cholesterol resulted
from a 20% reduction in LDL-C (q < 0.01; Fig. 2b) and a
16% increase of HDL-C (q < 0.01; Fig. 2c). Both HDL
and LDL returned to baseline following washout. Trigly-
ceride levels were reduced by 15% (q = 0.1), although this
was not statistically significant after multiple compari-
sons testing in this cohort (Fig. 2d). Lipoprotein profiling
with NMR revealed details about particle number and
size for each of the major lipoprotein classes. Consistent
with the lack of effect on triglyceride, there was no
change in VLDL particle number or size (Fig. 2 e,h).
LDL particle number decreased by 22% (q = 0.05) on
niacin although this was not statistically significant (Fig.
2f) and there was no effect on LDL particle size (Fig. 2i).
Interestingly, HDL particle number did not change with
niacin (Fig. 2g), however, HDL particle size increased by
7% (q < 0.01; Fig. 2j) likely reflecting the increased chol-
esterol content in the core of the particle. Plasma apoli-
poproteins reflected the changes observed with LDL and
HDL particle numbers. ApoB was reduced on niacin and
returned to baseline after washout (Fig. 2k), whereas
apoA-I was not influenced by niacin (Fig. 2l).

Niacin alters the HDL proteome
HDL was purified from plasma samples collected at
baseline, niacin, and washout time points using a two-
step approach designed to maintain physiological buffer
conditions during isolation. Mass spectrometry was used
to analyze the protein composition of HDL and a label-

Table 2 Subject characteristics at baseline

n 11

Age (years) 40.4 ± 14.8

Sex (% male) 55

BMI (kg/m 2) 28.8 ± 6.6

Systolic BP (mmHg) 126.4 ± 11.5

Diastolic BP (mmHg) 72.0 ± 8.7

Total cholesterol (mg/dL) 220.1 ± 62.5

LDL cholesterol (mg/dL) 145.3 ± 63.3

HDL cholesterol (mg/dL) 52.1 ± 11.7

Values are mean ± standard deviation unless otherwise indicated
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free quantitation strategy was used to compare protein
abundance across samples. Compared to baseline, niacin
administration for 16 weeks had a significant impact on
5 HDL-associated proteins (Fig. 3a). Three proteins were
decreased including clusterin (CLU, commonly referred
to as apoJ), apolipoprotein L1 (APOL1), and apolipopro-
tein A-II (APOA2). Two protein were positively associ-
ated with niacin administration, serum amyloid A (SAA)
and angiotensinogen (AGT). Gene ontology analysis was
used to provide general functional classifications to these
proteins (Fig. 3b): apolipoprotein (4 of 5), transporter (2
of 5), defense/Immunity (2 of 5), and serine protease in-
hibitor (1 of 5).

Effects of niacin on HDL protein composition are
reversible
The five proteins were analyzed by ANOVA to exam-
ine protein changes across the three treatment phases.
The largest effect was seen with SAA, which in-
creased 2.96-fold (q = 0.008) with niacin and com-
pletely returned to baseline during washout (Fig. 4a).
AGT increased 1.87-fold (q = 0.06) and remained ele-
vated (1.6 fold; q = 0.01) through the washout phase
(Fig. 4b). APOL1 and CLUS both demonstrated
significant reductions on niacin (− 40%, q = 0.01 and −
21%, q = 0.01, respectively) and partial return to base-
line during washout (Fig. 4c,d). By this analysis, a

Fig. 2 Effect of niacin therapy on plasma lipids, lipoprotein particles, and apolipoproteins. Lipoprotein profile was measured using nuclear
magnetic resonance spectroscopy on a Vantera™ clinical analyzer (LabCorp). Plasma lipids (a-d), lipoprotein particle numbers (e-g), particle sizes
(h-j), and apolipoprotein concentrations (k-l) were compared at baseline, on niacin (week 16), and washout (week 20). Comparisons were
evaluated using repeated measures one-way ANOVA with false discovery rate (FDR) correction for multiple comparisons. * q < 0.05, ** q < 0.01,
n.s. = not significant. If no indicators are present, then none of the comparisons was statistically significant
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20% reduction in APOA2 on niacin was not statisti-
cally significant (q = 0.2) and its abundance trended
back toward baseline levels during washout (Fig. 4e).

Effect of niacin on HDL-mediated cholesterol efflux and
endothelial function
To evaluate the impact of niacin montherapy on HDL
function, cholesterol efflux capacity (CEC) and endothe-
lial function assays were performed on samples collected
from each time point. J774 macrophage cells were incu-
bated overnight with cAMP to increase ABCA1 expres-
sion and loaded with radiolabeled cholesterol.
Cholesterol efflux to apoB-depleted plasma was mea-
sured after a 4 h incubation. Niacin had no significant
initial effect on cholesterol efflux, however, a rebound
effect occurred after stopping niacin and a modest but
significant increase in efflux (+ 9%, q = 0.01) was
observed during the washout phase (Fig. 5a). For endo-
thelial function assays, HDL was isolated from plasma by
ultracentrifugation and incubated at 50 μg/mL with
primary bovine aortic endothelial cells for 30 min. Cell
lysates were analyzed by western blot for activating
phosphorylation of eNOS (p-Ser1179) and Akt (p-
Ser473). Phosphorylation of eNOS or Akt in endothelial
cells was not affected by niacin (Fig. 5b,c).

Discussion
This study tracked the influence of extended-release nia-
cin on the protein composition of HDL in a small group
of volunteers taking no additional lipid modifying medi-
cation. Plasma lipids in these participants displayed the

typical response to niacin with decreased LDL-C (− 20%)
and increased HDL-C (+ 16%), although the observed
small reduction in triglyceride (− 15%) was not statisti-
cally significant. Label-free proteomics analysis detected
niacin-induced changes in five HDL-associated proteins.
Most notably, SAA was found to increase in response to
niacin and return to baseline during the washout phase
of the study. Despite previously reported effects of SAA
on HDL function, we only detected a modest effect of
niacin on cholesterol efflux capacity during the washout
phase and no effect on endothelial functions of HDL in
this study.
Using NMR lipoprotein profile analysis, it was de-

termined that the effect of niacin on LDL-C lowering
appears to be driven by a reduction in particle num-
ber without a change in average particle size. This is
also supported by reduced plasma apolipoprotein B
while taking niacin. Conversely, the niacin-induced in-
crease of HDL-C is due to the generation of larger
HDL particles and no change in total HDL particle
number or plasma apoA-I was observed. Interestingly,
these findings differ from patients receiving niacin +
atorvastatin combination therapy where the same nia-
cin dose (2 g/day) resulted in a 14% increase in HDL
particle number. Although this can likely be explained
by the much larger increase in HDL-C (39%) ob-
served with combination therapy [19]. Although, in
agreement with our study, combination therapy in-
creased large and medium sized HDL particles and
reduced small HDL particles, suggesting a net in-
crease in average particle size. The effects of niacin

Fig. 3 Niacin alters the HDL proteome. The HDL proteome was analyzed at baseline and after 16 weeks on niacin (2 g/day, extended release). (a)
Changes to the HDL proteome are represented in a volcano plot. Each point indicates one of the 63 detected proteins. Proteins above the
horizontal line were considered statistically significant changes. Green colored points indicate proteins increased while taking niacin and red
points indicate reduced protein abundance while taking niacin. (b) Functional annotation of proteins affected by niacin was performed using
Panther (version 14.1) gene list analysis [17, 18]
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on plasma lipids were reversible, returning to baseline
levels after a 4-week washout period.
The change in HDL’s particle size was accompanied

by changes to the proteome. SAA and AGT were in-
creased on HDL in response to niacin. In humans, SAA
is produced predominantly by the liver and has three
isoforms. SAA1 and SAA2 are acute phase proteins
whose plasma concentrations can increase by 200-fold
during an inflammatory response. These isoforms are
over 90% identical and because they are difficult to dis-
tinguish by usual mass spectrometry proteomics ap-
proaches, they are commonly grouped and referred to as
SAA or SAA1/2. In general these isoforms are consid-
ered to function similarly and play important roles in re-
sponse to injury and inflammation. SAA4 is
constitutively expressed at relatively low levels and is not

known to play a role in inflammatory response. The role
of SAA on HDL has been investigated in detail. SAA can
displace common apolipoproteins from HDL generating
a dysfunctional particle with impaired cholesterol efflux
and reverse cholesterol transport capacity [9, 20]. Al-
though SAA was significantly elevated on HDL during
niacin treatment, a significant reduction in efflux was
not observed. This may be due to the relatively small in-
crease of HDL-associated SAA induced by niacin mono-
therapy. Other conditions which significantly impair
HDL cholesterol efflux by increasing HDL-associated
SAA, such as endotoxemia, result in much higher levels
of SAA on HDL [20]. However, during the washout
phase of this study, efflux increased by 9% suggesting
that there may have been a modest effect of niacin
followed by a rebound effect. The effect of niacin +

Fig. 4 Effects of niacin on HDL protein composition are reversible. Relative protein abundance for the 5 proteins influenced by niacin were
analyzed at baseline, on niacin (week 16), and washout (week 20). Changes in serum amyloid a (SAA; a), angiotensinogen (AGT; b), apolipoprotein
L1 (APOL1; c), clusterin (CLUS; d), and apolipoprotein A-II (APOA2; e) were evaluated across time points using repeated measures one-way
ANOVA with false discovery rate (FDR) correction for multiple comparisons. FDR adjusted probability value: * q < 0.05, ** q < 0.01, n.s. =
not significant
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statin combination therapy on cholesterol efflux has
been reported with mixed results. In one study, combin-
ation therapy resulted in increased total efflux, however,
a modest reduction in ABCA1-specific efflux that did
not reach statistical significance was observed [19]. An-
other study reported increased total cholesterol efflux in
subjects treated with niacin + laropiprant + statin [21].
This study did not report ABCA1-specific efflux. Our
study, using cAMP treated J774 macrophages, predom-
inantly evaluates efflux mediated by ABCA1. In our
study, it is not clear whether niacin treatment triggered
a modest inflammatory response, which resulted in acti-
vation of the acute phase response and increased total
plasma SAA or if niacin had a more direct effect on the
HDL particle resulting in increased affinity for SAA. It
was recently demonstrated that SAA is an exchangeable
apolipoprotein, meaning that it can move among differ-
ent lipoprotein classes [22]. Another possibility is that
niacin treatment impacted the distribution of SAA
among lipoprotein classes. The effect of extended-
release niacin on endothelium-related functions of HDL
has been examined in patients with type 2 diabetes [23].

HDL from these patients has reduced antioxidant and
endothelial protective functions and these functions
were largely improved with 3-month niacin treatment
[23]. This study did not report the effect of niacin on
these measures of HDL function in healthy individuals,
so it is not clear if increases in these functions are pos-
sible in normally functioning HDL. While AGT may play
an indirect role in HDL metabolism through regulation
of scavenger receptor class B type 1 (SR-B1) expression
[24], the importance of a physical association between
AGT and HDL has not been investigated.
Three common apolipoproteins (CLUS, APOL1, and

APOA2) were reduced in response to niacin. Among
these, APOA2 (apoA-II) is the most abundant on HDL
has been the most studied. ApoA-II is considered a core
structural protein on HDL and particles have historically
been segregated into species which contain apoA-I only
or both apoA-I and apoA-II [25, 26]. Particles containing
apoA-II have been suggested to carry more proteins with
known roles in lipid transport while particles without
apoA-II carry more proteins with roles in inflammation,
immune response, and protease inhibition [27]. The

Fig. 5 Niacin does not alter HDL-mediated cholesterol efflux or endothelial signaling. HDL function assays were performed on samples collected
at baseline, on niacin (week 16), and washout (week 20). a Efflux of radiolabeled cholesterol from macrophage cells to apoB depleted serum. b
Activation of endothelial cell signaling pathways eNOS and Akt was evaluated by measurement of phosphorylation after treatment with isolated
HDL. Statistical comparisons were made using repeated measures one-way ANOVA with false discovery rate (FDR) correction for multiple
comparisons. FDR adjusted probability value: * q < 0.05, n.s. or no indicator = not significant
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physiological importance of interactions between CLUS
or APOL1 with HDL have not been thoroughly
investigated.
Many studies have now investigated the influence of

disease condition or therapies on HDL composition and
have detected alterations in the proteome [28]. However,
it is still unclear what is physically causing these prote-
ome shifts. One possibility is that the association or dis-
association of a protein with HDL is driven by the local
concentration of that protein in the plasma. In this case,
the effect is indirect and not a result of direct action on
the particle. Another possibility is that a direct change to
the HDL particle has an impact on the association of
one or more proteins. This could be a change in particle
diameter that affects surface curvature or a change in
surface lipid composition that influences the affinity of
certain proteins. HDL remodeling is a complex process
and a combination of direct and indirect effects may be
occurring under different health conditions and even at
different microenvironments within the circulatory sys-
tem. Understanding the functional implications of HDL
proteome remodeling is even more complex.

Study strengths and limitations
One key strength of this study is the use of an unbiased
label-free mass spectrometry approach to examine the
HDL proteome in a well-defined cohort with high adher-
ence to niacin treatment. The small sample size of this
cohort is a limitation of the study, however, as a pilot
study this cohort fulfilled our goal to detect key differ-
ences in the HDL proteome resulting from niacin. The
inclusion of a washout phase was another strength that
helped to provide confidence that detected differences
were due to an effect of niacin. Because previous studies
have examined the effect of niacin plus a stain on HDL
composition and function it would have strengthened
this study to have included a niacin plus statin arm for
direct comparison of niacin monotherapy with niacin
plus statin. This may be examined in future studies.

Conclusion
In this small pilot study, niacin monotherapy caused
proteome remodeling of HDL toward a particle enriched
with SAA. SAA enriched HDL are described to be dys-
functional with regard to HDL’s atheroprotective prop-
erties and may even have proinflammatory activity.
These findings suggest a potential mechanistic explan-
ation for the mixed results of clinical trials of niacin in
prevention of cardiovascular events. A larger study will
be needed, however, to validate these findings in the
general population and may uncover additional potential
mechanisms to explain why the HDL-C increase induced
by niacin does not appear to be cardioprotective. Evalu-
ating other HDL-C raising strategies may reveal similar

compositional effects on HDL function by generation of
dysfunctional particles. Future attempts at clinical ma-
nipulation of HDL for CVD prevention should aim to
improve the functional quality of HDL, rather than
HDL-C. Although, which of HDL’s many functions is
most important for future investigations is not clear.
There is a clear disconnect between HDL-C and HDL
function and despite a push to better catalogue the HDL
proteome, a complete understanding of the complex dy-
namics between HDL proteome and HDL function does
not exist.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12944-020-01350-3.

Additional file 1: Supplementary Table 1. Label-free quantification of
HDL-associated proteins.
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