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ADOPTION, EFFECTIVENESS, PERCEPTION, AND USE 

 

 

Precision dairy farming technologies provide a variety of functions to dairy farmers. 

Little is known about dairy producer perception of these technologies. A study was 

performed to understand dairy producer perception of parameters monitored by precision 

dairy farming technologies. Calving has potential to be predicted using these same 

parameters and technologies. A second study was performed using two commercially 

marketed technologies in calving prediction. In order for these technologies to generate 

accurate and useful information for dairy farm use, they must accurately quantify these 

parameters. The final study evaluated the accuracy of five commercially marketed 

technologies in monitoring feeding, rumination, and lying behaviors. 
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CHAPTER ONE 

REVIEW OF LITERATURE 

 

PRECISION DAIRY FARMING TECHNOLOGIES IN DAIRY HERD 

MANAGEMENT 

Precision dairy farming is defined as “the use of information and communication 

technologies for improved control of fine-scale animal and physical resource variability 

to optimize economic, social, and environmental dairy farm performance” (Eastwood et 

al., 2012). Precision dairy farming is a species-specific approach to precision livestock 

farming. Precision livestock systems have addressed animal growth, animal product 

output systems, endemic diseases, animal behavior, and the physical environment of a 

livestock building (Wathes et al., 2008). 

Dairy producers implement precision technologies to improve individual animal 

management, group or pen management, whole-farm management, and overall farm 

production efficiency (Wathes et al., 2008). For dairy farmers, precision dairy farming 

technologies have the potential to remove subjectivity from decision-making processes, 

reducing the need for skilled and experienced labor in animal management. Technologies 

often reduce the need for specialized labor, or change its focus so more work can be 

accomplished by fewer laborers (Frost et al., 1997). Using technologies to monitor farm 

animals is useful as long as technologies continuously monitor parameters, reliably 

observe behaviors, and accurately describe behaviors with reliable algorithms 

(Berckmans, 2006). Improvements to work-routine efficiency can be made if 

technologies are as reliable as the labor replaced. Making improvements in work-routine 
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efficiency reduces time required to complete a task, employee stress, and provides the 

operators time to focus on other areas (Schukken et al., 2008). This contrasts traditional 

dairy production systems where product quality depends almost entirely on the skill, 

experience, and subjective assessments of the individual producer or worker (Frost et al., 

1997).  

Management improvements ease public perception of animal agriculture. Dairy 

consumers have become increasingly concerned with food safety and quality, efficient 

and sustainable farming, animal health and well-being, and the impact of agriculture on 

the environment (Berckmans, 2006). Technology adoption can improve or maintain 

animal welfare on dairy farms and help to improve public perception by demonstrating 

the dairy community’s commitment to developing welfare improvement strategies 

(Rutten et al., 2013). In addition to improving public perception of cattle welfare, 

technologies accurately monitor individual animals and farms, which can increase animal 

production efficiency and decrease the environmental impact of livestock production, 

thereby also improving public perception (Laca, 2009).  

Precision Dairy Farming Technology Use 

Technology use becomes important as dairy farmers refine their management 

practices with emphasis on efficiency (El-Osta and Morehart, 2000). Successful farms 

use and embrace modern manufacturing concepts and principles to improve their 

competitive position and increase efficiency and productivity (Boehlje and Schiek, 1998). 

In precision farming, technology adopters specialize production practices, and have lower 

input costs and higher profits (Daberkow and McBride, 1998). Furthermore, dairy 

producers with the lowest costs tend to be those implementing innovative management 

techniques and technologies (Short, 2004). Dairy farmers use many precision 
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technologies to monitor many parameters pertaining to their cattle and operations. 

Parameters monitored by these technologies include daily milk yield, milk components, 

step number, temperature (in various places and forms on and within the cow), milk 

conductivity, automatic estrus detection monitors, and daily body weight measurements 

(Bewley, 2010). In addition to the parameters already monitored, many other parameters 

have also been proposed. Bewley (2010) proposed parameters such as jaw movements, 

ruminal pH, reticular contractions, heart rate, animal positioning and activity, vaginal 

mucus electrical resistance, feeding behavior, lying behavior, odor, glucose, acoustics, 

progesterone, individual milk components, color (as an indicator of cleanliness), infrared 

udder surface temperatures, and respiration rates. Technology manufacturers have since 

incorporated many of these parameters into their technologies.  

Barriers to Adoption 

 Monitoring and control in livestock production is relatively undeveloped 

compared to most other industries, in spite of research showing higher production 

efficiency (Daberkow and McBride, 2003). Most monitored parameters are biological, 

and inherently variable and unpredictable (Frost et al., 1997). Ideal systems would 

provide continuous surveillance of the animal, automatically and accurately quantify the 

behavior of interest, and require minimal labor and maintenance (Senger, 1994). 

Technology performance and economic benefit also play a considerable role in 

technology decisions. Technology adoption has traditionally been higher in situations 

where profitability is evident and the extent of yield increase and cost reduction are 

evident (Daberkow and McBride, 1998; Russell and Bewley, 2013). Technological 

advances have been more readily adopted in situations where labor availability is low 
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(Rasmussen, 1962) or where labor alternatives are expensive (de Koning, 2011; 

Steeneveld et al., 2012). 

A farmer must account for financial scale, demographic, and other considerations 

(Khanal et al., 2010). Dairy producers plan strategically for the long-term consequences 

of their decisions by mapping responses to a series of long-term occurrences (Boehlje and 

Schiek, 1998) allowing them to estimate financial impacts of management decisions. The 

decision to implement a precision dairy farming technology often represents a long-term 

decision and significant investment for a producer. With highly variable milk and feed 

prices, the impact of an unprofitable investment could be severely detrimental to a dairy 

farmer. Accordingly, investments are approached with caution. 

Financial decisions is not always predictable, as advice and guidance is influenced 

by many factors in making management decisions. Trained professionals (i.e. 

veterinarians, nutritionists, consultants, extension specialists, etc.), family members, other 

dairy farmers, written publications, and even intuition are considered in the decision 

making process (Russell and Bewley, 2013). 

In addition to apprehension in making costly financial decisions, producers must 

often select a specific technology to fit their needs. Producers have many choices in the 

type of precision dairy technology they implement. This is particularly difficult because 

many dairy farmers are simply unaware of the technologies currently available (Russell 

and Bewley, 2013). Available systems monitor animal activity, rumination, resting time, 

temperature, and many other events associated with animal well-being (Nebel, 2013). 

Although technologies are readily available, adoption has remained relatively low 

(Huirne et al., 1997; Gelb et al., 2001). In order to improve technology adoption, 
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producer perception of these technologies will need to improve. Little is known about 

producers’ parameter perception. Gathered information is often limited to technologies 

used in or around dairy parlors (Jago et al., 2013). Producers implementing technologies 

experience increased financial opportunity and understanding the process by which 

producers become aware of and adopt new technologies is of interest to the private 

sector, researchers, and policymakers alike (Pierce and Nowak, 1999; Daberkow and 

McBride, 2003). This contrasts the current trend in precision dairy farming where, 

despite being the end users, dairy farmers are typically excluded from technology 

development (Huirne et al., 1997), increasing the number of technologies not fulfilling an 

on-farm need, and lowering technology adoption. 

In addition to not addressing on-farm needs, technology manufacturers select their 

marketing and education techniques primarily for dairies for which their products would 

be most beneficial (Daberkow and McBride, 2003), which may explain lower adoption 

rates. In the United States, dairy farms have been decreasing in number and increasing in 

size since the late 1970’s, with existing herds expanding facilities, larger farms being 

constructed, and smaller farms leaving the industry (Hadley et al., 2002). The national 

share of milk produced on large dairy farms continues to increase (Khanal et al., 2010), 

and as farm size increases, the reliance on off-farm labor increases (Bewley et al., 2001). 

As a farmer transitions to off-farm labor reliance, management changes must be made. 

Affordable and available sources of labor then become larger concern for dairies as they 

grow.  

Some of the most well-known and costly precision dairy farming technologies are 

automatic milking systems. Automatic milking systems were first implemented for the 
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purpose of the reduction of labor costs in the Netherlands (Bijl et al., 2007). The adoption 

of these systems has been considerably higher in Europe than in the United States (De 

Koning, 2010). The difference between the adoption of such technologies and other 

precision dairy farming technologies may be explained by the difference in average 

employee wages. The average off-farm wage in the United States has been reported at 

$17.58 (MacDonald, 2007). In countries like the Netherlands, where the most automated 

milking systems are in use (De Koning, 2010), the average farm employee was paid  

$24.13 (Huijps et al., 2008). Because of the availability of inexpensive labor, dairy 

farmers in the United States may be less likely to incorporate precision dairy farming 

technologies into their management practices, and the same may be true for other 

countries with inexpensive labor. Labor is a concern commonly faced by dairy farmers 

across the world. In places where cheap labor is unavailable, technologies may decrease 

the need for specialized labor (Berckmans, 2006) and produce favorable profit margins. 

Wathes et al. (2008) predicted an increase in the number of European precision livestock 

management systems in response to decreased profit margins. In contrast, a survey of 

Kentucky dairy farmers by Russell and Bewley (2013), 23% of producers indicated that 

better alternatives existed or the task was easier to accomplish manually, than with 

technology. In the United States, 91% of herds have less than 200 milk cows (Short, 

2004) and smaller dairies may have difficulty profiting from a technology investment 

(Hyde and Engel, 2002). 

Demographics of Precision Dairy Farming Technology Adopters 

 Producer and farm demographics may be a factor influencing precision dairy 

farming technology adoption. Technology adoption is affected by age, education, farm 

size, full-time farming status, previous or concurrent implementation of other 
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technologies, and computer literacy (Daberkow and McBride, 1998; Short, 2004; Khanal 

et al., 2010). Khanal et al. (2010) reported adopters of technology to be more educated 

(20.6%, adopters vs. 11.6%, non-adopters with college degrees), to have larger herd sizes 

(252 milking cattle, adopters vs. 56 milking cattle, non-adopters), and to produce more 

milk (7933 kg, adopters vs. 7394 kg, non-adopters). Khanal et al. (2010) and Daberkow 

and McBride (1998) reported technology adopters and non-adopters to be similar ages 

with adopters being slightly younger (49 adopters vs. 52 non-adopters). According to 

Russell and Bewley (2013), primary decision-maker characteristics influencing 

technology adoption include age, formal education level, and farm size. Other 

considerations also affect technology adoption. Considerations such as learning style, 

goals, business complexity, increased tenancy, risk perceptions, production type, nonfarm 

business ownership, production innovativeness, average information expenditures, and 

technology use by peers and other family members (Russell and Bewley, 2013). Risk 

perception is an influencer of the adoption-decision process. The adoption process 

depends on farmers’ attitudes toward technology investment risk, willingness to try and 

learn from new production methods, and the outcome of delaying adoption (Marra et al., 

2003). 

CALVING PREDICTION 

The time surrounding a calving event represents a difficult time for a dairy cow. 

The timeframe of the three weeks before calving to the three weeks after calving is 

referred to as the transition period in dairy cattle (Grummer, 1995). At this time, dairy 

cattle are most susceptible to disease and illness. Some diseases and illnesses affecting 

dairy cattle during the transition period are hypocalcaemia, hypomagnesaemia, ketosis, 

retained placenta, displaced abomasum, and laminitis. The effects of these diseases 
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extend into the subsequent lactation, causing cow productivity reductions (Mulligan and 

Doherty, 2008). Having personnel on-hand at calving safeguards the cow and her calf.  

Intensive management is especially essential at calving time. An evaluation of 

666,341 calving records estimated the proportion of dystocia to be 28.6% in primiparous 

and 10.7% in multiparous cows (Meyer et al., 2001). Modern dairy cattle have 

traditionally been genetically selected for increased milk production and accordingly, less 

breeding emphasis was placed on other traits. This trend has potentially led to 

physiological and health problem increases experienced today (Mottram, 1997).  

At calving time, the dairy cow and her calf are at risk for many reasons, but the 

most immediate problems encountered at calving time are perinatal mortality and 

dystocia (Mee, 2004). Perinatal mortality may be defined as “calf death before, during or 

within 48 h of calving, following a gestation period of at least 260 d, irrespective of the 

cause of death or the circumstances of the calving” (Mee, 1999). Around 60% of 

producers indicate that most calf mortalities occur at calving, and nearly 16% say they 

occur within one week of calving (Spicer et al., 1994). Calves that died within 48 h post-

partum were 2.7 times more likely to have experienced a difficult birth requiring 

assistance (Johanson and Berger, 2003). Mee (2004) defined dystocia as, “calving 

difficulty resulting from prolonged spontaneous calving or prolonged or severe assisted 

extraction.” Many maternal and calf-specific factors affect dystocia. In a model built by 

Johanson and Berger (2003) accounting for year, season, calf gender, perinatal mortality, 

parity, birth weight, and pelvic area, male calves increased the likelihood of dystocia by 

25% versus female calves. Additionally, a 1 dm
2
 increase in pelvic area is associated with 

an 11% decrease in dystocia incidence, while dystocia incidence increased 13% for every 
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1 kg increase in calf birth weight (Johanson and Berger, 2003). Holstein first-calf heifers 

have 4.7 times higher risk of dystocia than multiparous cows (Johanson and Berger, 

2003). Primiparous cows more frequently need calving assistance (19%) than 

multiparous cows (11%; USDA, 2010). With skeletal growth continuing until around 5 

years (Ragsdale, 1934) and a recommended age at first calving of 22 to 24 (Dairy, 2007), 

first-calf heifers have not reached their mature size at calving. Additionally, primiparous 

cattle are inexperienced with calving, potentially leading to differences in behavior 

(Houwing et al., 1990; Miedema et al., 2011a). This leads to increased stress and higher 

dystocia prevalence in primiparous dairy cattle (Wehrend et al., 2006). 

To prevent and reduce the stress of calving events, a producer must recognize 

when a cow is in labor, move cows to appropriate pens in a timely manner, direct calving 

supervision, know when and how to intervene, and optimize calf and cow health 

following calving (Mee, 2004). Specialized calving pens allow producers to observe or 

assist parturient cows if necessary. Early cow movement into these pens is necessary 

because movement just before or following the appearance of the amniotic sac can extend 

the second stage of labor (Proudfoot et al., 2013). Responsible managers will take steps 

to prepare for calving events and be willing to ask for veterinary obstetrical assistance in 

a timely fashion. Taking these precautions improves animal production, health, and 

wellbeing (Mee, 2004).  

Physical and Behavioral Changes Before Calving 

The timing of calving events has traditionally been estimated from predicted 

calving dates from breeding dates and physical or behavioral cues assessed by dairy 

producers. Before calving, a dairy cow’s udder will begin to “bag-up” or swell, her vulva 

will swell and become loose, and pelvic ligaments will begin to relax (Hulsen, 2006). The 
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aforementioned observations serve as calving indicators, and require experience and 

nearly constant visual observation of a laboring cow to achieve an accurate guess at 

calving time. Additionally, these changes do not occur in every cow or in a timely 

manner. For example, in a study of beef cows, only 5.7 % of the animals had a 

completely developed udder with shiny teats filled with milk 8 h before parturition 

(Sendag et al., 2008). In a similar study, Hofmann et al. (2006) examined 105 suckler 

cows for vulva edematization for 168 h antepartum. All cows displayed some level of 

vulva edematization 168 h antepartum. This is indicative of this parameter being useful 

for a relative estimate of calving time, but still requires consistent monitoring prepartum. 

Using these observations, producers or their employees can estimate when a cow will 

calve, be able to group cattle accordingly, and provide assistance if necessary, but this 

will require labor commitment. This is done because providing assistance at this time will 

not only help to ensure a less stressful parturition event, but also to improve reproductive 

performance in the subsequent lactation (Bellows et al., 1988). While these methods are 

useful for predicating calving over a long period of time, indicators providing alerts over 

shorter time windows would be more useful. 

Other behavior changes occur just before calving. Antepartum dairy cattle express 

decreased feed intake and rumination. Houwing et al. (1990) observed prepartum dairy 

cattle to decrease rumination from 46 to 10 min when rumination was viewed in 3 h time 

blocks, 12 h and 3 h, respectively before calving. Schirmann et al. (2013) also showed 

dairy cattle to decrease rumination by (mean ± SD) 63 ± 30 min per 24 h and feeding 

behavior by (mean ± SD) 66 ± 16 min per 24 h in the day before calving. Lying and 

standing behavior of periparturient cows also changes before calving. The number of 
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transitions between standing and lying positions will increase in frequency for prepartum 

dairy cattle. The number of lying bouts increases (16.4 ± 4.8 bouts/d before calving vs. 

24.2 ± 6.8 bouts/d at calving) and lying duration decreases (13.6 ± 1.8 h/d before calving 

vs. 12.6 ± 1.8 h/d on the day of calving) in prepartum dairy cattle (Miedema et al., 

2011b). Huzzey et al. (2005) found standing bouts increased in the 24 h period before 

calving (11.7 ± 1.07 bouts/d pre-calving vs. 17.3 ± 1.08 bouts/d at calving; P = 0.002). 

Cattle will begin walking more before calving (Jensen, 2012), potentially due to 

discomfort, and will seek isolation from other animals or the herd when possible (Lidfors 

et al., 1994; Proudfoot et al., 2014). The increase in walking and transitions between 

lying and standing increase restlessness (Owens et al., 1985; Huzzey et al., 2005; Jensen, 

2012). During calving, dairy cattle experience uterine and abdominal contractions that 

may cause some discomfort and increase restlessness. Using walking behavior, and 

transitions between standing and lying to estimate restlessness could aid in determining 

when a calving onset. Dairy cattle increase the number of times the tail is raised before 

calving from 19.1 ± 7.6 times/d before calving, to 59.3 ± 24.9 times/d at calving 

(Miedema et al., 2011b). However, this may start as early as 15 d before calving, and as 

late as 7 h before calving (Berglund et al., 1987). 

Producers have traditionally used many of these methods to determine calving 

time with varying degrees of success. Visual observation alone can be useful in 

determining calving time, but experience is needed to detect changes, and behavioral 

indicators can be missed if laborers infrequently monitor cattle prepartum (Dargatz et al., 

2004). Additionally, methods differ from farm to farm, and these methods are often based 
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on producer preference. These considerations outline the need for an objective approach 

to predicting calving time. 

Methods of Predicting Calving 

Several parameters have been identified to predict calving events. A technology 

predicting calving events days before actual calving events would allow for nutritional, 

grouping, or general management changes. Dry dairy cattle should transition from a diet 

of 1.25 Mcal/kg of NEL to a diet of 1.54 to 1.62 Mcal/kg of NEL, approximately 3 weeks 

before calving (NRC, 2001). A dairy producer can typically do this using breeding and 

predicted calving dates, but a technology predicting calving days before the event would 

allow a producer to meet specific cow nutritional needs. Additionally, a technology 

predicting calving over 24 h before the event would allow dairy producers to move cattle 

from close-up to calving pens. Moving cattle following the onset of parturition can 

prolong the second stage of labor (Proudfoot et al., 2013). Predicting calving before it 

begins, and moving the cow to a calving pen would reduce stress.  

Parturition can be divided into three stages. The first stage of labor begins with 

cervical dilation and ends with the rupture of the chorioallantois upon entering the vagina 

(Senger, 1997). In the second stage of labor, the calf and fetal membranes may be visible. 

The second stage ends with the expulsion of the calf, when the third stage begins. The 

third and final stage ends with the expulsion of fetal membranes, ending the parturition 

process (Senger, 1997). Technologies predicting the onset of the second stage of calving 

would allow personnel to monitor calving progression following the rupture of fetal 

membranes; reducing stress and potential harm to the cow and calf at the time of the 

event. Before calving and at the end of pregnancy, circulating blood progesterone levels 

drop (Stabenfeldt et al., 1970). The decrease in plasma and blood progesterone levels has 
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been outlined as potentially useful in the prediction of calving (Parker et al., 1988; 

Matsas et al., 1992). Matsas et al. (1992) observed an abrupt decrease in blood 

progesterone concentration from 2.31 + 0.15 ng/ml 48 h before calving to 0.59 + 0.06 

ng/ml 24 h before calving (< 1.0 ng/ml on the day of calving). 

Additionally, maternal body temperatures begin to decrease 48 h before a calving 

event (Lammoglia et al., 1997; Aoki et al., 2005; Burfeind et al., 2011) and show 

potential for calving prediction. Burfeind et al. (2011) found vaginal temperatures to 

decrease from 39.5°C to 38.8°C, and indicated continuous temperature monitors to be 

more effective than manual temperature collection at quantifying body temperature 

changes. Approaches using blood progesterone and temperature for calving prediction 

often meet difficulty constantly monitoring these parameters. Manual blood progesterone 

or temperature collection presents labor difficulties and requires frequent animal 

handling. Methods exist to automatically collect milk progesterone (Herd Navigator, 

DeLaval International AB, Tumba, Sweden), but none currently exist for blood 

progesterone. In contrast, many commercial temperature monitors measure dairy cattle 

reticulorumen, skin, and vaginal temperature (DVM reticulorumen bolus, DVM Systems, 

LLC., Boulder, CO; MaGiiX reticulorumen bolus, MaGiiX Bolus Inc., Post Falls, ID; 

CowManager SensOor, Agis, Harmelen, Netherlands, Vel’Phone transvaginal bolus 

Medria, Châteaugiron, France). Few technologies have developed calving detection 

algorithms and incorporated them into their systems.  

Predicting Calving Events Using Behavioral Monitors 

Pedometers and accelerometers may have a future in calving prediction. 

Traditionally, these units have been used to characterize activity changes shown to 

increase around estrus events (Farris, 1954). These increases can identify cattle in estrus 
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without observing a cow standing to be mounted (Kiddy, 1977). Precision dairy farming 

technologies have been used to characterize other behaviors and units exist accurately 

characterizing lying and standing behaviors (O’Driscoll et al., 2008), rumination 

(Schirmann et al., 2009), and feeding behavior (Bikker et al., 2014); often in combination 

with activity. 

In timely calving assistance, dystocia is the primary concern. Using technologies 

to predict difficult calvings through behavioral changes may allow for special procedures 

or treatments to be implemented, reducing stress that may otherwise be caused by 

difficult calvings (Miedema et al., 2011a). The prediction of dystocia and need of 

obstetrical assistance intrinsically implies that personnel are present at calving events 

where assistance is most necessary. A technology quantifying the duration of a calving 

event could be useful in reducing dystocia effects, as the extended duration of parturition 

increases the occurrence of calving difficulties (Wehrend et al., 2006). Additionally, 

dystocia has been associated with decreased eating time and an increase in the number of 

standing bouts (Proudfoot et al., 2009). 

Methods of calving prediction have previously been applied to data generated 

from existing behavioral monitors. Maltz and Antler (2007) described calving prediction 

methods using changes in daily step number, lying behavior, and number of times 

passing into a feeding area for 12 cows over 7 d. By combining changes in monitored 

behavioral parameters in the days before calving, Maltz and Antler (2007) achieved a 

sensitivity of 83.3% and a specificity of 95.2% in calving prediction methods.  

Activity in Prepartum Dairy Cattle 

Activity in dairy cattle can be described in two different ways when describing 

technologies mounted directly to the dairy cow. The first refers to the ability of a 
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technology to quantify the number of steps an animal takes through the use of 

pedometers. Pedometers have been in use since the 1970’s for tracking the activity of 

dairy cattle (Kiddy, 1977). Pedometers track cow step numbers, while an accelerometer 

measures the acceleration devices receive in proportion to freefall (MacKay, 2013). 

Behavioral quantification using accelerometers is comparatively newer than pedometer 

use; however, accelerometer use has increased in industries outside animal agriculture. In 

response, overall accelerometer production has increased for these industries and the 

dairy industry, leading to a greater availability and lower cost (MacKay, 2013). 

Accelerometers offer more potential uses than basic pedometers. This presents 

opportunities to monitor parameters other than activity. Accelerometers quantify 

movement from different points on an animal. The attachment point may change 

depending on the behavior of interest. The primary attachment points for accelerometers 

on a dairy cow are the ear, neck, front leg(s), back leg(s), and rump, but other areas have 

been used and proposed for additional uses (Rutten et al., 2013). 

 Lying and Standing Behavior in Prepartum Dairy Cattle 

 Direct visual, or video-recorded observations of dairy cattle have traditionally 

served to quantify lying and standing behavior. In these observations, lying bouts are 

instances where an animal’s flank contacts the ground following transitions from 

standing to lying positions (Ledgerwood et al., 2010). Similarly, standing bouts occur 

following transition from lying positions to standing positions where all four limbs are 

fully extended and perpendicular to the ground (Ledgerwood et al., 2010). Lying or 

standing time is the time between either a lying or standing bout. While these methods 

serve as the gold standard for these behaviors, these approaches can be arduous and time 
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consuming. With increasing use of accelerometers, technologies are often able to monitor 

these transitions and the amount of time in each standing or lying state.  

Feeding Behavior in Prepartum Dairy Cattle 

Feeding behavior provides an estimate of the amount cows are eating (Murphy, 

1992; Nielsen, 1999) and refers to a collection of behaviors associated with feed 

consumption. Precision dairy farming technologies also provide estimates of this 

parameter. Parameters included in this category refer to the number of chewing behavior 

associated jaw movements (Beauchemin et al., 1989; Kononoff et al., 2002; Zehner et al., 

2012), actual DMI, time at the feed bunk, or time spent near the feed bunk (Chapinal et 

al., 2007). Research has shown feeding time measured by technologies to be effective. 

Schirmann et al. (2013) showed dairy cattle to decrease feeding time by 66 ± 16 min/24h, 

24h before calving and an ear-attached precision dairy farming technology produced this 

finding. 

Rumination Behavior in Prepartum Dairy Cattle 

Rumination has traditionally been recorded through visual observation (physical 

or video) or through chewing activity. More recently, the use of head movements, 

chewing activity, and microphones has become more standard in rumination monitoring. 

Technologies such as the HR Tag (SCR Engineers Ltd., Netanya, Israel) use a 

microphone to capture eructation and rumination sounds. Other technologies, such as the 

CowManager SensOor (Agis, Harmelen, Netherlands), quantify head movement 

associated with rumination events using accelerometers. Using these or similar 

technologies, rumination before calving can be quantified. Schirmann et al. (2013) used 

the HR Tag to observe periparturient cattle and found cattle spent 63 ± 30 min/24 h less 

time ruminating in the 24 h before calving. 
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Rumination may prove to be particularly useful because of its link to stress. A 

study of stressed Angus-Hereford cows with high cortisol levels (above 22 ng/mL) 

showed high negative correlation with decreased rumination (r = − 0.85, P < 0.01). 

Because cortisol is released when an animal is stressed, an association between stress and 

rumination may exist (Bristow and Holmes, 2007). With increased cortisol levels 

(Lammoglia et al., 1997), and decreased rumination (Schirmann et al., 2009) in the 24 h 

before calving, a link between stress, cortisol, and rumination may exist at the time of 

calving. This link may implicate rumination as an important predictor of calving, and 

dystocial calvings in particular. 

ESTABLISHING THE VALIDITY OF PRECISION DAIRY FARMING 

TECHNOLOGIES 

For precision dairy farming technologies to be economically viable, they must accurately 

and easily describe physiological or behavioral parameters. Much of the work completed 

already has been in the classification of mastitis and estrus, and to a lesser extent, 

locomotion and metabolic health (Rutten et al., 2013). 

Binary Classification in Precision Dairy Farming Technologies 

Precision dairy farming technologies are evaluated using binary classification. In 

binary classification, events are compared against a gold standard, or when the event of 

interest actually happened. When evaluating precision dairy farming technologies, alerts 

generated by sensors are compared with the occurrence of the event of interest. These are 

often visual observations of these behaviors, which are treated as gold standards. How the 

technology performs against visual observations is often evaluated using these rules: 

True Positives- Observations where an alert is generated and the event occurs 

False Negatives- Observations where no alert is generated and the event occurs 
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False Positives- Observations where an alert is generated and the event does not 

occur 

True Negatives- Observations where no alert is generated and the event does not 

occur 

(Hogeveen et al., 2010) 

Sensor performance evaluation involves the use of these basic classifications with the 

ideal system detecting events of interest and providing no false positives (type I error) or 

negatives (type II error) (Reneau, 1986). False positives cause problems for farmers 

because a treatment in response to type I error (if used for disease detection and 

diagnosis) implies the unnecessary treatment of a healthy animal. For type II errors, 

beneficial management actions may be withheld from animals in need if a technology 

fails to detect behaviors of interest (Burfeind et al., 2010). Calculations derived from the 

four event classifications provide values to evaluate technology performance. The 

sensitivity, specificity, positive predictive value, negative predictive value, and accuracy 

establish technology performance. These are calculated as follows: 

Sensitivity = 100 * True Positives / (True Positives + False Negatives) 

Specificity = 100 * True Negatives / (False Positives + True Negatives) 

Positive Predictive Value = 100 * True Positives / (True Positives + False 

Positives) 

Negative Predictive Value = 100 * True Negatives / (True Negatives + False 

Negatives) 

Accuracy = 100 * True Positives + True Negatives / (True Positives + False 

Negatives + False Positives + True Negatives) 
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(Hogeveen et al., 2010) 

The sensitivity and specificity of events are linked and a proper balance must be 

established between the two (Hogeveen et al., 2010). In order for technologies to be 

effectively implemented, they must accurately accomplish their tasks, and be as near 

100% across all of the above categories. By many technology standards (mastitis 

detection), specificity greater than or equal to 99% and sensitivity greater than 80% is the 

acceptable minimum (ISO, 2007).  

Validation in Precision Dairy Farming Technologies 

Tools detecting physiological changes, behavioral changes, or general 

abnormalities early and accurately are useful to dairy farmers and researchers (Bikker et 

al., 2014). In behavioral monitoring, these tools can also be used to monitor dairy cattle 

without disturbing their natural behavioral patterns, giving more accurate indications of 

general animal welfare (Müller and Schrader, 2003). Specific animal behaviors are 

quantified and interpreted using company-specific algorithms (rules to follow during 

calculations) in alert creation. Software specific algorithms compare current animal 

behavior with a cow-specific reference point or period, creating alerts when established 

threshold levels are exceeded (Saint-Dizier and Chastant-Maillard, 2012). However, 

technologies must accurately quantify and describe behavioral data for algorithms to 

accurately create alerts for a producer. 

Animals generate important process signals, and need to be measured directly and 

continuously (Wathes et al., 2008). Because of this, many measurements are generated 

from individual animals. Existing statistical methods in validation do not account for 

repeated measures being taken on the same animal over time (Chapinal et al., 2007; 

Schirmann et al., 2009; Bikker et al., 2014) and fail to account for the lack of 
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independence among repeated measurements (Bland and Altman, 1994). Validation 

methods need to account for repeated measures taken from the same animals, as well as a 

lack of independence within subjects. In these instances, simple correlation coefficients 

are not appropriate (Bland and Altman, 1995a; b). 

Rumination and Feeding Behavior 

The automatic measurement of ruminants chewing and ruminating activity can 

enable the early detection of feeding deficiencies and assist in ration adjustments (Zehner 

et al., 2012). Rumination and feeding behavior have traditionally been monitored through 

visual observation in both research and farm settings; which is time consuming and 

especially impractical for dairy farmers. Additionally, while changes in behavior are 

useful in the detection of illness, they are subjective and open to individual interpretation 

(Weary et al., 2009). The alternative is the use of precision dairy farming technologies to 

constantly and objectively monitor these behaviors. In a study of cattle housed in a 

feedlot system, feeding time of sick animals was found to be 30% less than that of 

healthy animals when monitored using a radio frequency-based system (Sowell et al., 

1998). Using Insentec Feeders (Insentec, Marknesse, the Netherlands), the feeding 

behavior of transition dairy cattle experiencing mild and severe uterine infection 

decreased relative to that of healthy animals (Huzzey et al., 2007). 

 Rumination and feeding behavior are similar in how they are quantified because 

both events are characterized using similar metrics. Specifically, chewing activity has 

been used in the quantification of both ruminating and feeding behavior through precision 

technology (Beauchemin et al., 1989; Kononoff et al., 2002; Zehner et al., 2012). The 

quantification of rumination behavior has been similar in performance between visual 

observation and precision technologies. Beauchemin et al. (1989) reported a correlation 
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between rumination-based jaw movements monitored by visual observation and a logger 

recording chewing patterns of r = 0.91 to 0.98. Kononoff et al. (2002), found a difference 

of 42.9 min ± 12.0 (P < 0.01) per day between observed and electronically recorded 

rumination. They also noted visual observation overestimated eating and ruminating time 

due to difficulty recording exact event start and stop times. Neck-mounted technologies 

have also proven to be effective. A system evaluated by Schirmann et al. (2009) used a 

series of 3 trials comparing a system monitoring rumination through a microphone-

equipped neck tag against visual observation (trial 1: r = 0.96, R
2
 = 0.93, n = 15, P < 

0.001; trial 2: r = 0.92, R
2
 = 0.86, n = 36, P < 0.001; trial 3: r = 0.96, n = 60, P < 0.001). 

A newer approach in rumination quantification has been through the use of 

accelerometers. In a system quantifying rumination behavior through head movements, 

mean values of 42.6 ± 6.81 and 42.1 ± 6.94 (P = 0.49) were recorded for rumination 

recorded by sensor and visual observation, respectively (Bikker et al., 2014). 

Traditionally, rumination monitoring has been limited to research settings due to labor 

intensity and expense. The number of systems similar to those evaluated by Schirmann et 

al. (2009) and Bikker et al. (2014) has increased, and the potential to accurately monitor 

these parameters has grown. 

Feeding behavior and rumination have been quantified using chewing activity 

(pressure and strain recorders) monitors (Beauchemin et al., 1989; Kononoff et al., 2002; 

Zehner et al., 2012). Beauchemin et al. (1989) and Zehner et al. (2012) evaluated similar 

technologies against visual or video observations, and technologies performed similarly 

for rumination quantification at r = 0.88 (P > 0.05) and R
2
 = 0.79 (P < 0.05), respectively. 

Beauchemin et al. (1989) and Zehner et al. (2012) also evaluated feeding time using these 
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same technologies and found agreement of r = 0.67 (P > 0.05) and R
2
 = 0.77 (P < 0.05). 

In contrast, Kononoff et al. (2002) used a similar technology and found significant 

differences (P < 0.01) between observed rumination time (415.0 min) and recorded 

rumination time (372.1 min), but no significant differences (P = 0.09) between observed 

feeding time (246.9 min) and recorded feeding time (238.1 min). Technologies describing 

when cows approach feeding areas and eat have been highly correlated to visual methods 

(R
2 

= 1.00, P < 0.01; Chapinal et al., 2007 and R
2 

= 0.88, P < 0.01 DeVries et al., 2003). 

The aforementioned chewing activity (strain and pressure), and feeding behavior 

monitors are primarily used in research settings, but commercially available rumination 

and feeding behavior quantification methods have also been evaluated. Bikker et al. 

(2014) evaluated a technology monitoring rumination and feeding behavior through head 

movement and found a high correlation for rumination (r = 0.93; P < 0.01) and feeding 

time (r = 0.88; P < 0.01). Schirmann et al. (2009) evaluated a technology quantifying 

rumination sounds through a microphone and microprocessor and found a high 

correlation (r = 0.93, n = 51) between visual observations and the technology. 

Because different feeding behavior definitions and gold standards exist 

technologies become difficult to compare. Technologies such as the Track a)))Cow 

System (ENGS, Hampshire, UK) monitor proximity to the feed bunk, and similar 

technologies can monitor a cow’s presence in the feeding area. Because these parameters 

do not specifically monitor feed intake, assessing the efficacy of feeding behavior 

recording becomes difficult. These technologies are typically used for health monitoring. 

Dairy cattle that are sick or ill spend less time eating, more time lying, and seek secluded 

or isolated areas (Proudfoot et al., 2014). While these technologies may not directly 
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monitor feeding behavior, they may be as useful as those directly monitoring feed intake 

or chewing activity.  

Lying and Standing Behavior 

As compared to other parameters (e.g. rumination, activity, feeding behavior) 

measured by precision dairy farming technologies, standing and lying events are very 

definite when they occur and chance of error is smaller. As a result, the use of visual 

observation or video recording has served as the gold standard in much of the previous 

validation work evaluating these technologies. Accelerometers have served as the main 

recording device for these parameters, and commercially available and validated 

technologies include the Afi Pedometer Plus leg tag (afimilk, S.A.E. AFIKIM, Kibbutz 

Afikim, Israel; Mattachini et al., 2013), Rumiwatch Pedometer (GmbH, Switzerland; 

Kajava et al., 2014), and the IceQube activity monitor (IceRobotics, Scotland). 

Technologies other than these two exist for commercial use and many of which using 

accelerometers; however, most have yet to be validated and checked for accuracy. 

Many technologies are intended for research use only. Validated technologies 

used primarily for research purposes include the HOBO Data Logger (HOBO Pendant G 

Acceleration Data Logger, Onset Computer Corporation, Pocasset, MA; Bonk et al., 

2013; Mattachini et al., 2013a; Mattachini et al., 2013b), the Tinytag Plus (Tinytag Plus, 

Re-Ed volt, Gemini Dataloggers (UK) Ltd., Chichester, UK; O’Driscoll et al., 2008), the 

IceTag Activity Monitor (IceRobotics, Scotland); McGowan et al., 2007; Mattachini et 

al., 2013b)  and several custom devices such as those used in Champion et al. (1997) 

using mercury tilt switches (RS Components Part No. 337-289). 

Lying and standing behavior has traditionally been recorded through direct or 

indirect (video) visual observation; however, the evaluation of these behaviors using 
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precision dairy farming technologies is less invasive to cattle (Müller and Schrader, 

2003). Researchers have used different methods of validation, adding confusion as they 

are rarely equal. Additionally, methods other than visual observation have been used to 

establish technologies’ validity. One such method is the use of technologies already 

validated compared to the performance of technologies not validated (Mattachini et al., 

2013a; Mattachini et al., 2013b). In theory, this would remove potentially erroneous 

observations generated from human observers and make for easier data collection 

(Mattachini et al., 2013b). Mattachini et al. (2013b) achieved high levels of agreement 

using these methods to compare recorded lying behavior to video (IceTag and Video 

Observation, sensitivity = 0.997 ± < 0.001, specificity = 1.000 ± 0.000; HOBO Data 

Logger and Video Observation, sensitivity = 0.990 ± 0.004, specificity = 0.996 ± < 

0.001; and IceTag and HOBO Data Loggers, sensitivity = 0.993 ± 0.001, specificity = 

0.994 ± 0.002) and recorded standing behavior to video (IceTag and Video Observation, 

sensitivity = 0.969 ± 0.005, specificity = 0.951 ± 0.006; HOBO Data Logger and Video 

Observation, sensitivity = 0.996 ± < 0.001, specificity = 0.986 ± 0.008; and IceTag and 

HOBO Data Loggers, sensitivity = 0.961 ± 0.003, specificity = 0.991 ± 0.002). In 

contrast, researchers comparing performance between technologies showed differences 

when compared to visual observation on the same animals (Beauchemin et al., 1989). 

When evaluating technologies against other technologies, changes in technology 

accuracy occur when evaluated on different legs of the same cow, with the least accurate 

results being standing and lying data collected from sensors on the front legs (Müller and 

Schrader, 2003). Approaches evaluating technologies against other technologies should 

be approached with caution. 
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CONCLUSIONS 

Precision dairy farming technologies perform many functions for dairy farmers, 

researchers, and manufacturers. These technologies aid producers in monitoring and 

caring for their animals without the need of experienced labor. Future work in this field, 

as a whole, will need to be sure technologies fulfill dairy farmer needs. Technology 

developers must consider producers in their current and future precision dairy farming 

technology marketing endeavors. Improving dairy farmer technology perception and 

establishing technology effectiveness will increase adoption likelihood and overall 

usefulness of these technologies. Barriers exist to precision dairy farming technology 

implementation and future research will need to establish the accuracy, economic payoff, 

and overall justifiability of these technologies 
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INTRODUCTION 

Precision dairy farming has been defined as, “the use of information and 

communication technologies for improved control of fine-scale animal and physical 

resource variability to optimize economic, social, and environmental dairy farm 

performance” (Eastwood et al., 2012). Parameters monitored by these technologies 

include daily milk yield, milk components, step number, temperature (in various places 

and forms on and within the cow), milk conductivity, automatic estrus detection 

monitors, and daily body weight measurements (Bewley, 2010). In addition to the 

parameters already monitored, many other parameters have also been proposed. Proposed 

parameters include jaw movements, ruminal pH, reticular contractions, heart rate, animal 

positioning and activity, vaginal mucus electrical resistance, feeding behavior, lying 

behavior, odor, glucose, acoustics, progesterone, individual milk components, color (as 

an indicator of cleanliness), infrared udder surface temperatures, and respiration rates 

(Bewley, 2010). Through the use of precision dairy farming technologies, producers 

strive to improve farm performance. Technology use becomes important as dairy farmers 

refine their management practices with emphasis on farm efficiency (El-Osta and 

Morehart, 2000).  

The decision to purchase and implement a precision dairy technology represents a 

significant investment for a producer, who often faces the challenge of choosing a 

technology that will serve their needs for several years. Dairy producers tend to plan for 

the long-term consequences of their decisions, mapping responses to a series of long-term 

occurrences (Boehlje and Schiek, 1998). In making decisions, a farmer must account for 

many different factors, like financial scale, demographic, and other considerations 

(Khanal et al., 2010).  
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As precision dairy farming technologies have evolved and advanced, new 

parameters and ways of monitoring have been created. As a result, dairy farmers 

encounter many choices in the type of precision dairy farming technology they may 

implement and many dairy farmers are simply unaware of the technologies currently 

available to them (Russell and Bewley, 2013). Systems are available for monitoring 

animal activity, rumination, resting time, temperature, and many other events associated 

with animal well-being (Nebel, 2013) but little is understood concerning producer 

technology adoption, perception of individual technologies, or opinion of the parameters 

they measure. Entrepreneurs implementing technologies drive the opportunity and 

increased productivity associated with technological change, and understanding the 

process by which entrepreneurs become aware of and adopt new technologies is of 

interest to the private sector, researchers, and policymakers (Pierce and Nowak, 1999; 

Daberkow and McBride, 2003). This contrasts the current trend in precision dairy 

farming where, despite being the end users, dairy farmers are typically excluded from 

technology development (Huirne et al., 1997) and as a result, technology adoption 

remains relatively low (Huirne et al., 1997; Gelb et al., 2001).The objectives of this study 

were to identify the parameters currently measured on farms, find the considerations a 

farmer takes when selecting precision dairy farming technologies, and determine the 

parameters perceived by producers as most useful. 

MATERIALS AND METHODS 

In March 2013, an 8-question survey was created through SurveyMonkey 

(SurveyMonkey, Inc. Palo Alto, CA). A test survey was made and links were sent to 

extension specialists and producers (n = 5). Appropriate revisions were made based on 

test sample respondent feedback regarding survey content and organization. Following 
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revision, the survey was made accessible to the general public for 2 months (Appendix 

2.1). Dairy producers were identified as the target audience of this survey, with no 

conditions being specified for respondents to be eligible to complete the survey. The 

survey was sent to potential respondents through uniform resource locator (URL) links 

distributed by email, internet publications, and magazines. Electronic methods of URL 

distribution were the preferred medium of distribution because respondents had the 

ability to click on the actual URL, taking them directly to the survey. Respondents seeing 

the URL in print had to copy the address and enter it directly into their web browser to 

access the survey, so the electronic method was thought to be easier for the respondent. 

The survey consisted of 7 close-ended questions, and 1 open-ended question in which 

respondents could express their thoughts, suggestions, and opinions. Responses to the 

open-ended question were not included in analysis. 

 Respondents were asked to disclose the country and state or province where their 

farm was located, their age, their current herd size (including dry cows), and their role on 

the farm. Age and farm role were presented to respondents in categories, while country 

and state or province and herd size required users to input values. Age categories were 

pre-defined at: < 30, 30 to 40, 41 to 50, 51 to 60, and > 60. Five options for on-farm role 

were provided to respondents: (1) owner, co-owner, or partner (2) president or vice 

president (3) manager, supervisor, or herdsman (4) general employee, or (5) other. 

Depending on country of origin, each respondent was placed into a United States or other 

countries category. Additionally, respondents were asked to identify the parameters 

currently measured on their farm by precision dairy farming technologies from a 

predetermined list (Table 2.1). Parameters from the predetermined list were generated 
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from previous literature, producer input, and from the input of extension specialists. 

Parameters used to determine the general health of the mammary system were combined 

into the mastitis option within this survey as they were considered potentially confusing. 

One option within the list allowed farmers to answer “not applicable” if they did not 

currently use technologies on their farm. Depending on the answer to this question, 

producers were sorted into one of two categories: (1) producers using technologies or (2) 

producers not using technologies. 

A Likert (1932) Scale was used to assign numerical values to the responses of the 

final two questions. Producers were asked to rank the considerations made in deciding to 

purchase precision dairy farming technologies from a predetermined list (Table 2.2) and 

each ranking was assigned a numerical value with: 1 = unimportant, 2 = of little 

importance, 3 = moderately important, 4 = somewhat important, and 5 = important. 

Producers were also asked to classify parameters, based on usefulness, from the same list 

used in the technology adoption question (Table 2.3). Each ranking was assigned a 

numerical value with: 1 = Not useful, 2 = Of little usefulness, 3 = Moderately useful, 4 = 

Somewhat useful, 5 = Useful.  

Statistical Methods 

Statistical analyses were conducted on completed surveys using SAS Version 9.3 

(SAS Institute Inc., Cary, NC). Median herd size (lactating and dry) was calculated using 

the MEANS procedure. Least-squares means were calculated using the GLM procedure 

across age, herd size, country, and technology usage categories, on ranked parameter 

usefulness and pre-purchase considerations. Categorical variables described age, herd 

size, country categories, and whether producers used or did not use technologies. 

Accordingly, Chi-square analyses were performed using the FREQ procedure to compare 
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differences in producer age, herd size, and country categories across all parameters 

currently measured on respondents’ farms. 

RESULTS AND DISCUSSION 

One objective of this survey was to increase response numbers by decreasing 

survey length, as a smaller survey may increase the total number of responses (Deutskens 

et al., 2004). Following survey closure, 43 of the 152 surveys collected were removed 

due to incompletion or error. Surveys were considered incomplete or erroneous if more 

than 75% of questions were left unanswered, or the role on-farm was anything other 

someone directly employed on-farm. Incomplete and erroneous responses were removed 

from the sample. In data analyses, 109 complete responses were used. 

 Producer categories, generated based on respondents’ role on the farm, were (1) 

owner, co-owner, or partner; 72.5% (2) president or vice president; 1.8% (3) manager, 

supervisor, or herdsman; 23.9% (4) and general employee; 1.8%. An “other” category 

was provided and respondents were asked to specify their role. Surveys with responses in 

the “other” category were removed because none were on-farm employees. Because of 

the high amount of respondents being in the first category, role on the farm was not 

considered as an explanatory factor in further analyses. Producers from nine countries 

responded to the survey. Respondent countries included Australia, Canada, India, Iran, 

Israel, Mexico, New Zealand, the United Kingdom, and the United States (Other 

countries; n = 19 vs. United States; n = 90). Producer ages were: < 30 (17.4%), 30 to 40 

(28.4%), 41 to 50 (25.7%), 51 to 60 (20.2%), > 60 (8.3%). Producer age results are 

indicative of a sample that is younger than expected, with most dairy producers in the 

United States being between 45 and 54 (Vilsack and Clark, 2014). Median herd size was 

230 cows (lactating and dry). Herd size categories were generated based on quartile and 
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are as follows: < 110 (26.6%), 111 to 230 (24.8%), 231 to 573 (23.9%), > 574 (24.8%). 

In a report by NAHMS (2007), herds were categorized as small with fewer than 100 

animals, medium with sizes between 100 and 499 animals, and large with 500 or more 

animals. The findings of the current study were in congruence with the 2007 NAHMS 

report and the 2012 Census of Agriculture. 

Technology Adoption 

Results of parameters currently measured by precision dairy farming technologies 

on dairy farms are presented in Table 2.1. Producers were able to select multiple 

parameters because several technologies can monitor multiple parameters. Additionally, 

the potential exists for producers to have more than one technology. Producer responses 

indicated that the most commonly measured parameters by already adopted technologies 

were: daily milk yield (52.3%), cow activity (41.3%), not applicable (31.2%), and 

mastitis (25.7%). The least used technologies were rumen pH (0.9%), respiration rate 

(1.8%), methane emissions (1.8%), body condition score (2.8%), and heart rate (3.7%). 

Results were consistent with the age of individual parameters and producers’ the ability 

to monitor them. Cow activity is one of the oldest parameters used in dairy cattle 

monitoring and was first described by Farris (1954). In addition, parameters such as milk 

yield and SCC, although not automatic, have been available to producers through the 

National Dairy Herd Information Association (Verona, WI, United States) and other 

similar organizations for many years. Due to producer familiarity with these parameters 

and those similar to them, perception and use may be higher, especially when compared 

to the newer parameters with which producers are less likely to be familiar. 
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Criteria Considered in Purchasing Decisions 

Results of criteria considered in purchasing precision dairy farming technologies 

on dairy farms are presented in Table 2.2. When asked to rank criteria on importance 

when making purchasing decisions regarding precision dairy farming technologies, 

producers indicated benefit to cost ratio as most important (4.57 ± 0.66), followed by 

total investment cost (4.28 ± 0.83), simplicity and ease of use (4.26 ± 0.75), proven 

performance through independent research (4.24 ± 0.75), and availability of local support 

(4.12 ± 0.95; Table 2.2). Similar results were observed by Russell and Bewley (2013) in a 

study of Kentucky dairy producers, where producers indicated an undesirable cost to 

benefit ratio, lack of perceived economic value, difficulty or complexity of use, and poor 

technical support or training, as influential on technology adoption. Producers found all 

considerations in this question to be important for evaluating precision dairy farming 

technology purchases, as all of the criteria ranked above 4 when the maximum selectable 

value was 5.  

Parameter Usefulness 

The perceived usefulness of individual technologies by producers is presented in 

Table 2.3. These results were generated from a question asking respondents to rank a 

predetermined list of parameters on perceived usefulness (where 5 is most useful). 

Producers indicated the most useful parameters to be: mastitis (mean ± SD; 4.77 ± 0.47), 

standing estrus (4.75 ± 0.55), daily milk yield (4.72 ± 0.62), cow activity (4.60 ± 0.83), 

and temperature (4.31 ± 1.04). Producers indicated body weight (3.26 ± 1.20), body 

condition score (3.26 ± 1.15), heart rate (3.07 ± 1.15), animal position and location (2.75 

± 1.26), and methane emissions (2.20 ± 1.16) to be the least useful.  
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Producer interest may not be in congruence with biological meaningfulness for 

many parameters. One such parameter was body condition score. Regular assessment of 

the amount of body fat mobilized during early lactation and restored during mid and late 

lactation by dairy cows can aid in adjusting the feeding strategy to meet actual 

requirements of dairy cows more closely (Gallo et al., 1996). Such a technology may 

prove useful for producers, but producer perception of it in this survey was relatively 

poor. One reason for the findings in this survey could be the lack of commercially 

available systems scoring body condition and other parameters. Methods have been 

described with which to automatically monitor body condition score by Coffey et al. 

(2003) and Bewley et al. (2008), but no technologies monitoring this parameter are 

commercially available at this time. Another reason for this trend may be the perception 

of body condition scoring as a whole. The commitment of skilled labor to undertake 

routine manual body condition score assessment is not always possible (Roche et al., 

2009), which may lead to producers perceiving this parameter negatively. The 

combination of poor perception and lack of commercially available systems may be the 

reason for multiple poorly perceived parameters in the current study. 

Producers indicated the automatic detection of standing estrus to be one of the 

most useful parameters. One explanation for the highly perceived usefulness of this 

parameter is that it could be confused with other parameters often associated with estrus 

detection, such as cow activity. Another explanation is that producers are more familiar 

with visual estrus detection techniques and may be more likely to perceive a technology 

that does this automatically as very useful. Methods of monitoring mounting events have 
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been described (Senger, 1994), but few commercially available technologies monitor 

tangible standing estrus or mounting events, especially when compared to cow activity.  

Statistical Comparisons 

Chi-square analyses compared age, herd size, and country categories across the 

parameters currently monitored on dairy farms. Country of farm location yielded 

significant differences across technology adoption categories, with technologies 

monitoring animal position and location, body weight, cow activity, daily milk yields, 

lying and standing time, mastitis, milk components, rumen activity, and rumination all 

being higher and differing significantly between use in other countries and the United 

States (Table 2.4). While the current study did not consider robotic milkers specifically, 

robotic milkers monitor or have the potential to monitor many of the parameters listed in 

this survey. Adoption of automated milking systems has been higher in other countries, 

with more than 90% of the world’s automated milking systems being located in 

northwestern Europe (de Koning, 2011). The increase in European technology adoption 

may be explained through pricing quota system. Foreign farmers may value technology 

more if they have labor constraints, have high input costs, or their pricing system dictates 

a milk production limit. The desire to increase milk production per cow while decreasing 

input costs is one of many reasons European dairy farmers adopt technologies (de 

Koning, 2011; Steeneveld et al., 2012). Bergevoet et al. (2004) found that farmers under 

the quota system perceive having a modern and highly productive farm as being the 

highest consideration to their businesses. As a result of valuing technology use, producers 

from other countries may be more likely to implement precision technologies due to the 

increased emphasis on efficiency and modernization. 



36 
 

Least-squares means were calculated on producer pre-purchase considerations and 

parameter usefulness across age, herd size, and region categories, with no significant 

results being found (P ≥ 0.05); however, technology adopters and technology non-

adopters differed in pre-purchase consideration importance and perceived parameter 

usefulness. Availability of local support was more important to producers already using 

technologies (4.25 ± 0.11) than those that were not (3.82 ± 0.16; P = 0.03; Table 2.5). 

Russell and Bewley (2013) established that producers value adequate technical support 

and training and that this was important in their decision making. The findings of the 

current study are in correspondence with this, while also adding that producers currently 

using technologies may be familiar with the problems, questions, and troubleshooting 

associated with technology implementation. These experiences may lead producers 

already using technologies to place more value on technical support when purchasing 

technologies.  

Respondent perception of parameter usefulness also differed across technology 

use categories (Table 2.6). Milk yield was considered more useful by producers currently 

using technologies (4.83 ± 0.07) than those not using technologies (4.50 ± 0.10; P = 

0.01), and standing estrus was perceived to be significantly less useful by producers using 

technologies (4.68 ± 0.06) versus those not using technologies (4.91 ± 0.09; P = 0.04). 

Both categories of producer regarded these parameters to be relatively useful because 

both producer categories ranked milk yield and standing estrus above 4. The automated 

measuring of milk yield can be used to identify sick animals in dairy herds (Deluyker et 

al., 1991; Mottram, 1997) or identify low producing cows for culling (Bascom and 

Young, 1998). Producers already using this technology may see the increased benefit of 
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monitoring this parameter in their herds. Automated measures of cow activity can 

identify cattle in estrus without the necessity of observing an event where a cow stands to 

be mounted (Farris, 1954; Kiddy, 1977). Producers currently using technology may be 

familiar with this knowledge and as a result, perceive standing estrus as being less 

important. 

Potential Bias 

Responses in this study may not be representative of all dairy producers in the 

United States or in other countries around the world. Bias may be present in this survey 

and the means by which this survey was distributed may be to blame. Email, electronic 

publication, and written publications served as the medium of distribution for this survey, 

so only producers receiving the aforementioned materials would have access to the 

survey. Producers using email and electronic publications to gather and interpret 

information regarding their farm may have been more likely to access this web-based 

survey. Farmers not utilizing these methods would be less likely to receive the survey, or 

access it from a link provided in a written publication. As a consequence, the sample may 

not have been completely representative of the entire population of dairy producers; 

however, producers not using technology or computers would be less likely to implement 

these technologies (Daberkow and McBride, 1998). The sample of producers in this study 

may be more representative of the population of producers willing and able to implement 

technologies, but further research may be necessary to definitively corroborate the 

findings of this study. Results of the current study show the potential for mounting 

monitors to be highly utilized by producers.  Precision dairy farming must be successfully 

demonstrated at a commercial scale if farmers are to have confidence in the 

manufacturers (Wathes et al., 2008). Perhaps after manufacturers identify parameters on 
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which dairy farmers need educated, or parameters that producers value the most, 

manufacturers can more effectively market these technologies. 

CONCLUSIONS 

Technologies monitoring milking performance, reproductive performance, and 

udder health were the most widely used among current parameters; however, many 

farmers did not use technologies and could provide potential areas for manufacturers to 

expand their marketing and sales. Perception of parameter usefulness was highest for 

technologies monitoring mastitis, estrus, and milk yield parameters. Additionally, 

producers find factors associated with return on investment, total investment, and 

technology performance as the most important pre-purchase considerations when 

deciding whether to implement a technology. Producers currently using technologies 

value the availability of local support more than those not using technologies, meaning 

dairy farmers using technologies may be more familiar with the requirements of 

implementing a technology. Technology adoption was higher on dairy farms outside of 

the United States and technology adoption in the United States is one potential area of 

expansion for foreign and domestic technology manufacturers. The information in this 

study may allow technology manufacturers to better educate producers, market 

technologies, and develop parameters that are more useful to producers. 
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Table 2.1. Results from a producer-based survey showing percentages of surveyed producers 

using technologies to measure various parameters
1 

Parameter 
Respondent percentage 

(n = 109)
 

Daily milk yield 52.3% 

Cow activity 41.3% 

Not applicable
2
 31.2% 

Mastitis
3 

25.7% 

Milk components (e.g. fat, protein, and SCC) 24.8% 

Standing estrus 21.1% 

Feeding behavior 12.8% 

Temperature
 

12.8% 

Body weight 11.0% 

Rumination 10.1% 

Rumen activity 9.2% 

Animal position and location 8.3% 

Lying and standing behavior 8.3% 

Jaw movement and chewing activity 7.3% 

Hoof health 6.4% 

Lameness 4.6% 

Heart rate 3.7% 

Body condition score 2.8% 

Methane emissions 1.8% 

Respiration rate 1.8% 

Rumen pH 0.9% 
1
Parameters were presented to respondents in a predetermined list. 

2
Respondents replying “not applicable,” were those not currently utilizing precision 

dairy farming technologies on their farm. 

3
Parameters associated with mastitis detection were combined due to the highly 

technical and variable nature of these parameters. 
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Table 2.2. Results from a producer-based survey indicating the importance of criteria for evaluating precision dairy technology purchases
1
 

Item 

Response % 

Responses 

(n) 

LSMean 

± 

SD Unimportant 

Of 

little 

importance 

Moderately 

important 

Somewhat 

important 
Important 

Benefit to cost ratio 0.9% 4.6% 11.9% 46.8% 35.8% 108 4.57 ± 0.66 

Total investment cost 1.9% 2.8% 15.7% 45.4% 34.3% 109 4.28 ± 0.83 

Simplicity and ease of use 1.9% 0.0% 7.5% 53.3% 37.4% 109 4.26 ± 0.75 

Proven performance through 

independent research 
0.9% 1.8% 12.8% 36.7% 47.7% 107 4.24 ± 0.75 

Availability of local support 1.8% 3.7% 17.4% 34.9% 42.2% 109 4.12 ± 0.95 

Compatibility with existing dairy 

practices and systems 
0.9% 0.0% 3.7% 31.5% 63.9% 109 4.12 ± 0.86 

Time involved using the technology 0.9% 0.9% 10.1% 47.7% 40.4% 108 4.07 ± 0.88 

1
Values calculated by assigning the following values to response categories: Unimportant: 1, Of little importance: 2, Moderately important: 3, 

Somewhat important: 4, Important: 5.
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Table 2.3. Results from a producer-based survey indicating the usefulness of potential and current parameters measured by precision dairy 

technologies
1
 

 Response %
 

Responses 

(n) 
LSMean ± SD 

Parameter 
Not 

useful 

Of little 

usefulness 

Moderately 

useful 

Somewhat 

useful 
Useful 

Mastitis
2 

0.0% 0.0% 1.9% 19.4% 78.7% 108 4.77 ± 0.47 

Standing estrus 0.0% 0.9% 2.8% 16.5% 79.8% 109 4.75 ± 0.55 

Daily milk yield 0.0% 0.9% 6.4% 11.9% 80.7% 109 4.72 ± 0.62 

Cow activity 1.8% 1.8% 5.5% 16.5% 74.3% 109 4.60 ± 0.83 

Temperature 3.8% 2.8% 11.3% 22.6% 59.4% 106 4.31 ± 1.04 

Feeding behavior 0.9% 0.0% 15.7% 35.2% 48.1% 108 4.30 ± 0.80 

Milk components (e.g. fat, protein, and 

SCC) 
0.9% 4.6% 13.8% 27.5% 53.2% 109 4.28 ± 0.93 

Lameness 0.0% 4.6% 17.4% 26.6% 51.4% 109 4.25 ± 0.90 

Rumination 3.8% 3.8% 18.9% 28.3% 45.3% 106 4.08 ± 1.07 

Hoof health 0.9% 3.7% 19.4% 39.8% 36.1% 108 4.06 ± 0.89 

Rumen activity 4.6% 3.7% 24.1% 27.8% 39.8% 108 3.94 ± 1.10 

Lying and standing behavior 2.8% 8.3% 25.7% 33.9% 29.4% 109 3.79 ± 1.05 

Rumen pH 5.5% 11.0% 26.6% 29.4% 27.5% 109 3.62 ± 1.16 

Jaw movement and chewing activity 4.6% 13.0% 25.9% 29.6% 26.9% 108 3.61 ± 1.15 

Respiration rate 7.5% 13.2% 29.2% 32.1% 17.9% 106 3.40 ± 1.15 

Body weight 8.3% 18.5% 30.6% 24.1% 18.5% 108 3.26 ± 1.20 

Body condition score 9.2% 12.8% 36.7% 25.7% 15.6% 109 3.26 ± 1.15 

Heart rate 11.2% 16.8% 38.3% 21.5% 12.1% 107 3.07 ± 1.15 

Animal position and location 19.3% 23.9% 31.2% 13.8% 11.9% 109 2.75 ± 1.26 

Methane emissions 34.3% 30.6% 20.4% 10.2% 4.6% 108 2.20 ± 1.16 
1
Values calculated by assigning the following values to response categories: Not useful: 1, Of little usefulness: 2, Moderately useful: 3, Useful: 4, 

Very useful: 5. 

2
Parameters associated with mastitis detection were combined due to the highly technical and variable nature of these parameters. 
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Table 2.4. Differences between parameters currently measured by producers’ precision 

dairy farming technologies in different countries determined using chi-square analysis 

after a producer-based survey 

Parameter 

Other 

countries 

(n = 19) 

United 

States 

(n = 90) 

χ
2
-value P-value 

Not applicable 15.8% 34.4% 2.5 0.11 

Animal position and location 21.1% 5.6% 5.0 0.03 

Body condition score 5.3% 2.2% 0.5 0.46 

Body weight 42.1% 4.4% 22.7 < 0.01 

Cow activity 78.9% 33.3% 13.5 < 0.01 

Daily milk yield 84.2% 45.6% 9.4 < 0.01 

Feeding behavior 26.3% 10.0% 3.7 0.05 

Heart rate 10.5% 2.2% 3.1 0.08 

Hoof health 5.3% 6.7% 0.1 0.82 

Jaw movement and chewing 

activity 
15.8% 5.6% 2.4 0.12 

Lameness 10.5% 3.3% 1.9 0.17 

Lying and standing behavior 26.3% 4.4% 9.9 < 0.01 

Mastitis
1 

63.2% 17.8% 16.9 < 0.01 

Methane emissions 5.3% 1.1% 1.5 0.22 

Milk components (e.g. fat, protein, 

and SCC) 
47.4% 20.0% 6.3 0.01 

Respiration rate 0.0% 2.2% 0.4 0.51 

Rumen activity 26.3% 5.6% 8.1 < 0.01 

Rumen pH 0.0% 1.1% 0.2 0.64 

Rumination 26.3% 6.7% 6.7 < 0.01 

Standing estrus 31.6% 18.9% 1.5 0.22 

Temperature 15.8% 12.2% 0.2 0.67 
1
Parameters associated with mastitis detection were combined due to the highly technical 

and variable nature of these parameters. 
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Table 2.5. Results from a producer-based survey indicating least-squares means and 

standard deviations of technology pre-purchase consideration importance in producer 

precision dairy farming technology use
1 

Item 

Producers 

using 

technologies 

(n = 75) 

Producers 

not using 

technologies 

(n = 34) 

P-value 

Benefit to cost ratio 4.57 ± 0.08 4.59 ± 0.11 0.88 

Availability of local support 4.25 ± 0.11 3.82 ± 0.16 0.03 

Total investment cost 4.24 ± 0.10 4.38 ± 0.14 0.41 

Simplicity and ease of use 4.24 ± 0.09 4.29 ± 0.13 0.73 

Proven performance through independent 

research 
4.22 ± 0.09 4.29 ± 0.13 0.63 

Time involved using the technology 4.15 ± 0.10 3.91 ± 0.15 0.20 

Compatibility with existing dairy practices 

and systems 
4.12 ± 0.10 4.12 ± 0.15 0.99 

1
Values calculated by assigning the following values to response categories: 

Unimportant: 1, Of little importance: 2, Moderately important: 3, Somewhat important: 

4, Important: 5. 
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Table 2.6. Results from a producer-based survey indicating least-squares means and 

standard deviations for perceived parameter importance in producer precision dairy 

farming technology use
1
 

Parameter 

Producers 

using 

technologies 

(n = 75) 

Producers 

not using 

technologies 

(n = 34) 

P-value 

Animal position and location 2.87 ± 0.14 2.50 ± 0.21 0.16 

Body condition score 3.19 ± 0.13 3.41 ± 0.20 0.35 

Body weight 3.23 ± 0.14 3.23 ± 0.21 0.71 

Cow activity 4.61 ± 0.10 4.56 ± 0.14 0.75 

Daily milk yield 4.83 ± 0.07 4.50 ± 0.10 0.01 

Feeding behavior 4.28 ± 0.09 4.32 ± 0.14 0.81 

Heart rate 3.08 ± 0.13 3.03 ± 0.20 0.83 

Hoof health 4.04 ± 0.10 4.12 ± 0.15 0.68 

Jaw movement and chewing activity 3.70 ± 0.13 3.41 ± 0.20 0.22 

Lameness 4.23 ± 0.10 4.29 ± 0.16 0.72 

Lying and standing behavior 3.72 ± 0.12 3.94 ± 0.18 0.31 

Mastitis
2 

4.77 ± 0.05 4.76 ± 0.08 0.95 

Methane emissions 2.34 ± 0.13 1.91 ± 0.20 0.08 

Milk components (e.g. fat, protein, and SCC) 4.33 ± 0.11 4.15 ± 0.16 0.33 

Respiration rate 3.44 ± 0.14 3.29 ± 0.20 0.53 

Rumen activity 3.96 ± 0.13 3.91 ± 0.19 0.83 

Rumen pH 3.71 ± 0.13 3.44 ± 0.20 0.27 

Rumination 4.21 ± 0.12 3.79 ± 0.18 0.06 

Standing estrus 4.68 ± 0.06 4.91 ± 0.09 0.04 

Temperature 4.34 ± 0.12 4.24 ± 0.18 0.65 
1
Values calculated by assigning the following values to response categories: Not useful: 

1, Of little usefulness: 2, Moderately useful: 3, Useful: 4, Very useful: 5. 

2
Parameters associated with mastitis detection were combined due to the highly 

technical and variable nature of these parameters. 
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INTRODUCTION 

A smooth transition into the milking herd helps to ensure a productive subsequent 

lactation. Calving time may be the most stressful point in the transition period. Perinatal 

mortality and dystocia are the biggest parturition concerns (Mee, 2004). An evaluation of 

666,341 calvings records estimated the proportion of dystocia to be 28.6% in primiparous 

and 10.7% in multiparous cows (Meyer et al., 2001). In the US, 19% of primiparous and 

11% of multiparous cows experienced mild to severe dystocia at calving (USDA, 2010). 

Providing calving assistance may reduce parturition stress and improve reproductive 

performance in the subsequent lactation (Bellows et al., 1988). Eight percent of calvings 

in the United States resulted in calf perinatal mortality, with 31% of primiparous and 

21% of multiparous being provided calving assistance (USDA, 2010). To prevent and 

reduce parturition stress, a producer must estimate when cows will calve, move cows to 

appropriate pens in a timely manner, monitor calving, know when and how to intervene, 

and maintain calf and cow health following calving (Mee, 2004).  

Breeding dates and physical or behavioral cues have traditionally estimated 

calving time. Before calving, a dairy cow’s udder will begin to develop, the vulva will 

swell and loosen, and pelvic ligaments will relax (Hulsen, 2006). Using visual indicators, 

producers can estimate calving time, move cows as necessary, and provide necessary 

assistance. Early cow movement into maternity pens is necessary because movement just 

before or following the appearance of the amniotic sac can extend the second stage of 

labor (Proudfoot et al., 2013). Specialized calving pens allow producers to observe or aid 

parturient cows if necessary. Visually observing calving indicators requires experienced 

laborers and nearly constant visual observation to achieve accurate calving time 

estimation. Cows laboring beyond 70 min past amniotic sac appearance are at increased 
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risk for dystocia (Schuenemann et al., 2011). During daylight hours, 52.8% of US dairy 

operations wait longer than 3 h between preparturient cattle inspections and this number 

increases to 81.3% during nighttime hours (USDA, 2010). The same behavioral and 

physiological changes do not occur for every cow or in a timely manner (Hofmann et al., 

2006; Sendag et al., 2008). Although visual inspection methods are useful for relative 

calving time estimates, constant calving monitors would be useful. 

Precision dairy farming technologies are an alternative to visual monitoring. 

Precision dairy farming is defined as, “the use of information and communication 

technologies for improved control of fine-scale animal and physical resource variability 

to optimize economic, social, and environmental dairy farm performance” (Eastwood et 

al., 2012). Some precision technologies have already been used in calving prediction. 

Continuous monitors of maternal body temperatures have been shown to decrease 48 h 

before a calving event (Lammoglia et al., 1997), from 39.5°C to 38.8°C (Burfeind et al., 

2011). Commercially marketed temperature monitors measure dairy cattle reticulorumen 

temperature (DVM reticulorumen bolus, DVM Systems, LLC., Boulder, CO; MaGiiX 

reticulorumen bolus, MaGiiX Bolus Inc., Post Falls, ID), skin temperature (CowManager 

SensOor, Agis, Harmelen, Netherlands), and vaginal temperature (Vel’Phone 

transvaginal bolus Medria, Châteaugiron, France). Several of these technologies perform 

calving prediction, but unbiased accuracy evaluation is still needed. 

Vaginally inserted technologies expelled at the beginning of the second stage of 

labor, have also quantified calving events with relative accuracy. These technologies are 

commonly expelled when fetal membranes rupture, the amniotic sac enters the birth 

canal, or when the calf enters the birth canal. Sensors then create an alert that can be sent 
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to producers. Palombi et al. (2013) described a system correctly identifying all of over 

592 calvings, with 68.9% of fetuses being presented within (mean ± SD) 15 ± 5 min of 

the alarm. Pedometers and accelerometers have previously been adapted for dairy cattle 

use (Farris, 1954; Kiddy, 1977). Traditionally, these units have been used to characterize 

activity changes shown to increase around estrus events (Farris, 1954) and can be used in 

estrus detection (Kiddy, 1977). Several behavioral monitoring technologies also manage 

cow and herd health (Rutten et al., 2013; Van Hertem et al., 2013). Technologies 

quantifying behavioral changes may be an alternative for calving detection. Prepartum 

dairy cattle decrease feeding and ruminating behaviors (Huzzey et al., 2005; Schirmann 

et al., 2013). Using precision dairy technologies, Schirmann et al. (2013) showed 

preparturient dairy cattle decrease rumination by 63 ± 30 min/24 h and feeding behavior 

by 66 ± 16 min/24 h on the day before calving. Prepartum dairy cow lying and standing 

behavior also changes (Huzzey et al., 2005; Miedema et al., 2011b; Jensen, 2012), with 

lying bout frequency increasing (16.4 ± 4.8 bouts/d before calving vs. 24.2 ± 6.8 bouts/d 

at calving) and lying duration decreasing (13.6 ± 1.8 h/d before calving vs. 12.6 ± 1.8 h/d 

on the day of calving; Miedema et al., 2011). Standing bouts increased before calving 

from 11.7 ± 1.07 bouts/d before calving to 17.3 ± 1.08 bouts/d (P < 0.01) on the day of 

calving (Huzzey et al., 2005). Many of the behavioral changes around calving have the 

potential or already have been used in calving prediction. Adding calving time prediction 

to existing behavioral monitors would provide additional technology uses without 

necessity of additional measurements. This could increase producer technology 

usefulness and perception, potentially influencing technology adoption decisions 

(Borchers and Bewley, 2014). 
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The objective of this study was to quantify lying behavior, activity, and 

rumination before calving and establish methods for detecting and predicting calving 

events using these parameters individually or in combination. 

MATERIALS AND METHODS 

Data collection for 20 primiparous and 37 multiparous prepartum Holstein dairy 

cattle occurred from September 13, 2011 through May 16, 2013 at the University of 

Kentucky Coldstream Dairy (IACUC Protocol Number: 2010-0776). Prepartum cattle 

were housed in a 9.15 x 21.34 m straw bedded-pack with constant access to 3.64 hectares 

of pasture. A total mixed ration was delivered once daily. Behavior was quantified using 

two commercially available technologies. Technologies were fitted to each cow before 

the previous lactation and data were collected through cow dry periods. The HR Tag 

(SCR Engineers, Ltd., Israel) was used to automatically collect neck activity and 

rumination data in 2 h time increments using a 3-axis accelerometer and a microphone 

with microprocessor, respectively. The IceQube (IceRobotics, Ltd., Scotland) collected 

number of steps, time spent lying, number of lying bouts, and total motion data in 15 min 

time blocks using a 3-axis accelerometer. Data from both technologies were summed by 

day and 2 h time blocks for analyses. One month of prepartum behavioral data were used 

in analyses because all cows had been moved to the dry pen by this time.  

On the day of calving, farm staff recorded each cow’s identification number, 

calving date, calving time, and parity. Cows visually recognized as laboring with visual 

fetal membranes or feet protruding from their vulva, were sorted into the bedded pack 

area until calving. Need for assistance in the birthing process was assessed and provided 

by the farm manager. Because all bihourly blocks began on evenly numbered hours, 

calving times were adjusted to the previous complete bihourly time block before calving 
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events. Calf expulsion time was used to retrospectively generate the cow-specific number 

of hours before calving, similar to the methods of Schirmann et al. (2013) where cows 

were compared by the number of hours before their individual calving events.  

Statistical analysis 

Least-squares means of neck activity, rumination, and lying behavior parameters 

by both 2 h time block and day (for 21 d) were calculated using the MIXED procedure of 

SAS. Daily data for step number and total motion, and bihourly data for neck activity, 

total motion, and step were transformed using a natural logarithm. This was performed to 

meet normal distribution assumptions and was assessed through visual inspections of 

residual frequency distributions. Prepartum cows with incomplete data sets, or providing 

influential outliers, were removed from the study. The remaining dairy cattle (15 

primiparous and 31 multiparous; n = 46) were used in further analysis.  

Parameter daily least-squares means were calculated with parity (primiparous or 

multiparous) and day before calving serving as fixed effects; and cow serving as a 

repeated subject for all parameters. Days were described as the 24 h immediately before 

calving (Day0), 48 h before calving, (Day-1), 72 h before calving (Day-2), 96 h before 

calving (Day-3), 120 h before calving (Day-4), 144 h before calving (Day-5), 170 h 

before calving (Day-6), and 194 h before calving (Day-7). Significance was defined at P 

< 0.05. Bihourly least-squares means’ fixed effects included parity (primiparous or 

multiparous), time block (12:00 AM to 11:59 PM by 2 h blocks), and hour before 

calving. Cow served as a repeated subject. All two-way interactions were tested and non-

significant (P ≥ 0.05) interactions were removed using backwards stepwise elimination. 

All main effects were included in final models regardless of significance. Residuals plots 
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were used to verify favorable variance distributions and to detect possible influential data 

outliers for each parameter.  

Algorithm Development 

Machine-learning techniques were applied to the data sets to predict calving. The three 

machine learning techniques used for calving prediction were random forest, linear 

discriminant analysis, and neural network analysis. The random forest method is based on 

decision tree classification methods and develops a group of tree-structured 

classifications algorithm. Each tree contributes an opinion of how the data should be 

classified (Breiman, 2001; Bishop, 2006; Shahinfar et al., 2014). Linear discriminant 

analysis is similar to analysis of variance and regression methods, but uses a categorical 

dependent variable, and several continuous independent variables (McLachlan, 2004; 

Wetcher-Hendricks, 2011). Neural networks imitate the structure and function of the 

human brain, simulating human intelligence, leaning independently and quickly, adapting 

continuously, and applying inductive reasoning to process knowledge (Zahedi, 1991; 

Krieter et al., 2006). In animal sciences, neural networks are the most frequently used 

machine learning method (Shahinfar et al., 2014). 

Machine-learning techniques were applied to 21 d of prepartum behavioral data 

before calving events (n = 46). For calving prediction, the outcome variable was if the 

cow calved on that day (0, calved or 1, did not calve). Parity and all available behavioral 

parameters monitored by the IceQube, HR Tag and standing behavior (inverse of lying 

behavior) were used to predict calving events alone or combined. Eighty percent of data 

were used as “training” set to train the algorithm, while the remaining 20% data were 

used to evaluate the performance of the algorithms. A 4-fold, leave-one-out cross-

validation method, including 10 analyses per series, was also performed for each machine 
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learning method to tune the algorithm in the training phase. Trained algorithms were used 

to predict calving events using the testing dataset in the testing phase. True positives 

(correctly predicted calving day), false positives (incorrectly predicted calving day), true 

negatives (no alert and not calving day), and false negatives (no alert and calving day) 

were compiled and the sensitivity, specificity, positive predictive value, and negative 

predictive values were calculated to evaluate the performance of different machine 

learning techniques and technology. All analyses were constructed and implemented 

using <caret> package in R version 3.1.0 (R Foundation for Statistical Computing, 

Vienna, Austria). 

RESULTS AND DISCUSSION 

Daily and bihourly behavioral changes are presented in Figure 3.1 and Figure 3.2, 

respectively. Two-way interactions by time of day and cow parity were significant (P < 

0.05) for neck activity, rumination, lying time, and total motion mixed models (Figure 

3.3). Parity has been shown to affect behavioral patterns (Wehrend et al., 2006; Jensen, 

2012), and similar results were shown in the current study. 

Time spent ruminating was significantly lower on the day of calving compared to 

the 7 d before. From 10 h to 6 h before calving, rumination decreased from 20.8 ± 2.7 

min/2 h time block, to 8.9 ± 2.7 min/2 h time block; a decrease of nearly 57% over 4 h. 

Schirmann et al. (2013) observed similar results with a 63 ± 30 min/24 h difference 

between the day of calving and a 2 d average rumination baseline value.  

Lying bouts increased significantly on the day of calving compared to the day 

before calving. Lying bouts also increased between 12 h before calving and 2 h before 

calving, from 1.3 ± 0.2 bouts/2 h to 2.4 ± 0.2 bouts/2 h. The 2 h block just before calving 

significantly increased in the number of bouts compared to the 4 h before calving (3.0 ± 



 

53 

0.2 bouts 0 h vs. 1.8 ± 0.2 bouts 4 h). Over this same period Jensen (2012) showed bouts 

per hour to increase from 0.83 bouts/h 12 h before calving, to 2.79 bouts/h 2 h before 

calving. Miedema et al. (2011b) showed lying bout frequency to increase between a 

randomly selected control from the dry period and the calving period (16.4 ± 4.8 vs. 24.2 

± 6.8 bouts/24 h) and similar results were observed by Jensen (2012) and Huzzey et al. 

(2005).  

In addition to an increase in the number of lying bouts, lying time decreased 

gradually over several days. Jensen (2012) showed a gradual decrease in the number of 

daily minutes lying from 998 min/d, 4 d before calving, to 970 min/d, 2 d before calving. 

A significant decrease in lying time occurred the day before calving. This finding is 

counterintuitive to the findings of bihourly least-squares means in the current study. As 

calving time approached, minutes lying became variable between subsequent bihourly 

blocks (Figure 3.2d.). In an hourly analysis by (Jensen, 2012) minutes spent lying per 

hour on the day of calving increased from 12 h before calving (31.4 min) to 2 h before 

calving (42.8 min), but daily data decreased. The changes between 2 h blocks and the 

total magnitude of this decrease in lying time decreases may negate the increase observed 

in the final 12 h before calving. When viewed in combination with rumination time, a 

decrease in both lying time and rumination occurs 6 h before calving. As lying time 

increases leading into calving events, rumination increased. Schirmann et al. (2012) 

previously found an association between lying time and rumination with cows ruminating 

more when lying. This suggests a link between rumination and lying time may exist.  

Comparisons between daily and bihourly data indicate many activity parameters 

(neck activity, step number, and total motion) differ in the hours before parturition, but 
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these were not significant. Differences in activity have previously been found in 

prepartum dairy cattle. Miedema et al. (2011b) found walking duration increased from 

randomly selected control periods during the dry period to the calving period (21.0 ± 7.4 

vs. 31.5 ± 13.1 min; P < 0.01) and Jensen (2012) observed an increase in activity 

beginning 6 h before calving (F11,209 = 5.46; P < 0.001). While these events may show 

large variation between hour blocks, they were consistently non-significant. Daily data 

summation offsets variation between 2 h blocks, making behavioral changes non-

significant.  

Changes in daily time blocks were significant for several parameters (rumination, 

lying bouts, lying time). Daily time blocks significantly differed on the day of calving for 

lying bouts and rumination, but lying time decreased gradually during the days before 

calving. More frequent preparturient cattle inspection is best (Dargatz et al., 2004) and 

smaller time blocks would produce more valuable and productive alerts for producers.  

Machine-learning Analyses 

Calving prediction performance by technology and data analysis technique is 

shown in Table 3.1. Machine-learning techniques performed best when parameters from 

the HR Tag and IceQube were combined. The most ideal calving prediction results were 

obtained in the combined parameter neural network analysis with a sensitivity of 100.0%, 

a specificity of 96.5%, a positive predictive value of 60.0%, and a negative predictive 

value of 100.0%. Positive predictive values were far below specificity values, indicating 

a high number of false positives. These findings can be attributed to the large number of 

days potentially serving as false positives or true negatives. The number of true negatives 

generated offset the false positives in specificity calculation. This was apparent in the 

calculation of the positive predictive value where the small number of true positives was 
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not able to offset the number of false positives, leading to a low negative predictive 

value. 

Parameter combinations in calving prediction have previously been applied to 

data generated from existing behavioral monitors. Maltz and Antler (2007) described 

calving prediction methods using changes in daily step number, lying behavior, and 

number of times passing into a feeding area for 12 cows over 7 d. Their method achieved 

a sensitivity of 83.3% and a specificity of 95.2%. When considered alone, the HR Tag 

produced a lower sensitivity or specificity than their method (random forest: sensitivity = 

55.6%, specificity = 91.8%; linear discriminant analysis: sensitivity = 77.8%, specificity 

= 88.8%; neural network: sensitivity = 44.4%, specificity = 95.3%), but the IceQube and 

a combination of the two technologies exceeded the findings of Maltz and Antler (2007). 

While results are promising, few technologies monitor rumination, lying behavior, 

and activity in combination. Measuring both rumination and lying time using one 

technology is difficult. A two-technology calving prediction approach, similar to the 

current study’s methods, may be more useful in calving prediction. In the absence of a 

two technology calving prediction approach, results indicate ankle-mounted 

accelerometers characterizing activity and lying behavior as viable alternatives. The 

IceQube sensor effectively predicted calvings in the random forest analysis with a 

sensitivity of 88.9%, a specificity of 98.2%, a positive predictive value of 72.7%, and a 

negative predictive value of 99.4%. For future machine-learning calving prediction 

techniques, in the absence of activity, lying and standing behavior, and rumination 

parameters in combination, technologies similar to the IceQube may be the best option in 

behavior-based calving prediction  
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Most machine-learning research has been applied for mastitis and estrus detection 

(Firk et al., 2003; Cavero et al., 2008; Sun et al., 2010). To the knowledge of the authors, 

no known technologies use machine-learning techniques in alert creation. Machine-

learning techniques have difficulty performing in commercial settings as they must be 

“taught” using existing data. Using data to teach these techniques could lead to more 

accurate and farm-specific event prediction for not only calving prediction, but health and 

estrus detection as well. Future work will need to establish machine-learning technique 

validity in a commercial setting for alert improvement. Another important change 

technologies would have to make in order to use machine-learning methods is automatic 

data transfer. In this study, handheld readers were required to collect data, which prevents 

constant data interpretation. However, newer versions of these technologies constantly 

collect data.  

Bihourly Prediction Methods Discussion 

Bihourly prediction methods would be preferable over daily methods for calving 

prediction, but this was not used in the current study. The machine learning techniques 

used in this study compared 21 d of data to predict the day of calving. A similar analysis 

using bihourly data would need to compare 264 hourly periods to predict calving, which 

was not feasible using the current methods.  

A bihourly analysis would also encounter issues with sensitivity and specificity. 

This is because sensitivity and specificity are inversely related and if an alert threshold is 

increased or decreased to make a respectively more specific or sensitive test, the 

specificity and sensitivity will proportionally and inversely change (Hogeveen et al., 

2010). Larger specificity values have traditionally been more valued in estrus and health 

detection using precision dairy farming technologies (ISO, 2007; Hogeveen et al., 2010; 
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Rutten et al., 2013); however, this may not be as useful in calving prediction. False 

negatives in calving prediction would be instances where systems do not detect actual 

calving events. The consequences of missed calving events could be extremely 

detrimental (stillbirth, dead cow, etc.). Accordingly, more emphasis on increasing the 

percentage of correctly predicted calving events would be of benefit. In animal illness 

detection false positives (type I errors) can cause financial losses through unnecessary 

treatment (Burfeind et al., 2010). The same is true for calving detection, but this loss 

would be in the form of labor needed to physically check on potentially laboring animals. 

Alternatively, a false negative (type II error) leaves sick animals untreated because they 

are not detected (Burfeind et al., 2010). In calving prediction, the potential losses 

associated with missed calving may outweigh losses associated with false alerts and 

future prediction methods should weigh this consideration.  

 Calving alerts generated from shorter time frames may have potential to reduce 

disease incidence and stress in parturient cows. Calving alerts providing more preparation 

time before calving would be especially beneficial. Moving cows before the appearance 

of the amniotic sac (Proudfoot et al., 2013) and allowing them to occupy secluded areas 

(Proudfoot et al., 2014) would place less stress on parturient cows. Additionally, high 

producing and lame dairy cattle supplemented with calcium at calving have experienced a 

reduction in hypocalcemia incidence (Oetzel and Miller, 2012). Supplementing calcium 

to these cows after calving alerts and before calving, may allow for further disease 

incidence reductions. Labor pain reduction may be another benefit of timely calving 

alerts. Treating parturient dairy cattle with NSAIDs during the calving process has been 

theorized to help alleviate labor pain (Newby et al., 2013).  
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Dystocia is a major calving concern (Mee, 2004) and dystocial calving prediction 

may be possible. Proudfoot et al. (2009) showed cows experiencing dystocia to be more 

restless 24 h before calving than eutocial cows. Including calving ease evaluations in 

future machine learning techniques may allow models to discern between dystocial and 

eutocial calvings. Farm staff did not record accurate calving ease indications in this 

study, so they were not included in machine learning analyses. Additionally, 46 calvings 

were used in the final machine learning analyses and only a fraction of these would 

experience dystocia. Machine learning techniques will need enough calving data from 

cows experiencing dystocia to obtain potential for accurate prediction. More research is 

required to determine if cows experiencing dystocia can be identified using precision 

dairy farming technologies. 

CONCLUSIONS 

Behavior-based prepartum dairy cattle monitoring can provide additional uses for 

automated technologies already used to generate health and estrus alerts. Lying and 

rumination behavior differed most by day relative to calving and the application of these 

and activity parameters to machine learning techniques provided promising calving 

prediction results from daily data. In absence of rumination behavior, lying time and 

lying bout data could accurately predict calving events using random forest, machine-

learning techniques. To maximize calving prediction alert usefulness, future studies will 

need to focus on shortening data reporting timeframes to provide more timely calving 

alerts. 
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Figure 3.1. Results of a study examining a) neck activity (measured by the HR Tag; SCR 

Engineers, Ltd., Israel, b) rumination (measured by the HR Tag), c) natural logarithm of 

step number (measured by the IceQube sensor; IceRobotics, Ltd., Scotland), d) total 

motion units (measured by the IceQube), e) total hours lying (measured by the IceQube 

sensor), and f) lying bouts (measured by the IceQube sensor) in least-squares means by 

day before calving in prepartum dairy cattle (n = 46 calvings).
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Figure 3.2. Results of a study examining least-squares means of a) natural logarithm of 

activity (measured by the HR Tag; SCR Engineers, Ltd., Israel), b) rumination (measured 

by the HR Tag), c) natural logarithm of step number (measured by the IceQube sensor; 

IceRobotics, Ltd., Scotland), d) natural logarithm of total motion units (measured by the 

IceQube), e) total hours spent lying (measured by the IceQube sensor), and f) lying bouts 

(measured by the IceQube sensor) by hour before calving events in prepartum dairy cattle 

(n = 46 calvings).
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f) 

 

1
Columns displaying different letters are significantly different (P < 0.05).
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Figure 3.3. Results showing two-way interactions of the time of day and parity 

(primiparous or multiparous) on the least-squares means of a) neck activity (measured by 

the HR Tag; SCR Engineers, Ltd., Israel, b) rumination (measured by the HR Tag), c) 

total motion units (measured by the IceQube), and e) total hours lying (measured by the 

IceQube sensor) in prepartum dairy cattle (n = 46 calvings).
1 
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c) 

 

d)

 

*Denotes significance at *P < 0.05, **P < 0.01. 
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Table 3.1. Results of machine-learning techniques applied to behavioral data from the 

HR Tag (SCR Engineers, Ltd., Israel; neck activity and rumination) and IceQube sensor 

(IceRobotics, Ltd., Scotland; lying bouts, lying time, standing time, step number, and 

total motion) for 21 d of daily prepartum behavioral data (n = 46).
1 

Analysis Technology Sensitivity Specificity 

Positive 

predictive 

value 

Negative 

predictive 

value 

Random forest HR Tag 44.4% 95.3% 33.3% 97.0% 

 IceQube 88.90 98.2% 72.7% 99.4% 

 Combination
2
 88.9% 98.2% 72.7% 99.4% 

Linear discriminant 

analysis 
HR Tag 77.8% 88.8% 26.9% 98.7% 

 IceQube 77.8% 98.2% 70.0% 98.8% 

 Combination
2
 77.8% 97.6% 63.6% 98.8% 

Neural network HR Tag 55.6% 91.8% 26.3% 97.5% 

 IceQube 88.9% 93.5% 42.1% 99.4% 

 Combination
2
 100.0% 96.5% 60.0% 100.0% 

1
Sensitivity = TP / (TP + FN) x 100, specificity = TN / (TN + FP) x 100, positive 

predictive value = TP / (TP + FP) x 100, negative predictive value = TN / (TN + FN) x 

100; where TP = true positive, TN = true negative, FP = false positive, and FN = false 

negative 

2
Parameters from both the HR Tag and the IceQube were used in combination analyses. 
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INTRODUCTION 

Dairy producers purchase precision dairy farming technologies to improve 

individual animal management, group or pen management, whole-farm management, and 

overall farm production efficiency (Wathes et al., 2008). Many precision dairy farming 

technologies classify udder, estrus, feet and leg, and metabolic health (Rutten et al., 

2013). Technologies have the ability to monitor dairy cattle without disturbing their 

natural behavior, providing indications of animal welfare (Müller and Schrader, 2003). 

Additionally, technologies can reduce specialized labor needs, or change labor focus so 

fewer laborers accomplish more work (Frost et al., 1997). For precision dairy farming 

technologies to be viable management or labor alternatives, they must accurately and 

easily describe physiological or behavioral parameters.  

One parameter that can be monitored by technologies is feeding behavior 

(González et al., 2008). Chewing and ruminating activity changes can also be used to 

monitor individual cow or herd health changes or to make ration adjustments (Zehner et 

al., 2012). Feeding behavior and rumination have traditionally been monitored through 

labor-intensive visual observation or video recording methods in both research and farm 

settings (Schirmann et al., 2009). Both methods are time consuming and impractical for 

dairy farmers. Additionally, tracking behavior using visual observation is subjective and 

open to observer interpretation (Weary et al., 2009). Monitoring rumination and feeding 

behavior with precision dairy farming technologies could remove observer subjectivity.  

Feeding behavior and rumination have been quantified using chewing activity 

(pressure and strain recorders) monitors (Beauchemin et al., 1989; Kononoff et al., 2002; 

Zehner et al., 2012). Beauchemin et al. (1989) and Zehner et al. (2012) evaluated similar 

technologies using visual or video observations. These technologies performed similarly 
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for rumination quantification and were shown to be effective. Beauchemin et al. (1989) 

and Zehner et al. (2012) also evaluated feeding time using these same technologies and 

found similar agreement with visual observation. In contrast, Kononoff et al. (2002) used 

a similar technology and found significant differences between observed rumination time 

and recorded rumination time, but no significant differences between observed feeding 

time and recorded feeding time. Technologies describing when cows approach feeding 

areas and eat have been highly correlated to visual methods (DeVries et al., 2003; 

Chapinal et al., 2007). Chewing activity (strain and pressure), and feeding behavior 

monitors are primarily used in research settings, but commercially available rumination 

and feeding behavior quantification methods have also been evaluated. Bikker et al. 

(2014) evaluated a technology monitoring rumination and feeding behavior through head 

movement and found a high correlation for rumination and feeding time. Schirmann et al. 

(2009) evaluated a technology quantifying rumination sounds through a microphone and 

microprocessor and found a high correlation between visual observations and the 

technology. 

Time spent lying (Haley et al., 2000), and the laterality of lying behavior (Tucker 

et al., 2009) can indicate cow comfort, welfare, and health changes. Proudfoot et al. 

(2014) found sick or ill cattle spent more time lying apart from the herd. Lying behavior 

is another parameter that has been quantified using precision dairy farming technologies 

(McGowan et al., 2007; O’Driscoll et al., 2008; Ledgerwood et al., 2010). Compared to 

other parameters measured by precision dairy farming technologies (e.g. feeding 

behavior, rumination, and activity), standing and lying events are easily visually 
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monitored. Monitoring these parameters using precision dairy farming technologies may 

be an alternative (Bonk et al., 2013).  

Studies previously evaluating lying behavior have reported high correlations 

between technologies and visual or video monitoring. The HOBO Data Logger (HOBO 

Pendant G Acceleration Data Logger, Onset Computer Corporation, Pocasset, MA) 

showed a high level of agreement with video monitoring (κ = 0.96; O’Driscoll et al., 

2008). The Afi Pedometer Plus (afimilk, S.A.E. AFIKIM, Kibbutz Afikim, Israel; 

Mattachini et al., 2013a) and the IceTag (IceRobotics Ltd, Edinburgh, Scotland; 

Mattachini et al., 2013b) technologies recording dairy cow lying behavior have shown 

high agreement with video monitoring. Similar methods quantifying behavior in sheep 

(Champion et al., 1997), goats (Zobel et al., 2014), and dairy calves (Bonk et al., 2013) 

have shown data loggers to effectively characterize lying and standing behavior in other 

species as well. 

Behavioral recording methods have rarely been compared on the same animals 

over the same periods of time. The objective of the current study was to evaluate multiple 

technologies characterizing dairy cattle feeding, rumination, and lying behaviors against 

direct visual observations on the same cows. 

MATERIALS AND METHODS 

This study was conducted at the University of Kentucky Coldstream Dairy Research 

Farm under Institutional Animal Care and Use Committee protocol number 2014-1309. 

All cows were housed in two groups separated by a shared, raised feedbunk with a 

conveyer feed delivery system. A TMR ration containing corn silage, alfalfa silage, 

whole cottonseed, and grain mix was delivered 2X at 0530 and 1330. Cows were given 

unrestricted access to freestalls. One group of cows was provided sawdust-covered 
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rubber-filled mattresses (PastureMat; Promat, Ontario, Canada). The other group of cows 

was provided sawdust-covered Dual Chamber Cow Waterbeds (Advanced Comfort 

Technology, Inc., Reedburg, WI). Grass seeded exercise lot access was permitted for 1 h 

per day at 10:00 AM, weather permitting. All other surfaces (freestall area, feedbunk 

alley, holding pen, and alleys) contained grooved concrete. Milking occurred twice daily 

at 04:30 and 15:30.   

The study included primiparous (n = 24) and multiparous (n = 24) Holstein dairy 

cows averaging 223.4 ± 117.8 DIM and producing an average 29.22 ± 8.20 kg/d. 

Enrolled cattle were fitted with the following technologies: Afi Pedometer Plus (attached 

to left rear leg), CowManager SensOor (Agis, Harmelen, the Netherlands; attached to left 

ear), IceQube Sensor (IceRobotics Ltd, Edinburgh, Scotland; right rear leg), Smartbow 

(MKW electronics GmbH, Jutogasse, Austria; left ear), and Track a)) Cow(ENGS, Israel; 

right front leg). These tags were attached at or before transition into the milking herd. 

Further technology information is included in Table 4.1. HOBO Data Loggers were 

placed in watertight bags, wrapped in colored self-adhesive wrap, and attached to each 

cow’s left rear leg (6 cm above the Afi Pedometer Plus) following evening milking the 

day before observation. HOBO Data Loggers recorded lying behavior using a triaxial 

accelerometer to collect relative position every minute. Previous studies have established 

HOBO Data Logger accuracy in 1 min periods (Ito et al., 2009). 

Technologies were compared by data summation time blocks and parameters 

measured. The CowManager SenOor and Track a)) Cow systems monitored feeding 

behavior in minutes per hour block. The SensOor and Smartbow systems monitored 

rumination in minutes per hour block. Lying behavior was characterized by the Afi 
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Pedometer Plus system (variable time blocks generated from a handheld reader; minutes 

lying between readings), the HOBO Data Logger (3-dimensional position sample 

collected every minute), the IceQube sensor (minutes lying per 15 min time block), and 

the Track a)) Cow system (minutes lying per hour). Afi Pedometer Plus lying behavior 

data was downloaded using handheld readers because the available technology version 

could not constantly record and transmit data. Readings were collected at shift start, and 

approximately every 15 min following. 

Parameters were compared to the results of direct visual observation. Observation 

shifts occurred following morning and evening milking as cows exited the milking parlor, 

in 2 h shifts. The study took place over 8 d. Each of the 48 enrolled cows was observed 

for 2 observation periods, on the same day, for a total of 4 h. Forty-two observers 

consisting of undergraduate and graduate students from the University of Kentucky. Six 

observers were assigned to each shift. Each observer was assigned to observe a different 

cow (six cows observed per shift). Fourteen observers contributed at least one 

observation shift and 28 observers contributed multiple observation shifts. 

Data recording sheets and event classification instructions were sent to each 

observer before the beginning of their shift. Upon arrival at the dairy and before the 

beginning of their observational shift, observers were again shown how to properly 

classify and record behaviors. Videos were used to illustrate eating, rumination, and lying 

or standing events and observers were instructed on proper recording procedures. 

Observers were also instructed to disrupt cattle as little as possible. 

Observers recorded the hour, minute, and second of start and stop times for 

rumination, feeding, and lying events using multi-function atomic watches (CASIO, 
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CASIO America, Inc., Dover, NJ). A time-synchronizing radio frequency synchronized 

watches to one another. The same time was used to synchronize computers equipped with 

each data logger’s software. Start and stop times of each visually monitored behavior 

were compared against computer recorded times of each individual technology to 

determine technology classification accuracy. Cows lying for the entire observation 

period were encouraged to stand, similar to methods used by Bonk et al. (2013) to 

generate standing bouts. Cattle were also persuaded to enter the feeding area if eating 

events had not yet occurred. 

Event Classification 

Previous work involving feeding behavior characterized the behavior through jaw 

movements, licking movements, chewing behavior, or whether a cow crossed a threshold 

or gate to a predefined feeding area (Schirmann et al., 2009; Zehner et al., 2012; Bikker 

et al., 2014). A combination of these methods was used in this study because different 

methods of quantifying feeding behavior were used for each evaluated technology. A 

cow was considered to be eating if actively chewing, and standing near the feedbunk. If 

chewing stopped for longer than 5 seconds, cattle were recorded as having stopped 

eating. Rumination was quantified in similar methods to Schirmann et al. (2009), where 

rumination was defined as the point in time of regurgitation. Observers recorded events 

where regurgitated boluses reached the esophagus, entered the mouth, and were 

subsequently followed by the initiation of rhythmic chewing by the cow. Rumination 

events ended when rhythmic chewing ceased and the bolus was swallowed. Similar to the 

methods of Ledgerwood et al. (2010), transition from a standing position to a lying 

position defined lying events. Cattle were considered lying if the flank of the animal 

came in contact with a surface during transition from a standing position. Upon flank 
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impact with the ground, time was recorded. Similar to Ledgerwood et al. (2010), a cow 

was classified as standing when a transition from a lying position to a standing position 

occurred and all four limbs were fully extended and perpendicular to the ground; at this 

point the time was recorded.  

Data corresponding to study periods were collected, and analyzed in SAS version 

9.3 (SAS Institute, Cary, NC). Two shifts of feeding behavior and three shifts of 

rumination behavior data were removed because of observation error. PROC CORR of 

SAS generated Pearson correlation coefficients for two analyses. A direct measures 

correlation analysis compared agreement between data loggers and visual observations. A 

repeated measures analysis established data independence and removed variation 

between and within subjects. Repeated measures analyses averaged subject logger and 

visual observation data to provide one observation per subject and established agreement 

between data loggers and visual observations (Bland and Altman, 1995a; b). 

Because multiple observers were used to collect visual observations, a subset of 

observers served to establish the variability between observers. These observers collected 

data in the same methods as previously described. For both a morning and evening 

observation shift, the 4 observers collected data from a single cow. A different cow was 

used for the morning and evening observations shifts for a total of 4 h. Observers were 

instructed to stand out of sight of each other and to not talk to one another. PROC CORR 

generated Pearson correlation coefficients to establish interobserver variability. 

RESULTS AND DISCUSSION 

Interobserver Variability 

Observations of four volunteers established interobserver variability (Table 4.2). 

A high level of agreement was found between observers for eating time (r > 0.96 across 
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observers; P < 0.01) and lying time (r > 0.99 across all observers; P < 0.01). Rumination 

time was most variable between observers (r > 0.89 across all observers; P < 0.01), but 

was relatively high. The use of visual observation as a rumination gold standard has 

previously been questioned (Kononoff et al., 2002). Many observers in this study 

indicated rumination to be difficult to visually quantify, which may explain some 

observer rumination recording variation.  

Feeding Behavior 

Technologies recorded feeding behavior in minutes per hour time block and were 

evaluated against visual observations over the same time period. Sample size, mean 

number of units, and standard deviations can be found for all feeding behavior measures 

in Table 4.3. Hourly feeding behavior data for the CowManager SensOor (mean ± SD; 

9.9 ± 6.7 min/h) and Track a)) Cow (7.7 ± 5.6 min/h) systems were compared against 

direct visual observation (14.1 ± 6.5 min/h).  

A direct and repeated measures analysis between visual observation and data 

loggers recording feeding behaviors is shown in Table 4.4. Evaluation of feeding 

behavior data from the CowManager SensOor and direct visual observation using direct 

measures (not accounting for repeated measures) produced a high agreement level (r = 

0.97; P = 0.03). In evaluation of time present at the feedbunk monitored by the Track a)) 

Cow system, a high level of agreement between actual feed intake time and number of 

minutes at the feedbunk was found (r = 0.91; P = 0.09). A comparison between the two 

technologies showed them to perform similarly with r = 0.91 (P = 0.09). For the repeated 

measures analysis, performance decreased in comparison to the direct measures analysis 

for the CowManager SensOor to visual observation (r = 0.91; P = 0.09), Track a)) Cow to 
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visual observation (r = 0.88; P = 0.12) and for the CowManager SensOor to Track a)) 

Cow system (r = 0.83; P = 0.17).  

Bikker et al. (2014) previously evaluated the CowManager SensOor, finding a 

moderately weaker correlation (r = 0.88; P < 0.01). Bikker et al. (2014) used visual 

observations by minute to compare behaviors. The current study quantified visual 

observations to the second to more accurately describe behavior. This may explain the 

greater correlation and lower significance levels. 

To our knowledge, this is the first study to validate the Track a)) Cow system. A 

similar system that records a cow’s proximity to the feedbunk was highly correlated to 

feeding behavior (r
2
 = 0.98; P < 0.01; DeVries et al., 2003). In that study, eating event 

documentation occurred when cattle placed their heads under feed rails and over feed. A 

system evaluated by Chapinal et al. (2007) also showed greater correlation to visual 

observation (R
2
 = 1.00; P < 0.01) than the current study, but this technology is primarily 

a research tool.  

The direct (r = 0.91; P = 0.09) and repeated (r = 0.88; P = 0.12) measures in our 

study were lower, but the Track a)) Cow system recorded feeding events when cows 

approached the feedbunk by right front leg proximity. Requiring cows to stand 

perpendicularly to the feedbunk through headlock implementation may improve results. 

Rumination 

Technologies recorded rumination in minutes per hour time block and were 

evaluated against visual observations over the same time period. Sample size, mean 

number of units, and standard deviations can be found for all rumination behavior 

recording technologies in Table 4.5. Data for the Smartbow (35.0 ± 10.1 min/h) and 
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CowManager SensOor (26.6 ± 5.6 min/h) systems were compared to direct visual 

observations (20.1 ± 5.5 min/h) over all hourly periods. 

A rumination behavior direct and repeated measures analysis between visual 

observation and data loggers is shown in Table 4.6. In the direct measures comparisons, 

the Smartbow system closely agreed with visual observations (r = 0.99; P < 0.01), as did 

the CowManager SensOor (r = 0.96; P < 0.01). The Smartbow and CowManager 

SensOor performed similarly when compared to each other (r = 0.94; P = 0.06). In a 

repeated measures analysis of the same data, the CowManager SensOor more closely 

matched visual observations (r = 0.44; P = 0.56) than the Smartbow system (r = -0.11; P 

= 0.89). The systems were weakly correlated when compared against each other (r = -

0.28; P = 0.72).  

In a previous evaluation of the CowManager SensOor, rumination was highly 

correlated to visual observation (r = 0.93; P < 0.01; Bikker et al., 2014). Direct measures 

correlation analysis indicated a similar level of performance. The repeated measures 

analyses indicate a lower agreement level. Rumination was the most difficult for 

observers to evaluate (r = 0.89, P < 0.01; interobserver variability) in the current study. 

Rumination monitor evaluation has traditionally been completed in tie stalls, small pens, 

or a similar controlled setting (Schirmann et al., 2009; Zehner et al., 2012; Bikker et al., 

2014). The current study allowed cattle to express behaviors as they would in the general 

herd, potentially leading to misidentified rumination events. This would have a larger 

effect on the repeated measures analysis because visual observations and technology-

generated data were averaged to obtain a single measurement per cow. Misidentified 



 

81 

visual observation events could skew the mean values used in repeated measures 

analysis, generating weaker correlations. 

Lying Behavior 

The Afi Pedometer Plus, IceQube, and Track a)) Cow were all evaluated against 

visual observation and the HOBO Data Logger. Sample size, mean number of units, and 

standard deviations can be found for all lying behavior recording technologies and time 

blocks in Table 4.7.  Lying behavior direct and repeated measures analyses between 

visual observation, the HOBO Data Loggers, and the various technologies is shown in 

Table 4.8. 

The IceQube correlated highly with visual observations at r > 0.94 (P < 0.01) in 

both direct and repeated measures analyses. The IceTag (IceRobotics Ltd, Edinburgh, 

Scotland) was previously evaluated for accuracy (McGowan et al., 2007; Mattachini et 

al., 2013b) but this is primarily a research tool. The current study used the IceQube, 

which is the commercially marketed version of the IceTag. Mattachini et al. (2013b) 

found the IceTag to perform similarly to video observation with a sensitivity of 1.00 ± < 

0.01, and a specificity of 1.00 ± < 0.01. IceQube performance in the current study was 

also compared to HOBO data logger performance on a 15 min basis (direct, r = 1.00; P < 

0.01 and repeated, r = 0.94; P < 0.01). Mattachini et al. (2013b) found similar results 

between the HOBO Data Logger and IceTag with a sensitivity of 0.99 ± < 0.01 and a 

specificity of 0.99 ± < 0.01. 

The Track a)) Cow system achieved high correlations with visual observation (r > 

0.93; P < 0.01) in both the direct and repeated measures analyses. This was an 

unexpected result as previous studies have shown the front legs to be the least accurate in 

monitoring lying behavior (Müller and Schrader, 2003). Track a)) Cow on an hourly 
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basis was highly correlated with HOBO Data Loggers (direct, r = 1.00; P < 0.01 and 

repeated, r = 0.89; P = 0.11). These results indicate lying behavior monitored on front 

and hind limbs to perform similarly. 

Afi Pedometer Plus and visual observations were highly correlated (r > 0.90; P < 

0.01), as were Afi Pedometer Plus and HOBO Data Logger observations (r > 0.90; P < 

0.01). Although correlations were high, the Afi Pedometer Plus least agreed with visual 

observations and HOBO Data Loggers. The method (handheld reader) used to collect Afi 

Pedometer Plus lying behavior data may have influenced results. The Afi Pedometer Plus 

tag delays data generation to account for potentially erroneous data readings. Tags must 

remain in a lying or standing set for a period of time to register a lying or standing event 

(Mattachini et al., 2013a). Because of this, the tag tended to overestimate or 

underestimate lying time in comparison to visual observations and HOBO Data Logger 

readings. If the handheld reader collected lying behavior before data delays were 

complete, time lying or standing for those readings would be passed to subsequent time 

blocks, misrepresenting data. If data was continuously recorded, delayed data would have 

a lesser effect on results. Future studies will need to establish the Afi Pedometer Plus’s 

accuracy using automatically collected lying and standing at regular intervals. 

The HOBO Data Logger showed a high level of agreement in lying time between 

the IceQube, on a 15 min basis (direct, r = 1.00; P < 0.01 and repeated, r = 0.94; P < 

0.01); Track a)) Cow on an hourly basis (direct, r = 1.00; P < 0.01 and repeated, r = 0.89; 

P = 0.11); and Afi system, in variable time periods (direct, r = 0.93; P < 0.01 and 

repeated, r = 0.90; P < 0.01). HOBO Data Loggers have previously been shown to 

accurately describe lying behavior in dairy cattle (Ledgerwood et al., 2010; Mattachini et 
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al., 2013a; Mattachini et al., 2013b), dairy calves (Bonk et al., 2013) , and dairy goats 

(Zobel et al., 2014).Visual observations were previously found to be more similar to the 

Afi Pedometer Plus and IceTag than to the HOBO Data Logger (Mattachini et al., 2013a; 

Mattachini et al., 2013b). This could be for several reasons. HOBO Data Loggers are 

research tools and have differing sampling times. In this experiment, the HOBO Data 

Loggers sampled the device’s 3-dimensional position every minute. Data analysis 

techniques assumed this position to remain constant for each minute. This could lead to 

variation in the number of minutes spent lying in comparison to technologies sampling 

more frequently. Previous methods have evaluated the HOBO Data Logger’s 

performance over different sampling time frequencies (Ito et al., 2009; Ledgerwood et al., 

2010; Mattachini et al., 2013b). Adjustments in sampling frequency may increase 

technology performance. 

The data loggers used in the current study were able to accurately quantify 

feeding, rumination, and lying behaviors. Direct measures correlations resulted in greater 

agreement between technologies and visual observations than repeated measures in all 

comparisons. Direct measures may overestimate technology performance by not 

accounting for a lack of data independence. Commercially marketed technologies showed 

only slight differences in correlation with visual observations and that of HOBO Data 

Loggers (in lying time evaluation only). Comparing all data across the same time frame 

may provide more accurate technology comparisons, but this was not possible in the 

current study. Summation of technology and observation data into hour blocks would 

have allowed for all but the Afi Pedometer Plus (because of variable time blocks) to be 

compared. This was not performed because technology manufacturers describe 
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technology-recorded behaviors in different time blocks. Manufacturers use the 

parameters measured by these technologies in the generation alerts describing events of 

interest (e.g. health and estrus). Technologies were evaluated to match behavioral use by 

algorithms for health and estrus alerts. Changing time blocks could misrepresent data 

used in algorithms, creating biased comparisons. Future research obtaining technology 

data in common time units directly from manufacturers would allow for a more accurate 

technology performance comparison. 

CONCLUSIONS 

To the knowledge of the authors, this is the first precision dairy farming 

technology validation study performed evaluating multiple parameters and technologies 

attached to the same cows. Commercially marketed technologies recording feeding 

behavior, rumination, and lying behavior performed similarly to one another when 

compared against visual observation over the same periods. Results of direct correlations 

for all observations produced results similar to previously completed validation work. 

Much of the previous work did not account for repeated measures collected on the same 

animals over time. Results of the current study accounting for repeated measures indicate 

direct correlations may overestimate technology performance. 
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Table 4.1. Technology information for data loggers used in a study evaluating behavioral 

quantification performance.
1 

Technology Cow location 
Parameters 

measured 

Internal 

technology 
Units 

Afi Pedometer 

Plus
2 Left rear leg Lying behavior 

Triaxial 

accelerometer 

min 

between 

readings
1 

CowManager 

SensOor 
Left ear 

Feeding behavior, 

rumination 

behavior 

Triaxial 

accelerometer 
min/h 

HOBO Data 

Logger 

Left rear leg 

(upper) 
Lying behavior 

Triaxial 

accelerometer 
min/h 

IceQube Right rear leg Lying behavior 
Triaxial 

accelerometer 
min/15 min 

Smartbow Right ear 
Rumination 

behavior 

Triaxial 

accelerometer 
min/h 

Track a)) Cow Right front leg 
Feeding behavior, 

lying behavior 

Triaxial 

accelerometer 
min/h 

1
Afi Pedometer Plus leg tag (afimilk, S.A.E. AFIKIM, Kibbutz Afikim, Israel), 

CowManager SensOor ear tag (Agis, Harmelen, the Netherlands), IceQube Sensor leg tag 

(IceRobotics Ltd, Edinburgh, Scotland), Smartbow ear tag (MKW electronics GmbH, 

Jutogasse, Austria), and Track a)) Cow leg tag (ENGS, Israel) and HOBO Data Loggers 

(HOBO Pendant G Acceleration Data Logger, Onset Computer Corporation, Pocasset, 

MA). 

2
Afi Pedometer Plus lying behavior data was downloaded using a handheld reader. 

Readings were collected at shift start, and around every 15 min following, until shift end.
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Table 4.2. Results from a technology evaluation study indicating observer agreement by 

second (Pearson correlation coefficients) for visually observed dairy cow eating time, 

lying time, and rumination time for four observers.
1, 2 

Behavior Observer # 

Pearson correlation coefficients between 

observers 

1 2 3 4 

Eating 1  0.99 0.99 0.97 

2 0.99  0.99 0.96 

3 0.99 0.99  0.96 

4 0.97 0.96 0.96  

Lying 1  1.00 1.00 1.00 

2 1.00  1.00 1.00 

3 1.00 1.00  1.00 

4 1.00 1.00 1.00  

Rumination 1  0.88 0.95 0.92 

2 0.88  0.91 0.88 

3 0.95 0.91  0.95 

4 0.92 0.88 0.95  
1
All Pearson Correlation Coefficients were evaluated for the probability of observing 

results under the null hypothesis that correlations were 0. 

2
P < 0.01 was observed for all correlations.
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Table 4.3. Results from a technology evaluation study indicating hourly feeding behavior 

statistics for data loggers and visual observations in Holstein dairy cattle.
1 

Data recording method 
Observations per cow 

(n = 46) 

Mean time 

(min) 

SD 

(min) 

CowManager SensOor 4 9.9  6.7 

Track a)) Cow 4 7.7 5.6 

Observed 4 14.1 6.5 

1
CowManager SensOor ear tag (Agis, Harmelen, the Netherlands) and Track a)) Cow leg 

tag (ENGS, Israel).
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Table 4.4. Results from a technology evaluation study indicating levels of agreement 

between hourly feeding behavior monitored by data loggers and visual observations in 

Holstein dairy cattle.
1, 2

 

Technology 

Observations 

per cow 

(n = 46) 

Repeated measures 

correlation 

coefficients 

Direct measures 

correlation 

coefficients 

Observed 

Intake 

Track a)) 

Cow 

Observed 

Intake 

Track a)) 

Cow 

CowManager 

SensOor 
4 0.91 0.83 0.91 0.91 

Track a)) 

Cow 
4 0.88  0.97*  

 

1
CowManager SensOor ear tag (Agis, Harmelen, the Netherlands) and Track a)) Cow leg 

tag (ENGS, Israel). 

2
Correlation coefficients were performed accounting for repeated measures, or directly 

across all observations. 

*-Denotes significance at *P < 0.05, **P < 0.01.
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Table 4.5. Results from a technology evaluation study indicating hourly rumination 

behavior statistics for data loggers and visual observations in Holstein dairy cattle.
1 

Data recording method 
Observations per cow 

(n = 46) 

Mean time 

(min) 

SD 

(min) 

Smartbow 4 35.0 10.1 

CowManager SensOor 4 26.6 5.6 

Observed 4 20.1 5.5 
1
CowManager SensOor ear tag (Agis, Harmelen, the Netherlands) and Smartbow ear tag 

(MKW electronics GmbH, Jutogasse, Austria) 
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Table 4.6. Results from a technology evaluation study indicating levels of agreement 

between hourly rumination behaviors monitored by data loggers and visual observations 

in Holstein dairy cattle.
1, 2

 

Technology 

Observations 

Per Cow 

(n = 46) 

Repeated Measures 

Pearson Correlation 

Coefficients 

Direct Measures 

Correlation Coefficients 

Observed Smartbow Observed Smartbow 

CowManager 

SensOor 
4 0.44 -0.28 0.96* 0.94 

Smartbow 4 -0.11  0.99**  
1
CowManager SensOor ear tag (Agis, Harmelen, the Netherlands) and Smartbow ear tag 

(MKW electronics GmbH, Jutogasse, Austria) 

2
Correlation coefficients were performed accounting for repeated measures, or directly 

across all observations. 

*-Denotes significance at *P < 0.05, **P < 0.01. 
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Table 4.7. Results from a technology evaluation study indicating data logger and visual 

observation statistics in Holstein dairy cattle.
1 

Time frame
2 Data recording 

method 

Observations 

per cow 

(n = 46) 

Mean time 

(min) 

SD 

(min) 

Minute HOBO Data Logger 162 0.5 0.3 

Observed  162 0.5 0.3 

15 Minutes IceQube  20 6.3 4.2 

HOBO Data Logger 20 6.7 4.2 

Observed  20 5.9 4.1 

Hourly Track a)) Cow 4 2223.0 953.0 

HOBO Data Logger 4 2182.0 973.3 

Observed  4 2057.0 1052.0 

Variable
3 

Afi Pedometer Plus 9 6.7 2.8 

HOBO Data Logger 9 6.8 3.3 

Observed 9 6.2 2.9 
1
Afi Pedometer Plus leg tag (afimilk, S.A.E. AFIKIM, Kibbutz Afikim, Israel), IceQube 

Sensor leg tag (IceRobotics Ltd, Edinburgh, Scotland), and Track a)) Cow leg tag 

(ENGS, Israel) and HOBO Data Loggers (HOBO Pendant G Acceleration Data Logger, 

Onset Computer Corporation, Pocasset, MA). 

2
Observational data was summed in 1 minute, 15 minute, hourly, and variable time 

blocks to match technology data summation times.
 

3
Data was collected using a handheld reader for the Afi Pedometer Plus system. Data was 

collected once approximately every 15 min.
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Table 4.8: Results from a technology evaluation study indicating levels of agreement 

between data loggers, visual observations, and the HOBO Data Logger in Holstein dairy 

cattle.
1, 2 

Time 

frame
3 Technology 

Observations 

per 

cow 

(n = 46) 

Repeated measures 

Pearson 

correlation 

coefficients 

Direct measures 

Pearson 

correlation 

coefficients 

HOBO Observed HOBO Observed 

Minute HOBO 162  0.83**  0.98** 

15 Minutes IceQube 20 0.94** 0.94** 1.00** 0.99** 

HOBO 20  0.88**  0.99** 

Hourly Track a)) Cow 4 0.89 0.93 1.00** 0.99** 

HOBO 4  0.89  1.00** 

Variable
4 

Afi Pedometer 

Plus 
9 0.90** 0.90** 0.93** 0.97** 

HOBO 9  0.84**  0.99** 
1
Afi Pedometer Plus leg tag (afimilk, S.A.E. AFIKIM, Kibbutz Afikim, Israel), IceQube 

Sensor leg tag (IceRobotics Ltd, Edinburgh, Scotland), and Track a)) Cow leg tag 

(ENGS, Israel) and HOBO Data Loggers (HOBO Pendant G Acceleration Data Logger, 

Onset Computer Corporation, Pocasset, MA). 

2
Correlation coefficients were performed accounting for repeated measures, or directly 

across all observations. 

3
Observational data was summed in 1 min, 15 min, hourly, and variable time blocks to 

match technology data summation times.
 

4
Data collected using a handheld reader for the Afi Pedometer Plus system. Data was 

collected once approximately every 15 min. 

*Denotes significance at *P < 0.05, **P < 0.01. 
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APPENDIX 

Figure A2.1.  A producer survey to assess precision dairy farming technology adoption, 

considerations made pre-purchase, and usefulness
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Figure A2.1 cont.
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Figure A2.1 cont. 
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Figure A2.1 cont.
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Figure A2.1 cont.
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Figure A2.1 cont.
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