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ABSTRACT OF DISSERTATION

The Bourgain spaces and recovery of magnetic and electric potentials of Schrödinger
operators

We consider the inverse problem for the magnetic Schrödinger operator with the
assumption that the magnetic potential is in Cλ and the electric potential is of the
form p1 + div p2 with p1, p2 ∈ C λ̃. We use semiclassical pseudodifferential operators
on semiclassical Sobolev spaces and Bourgain type spaces. The Bourgain type spaces
are defined using the symbol of the operator h2∆ + hµ ·D. Our main result gives a
procedure for recovering the curl of the magnetic field and the electric potential from
the Dirichlet to Neumann map. Our results are in dimension three and higher.
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Chapter 1 Introduction

Let Ω ⊂ Rn, n ≥ 3 be a bounded domain with C1,1 boundary. The magnetic
Schrödinger operator is

HW,p =
n∑
j=1

(Dj +Wj)
2 + p. (1.1)

where Dj = 1
i
∂
∂xj

, W is the magnetic potential, and p is the electric potential. We

assume that W ∈ Cλ
c (Rn; Cn), p = p1 +div p2 with p1, p2 ∈ C λ̃

c (Rn; C). We are using
Cα
c (Rn) to denote the space of functions which are Hölder continuous of exponent α

and compactly supported in Rn.
If we assume 0 is not a Dirichlet eigenvalue of HW,p, then the boundary value

problem {
HW,pu = 0 in Ω,

u = f on ∂Ω

has a unique solution u = uf ∈ H1(Ω) for any f ∈ H1/2(∂Ω).
We will use the Dirichlet to Neumann map (DN map) to describe our boundary

measurements. The DN map is defined by

ΛW,p : f → ∂uf
∂ν
|∂Ω + i(W · ν)f

where ν is the outer unit normal to ∂Ω. Furthermore, for f , g ∈ H1/2(∂Ω), if we
assume HW,puf = 0 in Ω, uf = f on ∂Ω, H−W,pvg = 0 in Ω, vg = g on ∂Ω, ϕf , ϕg are
any functions in H1(Ω) with ϕf = f , ϕg = g on ∂Ω, then the weak formulation for
ΛW,p is

〈Λw,pf, g〉 =

∫
Ω

(∇uf · ∇ϕg + iW · (uf∇ϕg − ϕg∇uf ) + (W ·W )ufϕg) dx+ 〈puf , ϕg〉.

(1.2)
Using the adjoint of ΛW,p, we also have

〈Λw,pf, g〉 =

∫
Ω

(∇ϕf · ∇vg + iW · (ϕf∇vg − vg∇ϕf ) + (W ·W )ϕf , vg) dx+ 〈pϕf , vg〉.

(1.3)
From this definition it follows that ΛW,p is bounded on H1/2(∂Ω) → H−1/2(∂Ω).
Since p is not a function, following Brown [4], we define the “multiplication by p” by
〈pu, v〉 =

∫
p1uv −

∫
p2 · ∇(uv) when u and v are sufficently smooth.

The inverse problem for the magnetic Schrödinger operator is the problem of
recovering curlW and p from ΛW,p. This problem related to the inverse conduc-
tivity problem of Calderón [5]. Previous results for this problem concern different
assumptions of W , p (starting with Sylvester and Uhlmann[22] and later work in
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[26],[27]). The inverse problem of the closely related magnetic Schrödinger equa-
tion, was first worked by Sun [21]. Nakamura, Sun and Uhlmann [15] considered W ,
p ∈ C∞(Tolmasky [24] improved to C1 and Salo [17] to Dini continuous). Salo [18]
solved this in the case when W is continuous with D ·W ∈ L∞, p ∈ L∞. Krupchyk
and Uhlmann [12] worked on this problem when W ∈ L∞ and q ∈ L∞. Pohjola [16]
studied the case when W ∈ C2/3+ε, p = p1 + div p2 with p1, p2 ∈ C2/3+ε for any small
ε. Haberman[9] proves the case that on a ball B ⊂ R3 when W is small in W s,3 for
some s > 0, and p ∈ W−1,3.

We recover p by using the complex geometrical optics (CGO) solutions of HW,pu =
0 in Bourgain type spaces. CGO solutions are solutions of the form

u = eix·ζv

where ζ ∈ Cn, and satisfies ζ · ζ = 0. The use of CGO solutions for inverse problems
first appeared in Sylvester-Uhlmann [22]. The Bourgain type spaces we use were
introduced to the study of inverse problems by Haberman and Tataru [10]. The
original Bourgain spaces were defined by Bourgain in [2]. The definition is as follows.
In this definition and throughout this paper, we use a · b =

∑
i aibi for vectors a and

b in Cn.

Definition 1.1. Let q(ξ) = ξ · ξ + 2µ · ξ, where µ ∈ Cn with |µ| =
√

2 and µ · µ = 0,
we define spaces Ẋb

µ,h, Xb
µ,h and Xb

µ,h,σ with the following norms

‖f‖Ẋb
µ,h

= ‖|q(h·)|bf̂(·)‖2

‖f‖Xb
µ,h

= ‖(h+ |q(h·)|)bf̂(·)‖2

‖f‖Xb
µ,h,σ

= ‖(h2(1−σ) + |q(h·)|2)b/2f̂(·)‖2

for f ∈ S ′, f̂ ∈ L1
loc is a function, b, h, σ ∈ R with |b| < 1, σ ∈ [0, 1), h > 0.

In this definition and below, we use S ′(Rn) to denote the space of tempered
distributions and S(Rn) will denote the space of Schwartz functions.

Lemma 1.2. For b < 1, the the spaces Ẋb
µ,h, Xb

µ,h and Xb
µ,h,σ are Banach spaces.

Proof. It is clear that the spaces Xb
µ,h and Xb

µ,h,σ are Banach spaces. The interesting

point is to show that Ẋb
µ,h is complete.

Suppose we have a Cauchy sequence {fn} in the space Ẋb
µ,h. Then by the definition

of the space Ẋb
µ,h, f̂n is an element of a weighted L2-space where the norm of a function

g is ‖q(h·)g‖L2 . Since the weighted L2-space is complete, we can define

g := lim
n→∞

f̂n.

We need to show that g is a tempered distribution and thus that g = f̂ . Then we
will have that f = limn→∞ fn where the limit occurs in the space Ẋb

µ,h. To show that
g is a tempered distribution, observe that we have∫

B(0,R)

|g(ξ)| dξ ≤
(∫

B(0,R)

|g(ξ)|2|q(hξ)|2b dξ
)1/2(∫

B(0,R)

|q(hξ)|−2b dξ

)1/2

. (1.4)
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From estimate (2.1), since b < 1∫
B(0,R)

|q(hξ)|−2b dξ ≤ CRn−2b/h2b.

Using this in (1.4) implies that g is a tempered distribution. This proves the Lemma.

To recover p, we need to prove the existence of CGO solutions in the space Ẋ
1/2
µ,h

space. We will need to define semiclassical pseudodifferential operators and define
their action on Bourgain spaces in order to establish the existence of the CGO solu-
tions. We need a variant of the pseudodifferential cutoff technique used by Takeuchi
[23] and Kenig-Ponce-Vega [11]. Zworski [28] provides a good introduction to semi-
classical pseudodifferential operators. To recover W , we follow the method of Salo
[18, Section 6]. Even though our W is less regular than in Salo, we are still able to
adapt his proof. Once the CGO solutions are constructed, we can use a non-physical
scattering transform to recover p. The main result is

Theorem 1.3. Let Ω ⊂ Rn, n ≥ 3 be a bounded C1,1 domain. If W ∈ Cλ(Ω̄; Cn),

p = p1 + div p2 with p1, p2 ∈ C λ̃(Ω̄; C) ∩Hλ(Cn) and 0 is not a Dirichlet eigenvalue
of HW,p. Then when λ ∈ (1/2, 1), λ̃ ∈ (0, 1), curlW is determined by ΛW,p. Further,
when (λ+ 1)λ̃ > 3

2
, 0 < λ̃, λ < 1, ΛW,p determines p uniquely.

The main interest of this result is the low regularity on W and p. If we let λ = λ̃,
then our theorem applies for λ > (−1 +

√
7)/2 ≈ 0.82. Thus our theorem allows

potentials which are not functions and represents an improvement over the work of
Krupchyk and Uhlmann. The work of Pohjola assumes that λ = λ̃ and thus, our work
is slightly more general. Unlike Haberman’s recent work, there is not a restriction
that W is small. However, the result above is far from sharp.

Here is the structure of this dissertation. Chapter 2 talks about the properties
of Bourgain type spaces and semiclassical pseudodifferential operators. In chapter
3 and chapter 4, we obtain the existence of CGO solutions in the space Ẋ

1/2
µ,h and

in semiclassical Sobolev spaces. We show the boundary value of CGO solutions can
be determined by ΛW,p in chapter 5. chapter 6 contains the recovery of curlW . We
recover p in chapter 7. Chapter 8 talks about the future work.

Copyright c© Yaowei Zhang, 2016.
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Chapter 2 Bourgain type spaces and semiclassical pseudodifferential
operators

Bourgain type spaces

We first present some properties of Bourgain type spaces, which are critical when we
prove the existence of CGO solutions in the space Ẋ

1/2
µ,h .

Let 〈x〉 = (1 + |x|2)1/2, before we come to the proposition, we need this lemma.

Lemma 2.1. let Br(η) be the ball of radius r with center η, k ∈ (0, 2), N is a large
positive number, then ∫

Br(η)

| 1

q(hξ)
|k ≤ Crn−k/hk (2.1)

and ∫
〈η − ξ〉−N | h

q(hξ)
| ≤ C (2.2)

for some constant C depending only on the dimension n.

Proof. The proof of the first estimate (2.1) follows from R. Brown [3, page 82]. The
second estimate is from the first estimate and is also in Haberman and Tataru [10,
Lemma 2.2]. I will show how the first estimate works.

By a rotation in the variable ξ, it suffices to consider the case where µ = e1 + ie2.
We define the zero set of q(hξ) by Σµ = {ξ : q(hξ) = h2|ξ|2 + 2µ · (hξ) = 0}. We
consider 3 cases of the ball Br(η).

Case 1: When r < 1
100
h−1 and dist(η,Σµ) < 2r. We can rotate the variables

(ξ2, ξ3, · · · , ξn) about the center of Σµ, so that Br(η) ⊂ B3r(0). Since q(hξ) = |hξ|2 +
2(Reµ+iImµ)·(hξ) = |hξ+Reµ|2−|Reµ|2+2iImµ·(hξ), we can define new variables
x1 = |hξ +Reµ|2− |Reµ|2, x2 = Imµ · (hξ), xj = hξj, j = 3, 4, · · · ,n. Then we have
dx1
dξj

= 2h2ξj + 2h(Reµ)j,
dx2
dξj

= 2h(Imµ)j. So we obtain that∫
Br(η)

| 1

q(hξ)
|k ≤ Ch−n

∫
BChr(0)

| 1

x1 + ix2

|k dx1 dx2 · · · dxn

≤ Ch−n(hr)n−k

≤ Crn−k/hk.

(2.3)

Case 2: When dist(η,Σµ) > 2r. Since |q(hξ)| is comparable to h dist(ξ,Σµ) when
|ξ| < 8h−1 and comparable to |hξ|2 when |ξ| > 8h−1. Thus

1

|q(hξ)|
≤ C

1

hr
. (2.4)

This gives ∫
Br(η)

| 1

q(hξ)
|k ≤ C(

1

hr
)k
∫
Br(η)

1 ≤ Crn−k/hk. (2.5)
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Case 3: When r > 1
100
h−1 and dist(η,Σµ) < 2r. We write Br(η) = B0 ∪ B∞,

where B0 = Br(η) ∩ B4h−1(0) and B∞ = Br(η) \ B4h−1(0). By the argument in Case
1 and Case 2, we know ∫

B0

| 1

q(hξ)
|k ≤ C/hn (2.6)

We know that Σµ ⊂ B4h−1(0), so

1

|q(hξ)|
≤ C

1

|hξ|2
. (2.7)

on B∞. Thus ∫
B∞

| 1

q(hξ)
|k ≤ C

1

h2k
rn−2k (2.8)

which implies 2.1 since r > 1
100
h−1.

Proposition 2.2. For any δ > 0, we have a constant C = C(n, δ) so that

‖〈x〉−1/2−δf‖
X

1/2
µ,h
≤ C‖f‖

Ẋ
1/2
µ,h

(2.9)

‖〈x〉−1/2−δf‖
Ẋ
−1/2
µ,h
≤ C‖f‖

X
−1/2
µ,h
≤ Ch−1/2‖f‖L2 (2.10)

‖〈x〉−1/2−δf‖L2 ≤ Ch−1/2‖f‖
Ẋ

1/2
µ,h
. (2.11)

‖f‖
Ẋ

1/2
µ,h
≤ ‖f‖

X
1/2
µ,h
≤ ‖f‖

X
1/2
µ,h,σ

(2.12)

‖f‖
X
−1/2
µ,h,σ
≤ ‖f‖

X
−1/2
µ,h
≤ ‖f‖

Ẋ
−1/2
µ,h

(2.13)

‖f‖
X

1/2
µ,h,σ
≤ h−σ/2‖f‖

X
1/2
µ,h

(2.14)

‖f‖
X
−1/2
µ,h
≤ h−σ/2‖f‖

X
−1/2
µ,h,σ

(2.15)

The following proof uses ideas from Haberman and Tataru [10].

Proof. Let ϕ(x) = 〈x〉−1/2−δ, then

|ϕ̂(ξ)| ≤ C1

|ξ|n−1/2−δ e
−C2|ξ| (2.16)

for some C1 ∈ R, C2 ∈ R from Stein [19, p. 132].
To prove (2.9), let v(ξ) = h+ |q(hξ)| and w(ξ) = |q(hξ)|. It suffices to prove that

the operator S with Sf = v1/2(ϕ̂ ∗ f
w1/2 ) is bounded on L2. Suppose that S∗ is the
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adjoint of S, since ‖S∗‖L2→L2 = ‖S‖L2→L2 , it suffices to show that S∗ is bounded on
L2. We have

〈S∗f, g〉 = 〈f, Sg〉

=

∫
f(ξ)v(ξ)1/2

(∫
ϕ̂(ξ − η)

g(η)

w(η)1/2
dη

)
dξ

=

∫
w(η)−1/2

(∫
ϕ̂(ξ − η)v(ξ)1/2f(ξ) dξ

)
g(η) dη

(2.17)

Thus

S∗f(ξ) = w(ξ)−1/2

∫
ϕ̂(η − ξ)v(η)1/2f(η) dη

Since

‖S∗f‖2
2 =

=

∫ (∫
ϕ̂(η − ξ)v(η)1/2f(η) dη

)
·
(∫

ϕ̂(η̃ − ξ)v(η̃)1/2f(η̃) dη̃

)
w(ξ)−1 dξ

=

∫∫∫
ϕ̂(η − ξ)v(η)1/2f(η)ϕ̂(η̃ − ξ)v(η̃)1/2f(η̃)w(ξ)−1 dη dη̃ dξ

and
ϕ̂(η − ξ)v(η)1/2f(η)ϕ̂(η̃ − ξ)v(η̃)1/2f(η̃)

=

(
ϕ̂(η − ξ)ϕ̂(η̃ − ξ)

∣∣∣∣η − ξη̃ − ξ

∣∣∣∣1/2)1/2

v(η)1/2f(η)

·
(
ϕ̂(η − ξ)ϕ̂(η̃ − ξ)

∣∣∣∣ η̃ − ξη − ξ

∣∣∣∣1/2)1/2

v(η̃)1/2f(η̃).

Using a · b ≤ 1
2
(a2 + b2), we have

‖S∗f‖2
2 ≤

∫∫∫
|ϕ̂(η − ξ)||ϕ̂(η̃ − ξ)|

∣∣∣∣η − ξη̃ − ξ

∣∣∣∣1/2v(η) |f(η)|2w(ξ)−1 dη̃ dη dξ

Now we integrate in the variable η̃, and use that∫
|ϕ̂(η̃ − ξ)|

∣∣∣∣ 1

ξ − η̃

∣∣∣∣1/2 dη̃ ≤ C.

This implies that

‖S∗f‖2
2 ≤C

∫∫
|ϕ̂(η − ξ)||η − ξ|1/2v(η)|f(η)|2w(ξ)−1 dη dξ

≤C
∫ (∫

|ϕ̂(η − ξ)||η − ξ|1/2v(η)w(ξ)−1 dξ

)
|f(η)|2 dη

It follows that

‖S∗‖L2→L2 ≤ C max
η

(∫
|ϕ̂(η − ξ)||η − ξ|1/2v(η)w(ξ)−1 dξ

)1/2

. (2.18)
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We need to show the right side of (2.18) is bounded by some finite number.
Since |q(hξ)| ≈ |hξ|2 when |hξ| > 4 and |q(hη)| ≤ |q(hξ)|+ |q(h(η−ξ))|+h2|ξ||η−

ξ|, we have

| v(η)

w(ξ)
| = |h+ |q(hη)|

|q(hξ)|
|

≤ C
h+ |q(hξ)|+ |q(h(η − ξ))|+ h2|ξ||η − ξ|

|q(hξ)
|

≤ C(1 +
h+ h2|η − ξ|2 + h|η − ξ|+ h2|ξ||η − ξ|

|q(hξ)|
)

≤ C(1 +
h+ h2|η − ξ|2 + h|η − ξ|

|q(hξ)|
)

(2.19)

Now we consider the right side of (2.18),

|
∫
|ϕ̂(η − ξ)||η − ξ|1/2v(η)w(ξ)−1 dξ|

≤ C

∫
e−C2|η−ξ| 1

|η − ξ|n−1/2−δ |η − ξ|
1/2(1 +

h+ h2|η − ξ|2 + h|η − ξ|
|q(hξ)|

) dξ

≤ C

∫
e−C2|η−ξ| 1

|η − ξ|n−1−δ (1 +
h+ h2|η − ξ|2 + h|η − ξ|

|q(hξ)|
) dξ

≤ C

∫
e−C2|η−ξ| 1

|η − ξ|n−1−δ (1 +
h

|q(hξ)|
) dξ

≤ C + C

∫
e−C2|η−ξ| 1

|η − ξ|n−1−δ
h

|q(hξ)|
dξ.

(2.20)
For the integral∫

e−C2|η−ξ| 1

|η − ξ|n−1−δ
h

|q(hξ)|
dξ

≤
∫
|η−ξ|>1

e−C2|η−ξ| 1

|η − ξ|n−1−δ
h

|q(hξ)|
dξ

+

∫
B1(η)

e−C2|η−ξ| 1

|η − ξ|n−1−δ
h

|q(hξ)|
dξ

≤
∫
|η−ξ|>1

e−C2|η−ξ| h

|q(hξ)|
dξ +

∫
B1(η)

1

|η − ξ|n−1−δ
h

|q(hξ)|
dξ

=A+B

(2.21)

By estimate (2.2) in Lemma 2.1, A is bounded by finite number. For B, by

7



estimate (2.1) in Lemma 2.1, we have

B ≤
∞∑
k=0

∫
B

2−k (η)\B
2−k−1 (η)

1

|η − ξ|n−1−δ
h

|q(hξ)|
dξ

≤ C

∞∑
k=0

2k(n−1−δ)2−k(n−1)

≤ C
∞∑
k=0

2−kδ

≤ C.

(2.22)

Thus we have proven the estimate (2.9). The estimate (2.10) follows from (2.9) by

duality. For the estimate (2.11), since 1 < h+|q(hξ)|
h

, it follows that ‖〈x〉−1/2−δf‖L2 ≤
h−1/2‖〈x〉−1/2−δf‖

X
1/2
µ,h

, which is bounded by Ch−1/2‖f‖
Ẋ

1/2
µ,h

from estimate (2.9). The

estimates (2.12) and (2.13) follow easily from the definition of the Bourgain type
spaces.

The semiclassical pseudodifferential operators

In our proof of existence of solutions, we need to use semiclassical pseudodifferential
operators and we give the definition of these operators.

Definition 2.3. Let 0 ≤ σ1, σ2 ≤ 1 with σ1 + σ2 ≤ 1. We define Sσ1,σ2 to be the
space of all functions a(x, ξ;h) where x, ξ ∈ Rn and 0 < h < h0, h0 < 1, such that
for each h, we have a(x, ξ;h) ∈ C∞(R2n) and

∂αx∂
β
ξ a(x, ξ;h) ≤ Cαβh

−σ1|α|−σ2|β|

for any multi-index α, β.

Next we give more general symbol classes, which are defined by using an order
function. This is similar to the symbol classes in R. Beals [1, p.3] but we give a
semiclassical version of his definition.

Definition 2.4. Let ϕ(x, ξ;h) : Rn × Rn × (0, h0] → [0,∞), we say ϕ is an order
function if there exist σ1 ≥ 0, σ2 ≥ 0, N1 ≥ 0 and N2 ≥ 0 so that ϕ satisfies

|ϕ(x, ξ;h)| ≤ C〈h−σ1(x− y)〉N1〈h−σ2(ξ − η)〉N2|ϕ(y, η;h)|

for all x, y, ξ, η ∈ Rn.

Definition 2.5. Let σ1, σ2 ∈ [0, 1], and σ1 + σ2 ≤ 1, we define the symbol class
Sϕσ1,σ2(R

n) as the space of all functions a : Rn×Rn× (0, h0]→ C such that a( · ;h) ∈
C∞(R2n) and

|∂αx∂
β
ξ a(x, ξ;h)| ≤ Cα,βh

−|α|σ1−|β|σ2ϕ(x, ξ;h).
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When the order function ϕ = 1, we use Sσ1,σ2 for symbols in place of S1
σ1,σ2

in
order to avoid confusion with other common notations. Given a symbol a in one of
the classes defined above, there is a natural way to define an operator A = Oph(a) :
S(Rn)→ S ′(Rn). This is the subject of the next definition.

Definition 2.6. For a ∈ Sϕσ1,σ2, we define the operator A = Oph(a) = a(x, hD) by

Af(x) = (2π)−n
∫
Rn

eix·ξa(x, hξ;h)f̂(ξ) dξ

where f̂ is the Fourier transform of f . The function a(x, ξ;h) is called the symbol of
the operator A.

Lemma 2.7. Let b ∈ R, then the function φ(ξ) = (h2(1−σ) + |q(ξ)|2)b/2 is an order
function and a symbol in Sφ0,1−σ.

Proof. We know |q(ξ)| = |q(ξ − η + η)| ≤ |q(ξ − η)|+ |q(η)|+ 2|ξ − η||η|. Thus

(h2(1−σ) + |q(ξ)|2)b/2

(h2(1−σ) + |q(η)|2)b/2
≤(1 +

(|q(ξ − η)|+ 2|ξ − η||η|)2

h2(1−σ) + |q(η)|2
)b/2

≤(1 +
(|ξ − η|2 + 2|µ · (ξ − η)|+ 2|ξ − η||η|)2

h2(1−σ) + |q(η)|2
)b/2

≤
(

1 + (|h−2(1−σ)|ξ − η|4 + 2h−2(1−σ)|ξ − η|2

+
(2|ξ − η||η|)2

h2(1−σ) + |q(η)|2
)
)b/2

≤C〈h−(1−σ)(ξ − η)〉2b.

(2.23)

which gives us φ is an order function.
To prove φ is a symbol, we need to estimate the norm of derivatives. We estimate

the first order partial derivatives as follows

| ∂
∂ξj

φ(ξ)| =
∣∣ b
2

(h2(1−σ) + |q(ξ)|2)b/2−1 ∂

∂ξj
(q(ξ) ¯q(ξ))

∣∣
= | b

2
|
∣∣(h2(1−σ) + |q(ξ)|2)−1

(
(2ξj + 2µj)q(ξ) + (2ξj + 2µj)q(ξ)

)∣∣|φ(ξ)|

≤ C
∣∣(h2(1−σ) + |q(ξ)|2)−1/2|2ξj + 2µj|

∣∣|φ(ξ)|
≤ Ch−(1−σ)|φ(ξ)|

(2.24)
Similarly, we can calculate higher partial derivatives, and get φ ∈ Sφ0,1−σ.

Lemma 2.8. If a ∈ Sϕσ1,σ2, b ∈ Sψσ1,σ2, then ab ∈ Sϕψσ1,σ2.
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Proof. By the product rule,

|∂αx∂
β
ξ a(x, ξ;h)b(x, ξ;h)| = |

∑
α1+α2=α
β1+β2=β

C(α1, β1, α2, β2)∂α1
x ∂

β1
ξ a ∂

α2
x ∂

β2
ξ b|

≤ |
∑

α1+α2=α
β1+β2=β

C(α1, β1, α2, β2)h−|α1|σ1−|β1|σ2ϕh−|α2|σ1−|β2|σ2φ

≤ C(α, β)h−|α|σ1−|β|σ2ϕφ

|

(2.25)
Thus ab ∈ Sϕψσ1,σ2 .

The lemma below shows that if A and B are semiclassical pseudodifferential op-
erators, then the composition A◦B is a semiclassical pseudodifferential operator and
gives information about the symbol.

Lemma 2.9. Let a ∈ Sϕσ1,σ2 and b ∈ Sψσ̃1,σ̃2, with σ2 + σ̃1 ≤ 1, c(x, ξ) be the symbol of

operator A ◦ B with A = Oph(a) and B = Oph(b), then c ∈ Sϕψmax (σ1,σ̃1),max (σ2,σ̃2) and
for each M = 1, 2, . . . we have

c(x, ξ) =
∑
|α|<M

h|α|

α!
∂αξ a(x, ξ)Dα

x b(x, ξ) + hM(1−σ2−σ̃1)Sϕψσ1,σ̃2 (2.26)

Proof. Our argument follows the proof in Stein [20, page 320 - 323], with obvious
changes to handle the parameter h and the order functions.

We first assume that a and b have compact support in the x and ξ variables. By
definition

Af(x) = (2π)−n
∫
a(x, hη)eiη(x−y)f(y) dydη

Bf(y) = (2π)−n
∫
b(y, hξ)eiξ(y−z)f(z) dzdξ.

So we have

ABf(x) = (2π)−2n

∫
a(x, hη)eiη·(x−y)b(y, hξ)eiξ·(y−z)f(z) dzdξdydη.

Since eiη(x−y)eiξ(y−z) = eiξ(x−z)ei(η−ξ)(x−y), we can write

ABf(x) = (2π)−n
∫
eiξ·(x−z)c(x, hξ)f(z) dzdξ

where

c(x, hξ) =(2π)−n
∫
ei(η−ξ)·(x−y)a(x, hη)b(y, hξ) dydη

=(2π)−n
∫
eiη·(x−y)a(x, h(η + ξ))b(y, hξ) dydη.
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If we replace hξ with ξ in the definition of c(x, hξ), we have

c(x, ξ) = (2π)−n
∫
eiη·(x−y)a(x, ξ + hη)b(y, ξ) dydη (2.27)

or equivalently

c(x, ξ) = (2π)−n
∫
eiη·xa(x, ξ + hη)b̂(η, ξ) dη (2.28)

where b̂ denotes the Fourier transform of b in the first variable.
We choose an arbitrary point x0 in Rn and we will compute c(x, ξ) for x with

|x − x0| < 1
2
hσ̃1 . Let χ(x) ∈ C∞c (Rn), where χ(x) = 1, when x ∈ B(x0, h

σ̃1),
and χ(x) = 0, when x outside of B(x0, 2h

σ̃1). Define b0(x, ξ) = b(x, ξ)χ(x), and
b∞(x, ξ) = b(x, ξ)(1− χ(x)), define c0(x, ξ) and c∞(x, ξ) as

c0(x, ξ) = (2π)−n
∫
eiη·(x−y)a(x, ξ + hη)b0(y, ξ) dydη

c∞(x, ξ) = (2π)−n
∫
eiη·(x−y)a(x, ξ + hη)b∞(y, ξ) dydη.

Thus c(x, ξ) = c0(x, ξ) + c∞(x, ξ).
We first consider c0(x, ξ). Replacing b by b0 in (2.28), we have

c0(x, ξ) = (2π)−n
∫
eiη·xa(x, ξ + hη)b̂0(η, ξ) dη.

Apply Taylor’s formula to a(x, ξ + hη), to obtain

a(x, ξ + hη) =
∑
|α|<M

1

α!
∂αξ a(x, ξ)(hη)α +RM(x, ξ, η, h).

For each α, we obtain

(2π)−n
∫
eiη·x

1

α!
∂αξ a(x, ξ)(hη)αb̂0(η, ξ) dydη =

h|α|

α!
∂αξ a(x, ξ)Dα

x b0(x, ξ).

Then for the remainder part, we know

|RM(x, ξ, η, h)| ≤ CM sup
t∈[0,1],|α|=M

{
|∂αξ′a(x, ξ′)| : ξ′ = ξ + thη

}
|hη|M

≤ CMh
M(1−σ2)|η|M sup

t∈[0,1],|α|=M

{
|ϕ(x, ξ′)| : ξ′ = ξ + thη

}
≤ CMh

M(1−σ2)|η|M〈h1−σ2η〉N2ϕ(x, ξ)

and since b0 is in the symbol class Sφσ̃1,σ̃2 , we have

|b̂0(η, ξ)| = |
∫

e−iyη

〈hσ̃1η〉2M1
(1− h2σ̃1∆y)

M1b0(y, ξ)dy| ≤ CM1

hσ̃1n

〈hσ̃1η〉2M1
|ψ(x, ξ)|.
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So the remainder integral will be bounded by

CM,M1h
M(1−σ2)|ϕ(x, ξ)||ψ(x, ξ)|

∫
|η|M〈h1−σ2η〉N2hσ̃1n

〈hσ̃1η〉2M1
dη.

If we choose M1 large enough so the integral in this estimate is integrable, this bound
will be less then

CMh
M(1−σ2−σ̃1)|ϕ(x, ξ)||ψ(x, ξ)|.

Further, if we apply ∂αx∂
β
ξ to the remainder, the remainder will be bounded by

CMh
M(1−σ2−σ̃1)h−σ1|α|−σ̃2|β||ϕ(x, ξ)||ψ(x, ξ)|, and we can conclude the remainder is in

hM(1−σ2−σ̃1)Sϕψσ1,σ̃2 .
Above all we have

c0(x, ξ) =
∑
|α|<M

h|α|

α!
∂αξ a(x, ξ)Dα

x b(x, ξ) + hM(1−σ2−σ̃1)Sϕψσ1,σ̃2

Next we deal with c∞(x, ξ). Since

(−∆)M1
η eiη·(x−y) = (−1)M1|x− y|2M1eiη(x−y)

(1− h2σ̃1∆y)
M2eiη·(x−y) = 〈hσ̃1η〉2M2eiη(x−y)

|x− y| > 1

2
hσ̃1

then,

|c∞(x, ξ)| =
∣∣ ∫ eiη·(x−y)

∆M1
η a(x, ξ + hη)

〈hσ̃1η〉2M2
(1− h2σ̃1∆y)

M2
{ b∞(y, ξ)

|x− y|2M1

}
dydη

∣∣
≤ CM1,M2

∣∣ ∫ h2M1(1−σ2−σ̃1)|ϕ(x, ξ + hη)|
〈hσ̃1η〉2M2

(1− h2σ̃1∆y)
M2

×
{ b∞(y, ξ)

(h−σ̃1|x− y|)2M1

}
dydη

∣∣
≤ CM1,M2

∣∣ ∫ h2M1(1−σ2−σ̃1)〈h−σ2hη〉N2|ϕ(x, ξ)|
〈hσ̃1η〉2M2

× |ψ(y, ξ)|
(h−σ̃1|x− y|)2M1

dydη
∣∣

≤ CM1,M2h
2M1(1−σ2−σ̃1)

∫
〈h−σ2hη〉N2|ϕ(x, ξ)|

〈hσ̃1η〉2M2

× 〈h
−σ̃1(x− y)〉N1|ψ(x, ξ)|

(h−σ̃1|x− y|)2M1
dydη

If we choose M1, M2 large enough, we get this integral is less then

CM1h
2M1(1−σ2−σ̃1)|ϕ(x, ξ)||ψ(x, ξ)|

≤CMhM(1−σ2−σ̃1)|ϕ(x, ξ)||ψ(x, ξ)|
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Thus, we know that

c(x, ξ) =
∑
|α|<M

h|α|

α!
∂αξ a(x, ξ)Dα

x b(x, ξ) + hM(1−σ2−σ̃1)Sϕψσ1,σ̃2

Finally, we consider the case when a and b do not have compact support. We choose
a function γ(x, ξ) ∈ C∞c (Rn × Rn), with γ(0) = 1, then we can use same method
to get (2.27) and (2.28) by replacing a and b with aτ and bτ respectively, where
aτ (x, ξ) = a(x, ξ) · γ(τx, τξ) and bτ (x, ξ) = b(x, ξ) · γ(τx, τξ). Note that aτ and bτ are
in the same symbol class as a and b respectively, 0 < τ < 1. We let τ → 0 to get
the symbol c. Let aτ (x, ξ) = a(x, ξ) · γ(τx, τξ) and bτ (x, ξ) = b(x, ξ) · γ(τx, τξ), and
define

Cτ = Aτ ◦Bτ .

We have proven that cτ , which is the symbol of Cτ , satisfies the formula (2.26), with
cτ , aτ and bτ replacing c, a and b respectively, uniformly in τ . And what we did above
show that cτ converges pointwise to some limit c. By the continuity properties (see
Stein [20, pp. 232 - 233]), we have C = A ◦B. Thus, this theorem is proved.

We use L2
r to denote the weighted L2 space with the norm ‖f‖L2

r
= ‖〈·〉rf(·)‖2.

We need use this space in the following Proposition.

Proposition 2.10. Let a ∈ Sσ1,σ2 with σ1, σ2 ∈ [0, 1], σ1 + σ2 ≤ 1, A = Oph(a) then

(1) A is bounded on L2.

(2) A is bounded on Xb
µ,h,σ, for any 1 > σ ≥ σ1, b ∈ (−1, 1).

(3) Suppose A is bounded and invertible bounded in L2, then

‖A〈x〉rf‖L2 ≈ ‖〈x〉rAf‖L2 ,

for any real number r.

Proof. For part (1), If σ1 = σ2, the proof can be found in [7]. If σ1 6= σ2, since

‖a(x, hD)‖L2→L2 = ‖a(sx, s−1hD)‖L2→L2

for s ∈ R. So we can choose s = h
σ1−σ2

2 , so that a(sx, s−1hD) ∈ S1
σ1+σ2

2
,
σ1+σ2

2

, which

is an operator bounded on L2. Thus a(x, hD) is bounded on L2.
For (2), we let ϕ(ξ) = (h2(1−σ) + |q(ξ)|2)b/2 ∈ Sϕ0,1−σ which is from Lemma 2.7. The

estimate (2) is equivalent to proving that ϕ(hD)◦a(x, hD)◦ϕ(hD)−1 is bounded on L2.
Now we consider two operators ϕ(hD) and a(x, hD)ϕ(hD)−1. Since (1−σ) +σ1 ≤ 1,
then by using Lemma 2.9, we know that the composition of these two operators is a
semiclassical pseudodifferential operator with symbol in Sσ,1−σ, and this operator is
bounded on L2 by part (1) of this Proposition.
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Finally for part (3), by Salo [18, Propostion 2.2], we know that the operator norm
‖A‖L2

r→L2
r
≤ C for any r. Thus

‖A〈x〉rf‖L2 = ‖A〈x〉rA−1〈x〉−r〈x〉rAf‖L2

≤ C‖A−1〈x〉−r〈x〉rAf‖L2

≤ C‖〈x〉−r〈x〉rAf‖L2

≤ C‖〈x〉rAf‖L2 .

(2.29)

Similarly,we obtain ‖〈x〉rAf‖L2 ≤ C‖A〈x〉rf‖L2 .

Copyright c© Yaowei Zhang, 2016.
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Chapter 3 Existence of CGO solution in Ẋ
1/2
µ,h spaces

We need some notation before we come to the main topic. Let ∆ =
∑
Dj · Dj,

∆ζ = ∆ + 2ζ ·D and Dζ = D + ζ, where D = (D1, D2, · · · , Dn).
For each ζ ∈ Cn with ζ · ζ = 0, we want to find CGO solutions of the equation

HW,pu = 0 with u = eix·ζ(1+v). Substituting u in HW,pu = 0, we obtain that v solves
the equation

(∆ζ + 2W ·Dζ + (W ·W +D ·W + p))v = −(2W · ζ +W ·W +D ·W + p).

Let G = W ·W +D ·W + p and f = −(2W · ζ +G), we have

(∆ζ + 2W ·Dζ +G)v = f. (3.1)

Let µ = hζ with |µ| =
√

2, h =
√

2/|ζ|. After multiplying h2 on both sides of (3.1),
we obtain an equivalent equation

(Q(hD) + 2hW · (hD + µ) + h2G)v = h2f. (3.2)

where Q(hD) is the semiclassical pseudodifferential operator with symbol q(ξ) =
ξ · ξ + 2µ · ξ.

Now we assume W ∈ Cλ for some λ > 1/2, m(x) is a standard mollifier, mκ(x) =
1
κn
m(x

κ
) , and

W ] = W ∗mκ

W [ = W −W ]

‖W [‖∞ ≤ Chσ0λ

‖∂αxW ]‖∞ ≤ Chσ0(λ−|α|), |α| ≥ 1

(3.3)

where κ = h−σ0 and σ0 ∈ (0, 1/2). Then our equation (3.2) becomes

(Q+ 2hW ] · (hD + µ) + 2hW [ · (hD + µ) + h2G)v = h2f. (3.4)

The reason we decompose W is that the term Q + 2hW ] · (hD + µ) in (3.4) is the
main term compared with the remaining terms. This will be clear after we finish the
following Lemma 3.3 and Theorem 3.4.

First we present a lemma from Haberman and Tataru [10, Lemma 2.1],

Lemma 3.1. Let w1, w2 be nonnegative weights, and φ be a rapidly decreasing func-
tion, then

‖φ ∗ v‖L2
w2
≤ C min

{
sup
ξ

√
J(ξ, η) dη, sup

η

√
J(η, ξ) dξ

}
‖v‖L2

w1

where

J(ξ, η) = |φ(ξ − η)|w2(ξ)

w1(η)
.
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For symbols with some special properties, the following Lemma gives that the
pseudodifferential operator is bounded on the Bourgain space Ẋ

1/2
µ,h .

Lemma 3.2. Suppose that σ0+σ ≤ 1. If we assume symbol a ∈ Sσ0,σ and (a−1)〈x〉 ∈
Sσ0,σ, then for h small enough, we have

‖A‖
Ẋ

1/2
µ,h ,Ẋ

1/2
µ,h
≤ Ch−σ0/2 (3.5)

If in addition |a| is bounded away from 0 and σ0 + σ < 1, then we have the same
estimate for the operator A−1,

‖A−1‖
Ẋ

1/2
µ,h ,Ẋ

1/2
µ,h
≤ Ch−σ0/2 (3.6)

Proof. For any u, since A = (A−I)+I and estimate (2.12) and (2.14) in Proposition
(2.2), we have

‖Au‖
Ẋ

1/2
µ,h
≤ ‖(A− I)u‖

Ẋ
1/2
µ,h

+ ‖Iu‖
Ẋ

1/2
µ,h

≤ ‖(A− I)〈x〉〈x〉−1u‖
X

1/2
µ,h,σ0

+ ‖u‖
Ẋ

1/2
µ,h

≤ C‖〈x〉−1u‖
X

1/2
µ,h,σ0

+ ‖u‖
Ẋ

1/2
µ,h

≤ Ch−σ0/2‖〈x〉−1u‖
X

1/2
µ,h

+ ‖u‖
Ẋ

1/2
µ,h

(3.7)

By estimate (2.9) in Proposition 2.2, we obtain

≤ Ch−σ0/2‖u‖
Ẋ

1/2
µ,h

+ ‖u‖
Ẋ

1/2
µ,h

≤ Ch−σ0/2‖u‖
Ẋ

1/2
µ,h

(3.8)

Thus we have proven estimate (3.5). For estimate (3.6), we consider an approximate
right-inverse of A of the form

I +
N∑
j=0

hjBj

with Bj = Oph(bj) and bj ∈ S〈x〉
−1

σ0,σ . In fact, (a− 1) ∈ S〈x〉
−1

σ0,σ . And

A ◦ (I +
N∑
j=0

hjBj) = I + hN(1−σ0−σ)Oph(bN+1), (3.9)

with bN+1 ∈ S<x>
−1

σ0,σ
. Then for N large enough, we have that A has a right inverse

on Ẋ
1/2
µ,h , and by a similar argument, we can find a left inverse, so A is invertible.
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To find bj, we use the symbol calculus to formally compute the symbol of the
composite operator

A ◦ (I +
N∑
j=0

hjBj) =Oph
(
a(1 + b0)

+ h
∑
|α|=1

∂αξ aD
α
x b0 + hab1

+ h2
∑
|α|=2

1

α!
∂αξ aD

α
x b0 +

∑
|α|=1

∂αξ aD
α
x b0 + h2ab2

+ · · ·

+ hN
∑
|α|=N

1

α!
∂αξ aD

α
x b0 + · · ·+ hNabN

+ hN(1−σ0−σ)Oph(bN+1)
)
,

(3.10)

where bN+1 ∈ S
〈x〉−1

σ0,σ by Lemma 2.9. Solving for bj to make all but the remainder
term vanish gives

b0 =
1

a
− 1,

b1 = −1

a
(
∑
|α|=1

∂αξ aD
α
x b0)

b2 = −1

a
(
∑
|α|=2

1

α!
∂αξ aD

α
x b0 +

∑
|α|=1

∂αξ aD
α
x b1)

...

bN = −1

a
(
∑
|α|=N

1

α!
∂αξ aD

α
x b0 + · · ·+

∑
|α|=1

∂αξ aD
α
x bN−1)

.

(3.11)

Since I +
∑N

j=1 h
jBj and

(
I +hN(1−σ0−σ)Oph(bN+1)

)−1
is bounded on Ẋ

1/2
µ,h with norm

Ch−σ0/2 and C respectively, thus A−1 = (I+
∑N

j=1 h
jBj)◦

(
I+hN(1−σ0−σ)Oph(bN+1)

)−1

is bounded and ‖A−1‖
Ẋ

1/2
µ,h ,Ẋ

1/2
µ,h
≤ Ch−σ0/2.

Then we prove the following lemma.

Lemma 3.3. Suppose that h is small, δ > 0 is small and W ∈ Cλ
c (Rn) with λ > 1/2.

If g satisfies 〈x〉1/2+δg ∈ Ẋ−1/2
µ,h , then we have a solution v to the equation(
Q(hD) + 2hW ] · (hD + µ)

)
v = g (3.12)

with
‖v‖

Ẋ
1/2
µ,h
≤ Ch−σ0‖〈x〉1/2+δg‖

X
−1/2
µ,h

. (3.13)

Furthermore, there is only one solution to (3.12) in the space Ẋ
1/2
µ,h .
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Proof. From Salo [18, Lemma 4.1], we know there exists σ which satisfies 1/2 > σ >
σ0, θ = σ − σ0, and symbols a,b,r0,〈x〉r0 ∈ Sσ0,σ which give intertwining operators
that satisfy

(Q+ 2hW ] · (hD + µ))A = BQ+ h1+τR0 (3.14)

where τ = min{θ, 1− 2σ}, and a = eiφ with

|∂αx∂
β
ξ φ(x, ξ)| ≤ Cα,βh

−σ0|α|−σ|β|〈x〉−1.

Here, the support of r0 is contained in the set {(x, ξ) : |x| < Mh−θ}. Next we show
A and B are bounded and invertible on Xb

µ,h,σ0
, for −1 < b < 1 and σ0 ∈ [0, 1), and

when h is small enough, the norms are bounded uniformly in h. This follows from
Lemma 2.9, since 1

a
= e−iφ ∈ Sσ0,σ, then

Oph(a) Oph(1/a) = I + h1−σ0−σ Oph(d)

where d ∈ Sσ0,σ. Since Oph(d) is bounded on Xb
µ,h,σ0

, then operator I+h1−σ0−σ Oph(d)

is invertible on Xb
µ,h,σ0

if h is small enough. So A is invertible with norm of the inverse
uniformly bounded in h. We can use the same method to prove this property for B.

Using the intertwining operators, equation (3.12) becomes

(BQ+ h1+τR0)A−1v = g. (3.15)

Furthermore, (3.12) is equivalent to

(I + h1+τAQ−1B−1R0A
−1)v = AQ−1B−1g. (3.16)

Now we prove that
‖AQ−1‖

Ẋ
−1/2
µ,h ,Ẋ

1/2
µ,h
≤ Ch−σ0/2, (3.17)

which is equivalent to
‖A‖

Ẋ
1/2
µ,h ,Ẋ

1/2
µ,h
≤ Ch−σ0/2. (3.18)

By the estimate of symbol a after (3.14), we have

(a− 1)〈x〉 ∈ Sσ0,σ.

Thus we can apply Lemma 3.2 to A and obtain (3.18).
Thus, from estimate (3.17), we obtain

‖h1+τAQ−1B−1R0A
−1v‖

Ẋ
1/2
µ,h

≤ Ch1+τ−σ0/2‖B−1R0A
−1v‖

Ẋ
−1/2
µ,h

.
(3.19)

By estimate (2.10) in Proposition 2.2 and part (3) of Proposition 2.10 we have

≤ Ch1+τ−σ0/2‖〈x〉1/2+δB−1R0A
−1v‖

X
−1/2
µ,h

≤ Ch1/2+τ−σ0/2‖〈x〉1/2+δB−1R0A
−1v‖L2

≤ Ch1/2+τ−σ0/2‖B−1〈x〉1/2+δR0〈x〉1/2+δ〈x〉−1/2−δA−1v‖L2

(3.20)
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By the boundedness of B−1 in L2 and part (3) of Proposition 2.10, we obtain

≤ Ch1/2+τ−σ0/2‖〈x〉1/2+δR0〈x〉1/2+δA−1〈x〉−1/2−δv‖L2 (3.21)

Using that the support of r0(·, ·, h) is contained in {(x, ξ) : |x| < Mh−θ} and that
〈x〉r0 ∈ S0

σ0,σ
, it follows that

‖〈x〉1/2+δR0〈x〉1/2+δ‖L2→L2 ≤ Ch−2θδ. (3.22)

Finally, the estimate (3.22), the boundedness of A−1 followed by the estimate (2.11),
gives the bound

≤ Ch1/2+τ−σ0/2−2θδ‖〈x〉−1/2−δv‖L2

≤ Chτ−σ0/2−2θδ‖v‖
Ẋ

1/2
µ,h
.

(3.23)

Since δ could be any small positive number, we can choose suitable τ , σ0 to make the
power of h positive in (3.23) with the requirement τ = min{θ, 1 − 2σ}, σ = σ0 + θ.
For example, if we let σ0 = θ be some small number and δ < 1/4, then σ = 2σ0,
τ = σ0, thus τ − σ0/2− 2θδ > σ0 − σ0/2− σ0/2 = 0.

Then by the contraction mapping theorem, there exists a solution v for equation
(3.12), and the solution satisfies

‖v‖
Ẋ

1/2
µ,h
≤C‖AQ−1B−1g‖

Ẋ
1/2
µ,h

≤Ch−σ0/2‖B−1g‖
Ẋ
−1/2
µ,h

≤Ch−σ0/2‖B−1〈x〉1/2+δg‖
X
−1/2
µ,h

≤Ch−σ0‖〈x〉1/2+δg‖
X
−1/2
µ,h

(3.24)

For the uniqueness, suppose we have two solutions of (3.12), v1 and v2, which lie

in Ẋ
1/2
µ,h . Using the intertwining operators, we obtain

(BQ+ h1+τR0)A−1(v1 − v2) = 0. (3.25)

Since Lemma 3.2 gives that A−1 is invertible on Ẋ
1/2
µ,h , it suffices to show that ṽ =

A−1(v1 − v2) which satisfies

(BQ+ h1+τR0)ṽ = 0, ṽ ∈ X1/2
µ,h ,

is zero. We will show that 〈·〉1/2+δR0ṽ is in L2 and then since the equation Qṽ = f

has a unique solution in Ẋ
1/2
µ,h when f is in the weighted L2-space, L2

1/2+δ, we have

(I + h1+τQ−1B−1R0)ṽ = 0. (3.26)

Thus by (3.22) and (2.11),

‖〈x〉1/2+δR0ṽ‖L2 = ‖〈x〉1/2+δR0〈x〉1/2+δ〈x〉−1/2−δṽ‖L2

≤ Ch−2θδ‖〈x〉−1/2−δṽ‖L2

≤ Ch−2θδ−1/2‖ṽ‖
Ẋ

1/2
µ,h
.
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Finally, we use that the operator B−1 is bounded on the weighted L2-space L2
1/2+δ,

(2.10), and that Q−1 : Ẋ
−1/2
µ,h → Ẋ

1/2
µ,h and we have

h1+τ‖Q−1B−1R0ṽ‖Ẋ1/2
µ,h
≤ Chτ−2θδ‖ṽ‖

Ẋ
1/2
µ,h
.

As δ > 0, may be arbitrarily small, it follows that the equation (3.26) has only the
solution ṽ = 0.

Our next theorem gives the existence of CGO solutions to HW,pu = 0.

Theorem 3.4. Suppose W ∈ Cλ, λ > 1/2, p = p1 + div p2, p1, p2 ∈ C λ̃, λ̃ > 0;
Then for each ζ large enough, the equation HW,pu = 0 has a unique CGO solution

u = eix·ζ(1 + v) with v in Ẋ
1/2
µ,h , and

‖v‖
Ẋ

1/2
µ,h
≤ Ch2−σ0‖〈x〉1/2+δf‖

X
−1/2
µ,h
≤ hλ̃−σ0

for some σ0 > 0 and for any δ > 0, and f is defined (3.1).

Proof. We know that HW,pu = 0 is equivalent to the following equation for v

(Q+ 2hW ] · (hD + µ) + 2hW [ · (hD + µ) + h2G)v = h2f. (3.27)

Furthermore, as in Lemma 3.3 equation (3.16), the equation (3.27) is equivalent
to

(I + h1+τAQ−1B−1R0A
−1 + 2hAQ−1B−1W [(hD + µ) + h2AQ−1B−1G)v

= −h2AQ−1B−1f.
(3.28)

In the argument leading up to (3.23) in Lemma 3.3, we have proved

‖h1+τAQ−1B−1R0A
−1v‖

Ẋ
1/2
µ,h

≤ Chτ−σ0/2−2θδ‖v‖
Ẋ

1/2
µ,h

(3.29)

with suitable τ , σ0 to make the power of h positive.
Now for the second remainder term, similarly, by equation (3.17) and the definition

of the space Ẋ
−1/2
µ,h and X

1/2
µ,h , we have

‖hAQ−1B−1W [(hD + µ)v‖
Ẋ

1/2
µ,h

≤ Ch1−σ0/2‖B−1W [(hD + µ)v‖
Ẋ
−1/2
µ,h

≤ Ch1−σ0/2‖〈x〉1/2+δB−1W [(hD + µ)v‖
X
−1/2
µ,h

,

(3.30)

by part 3 of Proposition 2.10 and ‖W [‖∞ ≤ Chσ0λ, W [ is supported in a ball B(0,M),
we obtain (3.30) is less then

Ch1/2−σ0/2‖B−1〈x〉1/2+δW [(hD + µ)v‖L2

≤ Ch1/2−σ0/2‖W [(hD + µ)v‖L2

≤ Ch1/2−σ0/2‖W [‖∞‖(hD + µ)〈x〉−1/2−δv‖L2

≤ Ch1/2−σ0/2+σ0λ‖(hD + µ)〈x〉−1/2−δv‖L2 ,

(3.31)
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because |hξ + µ| ≤ h−1/2(h+ |q(hξ)|)1/2, we obtain

≤ Ch−σ0/2+σ0λ‖〈x〉−1/2−δv‖
X

1/2
µ,h

≤ Chσ0(λ−1/2)‖v‖
Ẋ

1/2
µ,h
.

(3.32)

Finally, for the last term, by same argument of AQ−1B−1 and ‖G‖
Ẋ

1/2
µ,h ,Ẋ

−1/2
µ,h

<

h−2+λ̃ from Haberman and Tataru [10, Theorem 2.1], then

h2‖AQ−1B−1Gv‖
Ẋ

1/2
µ,h
≤ h2−σ0/2‖Gv‖

Ẋ
−1/2
µ,h

≤ hλ̃−σ0/2‖v‖
Ẋ

1/2
µ,h

(3.33)

thus, if we choose σ0 small enough, the power of h will be positive.
Above all, by contraction mapping theorem, there exists a solution v for equation

(3.1). And v satisfies

‖v‖
Ẋ

1/2
µ,h
≤Ch2‖AQ−1B−1f‖

Ẋ
1/2
µ,h

≤Ch2−σ0/2‖B−1f‖
Ẋ
−1/2
µ,h

≤Ch2−σ0/2‖B−1〈x〉1/2+δf‖
X
−1/2
µ,h

≤Ch2−σ0‖〈x〉1/2+δf‖
X
−1/2
µ,h

(3.34)

Since f = −(2W · ζ +G), we have

‖v‖
Ẋ

1/2
µ,h
≤Ch2−σ0‖〈x〉1/2+δ(2W · ζ +G)‖

X
−1/2
µ,h

≤Ch2−σ0(‖〈x〉1/2+δW · ζ‖
X
−1/2
µ,h

+ ‖〈x〉1/2+δG‖
X
−1/2
µ,h

)

≤Ch2−σ0(h−3/2 + h−2+λ̃)

≤Chλ̃−σ0

(3.35)

The uniqueness of the solution is similar to our earlier proofs.

Note that we can pick σ0 arbitrarily small.

Copyright c© Yaowei Zhang, 2016.
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Chapter 4 Existence of solutions in semiclassical spaces

Now we still consider equation

HW,p(e
ix·ζ(1 + v)) = 0 (4.1)

or equivalently
(Q(hD) + 2hW (hD + µ) + h2G)v = h2f (4.2)

with G = W · W + D · W + p, p = p1 + div p2 = p] + p[ with p] smooth and
p[ ∈ divC λ̃(Rn; Cn), f = −(2W · ζ +G).

But instead of working in the X-spaces, this time we discuss the solution in semi-
classical Sobolev spaces H t

ρ,h, which are defined by {f : ‖f‖Ht
ρ,h

= ‖〈hD〉t〈x〉ρf‖2 <

∞}, for any real number t, ρ.
Like Lemma 3.3, we also have an estimate for operator Q(hD) + 2hW ] · (hD+µ)

here, where W ] is as defined in Chapter 3.

Lemma 4.1. Equation (
Q(hD) + 2hW ] · (hD + µ)

)
v = g (4.3)

has a unique solution v ∈ H1
ρ,h, for ρ ∈ (−1, 0). Furthermore, we have

‖v‖H1
ρ,h
≤ Ch−1‖g‖H−1

ρ+1
≤ Ch−1‖g‖L2

ρ+1
(4.4)

Proof. By (3.14) and following the argument in the previous section, equation (4.3)
becomes

(I + h1+τAQ−1B−1R0A
−1)v = AQ−1B−1g. (4.5)

where the symbols of A, B, R0 satisfy a, b, r0, 〈x〉r0 ∈ Sσ0,σ.
From Salo [18, Proposition 2.2], we can see that the operators in Oph(Sσ0,σ) are

bounded in the space H t
ρ,h for −1 < ρ < 0 and any real number t. And in Salo [18,

Propositon 4.1], consider the case when s = 1, the operator norm of the operator Q−1

from L2
ρ+1 to H1

ρ,h is bounded by Ch−1.
Thus, for the second term in the equation (4.5), and we have

‖h1+τAQ−1B−1R0A
−1v‖H1

ρ,h

≤Ch1+τ‖Q−1B−1R0A
−1v‖H1

ρ,h,

≤Chτ‖B−1R0A
−1v‖L2

ρ+1

(4.6)

since 〈x〉r0 ∈ S0
σ0,σ

, then we obtain

≤Chτ‖R0A
−1v‖L2

ρ+1

≤Chτ‖A−1v‖L2
ρ

≤Chτ‖v‖L2
ρ

≤Chτ‖v‖H1
ρ,h

(4.7)
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So by the contraction mapping theorem, there exists solution to (4.5). Since
‖ · ‖H−1

ρ+1
≤ C‖ · ‖L2

ρ+1
, thus the operator norm of Q−1 is a map from H−1

ρ+1 to H1
ρ+1 is

bounded by Ch−1, then the solution satisfies the following estimate

‖v‖H1
ρ,h
≤ C‖AQ−1B−1g‖H1

ρ,h

≤ C‖Q−1B−1g‖H−1
ρ+1

≤ Ch−1‖B−1g‖H−1
ρ+1

≤ Ch−1‖g‖H−1
ρ+1
.

(4.8)

For the uniqueness, suppose we have two solutions v1, v2 ∈ H1
ρ,h of equation (4.3).

Apply the intertwining operators, we have then

(BQ+ h1+τR0)A−1(v1 − v2) = 0. (4.9)

If we following the argument in Lemma 3.3, we can see A−1 is invertible on H1
ρ,h. Let

ṽ = A−1(v1− v2), if we can prove ṽ = 0, the uniqueness is obtained, where ṽ satisfies

(BQ+ h1+τR0)ṽ = 0. ṽ ∈ H1
ρ,h (4.10)

Since the operator norm ofQ−1 from L2
ρ+1 toH1

ρ,h is bounded by Ch−1 and ‖R0ṽ‖L2
ρ+1
≤

‖〈x〉−1R0ṽ‖L2
ρ
≤ ‖ṽ‖L2

ρ
≤ ‖ṽ‖H1

ρ,h
, thus we have

(I + h1+τQ−1B−1R0)ṽ = 0. (4.11)

Because
‖h1+τQ−1B−1R0ṽ‖H1

ρ,h
≤hτ‖B−1R0ṽ‖L2

ρ+1

≤hτ‖R0ṽ‖L2
ρ+1

≤hτ‖ṽ‖H1
ρ,h
.

(4.12)

Then equation (4.11) has only solution ṽ = 0.

Theorem 4.2. Equation (4.2) has a unique solution in H1
ρ,h for −1 < ρ < 0 and

satisfies
‖v‖H1

ρ,h
≤ Ch‖f‖H−1

ρ+1

Proof. Let K =
(
Q+ 2W ] · (hD + µ)

)−1
, equation (4.2) becomes

(I + 2hKW [ · (hD + µ) + h2KG)v = h2Kf. (4.13)

or in more detail(
I + 2hKW [ · (hD + µ) + h2K(W ·W +D·W ] + p]) + h2K(D ·W [ + p[)

)
v

= −h2AQ−1B−1f.
(4.14)
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where a, b, r0, 〈x〉r0 ∈ S0
σ0,σ

. Now we consider the terms on the left side of equation
(4.14). By Lemma 4.1, we have

‖hKW [(hD + µ)v‖H1
ρ,h

≤C‖W [(hD + µ)v‖L2
ρ+1

≤C‖W [‖∞‖(hD + µ)v‖L2
ρ

≤C‖W [‖∞‖v‖H1
ρ,h

(4.15)

and since W ·W +D ·W ] + p] has compact support, we obtain

‖h2K(W ·W +D ·W ] + p])v‖H1
ρ,h

≤Ch‖(W ·W +D ·W ] + p])v‖L2
ρ+1

≤Ch‖(W ·W +D ·W ] + p])‖∞‖v‖L2
ρ

≤Ch‖(W ·W +D ·W ] + p])‖∞‖v‖H1
ρ,h

≤Ch‖v‖H1
ρ,h
.

(4.16)

Since ‖φ(x)‖H−1
ρ+1
≤ h−1‖φ(x)‖H1

ρ,h
for any compact supported function φ(x), thus

‖h2K(D ·W [ + p[)v‖H1
ρ,h

≤Ch‖(D ·W [ + p[)v‖H−1
ρ+1

≤C‖D ·W [ + (div)−1p[‖∞‖v‖H1
ρ,h

(4.17)

Above all and by the contraction mapping theorem, there exists a solution to (4.14),
and the solution v satisfies that

‖v‖H1
ρ,h
≤ Ch2‖AQ−1B−1f‖H1

ρ,h

≤ Ch‖f‖H−1
ρ+1

(4.18)

For the uniqueness, it follows similar argument in Lemma 4.1.

Copyright c© Yaowei Zhang, 2016.
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Chapter 5 From ΛW,p to boundary value of CGO solution

In this section, we show the boundary value of solution of HW,pu = 0 is determined
by the DN map. We begin by giving several equivalent characterizations of the CGO
solution. This argument follows closely the work of Nachman [14] and Salo [18].

Proposition 5.1. Let Ω ⊂ Rn be a bounded domain with C1,1 boundary. Suppose
W ∈ Cλ, p = p1 + div p2, with p1, p2 ∈ C λ̃, λ, λ̃ ∈ (1/2, 1). If 0 is not a Dirichlet
eigenvalue of HW,p in Ω, let ζ ∈ Cn with ζ · ζ = 0, then the following four problems
are equivalent.

(DE)

{
HW,pu = 0 in Rn

u = eiζ·x(1 + ω) with ω ∈ Ẋ1/2
µ,h

(IE)

{
u+Gζ ◦ (2W ·Du+ (W ·W +D ·W + p)u) = eiζ·x ∈ Rn

u ∈ H1
loc(R

n)

(EP )


i) ∆u = 0 ∈ Ω′

ii) u ∈ H1(Ω′R) for any R > R0

iii) u satisfies (5.2) for a.e. x ∈ Rn

iv) ∂u
∂ν+

= ΛW,p(u+) on ∂Ω

(BE)

{
(1

2
I + SζΛW,p −Bζ)f = eiζ·x on ∂Ω

f ∈ H1/2(∂Ω).

(5.1)

We first show the differential equation (DE) and the integral equation (IE) are
equivalent. Now define the Green function Gζ by

Gζ = eiζ·xgζe
−iζ·x

where gζ is the fundamental solution to ∆ζ = e−iζ·x∆eiζ·x such that ∆−1
ζ f = gζ ∗ f

for f in the Schwartz class. Then

∆Gζ = ζ2Gζ + 2eiζ·xζ ·Dgζ + eiζ·x∆gζ = eiζ·x∆ζgζ = δ0

where δ0 is the Dirac measure at 0. So we can letGζ = G0+Hζ whereG0(x) = cn|x|2−n
is the fundamental solution of ∆, cn = 1

n(n−2)α(n)
, α(n) is the volume of unit ball in

Rn and Hζ is a global harmonic function.

Lemma 5.2. Suppose we have the same conditions as Proposition 5.1. Then u is a
solution of (DE) if and only if u is a solution of (IE). Also, a solution of (DE) is
unique if and only if u is a solution of (IE) is unique.

Proof. Let u = eiζ·x(1 + ω) solve (DE) where ω = ∆−1
ζ f with f ∈ Ẋ1/2

µ,h . Substitute u
into HW,pu = 0, we have

(∆ζ + 2W ·Dζ + (W ·W +D ·W + p))(1 + ∆−1
ζ f) = 0.

25



Since ∆ζ(1 + ∆−1
ζ f) = f , apply ∆−1

ζ on both sides; then

ω + ∆−1
ζ (2W ·Dζ(1 + ω) + (W ·W +D ·W + p)(1 + ω)) = 0.

Next we add one on both sides and multiply eiζ·x, and we obtain (IE).
If u solves (IE), write u = eiζ·xu0; then u0 solves

u0 + ∆−1
ζ (2W ·Dζu0 + (W ·W +D ·W + p)u0) = 1.

If we apply ∆ζ to both sides, we have HW,pu = 0.
The uniqueness part is obtained by noting that if u1 and u2 solve (DE) then u1

and u2 solve (IE), and vice versa.

Now, we show that (IE) and the exterior problem (EP) are equivalent. We use
the notation Ω′ = Rn \ Ω̄ and Ω′R = B(0, R) \ Ω̄, where R > R0 and Ω̄ ⊆ B(0, R0).
Let u+ (resp. u−) for the restriction of u to ∂Ω from the exterior (resp. interior),
and u

∂ν+
(resp. u

∂ν−
) for the value of ∇u · ν on ∂Ω from the exterior (resp. interior),

where ν is the outward unit normal to ∂Ω. We also write Gζ(x, y) = Gζ(x− y).
We want to obtain that a solution of (IE) satisfies the radiation condition∫

|y|=R
(Gζ(x, y)

∂u

∂ν
(y)− u(y)

∂Gζ(x, y)

∂ν(y)
dS(y)→ eiζ·x (5.2)

for a.e. x ∈ Rn as R → ∞. In order to apply Green’s identity, we define a smooth
approximation of Gζ by Gε

ζ = Gε
0 +Hζ , where

Gε
0 = cn(ε2 + |x|2)

2−n
2 .

In fact ∆Gε
ζ(x) = ε−nϕ(x/ε) where

ε(x) =
1

α(n)
(1 + |x|2)−

n+2
2

and
∫
ϕ(x) dx = 1. Then ∆Gε

ζ is an approximation of the identity.
We need a lemma on regularity properties of solution HW,pu = 0 and of ΛW,p.

Lemma 5.3. Under the conditions of Proposition 5.1, the operator PW,p, which
maps f ∈ H1/2(Ω) to the solution u of HW,pu = 0 in Ω with u|∂Ω = f is bounded
H1/2(∂Ω)→ H1(Ω). Further, we have ΛW,p : H1/2(∂Ω)→ H−1/2(∂Ω), and

ΛW,pf =
∂u

∂ν
|∂Ω.

Proof. The operator HW,p, written in nondivergence form, satisfies the assumption of
[8]. This gives that u is in H1(Ω) if f ∈ H1/2(∂Ω), and the solution operator PW,p is
bounded.
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For the ΛW,p part, we claim that if W ∈ LnΩ(Rn; Cn) and D ·W ∈ Ln/2(Rn; C),
then for any v ∈ W 1,n/(n−1)(Ω) one has∫

Ω

(W ·Dv + (D ·W )v) dx = 0. (5.3)

This statement means that W · ν = 0 on ∂Ω, in some weak sense. Then we take
Wj ∈ C∞c (Rn; Cn) to be the convolution approximation of W so that Wj → W in Ln

and D ·Wj → D ·W in Ln/2, and we take an extension of v in W 1,n/(n−1)(Rn). If the
supports of Wj and W are contained in B(0, R), then∫

Ω

(W ·Dv + (D ·W )v dx = lim
j→∞

∫
B(0,R)

(Wj ·Dv + (D ·Wj)v) dx

= lim
j→∞

1

i

∫
∂B(0,R)

(Wj · ν)v dS = 0.

(5.4)

Let f , g ∈ H1/2(Ω) and uf = PW,pf and eg ∈ H1(Ω) with eg|∂Ω = g. Use the
definition of ΛW,p to obtain

〈∂uf
∂ν
|∂Ω), g〉 =

∫
ω

(∇uf · ∇eg + (2W ·Duf + (W ·W +D ·W + p)uf )eg) dx. (5.5)

Now ufeg ∈ W 2,1(Ω) ⊆ W 1,n/(n−1)(Ω). Using (5.3) with v = ufeg and substituting to

(5.5) gives
∂uf
∂ν
|∂Ω = Λw,pf .

Lemma 5.4. Assume the conditions of Proposition (5.1). If u is a solution of (IE),
then u|Ω′ is a solution of (EP). Conversely, if u is a solution of (EP), then there is
a unique extension of u to Rn so that ũ is a solution of (IE). The uniqueness also
holds for (IE) and (EP).

Proof. If u solves (IE). By Lemma 5.2, we have HW,pu = 0 and u = eix·ζ(1 + ω) with

ω ∈ Ẋ
1/2
µ,h , which gives us (EP) i) - ii). To show iii), for fixed x, let R > |x| and

R > R0, and write∫
|y|=R

(Gζ(x, y)
∂u

∂ν
(y)− u(y)

∂Gζ(x, y)

∂ν(y)
dS(y)

= −
∫
B(0,R)

(Gε
ζ(x, y)

∂u

∂ν
(y)− u(y)∆yG

ε
ζ(x, y)) dy

=

∫
B(0,R)

u∆yG
ε
ζ(x, y) dy +

∫
B(0,R)

Gε
ζ(x, y)(2W ·Du+ (W ·W +D ·W + p)u) dy

= (∆Gε
ζ ∗ uχB(0,R))(x) + (Gε

ζ(2W ·Du+ (W ·W +D ·W + p)u))(x)
(5.6)

since W and p supported inside B(0, R), a solution of (IE) is harmonic and in C∞(Rn\
Ω). As ε→ 0, the first term converges to u(x), a.e. x. The second term converges to
(Gζ ∗ (2W ·Du + (W ·W + D · w + p)u))(x) for a.e. x. This gives us (EP) iii). By
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Lemma 5.3, since u ∈ H1 and 0 is not a Dirichlet eigenvalue of HW,p, we obtain (EP)
iv).

If u solve (EP). We use Lemma 5.3 and let v = PW,pu+ and define ũ(x) = u(x) for
x ∈ Ω′ and ũ(x) = v(x) for x ∈ Ω. By (EP) i) we have HW,pũ = 0. The uniqueness
part follows from the facts that if u1 and u2 solve (IE) then u1|Ω′ and u2|Ω′ solve (EP),
and if u1 and u2 solve (EP) then ũ1 and ũ2 solve (IE).

To prove (EP) and (BE), we need to use the single layer potential Sζ , double layer
potential Dζ , and boundary layer potential Bζ , which are defined by

Sζf(x) =

∫
∂Ω

Gζ(x, y)f(y) dS(y) (x ∈ Rn \ ∂Ω),

Dζf(x) =

∫
∂Ω

∂Gζ(x, y)

∂ν(y)
f(y) dS(y) (x ∈ Rn \ ∂Ω),

Bζf(x) =

∫
∂Ω

∂Gζ(x, y)

∂ν(y)
f(y) dS(y) (x ∈ ∂Ω).

(5.7)

Lemma 5.5. Under the condition of Proposition 5.1, if u is a solution of (EP), then
f = u|∂Ω is a solution of (BE). Conversely, if f is a solution of (BE), then

u = eiζ·x − SζΛW,pf +Dζf (5.8)

is a solution of (EP), with u+ = f . Also, solutions of (EP) are unique if and only if
solutions of (BE) are unique.

Proof. Suppose u solves (EP). If we let f = u+ on ∂Ω. Then f ∈ H3/2(∂Ω). If x ∈ Ω′

and R > |x|, we have

−
∫

Ω′R

(Gε
ζ(x, y)∆u(y)− u(y)∆yG

ε
ζ(x, y)) dy

= (

∫
|y|=R

−
∫
∂Ω

)(Gζ(x, y)
∂u

∂ν
(y)− u(y)

∂Gζ(x, y)

∂ν(y)
dS(y)

(5.9)

Let ε→ 0 and use (EP) i),iii) - iv),we have f solves (BE).
If f satisfies (BE) and define u by (5.8)in Ω′. Then u satisfies (EP) i) - iii). We

need to show (EP) iv). Let R→∞, we can obtain iv).
Since (5.8) gives a correspondence between solutions of (BE) and (EP), this gives

the equivalence of uniqueness for the two problems.

Lemma 5.6. Let Ω ⊂ Rn, n ≥ 3, be a bounded domain with C1,1 boundary. Then
the operator SζΛW,p −Bζ − 1

2
I : H1/2(∂Ω)→ H1/2(∂Ω) is compact.

Proof. Suppose f ∈ H1/2(∂Ω) and u = PW,pf . Then for x ∈ Ω, we have

−
∫

Ω

(Gε
ζ(x, y)∆u(y)− u(y)∆yG

ε
ζ(x, y)) dy

=

∫
∂Ω

(Gεζ(x, y)
∂u

∂ν
(y)− u(y)

∂Gε
ζ(x, y)

∂ν(y)
dS(y).

(5.10)
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Let ε→ 0 we obtain

u(x) =

∫
Ω

Gζ(x, y)(2W ·D + (W ·W )u dy + 〈D ·W + p, u〉 = (SζΛW,p −Dζ)f(x)

a.e. in Ω. If let x→ ∂Ω nontangentially, then we get

(SζΛW,p −Bζ −
1

2
I)f(x)

= R

∫
Ω

Gζ(x, y)
(
2W ·D + (W ·W )

)
PW,pf(y) dy + 〈D ·W + p, PW,pf(y)〉

which can be written as

SζΛW,p −Bζ −
1

2
I = RGζMPW,p

where R is the trace H1(Ω) → H1/2(Ω), Gζ : H−1(Ω) → H1(Ω) is the map that
restricts Gζ ũ = eiζ·x∆−1

ζ e−iζ·xũ to Ω with ũ be the extension by zero of u ∈ L2(Ω) to
Rn. The map M : H1Ω→ H−1(Ω) maps u to 2W ·Du+ (W ·W +D ·W + p)u since
|〈pu, v〉| ≤ ‖u‖H1‖v‖H1 . Since W , p1 and p2 are Hölder continuous, the composition
is compact.

Proposition 5.7. Suppose the conditions of Theorem 1.3, then there exists C =
C(n,W, p,Ω) such that for any |ζ| ≥ C, each of the four problems (DE), (IE), (EP),
(BE) has a unique solution.

Proof. If we can show the problem (DE) has a unique solution, then the other three
problems will also have a unique solution. We know problem (DE) has a unique
solution from Lemma 3.4.

Copyright c© Yaowei Zhang, 2016.
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Chapter 6 Recovery of curlW

Let uζ = eiζ·x(ω0 + ω) be the solution of HW,puζ = 0 with

ω0 = eiχζφ
]

,

χζ(x) = χ(x/|ζ|θ),
φ](x) = N−1

µ (−µ ·W ]).

(6.1)

where function χ ∈ C∞0 (Rn), χ = 1 in B(0,M/2), χ = 0 outside B(0,M), and
Ω ∈ B(0,M/2), W ] is as defined in (3.3); the operator Nµ = µ · ∇, and when
µ = γ1 + iγ2 where |γj| = 1 and γ1 · γ2 = 0,

N−1
µ f(x) =

1

2π

∫
R2

1

y1 + iy2

f(x− y1γ1 − y2γ2) dy1dy2.

Lemma 6.1. The function ω ∈ H1
ρ,h for −1 < ρ < 0 and ‖ω‖H1

ρ,h
= o(1) as h→ 0.

Proof. Substitute uζ into HW,puζ = 0 and we get,

(∆ζ + 2W ·Dζ +G)ω = −f, (6.2)

or equivalently
(Q+ 2hW · (hD + µ) + h2G)ω = −h2f, (6.3)

where G = W ·W2 +D ·W + p and

f = (∆ζ + 2W ·Dζ +G)ω0

= eiχζφ
]
[
iχζ∆φ

] + 2iDχζ ·Dφ] + i(∆χζ)φ
] + (χζ∇φ] + (∇χζ)φ])2

+ 2ζ · (∇χζ)φ] + 2ζ · (χζ∇φ]) + 2W · (∇χζ)φ] + 2W · (χζ∇φ])

+ 2W ] · ζ + 2W [ · ζ +G
]
,

(6.4)

Since
ζ · ∇φ] +W ] · ζ = 0

and W ] = χζW
], which can cancel two terms of f . By Theorem 4.2, we have that

‖ω‖H1
ρ,h
≤ Ch‖f‖H−1

ρ+1

≤ Ch
[
‖χζ∆φ]‖L2

ρ+1
+ ‖∇χζ · ∇φ]‖L2

ρ+1
+ ‖(∆χζ)φ]‖L2

ρ+1

+ ‖|χζ∇φ]|2‖L2
ρ+1

+ ‖|(∇χζ)φ]|2‖L2
ρ+1

+ |ζ|1−θ‖
(
∇χ(x/|ζ|θ)

)
φ]‖L2

ρ+1

+ ‖W · (∇χζ)φ]‖L2
ρ+1

+ ‖W · (χζ∇φ])‖L2
ρ+1

+ ‖W [ · ζ‖L2
ρ+1

+ h‖Geiχζφ]‖H−1
ρ,h

]
.

(6.5)
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The first nine terms in the brackets, are o(h−1) as in Salo [18]. For the tenth term,
since G = W ·W + D ·W + p, we use the same argument as in (4.16) and (4.17),
to show it is bounded by ‖Geiχζφ]‖H−1

ρ,h
≤ o(h−σ0). Combining with the h outside the

brackets, we conclude that ‖ω‖H1
ρ,h

= o(1), as h→ 0.

Now if ξ ∈ Rn with |ξ|2 not a Dirichlet eigenvalue of ∆, then for any ζ ∈ Cn

satisfies ζ · ζ = 0, |ζ| ≥ C > 0, Re ζ ⊥ ξ and Im ζ ⊥ ξ, we define

tW,p(ξ, ζ) = 〈(ΛW,p − Λ0,−|ξ|2)(uζ |∂Ω), e−ix·(ξ+ζ)|∂Ω〉

=

∫
Ω

e−ix·ξ(2(ζ ·W )u0 +W ·Du0 + (ξ ·W + |ξ|2)u0)dx+ 〈e−ix·ξp, u0〉.

(6.6)
where uζ = eiζ·xu0 satisfies HW,puζ = 0.
Replacing u0 with ω + ω0, we get

RW,p(ξ, µ) = lim
h→0

h tW,p(ξ, ζ) = 2

∫
e−ix·ξeiφ(µ ·W )dx

where φ = N−1
µ (−µ ·W ). We use one lemma in Salo’s paper [18][Lemma 6.2]

Lemma 6.2. One has

RW,p(ξ, µ) = 2

∫
e−ix·ξ(µ ·W )dx.

To recover curlW , we need recover DjWk −DkWj for any j 6= k. For any µ with

|ξ|2 not a Dirichlet eigenvalue of ∆, we let µ1 =
ξjek−ξkej
|ξjek−ξkej |

; then µ1 · ξ = 0. Find an

unit vector µ2 ∈ Rn with µ2 · ξ = µ · µ1 = 0, now if we let µ = µ1 + iµ2, from Lemma
6.2, we know we can recover RW,q(ξ, µ) and RW,p(ξ, µ̄), since RW,p(ξ, µ) + RW,p(ξ, µ̄)
determines ∫

e−ix·ξ(µ+ µ̄) ·Wdx = (DjWk −DkWj )̂ (ξ).

Thus we can recover DjWk −DkWj from this Fourier transform.

Copyright c© Yaowei Zhang, 2016.
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Chapter 7 Recovery of p

In this chapter, we show how to recover p from the D-N map. This is similar to
what we did in the last chapter, but we estimate the CGO solution in Bourgain type
spaces. In the previous chapter, we recovered curlW ; now we need to construct a
certain W from curlW . Given a vector field W = (W1, . . . ,Wn), we consider the one
form

∑n
i=1Widxi. Applying the exterior derivative, we obtain

d
( n∑
i=1

Widxi
)

=
∑
i<j

∂xiWjdxi ∧ dxj.

Thus, the coefficients on right-hand side are the components of curlW . This implies
that finding a solution W̃ of curl W̃ = curlW is equivalent to finding a solution of
d
∑
W̃idxi = d

∑n
i=1Widxi. For the next result, we work with the differential form∑n

i=1Widxi (which we still denote by W ) and the exterior derivative d, rather than
the vector W and the operator curl.

Since we assume that W is compactly supported in Ω, we may use a partition of
unity to reduce to the case where W is supported in a ball. According to Mitrea,
Mitrea and Monniaux [13, Theorem 4.1], we have operators J1 and J2 so that

W = J2(dW ) + d(J1W ). (7.1)

Since d2(J1W ) = 0, W̃ = J2(dW ) will be give us a solution of dW̃ = dW as desired.
The coefficients of Jl(ω), l = 1, 2, · · · , n are defined by

Jlu(x) =

∫
Ω

∫ ∞
1

(t− 1)n−ltl−1ϕ(y + t(x− y))(x− y) ∨ u(y) dtdy

with ϕ ∈ C∞c (B(0, R)) with
∫
ϕ = 1 and 1 ≤ l ≤ n. Let

Tl,jf(x) =

∫
Ω

∫ ∞
1

(t− 1)n−ltl−1ϕ(y + t(x− y))(xj − yj)f(y) dtdy.

We can write

Tl,j(f(x)) =

∫
Ω

kl,j(x, x− y)f(y) dy

for 1 ≤ m ≤ n, where kl,j is the kernel supported in a ball {(x, y) : |(x, y)| < R} and
satisfies

|∂αx∂βy kl,j(x, y)| ≤ C

|y|n−1+|β| (7.2)

Finally, to compute J2(dW ), we want to consider the map T`,j(∂mu); and we need to
show that this maps into Cλ(B) when u is in Cλ

c (B).

Lemma 7.1. If u ∈ C∞c (B), then

Tl,j(∂ymu(x)) = −
∫
Rn

∂ymkl,j(x, x− y)(u(y)− u(x)) dy (7.3)
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Proof. This is a result of using integration by parts and the fact u is compactly
supported.

If u ∈ Cλ
c (B), we may find uj ∈ C∞c (B) with ui → u uniformly and ‖ui‖Cλ ≤

C‖u‖Cλ . Then we may write

Tl,j(∂ymu)(x)

= − lim
i→∞

∫
∂ymkl,j(x, x− y)(ui(y)− ui(x)) dy (7.4)

Theorem 7.2. If u ∈ Cλ
c (Ω), then

‖Tl,j∂ymu‖Cλ ≤ c‖u‖Cλ .

Proof. We easily have
‖Tl,j∂ymu‖∞ ≤ C‖u‖Cλ .

Then we can write

Tl,j∂mu(y)− Tl,j∂mu(x)

=

∫
∂zmkl,j(y, y − z)(u(z)− u(y))− ∂zmkl,j(x, x− z)(u(z)− u(x)) dz

(7.5)

We set x̄ = 1/2(x + y), s = 10|x − y|, we use number 10 here to make sure we can
have a suitable distance between z and x̄. Then

Tl,j∂m(y)− Tl,j∂mu(x) =

∫
|x̄−z|<d

∂zmkl,j(y, y − z)(u(z)− u(y)) dz

−
∫
|x̄−z|<d

∂zmkl,j(x, x− z)(u(z)− u(x)) dz

+

∫
|x̄−z|>d

(∂zmkl,j(y, y − z)− ∂zmkl,j(x, x− z))

× (u(z)− u(y))dz

+ (u(x)− u(y))

∫
|x̄−z|>d

∂zmkl,j(x, x− z) dz

=I + II + III + IV.

(7.6)

We have I + II ≤ Csλ. For III, we have the estimate

|∂zmkl,j(y, y − z)− ∂zmkl,j(x, x− z))| ≤ C
|x− y|
|z − x̄|n+1

for |z − x̄| ≥ s. Then

III ≤ Cs

∫ ∞
s

r−n−1rn−1+λ dr

≤ Cs · sλ−1

≤ Csλ.

(7.7)
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Finally, for IV , observe Green’s identity gives∫
|x̄−z|>s

∂zmkl,j(x, x− z) dz =

∫
|x̄−z|=s

νmkl,j(x, x− z) dz

and using (7.2), we have

|
∫
|x̄−z|=d

νmkl,j(x, x− z) dz| ≤ C.

Thus IV ≤ Csλ.

Now we can recover curlW .

Theorem 7.3. Suppose the conditions in Theorem 1.3 holds; then we can construct
W̃ ∈ Cλ and compactly supported with curl W̃ = curlW and W̃ |∂Ω = 0.

Proof. As outlined earlier, W̃ = J2(dW ), the Theorem follows from the mapping
properties of J2 proved above.

Next we show how to recover p. Let ξ ∈ Rn \ {0} and γ1, γ2 be two unit vectors
with {ξ, γ1, γ2} an orthogonal set. For s = 1/h we define

ζ1 = −ξ
2

+ s

√
1− |ξ|

2

4s2
γ1 + isγ2

ζ2 = −ξ
2
− s
√

1− |ξ|
2

4s2
γ1 − isγ2.

(7.8)

Let uζ = eiζ·x(ω0 + ω) be the solution of HW,puζ = 0 with

ω0 = eiχζφ
]

,

χζ(x) = χ(x/|ζ|θ),
φ](x) = N−1

µ (−µ ·W ]),

(7.9)

where the function χ ∈ C∞0 (Rn), χ = 1 in B(0,M/2), χ = 0 outside B(0,M), and
Ω ∈ B(0,M/2), |∂αxW ](x)| < Ch−|α|σ. Note that this σ is not the σ we mentioned
before. In Chapter 3, σ = σ0 + θ, but here, we choose σ independent of σ0. Let
µj = ζj/s = µ1

j + µ2
j , j = 1, 2. We show the following lemma.

Lemma 7.4. Suppose W ∈ Cλ and p = p1 + div p2, p1, p2 ∈ C λ̃, with λ > 1/2 and
λ̃ > 0. Then there exists a sequence pair of ζj = h−1µj, j=1,2, defined in (7.8), such
that ‖ω1‖Ẋ1/2

µj,h
= o(h1−σ−ε), and ‖ω2‖Ẋ1/2

µj,h
= o(h1−σ−ε) as h → 0, where σ = 1

2(1+λ)
,

and ε > 0 can be arbitrarily small and independent of h, σ.

Proof. Substituting uζ in HW,puζ = 0, we get

(∆ζ + 2W ·Dζ +G)ω = −f, (7.10)
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or equivalently
(Q+ 2hW · (hD + µ) + h2G)ω = −h2f, (7.11)

with G = W ·W +D ·W + p, and

f = (∆ζ + 2W ·Dζ +G)ω0

= eiχζφ
]
[
iχζ∆φ

] + 2iDχζ ·Dφ] + i(∆χζ)φ
] + (χζ∇φ] + (∇χζ)φ])2

+ 2ζ · (∇χζ)φ] + 2ζ · (χζ∇φ]) + 2W · (∇χζ)φ] + 2W · (χζ∇φ])

+ 2W ] · ζ + 2W [ · ζ +G
]
.

(7.12)

Since
2ζ · ∇φ] + 2W ] · ζ = 0 (7.13)

which removes two terms from f , we have

f =(∆ζ + 2W ·Dζ +G)ω0

=eiχζφ
]
[
iχζ∆φ

] + 2iDχζ ·Dφ] + i(∆χζ)φ
]

+ (χζ∇φ] + (∇χζ)φ])2 + 2ζ · (∇χζ)φ]

+ 2W · (∇χζ)φ] + 2W · (χζ∇φ]) + 2W [ · ζ +G
]
.

(7.14)

Then

‖ω‖
Ẋ

1/2
µj,h
≤Ch2−σ0‖〈x〉1/2+δf‖

X
−1/2
µj,h

≤Ch2−σ0‖〈x〉1/2+δeiχζφ
]
[
iχζ∆φ

] + 2iDχζ ·Dφ] + i(∆χζ)φ
]

+ (χζ∇φ] + (∇χζ)φ])2 + 2ζ · (∇χζ)φ]

+ 2W · (∇χζ)φ] + 2W · (χζ∇φ]) + 2W [ · ζ +G
]
‖
X
−1/2
µj,h

.

(7.15)

Next we estimate each term, since |∂αφ](x)| ≤ Ch−σ|α|〈xT 〉−1χB(0,M)(x⊥), where xT
is the projection of x to span{γ1, γ2} and x⊥ = x− xT . Then for the first term

h2−σ0‖〈x〉1/2+δeiχζφ
]

iχζ∆φ
]‖
X
−1/2
µj,h

≤ Ch3/2−σ0‖〈x〉1/2+δeiχζφ
]

iχζ∆φ
]‖L2

≤ Ch3/2−σ0
( ∫

Rn

〈x〉2(1/2+δ)(χζ(x))2|∆φ](x)|2 dx
)1/2

≤ Ch3/2−σ0h−2σ
( ∫
|xT |≤Mh−θ,|x⊥|≤M

〈x〉2(1/2+δ)〈xT 〉−2 dx
)1/2

≤ Ch3/2−σ0−2σ
( ∫
|xT |≤Mh−θ

〈xT 〉−1+2δ dxT
)1/2

≤ Ch3/2−σ0−2σ−θ(1/2+δ).
(7.16)
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This term has the worst behavior among the first four terms of (7.15) since the
derivatives of χζ bring decay and the other terms only have first derivatives of φ].
For the fifth term, we have

h2−σ0‖〈x〉1/2+δeiχζφ
]

2ζ · (∇χζ)φ]‖X−1/2
µj,h

≤ Ch2−σ0h−1+θh−1/2‖〈x〉1/2+δeiχζφ
]

φ]‖L2

≤ Ch1/2−σ0+θ‖〈x〉1/2+δφ]‖L2

≤ Ch1/2−σ0+θh−θ(1/2+δ)

≤ Ch1/2−σ0+θ(1/2−δ).

(7.17)

The estimates for the sixth, seventh, and eighth terms are Ch3/2−σ0+θ, Ch3/2−σ0−σ,
and Ch1/2−σ0+σλ, respectively. For the ninth term, by Haberman and Tataru’s paper
[10, Lemma 3.1, p.10], we can find a sequence (µj, hj) with hj tending to zero so that

‖G‖
X
−1/2
µj,hj

= o(h−1+ 1
2
λ̃).

So the estimate of the ninth term is Ch1−σ0−σ2 + 1
2
λ̃.

Now consider the worst three terms: h3/2−σ0−2σ−θ(1/2+δ), h1/2−σ0+θ(1/2−δ) and h1/2−σ0+σλ.
Let 3/2− σ0− 2σ− θ(1/2 + δ) = 1/2− σ0 + θ(1/2− δ). We find that θ = 1− 2σ and
h3/2−σ0−2σ−θ(1/2+δ) = h1/2−σ0+θ(1/2−δ) = h1−σ−σ0−δ(1−2σ), since σ0, δ can be arbitrarily
small. Now we let 1 − σ = 1/2 − +σλ; we have σ = 1

2(1+λ)
. Thus if we make a

summary, choosing θ = 1− 2σ and σ = 1
2(1+λ)

, then for any ε > 0,

‖ω‖
Ẋ

1/2
µj,h
≤ Ch1−σ−ε.

Let uζ1 , uζ2 satisfy HW,puζ1 = 0, H−W,0uζ2 = 0, respectively, and take the forms

uζ1 = eiζ1·x(eiφ
]
1 + ω1)

uζ2 = eiζ2·x(e−iφ
]
2 + ω2)

Define a scattering transform

t̃(ξ) = 〈(ΛW,p − Λ−W,0)(uζ1 |∂Ω), vζ2|∂Ω〉 = 〈puζ1 , uζ2〉

Substituting uζ1 and uζ2 , we get

t̃(ξ) = 〈e−ix·ξp(eiφ
]
1 + ω1), (e−iφ

]
2 + ω2)〉

= 〈e−ix·ξpeiφ
]
1 , e−iφ

]
2〉+ 〈e−ix·ξpeiφ

]
1 , ω2〉+ 〈e−ix·ξpω1, e

−iφ]2〉+ 〈e−ix·ξpω1, ω2〉

For the first term, since
ζ1 · ∇φ]1 +W ] · ζ1 = 0,
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ζ2 · ∇φ]2 −W ] · ζ2 = 0,

and ζ1 + ζ2 = −ξ = s(µ1 + µ2) as s→∞ or µ1 = −µ2 − hξ. Furthermore,

φ]1 = N−1
µ1

(µ1 ·W ]) =
1

2π

∫
R2

1

y1 + iy2

(µ1 ·W ])(x− y1µ
1
1 − y2µ

2
1) dy1dy2

and

φ]2 = N−1
µ2

(−µ2 ·W ]) =
1

2π

∫
R2

1

y1 + iy2

(−µ2 ·W ])(x+ y1µ
1
2 + y2µ

2
2) dy1dy2.

So

φ]1 − φ
]
2 =

1

2π

∫
R2

1

y1 + iy2

(µ1 ·W ])(x− y1µ
1
1 − y2µ

2
1) dy1dy2

+
1

2π

∫
R2

1

y1 + iy2

(µ2 ·W ])(x+ y1µ
1
2 + y2µ

2
2) dy1dy2

=
1

2π

∫
R2

1

y1 + iy2

((−µ2 − hξ) ·W ])(x− y1µ
1
1 − y2µ

2
1) dy1dy2

+
1

2π

∫
R2

1

y1 + iy2

(µ2 ·W ])(x+ y1µ
1
2 + 2µ2

2) dy1dy2

=
1

2π

∫
R2

1

y1 + iy2

((−hξ) ·W ])(x− y1µ
1
1 − y2µ

2
1) dy1dy2

+
1

2π

∫
R2

(µ2 ·W ])(x+ y1µ
1
2 + y2µ

2
2)− (µ2 ·W ])(x− y1µ

1
1 − y2µ

2
1)

y1 + iy2

dy1dy2

= I + II.
(7.18)

Because ∂αxW
] ≤ Ch−σ|α| and |(x+ y1µ

1
2 + y2µ

2
2)− (x− y1µ

1
1 − y2µ

2
1)| ≤ Ch|y1|, then

I ≤ Ch and II ≤ Ch1−σ, similarly, we can prove |∇(φ]1 − φ
]
2)| ≤ Ch1−2σ.

It follows that
〈e−ix·ξpeiφ

]
1 , e−iφ

]
2〉 → p̂(ξ)

as s→∞.
Next the second term: if we consider eiφ

]
1 as a symbol, from Lemma 3.2, we have

|〈e−ix·ξpeiφ
]
1 , ω2〉 ≤ C‖e−ix·ξpeiφ

]
1‖
Ẋ
−1/2
µ,h
‖ω2‖Ẋ1/2

µ,h

≤ Ch−σ/2‖e−ix·ξp‖
Ẋ
−1/2
µ,h
‖ω2‖Ẋ1/2

µ,h

≤ Ch−σ/2h−1+ 1
2
λ̃h1−σ−ε

≤ Ch
1
2
λ̃− 3

2
σ−ε

≤ Ch1/2(λ̃− 3
2(1+λ)

)−ε

(7.19)

where the estimate of ‖e−ix·ξpeiφ
]
1‖
Ẋ
−1/2
µ,h

leads to an average estimate found in Haber-

man and Tataru [10][Lemma 3.1]. The third term is similar to the second.
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Finally we look at the last term,

|〈e−ix·ξpω1, ω2〉| ≤ Ch−2+λ̃‖ω1‖Ẋ1/2
µ,h
‖ω2‖Ẋ1/2

µ,,h

≤ Ch−2+λ̃ h1−σ−ε h1−σ−ε

≤ Chλ̃−
1

1+λ
−2ε,

(7.20)

where the estimate of the operator e−ix·ξp is follow to Haberman and Tataru [10][Theorem
2.1].

Above all, if λ̃− 3
2(1+λ)

> 0, or equivalently λ̃(1 + λ) > 3
2
, we can recover p̂, which

is the Fourier transform of p. Then we could construct our electric potential p. If
we let λ̃ approaches 1, then λ can approaches to 1/2 from above, and if we let λ
approaches to 1, λ̃ converges to 3/4 from above. To make a summary, we can say
that for any λ ∈ (1/2, 1), λ̃ ∈ (3/4, 1) and λ̃(1 + λ) > 3

2
, p can be determined by DN

map.

Copyright c© Yaowei Zhang, 2016.
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Chapter 8 Future work

In the previous chapter, we recovered p by using CGO solutions of the form u =
eix·ζ(eiφ

]
+ ω). The estimate (7.19) requires λ̃ − 3

2(1+λ)
> 0, the estimate (7.20)

requires λ̃ − 1
1+λ

> 0. We do not expect this result to be sharp and in future work

we would like to recover p for a larger range of λ and λ̃.
Other interesting questions include studying the stability of the recovery process

for non-smooth potentials. This would extend the work of Leo Tzou [25]. We can also
consider extending Haberman’s methods for magnetic Schrödinger operators to the
case when the magnetic potential W is not small. Finally, there is much interesting
work for the inverse boundary value problem in the case when we only have data
on part of the boundary. The inverse boundary value problem for the magnetic
Schrödinger operator was studied by Chung [6]. Another area of investigation is to
study this partial data problem when the potentials are not smooth.

Copyright c© Yaowei Zhang, 2016.
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