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A3–B3 loop interaction (Tyr-Ala rather than Tyr–Tyr at 
the tip of loop A3), may be superior under these experi-
mental conditions. Polikarpov et al. showed that deletion 
of three residues at the tip of the A1 loop in ThaCel7A 
makes the entrance to the tunnel more open, and the 
replacement of one Tyr with Ala at the tip of loop A3 
(relative to TreCel7A) increases the flexibility of the 
opposing B3 loop [21]. Our MD simulations of TreCel7A 
and ThaCel7A, conducted here for comparison to Tat-
Cel7A, are in good agreement with those results. As 
with ThaCel7A, the B3 loop of TatCel7A is more flexible 
and opens more frequently than in TreCel7A (Fig.  13). 
ThaCel7A and TatCel7A share A3 loop features, whereas 
the A1 loop is similar in TatCel7A and TreCel7A. Thus, 
the most likely major determinant of the observed func-
tional differences in initial crystalline cellulose hydrolysis 
is the longer A1 loop present in TatCel7A and TreCel7A.

Although TatCel7A showed higher kcat in initial hydrol-
ysis of BMCC, the processive model kinetic parameter 
fit to the progress curves did not reveal clear differences 
that could be readily correlated with protein structure 
and dynamics. The apparent processivity values (74–97) 
are in the same range, but somewhat higher than found 
by alternative methods (66–70) [17, 37, 38]. Also, both 
kon and koff values are higher in our case. However, the 

Fig. 14  Total number of native contacts formed by TreCel7A, 
TatCel7A, and ThaCel7A at 300 and 475 K. The total number of native 
contacts was determined as an average of three independent MD 
simulations at two temperatures, 300 K (solid lines) and 475 K (dashed 
lines). The high temperature simulations were performed for 15 ns, 
whereas the triplicate 300 K simulations were conducted for 50 ns; 
only 15 ns of the 300 K trajectories are shown here for comparison. In 
each case, the simulation was conducted without a ligand, in explicit 
solvent. To determine the total number of native contacts of each 
trajectory, the number of native contacts formed by each residue was 
first evaluated. Here, a native contact was defined as any amino acid 
whose side chain center of geometry was within 6.5 Å of the refer-
ence amino residue’s Cα. The total number of native contacts is then 
the sum of the native contacts formed by all residues in the protein

Fig. 15  Temperature factors (B-factors) for Cel7A structures plotted over W mean scores from RCA analysis. The B-factors for amino acid Cα atoms of 
chain A in TreCel7A (4C4C), ThaCel7A (2YOK), and TatCel7A (5O5D) structures are plotted against residue number in TatCel7A, aligned with the cor-
responding GH7 sequences (see Fig. 5). The scale for W mean scores from RCA analysis is on the right side of the graph. Sections of interest defined 
by RCA (reverse conservation analysis) are marked with blue lines and corresponding identifiers (I–IV), and residues with high S scores are marked in 
yellow
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studies cited above employed other cellulose substrate 
preparations (e.g., reduced bacterial cellulose and Avicel) 
and may not be directly comparable. In our case, the koff 
value is comparable or lower for TreCel7A_CD compared 
to the full-length enzyme. This is in contrast to Kont 
et al. who reported the opposite [38]. However, in a study 
by Cruys-Bagger et  al. [32, 33], similar koff values were 
found for TreCel7A and TreCel7A_CD. In that study, the 
authors suggested that the main energy barrier for dis-
sociation is the release of the cellulose strand from the 
catalytic domain. In our current study, we find a slightly 
lower koff value for the examined enzymes without a 
linker and CBM. We cannot explain this observation, 
but suspect that it may be related to the low DP of the 
substrate. With an estimated DP of around 120 glucose 
units and an apparent processivity of 70–90, the enzyme 
would, in most cases, ‘fall off’ when the entire cellulose 
chain has been hydrolyzed, rather than dissociating from 
the chain along the process.

When comparing the performance of the Cel7s in 
synergistic conversion of pretreated biomass to soluble 
sugar, both TatCel7A and ThaCel7A gave higher yields 
of soluble sugar than TreCel7A, indicating that weaker 
A3–B3 interaction and, hence, higher B3 loop flexibil-
ity is beneficial to conversion. The length of the A1 loop 
may be of less importance, although TatCel7A, with the 
longer A1 loop, appears to be slightly more efficient than 
ThaCel7A. Though our data implicates loops A1 and A3 
in variable efficiency, we cannot rule out that other dif-
ferences between the three enzymes may also influence 
their performance, such as linker length, glycosylation, 
or other residue substitutions that may affect the protein 
dynamics.

The B3 loop is anchored by disulfide bridges at both 
ends (Cys243 and Cys256 in TatCel7A) and is almost 
identical in sequence in the three enzymes, except for 
Asp-Asn conservative replacements at positions 249 and 
250. In TatCel7A (and similarly in ThaCel7A), Asn249 
hydrogen bonds to the nearby Asp241, which would 
stabilize the loop and reduce fluctuations. Asn249 is 
replaced by Asp249 in TreCel7A, which, in some struc-
tures, forms a short distance, low-barrier hydrogen bond 
with Asp241 called an acid pair [39]. Such acid pair inter-
actions are pH dependent and more distance restrained 
[40], which may contribute further to the restriction of 
B3 loop mobility in TreCel7A. Interestingly, the vari-
able RCA defined section II before loop B3 includes 
the hydrogen-bonding partner, Asp241, and the nearby 
Ser239. The latter is replaced by Glu239 in TreCel7A, 
which is stabilized in turn by metal ion coordination 
together with His206. This may indicate that fine-tuning 
of B3 loop flexibility represents an important evolution-
ary target in Trichoderma spp. Cel7 proteins.

We were surprised to find that TatCel7A exhibits sig-
nificantly lower activity against pNP-Lac, while it was 
about the same for TreCel7A and ThaCel7A. The enzyme 
kinetics results show that this is mainly due to a signifi-
cantly lower kcat (Table 1). Also, the KM value is slightly 
higher, giving a catalytic efficiency (kcat/KM) for TatCel7A 
of only about 25% compared to TreCel7A and ThaCel7A. 
No obvious clues are evident from structural comparison, 
though, as to why that is the case. The three structures are 
practically identical at the subsites (− 2/− 1/+ 1) where 
pNP-Lac should bind for hydrolysis. However, pNP-Lac 
is an artificial chromogenic model substrate and may be 
a poor representative of function in Nature. Interest-
ingly, a similar discrepancy in pNP-Lac activity has been 
reported previously for two close GH7 CBH orthologs 
from Amoebozoa [18]. Cel7A from Dictyostelium discoi-
deum exhibited lower thermal stability and about half of 
the specific activity against pNP-Lac compared to D. pur-
pureum Cel7A, despite 80% sequence identity.

The three enzymes showed similar pH dependence, 
with activity optimum around pH 4.5 and sensitivity to 
inactivation above neutral pH. This indicates that all the 
three species, T. atroviride, T. reesei, and T. harzianum, 
are adapted to biomass degradation at rather acidic con-
ditions, without strong evolutionary pressure on their 
Cel7A enzymes towards action at higher pHs.

TatCel7A appears to be more temperature sensitive 
than either TreCel7A or ThaCel7A, with a slightly lower 
temperature optimum and more rapid irreversible inacti-
vation at elevated temperature. This is likely a function of 
fewer secondary structure interactions in TatCel7A rela-
tive to TreCel7A and ThaCel7A, as observed by structural 
comparison and a lower number of native contacts found 
in the MD simulations. In particular, the A2–A4 region 
that appears to be a hotspot for initiation of unfolding 
seems to unfold faster in TatCel7A in the high-temper-
ature MD simulations (see Additional file  2: Movie S1). 
Notably, though, the two regions on the backside of 
the protein where TatCel7A deviates structurally, i.e., 
near the linker attachment (13–17, 28–30) and around 
the Gly317 insertion (420–422), did not show any clear 
signs of unfolding more readily. Overall, the backside of 
the proteins remained remarkably stable throughout the 
high-temperature simulations, in contrast to large mobil-
ity of the extended loops along the active site.

The higher yield of soluble sugar obtained for TatCel7A 
vs. TreCel7A in the experiments on pretreated biomass 
suggests that this enzyme may be useful for industrial 
conversion of biomass. The lower temperature stabil-
ity could be addressed by engineering a more stable 
variant inspired by TreCel7A or any other more ther-
mostable GH7 CBH [5, 9]. The improvement of thermal 
stability of TreCel7A by directed evolution has recently 
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been reported, where the most stable variant contains 
18 mutations and exhibited a 10.4 °C increase in protein 
melting temperature [41]. Based on that study and the 
results herein, we propose that the primary region to tar-
get would be the A2–A4 region in order to stabilize the 
α-helix of the A2 loop while taking into account product 
– enzyme interactions at the exit of the tunnel. It should 
be noted, though, that irreversible inactivation depends 
not only on protein unfolding, but also on the exposure 
and aggregation of hydrophobic regions of the protein, 
which is difficult to predict.

Conclusions
We have determined the three-dimensional structure and 
analyzed the properties of TatCel7A, the major secreted 
protein from T. atroviride, and compared these results to 
the close orthologs: ThaCel7A and TreCel7A. All three 
proteins are very similar in sequence, structure, and sev-
eral other aspects, yet, subtle differences are manifested 
in terms of stability, activity, and protein dynamics. Such 
differences, for example, in initial hydrolysis rates of 
BMCC and synergistic conversion of pretreated biomass, 
may lead to significant effects in the large-scale process 
applied for biomass conversion.

Methods
Preparation of Trichoderma Cel7 enzymes
The fungal strains T. atroviride IOC 4503 and T. harzi-
anum IOC 3844 were obtained from the Culture Collec-
tion of Filamentous Fungi at the Oswaldo Cruz Institute 
(CCFF/IOC) in Brazil. They were grown on potato dex-
trose agar plates at 25  °C until dense sporulation devel-
oped (about 1 week) to produce fresh spores for culture 
inoculation. Submerged cultivation in distiller’s spent 
grain medium [42] with 1% w/v Avicel cellulose as a car-
bon source was undertaken for 6 days at 30 °C in a rotary 
incubator at 80  rpm; the cultivation took place in 2.8 L 
side-baffled Fernbach flasks (Bellco Glass Inc., Vineland, 
NJ, USA), each with 0.6 L medium containing: 6  g dry 
distillers spent grain, 9 g KH2PO4, 3 g (NH4)2PO4, 0.36 g 
MgSO4, and 0.36 g CaSO4. The pH was measured daily. 
On day 2, the pH dropped to around pH 3.5–3.8 for both 
fungi and was adjusted to pH 5 by addition of 2 g K2HPO4 
to each flask. Upon harvest, the cultures were filtrated on 
Whatman GF/B glass fiber filters (~ 1 µm pore size) fol-
lowed by 0.45 and 0.2 µm sterile filtration.

The culture filtrate was desalted on Bio-Gel P-6DG 
(BioRad; 500  mL column) to 10  mM potassium phos-
phate buffer, pH 6.0, then applied to a DEAE Sepharose 
Fast Flow column (GE Healthcare; CV =  200  mL) and 
eluted with a gradient up to 0.5  M NaCl in the same 
buffer. Fractions containing pNP-Lac activity were 
pooled, desalted, and applied to a SOURCE 30Q column 

(GE Healthcare; CV = 25 mL) eluted with a 10–500 mM 
potassium phosphate, pH 6.0, gradient. Fractions with 
activity against pNP-Lac were collected and subjected 
to SDS-PAGE analysis to estimate the purity of the Cel7 
protein. The yield of purified enzyme per liter of culture 
was 70 mg for TatCel7A and 85 mg for ThaCel7A.

TatCel7A_CD used for crystallization was prepared 
from the T. atroviride strain IMI 206040, kindly donated 
by Dr. Alexander Golubev (Petersburg Nuclear Physics 
Institute, Gatchina, Russia). Cultivation, protein purifica-
tion, domain cleavage with papain and enzymatic N-degly-
cosylation were performed as previously described [3]. The 
solved crystal structure confirms that the protein sequence 
is identical to that of TatCel7A from T. atroviride strain 
IOC 4503, at least in the catalytic domain.

For all TreCel7A experiments except the PCS hydroly-
sis experiments, TreCel7A was obtained from T. reesei 
strain QM9414 as described [31, 43]. For the PCS hydrol-
ysis experiments, TreCel7A was recombinantly produced 
in the T. reesei AST1116 constitutive expression system 
and purified to homogeneity as detailed in [44].

For preparation of the Cel7 catalytic domains, the 
CBM-linker portion of the full-length enzymes were 
removed by partial proteolysis using papain as previously 
described [3], followed by size-exclusion chromatogra-
phy on a HiLoad Superdex 75 16/60 column (GE Health-
care) with 10 mM sodium acetate, pH 5.0, 0.15 M NaCl 
as eluent. Purified proteins were concentrated and stored 
in 10  mM sodium acetate, pH 5.0, at −  20  °C. Protein 
concentrations were determined spectrophotometrically 
at 280  nm using theoretical extinction coefficients cal-
culated from amino acid sequences using the ProtParam 
web service (ExPASy ProtParam http://web.expasy.org/
protparam/): TreCel7A, 86760 M−1 cm−1; TreCel7A_CD, 
80550 M−1 cm−1; TatCel7A, 86760 M−1 cm−1; TatCel7A_
CD, 80550  M−1  cm−1; ThaCel7A, 90770  M−1  cm−1; 
ThaCel7A_CD, 80550 M−1 cm−1.

Temperature and pH dependence, enzyme kinetics 
and cellobiose inhibition
Hydrolytic activity measurements were carried out in 
triplicate in 96-well microtiter plates using pNP-Lac as 
substrate. Reaction mixtures of 150 µL contained 50 mM 
buffer (pH 3–7, phosphate-citrate; pH 7–8, potassium 
phosphate; pH 8–9, sodium borate), 2  mM of pNP-Lac 
and 0.15  µM of the enzyme (TreCel7A_CD, ThaCel7A_
CD, or TatCel7A_CD). The reaction was quenched by 
adding 150 µL of 0.5  M sodium carbonate, followed by 
measurement of absorbance at 405  nm using an Eon 
Multiplate Reader. The rate of pNP release was calculated 
using an extinction coefficient of 18.3 mM−1 cm−1.

The pH dependence of hydrolytic activity was deter-
mined in the range of pH 3.0–8.0. The reactions were 

http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
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incubated at 30  °C for 30  min. In pH stability experi-
ments, the enzymes were pre-incubated at 40  °C at pHs 
from pH 3.0–9.5 for 20  h, followed by pNP-Lac activ-
ity measurement at 30  °C and pH 4.5 using a 30-min 
incubation.

For temperature dependence of activity, the reactions 
were incubated in the temperature range of 20–75 °C for 
1 h at pH 4.5. The reaction components were pre-cooled 
and mixed on ice, then transferred into the thermostat 
equilibrated at the desired temperature. For assessment of 
thermal inactivation, the enzymes were pre-incubated at 
60, 65, and 70 °C at pH 4.5. Aliquots were taken at indi-
cated time points up to 90  min and cooled on ice, fol-
lowed by determination of residual hydrolytic activity 
against pNP-Lac at 30 °C, pH 4.5, and 1 h incubation time.

Experiments for determination of enzyme kinet-
ics parameters Vmax and KM for pNP-Lac as substrate 
and inhibition constants Ki for cellobiose were done in 
96-well microtiter plates as described above. Reaction 
mixtures containing TreCel7A_CD, ThaCel7A_CD, or 
TatCel7A_CD (0.12, 0.22, 0.12 µM, respectively), 50 mM 
sodium phosphate citrate buffer, pH 4.5, and pNP-Lac 
at 0.1, 0.2, 0.4, 0.67, 1.2, 2, 3, 4, 5, and 6.7 mM concen-
tration, without and with 100 µM cellobiose, were incu-
bated for 1  h at 30  °C. Nonlinear regression fitting was 
accomplished using the Excel Solver add-in (Microsoft, 
Richmond, WA, USA). Weighted squared residuals were 
calculated for each data point using a statistical weighting 
scheme, [(vobs −  vcalc)2/vcalc], where vobs is the observed 
reaction rate, and vcalc is the rate calculated from kinetic 
parameters (Vmax, KM, Ki). The kinetic parameters were fit 
towards  the minimized sum of residuals using the GRG 
nonlinear solving method within Solver. Mixed inhibition 
was first evaluated. In all cases, the uncompetitive Ki was 
more than an order of magnitude higher than the com-
petitive Ki, indicating that cellobiose acted as a competi-
tive inhibitor. Therefore, the final values shown in Table 1 
were derived by fitting the data to the Michaelis–Menten 
expression for competitive inhibition (see Additional 
file  1: Figure S2). The RMSD between vcalc and vobs was 
used as indicator of experimental error (3.4, 4.0 and 2.4% 
for TreCel7A_CD, TatCel7A_CD, and ThaCel7A_CD, 
respectively).

Initial hydrolysis of cellulose
The initial hydrolysis of cellulose was measured using 
Biosensor equipment at Roskilde University, Denmark. 
Bacterial microcrystalline cellulose (BMCC) from Ace-
tobacter xylinum was prepared from bacterial cellulose 
(BC) extracted from commercially available Nata de 
Coco as described [45]. The degree of polymerization of 
such BMCC has been determined at 114 glucose units 
[45]. Hydrolysis of BMCC was monitored by cellobiose 

product formation. The concentration of cellobiose was 
measured in real time with cellobiose dehydrogenase-
modified carbon paste electrodes as described in detail 
by Cruys-Bagger et al. [32, 46]. The sensor had a response 
time and lower detection limit of 4 s and 60 nM, respec-
tively. All reactions were carried out in 50  mM sodium 
acetate pH 5.0 at 25  °C with stirring. The reaction mix-
ture contained 3.3  g/L of BMCC and 50  nM enzyme 
(TreCel7A, TreCel7A_CD, ThaCel7A, TatCel7A, and 
TatCel7A_CD). The experimental data (time interval 
0–200 s) was fit to the processive model shown in Addi-
tional file 1: Figure S4A. The model consists of three rate-
constants, kon, kcat, and koff, and an apparent processivity 
parameter, n. For further detail, see Additional file 1.

Pretreated corn stover (PCS) hydrolysis
Corn stover was harvested in 2009 in Hurley County, 
SD, USA, and was knife milled to pass a 19 mm (0.75 in) 
round screen and stored indoors in 200 kg lots at NREL 
(National Renewable Energy Laboratory, Golden, CO, 
USA). The compositional analysis of the native corn 
stover is given by Chen et al. [47]. Dilute acid pretreated 
corn stover (PCS) was prepared and analyzed by NREL 
standard laboratory analytical procedures [48], with PCS 
composed of 64.2% dry weight glucan. The PCS substrate 
was suspended in 20  mM sodium acetate buffer at pH 
5.0. Digestions were conducted at 40  °C in high-perfor-
mance liquid chromatography (HPLC) vials placed in 
a rotator at 10 rpm up to 96 h. An amount of PCS sub-
strate equivalent to 8.5  mg of glucan was added to the 
enzymatic cocktail consisting of each of the GH7 CBHs, 
endoglucanase I from T. longibrachiatum (Megazyme 
Co., Bray, Ireland), and β-glucosidase from Aspergillus 
niger (Megazyme Co., Bray, Ireland) at a concentration of 
28, 1.9, and 0.5 mg protein/g of glucan, respectively. The 
ratio and dosage of enzymes used here represent one of 
the standard conditions developed and used at NREL to 
assay the performance of Cel7 enzymes in NREL PCS 
conversion [49, 50]. Adjustment of the biomass assay ali-
quots to 1.7 mL final volume resulted in a cellulose con-
centration of 5.0 mg/mL and a GH7 CBH concentration 
of 0.14  mg/mL, corresponding to 2.5 µM for TreCel7A. 
Sugar analyses were performed by HPLC as reported in 
[44]. Experiments were performed in duplicate.

X‑ray crystallography
Crystallization experiments were carried out with the 
deglycosylated catalytic domain TatCel7A_CD. Screen-
ing for crystallization conditions was performed in 
96-well sitting drop trays using a Mosquito crystalliza-
tion robot (TTP Labtech, UK). The most promising crys-
tallization hits were obtained at room temperature with 
Hampton polyethylene glycol (PEG)/Ion screen. The 



Page 18 of 22Borisova et al. Biotechnol Biofuels  (2018) 11:5 

final optimized conditions contained 5 mM NiCl2, 0.1 M 
HEPES pH 7.0, and 20% w/v PEG 3350 as a precipitant. 
Crystals used for data collection were grown by sitting 
drop vapor diffusion under the same conditions after 1:1 
mixing of precipitant with 4.8  mg/mL TatCel7A_CD in 
20  mM Bis–Tris buffer, pH 7.0. Cellobiose was added 
to the crystallization drops for the APO structure but 
is not seen in the structure. The SG3 structure complex 
was obtained from co-crystallization drops with 5  mM 
4,4′-dithio-cellotriose.

X-ray diffraction data were collected at 100  K at the 
synchrotron beamline ID23-1, ESRF, Grenoble, France, as 
indicated in Table 3. The data were integrated with XDS 
[51] and scaled using the programs Scala and Aimless 
in the CCP4 suite [52]. The initial TatCel7A_CD struc-
ture model was solved by molecular replacement using 
PHASER [53] and a structure of TreCel7A_CD as the 
search model (PDB code 1CEL).

REFMAC5 [54] was used for structure model refine-
ments, and manual model rebuilding was performed with 
Coot [55, 56] using maximum likelihood sigma-average-
weighted 2Fo–Fc electron density maps [56]. For cross-
validation by R and Rfree calculations, 5% of the data were 
excluded from the structure refinement [57]. Solvent 
molecules were automatically added using the auto-
matic water picking function in the ARP/wARP package 
[58]. Picked water molecules were selected or discarded 
manually by visual inspection of 2Fo–Fc and Fo–Fc elec-
tron density maps. The coordinates for the two final Tat-
Cel7A_CD structure models and the structure factors 
have been deposited in the Protein Data Bank (http://
wwpdb.org/) with accession codes 5O5D and 5O59.

Molecular dynamics simulations
For the catalytic domain of each enzyme (TatCel7A, 
TreCel7A, and ThaCel7A), three ligand-bound states 
were modeled: without a ligand (no ligand), bound to cel-
lononaose (ligand), and bound to a cellulose Iβ microfi-
bril (microfibril) (Fig.  10). The cellulase structures used 
for MD simulations were obtained from crystal struc-
tures deposited in the Protein Data Bank: PDB ID 4C4C 
for TreCel7A [59], 2YOK for ThaCel7A [21], and 5O5D 
for TatCel7A. The three simulations of TreCel7A at 300 K 
have been previously reported [3] and are presented here 
again for direct comparison to ThaCel7A and TatCel7A 
dynamics. Additionally, we carried out a set of MD sim-
ulations at an elevated temperature, 475  K, considering 
each cellulase in the ligand-free “Apo” state in solution, 
to examine the unfolding process of the enzymes and 
to locate regions vulnerable to increased temperature 
(hotspots).

To build the TreCel7A apo simulation, the cellononaose 
ligand was removed from the active site of the catalytic 

domain. For the cellononaose-bound state, the cellon-
onaose ligand from 4C4C was retained from the crystal 
structure (4C4C), occupying the active site from − 7 to 
+ 2 sites (Fig. 10). The TreCel7A microfibril complex was 
constructed by docking the cellononaose-bound catalytic 
domain on the hydrophobic face of the cellulose 1β crys-
tal matrix, where a single chain had been decrystallized 
as previously described [3]. In each TreCel7A case, the 
mutated Gln217 was reverted to the wild-type glutamic 
acid. Additional details of the modeling procedure for the 
TreCel7A simulations can be found in our previous work 
[3]. The ThaCel7A and TatCel7A ligand-free simulation 
sets were constructed from the apo crystal structures. 
The cellononaose-bound ThaCel7A and TatCel7A mod-
els were constructed by aligning the protein backbone 
with TreCel7A (4C4C) and adopting the coordinates of 
the 4C4C cellononaose; structural alignment was per-
formed using PyMOL [60]. The ThaCel7A and TatCel7A 
microfibril complexes were constructed as described for 
TreCel7A above and previously [3].

In each model, only the catalytic domains of cellulases 
were simulated, excluding the glycosylated linker and 
the carbohydrate-binding module. Additionally, the gly-
cans attached to the catalytic domains were omitted from 
the models, as they have relatively limited effects on the 
protein dynamics over MD-simulation time scales [61]. 
pKa calculations, using the H++ webserver, and visual 
inspection were used to determine the protonation states 
of the titratable residues at pH 5.0 with internal and 
external dielectrics of 10 and 80, respectively [62–64]. 
Disulfide bonds were defined according the PDB struc-
tures. CHARMM was used to construct and explicitly 
solvate the systems with the water molecules (80 Å × 80 
Å × 80 Å for no ligand and ligand systems; 135 Å × 100 
Å ×  90 Å for the microfibril complexes) [65]. Na+ ions 
were added to ensure the charge neutrality of the system, 
avoiding the self-energy artifact [66, 67].

Minimization and equilibration simulations were con-
ducted in CHARMM using the CHARMM36 force field 
to define the protein and carbohydrate behavior and 
the modified TIP3P force field for water [68–73]. Mini-
mization of each system was conducted in three steps: 
(1) keeping the protein, the ligand (if present), and the 
microfibril (if present) fixed and allowing the water mol-
ecules to move freely, then (2) keeping only the protein 
fixed, allowing the remainder of the system to move 
freely, and (3) allowing every atom in the system to move 
freely without any restraint. Each of the three minimiza-
tion steps used 1000 steps of steepest decent (SD) mini-
mization. Following minimization, the systems were 
heated from 100 to 300 K in the NVE ensemble for 20 ps 
using 50 K temperature increments every 4 ps. The sys-
tems were then density equilibrated in the NPT ensemble 

http://wwpdb.org/
http://wwpdb.org/
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at 300 K for 100 ps. Data collection simulations of 100 ns 
were conducted using NAMD in the NVT ensemble at 
300 K with a time step of 2 fs [65, 74]. Evaluation of the 
RMSD of the protein backbones, compared to their posi-
tions following density equilibration, indicates 100  ns is 
sufficient to reach a local equilibrium (Additional file 1: 
Figure S10). Long-range electrostatic calculations used a 
non-bonded cutoff distance of 10 Å, a switching distance 
of 9 Å, and a non-bonded pair list distance of 12 Å. The 
SHAKE algorithm was used to fix the hydrogen distances 
during all simulations. For microfibril complexes, during 
heating, density equilibration and production simulation, 
the bottom layer of the cellulose crystal was harmonically 
restrained with a force constant of 1 kcal/mol/Å2 to pre-
vent twisting of the microfibril, which occurs when the 
degree of polymerization is low.

To initiate the high temperature simulations, we first 
conducted three independent 50-ns MD simulations 
of each apo enzyme (9 total simulations) at 300 K in the 
NVT ensemble using NAMD. The high temperature sim-
ulations were started from 10 ns, 300 K equilibrated snap-
shots of each enzyme. High-temperature simulations were 
conducted in NAMD at 475  K for 15  ns each; all other 
simulation parameters were as described above. Again, 
three independent simulations of each enzyme were 
performed to obtain statistically meaningful structural 
insight. VMD was used to visualize the trajectories of the 
high temperature simulations and define the thermally 
unstable regions of the enzymes. The native contact anal-
ysis described above was conducted in CHARMM using 
the COORdinate DMAT (distance matrix) command.

Phylogenetic analysis
GH7 protein sequences were retrieved by pBLAST search 
with the TreCel7A full-length sequence (UniProtKB-
P62694) in NCBI and individual species genome databases. 
Available sequences of both CBHs and EGs from Tricho-
derma spp., Fusarium spp. and C. rosea were selected, and 
one sequence from Acremonium strictum was included as 
an outgroup, resulting in a set of 28 GH7 orthologs. The 
amino acid sequences were aligned by ClustalW using 
MEGA7 software [75], and regions flanking the GH7 
domain were trimmed off (signal peptide, before Gln 1 of 
TatCel7A; linker-CBM, after Thr429 of TatCel7A). The 
evolutionary history was inferred using the minimum evo-
lution method [76] and bootstrap phylogeny testing with 
2000 replicates. The evolutionary distances were com-
puted using the Dayhoff matrix based method [77] and 
are in the units of the number of amino acid substitutions 
per site. The minimum evolution tree was searched using 
the close-neighbor-interchange (CNI) algorithm [78] at a 
search level of 1. The neighbor-joining algorithm [79] was 
used to generate the initial tree. All positions containing 

gaps and missing data were eliminated. There were a total 
of 349 positions in the final dataset.

Reverse conservation analysis (RCA)
A subset of 17 GH7 CBH protein sequences, including 
11 sequences from Trichoderma spp. and six sequences 
from Fusarium spp. and C. rosea, was selected. The GH7 
CBH catalytic domains were realigned by ClustalW using 
MEGA7 software [75], followed by indel elimination. 
This alignment was analyzed by RCA as described earlier 
[35]. In short, Rate4Site (Version 2.01) was used to calcu-
late the degree of conservation (S score) for each amino 
acid position using the empirical Bayesian method [80, 
81]. A sliding window-average (n = 7) S score was plot-
ted (W mean score) and significant peaks were defined by 
intensity (I) values of 1 [35].
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Additional file 1: Figure S1. SDS-PAGE analyses of T. atroviride culture 
filtrate and purified Trichoderma spp. Cel7A enzymes. Figure S2. Sub-
strate dependence plots and Hanes-Wolff plots from enzyme kinetics 
experiments with TatCel7A, ThaCel7A and TreCel7A, using pNP-Lac as 
substrate and cellobiose as inhibitor. Additional information regarding 
the mathematical model for quasi-steady state kinetics of processive cel-
lulose hydrolysis by GH7 cellobiohydrolases and the derivation of kinetic 
parameters by non-linear regression fitting to real-time progress curves of 
the initial stage of cellulose hydrolysis. Figure S3. A) Real-time progress 
curves. B) Derivative of the progress curves in A). Figure S4. A) Simplified 
reaction scheme for a processive cellulase. B) Illustration of the molecular 
steps involved in the reaction scheme. Figure S5. Non-linear regres-
sion fit to real-time progress curves. Figure S6. Bar diagram of kinetic 
parameters derived from initial hydrolysis of BMCC. Additional information 
regarding correlation of kinetic parameters derived by non-linear regres-
sion fit to initial hydrolysis data. Table S1. Parameter correlation matrix 
for TreCel7A. Figure S7. Kinetic parameter fit to simulated data with 2.5% 
random noise added, and to experimental data recorded for TreCel7A 
during initial hydrolysis of BMCC. Table S2. Comparison of kinetic 
parameters from the fit to simulated data with 2.5% random noise, and to 
experimental data recorded for TreCel7A during initial hydrolysis of BMCC. 
Figure S8. Sequence alignment of the GH7 CBH catalytic domains used 
for RCA analysis. Figure S9. Phylogenetic tree of GH7 catalytic domain 
protein sequences from Trichoderma spp. and Fusarium spp. Table S3. S 
scores from RCA analysis for residues of interest for TatCel7A, ThaCel7A 
and TreCel7A. Additional MD simulation results Figure S10. RMSD as a 
function of time for each 100-ns, ligand-bound MD simulation of TatCel7A, 
ThaCel7A and TreCel7A catalytic domains.

Additional file 2: Movie S1. Movie of TatCel7A_CD initial protein unfold-
ing during 15-ns MD simulations at high temperature (475 K). The movie 
shows three individual MD runs side-by-side for the same protein, in two 
views. The top row shows the “front” of the enzyme, and the bottom row 
shows the “backside”.

Additional file 3: Movie S2. Movie of TreCel7A_CD initial protein unfold-
ing during 15-ns MD simulations at high temperature (475 K). The movie 
shows three individual MD runs side-by-side for the same protein, in two 
views. The top row shows the “front” of the enzyme, and the bottom row 
shows the “backside”.

Additional file 4: Movie S3. Movie of ThaCel7A_CD initial protein 
unfolding during 15-ns MD simulations at high temperature (475 K). The 
movie shows three individual MD runs side-by-side for the same protein, 
in two views. The top row shows the “front” of the enzyme, and the bot-
tom row shows the “backside”.
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