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ABSTRACT OF DISSERTATION 

 

ROBUST RNA INTEGRITY-TO-NEURONAL GENE EXPRESSION ASSOCIATION 

IN AUTOPSY BRAIN TISSUE NOT EXPLAINED BY POST-MORTEM 

VARIABLES; AND ACUTE BEHAVIORAL STRESS DOES NOT ALTER RNA 

QUALITY, WHILE PROGESTERONE PROTECTS AGAINST EFFECTS OF STRESS 

EXPOSURE 

 

Transcriptional profiling (TP) is a common tool to determine RNA expression 

levels. It allows for thousands of genes to be analyzed simultaneously, and determines 

differences in gene expression levels due to various pathologies. RNA quality also 

impacts the reported expression level. One of the most common approaches for assessing 

RNA quality is Agilent Technology’s RNA integrity number (RIN). The use of RINs 

allowed scientists to standardize the assessment and reporting of RNA quality by 

predominantly using rRNA traits to assign a quantitative value. Recent work provided 

evidence that RINs are associated with transcriptional profiles, and possibly has a 

stronger connection to some pathologies. Because of the effect RIN has on gene 

expression, many have tried to correct for its influence using techniques such as multiple 

regression. Despite this, there has been relatively little work done on determining 1) how 

RNA quality impacts TP results, 2) when RNA degradation begins to impact gene 

expression, and 3) the relationship between RINs and gene expression.  To investigate 

this, individual profiles from human, control, brain tissue with disambiguated RINs were 

analyzed. A robust set of mRNA species, particularly related to neurons, were 

significantly correlated with RINs, indicating that neurons are more susceptible to the 

effects of RNA degradation in brain tissue. Most of the decline in mRNA expression 

occurs within a narrow RIN range of 7.2 to 8.6, with values greater than 8.6 not needing 

RIN-correction and values less than 7.2 being too degraded to give accurate readings. 

This non-linear relationship between RINs and mRNA expression may be important to 

consider for RIN-correction procedures. Also, it was confirmed that RINs appear to be 

confounded with certain pathologies. RNA quality is possibly influenced by ante-mortem 

factors that occur during life and may exacerbate post-mortem effects. 

Post-mortem variables are a key focus for RNA quality, while ante-mortem 

factors such as stress and neuropathology are less understood. During stress, 

glucocorticoids (GCs) released from the adrenal glands are associated with neurotoxic 

and RNA degrading effects in brain that may contribute to ante-mortem influences on 

RNA quality. Recent evidence has shown that progesterone (P4) may counter GC’s 

effects during stress. To determine if acute psychosocial stress impacts RNA quality and 



     

 

whether P4 protects against the effects of this stress, male and female rats were 

administered a vehicle or P4 daily during water maze training, and then underwent an 

acute stress (restraint) before the probe trial. Female, P4-stressed animals had improved 

probe trial performance compared to their vehicle-stressed counterparts, and neither 

stress nor P4 influenced RNA quality. Stressed animals had higher blood plasma GC 

levels, as expected. In the hippocampus, acute stress and P4 did not alter Sgk1 protein 

levels between sexes, but Sgk1 mRNA was significantly increased in male vehicle-

stressed subjects, and this stress effect was blocked by P4. Based on prior work showing 

both age and stress sensitivity, we also assessed microglial-myelin fragment co-labeling, 

and found that this was increased in males, particularly the progesterone groups. Taken 

together, this indicates that acute behavioral stress does not appreciably impact RNA 

quality from brain tissue, and that the behavioral and molecular effects of acute stress are 

partially disrupted by P4. 

 

KEYWORDS: RNA Integrity Numbers, Microarrays, Alzheimer’s disease, Acute 

Psychosocial Stress, Glucocorticoids, Progesterone  
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CHAPTER 1.  TRANSCRIPTIONAL PROFILING 

1.1 Types of transcriptional profiling and its common techniques 

In the most basic sense, transcriptional profiling is a group of techniques that 

simultaneously measure multiple genes' RNA expression. Often, these techniques can 

analyze thousands of genes from the sample, allowing for a more encompassing picture of 

what is occurring within tissues or cells. In the past 25 years, transcriptional profiling has 

been done using microarrays (the first transcriptional profiling technique of the modern 

era) or RNA-sequencing (RNA-seq; which has grown in popularity in the last decade) and 

have been cited over 272,000 times on PubMed. This rise indicates how the field and its 

unbiased approach to findings have become more impactful to the scientific community. 

Transcriptional profiling has allowed for gene expression, microRNA, long non-coding 

RNA, transcriptional factor binding assays, and genotyping analysis (Bumgarner, 2013; 

Hrdlickova, Toloue, & Tian, 2017; Jaksik, Iwanaszko, Rzeszowska-Wolny, & Kimmel, 

2015) in a variety of conditions and diseases across tissues and species (Jaksik et al., 

2015). 

1.1.1 Microarrays 

1.1.1.1 History of microarrays 

Today’s microarray technology’s early predecessors first appeared in 1975 using 

colony hybridization (Grunstein & Hogness, 1975). They cloned DNA into E. coli 

plasmids on agar plates and covered with nitrocellulose filter, and then the E. coli on the 

filters were lysed, and the DNA was denatured and fixed to the filter. This process created 

randomly distributed spots of cloned fragments from the DNA on the filter, which could 

then be hybridized with a radiolabeled probe for DNA or RNA of interest ((Grunstein & 

Hogness, 1975) reviewed in (Bumgarner, 2013)). Gergen et al. adapted Grunstein and 

Hognees’ approach to creating an ordered array, using a microtiter plate for the medium, 

and creating a machine to copy the pattern into the agar (Gergen, Stern, & Wensink, 

1979). This approach and those adapted from it continued to be the closest thing to the 

modern microarrays through the 1980s. The early 1990s saw this procedure automated, 

and with the addition of the growing libraries of cDNA references, set the stage for the 

more modern microarrays (Bumgarner, 2013).  
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Fodor et al. introduced a method that would become instrumental in the 

development of microarrays, a light-directed chemical synthesis ((Fodor et al., 1991); 

reviewed in (Lenoir & Giannella, 2006)). This process synthesized up to 1024 unique 

peptides simultaneously. Amino acids were attached to a photoremovable protecting group 

using photolithographic techniques. These protecting groups were then either protected 

from a laser using a mask or the protective group removed. A light-directed peptide 

synthesis occurred with another protecting group (Fodor et al., 1991). The masks would 

change between each round of removing the photolabile to create different peptide 

sequences. Once the sequences were synthesized, the peptide chains were flooded with 

fluorescent markers to determine the composition of the peptides (Fodor et al., 1991; 

Lenoir & Giannella, 2006). They also developed a scanner for reading the output of this 

process, similar to that used in fluorescent-activated cell sorting (Lenoir & Giannella, 

2006). This development would become crucial for the development of oligonucleotide 

microarrays.  

In 1995, the first publication involving cDNA hybridization spotting microarrays 

was published (Schena, Shalon, Davis, & Brown, 1995). Using the aspects of techniques 

already standardized (e.g., fluorescent in situ hybridization, dot blot) (Lenoir & Giannella, 

2006),  they analyzed the Arabidopsis thaliana’s cDNA. They found that using florescent 

probes made from A. thaliana’s RNA saturated the high-sensitivity detector, while the 

negative controls did not; the moderate-sensitivity provided quantifiable results (Schena et 

al., 1995).  

The following year, oligonucleotide microarrays were published for the first time, 

building off the work of Fodor et al. (Lockhart et al., 1996). The significant difference 

between oligonucleotide and spotting microarrays is that instead of hybridizing onto a 

surface (e.g., glass), oligonucleotide microarrays covalently bind their chemically 

synthesized chemically oligonucleotides detectors to the glass surfaces (Lockhart et al., 

1996). Affymetrix, which Thermo Fisher Scientific later acquired, uses this approach in 

their microarrays (Bumgarner, 2013). 

Another technique for oligonucleotide microarrays was also introduced in 1996. 

Blanchard et al. also used oligonucleotide synthesis. Instead of masks as Lockhart et al. 

(1996) and Fodor et al. (1991), however, they used microfabricated ink-jet pumps, which 
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are similar to those found in some ink-jet printers of the time. These pumps added four 

different synthetic nucleotides to a glass slide with hydrophilic and hydrophobic areas.   

(Blanchard, Kaiser, & Hood, 1996). The nucleotides were then able to bond within the 

hydrophilic areas but were constrained by the hydrophobic regions (Blanchard et al., 

1996; Bumgarner, 2013). Agilent Technologies, another well-known microarray company, 

licensed this technology (Bumgarner, 2013).  

A group also developed a third type of microarray at Tufts University, the bead-

based fiber-optic arrays. This method synthesizes a DNA probe on polystyrene beads at 

the end of the fiber optic array (Bumgarner, 2013; Walt, 2000). The DNA hybridizes to a 

fluorescent marker and is excited by laser light. The emitted fluorescent light is then 

captured and sent to the opposite end of the fiber for detection and analysis (Walt, 2000). 

Illumina, Inc. licensed this technology (Bumgarner, 2013).  

Affymetrix, Agilent Technologies, and Illumina, Inc. are three of the largest 

microarray companies in the last 25 years. This work will focus primarily on Affymetrix 

and the oligonucleotide microarrays since they are used in Chapter 2. 

1.1.1.2 Oligonucleotide microarray mechanism 

Oligonucleotide microarrays require two forms of preparation: creating the 

microarray probes and RNA isolation and processing. Using techniques described by 

Fodor et al. (1991) and Lockhart et al. (1996), oligonucleotides are synthesized directly 

onto the microarrays (reviewed in (M. B. Miller & Tang, 2009)). Photolithographic 

techniques create these short chains (usually between 20-25 bp) (Fodor et al., 1991; 

Lockhart et al., 1996; M. B. Miller & Tang, 2009).  First, masks are created to expose 

light to some chemical substrates, light-sensitive protecting agents. When these agents are 

exposed to light, they are released (Fodor et al., 1991), and the microarray is exposed to a 

nucleic acid bound to a new photolabile agent (M. B. Miller & Tang, 2009) (Figure 1.1). 

This process is repeated until the oligonucleotide probe sequence has been completed. 

Gene targets often have multiple probes associated with them, which increase sensitivity, 

specificity, and accuracy (M. B. Miller & Tang, 2009).  

Affymetrix has multiple forms of oligonucleotide microarrays. The more 

established version (e.g., Affymetrix 3’ in vitro transcription [IVT] platform) has 

traditionally used two types of probes: the perfect match and the mismatch. There are 11  
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Figure 1.1. Chemical synthesis cycle of oligonucleotide microarray. 

The lithographic mask allows for the UV light to only target specific regions of the 

microarray. The light removes the photolabile protecting agent from the surface of the 

microarray. Then it is washed with a nucleotide attached to another photolabile 

protector. A new mask is used, and the process repeats until the oligonucleotide probes 

are complete. (Probes are usually 20-25 nucleotides long.) Adapted from Miller & 

Tang (2009).  Created with BioRender.com 
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sets of perfect match probes for each target, with each probe consisting of 25 nucleotides. 

Each of these sequences is usually chosen from a 600-nucleotide sequence near the non-

coding 3’ end of the target gene’s coding region of interest (reviewed in (Jaksik et al., 

2015; M. B. Miller & Tang, 2009)). Originally, there was an associated mismatch probe 

for each perfect match probe, which only differs by a single, non-complementary 

nucleotide in the middle of the probe (i.e., in the 25-nucleotide sequence, the 13th 

nucleotide will be a mismatch). These mismatched probes measure non-specific binding 

(Jaksik et al., 2015; M. B. Miller & Tang, 2009), although most modern probe level 

algorithms report better relative quantification if the mismatch data is omitted (Z. Wu & 

Irizarry, 2007).  

In addition, Affymetrix also has exon-based microarrays (e.g., HuGene 1.0ST), 

which use similar probe designs but with some distinct differences. The first being that the 

perfect match probes are not associated with the 3’ area of the target but rather are chosen 

to detect individual exons. Each exon probe set has about four probes, and these are 

grouped into sets of 25 for the individual genes. Another difference is that it does not use a 

mismatch probe. Instead, it relies on more Background Intensity Probes (BGP), about a 

thousand probes used to determine background intensity levels by binding to gene 

sequences that are non-complementary to human genes. This process allows for more 

perfect match probes on the microarray compared to the 3’ IVT platforms, and these 

probes measure at the exon level can be algorithmically interpreted to produce gene level 

and splice variant intensities (Jaksik et al., 2015).  

1.1.1.3 RNA isolation and processing 

Once the company creates the microarrays, they may be sent to laboratories. The 

laboratories, which have selected a microarray for the species of their samples, prepare the 

samples for analysis. The first of these steps is RNA isolation (Jaksik et al., 2015). Once 

the RNA is isolated, its quality should be determined to ensure accurate readings from the 

microarray. One of the most common ways to measure RNA quality is through RNA 

integrity numbers (RINs; see section 1.2) (Jaksik et al., 2015; Schroeder et al., 2006).   

An oligo-dT synthesizes the first strand of complementary DNA (cDNA) by first 

annealing to the mRNA's poly(A) sequence. Any RNA without the poly(A) tail is lost. 

The reverse transcriptase continues from the poly(A) sequence to copy the mRNA strand, 



6 

 

converting the RNA into cDNA (Jaksik et al., 2015; Nam et al., 2002). This strand of 

cDNA is then used as a template for other cDNA strands. Ribonucleases, which are also 

present, cause RNA cleavage at non-specific sites within the cDNA, causing 

fragmentation. These fragments act as primers for a polymerase, which creates a second 

strand of cDNA and removes the remaining RNA fragments (Figure 1.2).  

This cDNA is amplified and transcribed into cRNA, which is fragmented into 50-

100 nucleotides to increase the binding between short 20-25mer probes to longer cDNA 

strands. Another set of bacterial RNA is also introduced to biotinylate the cRNA. One is 

from the P1 bacteriophage and may integrate Cre, a common recombinase enzyme that 

inserts targets at a Lox site, into the system (Jaksik et al., 2015; Nagy, 2000; Sauer & 

Henderson, 1988).  Cre allows for the insertion of biotin genes from E. coli, which are 

crucial for the fluorescence step (Figure 1.2) (Jaksik et al., 2015).   

The cRNA is hybridized to the probes, and the degree to which probes are 

occupied is proportional to their concentrations, hybridization temperature, and GC 

content. Once the cRNA is bound to the probe, the unbound cRNA is washed from the 

microarray surface. Then a staining process occurs where the biotin binds to streptavidin-

phycoerythrin, a protein with high affinity for biotin bound to a fluorescent protein (Figure 

1.2) (Dundas, Demonte, & Park, 2013; Jaksik et al., 2015). The microarray is scanned, and 

the phycoerythrin becomes excited and emits fluorescent light that is used to quantify 

signal intensity. These excited levels are measured by the scanner and recorded as a single 

image for the microarray. This image is processed and returned as a .cel file, in which 

each probe has a single intensity value assigned to it. Probe level algorithms process the 

.cel file to adjust for background signal, normalize the signal, and then provide one 

expression value for each probe set (gene) (Jaksik et al., 2015). After this, the statistical 

analysis can begin to determine experimental or pathological effects.  

1.1.2 RNA-Seq 

While microarrays became more popular in the 1990s and early 2000s, another 

form of transcriptional profiling was also developing. Two methods for standard 

nucleotide sequencing were being developed: the Sanger method (cDNA is annealed to an 

oligonucleotide primer and continues to expand using a DNA polymerase and a solution  



7 

 

  

Figure 1.2. Microarray experimental steps. 

RNA (pink) is isolated from its source, and then cDNA (blue) is synthesized. Once it is 

synthesized, the cDNA is transcribed into biotin (B) labeled cRNA. The cRNA is 

fragmented in 50-100 nucleotide sequences before hybridizing onto the microarray. 

The microarray is then washed and stained with streptavidin (dark blue circles) and 

phycoerythrin (neon green circles). When the phycoerythrin is exposed to the laser 

during scanning, it excites the machine to measure the fluorescence. Adapted from 

Jaksik et al. (2015). Created using BioRender.com. 
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of deoxynucleotide triphosphates or dideoxynucleotide triphosphates in a rate-limiting 

concentration (Crossley et al., 2020; Sanger, Nicklen, & Coulson, 1977)) and the serial 

analysis of gene expression (SAGE; a technique to gain direct and quantitative gene 

expression measurements (Velculescu, Zhang, Vogelstein, & Kinzler, 1995; Yamamoto, 

Wakatsuki, Hada, & Ryo, 2001). Based on advances in sequencing technology, Next 

Generation Sequencing (NGS) was introduced (reviewed by (Ansorge, 2009; Hrdlickova 

et al., 2017; Mardis, 2008)).  NGS allows reading the nucleic acid sequence for millions of 

fragments in series (Ansorge, 2009). One of the most common NGS techniques today is 

RNA-Sequencing (RNA-Seq).  

RNA-seq is a group of techniques that uses cDNA and determines the number of 

fragments associated with a specific gene. RNA-Seq has several advantages over 

microarrays. One of which is its higher dynamic range, as it counts each detected fragment 

and therefore does not saturate. In contrast, microarrays use hybridization approaches and 

have lower detection thresholds and upper saturability ceilings. Another is that RNA-seq 

can be done independent of a genomic reference, and therefore can more reliably find 

variants, measure mutations, and be used with organisms that do not have reference 

genomes (Sirbu, Kerr, Crane, & Ruskin, 2012; van der Kloet, Buurmans, Jonker, Smilde, 

& Westerhuis, 2020). However, because of its novelty, the bioinformatic pipeline to 

analyze the RNA-Seq findings has yet to be standardized, making it more difficult to 

compare across laboratories (Simoneau, Dumontier, Gosselin, & Scott, 2021).  In addition, 

there are two types of RNA-seq: one that analyzes mRNA expression at the tissue level 

and one at the cell level. This discussion will focus on the former. 

Preparing RNA-Seq samples is similar to preparing oligonucleotide microarray 

samples in some respects. In both cases, one starts by isolating the RNA, and ribosomal 

RNA must be removed lest it overwhelms the sequencer. This process involves enriching 

the RNA species of interest. One of the most common ways parallels that used in arrays, 

by separating the mature mRNA with long poly(A) tails from the remaining DNA, for 

instance beads coated with oligo-dT molecules (reviewed in (Hrdlickova et al., 2017; 

Voelker)). Another way to remove rRNA is rRNA depletion. This process can occur in 

one of two ways. The first is by using sequence-specific probes to hybridize rRNAs, bind 

with either biotinylated DNA or locked nucleic acid probes, and then deplete them with 
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streptavidin beads. The second is to use specific, not-so-random primers. These bind to the 

rRNA during reverse transcription, avoiding rRNA production (Hrdlickova et al., 2017).  

One of two steps can come next. The first is the conversion of RNA to double-

stranded cDNA, and the second is fragmentation. The RNA fragmentation, which has 

become the more popular option, occurs by enzymes (e.g., RNAse III) or metal ions (e.g., 

Zn2+, Mg2+), though neither of these processes is entirely random. Meanwhile, cDNA can 

be fragmented with acoustic shearing or DNAse, neither of which is random either 

(Hrdlickova et al., 2017; Voelker). Fragmentation is a crucial step for RNA-seq because 

the sequencers (i.e., Illumina) have size limitations (40-600 base pairs) as to how large of 

a fragment they can sequence at once (Hrdlickova et al., 2017; Voelker).    

The cDNA fragments are used for the molecular cloning process. The fragmented 

nucleic acid no longer includes directional information. Adapters are added to the ends of 

the sequences, often in the RNA, to correct this problem (Hrdlickova et al., 2017). These 

adapters vary, depending on the platform. One of these approaches is the ligation of 

adapters on the 3’ and 5’ ends (Hrdlickova et al., 2017).  The 3’ and 5’ ligation begins by 

removing the 3’ phosphate group and adding a 5’ phosphate group. Then the 5’ adapter 

adenylated 3’ adapter is added to the mRNA using an RNA ligase II, and a 5’ adapter is 

ligated to the fragment with RNA ligase I. This mechanism allows the strand to be 

maintained during cDNA synthesis (Hrdlickova et al., 2017; Voelker). In order to prevent 

any bias from the adapter’s sequence, random nucleotides have been added recently 

(Hrdlickova et al., 2017). After this, the cDNA library is then loaded onto a flow cell, a 

slide containing adapter-complementary oligos. Illumina Inc., the company, most 

commonly used for RNA-Seq, amplifies the cDNA fragments using bridge amplification 

cycles (Illumina, 2017) (reviewed in (Metzker, 2010)). Bridge amplification is a multistep 

process that begins when an adapter on a single strand of cDNA binds to its 

complementary oligo on the flow cell. A polymerase makes the complementary strand to 

the fragment. The double-strand is then denatured, and the original cDNA strand is 

removed (Illumina, 2016). The strand folds so that the other adapter is hybridized to its 

flow cell-bound complement, causing a bridge-like structure, and a polymerase produces 

another complementary strand. Again, these strands are denatured, creating two 

complementary fragments. This process is then repeated in order to create clusters of the 
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fragment. This process is repeated for each fragment (Illumina, 2016). An Illumina flow 

cell can have 100-200 million clusters (Metzker, 2010). 

The reverse strands are then cleaved from the flow cell and washed away, and the 

3’ ends are blocked. Illumina uses a process called “sequencing by synthesis.” The first 

sequencing primer is then used to extend a new complementary strand. Fluorescently 

tagged nucleotides (each nucleotide bound with a different fluorescent) are added to the 

growing chain, and after they are bound, a light source excites the strand causing 

fluorescence. This excitement allows for sequencing based on the fluorescent signal 

emitted (Illumina, 2016). The wavelength and intensity are used to identify the base 

sequence (Illumina, 2017).  

Once completed, the new strand is washed away, and an index-read primer is 

introduced (Illumina, 2016). Indexes are DNA sequences attached to the fragments for 

storage and identification (Illumina, 2017). This index fragment is created by sequencing 

synthesis and washed away after its completion. The 3’ ends are unblocked, and the 

cDNA strand binds to complementary adapters again. Another index is then synthesized, 

only this one is extended to include the entire fragment, so there is a forward and reverse 

cDNA strand again. This time, the forward strand is removed, and the reverse strand is 

sequenced by synthesis (Illumina, 2016).  

The sequences are then analyzed and grouped with similar fragments to determine 

the sequence of the bases, with forward and reverse reads paired. Each cluster is saved as a 

base cell (BCL) file until the sequencing is complete, then the BCL files are converted to a 

FASTQ file.  These sequences are then aligned with the RNA-Seq library for variant 

identification (Illumina, 2016). While cDNA libraries can be created for each run, the 

process is time-consuming and requires higher read counts to create the library; otherwise, 

custom libraries may not identify mutations. Commonly used organisms (e.g., humans, 

mice, rats) often have libraries already compiled by the platform companies. The number 

of times a gene was measured is counted, and the mapped data is normalized (Costa-Silva, 

Domingues, & Lopes, 2017). At this point, differentially expressed genes (DEGs) can be 

determined statistically using one of many bioinformatic tools (Costa-Silva et al., 2017; 

McDermaid, Monier, Zhao, Liu, & Ma, 2019).  
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1.2 RNA integrity numbers 

1.2.1 Role in transcriptional profiling 

As previously described, unbiased RNA quantification is crucial for gene 

expression analysis (Schroeder et al., 2006). Multiple conditions can impact the gene 

expression, including RNA quality (Gallego Romero, Pai, Tung, & Gilad, 2014; Opitz et 

al., 2010; Stan et al., 2006). While RNA is a thermodynamically stable molecule, it can be 

digested quickly by endogenous enzymes. These enzymes cause RNA fragmentation. 

Early ways of measuring RNA quality were: 1) agarose gel electrophoresis to determine 

the ratio between the 28S and 18S bands from the ribosomal RNA (rRNA; high-quality 

RNA had a ratio > 2.0) (Schroeder et al., 2006); 2) using spectrometry determining the 

ratio between 260 nm band (specific nucleic acids) and 280 nm band (specific for 

proteins) (reviewed in (Fleige & Pfaffl, 2006)); or 3) the 3’:5’ ratio often determined 

during polymerase chain reaction (PCR) (Die, Obrero, González-Verdejo, & Román, 

2011).  However, the protocol for these measurements could vary depending on the 

laboratory, which did not allow for comparisons across laboratories and institutions, and 

were not always accurate predictors of RNA quality (Schroeder et al., 2006; Sonntag et 

al., 2016). To address this problem, Agilent Technologies introduced RNA integrity 

numbers (RINs) in 2004 using their 2100 Bioanalyzer RNA 6000 Nano and RNA 6000 

Pico LabChip kits (Mueller, Lightfoot, & Schroeder, 2004; Schroeder et al., 2006).  

By providing a tool to help standardize the reporting of RNA quality reporting, 

researchers were able to compare data more accurately. They could also determine 

correction methods to help remove the impact of RNA degradation in the samples. 

Currently, however, there is no universal or tissue-specific standard for considering the 

cells or tissue to be “too degraded” for experimental use. Mueller et al. claimed the effects 

of RNA quality might be more influential in specific transcriptional profiling techniques, 

and therefore procedures controlling for RIN might be method-specific too (2004). 

However, the most significant benefit of RINs is that it uses multiple measurements to 

determine a single value to determine the quality of the sample, while its predecessors 

tended only to use one measure (Mueller et al., 2004; Schroeder et al., 2006).   
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1.2.2 Determining RNA integrity number values 

The RIN software algorithm was first developed using around 1,200 mammalian RNA 

samples of varying tissues and quality on the Eukaryote Total RNA Nano Assay from 

Agilent Technologies. These samples were then manually categorized into a numeric 

system ranging from 1 to 10, where increasing values indicate better quality (Mueller et 

al., 2004). The values are determined using measurements from an electropherogram 

(Figures 1.3, 1.4); these measurements include the marker peak, 5S region, fast region, 

18S fragment, inter-region, and 28S fragment. Primarily, RINs are determined based on 

the quality of the rRNA as the 5S, 18S, and 28S, even though gene expression uses the 

mRNA because RNA degrading enzymes typically attack both (Hrdlickova et al., 2017; 

Jaksik et al., 2015; Mueller et al., 2004; Schroeder et al., 2006). The 5S region differs 

from the 18S and 28S peaks because it contains multiple smaller fragments (i.e., 5S and 

5.8S rRNA and tRNA). Taken together, these measurements produce seven features that 

are input into an algorithm to determine the RIN for a given sample:  

1. The total RNA ratio. The measurement of the fraction of the area in the 18S and 

28S regions is compared to the total area under the curve. The ratio is largest in 

RIN scores of 6 - 10;  

2. The 28S height. The 28S peak degrades more rapidly than the 18S peak and 

determines additional information about the degradation process. The 28S height is 

larger for RIN values of 9 - 10 and has a value of 0 for RIN scores of 1 - 3;  

3. Fast area ratio. The measurement of the fast region area to the total RNA area;  

4. The linear regression value at the endpoint of the fast region;  

5. The number of detected fragments in the fast region. As rRNA degrades, there is a 

continuous shift towards smaller fragment sizes;  

6. The presence or absence of the 18S peak. This allows the algorithm to determine 

between minimal or significant degradation;  

7. The relationship between the overall mean value and the median value. The mean 

value is more sensitive to larger peaks. It contains information on totally degraded 

mRNA or abnormalities  (Schroeder et al., 2006).  
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Figure 1.3. Parts of the RIN electropherogram. 

Marker: this peak is used to determine strongly degraded samples since it is the only peak 

not influenced by RNA (highest peak at RINs of 1-2). 5S Region: this region contains 

smaller RNA fragments. Fast region: the area between 5S Region and 18S fragment; 18S 

fragment: the signal from 18S rRNA; Inter-Region: the region between the 18S and 28S 

fragments; and 28S fragment: the signal from the 28S rRNA. 
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Figure 1.4. Representative electropherograms for each RIN integer. 

These images show how the electropherogram readings change as RNA degrades. RINs of 

10 include RNA with minimal degradation, while RINs of 1 are considered wholly 

degraded. Figure from Schroeder et al., 2006. 
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In addition to the RIN, the algorithm also produces the total RNA area, the RNA 

concentration, and the 28S / 18S ratio. While the total RNA area is used to determine the 

RIN and the 28S / 18S ratio is indirectly used, the RNA concentration is not used to 

calculate the RIN. Because of the standard protocol for determining RINs, the 

quantification of RNA degradation, and the abundant information provided, RINs have 

become a standard in the scientific community (Fleige & Pfaffl, 2006; Mueller et al., 

2004; Schroeder et al., 2006). 

RNA quality can vary due to pre-and post-mortem events (Durrenberger et al., 2010), 

and this can be seen in the quality between humans and animals (see Table 2.2). This 

difference is probably due to the more controlled conditions for tissue collection in the 

animals used for the study. In addition, there is evidence that lower RINs can be 

associated with disease states. For example, several studies have found that subjects 

diagnosed with Alzheimer’s disease (AD) have significantly lower RINs than their 

controls post-mortem (Durrenberger et al., 2010; J. A. Miller et al., 2017). When one of 

the studies tried to remove the effect of the RINs, then their AD effect was removed as 

well (J. A. Miller et al., 2017). This indicates, at least in brain tissue, that the disease state 

may exacerbate the causes of RNA degradation. They may be influencing the same genes. 

There has been no prior work investigating how RNA degradations influence RNA 

expression in the brain of control subjects. However, the comparison of RNA decay’s 

impact on human renal cancer tumors (Opitz et al., 2010) and peripheral blood 

mononuclear cells (Gallego Romero et al., 2014) found two different sets of influenced 

genes. This finding indicates that RNA degradation may impact specific genes and 

pathways and those genes and pathways may vary depending on tissue source.  

Unfortunately, not understanding the impacts of RNA degradation, signified by lower 

RINs, can have significant implications. Since there is currently no widely accepted 

standard for a minimum RIN, the impact of RINs can vary across studies. Unfortunately, 

since studies do not often supply the RINs for individual tissue that has been 

transcriptionally profiled, it can be difficult or even impossible to tell how much of an 

effect it has had, leading to a lurking variable influencing data. 
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CHAPTER 2. DECLINING RNA INTEGRITY IN CONTROL AUTOPSY BRAIN TISSUE IS

ROBUSTLY AND ASYMMETRICALLY ASSOCIATED WITH SELECTIVE NEURONAL WITH 

SELECTIVE NEURONAL SIGNAL LOSS

2.1 Summary 

RNA integrity numbers (RINs) are a standardized method for semi-quantification of 

RNA degradation, and are used in quality control prior to transcriptional profiling 

analysis. Recent work has demonstrated that RINs are associated with downstream 

transcriptional profiling, and correction procedures are typically employed in 

bioinformatic analysis pipelines to attempt to control for RIN’s influence on gene 

expression. However, relatively little work has been done to determine whether RIN’s 

influence is random, or is specifically targeted to a subset of mRNAs. We tested the 

hypothesis that RIN would be associated with a robust transcriptional profile seen across 

multiple studies. 

To test this, we downloaded subsets of raw transcriptional data from six published 

studies. We only included control, non-pathological post-mortem human brain tissue (n = 

383 samples) in which independent subjects’ RIN values were also reported. A robust set 

of mRNAs consistently and significantly correlated with RIN across multiple studies, 

appearing to be selectively degraded as RIN declines. Many of the affected gene 

expression pathways are related to neurons (e.g., vesicle, mRNA transport, synapse, and 

mitochondria), suggesting that neuronal synaptic mRNA may be particularly vulnerable to 

degradation. Subsequent analysis of the relationship between RIN and vulnerable mRNA 

expression revealed most of the decay occurred over a relatively narrow RIN range of 7.2-

8.6, with RIN values > 8.6 showing a ceiling effect, and those < 7.2 showing a floor effect 

on gene expression. Our data suggests that the RIN effect is pathway selective and non-

linear, which may be an important consideration for current bioinformatic RIN correcting 

procedures, particularly in datasets in which declining RIN is confounded with a 

pathology under study (e.g., in Alzheimer’s disease). 

2.2 Introduction 

Transcriptional profiling in human brain tissue reveals that the gene signatures of 

aging and neurodegenerative diseases are robust and consistent across different 

independent samples using measurement platforms across different labs (Courtney, 
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Kornfeld, Janitz, & Janitz, 2010; K. E. Hargis & Blalock, 2017). However, disease-states 

and aging are not the only factors possibly impacting gene expression in transcriptional 

profiling. Tissue treatment, post-mortem interval (PMI), pH, etc. also have an impact on 

gene expression (Ferreira et al., 2018; Jia et al., 2021; Mistry & Pavlidis, 2010; Pozhitkov 

et al., 2017). Often, these factors are assumed to impact gene expression, since they 

damage RNA quality. 

RNA quality, as a measured through RIN, is known to impact transcriptional 

profiling (Copois et al., 2007; Gallego Romero et al., 2014; Jaffe et al., 2017; Opitz et al., 

2010). While there are many ways to determine RNA quality (i.e. gel optical density, 

NanoDrop, denaturing agarose gel-electrophoresis), but RNA integrity numbers (RINs) 

have become a standard in the last fifteen years (Fleige & Pfaffl, 2006; Mueller et al., 

2004; Schroeder et al., 2006). This technology relies on several measures including the 

total RNA ratio (fraction of the area in the 18S and 28S region compared to the total area 

under the curve), 28S peak height, fast area ratio (fast area compared to the total area), and 

the marker height (Schroeder et al., 2006). In addition, the program used to determine 

RINs also provides the RNA area under the curve, RNA concentration, and rRNA ratio 

(28S/18S). It should be noted that though mRNA is typically the focus of most 

transcriptional profiling studies, RIN heavily relies on rRNA to infer the quality (Fleige & 

Pfaffl, 2006; Schroeder et al., 2006). Despite its prevalence and the importance of RNA 

integrity for transcriptional profiling, RINs are not often reported for individual subjects 

within published data. This is problematic, since often the tissue collection, storage, and 

handling can influence RNA quality (Gallego Romero et al., 2014; Jia et al., 2021). Often, 

human tissue samples are more variable and frequently have lower RINs than those in 

experimental animal studies (See Results).  

Since RNA quality may impact gene expression, particularly in humans, multiple 

groups have published bioinformatic tools to attempt to correct for the influence of RNA 

degradation on gene expression. Three  approaches for correcting include Surrogate 

Variable Analysis (SVA) (Viljoen & Blackburn, 2013), quality SVA (qSVA) (Jaffe et al., 

2017), and regression (Gallego Romero et al., 2014; J. A. Miller et al., 2017; Parsana et 

al., 2019). SVAs use the gene expression data to determine which genes are impacted by 

sources of variability, depending on the metavariable being corrected. The factors are then 
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used in a linear model to adjust for noise (Viljoen & Blackburn, 2013). However, Jaffe et 

al. was concerned that this approach might include false-positives. Therefore, they created 

their own model, qSVA, which uses results from a defined independent tissue degradation 

experiment to identify genes most affected by degradation and correlate them in the 

experimental dataset based on factors calculated in the independent dataset (Jaffe et al., 

2017). Regression approaches are most commonly used to correct for RIN (Gallego 

Romero et al., 2014; J. A. Miller et al., 2017; Parsana et al., 2019) since RNA degradation 

can influence genes and pathways at different rates (Gallego Romero et al., 2014; Jaffe et 

al., 2017).  

However, these approaches may be problematic for two reasons. First, if RIN values 

above a certain threshold are considered ‘safe’ (i.e., do not influence gene expression), 

then defining that safe threshold would be important, as the simplest approach would be to 

retain samples that exceeded the safety threshold. Further, attempting to control for a 

metavariable that is not associated with signal can cause artificially inflated variance 

(Williams, Grajales, & Kurkiewicz, 2013), thereby distorting the processed signal. 

Second, as Gallego-Romero et al. reported, half of the differentially expressed genes after 

84 hours of room temperature degradation appeared to show increased expression after 

RIN correction, but this increase was a distortion caused by the RIN correction procedure 

itself (Gallego Romero et al., 2014). Thus, establishing a safe threshold for RIN, one 

above which transcriptional profiling data can be processed without correcting for RIN 

could be of use. Further, it is important to appreciate whether the influence of RIN 1) is 

randomly distributed across the transcriptome, and therefore would not replicate in 

samples in a study or across studies from different labs; or 2) is focused on certain genes 

and pathways. Finally, whether the RIN effect is exerted across the full spectrum of RIN 

values or is constrained to a narrow range would be important to know as regression tools 

are more well-suited to the former than the latter case.  

If a condition such as neurodegenerative disease is associated with lower RINs, then 

the two variables would be confounded, complicating attempts to control for one variable 

without influencing the other. Indeed, this is a common issue, as prior work (Durrenberger 

et al., 2010; Jaffe et al., 2017; J. A. Miller et al., 2017) has shown that various insults are 

associated with significantly lower RINs in brain tissue. For instance, one study 
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investigating the influence of pre- and post-mortem variables on RIN (Durrenberger et al., 

2010) found that ante-mortem variables such as agonal state, coma, and artificial 

ventilation had a cumulative downward influence on RIN, as did a diagnosis of 

Alzheimer’s disease (no RIN corrections were employed, likely because of the presence of 

this confound). Another study determined that RIN scores decreased with a diagnosis of 

schizophrenia (Jaffe et al., 2017). Noting that multiple-regression RIN correction 

approaches would be confounded, the authors applied their novel RIN correction 

procedure, qSVA, that estimated decay based on observations in independent degradation 

datasets. Yet here, RIN-associated mRNA declines in the schizophrenic brain exceeded 

the correction, and therefore exceeded the amount of decline seen in control tissue (Jaffe 

et al., 2017). It is also important to note that the schizophrenic brains did not have a longer 

PMI than their controlled counterparts, yet had lower RINs, suggesting that some process 

other than PMI, and possibly influencing different pathways, plays a role. This indicated 

not only that schizophrenia was associated with a decline in RIN, but that the mRNA 

species associated with RIN in schizophrenia were targeted more aggressively than in 

control tissue. Finally, the last study established that there is a significant decrease in RIN 

with Alzheimer’s disease (AD) (J. A. Miller et al., 2017). They also identified that a 

standard regression-based RIN correction procedure removed the well-established AD-

effect from the transcriptional profile. While Jaffe et al., postulate an interaction between 

RNA quality and cellular composition (Jaffe et al., 2017), Miller et al. concluded the 

difference in RNA quality might be due pre- or post-mortem influences (J. A. Miller et al., 

2017).  

Due to the assumption that most post-mortem factors impact RINs, problems with 

current RNA correction methods, and the potential of biological factors playing a role in 

RNA degradation, we examined the role RINs play in gene expression in microarrays. In 

the current work, we investigate if RINs in control, post-mortem human frontal lobe tissue 

impacts gene expression in a non-linear fashion, targeting specific genes and pathways, 

and the thresholds of this impact. In addition, we investigated the relationship of other 

metavariables with RIN and the effect of RIN on AD tissue to determine if they impact 

similar genes.  
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2.3 Methods 

2.3.1 Identifying datasets and preparing cel files 

The .cel files for the control subjects matching our criteria (see results) of the 

datasets were downloaded. Different datasets may have used different probe level 

algorithms in their published work, and many probe level algorithms are influenced by the 

total number of arrays selected for calculation (Gautier, Cope, Bolstad, & Irizarry, 2004). 

Further, in our approach, the total number of samples that would be used likely would 

change because our unique selection criteria would assess only control tissue from 

specified brain regions. These files were analyzed in R using the Robust Multi-array 

(RMA) (Bolstad, Irizarry, Astrand, & Speed, 2003; Irizarry et al., 2003) function in the 

oligo package (Carvalho & Irizarry, 2010) from Bioconductor. Therefore, we ran the 

RMA probe level summarization algorithm independently on .cel files of each dataset. 

These estimates of gene expression were transferred to flat files in Excel, and Gene 

Symbols and Titles (based upon the updated GEO platform IDs under which the original 

datasets were published), as well as sample-specific metadata (e.g. RIN, Age, pH, PMI, 

sex) were annotated. 

2.3.2 Differences in brain RNA quality across species 

To determine if there was a significant difference in reported RNA quality between 

human, rat, and mouse brains as most assume (keeping in mind that because RIN values 

are used to triage subjects, there is likely some bias in these reports), studies were 

identified that matched the following criteria: 1) include control brain tissue (for humans, 

only frontal lobe); 2) have disambiguated RNA integrity numbers (RINs); and 3) use 

Affymetrix platforms. Once studies were found, the RIN scores were separated by species 

and an unequal Mann-Whitney U-Test quantitatively tested the hypothesis (observed 

anecdotally in prior work) that human autopsy samples show lower RIN score than those 

from experimental animals.  Subsequent work focuses completely on human, post-mortem 

brain tissue. 

2.3.3 Pre-statistical processing and individual study analysis 

Once the .cel files were analyzed, each study was independently processed as 

follows. We created signal intensity histograms to determine presence-call cutoffs (PCC). 
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The PCC was determined by analyzing the signal intensity histogram to determine the 

‘saddle point’ at which signal values transitioned from noise to reliable signals. Then, 

within each dataset, probe sets were retained for analysis if ≥ 50% of that probe set’s 

observations ≥ PCC. To retain unique gene symbol representations, if > 1 probe set was 

annotated to the same gene symbol, then the probe set with the highest average signal 

intensity was retained.  

2.3.4 Separate dataset approaches 

2.3.4.1 Defining significant metavariable-correlated genes.  

Once the pre-statistically filtered, uniquely annotated, and reliably expressed probe 

sets were selected, Pearson’s correlation (r) tests between different metavariables (i.e. age, 

PMI, and pH), and between metavariables and expression signals were performed, and the 

associated p-values and false discovery rates (FDRs) calculated. A liberal p-value cutoff (α 

= 0.05) defined significant results to address the increased false negative rate anticipated to 

occur in subsequent cross dataset comparisons (Benjamini & Hochberg, 1995; Pawitan, 

Michiels, Koscielny, Gusnanto, & Ploner, 2005). To investigate the potential influence of 

sex on RIN-associated gene expression levels, the males and females from the data-subset 

with the largest number of subjects underwent independent RIN-associated gene expression 

analysis. In this dataset, males still represented ~3/4 of the total dataset. To address this 

statistical power imbalance, we also randomly resampled (1000 iterations) male subjects at 

the female n-level for comparison between sexes.   

2.3.4.2 Comparing across separate datasets.  

The influence of metavariables on independent data-subsets was assessed with a 

post-hoc proportional change analysis followed by binomial testing to determine whether 

there was significant agreement. The significant common probe sets were run through the 

WEB-based Gene Set Analysis Toolkit (WebGestalt) (Liao, Wang, Jaehnig, Shi, & Zhang, 

2019) to statistically test functional categories in the Gene Ontology (Ashburner et al., 2000; 

Gene Ontology, 2021) for overrepresentation (α = 0.05; GO Molecular Function, Cellular 

Component, Biological Process noRedundant; Redundancy reduction = affinity 

propagation).   
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2.3.5 Unified dataset analysis 

2.3.5.1 Approaches for unifying independent datasets/ removing batch effects.  

The ‘independent dataset’ approach described above treats each data set as an 

independent unit, therefore avoiding potential batch effects. However, the ‘independent 

dataset’ approach is also limited by the range of RIN values available in each study. To 

unify independent datasets, we tried three methods.  

Method 1) Within-dataset standardization. Within each dataset, each row’s data is 

standardized, then those standardized results are combined across datasets 

Method 2) Harmony. Using the Seurat package (Satija, Farrell, Gennert, Schier, & Regev, 

2015) within the Bioconductor (Gentleman et al., 2004; Huber et al., 2015) subset of the R 

programming language, the Harmony function (Korsunsky et al., 2019) was applied to use 

PCA-based metrics to subtract batch-based variance. 

Method 3) Mean-subtraction. Within each dataset, for each gene, the average gene 

expression for subjects with a RIN ≥ 8.3 were averaged. Then, that average was subtracted 

from all observations for that gene from that dataset.  

2.3.5.2 Template analysis.  

Unified dataset gene expression data were placed into a single worksheet and 

correlated with 356 user-defined templates. These templates were used to fit the gene 

expression signal across RIN values. Correlation was performed for each gene with all 

356 templates, and the gene was assigned to the template with which the gene correlated 

most strongly and exceeded a stringent correlation criterion (r ≥ |0.69|; p = 9.61 E-5). 

Then, the number of genes observed per template was quantified. To determine if the 

number of genes assigned to each template was greater than expected by chance, a 

resampling procedure (1,000 iterations) was performed to estimate the number of genes 

per template. The probability that the number observed in the actual data was significantly 

higher than number estimated in the resampled data was tested for significance using the 

Z-score. Pathway analysis on selective templates with significant genes proceeded as 

described for ‘separate dataset approaches.’ 
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2.3.6 Alzheimer’s disease gene relationship 

In order to determine if pathways associated with Alzheimer’s disease (AD) are 

overrepresented among RNA degradation sensitive genes, two Alzheimer’s disease 

transcriptional profile studies were used (K. E. Hargis & Blalock, 2017; J. A. Miller et al., 

2017) (one examines the same tissue region as the present work (J. A. Miller et al., 2017), 

the second represents consensus AD signature across multiple brain regions from several 

labs (K. E. Hargis & Blalock, 2017)). From Miller et al., 2017, AD-significant gene 

expression levels were identified based analysis of the original publication (p ≤ 0.05).  

Hargis & Blalock (2017), a secondary data analysis study that summarized log2 

fold-changes (L2FCs) from 5 AD brain transcriptional studies across 8 different brain 

regions was used. In the present work, a consensus list of AD-significant genes from that 

secondary data analysis was determined by calculating the average L2FC (± 99% 

confidence interval) across all 5 of those studies. Results were considered significant if the 

99% confidence interval did not cross the ‘0’ L2FC line (e.g., 99% confidence the 

observation was upregulated or downregulated with AD). The binomial test was used to 

determine if the transcriptional profile of RIN-sensitive genes bore similarity to either AD 

profile (Miller or Hargis). The log2 fold changes (L2FC) for the difference between AD 

and control subjects for each gene in Miller et al. was then compared to the correlation 

between gene expression and RIN from study with the most the subjects. The average 

L2FC for each unique probe set from Hargis & Blalock was compared with the genes 

significant in all data-subsets used in the cross-data comparison.  

2.4 Results 

2.4.1 Overview of dataset 

Using the Gene Expression Omnibus, we identified 6 datasets which met our criteria 

(disambiguated RNA integrity number [RIN] values; human frontal lobe tissue; and 

Affymetrix platform technology): GSE22521 (Somel et al., 2011), GSE25219 (Kang et al., 

2011), GSE45878 (Consortium, 2013), GSE46706 (Trabzuni et al., 2011), GSE53987 (Lanz 

et al., 2015), and GSE71620 (C. Y. Chen et al., 2016) (Table 2.1; Supp. Data 2.6-2.11).  

From within each dataset, the .cel files that qualified for analysis (the qualifying 

“data-subset”- [tissue must be human frontal lobe tissue, must include disambiguated RNA  
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GEO Accession 

ID: 
GSE22521 GSE25219 GSE45878 GSE46706 GSE53987 GSE71620 

Representative 

Publication 

(Somel et 

al., 2011) 

(Kang et 

al., 2011) 

GTEx 

(2014) 

(Trabzuni 

et al., 

2011) 

(Lanz et 

al., 2015) 

(Chen et 

al., 2016) 

# Chips Used/ 

Total 
11/68 19/1139 16/837 119/1231 19/205 199/420 

Age Range 22-98 3-70 - 16-102 22-68 16-96 

Sex (M/F) 9/2 11/8 8/8 85/34 10/9 157/42 

Range of RIN 7.3-9.2 7.7-9.4 5.7-8.5 2-7.7 6.6-8.7 5.9-9.6 

Mean of RIN (+ 

St. Dev.) 

8.10 (+ 

0.58) 

8.63 (+ 

0.53) 

7.12 (+ 

0.79) 

4.43 (+ 

1.59) 

7.85 (+ 

0.62) 

8.08 (+ 

0.67) 

PCC 3.15 6.22 2.06 4.76 5.40 3.57 

Correlation between RIN vs. 

Age: r (p) 
-0.29 

(0.38) 
0.29 (0.23) - 

-0.049 

(0.60) 

-0.12 

(0.62) 

-0.10 

(0.14) 

PMI: r (p) 
-0.61 

(0.047) 

-0.094 

(0.70) 
- 

0.049 

(0.59) 

-0.093 

(0.71) 

-0.21 

(0.0033) 

pH: r (p) - 
0.0071 

(0.98) 
- 

0.17 

(0.066) 

0.087 

(0.72) 

0.34 (7.8x 

10-7) 

FDR for Gene Expression vs. 

RIN (0.05) 0.437 0.138 0.271 0.992 0.295 0.149 

Age (0.05) 0.127 0.248 - 0.121 0.216 0.112 

PMI (0.05) 0.593 1.616 - 0.104 1.667 0.324 

pH (0.05) - 0.394 - 0.567 1.352 0.131 

Table 2.1. Data-subset information 

GEO Accession ID- The Gene Expression Omnibus (GEO) identifier for each dataset; 

Representative Publication- peer-reviewed citation for each dataset; #Chips Used/ 

Total- The subset of the total chips within original dataset that met criteria for 

inclusion in the present work (e.g., from control subject frontal cortex- subsequent data 

in table is for subjects that met criteria); Age Range- age (in years); Age and RIN: 

Results of correlation analysis (Pearson’s test r and p-values) between age and RNA-

Integrity Number; Sex: number of male (M) and Female (F) subjects; Range of RIN, 

Mean of RIN are as described; FDRs for RIN, Age, PMI and pH- False Discovery Rate 

(FDR) for the correlation between these metavariables and global gene expression. 
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integrity numbers (RINs), and must use Affymetrix platform technology) were downloaded 

and reanalyzed at the probe level using Robust Multi-array (RMA; (Bolstad et al., 2003; 

Irizarry et al., 2003)). For each data-subset, a signal frequency histogram was plotted to 

remove low-intensity signal (Figure 2.1). Further, the gene annotations for each data-subset 

were downloaded from the platforms most recently associated with the studies on Gene 

Expression Omnibus (GEO) (Barrett et al., 2013). GPL6244 (last updated March 5, 2020) 

annotated GSE22521; GPL5175 (last updated February 18, 2019) annotated GSE25219 and 

GSE46706; GPL16977 (last updated September 2, 2014) annotated GSE45878; GPL570 

(version updated June 16, 2016) annotated GSE53987; and GLP11532 (last updated 

November 8, 2016) annotated GSE71620. For each data-subset, if more than one row of 

data was annotated to the same gene symbol, then the row with the highest mean signal 

intensity was retained for further analysis. 

For this secondary data analysis, two approaches are feasible. The first, and more 

conservative, approach would be to analyze each data-subset independently for correlation 

to RIN, and then, to compile the statically significant results from these independent tests. 

Using this approach, agreement among multiple independently analyzed datasets regarding 

RIN-sensitive genes could be used to test for consistent effects. This approach identifies 

robust effects and is less vulnerable to dataset-based batch effects. However, its 

conservative nature is both a strength and a weakness, reducing the likelihood of statistical 

false positives at the expense of increasing the likelihood of statistical false negatives. A 

second, more liberal approach would be to combine the data from these disparate sources 

to create a single dataset. This approach would have the advantage of increased discovery 

power but would also be more vulnerable to false positives, and would only be feasible in 

the absence of batch effects. To determine whether the first (‘independent dataset’) or 

secondary (‘merged dataset’) approach is more feasible for the initial analysis, a principle 

component analysis (PCA) was constructed. The PCA shows an intense batch effect among 

the different datasets (Figure 2.2A), strongly suggesting the ‘independent dataset’ approach 

would be more feasible for the data prior to any batch removal procedures. 
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Figure 2.1. Presence cut-offs established in a dataset- dependent fashion. 

Histograms of the average gene expression for datasets determine the cut-off value 

used. The gene expression signal varied significantly between the datasets. This 

prevented us from a single standardized cutoff value across all studies and combining 

the datasets, so each study had an independent cut-off value. Arrows represent the cut-

off value for study of the same color. 
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Figure 2.2 PCA plots and monovalent inorganic cation transmembrane transport 

pathway expression. 

2,000 variable genes were used in the principle component analysis (PCA). The 

different datasets are distinct and separate from each other, not allowing for a single 

analysis. Genes for the monovalent cation transmembrane transport pathway (Table 

2.4) were used to determine how gene expression decreased as RNA degrades. Here, 

we show the RMA values (A); a standardized gene expression (B); Harmony (C); and 

the mean-subtraction (D). Therefore, the mean subtraction approach (D) appeared to 

both remove the batch effect, while preserving original study deflecting points in the 

merged data. The raw data and Harmony did not remove the batch effect, and therefore 

did not allow for a merged data across datasets. The standardization method had each 

unique data-subset beginning to decline at different points, which may be due to the 

centering each dataset at zero, regardless of RIN range. 
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2.4.2 Differences in RNA quality across species 

While reading prior studies, it came to our attention that no one had supported the claim 

that animal RINs were typically higher than those of humans. Therefore, we found ten 

studies which met our criteria (control brain tissue; disambiguated RINs; and Affymetrix 

platform technology) (C. Y. Chen et al., 2016; Consortium, 2013; Frazier et al., 2020; 

Gant et al., 2018; Kang et al., 2011; Lakatos, Goldberg, & Blurton-Jones, 2017; Lanz et 

al., 2015; Scarpa et al., 2018; Somel et al., 2011; Trabzuni et al., 2011) (Table 2.2). When 

disambiguated RINs are grouped by species (human, rat, and mouse), there is a significant 

difference between human and rat (unequal Mann- Whitney U-Test p = 6.10E-4) and 

human and mouse (unequal Mann-Whitney U-Test p = 1.63E-6), but not between rat and 

mouse (unequal Mann-Whitney U-Test p = 0.301). 

2.4.3 Metadata correlation analysis of individual datasets 

Pearson’ correlations between published gene expression values and metadata (RIN, 

pH, post-mortem intervals [PMI], age) were calculated for each individual dataset where 

available (Table 2.1; Figure 2.3). 0/ 5 datasets had a significant (p ≤ 0.05) age-to-RIN 

correlation (Figure 2.3A), while 2/ 5 had significant negative PMI-to-RIN correlations 

(Figure 2.3B). 1/ 4 datasets had a significant positive pH-to-RIN correlation (Figure 2.3C). 

Surprisingly, this lack of a robust relationship between RIN and PMI, or RIN and metadata 

traditionally associated with tissue quality suggests these measures may serve as poor 

proxies for estimating RNA quality. 

However, just because metadata do not correlate with RIN scores does not mean 

they do not explain some degree of gene variability in their own right. To test this, the 

false discovery rates (FDRs) were calculated for the correlation between gene signal and: 

RINs; pH; PMI; or age (Table 2.1). Aging showed a strong and consistent influence on 

gene expression (average FDR = 0.165; 95% Confidence Interval [CI] = [0.110-0.220]) 

(Berchtold et al., 2013; Berchtold et al., 2008; Somel et al., 2011; Soreq et al., 2017). RIN 

appeared to have the second most prominent influence (average FDR = 0.380; 95% CI = 

[0.125-0.636]), while the influence of pH (average FDR = 0.611; 95% CI = [0.0960-1.13]) 

and PMI (average FDR = 0.861; 95% CI = [0.218-1.50]) were less stable. It should be 

noted that there are constraints on the data, determined by the original studies, which may 

be influencing the FDRs for RIN, pH, and PMI. Because our study focuses on the effects  
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GEO ID Publication # of 

subjects 

Tissue RIN 

Range 

RIN avg. + 

St. Dev. 

Human (see Table 1) 

Rat 

GSE102054 Gant et al., 2018 23 Hipp. 8.9 - 9.8 9.40 + 0.22 

GSE130098 Frazier et al., 2020 26 Hipp. 6.5 – 7.8 7.32 + 0.32 

Mouse 

GSE63469 - 6 Hipp. 7.9 – 9.1 8.55 + 0.45 

GSE95546 Lakatos et al., 

2017 

20 Striatum 9.2 – 9.7 9.42 + 0.15 

GSE109112 Scarpa et al., 2018 98 Cortex 6.1 - 8.6 7.70 + 0.41 

Table 2.2. RIN comparisons across species. 

GEO Accession ID- The Gene Expression Omnibus (GEO) identifier for each dataset; 

Representative Publication- peer-reviewed citation for each dataset; # of subjects- The 

number of subjects from a subsection that met our criteria in the present work (e.g. 

from human control subject frontal cortex- subsequent data in table is for subjects that 

met criteria) or a single tissue type from each dataset (rodents); Tissue- Reported tissue 

type analyzed; RIN Range, RIN Avg. + St. Dev. as described. Hipp.- hippocampus. 
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Figure 2.3. Metadata correlations to RIN. 

(A) Age (in years) correlated to RIN. (B) Post Mortem Interval (in hours; PMI) 

correlated to RIN. (C) pH correlated to RIN. 
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of RNA degradation, we focused on data-subsets with the lowest FDRs (indicating 

statically effects that were less likely to be false positives) for RIN (GSE25219, 

GSE45878, and GSE71620) for further analysis.  

Using the dataset with the most subjects, GSE71620, we investigated potential sex 

difference in RIN sensitivity. When separated into males and females, males had 3650 

RIN-correlated genes while females had 3251 genes. However, there was an imbalance 

between the numbers of male and female subjects (157 males/ 42 females; male RIN = 

8.08 + 0.630; female discovered a non-significant (but trending) greater number of genes 

(3251 compared to 1719 [+ 1065] resampled males, Z-test p = 0.075; Figure 2.4A). 

The females were also separated into young (n = 14; 16-46 years old; RIN = 8.32 + 0.714) 

and aged (n = 28; 50-96 years old; RIN = 7.96 + 0.840) groups and the aged subjects were 

randomized in the same manner. The young females had a significantly greater number of 

RIN- sensitive genes compared to their older counterparts (1972 young compared to 966 

[+526] resampled aged females, Z-test p = 0.028; Figure 2.4B). The males were separated 

into young (n = 66; 17-49 years old; RIN = 8.09 + 0.651) and aged (n = 91; 50-89 years old; 

RIN = 8.08 + 0.617) groups and the aged group was randomly resampled, as well. The 

young males had a significantly lower number of RIN-sensitive genes compared to their 

older counterparts (755 compared to 4932 [+ 755] resampled aged males, Z-test p < 1.0E -

5; Figure. 2.4B).  

Almost all of the significant genes in the aged male group had a positive correlation 

with RIN (total significant genes = 5853; positive significant genes = 4362; binomial test p 

< 1.0 E -15). To determine if this was by chance, the correlation was validated for these 

genes using in an additional study, GSE45878. GSE45878 contained 4356 genes out of the 

4362 positive genes, out of which 2781 had a positive correlation between RIN and gene 

expression (binomial test p < 1.0 E -15). This indicates there is robust positive correlation 

between aged males’ gene expressions and RIN.  

2.4.4 Cross-Dataset analysis using individual datasets 

A common list of total genes was determined from GSE25219, GSE45878, and 

GSE71620. This total gene list was comprised of probe sets annotated to unique gene 

symbols with sufficient signal intensity in all three studies (15,735 ‘total’ genes). Using a 

P-value cut-off for the correlation between the RIN and gene expression signal (p < 0.05),   



32 

 

 

 

  

Figure 2.4. Sex effect on RNA degradation. 

To equalize the estimated power between the number of male and female subjects in 

GSE71620, and young and aged for each sex, the group with the higher number of 

subjects was randomly resampled at the same n as the group with the lower number of 

samples. The number of significant genes for males and females (A). The blue dot 

represents average number of significant genes from 1000 resampling iterations. The 

hashed black line indicates the number of genes expected by chance (1013; A). The 

number of significant genes for young and aged males and females (B). The hashed 

black line indicates the number of genes expected by chance (1013). The gray dots 

represent the average number of significant genes found when the aged male and 

female groups were resampled at the same power as the young groups (n = 66, n = 14 

respectively; B). * < 0.05. 
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the number of genes significantly correlated with RIN in all 3 data-subsets was significant 

(609 compared to the expected 209; p < 1.0E-15; Binomial test; S1 Data) (Figure 2.5). 

Further, this overlapping agreement showed a strong direction-of-correlation agreement. 

The overlapping genes significant in all three datasets could have fallen into one of eight 

potential categories based on the correlation direction between RIN and gene expression 

(Figure 2.5). The subset of genes positively correlated with RIN in all three data-subsets 

(523/ 609) was highly significant (p < 1.0E-15), suggesting a consistent group of genes are 

robustly associated with RIN levels in multiple independent subjects. We validated the 

direction of change for these robust RIN-sensitive genes by comparing the correlative 

direction in a fourth dataset, GSE53987. Out of the 512 robust RIN-sensitive genes, 400 

agreed in direction (binomial test: p < 1.0E-15; S2 Data) in GSE53987. Biological pathway 

overrepresentation analysis (WebGestalt) of these 523 robustly RIN-sensitive genes 

revealed consistent and selective pathways impacted, with the prominent positive 

correlation indicating a general decline in gene expression levels as RIN levels decreased 

(Table 2.3). These pathways appear to be related to vesicles, transporters, mitochondria, and 

synapses. This indicates mRNA housed in neurons may be particularly vulnerable to RNA 

degradation.  

One consistent finding from the individual data-subsets analysis is the smaller r-values with 

larger data-subsets. When the data-subsets contain < 20 subjects, the maximum and 

minimum r-values (min r = -0.8497; max r = 0.8737) are more extreme than the data-subsets 

with > 100 subjects tend to have a lower |r-values| (min r = - 0.3773; max r = 0.3343). While 

the higher-powered data-subsets do not need higher r-values to show significance, it 

indicates the Pearson correlation’s assumption of a linear relationship between gene 

expression level and RIN may not hold. This leads us to the hypothesis the relationship 

between gene expression and RINs may not be linear. 

2.4.5 Merged datasets analysis 

Using the independent dataset analysis approaches described above, we found a 

robust set of RIN-sensitive genes across multiple studies. However, this approach is 

limited by different ranges of RIN values in each dataset, and by the assumed linear 

relationship between RIN and gene expression that is implicit to the Pearson’s correlation 

test. To address these issues, we employed two strategies: merging datasets to get a more   
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Figure 2.5. Overlapping significant genes between 3 datasets, and direction of 

significant genes. 

Using GSE25219, GSE45878, and GSE71620, a common list of 15,735 genes was 

determined. The number of significant genes in each study and the overlap was 

determine. The expected number of genes significant in all 3 datasets was expected to 

be 209. Left 3 Columns- the direction of the RIN-correlation for the study listed in the 

top row; positive correlation (+), negative correlation (-)). # of Genes- number of genes 

in each category. * p < 0.05. 
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 inclusive range of RIN values; and using a template correlation approach on this merged  

dataset to evaluate potentially more complex relationships between RIN and gene 

expression. 

2.4.5.1 Approaches for merging multiple datasets.  

In order to merge the datasets, the batch effects (Figure 2.2) of each dataset were 

addressed. Three different approaches (described below) were considered.  

1) Within-dataset standardization. Gene expression values from GSE25219, GSE45878, and 

GSE71620 were used. For each dataset, gene values were Z-scored for each subject. The 

PCA plot using this standardized approach shows the successful removal of the batch effect 

(Figure 2.2B). However, calculating the standardized average per dataset using 25 

significant genes from one of the robustly overrepresented pathways, monovalent inorganic 

cation transmembrane transporter activity (Table 2.3), reveals an issue (Figure 2.2B). Each 

dataset shows the same significant positive correlation between gene expression and RIN, 

but different deflection points. GSE25219 begins its downward trend around a RIN of 8; 

GSE45878 begins to decrease around a RIN of 7; and GSE71620 begins to fall around 7.5 

(Figure 2.2B). This shows that standardization effectively removes the batch effect, but 

centering at 0 biases the deflection range within the individual dataset’s RIN range in the 

combined dataset approach, so that it is not appropriate to compare across studies. 

2) Harmony. As a second attempt to remove batch effects from multiple datasets, the Seurat 

package with the Harmony algorithm (Korsunsky et al., 2019) in R, which uses multi-

dimensional PCA-based variance to remove batch effects from disparate datasets, was used. 

However, this approach did not appear to substantially reduce the batch effect compared to 

that observed in the original datasets (Figure 2.2C). 

3) Mean-Subtraction. As a third approach to remove the dataset-dependent batch effect 

while retaining a less-biased ‘RIN deflection point’ estimate, we used a signal subtraction 

strategy. It is well-understood hybridization-dependent mRNA quantification technology 

is strongly dependent on probe design (e.g., G-C content) (Kitchen et al., 2011; Swindell 

et al., 2014). Subtracting average signal intensity from each gene within each study would 

effectively address this probe-based variance, and it is this probe-based variance that 

likely contributes substantially to the batch effect. However, in the present work, signal   
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 GO IDs; Description; # of genes / Possible # of genes; p-values; Database; Genes 

GO:0051648; vesicle localization; 33 / 280; 2.87E-09; BP; AP1AR, ARL6, ATP2A2, BBS7, CADPS2, 

GSK3B, KIF3A, KIFAP3, MKKS, NDEL1, NSF, PFN2, PPP6C, RAB27B, SEC22B, SEC23A, SNAP25, 

STXBP1, SV2A, SYBU, SYN2, SYNJ1, SYT11, SYT13, SYT4, TBC1D23, TMED2, TRAPPC3, TRAPPC6B, 

USO1, VPS33A, WASL 

GO:0099572; postsynaptic specialization; 27 / 292; 9.53E-06; CC; ACTN2, ADAM22, ATP1A1, BMPR2, 

CACNG2, CAP2, CDH10, CRIPT, DNAJC6, GABRA1, GABRA3, GABRA4, GABRB2, GOPC, HTR5A, 

KCNAB2, KCND2, MAPK1, MTMR2, NSF, PJA2, RTN4, SIGMAR1, SLITRK3, SYN2, SYT11, VPS35 

GO:0016917; GABA receptor activity; 6 / 18; 7.92E-05; MF; GABRA1, GABRA3, GABRA4, GABRB2, 

GABRB3, GABRG2 

GO:000135; coated vesicles; 22 / 83; 9.80E-05; CC; AP2B1, APP, ARCN1, CLTC, COPA, COPB2, COPZ1, 

EPS15, GOPC, NECAP1, OCRL, RAB27B, SCAMP1, SCARB2, SEC22c, SEC23A, SH3GL2, SORT1, 

TMED2, USO1, VSP33A, YIPF5 

GO:0008565; protein transporter activity; 11 / 77; 1.06E-04; MF; CSE1L, IPO5, KPNA6, SCARB2, 

SEC61A2, SEC63, TIMM23, TOMM20, USO1, VPS29, VSP35 

GO:0090150; establishment of protein localization to membrane; 21 / 238; 1.79E-04; BP; ARL6, ARL6IP1, 

BLZF1, C16orf70, CACNG2, CHM, GDI1, GOPC, NSF, PAK1, RAB3GAP2, SAMM50, SEC61A, SEC63, 

SNAP25, SRP68, TRAM1L1, VPS35, YWHAB, YWHAQ, ZDHHC15 

GO:0033178; proton-transporting two-sector ATPase complex; 6 / 9; 2.28E-04; CC; ATP6AP1, ATP6V0D1, 

ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1D 

GO:0010008; endosome membrane; 29 / 398; 3.37E-04; CC; ANXA6, AP2B1, ATP6AP1, ATP6V0D1. 

CLCN3, CLCN4, CLTC, EHD3, 3PS15, FIG4, ITCH, MTMR2, MTMR4, OCRL, RAB27B, RAP2A, SCAMP1, 

SCARB2, SLC30A4, SLC9A6, SORT1, STX12, TM9SF2, TMEM59, VPS29, VPS33A, VPS35, VPS4B, VTA1 

GO:0015077; monovalent inorganic cation transmembrane transporter activity; 25 / 328; 4.43E-04; MF; 

ATP1A1, ATP2A2, ATP6AP1, ATP6V0D1, ATP6V1A, ATP6V1C1, ATPV1D, CLCN3, CLCN4, HCN1, 

KCNAB2, KCNC2, KCND2, MTMR6, NALCN, NNT, SCN2A, SCN3B, SLC12A6, SLC4A10, SLC6A15, 

SLC8A1, SLC9A6, SNAP25 

GO:0006399; tRNA metabolic process; 15 / 159; 7.37E-04; BP; AARS, DDX1, ELP3, EPRS, EXPSC2. 

FARBS, GRSF1, HARS, LARS, MTFMT, MTO1, NARS, RPP14, RPP30, USP14 

Table 2.3. RIN-sensitive pathways. 

Description- name of the overrepresented pathway; # of genes- number of genes 

present in the group out of the 15,735 common list genes; p-value- p-value of finding 

this pathway by chance from our list; Database- functional group the pathway is 

associated with (Biological Process [BP], Cellular Component [CC], or Molecular 

Function [MF]); genes (italicized)- list of RIN-sensitive gene symbols associated with 

pathway. 
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values are influenced by RIN, and different datasets have different RIN ranges. Therefore, 

subtracting the row average for each gene from each dataset would be less effective than 

conditionally subtracting only the average of signal from samples for which the RIN 

exceeded some cutoff. That cutoff should represent a RIN value above which the RNA is 

of such high quality, that RIN’s association with gene expression is not detectable. To 

estimate what that RIN cutoff might be, data from GSE71620 was used. 

The number of significant genes is plotted as a function of RIN (Figure 2.6), and 

each dot represents a step from a low (starting at 6.1) RIN to high RIN (ending at 9.4). For 

each step, the genes found to be significantly correlated with RIN at the prior step are 

subtracted. Thus, each step reflects the degree to which an increasing RIN range contributes 

to RIN-sensitive gene discovery. We found the correlation between RINs and gene 

expression is relatively flat from 6.1 to 7.1, increases markedly from 7.4 to 8.6, and 

additional new RIN-sensitive genes are rarely discovered by adding additional subjects with 

RIN > 8.6, suggesting a RIN cutoff of 8.3 would be sufficient for calculating a signal 

average relation for RIN influence.  

Based on this, gene signal from subjects with a RIN > 8.3 appear less likely to 

contribute to the ‘RIN effect’ and their averages were calculated and then subtracted for 

each row of data in each dataset separately. Those ‘mean-subtracted’ datasets were then 

merged for subsequent analysis without a batch effect (Figure 2.2D).  

2.4.5.2 Template Analysis 

Three hundred and fifty-six templates were designed that could potentially fit the 

gene expression signal across RIN values from the merged, mean-subtracted data (Figure 

2.7; S3 Data). However, some of these templates were highly similar to one another. A 

Pearson’s correlation was run across the 356 templates, and those strongly correlated with 

one another were combined to simplify reporting. A single group of templates (from the S3 

data, the linear climbs 6.1 to 7, 6.1 to 7.1, 6.1 to 7.2, exponential decline by 6.7, and plateau 

6.1 to 6.7) were combined to make a “custom” template. Each gene was then correlated to 

all 352 templates, yielding 352 R values. Then, each gene was assigned to the template with 

which it most strongly correlated. If r ≥ |0.69| for its ‘best match’ template, then the gene 

was assigned to that template. 132/352 templates had genes assigned. Then, a resampling  
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Figure 2.6. Number of significant genes associated with cumulative RIN. 

The number of genes whose expression levels were significantly correlated with RIN 

(Pearson’s test, p < 0.01) are plotted as a function of RIN cutoff. For the first cutoff 

(RIN = 6.1) there were only 3 observations, and the results were similar to chance 

(dashed line). Between RIN values of 7 and 7.5, there is a marked increase in number 

of significant correlations. Similarly, between 8.3 and 8.5, there is a marked decrease in 

number of significant genes. This suggests 1) lower RIN values (6.1 to 7.1) are not 

appreciably correlated with gene expression (or the data is significantly underpowered), 

2) there is a strong linear relationship between gene expression and RIN between 7.3 

and 8.3, and 3) this relationship falls off sharply at RINs higher than 8.3 as gene 

expression plateaus. Taken together, these results suggest a sigmoidal relation 

relationship between gene expression and RIN, or an exponential decay obscured by 

decreased statistical power at the lowest RIN range. 

 



39 

 

Figure 2.7. Flow chart of template analysis. 

Summarized the different steps taken during the template analysis. 
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simulation (1000 iterations) was constructed to compare template assignment observed to 

estimated chance template assignment. Templates with significantly more gene assignments 

than estimated by chance (p < 0.05, Binomial test) were flagged for further analysis. Using 

this approach, 59 templates were identified as significant (Table 2.4, note that all template 

assigned genes are included in S1 Data) and the genes from the 6 templates with the largest 

number of gene assignments underwent pathway analysis (WebGestalt), and their 

normalized gene expression signals are graphed along with their idealized templates (Figure 

2.8).  

The “completely linear” template in this phase of the analysis (the one in which 

gene expression steadily rises as RIN improves) was designed to replicate the relationship 

ostensibly found by the Pearson’s test in the independent data-subset (e.g., Figure 2.5), yet 

it failed to do so. This follows the earlier observation that the independent data-subset 

Pearson’s correlation, although it found a robust set of genes across multiple studies, did 

not appear to entirely capture the nature of the RIN-to-gene relationship. For instance, in 

the data-subset with the largest n (GSE71620, n = 199), the r-value range, while 

significant, was also restricted, and rarely rose above |0.34|. This suggests a pattern was 

detected by the Pearson approach, but it is not entirely linear.  

The overrepresented “exponential rise at 7” pathway reflected the monovalent 

inorganic cation transmembrane transport activity (GO: 0015077; 17 genes out of 420 

genes; p = 5.05 x 10-3) found in the “independent data-subset” analysis, suggesting this 

may be a more accurate representation of a relatively narrow range over which RIN and 

gene expression are related. Therefore, we graphed the average gene expression for the 

genes present in the membrane-bound pathway as a function of RIN with the individual 

template superimposed (Figure 2.2D).  

2.4.6 Relationship between Alzheimer’s disease and RIN-sensitive genes 

In order to compare RIN-sensitive genes to AD differentially expressed genes, two 

approaches were used. First, a comparison between two individual datasets, one reflecting 

RIN-sensitive and another reporting AD-associated genes was used. Second, consensus 

findings of RIN- sensitive vs. AD-associated genes from multiple datasets were compared. 

For the first approach, a common set of genes with sufficient signal intensity for testing 

was established between Miller et al (2017) and Chen et al (2016; GSE71260). Among   
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Name of Template Shape 
Resampling 

(Avg + STD) 

Observed # 

of Genes 
Z-Score 

Spike at 6.7 

 

0.0938 (+ 0.305) 893 2926.562 

Exponential decline 

by 7 

 

0.626 (+ 0.787) 782 992.5184 

Spike at 6.1 

 

0.0588 (+ 0.240) 611 2548.499 

Custom Group 

 

0.575 (+ 0.651) 533 818.0579 

Linear Climb 6.7 to 

7.1 

 

1.18 (+ 1.10) 62 55.43391 

Boat 6.1 to 9.4 

 

3.23 (+ 1.84) 62 31.99302 

Spike at 9.2 

 

0.0828 (+ 0.290) 30 103.199 

Linear Climb 6.1 to 

7.3 

 

0.320 (+ 0.573) 28 48.34277 

Boat 6.7 to 9.2 

 

16.4 (+ 4.03) 27 2.62098 

6 8 10

Table 2.4. Templates to which gene expression most commonly fit. 

Each of these templates had more genes than expected by chance. The expected 

number of genes was found using a resampling (1000 iterations) and was considered to 

be significantly represented is Z-score > 2. 
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Figure 2.8. Representative gene expression templates. 

Each figure represents a template associated with a significant number of genes. The 

table under each figure is the overrepresented pathways corresponding to the template. 

Custom negatively correlated (A). Custom positively correlated (B). The blue dots 

represent average of gene expression. Each gray shape represents a subject, and each 

corresponds to a study. The black line represents the template. 
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these 11,631 genes, Chen found 4,173 RIN-sensitive genes while Miller found 3,238 AD-

significant genes. The log2 fold changes (L2FCs) for the ‘AD-effect’ and the r values for 

the ‘RIN-effect’ are plotted (Figure 2.9A) and revealed a strong directional agreement. More 

genes were found significant by both AD and RIN (1,531 genes significant by both AD and 

RIN; Data S4) than expected by chance (expect 1,162 genes, p < 1.0E-15), consistent with 

prior reports (J. A. Miller et al., 2017) noting the relationship between AD-associated and 

RIN-sensitive gene expression. Further, the direction of these changes appeared consistent, 

with genes downregulated with AD also showing a positive correlation with RIN (indicating 

gene expression decreases as RIN is lowered). Of the 1,531 genes significant by both RIN 

and AD, we determined if any directional groups (i.e. positive AD-associated genes and 

positive RIN-sensitive genes, positive AD-associated genes and negative RIN-sensitive 

genes) were overrepresented. In fact, genes whose expression was both decreased with AD 

and positively correlated with RIN, formed the majority of all commonly significant 

findings and were significantly overrepresented (n = 1223, binomial test, p < 1.0E-15; 

Figure 2.9A). This indicates the downregulated (although not upregulated) component of 

AD-associated gene expression is associated with RIN-based measures of RNA 

degradation.  

For the second approach, we then repeated this process, but used a more generalized 

approach by applying the Hargis and Blalock (2017) and current data (Figure 2.5) were 

indexed to find a common set of 12,144 genes. There were 6247 significant AD-associated 

genes and 571 RIN-sensitive genes (binomial p = 4.64E-08, p < 1E-15, respectively). There 

were more genes that were both AD-associated and RIN-sensitive than expected by chance 

as well (expected: 294; found: 438; binomial p= 6.66E-16; Data S5; Figure 2.9B). We found 

the majority of these genes (383/ 438) had expression that was both decreasing with AD and 

positively correlated with RIN (expected: 110; binomial p< 1.0E-15; Figure 2.9B), 

supporting a relationship between RIN-sensitivity and AD influence on gene expression, 

although the AD effect appeared to encompass more genes than could be explained by the 

RIN effect. 

 This analysis supports prior findings (J. A. Miller et al., 2017) that RIN is associated 

with gene expression levels, especially for AD-associated genes. However, our findings also 

support the hypothesis that the influence of RIN extends beyond AD and influences AD-  
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Figure 2.9. Relationship between RIN-sensitive genes and AD-associated genes. 

Single study comparison between the L2FC for AD genes (Miller et al., 2017) and 

correlation of RIN-sensitive genes (GSE71620; Chen et al., 2016). The Venn diagram 

also indicates the number of significant AD-associated genes, significant RIN-sensitive 

genes, and the overlap from the Miller et al. and Chen et al. analysis. The bar graph 

shows the number of significant overlapping genes and the Pearson’s correlation 

direction for RIN and direction of the L2FC (A). An analysis of the commonalities 

between a consensus of AD-associated genes (Hargis & Blalock, 2017) and the 

agreement of multiple RIN-sensitive datasets (Figure 2.5). The Venn diagram indicates 

the number of significant AD-associated genes, significant RIN-sensitive genes, and 

the overlapping genes. The bar graph shows the number of significant overlapping 

genes separated by the unanimous direction of the Pearson’s correlation for RIN and 

the average L2FC direction (B). 
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associated gene expression even in normal, non-pathological brain tissue. This  

suggests AD may amplify some general property of RNA degradation present pre-mortem 

even in non-pathological samples. 

2.5 Discussion 

RNA integrity numbers (RINs) have been important tools in determining RNA 

quality for nearly fifteen years, however the relationship between RIN and gene 

expression is still not well understood. Changes in RIN values may reflect the combined 

influence of multiple insults (e.g, RNAse activity, oxidative stress, tissue injury) (Copois 

et al., 2007; Feyzi et al., 2007) to which different mRNA species may be selectively 

vulnerable. For the present work, we designed an analysis that tested individual, post-

mortem, human frontal cortex data-subsets independently (secondary data analysis), and 

as a single dataset (meta-analysis). We hypothesized that, despite multiple possible 

mechanisms of insult, consistent genes and pathways would associate with RNA quality in 

post-mortem brain samples from control subjects with no diagnosed neuropathology. Our 

findings support this by showing specific genes and pathways are consistently associated 

with RNA degradation across multiple studies. However, while we hypothesized a linear 

relationship between RNA integrity numbers (RINs) and gene expression, our template 

analysis found that an exponential (or possibly sigmoidal) relationship better describes 

individual gene relationships to RIN. In addition, we found a surprising difference 

between RNA degradation’s influence with sex and age (aged males tended to show the 

strongest relationship). Based on the present work and prior publications (J. A. Miller et 

al., 2017), we propose that the apparently neuron-selective RNA degradation in control 

tissue is the result of selective damage to mRNA localized in synapses, and is similar to 

the influence seen in Alzheimer’s disease (AD).  

Regarding other metavariables commonly used to assess tissue quality, RIN values 

in healthy control brain tissue appears to correlate inconsistently with post-mortem 

interval (PMI) or tissue pH. Since our analysis does rely on the information published by 

others, there could be selection criteria we are unaware of that limit the range of variables. 

This ‘floor-effect’ could be impacting our results. With the information available to us, 

only 2 out of the 5 datasets report PMIs with a significant correlation between PMI and 

RINs, and they correlate in opposite directions. This is particularly of note since several 
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studies investigating the influence of RIN in controlled experimental settings have 

manipulated PMI to drive changes in RIN (Jaffe et al., 2017; Sampaio-Silva, Magalhaes, 

Carvalho, Dinis-Oliveira, & Silvestre, 2013), which may represent a component of the 

process observed here or an entirely separate process. Pre-mortem changes in control 

tissue that are not associated with known pathology or mishandling may also play a role. 

A study from the University of Maryland used human brain cortices from the NIH found 

the quality of RNA did not significantly drop until 36 hours post-mortem (White et al., 

2018). With the exception of subjects from GSE46706, the longest PMI for any subject 

was 37.5 hours; this may explain why there is not a clear relationship between PMI and 

RIN in the present work. Our analysis is in line with others (Ervin et al., 2007; Johnson, 

Morgan, & Finch, 1986; Stan et al., 2006) that have found a lack of a relationship between 

RIN and PMI (however, see (Birdsill, Walker, Lue, Sue, & Beach, 2011)). It has also been 

established the PMI and RIN correlation is tissue-dependent, and possibly region-specific 

as well (Ferreira et al., 2018). One study found subjects with Alzheimer’s disease had a 

significant negative correlation between PMI and RIN, but the control subjects did not 

(Preece & Cairns, 2003). Therefore, more investigation needs to be done on the 

relationship between PMI and RNA quality. Like PMI, tissue pH does not show a robust 

relationship with RIN in control brain tissue in this study. Only one out of the four studies 

reporting pH finds any significant correlation. However, other studies have found a 

significant relationship between RIN and pH (Atz et al., 2007; Durrenberger et al., 2010; 

Sonntag et al., 2016) and it is possible, since pH is also used as a preliminary triage 

variable, that the work we analyze had a constrained pH range. It should be noted that 

even though these metavariables did not have a robust impact on RIN, on their own they 

did show a significant association with transcriptional profile (albeit different sets of 

genes). This suggests these metavariables may have mechanistically distinct influences. 

Because of this, PMI and pH appear to be unreliable proxies for RIN-assessments.  

In females, younger subjects are moderately more sensitive to RNA degradation 

than aged. But in males, there is a strong increase in RIN-sensitivity with age (Figure 

2.4B). Age itself does not significantly correlate with RIN, even when young males, 

young females, aged males, and aged females from the GSE71620 data-subset are 

analyzed separately. One possibility is that aging genes could be indirectly influencing 
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RNA degradation since aging can play a role in mRNA turnover (Borbolis & Syntichaki, 

2015). Future work could focus on whether aging itself confers a differential sensitivity of 

mRNA to RIN variability, and what the potential mechanisms of such an effect would be 

and what the potential mechanisms of such an effect would be. 

Our data indicates RNA degradation is strongly associated with specific genes and 

pathways in post-mortem human frontal lobe tissue in control subjects. We find the same 

outcomes using two types of analyses: comparing individual datasets and merging datasets 

for a single analysis. In both cases, there is a highly consistent subset of genes that reliably 

showed lower expression as a function of decreasing RIN. The functional pathways with 

which these genes are associated included vesicles, transport activity, synapses, and 

mitochondria, implying neuronal mRNA may be particularly sensitive to degradation.  

There are two thresholds to consider for RIN’s influence on mRNA expression- 1) 

where RIN begins to have a significant effect on gene expression; and 2) where RIN 

becomes so severe that gene expression reaches a floor effect and is no longer impacted by 

further RNA degradation. Although individual RIN-sensitive gene sensitivities vary for 

both of these thresholds, there are some general consensus values that may be useful to 

consider in future work. As RNA degrades and the RIN begins to decrease, there is a 

marked increase in the number of genes whose expression correlates with RIN (Figure 

2.6). This indicates that if experimental tissue has a RIN above 8.6, then in general, there 

is no reliably detectable effect of RIN on gene expression and RIN correction would not 

be necessary in human post-mortem neocortical tissue. Between RINs of 7.2 and 8.6, there 

is a strong increase in RIN-sensitive mRNA detection, and below 7.2, detection again falls 

below statistically significant thresholds. However, our analysis also suggests that specific 

pathways (e.g., monovalent cation transporter- Figure 2.2) are more impacted at lower 

RINs. Thus, it is possible that different pathways are impacted at different points along the 

continuum of mRNA degradation.  

In this work, RNA degradation also appears to exert a floor effect on gene 

expression. The point at which a gene reaches its floor effect can vary from gene to gene, 

but is critical to consider. Beyond this threshold, the application of a RIN correction 

procedure would appear to provide data but instead would provide nonsense as its starting 

value cannot be estimates based on the RIN score. Often, a RIN of 6 is used as a criterion 



49 

 

for inclusion in a study, though there is no clear consensus in the literature (Sonntag et al., 

2016). Based on our findings using 6 data-subsets, a RIN of 6.7-7 appears to represent a 

generalized ‘point of no return’ for RIN-sensitive genes. This floor effect is also indicated 

by GSE46706, a data-subset with an unusually high RIN-to-gene expression false 

discovery rate (FDR) > 0.75 and an unusually low range of RIN values (2-7.7; only 26 of 

the 119 subjects had a RIN > 6). This supports our hypothesis that lower RINs are 

associated with flattened gene expression, and suggests that low range RIN corrections are 

unreliable for expression adjustment.  

Taken together, the upper and lower thresholds for RIN-sensitivity suggest that there 

is an interior RIN range between 7.2-8.6 in which RIN may have a fairly linear effect on 

gene expression that is amenable to correction. However, when considering RIN-sensitive 

genes, for RIN values above this range, RIN correction may inappropriately add to 

variance, since these genes do not need correcting. For RIN values below this range, we 

argue that the signal is not rescuable.  

Although there is strength to secondary and meta-analyses such as the present work, 

especially regarding robust findings, there are important caveats. These findings are 

correlative, and therefore we cannot determine if the associations are causal, 

consequential, or epiphenomenal. Further, while it is tempting to speculate that RNA 

degradation is impacting genes/ pathways at different rates (perhaps even forming a ‘meta-

pathway’ of progressive decay), this would require more observation and interventional 

experimentation. In addition, there is evidence that different pathways regarding mRNA 

transcription and transport are impacted at differing rates in post-mortem mice and 

zebrafish (Pozhitkov et al., 2017), giving more credence to the possibility that RNA 

degradation results in a cascading effect on the transcriptome. Although it is expected that 

available datasets would have restricted RIN ranges (RIN is typically used to establish a 

quality control cutoff; similar issues exist for other metavariables like pH and PMI), a 

more complete idea of RNA degradation’s effects could be achieved by examining the 

transcriptional influence across the entirety of the RIN range and with more attention 

given to the different measures (e.g. Total RNA ratio, 28S peak height, fast area ratio, and 

the marker height) that contribute to the RIN score (Schroeder et al., 2006). However, 
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another consideration is the subject-to-subject normal variation, and RIN may not reach 

such low values in the absence of severe pathology.  

Our findings that pathways relating to neurons are most vulnerable to RNA 

degradation suggests concerns with use of common regression approaches to control for 

RIN in transcriptional profiling of neural tissue, particularly with regard to 

neurodegenerative disease. First, we report a consistent set of genes sensitive to both RIN 

and Alzheimer’s disease (AD). These RIN/AD genes predominantly have lower 

expression with worsening AD and with lower RNA quality (e.g., are decreased with AD 

and show a positive correlation with RIN). These results support Miller et al., where RIN 

correction procedures removed the apparent Alzheimer’s disease effect (J. A. Miller et al., 

2017). Miller et al. reported RNA degradation was a confounding variable worsened in 

AD samples, and proposed this might be due to improper handling of tissue (J. A. Miller 

et al., 2017). However, questions remain regarding whether it is reasonable to assume that 

pathologists would be selectively indelicate with AD compared to control tissue, and it 

should be considered that the RNA could decay appreciably in living tissue prior to death 

and independent of post-mortem procedures.  

Second, in a disease state where both RIN and AD gene expression are declining, 

attempting to control for one issue may inadvertently remove clinically relevant findings 

from the other. We found similar results when we compared an AD dataset consisting of 

the robust AD changes observed in multiple independent studies (K. E. Hargis & Blalock, 

2017) along with the consistent RIN-sensitive genes identified in 3 control tissue data- 

subsets (see cross-dataset analysis using individual datasets in Results). This supports the 

observation (J. A. Miller et al., 2017) that specific AD genes are RIN sensitive. This may 

indicate correcting and/or normalizing RIN may actually be removing a true effect within 

AD subjects, as the RIN degradation itself may reflect in situ degradation. 

There are still many unanswered questions regarding the RNA degradation and its 

impact on gene expression. To our knowledge, this is the first study to look across 

multiple datasets at the relationship between RIN and gene expression in human post-

mortem control brain tissue. However, other studies have looked at RNA degradation’s 

impact in other tissues and species. For example, when Opitz et al. investigated RNA 

degradation in RNA extracted from renal cancer tumors, they found overrepresented 
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translation, GTP, and RNA activity (Opitz et al., 2010) pathways. Gallego-Romero et al. 

found inflammatory, immune, and clotting factors are most vulnerable to rapid RNA 

degradation in human peripheral blood mononuclear cells (Gallego Romero et al., 2014). 

Jaffe et al. also presented evidence that RNA from different cell types may have different 

susceptibility to degradation (Jaffe et al., 2017). This indicates cell and tissue type plays a 

role in which pathways are sensitive to RNA degradation. Indeed, this suggests that the 

mRNA associated with the principal functional cells of a tissue are the most vulnerable to 

degradation.  

In conclusion, transcriptional profiling reveals that neuronal, especially synaptic, 

pathways appear more strongly and consistently associated with RNA integrity than other 

pathways in control, post-mortem, human frontal lobe tissue from multiple independent 

datasets. This suggests that mRNA localized to synaptic regions may be particularly 

vulnerable, possibly due to its close association with mitochondria. Further, RNA integrity 

number (RIN) does not reliably correlate with two other measures commonly associated 

with post-mortem tissue quality, PMI and pH, suggesting PMI and pH would be poor 

proxies for RIN. Interestingly, there does appear to be an age-based shift in RIN-sensitive 

gene expression. Despite the fact that the range of RIN values was roughly the same in 

young and aged subjects, the association between RIN and gene expression increased 

markedly with age in males, and to a much lesser extent, decreased with age in females. In 

addition, and in support of prior work (J. A. Miller et al., 2017), there is strong overlap 

between RIN and AD’s influence on gene expression. For example, we also found that 

nearly half of all AD-sensitive genes identified in Miller et al. (2017) were also correlated 

with RIN (in Chen et al. (2016), completely independent dataset of control-only post-

mortem brain tissue). In datasets where RIN and AD are confounded (e.g., where RIN is 

significantly lower in AD samples), procedures such as multiple regression that are 

designed to correct for RIN’s influence may inadvertently remove the effect of AD. 

Indeed, one of AD’s effects may be to lower RIN. Therefore, we suggest avoiding RIN-

correction if such a confound exists, as have prior researchers (Gallego Romero et al., 

2014). Reporting the confound may be more appropriate than obfuscating it with RIN 

normalizing procedures. We also found that the relationship between RIN and gene 

expression more closely reflects a sigmoidal (or stepped) relationship across a narrow RIN 
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range of 6.7-8.6, rather than a continuous linear relationship across the entire RIN range. 

This suggests that RIN correction tools using regression may over-correct values outside 

of the linear range, and under-correct values within it.  
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CHAPTER 3. RNA DEGRADATION, GLUCOCORTICOID, AND GLUCOCORTICOID RECEPTORS 

3.1 mRNA degradation pathways 

As the previous chapter indicates, RNA degradation impacts gene expression, even 

in control tissue. While RNA degradation is increased post-mortem, there are internal 

mechanisms designed to degrade mRNA. To prevent continuous overexpression of gene 

or to prevent aberrant mRNA from being translated into dysfunctional proteins, mRNA 

decay pathways have evolved. While ribonucleases are often responsible for mRNA 

degradation and ensure mRNA stability, other mechanisms also play a role and are 

probably more instrumental when an external stressor occurs. 

Messenger RNA (mRNA) stability is mRNA species-dependent and can be 

expressed in mRNA half-lives. mRNA half-life (the amount of time of time it takes for 

one half of the amount of mRNA species to be metabolized or degraded) may range from 

less than one hour to days (Meyer, Temme, & Wahle, 2004; Thapar & Denmon, 2013) and 

is directly tied to the abundance of the mRNA available for transcription (Thapar & 

Denmon, 2013), length of 3' untranslated regions, the number of mutations in the AT-rich 

sequences, and the presences of proteins and microRNA binding sites (Tutucci, 

Livingston, Singer, & Wu, 2018). When the mRNA is no longer able to be transcribed into 

protein, it is considered degraded. Thus, the RIN score, which depends in large part on 

rRNA measures, is a proxy for assessing mRNA degradation.  

Most mRNA decay occurs in the cytoplasm of the cell. After being transcribed from 

the DNA, nascent mRNA is spliced and polyadenylated before being exported into the 

cytoplasm. After the mRNA has been used to translate a protein, the post-translational 

mRNA may be sent to processing bodies (P-bodies) or stress granules for storage to be 

used again. Recent work shows decreases in P-bodies do not impact mRNA degradation, 

as previously hypothesized, and single-molecule studies indicate degradation occurs 

throughout the cell (Zhang & Herman, 2020). P-bodies are a ribonucleoprotein structure 

containing proteins and enzymes used to process, store, and degrade mRNA (reviewed in 

(Decker & Parker, 2012; Zhang & Herman, 2020)). This degradation is essential for 

maintaining mRNA homeostasis, which is important for regulating individual protein 

homeostasis. Although the specific ways to activate the decay of post-translational mRNA 

are still unclear, the basics have been described.  
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RNA decay is typically initiated by deadenylation of the 3' tail.  Most of this activity 

is driven by the Ccr4-Not deadenylase complex followed by the Pan2-Pan3 enzyme 

(reviewed in (Labno, Tomecki, & Dziembowski, 2016; X. Wu & Brewer, 2012)). There 

are two decay pathways following the deadenylation, 3' – 5' or 5' – 3' decay. In the 3' – 5' 

pathway, the deadenylation process releases poly(A)- binding proteins (PABPs), which 

allows for an exoribonuclease, such as the RNA exosome complex, to bind to the 3' end of 

the mRNA. Once most of the mRNA has been degraded, the 5' cap and remaining 

fragments are also degraded using the scavenger mRNA decapping enzyme, DcpS (in 

humans) (Labno et al., 2016; Liu, Rodgers, Jiao, & Kiledjian, 2002). The 5' – 3' pathways 

start with the mRNA's decapping using the decapping enzymes Dcp1-Dcp2, and Lsm1-7, 

Edc3, Ddx6, and Hedls (Fenger-Gron, Fillman, Norrild, & Lykke-Andersen, 2005). Then 

Xrn1 degrades the mRNA (X. Wu & Brewer, 2012). In both cases, the mRNA is 

degraded, allowing for mRNA homeostasis to be retained.  

Although, these degradation pathways are essential for understanding the stability of 

individual mRNA species, and the variability between them, they are not the most 

commonly studied mRNA degrading pathways. Most of the well-understood degradation 

pathways survey mRNA quality and cause mRNA degradation to occur when there is a 

problem during translation. One of the most understood is the non-sense mediated decay 

pathway (Thapar & Denmon, 2013). 

3.1.1 Non-sense mediated decay 

Non-sense mediated decay (NMD)  (reviewed in (Schoenberg & Maquat, 2012; 

Thapar & Denmon, 2013; Weskamp & Barmada, 2018)) is a surveillance pathway that 

degrades mRNA with a premature translation stop codon to prevent potentially 

detrimental effects (Borbolis & Syntichaki, 2015; Schoenberg & Maquat, 2012). It may 

also regulate some normally sequenced mRNA, particularly species with alternatively 

spliced exons in the 3' UTR (X. Wu & Brewer, 2012). However, it should be noted that 

there is no evidence that mammalian NMD degrades "old" mRNA; it is believed to 

primarily target mRNA recently bound  at the 5’ end to cap-binding proteins (Schoenberg 

& Maquat, 2012). The NMD pathway removes aberrant transcripts and helps to maintain 

telomeres during cell cycle progression (Thapar & Denmon, 2013).  
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After nascent mRNA splicing occurs in the nucleus, an exon-exon junction 

complex is placed 24 nucleotides upstream from the splice site to mark where an intron 

was removed. If this exon-exon junction complex is more than 50 nucleotides downstream 

of a stop codon, it is considered a premature termination codon, and the NMD is activated 

(Thapar & Denmon, 2013). During translation, the ribosome stalls at the premature 

termination codon. Then Upf1, eRF1, and eRF3 form a surveillance complex and bind to 

the adjacent premature termination codon (Weskamp & Barmada, 2018). The surveillance 

complex then interacts with the exon junction complex, particularly the Upf2 and Upf3, 

triggering the phosphorylation of the Upf1 by Smg1 (Schoenberg & Maquat, 2012; 

Weskamp & Barmada, 2018). This mechanism prevents further mRNA transcription 

prevent the inhibition of degradation (Schoenberg & Maquat, 2012; Weskamp & 

Barmada, 2018). In addition, the phosphorylated Upf1 binds to Smg5-7, which cleaves 

mRNA and triggers adenylation and decapping (Weskamp & Barmada, 2018). This 

process allows for 3' – 5' degradation through the Ccr4-Not deadenylase complex (Kim & 

Maquat, 2019). Smg5-7 promotes the dephosphorylation of Upf1 via protein phosphatase 

2A, enabling Upf1 to be reused (Schoenberg & Maquat, 2012). 5' – 3' degradation occurs 

if, in addition to the Smg5-7 proteins, the proline-rich nuclear receptor coregulatory 

protein 2 (Pncr2) is activated (Cho et al., 2015; Kim & Maquat, 2019). Pncr2 binds to 

Dcpa1, part of the decapping enzyme, which causes 5'- 3' exoribonuclease cleavage via 

Xrn1 (Kim & Maquat, 2019).  

It should be noted that NMD efficiency in the brain is decreased due to miRNA-

128. miRNA-128 is a microRNA associated with neuronal excitability and motor behavior 

(Tan et al., 2013) that targets Upf1 and the exon junction complex's MLN51 protein, 

particularly during neuronal development (Schoenberg & Maquat, 2012). This activity 

may indicate non-sense transcripts occur at higher rates in the brain compared to other 

tissues. However, the model for amyotrophic lateral sclerosis (ALS) shows overexpression 

of Upf1 and Upf2, causing an increase in NMD and preventing neuronal death in ALS by 

inhibiting RNA binding proteins Tdp43 and Fus (Barmada et al., 2015).   

3.1.2 Glucocorticoid receptor mediated mRNA decay 

Recently, a new degradation pathway was identified, the glucocorticoid receptor-

mediated decay pathway (GMD). First described in 2015, the glucocorticoid receptor 
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initiates the degradation by acting as an RNA-binding protein in monocytes. This mRNA 

decay pathway’s independence from both translation status and exon junction complex 

signals of the target mRNA distinguishes it from the other degradation pathways like 

NMD (Cho et al., 2015; O. H. Park et al., 2016). It is only known to degrade selected 

mRNAs in monocytes, such as chemokine (C-C motif) ligand 2 (CCL2) (Cho et al., 2015) 

and interleukin 8 (Il8) (O. H. Park et al., 2016), which may help to explain some 

glucocorticoid anti-inflammatory actions. In mechanosensory cells the pathway can be 

triggered by a long noncoding RNAs to promote the degradation of early growth response 

protein 1 (EGR1) mRNA (Zhu et al., 2021). Currently, this newly identified pathway has 

not been identified in other cell types or studied outside of cell culture settings. Two 

particular aspects of this pathway that would be of great interest to this work would be: 1) 

if this pathway was found in the brain and, if so, what brain regions, cell types, and 

mRNA species it might degrade; and 2) if this pathway can be triggered by stress. Cho et 

al. used dexamethasone, a synthesized glucocorticoid, to activate the pathway (2015).  

Because of the novelty of the pathway, there are still some unknowns regarding its 

process. However, a model has been proposed (Cho et al., 2015). Before a ligand binds to 

the glucocorticoid receptor, the receptor is preloaded to a binding site on a target mRNA. 

When the glucocorticoid ligand binds to the glucocorticoid receptor, Pnrc2, Dcp1, and 

Upf1 are recruited. This complex then associates with the 5' UTR. Upf1 is then 

phosphorylated with ataxia-telangiectasia mutates (Atm), a nuclear protein activated by 

phosphatidylinositol 3-kinase-related kinases (PI3KK) after DNA damage, which can be 

caused by stress hormones such as glucocorticoids (Flint, Baum, Chambers, & Jenkins, 

2007; O. H. Park et al., 2016). This phosphorylation causes Upf1 to remodel the 

ribonucleoprotein through its helicase activity (Cho et al., 2015). Next, Y-box-binding 

protein (Ybx1) and heat-responsive protein 12 (HRSP12) stabilize the GMD complex. In 

addition, HRSP12 is known to have endoribonucleolytic activity (O. H. Park et al., 2016).  

Upf1 and HRSP12 would then trigger 5’ decapping and 5’-3' degradation (Cho et al., 

2015; O. H. Park et al., 2016) (Figure 3.1).  

Since psychological stress releases glucocorticoids that cause DNA damage (Flint et 

al., 2007), upregulate Atm and its phosphorylation of Upf1 (O. H. Park et al., 2016), 

increased stress may lead to more GMD activity. Since there is evidence that GMD targets   
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Figure 3.1. Glucocorticoid receptor mediated mRNA decay 

The glucocorticoid receptor (GR) is preloaded onto the mRNA. Once a ligand (i.e., GC) 

binds, Upf1, Pnrc, and Dcp1 are also recruited. When Upf1 is phosphorylated, it recruits 

Ybx1 and HRSP12 to provide stability to the GR complex. Upf1 and HRSP12 also trigger 

the 5’ decapping and the 3’- 5’ degradation. Adapted from Park et al. (2016). Created 

using Biorender.com. 
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some inflammatory mRNA (e.g., Il8) (O. H. Park et al., 2016), this could be a potential 

mechanism for glucocorticoid's anti-inflammatory effects.  

3.2 Glucocorticoid receptors 

Glucocorticoid receptors are a member of the nuclear receptor family (Ismaili & 

Garabedian, 2004), including mineralocorticoid and progesterone receptors (Smoak & 

Cidlowski, 2004). Glucocorticoid receptors are ubiquitously found throughout the body. 

Still, the glucocorticoid receptor concentration and its DNA binding vary based on the 

tissue or cell type (Oakley & Cidlowski, 2013). These receptors regulate various systems 

(e.g., cardiovascular, immune, musculoskeletal, nervous, respiratory, reproductive, 

adipocyte, and hepatic) (Garabedian, Harris, & Jeanneteau, 2017). One place that 

glucocorticoid receptors are well-documented to be expressed is in the nervous system, 

particularly the brain. One of the most studied regions for glucocorticoid receptors is the 

hippocampus, a primary structure for memory (Caudal, Jay, & Godsil, 2014; Garabedian 

et al., 2017). The hippocampus and other limbic structures have the highest density of 

glucocorticoid receptors in the brain, along with the paraventricular nucleus of the 

hypothalamus and ascending aminergic pathways (Gadek-Michalska, Spyrka, 

Rachwalska, Tadeusz, & Bugajski, 2013). In addition, the nuclear levels of glucocorticoid 

receptors increase within an hour of stress exposure (Caudal et al., 2014).  

3.2.1 Structure 

There are multiple glucocorticoid receptor isoforms in humans (Vandevyver, 

Dejager, & Libert, 2014), the canonical version being GRα. GRα, which will be identified 

throughout this work as glucocorticoid receptor, has 777 amino acids and promotes the 

transcription of glucocorticoid-responsive genes (Smoak & Cidlowski, 2004).  

Like most other nuclear receptor family members, glucocorticoid receptors have 

three functional domains (Ismaili & Garabedian, 2004; Oakley & Cidlowski, 2013). The 

first is the 421 amino acid N-terminal region, which contains the ligand-independent 

transcriptional activation function (AF-1) (Ismaili & Garabedian, 2004; Vandevyver et al., 

2014). The AF-1 region is one of the most variable areas between the nuclear receptor 

family members and is responsible for gene regulation. It is also a common 

phosphorylation target for ligand-dependent activity since it has 6-7 phosphorylation sites 



59 

in rodents and 5 phosphorylation sites in humans (Ismaili & Garabedian, 2004). It also 

directly interacts with the basal transcription machinery, which begins the transcription 

process from DNA (Heitzer, Wolf, Sanchez, Witchel, & DeFranco, 2007). It is encoded on 

exon 2 (Oakley & Cidlowski, 2013). 

The second functional domain is the central part of the protein, which contains a 

DNA binding domain (DBD), a nuclear localization signal, and a dimerization motif 

(Ismaili & Garabedian, 2004). The DBD contains eight cysteine residues tetrahedrally 

organized around two zinc atoms, which confer binding specificity to glucocorticoid 

response elements (GREs) on target DNA (Heitzer et al., 2007). It also functions to allow 

dimerization of the glucocorticoid receptor and interaction with cofactors and transcription 

factors (Vandevyver et al., 2014). The DBD is encoded on exons 3 and 4 to become a 65-

residue region of the glucocorticoid receptor (Oakley & Cidlowski, 2013; Vandevyver et 

al., 2014). In addition, the nuclear localization signal acts as a hinge to allow the receptor 

to change its conformation (Heitzer et al., 2007).  

The third domain, the C-terminal region, contains the ligand-binding domain 

(LBD) which binds to both the ligand and to the heat shock protein 90 complex, along 

with other transcriptional activation sites (AF-2) (Ismaili & Garabedian, 2004; Smoak & 

Cidlowski, 2004). The LBD consists of 12 α-helices and four β-sheets which are involved 

in forming a hydrophobic ligand-binding pocket. The LBD is encoded by exons 5-9, along 

with the hinge. The AF-2 can go through a conformation change when a ligand binds, 

allowing accessory proteins (e.g., coactivators, co-repressors) to bind (Oakley & 

Cidlowski, 2013; Stahn, Lowenberg, Hommes, & Buttgereit, 2007).  

3.2.2 Mechanisms of action 

Before ligand binding, glucocorticoid receptors are predominantly found in the 

cytoplasm of a cell (Vandevyver et al., 2014), where they are bound to heat shock protein 

90 (hsp90)- chaperone complex, which consists of hsp90, hsp70, hsp56, hsp40, p23 and 

immunophilins (Ismaili & Garabedian, 2004; Smoak & Cidlowski, 2004; Stahn et al., 

2007). Once an agonist binds to it, the receptor changes conformation, releasing from the 

hsp90 complex and translocating into the nucleus via the microtubule network, which 

takes around 20 minutes (Ismaili & Garabedian, 2004; Stahn et al., 2007). Once in the 

nucleus, the glucocorticoid receptor binds to the GRE motif GGAACAnnnTGTTCT, 
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where ‘n’ represents any nucleotide on the DNA, in the promoter regions of the target 

genes, recruiting coactivators to the glucocorticoid receptor-DNA complex and starting 

the "transactivation" of genes (Almawi & Melemedjian, 2002; Ismaili & Garabedian, 

2004; Oakley & Cidlowski, 2013; Smoak & Cidlowski, 2004; Stahn et al., 2007). The 

coactivators contain histone acetylase (HAT) activity, which may be necessary for 

remodeling chromatin structure, unwinding the DNA, and exposing the gene’s DNA 

sequence for transcription. Once unwound, the basal transcription machinery has access to 

the promoter (Smoak & Cidlowski, 2004).  

One example of this is the transcription of serum-glucocorticoid-inducible kinase 1 

(Sgk1). Sgk1, identified initially as a cell volume regulator, has many functions, including 

modifying phosphorylation of ion channels, transporters, and enzymes (Lang & 

Shumilina, 2013; Lang, Strutz-Seebohm, Seebohm, & Lang, 2010) and influencing 

glutamate transmission (Finsterwald & Alberini, 2014). Sgk1 activates the Rab4-GDI 

complex, which regulates AMPA receptor recycling at the synapse. This increases the 

expression of Glua2, a component of AMPA receptors (Wright & Vissel, 2012), causing 

an increase in hippocampal synaptic transmission, spine formation, and long-term memory 

(Finsterwald & Alberini, 2014). 

Apart from transcription, glucocorticoids can act through negative GREs (nGREs), 

inhibit transcription via protein-protein interactions ("transrepression"), activate signaling 

pathways, and activate glucocorticoid receptor-mediated decay (GMD; see Section 3.1.2) 

(Cho et al., 2015; Ismaili & Garabedian, 2004; O. H. Park et al., 2016; Smoak & 

Cidlowski, 2004; Stahn et al., 2007). One example of the nGRE is the 

proopiomelanocortin gene, which inhibits corticotropin-releasing hormone (CRH) and 

adrenocorticotrophic hormone (ACTH) in the hypothalamic-pituitary-adrenal (HPA)- axis 

(see Section 3.3.2). The nGRE acts in a similar manner as the positive GREs, though they 

have a different motif with 0-2 spacers (CTCC(n)0-2GGAGA) (Oakley & Cidlowski, 

2013). In addition, the glucocorticoid receptor complexes can cause transrepression by 

blocking access of other promoters to their promoter regions (Heitzer et al., 2007). 

Glucocorticoid receptor transrepression occurs in either of the promoter regions of 

pro-inflammatory, such as activator protein 1 (AP1) and nuclear factor- κB (NF-κB) 

(Stahn et al., 2007). The glucocorticoid receptor can heterodimerize to the Jun subunit of 
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AP1 and the p65 subunit of the NF-κB, preventing their ability to act as pro-inflammatory 

cytokine transcript promoters (Bolshakov, Tret'yakova, Kvichansky, & Gulyaeva, 2021; 

Oakley & Cidlowski, 2013). These heterodimers can also promote anti-inflammatory 

cytokine, such as Il-4 and Il-10, transcription (Walker & Spencer, 2018). 

Glucocorticoid receptors have several gene transcription roles and through the 

direct mechanism described above, as well as through downstream consequences of that 

activity, impact the expression levels of 10-20% of the human genome (Oakley & 

Cidlowski, 2013). Post-translational modification can also have a remarkable impact on 

the functions of the glucocorticoid receptor. Phosphorylation, the most well understood 

modification in glucocorticoid receptors, involves at least six kinases: 1) cyclin-dependent 

kinases (CDKs); 2) p38 mitogen-activated protein kinase (MAPK); 3) c-Jun N-terminal 

kinase (JNKs); 4) glycogen synthase kinase 3β (GSK-3β); 5) extracellular signal-regulated 

kinase (ERK); and 6) casein kinase II (Vandevyver et al., 2014). MAPK (including JNKs, 

p38 MAPK, and ERK) are responsive to several factors, including stress, while CDK 

reacts to cyclin subunits, binding inhibitory polypeptides, and regulating phosphorylation. 

(Ismaili & Garabedian, 2004). For the present review, I will focus on MAPK and its 

response to stressful stimuli. 

MAPK has low basal phosphorylation activity until the glucocorticoid receptors 

are bound by agonists, ligands bind, causing the receptors to become 

hyperphosphorylated. This is due to changes in the conformation of the glucocorticoid 

receptor (with the exception of Ser-134 in humans that can be phosphorylated in a ligand-

independent manner through cellular stress-activating stimuli (Oakley & Cidlowski, 

2013)). p38 MAPK phosphorylates Ser-134 in response to stressors, leading to an increase 

in transcriptional activity (Vandevyver et al., 2014). The phosphorylated Ser-404 also 

impactions the function of the receptor by diminishing its binding capability (Oakley & 

Cidlowski, 2013).  

Both acute and chronic stress promote histone modifications, which can repress or 

activate genes related to memory. One example of this was discovered using the Morris 

water maze and forced swim tests. Glucocorticoids, via glucocorticoid receptors, cause the 

ERK-MAPK pathway to signal to MSK1 and Elk1, two nuclear kinases, in the dentate 

gyrus. This process activates phosphorylation and acetylation of residues in histone H3, 
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inducing c-Fos (Chandramohan, Droste, Arthur, & Reul, 2008), an immediate-early gene 

that are a neuronal activity marker (Bullitt, 1990).  

In addition, glucocorticoid receptors also regulate the endocannabinoid system 

through non-genomic actions. By releasing endocannabinoids in the hypothalamus (part of 

a retrograde neurotransmitter system), glucocorticoids suppress HPA-axis activity, thereby 

feedback inhibiting glucocorticoid release (Bolshakov et al., 2021; Finsterwald & 

Alberini, 2014; McEwen et al., 2015). Chronic stress and corticosterone treatments 

downregulate cannabinoid 1 receptor and decrease endocannabinoid levels, impairing the 

endocannabinoid feedback inhibition system (McEwen et al., 2015). In the hippocampus 

and the amygdala, endocannabinoids impact cognition and emotional memory encoding 

(Finsterwald & Alberini, 2014). Endocannabinoids themselves also have anti-

inflammatory properties by inhibiting the release of pro-inflammatory cytokines 

(Bolshakov et al., 2021) 

Glucocorticoid receptors also can translocate to the mitochondria with the B-cell-

lymphoma 2 (Bcl-2) protein, promoting Ca2+ sequestration, reducing mitochondrial 

oxidation and free radical formation, and hyperpolarizing mitochondrial membrane 

potential, promoting mitochondrial function. However, high glucocorticoid levels cause 

this process to fail within 72 hours, leading to increased free radical formation (McEwen 

et al., 2015). 

3.3 Glucocorticoids 

Glucocorticoids, a class of hormones that act as the primary ligands for 

glucocorticoid receptors, are synthesized from cholesterol in the adrenal glands. The most 

common inactive glucocorticoids are cortisone (primates) and 11-dehydrocorticosterone 

(rodents), converted by 11β-hydroxysteroid dehydrogenase 1 into the active cortisol and 

corticosterone, respectively. However, 11β-hydroxysteroid dehydrogenase 2 deactivates 

the hormones (Mifsud & Reul, 2018). After being secreted into the bloodstream by the 

adrenal gland, 90% of glucocorticoids are bound to glucocorticoid-binding globulins 

(GBC). The remaining 10% can transverse the blood-brain barrier and cell membranes. 

Glucocorticoids can bind to two receptors, mineralocorticoid receptors and glucocorticoid 

receptors (see section 3.2). Mineralocorticoid receptors are another member of the nuclear 

receptor family. They share characteristics with the glucocorticoid receptor (Baker & 
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Katsu, 2020); however, they do not share their transactivation domains and target different 

genes (Datson, van der Perk, de Kloet, & Vreugdenhil, 2001). While their classical ligand 

is aldosterone, glucocorticoids, and several other hormones have similar affinities for the 

mineralocorticoid receptors (Baker & Katsu, 2020).  

Interestingly, glucocorticoids have a 5-10-fold higher affinity for mineralocorticoid 

receptors (KD ~ 0.5 nM) than glucocorticoid receptors (KD ~ 2.5 - 5 nM). At basal 

glucocorticoid levels, mineralocorticoid receptor occupancy is saturated, while increased 

levels of glucocorticoids cause the activation of the glucocorticoid receptors (Sorrells, 

Caso, Munhoz, & Sapolsky, 2009; Tanaka et al., 1997). Because of their higher affinity 

for glucocorticoids and other hormones, mineralocorticoid receptors are constantly in a 

bound and active state (Mifsud & Reul, 2018). While glucocorticoid receptors are 

ubiquitously found through the brain, mineralocorticoid receptors are primary found in the 

limbic system. Interestingly, RNA-Seq has identified mineralocorticoid receptor mRNA in 

most neural cells, with microglia the only exception (Bolshakov et al., 2021). This dual-

receptor model is thought to, at least in part, confer an "inverse-U" pattern of activation 

for glucocorticoids on their downstream markers, since mineralocorticoid and 

glucocorticoid receptors can have opposing effects (Sorrells et al., 2009). This inverse-U 

pattern shows that stress intensity impacts learning memory and causes fewer deficits with 

intermediate stress. The glucocorticoid receptors typically mediate high-stress situations 

that impact spatial memory in the hippocampus and amygdala (Finsterwald & Alberini, 

2014). In addition to the stress response (see section 3.3.2), glucocorticoids, in the absence 

of stress, are released in a circadian fashion and play a role in modulating circadian 

rhythm and sleep.  

Glucocorticoids have a strong anti-inflammatory effect on the immune system 

throughout the body (Stahn et al., 2007). Acute stress can prime the immune response if 

the glucocorticoid exposure occurs before stress, producing an exaggerated pro-

inflammatory cytokines response (Frank, Watkins, & Maier, 2013; Sorrells et al., 2009). 

However, glucocorticoids can also attenuate stress-induced defense mechanisms, 

including pro-inflammatory cytokines (Munck & Naray-Fejes-Toth, 1994), and suppress 

the pro-inflammatory immune mediators, such as NF-κB if it occurs consequent with, or 

after, the stress (De Bosscher, Vanden Berghe, & Haegeman, 2003). Essentially, the stress 
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exposure post-pro-inflammation attenuates the response (Goujon et al., 1995). Most anti-

inflammatory effects have been studied within the brain using bacterial 

lipopolysaccharides (LPS) injections as a pro-inflammatory challenge. Acute restraint 

stress immediately after these injections prevented the inflammatory response (Goujon et 

al., 1995). Corticosterone also inhibited the expression of pro-inflammatory Il-1α and Il-

1β mRNA in the hypothalamus and hippocampus, though it increased the mRNA levels of 

Il-6 (Chai, Alheim, Lundkvist, Gatti, & Bartfai, 1996). Glucocorticoids also impact 

microglia, the primary immune cell in the central nervous system. Glucocorticoids, 

aldosterone, and progesterone attenuate the proliferation of microglia (Ganter, Northoff, 

Mannel, & Gebicke-Harter, 1992). Microglia can be activated during stress, though 

glucocorticoids tend to inhibit this effect. Once activated, microglia can phagocytose 

damaged neurons and release pro-inflammatory factors, such as Il-1 (Sugama et al., 2013). 

Interestingly, when glucocorticoids are given before an inflammatory event, it primes the 

microglia and increases pro-inflammatory effects of subsequent insults (Dinkel, 

MacPherson, & Sapolsky, 2003). 

Glucocorticoids regulate the circadian clock in multiple brain regions and the liver 

(McEwen et al., 2015). For example, hippocampal mineralocorticoid receptors control the 

basal HPA-axis during circadian rhythm (Gadek-Michalska et al., 2013). Additionally, 

glucocorticoid secretions are higher during the active than inactive periods (Chung, Son, 

& Kim, 2011), reaching their peak just before waking (Sorrells et al., 2009). A correctly-

functioning circadian rhythm allows for normal regulation of ACTH, while a disrupted 

circadian rhythm can lead to increased risk of psychiatric, cardiovascular, and 

physiological disorders (McEwen et al., 2015). Interestingly, in aged animals, 

glucocorticoid levels were elevated during the inactive phase and glucocorticoid receptor 

expression was reported to be elevated (Barrientos et al., 2015).   

3.3.1 Interactions with progesterone and allopregnanolone 

Progesterone and glucocorticoids have higher blood plasma levels during mild or 

acute physical stressors than in severe chronic stress (Ladisich, 1975). Chronic stress (48 

hours of social isolation) also decreases the cerebrocortical and hippocampal levels of 

progesterone and allopregnanolone; they appear to have a floor effect at this point since 

the concentrations do not continue to fall even with continued stress (Barbaccia, Serra, 
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Purdy, & Biggio, 2001). Progesterone helps regulate the development of neurons and glial 

cells, particularly the oligodendrocytic myelination process, and has neuroprotective 

effects for neurodegenerative diseases (Melcangi & Panzica, 2014). 

Like glucocorticoid and mineralocorticoid receptors, progesterone receptors are 

also members of the nuclear receptor family. Because of this, progesterone, like 

glucocorticoids, is also able to bind to mineralocorticoid receptors. In fact, progesterone, 

cortisol, corticosterone, 11-deoxycorticosterone, and aldosterone (the classic ligand for 

mineralocorticoid receptors) all have similar affinities for the receptor. Interestingly, 

however, progesterone is an antagonist to the receptor. The interaction between 

progesterone and the mineralocorticoid receptor is not well understood, especially in its 

relationship to its effects on glucocorticoids and the stress system (Baker & Katsu, 2020). 

Based on knowledge of mineralocorticoid receptors' impact on the stress response, it is 

tempting to speculate that progesterone antagonizing glucocorticoid action on 

mineralocorticoid receptors would serve to inhibit glucocorticoid’s mineralocorticoid 

receptor-driven effects on the HPA-axis. In addition, if progesterone is in high enough 

concentrations, it could disrupt in glucocorticoid binding to the glucocorticoid receptor.  

5α-reductase reduces progesterone into dihydroprogesterone, which is then 

reduced by 3α-hydroxysteroid oxidoreductase into allopregnanolone (also called 3α, 5α- 

tetrahydroprogesterone) (Guennoun, 2020; Melcangi & Panzica, 2014).  Allopregnanolone 

is a 3α-, 5α-reduced metabolite of progesterone, which acts to promote GABAA receptor 

activity, and its levels are increased during acute stress (Pluchino et al., 2006). This 

neuroactive metabolite has anxiolytic properties similar to those of the benzodiazepine 

class of agents, and the FDA recently approved brexanolone (an exogenous form of 

allopregnanolone) for the treatment of post-partum depression. Acute treatment can 

improve memory and learning, and increase neuronal progenitor cells in the hippocampal 

subgranular zone, in 3xTg-AD mice if administered before pathology develops (Wang et 

al., 2010). Meanwhile, chronic administrations of allopregnanolone can cause 

neurogenesis, oligodendrogenesis, reductions in neuroinflammation and β-amyloid 

burden, and increases in white matter generation and cholesterol homeostasis (Melcangi & 

Panzica, 2014). 
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3.3.2 Role in stress and Hypothalamus-Pituitary-Adrenal-Axis 

3.3.2.1 Mechanism  

When a stressor (e.g., cytokines, nociception, behavioral insult) activates the stress 

response, the hypothalamic-pituitary-adrenal (HPA)-axis activates a rapid, epinephrine 

based response, and a slower glucocorticoid-based response in the adrenal gland (Walker 

& Spencer, 2018). The HPA- axis starts with the paraventricular nucleus (PVN) of the 

hypothalamus secreting corticotrophin-releasing hormone (CRH) and vasopressin into the 

pituitary portal (Gadek-Michalska et al., 2013; Sorrells et al., 2009). CRH, whose release 

is inhibited by GABAA activity and retrograde endocannabinoid signaling (Barbaccia et 

al., 2001), also plays a role in dendritic remodeling in the CA1 region of the hippocampus 

(McEwen et al., 2015). The release of CRH and vasopressin causes the pituitary to release 

adrenocorticotropin hormone (ACTH) into the bloodstream. ACTH travels to the adrenal 

glands, which are then stimulated to secrete glucocorticoids. Since females have higher 

levels of ACTH than males, it follows that they also have higher levels of glucocorticoids 

(Le Mevel, Abitbol, Beraud, & Maniey, 1978). The glucocorticoids then enter the 

bloodstream and travel throughout the body. Since they are lipophilic (Timmermans, 

Souffriau, & Libert, 2019), the free glucocorticoids can easily transverse the blood-brain 

barrier and plasma cell membranes, where they can bind to cytosolic glucocorticoid and 

mineralocorticoid receptors, some of which are in the hippocampus (Gadek-Michalska et 

al., 2013; Sorrells et al., 2009). This binding both stimulates action and begins a negative 

feedback loop, where ventral hippocampal neurons send inhibitory input to the anterior 

pituitary (A. H. Miller et al., 1992) and the PVN of the hypothalamus (Garrido, de Blas, 

Del Arco, Segovia, & Mora, 2012) (Figure 3.2). Meanwhile, the mineralocorticoid 

receptors rapidly increase the hippocampal and amygdala excitability in the neurons via 

non-genomic mechanisms; this occurs upstream of the PVN, indicating that both receptors 

attenuate HPA-activity (Pasricha, Joels, & Karst, 2011). Interestingly, injections of 

corticosterone do not cause the same effects as acute stress, indicating that other signaling 

molecules, such as epinephrine in the periphery and CRH centrally, play a role in the 

stress response (McEwen et al., 2015). There are also sex differences in response to stress 

stimuli. Females tend to be more responsive to stress during the luteal phase of the estrous  
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Figure 3.2. Hypothalamus-pituitary-adrenal-axis. 

Physical or psychological stress stimulates the paraventricular nucleus (PVN) of the 

hypothalamus to release corticotrophin-releasing hormones (CRH), which then move to 

the anterior pituitary. This stimulates the release of adrenocorticotropin hormone (ACTH) 

into the blood stream, where it travels to the adrenal gland and stimulates the secretion of 

glucocorticoids (GCs) into the blood stream. Some GCs return to the brain and bind to GC 

receptors on the neurons. This releases GABA and causes attenuation of the PVN and the 

anterior pituitary, creating a negative feedback loop on the HPA-axis. Created using 

BioRender.com. 
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cycle (Kajantie & Phillips, 2006). However, males' memory consolidation appears to be 

more affected by stress than females (de Quervain, Schwabe, & Roozendaal, 2017).  

3.3.2.2 Stress Response 

The stress response is an essential biological function that varies depending on the 

stressor, its duration, and the subject's age, sex, and species (Atrooz, Alkadhi, & Salim, 

2021; von Dawans, Strojny, & Domes, 2021). Stress disrupts multiple systems by 

activating the HPA-axis, leading to cardiovascular, immune, and mental disorders 

(Campbell & Ehlert, 2012; Gjerstad, Lightman, & Spiga, 2018). For this study, we will be 

focusing primarily on the effects on the brain. 

Stress can be divided into two groups, physical and psychological. Physical 

stressors are caused by stimuli that activate nociceptors and lead to an unconscious 

reflexive activation of the HPA-axis (such as foot shock in rodents or the cold compressor 

test). Psychological and psychosocial stressors require consciousness to be activated 

because they rely on anticipatory or predictive brain circuitry (e.g., restraint stress in 

rodents or the Trier social stress test) (Herman, 2013). Stress can also be subdivided on 

whether it is acute or chronic. Acute stress is often identified as a stressor that lasts 

minutes to hours, while chronic stress lasts days to months. In addition, the age and sex of 

an organism can impact its stress response as well. Most work in stress has been in males, 

at least in part due to the female estrous cycle affecting stress response (Conrad et al., 

2004; Lovick, 2012). In addition, it has been well documented that stress accelerates brain 

aging, and that age impacts how the body responds to stress. 

3.3.2.2.1 RELATIONSHIP BETWEEN STRESS AND AGING 

Aging is a process that impacts all organs, including the brain. Many automatically 

associate aging with memory deficits, especially dementia. Dementia is different than the 

normal aging process, and age-related cognitive decline, although age-related cognitive 

decline is a risk factor for developing dementia. Dementia is often associated with 

neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, vascular 

dementia, etc. And as this problem continues to affect our aging population, people are 

now looking for ways to prevent age-related decline in hopes that it will reduce the risk 

for developing subsequent neurodegenerative diseases. Unfortunately, for the last 18 
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months, the world has had a constant stressor: the COVID-19 pandemic. In addition to the 

immediate health risks this virus brings, this stress associated with the social response to 

the crisis likely will have long-term impacts on the population's mental health. In the last 

several decades, research has shown a relationship between stress (particularly chronic) 

and aging in the brain (K. C. Chen et al., 2013; Landfield, Blalock, Chen, & Porter, 2007; 

Porter & Landfield, 1998).  

  The glucocorticoid cascade hypothesis was introduced in 1986 and suggested that 

age-related changes in the HPA-axis may cause functional defects and neurotoxicity in the 

hippocampal neurons, leading to an increase in HPA-axis activity. This process would 

increase glucocorticoid blood plasma levels, leading to a larger percent of unbound 

glucocorticoids; some of the glucocorticoids would travel to the brain and cause 

neurotoxicity. In addition, there would be a decrease in available glucocorticoid receptors, 

causing attenuation of the negative feedback loop (Bauer, 2005; Garrido et al., 2012; 

Porter & Landfield, 1998; Sapolsky, Krey, & McEwen, 1986). Aging reduces 

glucocorticoid receptor’s negative feedback, cytoplasmic glucocorticoid receptor levels, 

and attenuates the transport of the receptor to the nucleus (Mizoguchi et al., 2009). In 

addition, aged rats have significantly higher levels of glucocorticoids in their hippocampus 

and prefrontal cortex compared to young rats. However, there is no significant difference 

in response to restraint stress (Garrido et al., 2012) or they are hyporesponsive (Buechel et 

al., 2014). This finding indicates that there is a ceiling effect for the stress response in 

aged animals. Both chronic stress and aging have similar glucocorticoid receptor and 

neuronal cell loss in the CA3 (Sapolsky, Krey, & McEwen, 1985). 

In addition, aging exacerbates the hippocampal microglial responses to immune 

challenges compared to young adults. This increased activity has been associated with 

attenuated long-term potentiation (LTP) in the hippocampus, lower levels of brain-derived 

neurotrophic factor (BDNF- a neurotrophic factor involved in neuronal development, 

maintenance, survival, and plasticity), and spatial and contextual memory impairments 

(Barrientos et al., 2015; Murakami, Imbe, Morikawa, Kubo, & Senba, 2005). 

3.3.2.2.2 CHRONIC STRESS 

Chronic stress is often marked by an overactive HPA-axis (Bauer, 2005) and 

occurs with repeated or long-term stress. Habituation can occur to try to mediate the stress 
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response associated with chronic stress. This adaptive response decreases the effect of the 

stressor on the organism and the effects of the stress response. Unsurprisingly, the rate of 

habituation is based on the severity of the stressor (Herman, 2013). Habituation could be 

moderated by glucocorticoids, whose consistently high levels act to regulate the 

excitability of the HPA-axis and limit its responsiveness (Herman, 2013). It could explain 

why repeated restraint stress gradually loses its impact on the glucocorticoid and 

mineralocorticoid receptors' mRNA expression in the hippocampus (Girotti et al., 2006). 

This process, however, does not cause the organism to return to the pre-stress 

physiological homeostasis and causes upregulation of CRH, which of course, can lead to 

HPA-axis activation (Barbaccia et al., 2001; Herman, 2013). Thus, this kind of 

anticipatory stressor has been modeled in animals has been shown to have similar effects 

as seen in clinical settings. 

Many adverse effects associated with chronic stress are due to the continuous 

stress response (and its adaptation), but in ordinary circumstances, these responses are 

beneficial to the health of the organism. However, after chronic stress (21 days), the 

response does not recover to pre-stress levels (i.e., from the organism’s perceptive, the 

stress response has failed to re-establish homeostasis with the environment). A new onset 

of the stress response with novel stressors creates a unique gene expression profile. Often, 

the genes affected are epigenetic regulators, which may explain the long-lasting effects of 

stress exposure  (McEwen et al., 2015). For example, as discussed in the previous section, 

glucocorticoids cause neurons to send negative feedback to the HPA-axis. However, 

overexposure to glucocorticoids can cause neuronal dysfunction and lead to impaired 

regulation of the HPA-axis. In addition, BDNF levels and neurogenesis decrease in the 

hippocampus when exposed to chronic stress (Toth et al., 2008). Chronic stress also 

changes microglia density and morphology (Hinwood et al., 2013; Tynan et al., 2010).  

While chronic stress leads to hippocampal-memory deficits, it does not have the 

same effect on amygdala-dependent memories. The hippocampal deficits are at least 

partially due to the CA1, CA3, and dentate gyrus atrophy, and decreased hippocampal 

neurogenesis (Finsterwald & Alberini, 2014; Jung et al., 2020). However, the same 

chronic stress exposure appears to strengthen the neuronal activity, synaptic transmission, 

spine formation, and dendritic growth in the amygdala (Finsterwald & Alberini, 2014), as 
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if the stress response reduces the capacity for spatial memory encoding, but increases 

negative emotional capacity.  

Like many other systems in the body, stress (both acute and chronic) is sexually 

dimorphic. In chronic stress, males have impaired spatial memory, females show chronic 

resilience and potentially enhanced memory (Beck & Luine, 2002; Bisagno et al., 2004; 

Luine, Gomez, Beck, & Bowman, 2017). In addition, the CA3 neuronal dendrites are not 

remodeled in females, even though their plasma, stress hormone levels were higher than 

males (L. A. Galea et al., 1997). Females also appear to have more depressive-like 

behaviors, bodyweight reduction, and anxiety-like behaviors than in male rats, but the 

females appear to be more resistant to hippocampal memory deficits (Brummelte & Galea, 

2010; McEwen, 2017). At a cellular level, males have a decreased cell survival while 

females have an increase (Brummelte & Galea, 2010). 

3.3.2.2.3 ACUTE STRESS 

Acute stress has differing effects from chronic. Often, these effects are typically 

beneficial since the stress response evolved for short-term stressors (e.g., fleeing from 

predators). There are still acute stress effects that can cause dysfunction in specific 

processes. One well-documented example is in memory; after acute psychosocial stress, for 

instance, the rise in glucocorticoids causes deficits in spatial memory retrieval in rodents 

and humans, and facilitates emotional memory retrieval in humans (Hidalgo, Pulopulos, & 

Salvador, 2019; Li, Fan, Wang, & Tang, 2012; Olver, Pinney, Maruff, & Norman, 2015; 

Stillman, Shukitt-Hale, Levy, & Lieberman, 1998; Tollenaar, Elzinga, Spinhoven, & 

Everaerd, 2008; Yuen et al., 2009). One mechanism acting on this is that acute stress leads 

to high levels of glucocorticoids and downregulates GABAA receptors (Barbaccia et al., 

2001; Finsterwald & Alberini, 2014). Inhibiting the GABAA receptors, which provide the 

negative feedback signal for the HPA-axis, increases the glucocorticoid levels and their 

downstream effects, prolonging the stress response and causing further memory deficits. In 

addition, acute stress has been associated with neurodegeneration and attenuation of 

neurogenesis in the dentate gyrus (Finsterwald & Alberini, 2014). 

Unlike chronic stress, acute stressors do not cause long-term changes to a healthy brain. 

In the hippocampus, there is a decrease in glucocorticoid receptors (Sapolsky et al., 1985) 

and an increase in BDNF levels (Denhardt, 2018), which are reversible and return to their 
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pre-stress levels within a week. Similarly, after a severe acute stressor, pro-inflammatory 

cytokines secretion becomes primed and responds with a greater amplitude and a shorter 

latency to subsequent challenges, such as peripheral LPS injections, for 24 hours after stress 

exposure (Frank et al., 2013). While acute stress can disrupt homeostasis, it can show a 

hormesis-like response, priming the individual to more aggressively combat a subsequent 

stress exposure. 

Glucocorticoids and their receptors influence many functions, such as inflammation, 

circadian rhythm, and stress response. However, there is still much to uncover regarding the 

downstream effects of glucocorticoids after the HPA-axis has been activated. At the same 

time, the primary mechanism of the HPA-axis and glucocorticoids' role in it, the functions 

of other hormones and proteins, and how they interact with glucocorticoids can be clarified. 

Another area that is still not well documented is the interaction between glucocorticoids, 

their receptors, and progesterone. Since acute stress is the basis by which chronic stress acts, 

several areas need to be investigated, including the less defined female response to acute 

restraint stress compared to males and progesterone’s anti-stress effects and where the stress 

response occurs. The following chapter describes results from an experiment examining the 

influence of acute stress and progesterone on RNA integrity, glucocorticoid levels, and 

molecular signals in the brains of male and female rats to address knowledge gaps in the 

field. 



73 

 

CHAPTER 4. PROGESTERONE PRETREATMENT ATTENUATES ACUTE STRESS ACTION ON 

HIPPOCAMPUS WITHOUT THE APPARENT DISRUPTION OF THE HYPOTHALAMIC-

PITUITARY-ADRENAL AXIS IN YOUNG ADULT MALE AND FEMALE RATS 

4.1 Summary 

Behavioral stress is prevalent, sexually dimorphic, and has negative health 

consequences associated with action in multiple tissues, including the brain. 

Glucocorticoids are key stress-signaling hormones with enriched hippocampal receptor 

expression, and stress-driven expression of immediate early genes such as serum-and-

glucocorticoid kinase 1 (Sgk1) is considered indicative of glucocorticoid receptor-based 

central action. While glucocorticoids have anti-inflammatory actions, stress exacerbates 

neuroinflammation, possibly through myelin fragmentation and resulting stimulation of 

microglia phagocytosis. Previous work has shown that progesterone may ameliorate stress 

effects, but whether that effect is exerted at the HPA-axis, on downstream targets, or both, 

remains unclear. To address this knowledge gap, we hypothesize that progesterone 

pretreatment would reduce acute stress response. Eighty-eight intact adult Sprague-

Dawley rats (50 males / 38 females) were trained in the Morris Water Maze. The male and 

female rats were placed into one of four groups (n = 9-13): 1) control + vehicle; 2) control 

+ progesterone; 3) stressed + vehicle; 4) stressed + progesterone. Oral progesterone-

pretreatment (10 mg/ kg) was administered daily for 3 days after each Morris water maze 

training session. On day 4, a 3-hour restraint was applied immediately prior to the probe 

trial, and blood and brain were collected within fifteen minutes of probe trial completion. 

In both sexes, progesterone pretreatment alleviated stress-induced behavioral deficits but 

did not alter stress-induced corticosterone levels. In males, progesterone also attenuated 

stress-induced hippocampal Sgk1 mRNA increases, while progesterone, but not stress, 

increased Iba1 expression in the stratum oriens and Iba1/ Mbp overlap in the alveus. 

Females showed multiple baseline-level differences compared to males, including 

increased: maze training path length, blood corticosterone, pyramidal layer Iba1, and 

reduced Sgk1 mRNA in the hippocampus. Unlike males, female Sgk1 mRNA was 

unaffected by stress or progesterone, and Iba1 levels in stratum oriens (and Iba1/Mbp 

overlap in the stratum oriens and pyramidal layer) were increased by both progesterone 

and stress, but in the stress condition progesterone blunted Iba1 increases. Overall, 
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although results do not support a myelin-fragment driven effect, results do support sexual 

dimorphism of stress responses and indicate that progesterone pretreatment blunts stress 

effect through actions downstream of the HPA-axis activation.  

4.2 Introduction 

The stress response is essential not only for escaping or surviving threats, but also 

for adapting to a changing environment. In fact, even ordinarily survivable environmental 

changes in temperature can have lethal consequences in the absence of an appropriate 

stress response. However, the body’s response to early life severe stress, to traumatic 

events, or to ongoing unremitting stressors, clearly has negative health consequences, 

including increased risk of anxiety, post-traumatic stress disorder, adjustment disorder, 

depression, substance use disorder, cardiovascular disease, type II diabetes, and 

Alzheimer’s disease (Vanitallie, 2002). While stress has always impacted health, 

experience with the coronavirus pandemic has dramatically increased the number of 

people experiencing chronic stress in the last 18 months. A recent report by the American 

Psychological Association found that > 80% of Americans have reported signs of chronic 

stress, with young adults being of particular concern (Canady, 2021), Mechanistically, 

chronic stress leads to circadian and sleep disruption, weakened immune function, and 

limbic and prefrontal cortex volume reductions (Mariotti, 2015). Conceived as an 

evolutionary answer to conserve the individual in the face of predatory threat, in modern 

society, the stress response is instead triggered by anticipatory stressors that often are 

unresolvable by the stress response or by any means of the individual under that stress. 

While the stress response has been investigated for decades, it has primarily been studied 

in males. This is problematic because female sex hormones may play a role in moderating 

the stress response. Females have been shown to have fluctuating stress responses 

depending on their position in the estrous cycle, and the consequences of stress exposure 

in females appear to be greater (Conrad et al., 2004; Lovick, 2012; Rosenfeld & Trainor, 

2014). Although pharmacologic, counseling, and life-style therapeutics can be effective, 

many suffer from poor compliance and/or unwanted side effects. Given the likely ‘coming 

storm’ of stress related pathologies, further investigation into new therapeutic targets pre- 

and post-stress are warranted. 
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The stress response is highly conserved in vertebrates ((Bridgham, Carroll, & 

Thornton, 2006); reviewed in (Denver, 2009)), and therefore animal models are often used 

to study its effects (reviewed in (Atrooz et al., 2021)). Further, responses to different 

stressors/ durations can vary with age, sex, and species (Atrooz et al., 2021; von Dawans 

et al., 2021). A predominant form of stress affecting people is psychosocial (or 

anticipatory) stressors such as isolation, disaster displacement, economic uncertainty, 

divorce, death of a loved one, and restriction of movement (Heinrichs, Baumgartner, 

Kirschbaum, & Ehlert, 2003; Kajantie & Phillips, 2006). Unlike physiologic stressors, 

these anticipatory stressors elicit stress responses in the absence of pain or nociceptive 

pathways activation. Thus, appropriate models in animals also should not cause physical 

pain (K. Hargis, Buechel, Popovic, & Blalock, 2018; Jansen, Gispen-de Wied, & Kahn, 

2000; Kogler et al., 2015). In rodents, restraint (Buechel et al., 2014; Herman & Cullinan, 

1997; Yang et al., 2017; Zafir & Banu, 2007) is commonly used to model psychosocial 

stress as it elicits a stress response in the absence of pain (Buynitsky & Mostofsky, 2009; 

Herman et al., 2003; Pawlyk, Morrison, Ross, & Brennan, 2008), and recapitulates many 

aspects of anticipatory stress responses in humans, including elevated adrenaline and 

glucocorticoid levels, behavioral deficits in hippocampal-dependent tasks, and 

downstream molecular changes, many of which are driven by stress-associated 

glucocorticoid secretion (Atrooz et al., 2021; de Quervain et al., 2017). 

Adrenaline and glucocorticoid secretion from the adrenal gland are key molecular 

signals of the hypothalamic-pituitary-adrenal (HPA)- axis in the acute stress response. 

Acute stress, and its associated increase in glucocorticoids (cortisol in humans and 

corticosterone in rodents) (Campbell & Ehlert, 2012; Gjerstad et al., 2018) reversibly 

inhibit memory retrieval (Hidalgo et al., 2019; Li et al., 2012; Olver et al., 2015; Tollenaar 

et al., 2008; Yuen et al., 2009). Glucocorticoids themselves act through feedback 

inhibition to terminate the stress response in the brain’s amygdala, hippocampus, and 

paraventricular nucleus (PVN), reducing the PVN’s release of corticotropin-releasing 

hormone onto the anterior pituitary, and also by directly inhibiting adrenocorticotropic 

hormone release from the anterior pituitary into the blood (Tasker & Herman, 2011). 

Glucocorticoids have a broad range of actions; they increase glucose uptake (reviewed in 

(Jaszczyk & Juszczak, 2021)), inhibit antioxidant enzymatic activity, suppress the immune 
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system (though it may also promote inflammatory action (MacPherson, Dinkel, & 

Sapolsky, 2005; Sorrells & Sapolsky, 2007)), and decrease mitochondrial oxygen 

consumption, neurogenesis and cell survival (Cain & Cidlowski, 2017; Goulding & 

Guyre, 1993; Jauregui-Huerta et al., 2010; Katyare, Balasubramanian, & Parmar, 2003; 

McIntosh, Hong, & Sapolsky, 1998; Nicolaides, Kyratzi, Lamprokostopoulou, Chrousos, 

& Charmandari, 2015; Sorrells & Sapolsky, 2007). Both stress and glucocorticoids are 

thought to play a role in accelerating brain aging (Cesari, Vellas, & Gambassi, 2013; 

Garrido, 2011; Kerr, Campbell, Applegate, Brodish, & Landfield, 1991; Landfield, 

Cadwallader, & Vinsant, 1988; Lavretsky & Newhouse, 2012; Porter & Landfield, 1998; 

Sapolsky, 1999).  

In the brain, glucocorticoids, through glucocorticoid receptor binding, can increase 

the transcription of target genes, including serum- and glucocorticoid-inducible kinase 1 

(Sgk1) (Anacker et al., 2013; Buechel et al., 2014; K. C. Chen et al., 2013; Porter et al., 

2012), which has also been linked to aging (Blalock et al., 2003; Blalock et al., 2010; C. 

Y. Chen et al., 2016; Kadish et al., 2009; Pavlopoulos et al., 2013; Rowe et al., 2007; 

Stilling et al., 2014; Swanson, Vester, Apanavicius, Kirby, & Schook, 2009; Verbitsky et 

al., 2004). Originally identified as a cell-volume regulator, Sgk1 has since been described 

to play a role in a variety of functions by modifying the phosphorylation status of multiple 

ion channels, transporters, and enzymes (Lang & Shumilina, 2013; Lang et al., 2010). It is 

present throughout the brain, including recently being identified in oligodendrocytes 

(Hinds et al., 2017). Sgk1 also plays a role in memory formation (Finsterwald & Alberini, 

2014; Lang et al., 2010; Ma, Tsai, Hsu, & Lee, 2006).  

In social defeat, acute foot shock, and restraint models of stress, increased microglial 

inflammatory profiles are seen (Frank, Baratta, Sprunger, Watkins, & Maier, 2007; Tynan 

et al., 2010; Wohleb et al., 2011). Safaiyan et al. also determined that in aged mice, there 

is an increase in microglia burdened with myelin debris as subjects age (Safaiyan et al., 

2016), and it has been proposed that this may lead to microglial dysfunction in stress and 

aging (Niraula, Sheridan, & Godbout, 2017; Safaiyan et al., 2016).  

Progesterone and its metabolite allopregnanolone have been shown to be 

neuroprotective and to improve behavioral performance (Guennoun, 2020; Luoma, Stern, 

& Mermelstein, 2012; Schumacher, Guennoun, Stein, & De Nicola, 2007). In a male 
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human trial, progesterone decreased behavioral signs of stress (e.g., alertness, arousal, and 

negative mood) (Childs, Van Dam, & de Wit, 2010). Other studies have also found that 

progesterone, allopregnanolone, and the enzymes that convert progesterone to 

allopregnanolone increase after acute stress (Barbaccia et al., 1996; Sanchez, Torres, 

Gavete, & Ortega, 2008; Sze, Gill, & Brunton, 2018), suggesting an endogenous stress-

regulating role for progesterone. However, it is unclear where along the stress response 

pathway progesterone may be exerting its effects, and whether male and female responses 

differ. 

Here, we address this by investigating progesterone pretreatment’s effects on acute 

stress responses in intact young adult male and female Sprague-Dawley rats. We measured 

corticosterone blood levels, hippocampus-dependent behavior, hippocampal Sgk1 

expression, and Iba1 levels with Western blot to test where, along the pathway from stress 

perception to stress response, progesterone might be exerting its anti-stress effects, and 

whether those responses differed between males and females. Overall, our work shows 

many stress-relevant measures were significantly different at baseline between males and 

females, and that progesterone ameliorated stress-induced behavioral deficits in both male 

and female animals but did not alter blood corticosterone levels in either. In males, stress-

induced Sgk1 mRNA elevations were reversed by progesterone, but in females, Sgk1 was 

not altered by any condition or treatment. Taken together, these results demonstrate that 

the stress response is sexually dimorphic, and that progesterone’s protective role appears 

to occur after the HPA-axis activation and may interfere with glucocorticoid signaling. 

4.3 Methods 

4.3.1 Animals 

Eighty-eight Sprague-Dawley rats aged 2-5 months old were housed in a 12-hour 

reverse light/dark cycle room (4:30 AM lights off, 4:30 PM lights on) in individual cages 

with ad libitum access to food and water. Eighty-eight 2-5 months old Sprague-Dawley 

rats (50 males, 38 females) were obtained, and none died during these experiments. Male 

(M) and Female (F) animals were randomly divided into 4 groups: vehicle-dosed, control 

(VC; n =23, MVC/FVC = 13 / 10), progesterone-dosed, control (PC; n = 21, MPC/FPC = 

12 / 9), vehicle-dosed, stress (VS; n = 21, MVS/FVS = 12 / 9), and progesterone-dosed, 

stress (PS; n = 23, MPS/FPS= 13 / 10). The animals were run in 5 cohorts (n = 20; 11; 19; 
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19; 19) due to the amount of time to perform water maze during training and on probe trial 

day. Experiments were performed in accordance with institutional and national guidelines 

as approved in our IACUC protocol (University of Kentucky #2008-3490).   

4.3.2 Oral progesterone 

Thirty minutes prior to the animals’ light (inactive) phase, half of the animals were 

given an oral dose of 10 mg/kg of micronized human progesterone mixed in a hazelnut 

spread (Nutella) on a single piece of dry cereal (Fruit Loops). This treatment was 

administered each afternoon after spatial cue water maze training (three consecutive days, 

see below). Vehicle animals received the same treatment, except progesterone was 

replaced with peanut oil (vehicle).   

4.3.3 Water Maze 

The Morris Water Maze was performed as previously described (K. Hargis et al., 

2018). A circular, black-painted pool (diameter = 180 cm) was enclosed within black 

curtains. The pool was filled to 45 cm in height, with a hidden, black platform with a 15 

cm diameter positioned -1.5 cm below the water. A proximity platform (diameter = 30 

cm) was also created within the tracking program, Noldus’ EthoVision (XT 14). The 

temperature was 26.9 + 1.5 ° C. All training and probe sessions took place during the rats’ 

active period.   

4.3.3.1  Visual Cue 

In week 1, 3 trials per day for two days of visual cue training were performed to 

ensure that all animals could learn to swim to a visual cue. On each trial, animals were 

placed in a different starting quadrant, and the partially submerged platform was indicated 

by a local cue (a white Styrofoam cup hanging by a thread from the ceiling 12 inches 

directly above platform). On each trial, the platform and local cue were re-positioned to a 

new quadrant. The animals were given 60 seconds to find the platform on each trial. If 

they completed the task before the minute finished, the timer was stopped and they were 

allowed to remain on the platform; if not, they were gently guided to the platform. After 

the initial 60s, animals were allowed to remain on the platform for another 60 seconds. 

Animals were then removed from the pool, dried off with a towel, and placed under a heat 

lamp in an excelsior bedding ‘drying’ cage for an inter-trial interval of approximately 90 
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seconds. This process was repeated until all three trials were complete, and animals were 

dry, at which point they were placed back into their home cages and returned to the 

vivarium. By the end of the second day, all animals found the platform in under 30 

seconds and continued to the next experiment. 

4.3.3.2  Spatial Cue 

The following week (week 2), the animals had three spatial training days. 

Procedures here were the same as during the visual cue, except the platform was left in the 

same position for all three days, the local “visual cue” was removed, and three distant cues 

(75 cm x 75 cm; black and white vertical stripes, a black triangle on a white circle, and a 

black cross on a white square) strategically placed outside the perimeter of the water maze 

pool were added. The animals entered the pool from the three non-goal quadrants (3 trials 

per day), and the order of quadrant entry was randomized for each day and each trial. 

Animals were dosed with vehicle or progesterone (see Oral Progesterone above) at the 

beginning of their inactive period after each spatial cue day (three times). If animals could 

not complete the task within 60 seconds in 2 out of 3 trials on the third day, they were 

considered ‘timed out’ and removed from the experiment. 

4.3.3.3  Restraint stress and probe trial 

On the final day (day 4) of week 2, half of the animals were restrained as in prior 

work (Buechel et al., 2011; Buechel et al., 2014; K. Hargis et al., 2018) in their home 

cages for 3 hours in plastic sleeves (DecapiCones DC-200, Braintree Scientific Inc., MA) 

secured with paper tape. Restrained animals were continuously monitored during restraint, 

and the number of times they struggled against the restraints or vocalized was recorded as 

indicators of stress. The control animals remained in their housing room and home cages.  

The platform was removed from the water maze pool and after 3 hours animals 

were removed from restraint, placed in the goal-opposite quadrant, and allowed to swim 

for a single 60 s ‘probe’ trial. The number of times the animals passed through the 

platform’s prior location, total path length, latency and pathlength to the first crossing, and 

the duration and pathlength within in the proximity platform (the platform areas with an 

extended diameter of 15 cm) was recorded. After 60 s, animals were removed from the 

pool, dried off and returned to their home cages. 
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4.3.3.4  Blood and tissue collection 

Immediately after the probe trial, animals were transported to an adjacent necropsy 

room, anesthetized with isoflurane gas, and decapitated. Trunk blood was collected in BD 

Vacutainer K2 EDTA 5.4 mg (367856, BD biosciences, NJ), incubated at room 

temperature for 20 - 60 minutes, and centrifuged at 1200 g for 10 minutes. The serum was 

collected for corticosterone, progesterone, and testosterone. The brain was removed and 

hemisected. One hemisphere was post-fixed in 4% paraformaldehyde (PFA) overnight and 

then cryoprotected in 15% sucrose solution and frozen at -80° C for further use. The other 

hemisphere was fresh frozen in dry ice, wrapped in parafilm and stored at -80° C until 

further use.  

4.3.4 Immunohistochemistry 

Twenty µm sagittal sections containing hippocampus were prepared from post-

fixed tissue on a cryotome (Shandon Cryotome FE &FSE, Thermo Electron Corp., PA), 

mounted on Colorfrost Plus Microscope Slides (Cat. # 12-550-17, Fisher Scientific, PA), 

and air-dried. They were then washed with TBS and Tris-T before being blocked with 

Tris-BSA (2% BSA) for one hour. Specimens were then incubated in primary antibodies, 

anti-Mbp (1:2500- chicken polyclonal, ThermoFisher Cat. # Pa1-10008, Lot # 

VG3026881; Illinois, USA), and recombinant anti-Iba1 (1:2000- rabbit monoclonal, 

Abcam Cat. # ab178847, Lot # GR3229566-5) overnight at 4°C. The following morning, 

the slides were washed with Tris-T before 2-hour secondary incubation in the dark (Goat 

anti-chicken IgY (H+L), Alexa Fluor 647, ThermoFisher A-21449, Lot # 2010133; Goat 

anti-rat IgG H&L, Alexa Fluor 488, Abcam ab150077, Lot # GR3313703-1). Specimens 

were washed again in Tris-T, covered with a VWR micro cover glass (Cat. # 48393-106, 

VWR, PA), and then entire specimen images were acquired at 20x magnification, tiled 

and stitched to form a single image for using a Zeiss Axio Scan.Z1 in the University of 

Kentucky Light Microscopy Core. The fluorescent images used AF488 and AF647, and 

bright-field images were also acquired. 

Once the fluorescent and bright field images were obtained, samples that did not 

pass quality control (e.g., tears or folds occupying > 50% of a region of interest, low 

signal-to-noise ratio) were removed. Then, semiquantitative analysis of the signal intensity 

for both Iba1 and Mbp in four hippocampal regions: alveus, stratum oriens, pyramidal 
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layer, and stratum radiatum was quantified using FIJI (Java 1.8.0_172 (64-bit);(Schindelin 

et al., 2012)). First, the signal was split into its AF488 and AF647 channels using the Zen 

3.2 lite (blue edition; Zeiss). The images for the two channels were opened in FIJI, and 

each channel was thresholded to retain the top 15% of signal. The “AND” function from 

the image calculator was used to combine the thresholded images and quantify overlap. 

Using a non-thresholded image as a guide, the regions of interest (ROIs) were encircled 

with the freehand tool. ROIs were then copied and pasted onto the thresholded images. 

The ROI average of thresholded signal was determined and recorded for Iba1, Mbp, and 

the overlap. 

In order to obtain the images of overlapping expression, the same channel images 

were opened in FIJI and converted to 8-bit. The “subtract background” function used a 50-

pixel rolling radius in order to remove the background noise. Then, brightness was min-

max restricted to contain >90% of channel signal for each channel, and the channels were 

merged (Iba1 green, Mbp red).  

4.3.5 Plasma Analysis  

Internal standards (corticosterone- d8: Caymen #28524; progesterone-D9: 

Millipore Sigma # P-070; 17β-estradiol-D5: Millipore Sigma # E-061; testosterone-2,3,4-

13C3: Millipore Sigma # T-070) were added into the plasma sample, then the extraction 

solvent (hexane: MTBE, 75:25, v:v) was added. After mixing and centrifugation, the 

organic phase was transferred into a glass vial and evaporated under nitrogen at 40°C. The 

samples were reconstituted in water: methanol (50:50 by volume), and the sample was 

injected onto the liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. 

Charcoal stripped rat plasma was used to prepare the calibration curves and QC samples. 

LC-MS/MS analysis was performed with an ExionLC™ system coupled to a 

QTRAP 6500+ mass spectrometer (SCIEX, Framingham, MA, USA) consisting of a 

binary high-pressure mixing gradient pump with a degasser, a thermostatically controlled 

autosampler, and a column oven. The chromatographic separation was performed on a 

Waters ACQUITY BEH C8 column (2.1 × 100 mm, 1.7 μm) by a gradient elution at a 

flow rate of 0.25 mL/min using water (mobile phase A) and methanol (mobile phase B). 

The QTRAP 6500+ mass spectrometer was equipped with an IonDrive™ Turbo V source 

and was operated in low mass and MRM mode with electrospray ionization. Resulting 
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values for corticosterone, progesterone, and testosterone were expressed as ng/ml. As 

noted in the supplemental data for the plasma mass spectrometry analyses, missing values 

were imputed using the half-minimum (HM) method (reviewed in (Wei et al., 2018)). 

4.3.6 Western blot 

Roughly one-third of the flash-frozen hippocampi were placed in 0.4 ml of 0.25 M 

sucrose buffer containing 100 µl/ 10 ml of Phosphate Inhibitor Set, Cocktail II 

(Calbiochem-EMD Cat. # 524625, Lot # 3491205; Darmstadt, Germany), 10 µl of 

Protease Inhibitor Set, Cocktail III (Calbiochem-EMD Cat. # 539134, Lot # 3596821; 

Darmstadt; Germany), and 10 mM ALLN (Calbiochem-EMD Cat. # 208719, Lot # 

3552708; Darmstadt; Germany) and thawed on ice. Samples were homogenized before 

adding 2X RIPA buffer (dilute 10X RIPA Lysis Buffer; EMD Millipore Corp. Cat. # 20-

188, Lot # 3519189), vortexed, and incubated on ice for 45- 60 minutes. Samples were 

then centrifuged at 13,600 rpm for 10 minutes before retrieving RIPA supernatant, then 

stored overnight at -80 ° C.  

The following morning, the protein was quantified using a Bradford Protein Assay. 

Standards were created using Quick Start Bovine Serum Albumin (BSA) Standard (Bio-

Rad Cat. # 5000206, Batch # 64411053; California, USA) and diluted in distilled water 

(volume = 800 µl). The 3 µl of the sample was diluted in distilled water. 200 µl of Quick 

Start Bradford 1x Dye Reagent was added (Bio-Rad Cat. # 5000205, Batch # 64406046; 

California, USA). The absorption was measured with a Molecular Devices SpectraMax 

M2e Microplate Reader and SoftMax Pro 5.4.5 (Molecular Devices; California, USA) and 

used to determine protein concentration.  

Samples were standardized to 50 µg in 50 µl with 1 M dithiothreitol (DTT; 

Thermo Scientific Cat. # R0861, Assembling Lot # 01075524, Filling Lot # 01068117; 

Vilnius, Lithuania), 4X Laemmli Sample Buffer (LSB; Bio-Rad Cat. # 1610747, Lot # 

64295860), and a 1:1 mixture of 2X RIPA and sucrose buffer. The protein solution was 

heated at 65° C for 25 minutes before being stored at – 20° C.  

Criterion TGX Precast Gels (4-20%, 26-well comb; Bio-Rad Cat. # 5671095; California, 

USA) were placed in running buffer (a Tris-glycine solution), and 13 µl of the sample was 

loaded along with 10 µl of Precision Plus Protein Dual Color Standards (Bio-Rad Cat. # 
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1610374, Batch # 64389512). The gels were run for 45 minutes at a constant voltage (150 

V) using a PowerPac Basic Power Supply (Bio-Rad Cat. # 1645050).  

Immobilon-FL PVDF membranes (EMD Millipore Cat. # IPFL00010, Lot # R1CB59664; 

Carrigtwohill County, Ireland) were wetted in methanol before being placed transfer 

buffer. The Criterion blotter Filter paper (Bio-Rad Cat. # 1704085; California, USA) was 

also pre-wet in the transfer buffer. Once the transfer sandwiches were prepared, the 

transfer occurred for the next 16 hours and 40 minutes with a constant 70 mA current 

applied.  

The following morning, the membranes were transferred into and washed with 1X 

PBS before being blocked with Intercept Protein-Free Blocking Buffer (Li-Cor Cat. # 927-

90001, Lot # D10201-05; Nebraska, USA) for approximately 6 hours. The primaries were 

added to a 1:1 solution of blocking buffer and PBS/ 0.4% Tween before being added to the 

membrane to incubate at 4° C overnight. Each incubation included two primaries: 1) 

recombinant anti-Iba1 (1:2000- rabbit monoclonal, Abcam Cat. # ab178847, Lot # 

GR3229566) and anti-alpha 1 sodium potassium ATPase (1:3000- mouse monoclonal, 

Abcam Cat. # ab7671, Lot # GR3294995); 2) anti-Sgk1 (1:750- rabbit polyclonal, Abcam 

Cat. # ab59337, Lot # GR3296662) and anti-alpha 1 sodium potassium ATPase (1:3000); 

or 3) anti- Mbp (1:10,000- chicken polyclonal, ThermoFisher Cat. # Pa1-10008, Lot # 

VG3026881; Illinois, USA) and recombinant anti-sodium potassium ATPase (1:10,000- 

rabbit monoclonal, Abcam Cat. # ab76020, Lot # GR3237646-4).  The membranes were 

washed in PBS/ 0.4% Tween the next morning before incubating in secondaries for 2 

hours. The Iba1 and Sgk1 membranes were incubated in IRDye 680RD goat anti-rabbit 

(1:10,000- Li-Cor Cat. # 926-68071, Lot # C90827-25; Nebraska, USA) and IRDye 

800CW donkey anti-mouse (1:10,000- Li-Cor Cat. # C90805-13, Lot # C90805-13; 

Nebraska, USA). The Mbp membrane was incubated in IRDye 680RD goat anti-rabbit 

(1:10,000- Li-Cor Cat. # 926-68071, Lot # C90827-25; Nebraska, USA) and IRDye 800 

CW donkey anti-chicken (1:10,000- Li-Cor Cat. # 926-32218, Lot # D01105-05; 

Nebraska, USA). Then the membranes were washed in PBS, 0.4% Tween, and PBS.  

The membranes were then imaged using an Odyssey imaging system (Li-Cor; 

Nebraska, USA) and Image Studio (Li-Cor; Nebraska, USA). The files were then analyzed 

using Image Studio Lite v. 5.2 (Li-Cor; Nebraska, USA). The signal intensity for the 
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proteins of interest (Iba1, Mbp, and Sgk1) and the control (sodium potassium ATPase) 

were determined, and the ratio between the protein of interest and control was calculated. 

Samples with protein concentration < 1.5 µg/ µl or no visible signal on the Western blot 

were removed from the analysis. 

4.3.7 Real Time- qPCR: RIPA Extract and cDNA Synthesis 

One-third of the hippocampus was placed in RNAlater (Invitrogen Cat. # 

AM7024, Lot # 00881774; Vilnius, Lithuania) before being stored at -80°C. RNA was 

extracted using the Maxwell RSC simplyRNA Tissue Kit (Promega Cat. # AS1340, Lot # 

118514; Wisconsin, USA). The 1-Thioglycerol/ Homogenization solution and DNase I 

solution were prepared according to the manufacture’s protocol. The 1-Thioglycerol/ 

Homogenization and two autoclaved metal beads were placed into a tube on ice on a metal 

block, and then fresh frozen hippocampus was added. The tissue was then homogenized at 

1250 RPM for 1 minute using a Geno/ Grinder 2010 (SPEX Sample Prep; New Jersey, 

USA). The homogenized samples and the lysis buffer from the RNA extraction kit were 

then combined and vortexed before being placed in the RSC Cartridge. The DNase I 

solution was placed 3 wells away from the sample in the cartridge. The plunger and 

Elution tubes were on the opposite side of the cartridge.  The nuclease-free water was then 

added to the Elution Tubes. The RNA was purified using the Maxwell RSC Instrument 

(Promega Cat. # AS4500; Wisconsin, USA). RNA was aliquoted to determine RNA 

integrity numbers (RINs), which were determined using the Agilent Technology standards 

by the University of Kentucky Genomics Laboratory Core (Mueller et al., 2004). The 

RNA was then stored at -80° C. Improperly stores samples were not analyzed for RIN or 

RT-PCT.  

The remaining RNA was placed on ice to thaw. Two microliters were used to 

determine the sample RNA concentration using NanoDrop (Thermo Scientific) for cDNA 

synthesis. The nuclease-free water, qScript cDNA SuperMix (QuantaBio Cat. # 84035, 

Lot # 66182308; Massachusetts, USA), and RNA were combined in TempAssure 0.2 mL 

PCR 8-Tube Strips (USA Scientific, Cat. # 1402-3900, Lot # 19453; USA). The samples 

were then loaded into the thermocycle (iCycler, Bio- Rad Cat. # 170-8740; California, 

USA) using the cDNA program. The cDNA was then diluted at a 1:10 ratio in nuclease-

free water before being stored at – 20° C.  
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The cDNA was then combined with a master mix. This master mix consisted of 

PerfeCTa SYBR Green Fast Mix (Quanta Bio Cat. # 95072, Lot # 121719A; 

Massachusetts, USA), nuclease-free water, and primers (GAPDH forward: 5’-

GCCAAAAGGGTCATCATCTC-3’, reverse: 5’-GGCCATCCACAGTCTTCT-3’, 

Eurofins; Sgk1 forward: 5’-TGGGTCCATCCTCAAATCC-3’, reverse 5’-

CGCCAAACCCTCTGACTTCCACTTC-3’, Eurofins). The samples were then placed 

into the CFX96 Real-Time System (Bio-Rad Cat. # 1845097) and C1000 Touch Thermal 

Cycler (Bio-Rad Cat. # 1851196). They were annealed at 60° C and cycled 37 times.   

4.3.8 Statistical analysis 

The data was first separated into male and female groups. Within each sex, each 

treatment group had outliers removed (≥ 2 * standard deviations of the group mean; the 

complete dataset, including outliers, is provided in Supplemental Data 1). Because 

animals were run in 5 cohorts, cohort effects were also tested within each sex by one-way 

ANOVA. As noted in the results, if a significant cohort effect was detected for an outcome 

measure, then data was standardized within each sex within each cohort before analysis. In 

these normalized conditions, statistical testing of males vs. females would be 

inappropriate, so the non-normalized data was used to test for sex differences, 

acknowledging that cohort effects may impact the analysis. Heteroscedastic t-tests, two-

way ANOVAs, and two-way ANOVAs with repeated measures were calculated 

(SigmaPlot 14.0.3.192, as described in Results).  

4.4 Results 

Eighty-three intact 2-5 month old Sprague-Dawley rats (48 males (M), 35 females 

(F)) were assigned to one of 4 groups: vehicle-dosed, control (VC; n =22, MVC/FVC = 13 

/ 9), progesterone-dosed, control (PC; n = 18, MPC/FPC = 11 / 7), vehicle-dosed, stress 

(VS; n = 20, MVS/FVS = 12 / 8), and progesterone-dosed, stress (PS; n = 23, MPS/FPS= 

13 / 10).  

4.4.1 Morris Water Maze 

4.4.1.1 Spatial Cue 

Males showed significantly shorter path lengths than females as training 

progressed on days 1-3, but both males and females showed significant improvement over 
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training (Figure 4.1; two-way ANOVA female p = 0.017; male p = 1.71E-14). 

Progesterone had no detectable effect on either latency or path length measures. (5 animals 

timed out: 1 FVS; 1 MPC; 2 FPC; and 1 MVC.)    

4.4.1.2 Struggles during restraint stress 

On day 4, 3 hours before the probe trial, half of the animals were taken to a 

procedure room and restrained in their home cages for 3 hours (see Methods). A staggered 

entry design was used with a 10-minute spacing between the animals to ensure each 

animal spent 3 hours in restraint and had approximately the same time gap between 

restraint ending and water maze probe trial beginning. During restraint, the number of 

struggles and vocalizations were counted. While there was no difference in the number of 

struggles between vehicle and progesterone (two-way ANOVA p = 0.657), there was a 

significant increase in the number of struggles in the males compared to females (p = 

0.003; Figure 4.2).  

4.4.1.3 Probe trials 

Within 10 minutes of being removed from restraint, animals underwent water 

maze probe trial testing. Both male and female stressed animals swam faster than control 

animals (two-way ANOVA female p = 0.016; male p = 0.003; Figure 4.3A), and this 

effect was not significantly altered by progesterone pretreatment. We also found a cohort 

effect on velocity in both sexes (one-way ANOVA female p = 0.001; male p = 0.013). 

Therefore, we normalized the data by cohort (see Methods) to remove the cohort effects. 

The normalized data showed similar findings to the raw data, significantly increased 

velocity with stress (two-way ANOVA female p = 0.003; male p = 1.80E-4; Figure 4.3B). 

Because velocity was significantly increased by stress, pathlengths rather than 

latencies were used for subsequent analyses. If an animal never crossed the platform area, 

the total pathlength was used to represent ‘first crossing’, and pathlength within the 

proximity platform area was left at ‘0’. While there were no significant differences in the 

path to first crossing between the sexes or the females in any treatment group, the males 

given progesterone traveled significantly shorter distances than those given the vehicle 

(two-way ANOVA p = 0.017; Figure 4.4A). In addition, the percent of the total pathway 

spent in the proximity platform location (PP%) was significantly higher in males than  
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Figure 4.1. Spatial Cue. 

Rats were trained in spatial cue with 3 trials each of 3 days prior to probe. The males 

and females were analyzed separately using a two-way ANOVA with repeated 

measures. Red values represent significant results, p < 0.05. The ANOVA results are 

shown in the top right corner for both sexes. The box to the left of the graphs shows 

the heteroscedastic T-test results between the males and females. Progesterone 

(Prog.); vehicle (Veh.). 
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Figure 4.2. Number of struggles during restraint stress. 

During restraint, the number of times the rats struggled or vocalized was recorded to 

indicate their stress level. The males struggled significantly more than the females, though 

progesterone did not have an effect. Vehicle (Veh); progesterone (Prog); female (F); male 

(M); red is used for significant values. 
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Figure 4.3. Normalized velocity during probe trial. 

The raw data (A) and the standardized data (B) for velocity. The data was normalized due 

to a cohort effect; this does not remove effects, only ensures that any cohort differences do 

not influence the findings between the treatment groups. Error bars are standard error. The 

box to the left of the graphs shows the heteroscedastic T-test results between the males 

and females. Red values represent significance. Progesterone (Prog.); vehicle (Veh.); 

control (Ctrl); * < 0.05; ** < 0.001. 
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females (t-test p = 0.0323). The FPS spent a significantly higher PP% compared to the 

FVS (Bonferroni p = 9.256E-5) and FPC (Bonferroni p = 0.012) groups (Figure 4.4B). 

The progesterone-dosed males also had a larger PP% compared to the vehicle-dosed males 

(two-way ANOVA p = 0.049), and stressed males had significantly lower PP% than 

controls (two-way ANOVA p = 0.031; Figure 4.4B).  

4.4.2 Trunk Plasma Hormones Levels 

Immediately after the probe trial, animals were anesthetized, trunk blood and 

brains were collected. Corticosterone, progesterone, and testosterone in blood were 

measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The 

corticosterone analysis showed a significant increase in the stressed animals compared to 

the control animals in both males (two-way ANOVA p = 1.87E-6) and females (two-way 

ANOVA p = 6.79E-6). In all treatments, females had a significantly and nearly two-fold 

higher corticosterone level than males (t-test p = 2.88E-8; Figure 4.5A), in agreement with 

prior work showing elevated levels in females (L. A. Galea et al., 1997). Progesterone did 

not significantly influence plasma corticosterone levels.  

Testosterone was significantly lower in males that had been stressed (two-way 

ANOVA p = 0.011; Figure 4.5B). Testosterone was borderline undetectable in females 

and there was no difference in the treatment groups in the females. As expected, the males 

had significantly higher levels of testosterone than females (t-test p = 4.74E-8), and 

progesterone had no effect in any treatment group or sex.   

Progesterone was not significantly different in any male treatment group (Figure 

4.5C). Further, in females, progesterone pre-treatment resulted in a significant decrease in 

the progesterone concentration (Two-way ANOVA p = 0.046), while stress significantly 

increased progesterone levels (two-way ANOVA p = 0.0011). As expected, the females 

had significantly higher progesterone levels than the males (t-test p = 2.42E-10). 

Progesterone levels return to baseline approximately 12 hours after micronized 

progesterone is orally ingested in humans (de Lignieres, 1999). Our animals were given 

their last dose of progesterone approximately 22 hours before the probe trials began, and 

therefore the reduction in progesterone levels may represent a feedback inhibition 

response of endogenous production in response to exogenous administration (Dagklis, 

Ravanos, Makedou, Kourtis, & Rousso, 2015).  
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Figure 4.4. Distance during probe trial. 

Distance traveled to first crossing (A). The males dosed with progesterone had a significantly 

shorter pathlength than those given the vehicle. The percent of distance traveled in proximity 

platform (B). This indicated that both males and females given progesterone travelled more in 

the proximity platform area than the vehicle in the stress condition. Within females, this was 

seen mostly with progesterone-dosed, stressed animals. In males, stress significantly reduced, 

and progesterone significantly increased, percent of path in the proximity platform area. Error 

bars are standard error. The box to the left of the graphs shows the heteroscedastic T-test results 

between the males and females. Red values represent significance. Progesterone (Prog.); 

vehicle (Veh.); control (Ctrl). 
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Figure 4.5. Hormone concentrations from trunk plasma. 

LC-MS/MS found the trunk plasma concentrations of corticosterone (A); testosterone (B); and 

progesterone (C). Vehicle (Veh); progesterone (Prog.); control (Ctrl). Red text represents 

significance. 
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4.4.3 Immunohistochemistry 

Sagittal sections containing the hippocampus from post-fixed rat brain 

hemispheres were examined immunohistochemically for Iba1 and Mbp expression. Some 

subjects were removed due to poor tissue quality (29 animals were removed: 7 MPS, 3 

FPS, 2 MVS, 4 FVS, 4 MPC, 1 FPC, 5 MVC, 3 FVC). These are indicated in 

Supplemental data 1. Using a semiquantitative analysis, the average signal intensity of 

Iba1 (microglia marker), Mbp (myelin marker), and their overlap in the alveus, stratum 

oriens, pyramidal layer, and stratum radiatum of hippocampal CA1 (Figure 4.6- example 

of regions of interest) were determined.  

Iba1 thresholded signal in the stratum oriens was not different between males and females. 

In males, progesterone pre-treatment significantly increased Iba1 signal (p = 0.007; two-

way ANOVA) and stress had no significant effect (Figure 4.7; Table 4.1). Within the 

females, there was a significant interaction between progesterone and stress (two-way 

ANOVA interaction p = 0.021) with both stress and progesterone increasing Iba1, while in 

the presence of stress, progesterone appeared to suppress Iba1 signal. The differences in 

Iba1 expression can be seen visually in the females (Figure 4.7B; left: vehicle-dosed, 

stress; right: progesterone-dosed, stress) and males (Figure 4.7C; left: vehicle-dosed, 

control; right: progesterone-dosed, control).  

While the Mbp did not show any effects based on the treatment groups (Table 4.1), 

we did find a significant difference between the sexes in stratum oriens (t-test p = 0.0179), 

pyramidal layer (t-test p = 0.0170), and the stratum radiatum (t-test p = 0.0157), with the 

females consistently having higher levels.  

Finally, we also examined the thresholded signal for the overlap of myelin and 

microglia during immunohistochemistry. While no differences were found in the stratum 

radiatum, the other 3 regions showed significant changes. In the alveus, there was no 

effect in the females, but there was a significant increase in the overlap in the male, 

progesterone-dosed animals compared (Figure 4.8D) to vehicle (Figure 4.8E) counterparts 

(two-way ANOVA p = 0.049; Figure 4.8A). In the stratum oriens, the females showed 

significantly increased overlap with either stress (Bonferroni p = 0.046; Figure 4.8B) or 

progesterone (Bonferroni p = 0.029), but in the presence of stress, progesterone appeared 

to reduce this response. In the pyramidal layer, females showed significantly higher  
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Figure 4.6. Example of hippocampal section used for IHC. 

Immunohistochemistry section of the hippocampus stained for myelin basic protein (Mbp- red) 

and ionized calcium binding adaptor molecule 1 (Iba1- green). The different areas measured are 

surrounded in gold and includes alveus (Alv), stratum oriens (SO), pyramidal layer (PL), and 

the stratum radiatum (SR). 
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Figure 4.7. Iba1 expression changes in stratum oriens. 

Iba1 expression was measured in the stratum oriens. The significant changes are shown in A. 

Two representative female stratum oriens; vehicle-stressed female (left); progesterone-stressed 

(right; B). Two representative male stratum oriens; vehicle-control (left); progesterone-control 

(right; C). Vehicle (Veh); progesterone (Prog.); control (Ctrl). Red text represents significance. 
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  Female Male 
Male vs. 
Female 

 ANOVA p 
Prog. 

vs Veh. 
Stress 
vs. Ctrl 

Intrxn 
Prog. 

vs Veh. 
Stress 
vs. Ctrl 

Intrxn T-Test 

Iba1 

Alveus 0.983 0.297 0.444 0.075 0.998 0.128 0.129 

Stratum 
Oriens 

See Fig. 7 

Pyramidal 
Layer 

0.648 0.413 0.132 0.085 0.7 0.842 0.0387 

Stratum 
Radiatum 

0.443 0.129 0.272 0.078 0.340 0.320 0.681 

Mbp 

Alveus 0.189 0.571 0.708 0.157 0.564 0.236 0.417 

Stratum 
Oriens 

0.991 0.268 0.057 0.335 0.509 0.154 0.0179 

Pyramidal 
Layer 

0.341 0.839 0.059 0.132 0.226 0.533 0.0170 

Stratum 
Radiatum 

0.879 0.204 0.407 0.412 0.594 0.708 0.0157 

Overlap 

Alveus See Fig. 8A 

Stratum 
Oriens 

See Fig. 8B 

Pyramidal 
Layer 

See Fig. 8C 

Stratum 
Radiatum 

0.700 0.444 0.188 0.901 0.307 0.475 0.0522 

Table 4.1. ANOVA values for IHC Analysis 

The males and females were analyzed separately. The alveus, stratum oriens, pyramidal layer, 

and stratum radiatum were analyzed for the average signal intensity of Iba1 and Mbp after 

thresholding, and the overlap of these signals. Two-way ANOVAs were used for drug 

treatment (progesterone [Prog.] and vehicle [Veh.]) and stress condition (stress or control 

[Ctrl]), and p-value for these results and their interaction are recorded. The final column shows 

the results for a heteroscedastic t-test between males and females. Red values are used for 

significant p-values. 
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Figure 4.8. Mean signal for overlapping Iba1 and Mbp. 

The overlapping signal for Iba1 and Mbp were determined and analyzed for the alveus (A), 

stratum oriens (B), and the pyramidal layer (C). Representative IHC showing Iba1 (green) Mbp 

(red) staining, and the overlap appearing as yellow; progesterone-stress male (left); vehicle-

stress male (right). Vehicle (Veh); progesterone (Prog.); control (Ctrl). Red text represents 

significance. 
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overlap than males (t-test p = 0.0196; Figure 4.8C), and in the control condition, 

progesterone significantly increased that overlap. 

4.4.4 Western Blot 

Approximately 1/3 of the hippocampus from the frozen brain hemispheres of the 

83 animals were homogenized and standardized to equal protein concentration. Sixteen of 

these samples had protein concentrations too low to meet the 1.5 µg/µl concentration and 

were not processed further (Iba1- 17 samples removed: 5 MPS, 3 MVS, 1 FVS, 3 MPC, 1 

FPC, 4 MVC; Mbp- 15 samples: 5 MPS, 3 MVS, 1 FVS, 3 MPC, 3MVC; Sgk1- 21 

samples: 5 MPS, 1 FPS, 3 MVS, 2 FVS, 3 MPC, 2 FPV, 3MVC, 2 FVC). The remaining 

samples were prepared for Western blots. Iba1 (Figure 4.9B), Mbp (Figure 4.9D), and 

Sgk1 (normalized to address significant cohort effect, Figure 4.9F) were all normalized 

with the housekeeping protein, Sodium-Potassium ATPase (NKA). Iba1 was significantly 

higher in females (t-test p = 0.0197), but not significantly affected by any treatment in 

females. In males, there was a significant decrease with progesterone in the control 

condition (Bonferroni p = 2.43E-3), and a significant increase in Iba1 with progesterone in 

the stress condition (Bonferroni p = 0.006). There was also a significant increase in Iba1 in 

males between the control and stress conditions (Bonferroni p = 0.015; Figure 4.9A).  The 

Mbp (Figure 4.9C) and Sgk1 (normalized; Figure 4.9E) showed no significant differences 

with sex, progesterone, or stress.  

4.4.5 Real Time-PCR 

Twenty animals were removed from the Sgk1 mRNA analysis because their 

hippocampi were improperly stored (18 samples removed: 6 MPS, 4 MVS, 3 MPC, 5 

MVC; Supplemental Data 4.1). Using the Genomics Core Laboratory at the University of 

Kentucky, the remaining RNA samples’ quality was determined using the RNA integrity 

numbers (RINs) (Table 4.2; Supplementary Table 4.1).  While there was no significant 

sex- or group- effect, there was a cohort effect (one-way ANOVA female p = 6.45e-11; 

male p = 2.98E-8) for both sexes. However, because there was no significant correlation 

between RIN and the RT-PCR’s ΔΔ-CT, we did not correct the cohort effect. 

Using the comparative method of qRT-PCR, we compared the amount of serum 

and glucocorticoid-regulated kinase (Sgk1) to GAPDH. After removing the samples that 

did not have Sgk1 expression (1 MVS, 1 MPC, 1 MVC), N = 65 samples (7 MPS, 10 FPS,   
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Figure 4.9. Western blot analysis. 

The ratio between the protein of interest (Iba1 [A], Mbp [C], and Sgk1 [E]) and sodium-

potassium ATPase (NKA) were measured and analyzed. The corresponding Western blots 

show samples and their brightness. Iba1 appears in red (17 kDa) and NKA in green (predicted: 

113 kDa; appear ~ 80 kDa) (B); Mbp appears in green (21.5, 18.5, 17, and 14 kDa) and NKA in 

red (D); Sgk1 appears in red (55 kDa) and NKA in green (F). Red text represents significance. 

Male (M); female (F); vehicle (Veh, V); progesterone (Prog., P); control (Ctrl, C); stress (S). 
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Sex Group RIN Avg. (+ SEM) RIN Range 

Male 

PS 9.61 + 0.14 9.1 – 10.0 

VS 9.61 + 0.15 9.3 – 10.0 

PU 9.64 + 0.12 8.9 – 10.0 

VU 9.59 + 0.15 9.1 – 10.0 

Female 

PS 9.75 + 0.11 9.2 – 10.0 

VS 9.62 + 0.15 9.0 – 10.0 

PU 9.68 + 0.11 9.2 – 10.0 

VU 9.72 + 0.12 9.1 – 10.0 

Table 4.2. RIN values by sex and group 

Columns: Sex- Male or female; Group- The treatment group; RIN Avg. (+ SEM)- the average 

RIN and standard deviation for each group; RIN range- range of RINs for each group. 

Progesterone-stressed (PS); vehicle-stressed (VS); progesterone-control (PC); and vehicle-

control (VC). 

 



101 

 

8 MVS, 8 FVS, 8 MPC, 7 FPC, 7 MVC, 10 FVC) were analyzed. The ΔΔ-cycle threshold 

(CT), which is equivalent to a log2 fold change (L2FC), was calculated. There was a 

significant increase in Sgk1 in males (t-test p = 0.0439) and males showed a stress-

induced increase in Sgk1 (Bonferroni p = 4.96E-4; Figure 4.10) that was reduced by 

progesterone pre-treatment (Bonferroni p= 0.001). In females, there was no significant 

effect of stress or progesterone treatment on Sgk1 mRNA levels. 

4.5 Discussion 

In this paper, we examine differences between male and female subjects exposed to an 

acute stress and hypothesized that progesterone pretreatment would blunt stress effects. 

Prior work has shown that progesterone can disrupt glucocorticoid signaling (Brinton et 

al., 2008; Cadepond, Ulmann, & Baulieu, 1997; Graham & Clarke, 1997; Irwin et al., 

2015; M. Singh & Su, 2013; Wang, Johnston, Ball, & Brinton, 2005) and stress (Childs et 

al., 2010; Kalil, Leite, Carvalho-Lima, & Anselmo-Franci, 2013; Sanchez et al., 2008), 

although whether progesterone could work as a pretreatment, and whether action involves 

suppression of the HPA-axis, remains unclear. We measured for a potential influence at 

four canonical ‘decision’ points along the stress pathway in males and females: 1) the 

perception of stress (quantified by struggles during restraint); 2) the glucocorticoid 

secretion in response to stress (quantified with blood corticosterone assays); 3) the 

behavioral consequences of stress (quantified by Morris Water Maze); and 4) the 

molecular response to stress-induced glucocorticoid exposure (quantified by measuring 

the mRNA for immediate early gene serum-and-glucocorticoid kinase 1 [Sgk1]). Finally, 

we also quantified the degree of overlap between myelin basic protein (Mbp- a marker of 

myelin and myelin fragments) and ionized calcium binding adapter protein 1 (Iba1- a 

marker for macrophages including microglia) expression in hippocampal subregions, as 

aging-related changes in the degree of overlap between these two have been reported, but 

whether acute stress can induce similar changes remains unclear. 

Overall, we found multiple baseline differences between male and female, including 

performance in MWM training and probe trials, number of struggles, blood hormone 

levels, Sgk1 mRNA expression, and Iba1 protein expression. Thus, highlighting the 

importance of including female subjects in research on these fundamental measures. In 

both male and female animals, progesterone did not influence pre-stress water maze   
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Figure 4.10. Sgk1 mRNA expression 

Using RT-PCT, the expression level of Sgk1 and GAPDH (housekeeping gene) were 

quantified, and the ΔΔ-cycle threshold (CT) was calculated. Vehicle (Veh); progesterone 

(Prog); control (Ctrl); ** p < 0.001. 
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training (Figure 4.1), number of struggles during restraint (the perception of stress- Figure 

4.2), stress-induced swim speed increase (Figure 4.3), or stress-induced corticosterone 

secretion increase (Figure 4.5A). However, in both males and females, progesterone 

improved water maze probe trial performance (Figure 4.4), suggesting that progesterone’s 

actions are downstream of stress perception and the resulting HPA-axis activation. In 

males, the well-recognized stress-induced Sgk1 mRNA elevations were significantly 

attenuated by progesterone pretreatment. However, in females, there was a markedly 

different profile- Sgk1 levels were not increased by stress or progesterone, and this may 

indicate that the significantly higher endogenous progesterone levels in females (Figure 

4.5C) could natively disrupt this well-characterized response.  

Progesterone treatment had no effect on water maze training in male or female 

animals (Figure 4.1). Although female learning curves were significantly less-steep than 

those in males, both males and females showed significant improvement over training as 

in prior work (Beiko, Lander, Hampson, Boon, & Cain, 2004). During the three-hour 

restraint, females struggled significantly less than male animals, while progesterone 

pretreatment had no effect (Figure 4.2) on the number of struggles. Both male and female 

animals that had been restrained showed increased swim velocities during the probe trial 

compared to the controls (Figure 4.3). This was not influenced by progesterone 

pretreatment, but increased swim speed after stress did provide rationale for using the 

pathlengths rather than latencies for water maze analysis.  

In the probe trial, males showed a significantly higher proportional occupancy 

based on pathlength of the goal area than females (Figure 4.4B), as seen previously (Beiko 

et al., 2004). In both males and females, restraint resulted in a significant behavioral 

deficit (Diamond, Park, Heman, & Rose, 1999; Gaikwad et al., 2011; C. R. Park, Zoladz, 

Conrad, Fleshner, & Diamond, 2008; Sandi et al., 2005; Snihur, Hampson, & Cain, 2008; 

Wong et al., 2007). However, there have been reports of improved performance after 

stress in females (Conrad et al., 2004; Lipatova, Campolattaro, Dixon, & Durak, 2018). 

This difference might be explained by the differences in restraint duration (one hour, and 

30 minutes respectively compared to the three hours used in this study), as well as in the 

behavioral assessment (spontaneous Y maze alterations, and open field tower maze, 

respectively, compared to the Morris water maze used here). Position in the estrous cycle 
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was not assessed here but is reported to influence the stress response in female rats 

(Conrad et al., 2004; Lovick, 2012). Additionally, the magnitude of the stress effect on 

behavior appeared greater in females (Figure 4.4B), in keeping with prior reports of sexual 

dimorphism in the acute stress response (reviewed in (Rosenfeld & Trainor, 2014)). In 

males, progesterone pretreatment significantly increased platform area occupancy for both 

control and stress groups, while in females, progesterone was associated with significant 

improvement selective in female stress group only.  

Corticosterone levels were significantly higher in females than males (Figure 

4.5A), as in prior work (L. A. Galea et al., 1997; Roof & Stein, 1999). In both males and 

females, restraint induced significant increases (Campbell & Ehlert, 2012; Gjerstad et al., 

2018) that were unaffected by progesterone pretreatment. Although glucocorticoids were 

originally named for their role in promoting circulating glucose levels, they have since 

been determined to have key roles in inflammation, development, fluid homeostasis, 

arousal, and cognition (Baschant & Tuckermann, 2010; Erickson, Drevets, & Schulkin, 

2003; Kuo, McQueen, Chen, & Wang, 2015; Oitzl, Champagne, van der Veen, & de 

Kloet, 2010; Tasker, 2006). The severity of acute stress exposure is positively correlated 

with blood glucocorticoid concentration (Keim & Sigg, 1976) and the corticosterone 

levels reported here for males (~400 ng/ ml) are consistent with a moderate-high-stress 

(Kalil et al., 2013), while the female levels in both control and stress conditions were 

nearly twice that of the males.  

In male subjects, Sgk1 mRNA (Figure 4.10), but not protein (Figure 4.9E), was 

significantly increased by acute restraint, and this response was significantly reduced in 

males pretreated with progesterone. However, in females, there was no significant effect 

of stress or progesterone on Sgk1 protein or mRNA levels. The mRNA verses protein 

effect in males is entirely consistent with prior studies on immediate early genes such as 

Sgk1, whose mRNA transcription is upregulated much earlier than the protein is translated 

(Anacker et al., 2013). At the molecular level, serum-and-glucocorticoid-kinase-1 (Sgk1) 

is well established as an immediate early gene whose mRNA levels increase rapidly in 

response to glucocorticoid signaling, and can be considered a molecular marker of 

glucocorticoid action (Buechel et al., 2014; C. Y. Chen et al., 2016; Porter et al., 2012). It 

is important to note that in normal physiologic conditions, hippocampal Sgk1 is positively 
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correlated with spatial memory (J. C. Park et al., 2021), suggesting that complete blockade 

of Sgk1 would be deleterious to normal function, and a recent study found when Sgk1 

levels are overexpressed in female APP/PS1 mice, it led to increased spatial memory and 

inhibited protein markers of Alzheimer’s disease (Lian et al., 2020). Further, prior work 

reported stress-induced Sgk1 mRNA upregulation in females (Roszkowski et al., 2016), 

although that work was done in mice and used shorter stress durations (30 min restraint). 

Here, the progesterone associated reduction of Sgk1 mRNA without altering stress-

induced glucocorticoid levels suggests that progesterone disrupts stress-driven gene 

expression. Finally, Sgk1 mRNA has been shown to increase not only with stress, but also 

aging (Blalock et al., 2003; Blalock et al., 2010; Buechel et al., 2014; K. C. Chen et al., 

2013; Hinds et al., 2017; Kadish et al., 2009; Porter et al., 2012; Rowe et al., 2007), 

similar to other studies that have found compelling parallels between the brain’s response 

to stress and its response to aging (Cesari et al., 2013; Garrido, 2011; Landfield et al., 

2007; Lavretsky & Newhouse, 2012; Porter & Landfield, 1998; Sapolsky, 1999) 

Iba1/ Mbp immunohistochemical staining (Figure 4.8) showed significant 

increases with stress in the stratum oriens (but not stratum radiatum or the pyramidal 

layer) in female and no effect in the males. Recent work has shown that aging impacts the 

levels of Iba1 and Mbp, with their overlap indicating increased myelin fragment uptake by 

microglia with age (Safaiyan et al., 2016). Further, Western blot analysis did not indicate a 

difference in female Iba1 levels (Figure 4.9A, B), suggesting that microglia/ macrophages 

may have migrated to the area, rather than increased synthesis or reduced degradation of 

extant protein. Thus, stress may recapitulate an aging-like microglial myelin fragment 

burden, albeit restricted to a female hippocampal subregion. Interestingly, in the male 

alveus and the female pyramidal layer, progesterone itself increased this Iba1/ Mbp 

overlap (Figure 4.8). Western blots (Figure 4.9) showed no changes in Mbp expression in 

any sex or treatment condition. In males, Iba1 expression was lower than in females and 

progesterone showed opposing effects, increasing Iba1 expression in stressed animals and 

reducing it in controls. Females also struggled significantly less than males during 

restraint (Figure 4.2) yet showed higher corticosterone levels and a more dramatic stress-

induced water maze deficit. Taken together, these findings indicate that females may more 
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be more vulnerable to the objective helplessness of this experimental design (Maier & 

Seligman, 2016). 

Progesterone alleviated male and female stress-induced spatial memory deficits, 

supporting previously findings (DIAZ-BRUKE et al., 2010), although, as in prior work, it 

does not enhance spatial memory on its own in both sexes (Harburger, Pechenino, Saadi, 

& Frick, 2008). Our work suggests that progesterone’s anti-stress effects appear 

downstream of stress perception and HPA-activation and may involve disruption of 

glucocorticoid signaling. Candidate mechanisms may include: antagonized glucocorticoid 

receptor binding, inhibited 11β-hydroxysteroid dehydrogenase 1 (which converts 

glucocorticoids from their inactive to active form) activity (Chapman, Holmes, & Seckl, 

2013); specific action at individual GC target genes, and action through progesterone’s 

own signaling cascade. In addition, progesterone is an antagonist at the mineralocorticoid 

receptors, and could disrupt glucocorticoids’ basal mineralocorticoid occupancy. Both 

glucocorticoids and progesterone have similar affinities for the receptor (Baker & Katsu, 

2020). 

The increased progesterone levels found in females (L. A. Galea et al., 1997) may 

also result in elevated levels of its metabolite, allopregnanolone, which has anxiolytic 

properties and is increase with psychological stress (Purdy, Morrow, Moore, & Paul, 

1991; Wirth, 2011). However, anxiolytic agents are classically associated with 

suppression of HPA-axis corticosterone secretion (Urban, Van de Kar, Lorens, & Bethea, 

1986), females had higher corticosterone levels, and progesterone pretreatment did not 

influence that level. Further, the half-lives of progesterone (3.32 + 1.35 hours in humans) 

(McAuley, Kroboth, & Kroboth, 1996) and allopregnanolone (4 hours in rodents) (Irwin et 

al., 2015) suggest neither exogenous progesterone nor its potential exogenously-derived 

active metabolite were on-board during restraint, while the lowered progesterone levels in 

progesterone-treated animals were likely due to negative feedback at the hypothalamus-

pituitary-gonadal (HPG)-axis (Dagklis et al., 2015). In males, a similar HPG-axis 

feedback via corticosterone may also explain stress-induced testosterone decreases (Figure 

4.5B) (Whirledge & Cidlowski, 2010). Finally, glucocorticoid blood levels particularly in 

stressed female subjects, were reflective of levels seen during severe stress, a condition in 

which glucocorticoids can become neurotoxic with chronic exposure (Uno et al., 1994), 
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with concomitant decay of RNA quality. Further, recent work has determined that the 

glucocorticoid receptor-mediated decay (GMD) pathway (Cho et al., 2015; O. H. Park et 

al., 2016) can promote the degradation of select mRNA targets. In our hands, RNA 

integrity from hippocampal tissue of these subjects was unaffected by acute stress or 

progesterone in either sex (Table 4.2), although future studies on chronic stress or long-

term glucocorticoid exposure should include assays of RNA quality.  

Regarding possible mechanisms, while progesterone is known to be protective 

against the stress response (Childs et al., 2010; Kalil et al., 2013; Sanchez et al., 2008), our 

data indicates this effect is not exerted at the level of the HPA-axis. This also suggests that 

a mechanism whereby allopregnanolone, progesterone’s anxiolytic metabolite, acts upon 

the GABAA receptors to inhibit the hypothalamus from releasing the corticotrophin-

releasing hormone (Wirth, 2011) may also be unlikely. Additionally, because exogenous 

progesterone was metabolically cleared prior to stress exposure, proposed mechanisms in 

which progesterone disrupts signaling via contemporaneous mechanisms (e.g., receptor 

antagonism) are less likely. Instead, mechanisms where progesterone pretreatment alters 

elements of the glucocorticoid response pathway, for instance by downregulating 

glucocorticoid receptors (McDonnell, Shahbaz, Vegeto, & Goldman, 1994; Wen, Xu, 

Mais, Goldman, & McDonnell, 1994) or promoting the synthesis, availability or stability 

of the molecular ‘gatekeepers’ of glucocorticoid signaling (Timmermans et al., 2019), 

seems more feasible.  

It is important to keep in mind that the rats were euthanized within 15 minutes of 

being released from restraint, and therefore measurements taken reflect a fairly acute state, 

and some effects, particularly at the protein level, may not have had sufficient time to 

develop. Further work examining longer time frames post stress may be useful. 

Additionally, despite Sgk1’s reputation as a glucocorticoid-responsive gene, it is also 

upregulated by other factors, and prior work has shown that, although glucocorticoids may 

be necessary for its rapid induction, they are not sufficient, and the response also requires 

adrenaline action through the beta-adrenergic pathway (Roszkowski et al., 2016). Finally, 

it may also be translationally relevant to examine the influence of progesterone treatment 

concomitant with, or after, stress exposure. It should be noted that the stress response is 

not simply sexually dimorphic, but also may be more variable in females depending on 
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their position in the estrous cycle (Lovick, 2012; ter Horst, Kentrop, de Kloet, & Oitzl, 

2013; Wagenmaker & Moenter, 2017), and future work assessing female cycle status may 

also be an important consideration (L. A. M. Galea, Choleris, Albert, McCarthy, & 

Sohrabji, 2020; L. R. Miller et al., 2017).  

In conclusion, this work strongly supports prior work that stress responses are 

sexually dimorphic, and this should be considered in developing intervention targets. To 

our knowledge, this is the first experiment to look at how progesterone pretreatment 

impacts the hippocampal expression of Sgk1 after acute restraint stress, and whether 

myelin fragment burden in microglia is increased as a result. As in prior work, male rats 

showed behavioral deficits, increased corticosterone (Ishikawa, Hara, Ohdo, & Ogawa, 

1992; Whirledge & Cidlowski, 2010) and increased hippocampal Sgk1 mRNA (Hinds et 

al., 2017). Stress-induced behavioral and Sgk1 changes, but not blood corticosterone 

levels, were blunted by progesterone pretreatment. The resistance to stress effects 

engendered by progesterone pretreatment is supported by prior work (DIAZ-BRUKE et 

al., 2010; Harburger et al., 2008), and suggests that progesterone’s actions are downstream 

of the HPA-axis. Although Sgk1 is a reliable marker of glucocorticoid action in male 

hippocampus, this did not appear to be the case in female subjects, suggesting that the 

behavioral impact of stress in both sexes can either proceed through molecularly distinct 

pathways. Changes in Mbp/ Iba1 overlap measured by immunohistochemistry, combined 

with relative lack of protein-level changes in these molecules by Western blot, suggest 

redistribution of extant protein (e.g., though microglial migration and/or myelin fragment 

phagocytosis), rather than a change in synthesis. Finally, we determined that RNA quality 

is not significantly impacted by acute restraint stress. 
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CHAPTER 5. DISSERTATION DISCUSSIONS 

5.1 Introduction 

Both studies presented here investigate areas that have been overlooked historically. 

In transcriptional profiling studies, the sample’s RNA can be impacted by various sources, 

which can negatively influence the measured gene expression. To prevent wasteful 

spending and use of time, determining RNA integrity numbers (RINs) can be determined 

for the samples to remove poor quality samples that would give erroneous transcriptional 

profiling results. While a few journals require disambiguated RINs to be published along 

with the data, most do not, and therefore most published data does not include individual 

RINs (Copois et al., 2007; Gallego Romero et al., 2014; Jaffe et al., 2017; Opitz et al., 

2010). Instead, often a range or average is given in their report. This is problematic 

because, as shown in Chapter 2, RINs impact the measured gene expression, even in 

control tissue, just as other commonly reported metavariables.  

Meanwhile, there has been significantly less work on the female stress response and 

how the female hormone, progesterone, impacts both males' and females' behavioral and 

molecular responses. While the male stress response is well-defined (Anacker et al., 2013; 

Campbell & Ehlert, 2012; Diamond et al., 1999; Gaikwad et al., 2011; Gjerstad et al., 

2018; Hinds et al., 2017; C. R. Park et al., 2008; Sandi et al., 2005), we found that there 

are sexually dimorphic characteristics in these responses using our stress model. In 

addition, our RIN study found a sex and age difference in the number of genes associated 

with RNA integrity. Specifically, aged male subjects appeared to have significantly more 

RIN-sensitive genes. This could indicate that older subjects are more likely to have a 

longer agonal state, and illness can be a physiological stressor. Therefore, stress could be 

exacerbating the effects of a disease on vulnerable pathways (note that although our 

control subjects had no evident neuropathology, other chronic diseases were not identified 

for all subjects and were likely present among subjects). To our knowledge, no one has 

investigated whether hormones play a role in the gene expression changes associated with 

poor RNA quality. This is of particular note since recent studies have found a 

glucocorticoid receptor-mediated decay (GMD) pathway (Cho et al., 2015; O. H. Park et 

al., 2016). While no one has investigated the prevalence of the GMD pathway in the brain, 

with the high levels of glucocorticoids and glucocorticoid receptors, it would be surprising 
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if glucocorticoids did not degrade RNA in the brain either through the GM or 

neurodegeneration associated with prolonged exposure. While RNAse activity is primarily 

responsible for rRNA degradation, there has been no research into GMD’s impact on 

rRNA.  

Furthermore, even if GMD does not impact RIN scores, it likely still causes gene-

specific degradation. The GMD relies on ligand binding to the glucocorticoid receptor 

before decay begins, indicating that any regulator of the HPA-axis or of glucocorticoids 

and their receptors may impact RNA degradation. While we showed that progesterone is 

not acting on the HPA-axis, that does not exclude the possibility of influencing 

glucocorticoid signaling. Though it is outside the scope of the current studies, the GMD 

pathway and its impact on RNA integrity would be an exciting topic for future research.  

5.2 Declining RNA integrity in control autopsy brain tissue is robustly and 

asymmetrically associated with selective neuronal mRNA signal loss 

5.2.1 Implications 

Our study on the effects of RNA quality on microarray gene expression found that 

specific genes and pathways are more sensitive to RNA quality and that there is usually an 

exponential or sigmoidal shape describing the relationship between RIN and gene 

expression. We also propose a neuron-selective RNA degradation in control tissue that is 

consistent with selective mRNA damage primarily in the synapses; this effect shares 

characteristics with Alzheimer’s disease (AD). In addition, we found that age and sex 

interact to influence gene sensitivity to RNA degradation. Each of these findings should 

motivate careful consideration of the way RINs are used, both as to quality control and as 

normalizing variables, in transcriptional profiling.  

Relatively few studies have investigated the association between RNA quality and 

genes expression (Gallego Romero et al., 2014; Opitz et al., 2010), and RIN-associated 

genes appear to be tissue-dependent. Ours was the first study to determine specific genes 

and pathways in human, control prefrontal cortex (PFC) that are significantly impacted by 

RNA quality. This finding gives researchers particular genes that can be used as 

biomarkers for poor RNA quality, even when disambiguated RINs are not reported within 

the PFC. It also indicates that variations in RNA quality impact gene levels in the absence 

of any reported pathology. In addition, since these RIN-sensitive genes and their 
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associated pathways are more sensitive to RNA degradation, procedures that correct RIN 

in transcriptional datasets should use ‘gene-at-a-time’ rather than ‘sample-at-a-time’ 

correction strategies.   

Current normalizing approaches for RIN, even if they use a ‘gene-at-a-time’ 

strategy to normalize gene expression based on RIN, also rely on narrow linear 

relationships. However, we discovered that many genes have an exponential or sigmoidal-

shaped relationship with RNA quality during the study, which has several implications. 

The first is that if a gene is in a sample outside of the linear RIN range, a linear correction 

method improperly adjusts the mRNA’s value, leading to inaccurate data. Thus, a ceiling 

(and possibly a floor) effect on the relationship between RNA quality and gene expression 

exists. Second, the linear assumption regarding the relationship between gene expression 

and RIN does not appear to hold, and the data support an exponential or sigmoidal 

relationship. Third, this would result in the under-correction of gene expression in the 

linear range and over-correction of values outside the range. Essentially, if RINs are above 

8.6 (in our hands), RIN has no statistically detectable effect. On the other end of the 

spectrum, at lower RINs, there reaches a point where RNA is so degraded that any 

additional damage does not appear to further impact gene expression measures and a RIN 

correction procedure would likely obfuscate an unreliable reading rather than rescue it.  

Within the PFC, these RIN-sensitive genes mapped back to processes and cellular 

compartments associated with neuronal synapses. Synapses are an essential part of brain 

function; they are the primary points of electrochemical communication between neurons 

and are thought to represent the majority of the information processing power in the brain. 

Further, mRNA, ribosomes, and mitochondria are subcellularly localized to synapses. If 

these mRNA species are more sensitive to RNA degradation, then when triggered, RNA 

degradation would affect neurons more quickly than glial cells. This finding is significant 

since many of these genes are also downregulated in AD. Our data indicate the effects of 

AD exacerbate the effects found with RNA degradation or vice versa. Prior work found 

that when the RIN effect is controlled for, in control versus AD transcriptional profiling, 

the entire set of downregulated AD genes that have been robustly reported in multiple 

prior studies become non-significant (J. A. Miller et al., 2017). The authors observed that 

RINs were significantly lower in AD than control samples and concluded that it was due 
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to other influences, instead of in vivo RNA degradation. RIN may be confounded with AD 

in this situation, and normalization should be omitted (or performed within rather than 

across conditions). Based on the lack of correlation between RIN and post-mortem 

interval in the present work, RNA degradation may occur in vivo, not only post-mortem. 

In addition, if RNA degradation is more likely to impact neurons' synapses, which is 

exacerbated by AD, neurons could be more vulnerable because their synapse-selective 

mRNA degradation results in neuronal dysfunction that increases the risk of cell death.  

Interestingly, there were not any consistent correlations between the RINs and 

other metavariable measurements. While it is commonly assumed that there is a 

significant correlation between RNA quality and the post-mortem interval (PMI), we 

along with others have not found such a connection (Birdsill et al., 2011; Ervin et al., 

2007; Johnson et al., 1986; Stan et al., 2006) at the post-mortem intervals tested. However, 

a study from the University of Maryland found that brain RNA's quality does not 

significantly drop until after 36 hours post-mortem (White et al., 2018). Since most of our 

subjects had PMIs less than 36 hours, it could be that the post-mortem intervals here were 

not sufficient to show a detectable response. When we correlated age to RIN scores, we 

also did not find any consistently significant association. It was not until we investigated 

the number of RIN-sensitive genes with sex or age that we found a significant difference 

between the metavariables. When tested at estimated statistically equivalent power, there 

was a trend that females had more RIN-sensitive genes than males. Fascinatingly, it was 

when we split the groups into young (16 – 50 years old) and aged (> 50 years old) that we 

found a surprising difference in the number of significant genes in males and females. 

Young females appeared more sensitive to RNA degradation than their aged counterparts, 

while aged males were more sensitive than young males. This sex difference suggests that 

there may be hormonal cause for both of these. In women, sex hormones dramatically 

decrease during menopause, and men decrease testosterone with age (Moffat, 2005). Thus, 

testosterone may be protective, while estrogen or progesterone may confer vulnerability. 

These hormones and their downstream effects may be regulating aspects of the RNA 

degradation pathways, though no relationship has been established in the literature. In 

addition, having sexually dimorphic RIN-sensitivity may indicate that RIN correction 

measures need to be corrected separately, depending on the subjects’ ages and the 
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correction technique being implemented. Again, this points to the importance of reporting 

disambiguated meta-variables when possible, although patient anonymity must also be 

maintained in human studies. 

These findings could have impacts on the way that brain tissue transcriptional 

profiling, extending further than microarray analysis into RNA-seq. RNA-seq relies on the 

alignment of counted RNA to identify and quantify mRNA species and has a broader 

dynamic range and thus may be more sensitive to RNA degradation. Since transcriptional 

profiling is a standard tool used to quantify relative gene expression, our work suggests 

reasonable thresholds above which RIN correction is not necessary, calls into question the 

appropriateness of regression techniques, and suggests that employing corrections when 

the factor upon which the corrections are based is confounded with treatment conditions 

under study should be avoided.   

5.2.2 Future Directions 

While our study was able to determine exciting findings, our work brought to light 

several more. For one, using a metadata analysis study limited us to already published 

work and its data. Because of this, we could not answer some questions, such as what 

additional information can be found with profiles spanning the entire RIN scale, how the 

rate of RNA degradation differs among specific genes and pathways, and what pre-

mortem conditions may be contributing to variability in RIN. Other questions for future 

work include investigating the mechanism of age's impact on RIN-sensitivity and 

determining if different known causes of declining RIN (heat, time, pH, oxidation) result 

in similar pathways of transcriptional effect.   

Our study relied on others’ published works, which meant we were restricted to 

their published RIN scores. Poor RIN scores were probably not included in most datasets 

since RINs are typically used to establish a cutoff value before running a profile. Our data 

indicated that RINs of 6.7 – 7 represented a lower range below which gene expression 

reached a minimum and was no longer correlated with RIN (therefore could not be 

rescued with a RIN-based correction). However, scores from throughout the entire RIN 

range (1 - 10) would be needed to fully understand the dynamics of RIN’s relationship to 

gene expression. Ideally, instead of using published data, this experiment would be done 

by a single lab to control tissue collection handling and storage conditions impacting RINs 
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(Gallego Romero et al., 2014; Jia et al., 2021), compared to variation collected by 

sampling from a large brain bank such as that at Sanders-Brown Center on Aging. By 

encompassing as much of the RIN in similarly handled, stored, and prepared tissue, one 

could see a more complete picture of the relationship between gene expression and RIN. 

In addition, it would clarify when most RINs were too low to be saved with correction. 

The range in which genes are too degraded to be saved by correction may depend on the 

gene. There is evidence that different pathways impacting mRNA quality are affected at 

different rates in post-mortem mice and zebrafish (Pozhitkov et al., 2017). If this is the 

case, there could be a cascading effect, which would also explain the different templates 

associated with the genes and RIN scores.  

RNA-Seq is still relatively new, and its bioinformatic pipeline has not been 

standardized yet (Simoneau et al., 2021). Because of this, a retrospective analysis of RNA-

seq data was not feasible, and our study focused instead on the effects of RNA-

degradation in the older and more standardized microarray technology. However, since 

RNA-seq is not limited by low detection thresholds or saturation, it can more reliably find 

splice variants and mutations (Sirbu et al., 2012; van der Kloet et al., 2020). RNA-Seq is 

becoming more popular. Since this technology depends on counting the number of mRNA 

species sequenced by synthesis (compared to oligonucleotide microarrays used for this 

study), we hypothesize that RNA-seq based mRNA species quantification would be more 

sensitive to RIN numbers.  

Other microarray technologies may have different sensitivities to RINs. While 

Affymetrix uses the oligonucleotide microarrays, Illumina Inc. uses bead-based fiber optic 

microarrays and Agilent Technologies microfabricated arrays using ink-jet pumps 

(Blanchard et al., 1996; Walt, 2000). Our study did not include datasets across platforms 

because we wanted to reduce platform-based variability. Affymetrix-type arrays use a 

highly standardized protocol, and data is shared publicly at a sufficiently ‘raw’ level that 

researchers can reprocess that raw data (as done in Chapter 2) to ensure that the resulting 

data is as homogeneously handled as possible. However, differences in procedures prior to 

RNA extraction could impact results. If so, then this would increase variability and reduce 

agreement among independent data sets. Thus, the common set of RIN-sensitive genes 

among multiple independent datasets may be higher than that found in this work.  
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Another area that needs to be investigated is the impact of age and sex on RIN-

sensitive genes. While neither age nor sex appeared to correlate with RIN, when the 

number of RIN-sensitive genes was analyzed between young and aged males and females, 

the females had more RIN-sensitive genes in the young, while the males had more in the 

aged group (Figure 2.4). Currently, it is unknown if aging consistently causes this effect, 

and if so, by what mechanism. The results appear sexually dimorphic, given the opposite 

findings in males and females. This could indicate that sex hormones are playing a role, 

but further investigation is required.  

Overall, this paper has some significant findings that transcriptional profiling 

analysis, such as: determining specific genes and pathways that are RIN-sensitive; the 

relationship between RIN and gene expression is exponential instead of linear; the ranges 

of RIN that do not need correction (> 8.6), can be corrected (6.7-8.6), and are too 

degraded to produce accurate results (< 6.7); the interaction between age and sex on RIN-

sensitivity; and that RNA degradation effects in normal control tissue share characteristics 

with those seen in neurodegenerative disease. This study was the first step in 

understanding that there is a robust, synaptically targeted effect of RNA degradation on 

brain tissue analyzed using transcriptional profiling methods.   

5.3 Progesterone pretreatment attenuates acute stress action on hippocampus without the 

apparent disruption of the hypothalamic-pituitary-adrenal axis in young adult male 

and female rats 

5.3.1 Implications 

This experiment on acute restraint stress in male and female Sprague-Dawley rats 

tested for progesterone pretreatment’s ability to attenuate these responses. The work 

confirmed prior findings showing that rats, like humans, have a sexually dimorphic 

response to stress and extended prior observations that progesterone reduces this response 

by showing that it appeared downstream of the hypothalamus-pituitary-adrenal (HPA)-

axis.  

While there are studies involving females, most of our understanding of the HPA-

axis and the downstream consequences of its activation comes from males. Several studies 

that have compared male and female memory after acute stress, including our own, have 

found that the behavior changes are significantly greater in females than males (Rosenfeld 
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& Trainor, 2014).  In addition, our data supported prior work (C. R. Park et al., 2008; 

Snihur et al., 2008) that restraint causes a deficit in memory after acute stress. However, 

other studies have found that acute stress increases memory performance in females 

(Conrad et al., 2004; Lipatova et al., 2018). While these findings might be explained by 

shorter stress duration or types of behavioral tests, the fact remains that acute stress-

associated deficits in memory in females do not follow the canonical stress response that 

has been established over decades of research in primarily male subjects.  

In addition, serum-and-glucocorticoid serum kinase 1 is a well-studied immediate-

early gene associated with the glucocorticoid receptor (Buechel et al., 2014; C. Y. Chen et 

al., 2016; Porter et al., 2012). However, our study found that this well-established 

association in acute stress is present in males but not females (Figure 4.10). Recent studies 

have shown that Sgk1 mRNA increases with acute stress (Anacker et al., 2013; Hinds et 

al., 2017); however, much of this research has been done in males and cell lines. 

Therefore, findings made in males regarding the downstream actions of the stress response 

need to be measured in females to determine which effects are canonical for both sexes 

and which may be sexually dimorphic.  

This work was also the first study investigating progesterone pretreatments to 

alleviate the stress response in intact male and female rats. Elucidating the mechanism of 

progesterone’s effects could lead to a novel anti-stress therapeutic target. Because of the 

time between the progesterone pretreatment and the stressor (~20 hours), it is unlikely 

allopregnanolone, which is a known anxiolytic, is exerting its effects in this case. 

Progesterone and allopregnanolone both have too short of half-lives (3.32 + 1.35 in 

humans and 4 hours in rodents, respectively (Irwin et al., 2015; McAuley et al., 1996)) to 

be onboard during the assessment. In addition, progesterone levels were lower in 

progesterone-treated females, and there was no significant effect of progesterone 

pretreatment on blood progesterone levels in males.  

We can also conclude that this effect is not occurring at the HPA-axis but further 

downstream. Progesterone did not impact glucocorticoid levels or the stress-induced 

glucocorticoid elevation in either sex, which indicates that any attenuation is less likely to 

be via the hypothalamus, pituitary, or adrenal glands. It should be noted that stress 

increased glucocorticoids in both sexes and decreased hormones associated with sex 
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(testosterone in the males, progesterone in the female). The latter implies that the HPA-

axis and the hypothalamus-pituitary-gonadal (HPG)-axis are connected. Future work 

should investigate progesterone’s potential mechanism acting upon the stress response. 

We propose three potential mechanisms: 1) reduction in glucocorticoid receptor 

expression; 2) inhibited 11β-hydroxysteroid dehydrogenase; and 3) action through 

progesterone’s signal cascade to reduce the GC-GR complex access to DNA.  

5.3.2 Future Directions 

As previously discussed, the progesterone pretreatment mechanism is yet to be 

determined. It appears to be working downstream of the HPA response, and the current 

study suggests that whatever the mechanism may be, it is effective as pretreatment, and 

the progesterone does not need to be ‘onboard’ to exert its effects. By determining where 

progesterone pretreatment is acting in the stress response, new pharmacological 

interventions can be determined. This new target would be sensitive to progesterone and 

its metabolites. Therefore, it would be essential to know the effects of long-term 

progesterone treatments because some medications already include them. In addition, 

there is a high likelihood that females would experience these effects at a higher level than 

males due to the increased endogenous progesterone. Further, because cognition does not 

appear to be impaired, such a pretreatment, given as a prophylactic, could reduce stress 

responses without impairing normal cognitive function. In addition, it would be necessary 

to see how long-term pretreatments could impact chronic stress to ensure that there are no 

detrimental long-term effects or interaction with the stress response.  

Another aspect needing further investigation is how progesterone (and possibly 

allopregnanolone) treatments during the hormone’s half-life impact the stress response. 

Progesterone is known to have neuroprotective effects after brain injury (J. Cai et al., 

2015; W. Cai et al., 2008) as well as having positive effects against deficits caused by both 

acute and chronic stress (Childs et al., 2010; DIAZ-BRUKE et al., 2010). These effects are 

often explained by allopregnanolone, an anxiolytic that works by altering GABAA 

receptor subunit composition, resulting in a more easily activated inhibitory network 

(Guennoun, 2020; Guennoun et al., 2015; Melcangi & Panzica, 2014; Sayeed, Parvez, 

Wali, Siemen, & Stein, 2009); in addition, allopregnanolone rescues hippocampal learning 

and memory in AD model mice (C. Singh et al., 2012). However, to our knowledge, there 
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have been no studies investigating the long-term effects of progesterone treatment on 

chronic stress that include measurements taken from the brain. It is also likely that 

progesterone and allopregnanolone actions are not restricted to the hippocampus but also 

impact the stress response in other brain areas such as the amygdala, hippocampus, and 

prefrontal cortex. Therefore, to fully understand the effects of progesterone and its 

metabolites on the stress response (both acute and chronic), pretreatments as seen in this 

study, and treatments given during the stressor, and critically, after the stressor to rescue 

function, need to be investigated further. 

An additional area that needs further investigation is the relationship between Iba1/ 

Mbp overlap with stress. Our findings indicated that increased Iba1/ Mbp overlap occurred 

in different regions of the CA1 and was impacted by both stress and progesterone in a sex 

and region-specific manner. This may be due to several reasons. For one, the 

measurements were taken from tissue prepared ~15 minutes after stress exposure, and 

additional time may have allowed fuller development of the response. Another (and 

probably more prominent) potential factor is that stress and progesterone pretreatments 

may need to occur in a more chronic time frame. The myelin burden on the microglia 

occurs with age (Safaiyan et al., 2016), which shares characteristics with chronic (K. C. 

Chen et al., 2013; Landfield et al., 2007; Porter & Landfield, 1998), not acute stress. 

While this study found some Iba1/ Mbp overlap using immunohistochemistry, chronic 

stress may lead to more region- and sex-specific findings. Therefore, the rate of myelin 

burdened microglia needs to be determined in chronic stress. 

RNA integrity numbers (RINs) are impacted by pre-and post-mortem factors 

(Durrenberger et al., 2010). This study investigated whether acute stress was one of these 

factors and found no effect. However, acute stress has fewer negative consequences 

compared to chronic stress. In addition, the duration of a subject’s agonal state also can 

play a role in decreasing RNA quality, typically by acidosis. The longer a subject suffers 

before death, the lower their RIN (Chevyreva, Faull, Green, & Nicholson, 2008). It seems 

probable that, like the agonal state, stress’ effects on RIN, if they exist, may also be time-

dependent. Therefore, it will be essential to evaluate RIN in chronic stress settings. In 

addition, since there is now an identified mRNA degradation pathway regulated by 

glucocorticoids, glucocorticoid receptor-mediated decay (GMD) (Cho et al., 2015; O. H. 
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Park et al., 2016) may play a role. Although it is not known to affect rRNA (the primary 

source of material evaluated by RIN), it may coincide with that degradation and explain 

some of the targeted mRNA reductions seen with RIN. Therefore, future studies 

measuring mRNA involving chronic stress should also include disambiguated RINs. 

5.4 Concluding remarks 

The “Declining RNA integrity in control autopsy brain tissue is robustly and 

asymmetrically associated with selective neuronal mRNA signal loss” study found several 

aspects that may have been overlooked or incorrectly assumed in prior work. The first is 

that RIN values do not have a consistently linear relationship with gene expression but 

instead an exponential (and possibly sigmoidal) one. Our analysis suggests a low range 

where RNA quality no longer impacts gene expression, a middle range in which there is a 

linear relationship between RIN values and gene expression, and an upper range where 

variations in RIN do not detectably impact gene expression. In addition, we found that in 

the PFC, synaptic genes are robustly RIN-sensitive. This finding supports prior work that 

RNA degradation impacts specific genes and pathways at a greater rate (Gallego Romero 

et al., 2014; Opitz et al., 2010). Even though the work was restricted to control brain 

tissue, RIN-sensitive genes in the brain were significantly similar to those downregulated 

in Alzheimer’s disease (AD). Therefore, researchers need to be careful when removing the 

effects of RIN from data, especially if the RIN itself is significantly different between 

control and neurodegenerative disease cases because RINs would be confounded with 

disease status, and normalization could obscure potentially effects. 

The “Progesterone pretreatment attenuates acute stress action on hippocampus 

without the apparent disruption of the hypothalamic-pituitary-adrenal axis in young adult 

male, and female rats” experiment found that progesterone attenuates memory deficits 

caused by acute stress. However, the acute stress response is sexually dimorphic, with 

females having a greater stress response, though there was no impact on female 

immediate-early gene Sgk1’s mRNA expression, in contrast to prior work in males (and 

confirmed in our work). The different Sgk1 expression levels indicate that different 

mechanisms may be triggered by stress in males and females. Furthermore, while 

progesterone alleviated the behavioral response to increased stress in both sexes and the 

increase in Sgk1 mRNA in males, the mechanism is unclear. It is less likely that this effect 
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was directly caused by progesterone or its anxiolytic metabolite (allopregnanolone) acting 

on the HPA-axis since both had already been metabolized, and pretreatment did not 

change blood corticosterone response to stress in either sex. However, stress and 

progesterone appeared to independently influence the Iba1/ Mbp overlap in the 

hippocampus, indicating an increased myelin burden on the microglia. This study 

confirms that the stress response is behaviorally and molecularly sexually dimorphic and 

that progesterone exerts its action downstream of the HPA-axis. 
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