
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Maxwell H. Gluck Equine Research Center 
Faculty Publications Maxwell H. Gluck Equine Research Center 

8-15-2019 

Advances in Gene Ontology Utilization Improve Statistical Power Advances in Gene Ontology Utilization Improve Statistical Power 

of Annotation Enrichment of Annotation Enrichment 

Eugene Waverly Hinderer III 
University of Kentucky, ehinderer01@gmail.com 

Robert M. Flight 
University of Kentucky, robert.flight@uky.edu 

Rashmi Dubey 
University of Kentucky 

James N. MacLeod 
University of Kentucky, jnmacleod@uky.edu 

Hunter N. B. Moseley 
University of Kentucky, hunter.moseley@uky.edu 

Follow this and additional works at: https://uknowledge.uky.edu/gerc_facpub 

 Part of the Biochemistry, Biophysics, and Structural Biology Commons, Bioinformatics Commons, 

Large or Food Animal and Equine Medicine Commons, and the Oncology Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Hinderer, Eugene Waverly III; Flight, Robert M.; Dubey, Rashmi; MacLeod, James N.; and Moseley, Hunter 
N. B., "Advances in Gene Ontology Utilization Improve Statistical Power of Annotation Enrichment" (2019). 
Maxwell H. Gluck Equine Research Center Faculty Publications. 42. 
https://uknowledge.uky.edu/gerc_facpub/42 

This Article is brought to you for free and open access by the Maxwell H. Gluck Equine Research Center at 
UKnowledge. It has been accepted for inclusion in Maxwell H. Gluck Equine Research Center Faculty Publications 
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gerc_facpub
https://uknowledge.uky.edu/gerc_facpub
https://uknowledge.uky.edu/gerc
https://uknowledge.uky.edu/gerc_facpub?utm_source=uknowledge.uky.edu%2Fgerc_facpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1?utm_source=uknowledge.uky.edu%2Fgerc_facpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=uknowledge.uky.edu%2Fgerc_facpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/766?utm_source=uknowledge.uky.edu%2Fgerc_facpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/694?utm_source=uknowledge.uky.edu%2Fgerc_facpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
https://uknowledge.uky.edu/gerc_facpub/42?utm_source=uknowledge.uky.edu%2Fgerc_facpub%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Advances in Gene Ontology Utilization Improve Statistical Power of Annotation Advances in Gene Ontology Utilization Improve Statistical Power of Annotation 
Enrichment Enrichment 

Digital Object Identifier (DOI) 
https://doi.org/10.1371/journal.pone.0220728 

Notes/Citation Information Notes/Citation Information 
Published in PLOS ONE, v. 14, no. 8, 0220728, p. 1-20. 

© 2019 Hinderer et al. 

This is an open access article distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited. 

This article is available at UKnowledge: https://uknowledge.uky.edu/gerc_facpub/42 

http://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/gerc_facpub/42


RESEARCH ARTICLE
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Abstract

Gene-annotation enrichment is a common method for utilizing ontology-based annotations

in gene and gene-product centric knowledgebases. Effective utilization of these annotations

requires inferring semantic linkages by tracing paths through edges in the ontological graph,

referred to as relations. However, some relations are semantically problematic with respect

to scope, necessitating their omission or modification lest erroneous term mappings occur.

To address these issues, we created the Gene Ontology Categorization Suite, or GOcats—

a novel tool that organizes the Gene Ontology into subgraphs representing user-defined

concepts, while ensuring that all appropriate relations are congruent with respect to scoping

semantics. Here, we demonstrate the improvements in annotation enrichment by re-inter-

preting edges that would otherwise be omitted by traditional ancestor path-tracing methods.

Specifically, we show that GOcats’ unique handling of relations improves enrichment over

conventional methods in the analysis of two different gene-expression datasets: a breast

cancer microarray dataset and several horse cartilage development RNAseq datasets. With

the breast cancer microarray dataset, we observed significant improvement (one-sided

binomial test p-value = 1.86E-25) in 182 of 217 significantly enriched GO terms identified

from the conventional path traversal method when GOcats’ path traversal was used. We

also found new significantly enriched terms using GOcats, whose biological relevancy has

been experimentally demonstrated elsewhere. Likewise, on the horse RNAseq datasets, we

observed a significant improvement in GO term enrichment when using GOcat’s path tra-

versal: one-sided binomial test p-values range from 1.32E-03 to 2.58E-44.

Introduction

Ontologies and gene set enrichment analyses

Biological and biomedical ontologies such as Gene Ontology (GO) [1] are indispensable tools

for systematically annotating genes and gene products using a consistent set of annotation

terms. Ontologies are used to document new knowledge gleaned from nearly every facet of
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biological and biomedical research today, from classic biochemical experiments elucidating

specific molecular players in disease processes to omics-level experiments providing systemic

information on tissue-specific gene regulation. These ontologies are created, maintained, and

extended by experts with the goal of providing a unified annotation scheme that is readable by

humans and machines [2]. With the advent of transcriptomics technologies, high-throughput

investigation of the functional impact of gene expression in biological and disease processes in

the form of gene set enrichment analyses represents one important use of GO [3]. Many differ-

ent tools such as Categorizer [4], GOATOOLS (https://zenodo.org/record/31628), and Map2-

Slim (http://search.cpan.org/~cmungall/go-perl/scripts/map2slim) exist to utilize GO

annotations in enrichment analyses. These tools solve an essential task of “mapping” specific

GO terms to more general GO terms by traversing appropriate edges in the GO graph struc-

ture. However, all current methods fail to utilize all the semantic information available in this

ontology due to inconvenient features in the anatomy of GO.

Anatomy of the gene ontology

The GO database represents a controlled vocabulary (CV) of biological and biochemical terms

that are each assigned a unique alphanumeric code, which is used to annotate genes and gene

products in many other databases, including UniProt [5] and Ensembl [6]. The ontology is

divided into three sub-ontologies: Cellular Component (CC), Molecular Function (MF), and

Biological Process (BP). Each can be envisioned as a graph or network where terms are nodes

connected by edges, referred to as relations, that describe how each term relates to one

another. For example, the term “connective tissue development” (GO:0061448) is connected

to the term “tissue development” (GO:0009888) by the is_a relation. In this case, ontological

terminology defines the term “tissue development” as a “parent” of the term “tissue develop-

ment”. Likewise, “tissue development” (GO:0009888) is_a “anatomical structure development”

(GO:0048856), which in turn is_a “developmental process” (GO:0032502). From a GO term

mapping perspective, “connective tissue development” (GO:0061448) is_a “developmental

process” (GO:0032502). The three sub-ontologies mentioned are “is_a disjoint” meaning that

there are no is_a relations connecting any node among the three ontologies. However, other

relations, such as “regulates,” connect nodes of separate sub-ontologies. Relations of interest to

this study are part_of and has_part. These are like is_a in that they describe scope, i.e. relative

generality or encompassment, but are separate in that is_a represents true sub-classing of ter-

minology while part_of and has_part describe part-whole (mereological) correspondence.

Therefore, we consider scoping relations to be comprised of is_a, part_of, and has_part, and

mereological relations to be comprised of part_of and has_part.

There are three versions of the GO database, each containing aspects of the CV with varying

complexity: go-basic is filtered to exclude relations that span across multiple sub-ontologies

and to include only relations that point toward the root of the ontology; go or go-core contains

additional relations, such as has_part that may span sub-ontologies and which point both

toward and away from the root of the ontology; and go-plus contains yet more relations in

addition to cross-references to entries in external databases like the Chemical Entities of Bio-

logical Interest (ChEBI) ontology [7]. The first and second versions are available in the Open

Biomedical Ontology (OBO) flat text file formatting, while the third is available only in the

Web Ontology Language (OWL) RDF/XML format.

Path traversal issues in GO

Ontological graphs are typically designed as directed graphs, meaning that every edge has

directionality, or directed acyclic graphs (DAGs), meaning that no path exists that leads back

Advances in gene ontology utilization
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to a node already visited if one were to traverse the graph stepwise. This allows the graph to

form a complex semantic model of biology containing both general concepts and more-spe-

cific (fine-grained) concepts. The “parent-child” relation hierarchy allows biological entities to

be annotated at any level of specificity (granularity) with a single term code, as fine-grained

terms intrinsically capture the meaning of every one of its parent and ancestor terms through

the linking of relation-defining is_a edges in the graph. However, it is deceptively non-trivial

to reverse the logic and organize similar fine-grained terms into general categories—such as

those describing whole organelles or concepts like “DNA repair” and “kinase activity”—with-

out significant manual intervention. This is due, in part, to the lack of explicit scoping, scaling,

and other semantic correspondence classifiers in relations. Therefore, it is not readily clear

how to classify terms connected by non-is_a relation edges. Although edges are directional,

the semantic correspondence between terms connected by a scoping relation is computation-

ally ambiguous, e.g. assessing whether term 1 is more/less general or equal in semantic scope

with respect to term 2 is currently not possible without explicitly defining rules for such

situations.

Ambiguity in assessing which term is more general in a pair of terms connected by a rela-

tion edge is confounded by the fact that edges describing mereological relations, such as par-

t_of and has_part, are not strictly and universally inverse of one another. For instance, while

every “nucleus” is part_of “cell,” not every “cell” has_part “nucleus.” Similarly, while every

“nucleus” has_part “chromosome”, not every “chromosome” is part_of “nucleus” under all

biological situations. Therefore, mereological edges are not necessarily reciprocal. Ontological

logic rules, called axioms, ensure that this logic is maintained in the graph representation by

allowing edges of the appropriate type to connect terms only if the inferred relation is universal

[8]. GO maintains its own set of axioms regarding the relations it contains (http://www.

geneontology.org/page/ontology-relations). This axiomatic representation is crucial to avoid

making incorrect logical inferences regarding universality but does nothing to facilitate catego-

rization of terms into parent concepts, especially since some mereological edges point away

from the root of the ontology, toward a narrower scope. If these edges are followed, terms of

more broad scope may be grouped into terms of more narrow scope, or worse, cycles may

emerge which would abolish term hierarchy and make both categorization and semantic infer-

ence impossible. To circumvent this problem, some ontologies release versions that do not

contain these types of edges. For GO, this is accomplished by go-basic. However, information

is lost when these edges are removed from the graph. When attempting to organize fine-

grained terms into common concepts using the hierarchical structure, this information loss

can be significant because many specific-to-generic term mappings can utilize the same edge

in many paths.

Axiomatic versus semantic scoping interpretation of mereological relations

in GO

While ensuring mereological universality in relation associations using current axioms is

important within the purview of ontology development, for those interested in organizing

datasets of gene annotations into relevant concepts for better interpretation—such is the case

in annotation enrichment—it is important to utilize the full extent of the information within

an ontology.

Current axiomatic representation of mereological relations requires the use of ontology ver-

sions which lack certain relations (http://geneontology.org/page/go-slim-and-subset-guide),

resulting in a loss of retrievable information. If has_part edges—which point toward terms of

narrower scope—were to be inversed to resemble part_of edges—ensuring that all edges point

Advances in gene ontology utilization
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toward terms of a broader scope—terms could be effectively categorized with respect to

semantic scope using the native graph hierarchy without losing any information in the process.

However, this isn’t logically possible because of issues dealing with universality.

Therefore, we acknowledge the importance of existing axioms which prohibit reversing

mereological edges in ontologies under the context of drawing direct semantic inferences.

However, we maintain that in the context of detecting enriched broad concepts based on

“summarizing” annotated fine-grained terms contained within differential annotation data-

sets, it is appropriate to evaluate mereological relations from a scoping perspective, which

requires that all mereological edges point to their whole. This conundrum preventing the com-

prehensive categorization of GO terms can be dealt with by adding a single new relation to the

ontology: part_of_some. Semantically, this relation deals with both the issue of universality

and with the issue of the direction of granularity.

GO Categorization Suite (GOcats)

For the issues stated above, we have developed a new tool called the GO Categorization Suite

(GOcats). Fundamental to GOcats’ categorization algorithm is the re-evaluation of the has_-

part edge as part_of_some—correcting semantic correspondence inferences while ensuring

ubiquitous use of all categorization-relevant relations in GO.

In comparing GOcats’ inclusion of re-evaluated has_part relations to the traditional method

of ignoring has_part relations altogether and to the erroneous method of misinterpreting native

has_part directionality, we illuminate the theoretical extent of information loss or potential for

misinterpretation of has_part relations, respectively. Furthermore, in two independent enrich-

ment analyses of real data—from a publicly available breast cancer dataset [9] and from samples

investigating horse cartilage development [10], we demonstrate that GOcats’ reinterpretation of

has_part can retain all information from GO while drawing appropriate categorical inferences

in the context of annotation enrichment. Finally, we show that this reinterpretation has the

added benefit of improving the statistical power of annotation enrichment analyses.

Design and implementation

The go-core version of the GO database was chosen in favor of the go-basic version, because it

contains the has_part edge relation which points away from the root of the ontology and

because it contains other edges which connect the separate subontologies. Since one of our

goals is to reinterpret mereological relations with respect to semantic scope, it is necessary that

these relations be evaluated. Similarly, we excluded the go-plus version from this investigation,

because we are not yet concerned with the reevaluation of the additional relations or database

cross-references provided by go-plus.
While go-basic is a true DAG, go-core is not strictly acyclic due to the additional has_part

relations. However, when we inverse the traversal of has_part into the part_of_some interpre-

tation, acyclicity is maintained. Therefore, we refer to our modified go-core graph as a DAG.

GOcats is a Python package written in version 3.4.2 of the Python program language [11].

GOcats parses go-core and represents it as a DAG hierarchal structure. GOcats extracts sub-

graphs of the GO DAG (sub-DAGs) and identifies a representative node for each category in

question (Fig 1). While GOcats’ categorization algorithms are a major feature of the software

[12], it is not a focus of this study. Full API documentation for GOcats is available online

(https://gocats.readthedocs.io).

To overcome issues regarding scoping ambiguity among mereological relations, we hard-

coded assigned properties indicating which term was broader in scope and which term was

narrower in scope to each edge object created from each of the scope-relevant relations in GO.

Advances in gene ontology utilization
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For example, in the node pair connected by a part_of or is_a edge, node 1 is narrower in scope

than node 2. Conversely, node 1 is broader in scope than node 2 when connected by a has_part

edge (Table 1, Fig 2). This edge is therefore reinterpreted by GOcats as part_of_some. While

the default scoping relations in GOcats are is_a, part_of, and has_part, the user has the option

to define the scoping relation set. For instance, one can create go-basic-like subgraphs from a

go-core version ontology by limiting to only those relations contained in go-basic. For conve-

nience, we have added a command line option, “go-basic-scoping,” which allows only nodes

with is_a and part_of relations to be extracted from the graph.

Fig 1. GOcats data flow diagram for creating categories of GO. A) GOcats enables the user to extract subgraphs of GO representing concepts as defined by

keywords, each with a root (category-defining) node. B) Subgraphs extracted by GOcats are used to create a mapping from all sub-nodes in a set of subgraphs

to their category-defining root node(s). This allows the user to map gene annotations in GAFs to any number of customized categories.

https://doi.org/10.1371/journal.pone.0220728.g001

Advances in gene ontology utilization

PLOS ONE | https://doi.org/10.1371/journal.pone.0220728 August 15, 2019 5 / 20

https://doi.org/10.1371/journal.pone.0220728.g001
https://doi.org/10.1371/journal.pone.0220728


Results

GOcats’ reinterpretation of the has_part relation increases the information

retrieval from GO and avoids potential misinterpretations of ambiguous

relationship inferences

GOcats reevaluates path tracing for the has_part edge to make it congruent with other rela-

tions that delineate scope. With path tracing unchanged, has_part edges lead to erroneous

term mappings unless they are completely excluded from the ontology. To evaluate the extent

of incorrect semantic interpretation conferred by has_part relations, we calculated all potential

false mappings (pMF) between nodes for a given GO sub-ontology by counting the number of

mappings from all children of a has_part edge to all parents of a has_part edge assuming the

original GO has_part edge directionality. Next, we compared the pMF to the total number of

true mappings (MT) for a given GO sub-ontology to evaluate the possible magnitude of their

impact (Methods, Eqs 1–5, Scripts Directory 1,2). As shown in Table 2, there are 23,640 pMFs

in Cellular Component, 8,328 pMFs in Molecular Function, and 89,815 pMFs in Biological

Process. Comparatively, the amount of pMFs is 42%, 13%, and 16% the size of the MT, in Cellu-

lar Component, Molecular Function, and Biological Process, respectively.

The conventional solution to avoid these errors is to use versions of ontologies that remove

edges like has_part. [13]. Considering the number of possible mappings between terms as a

measure of information content, we quantified the loss of information acquired when has_part

is omitted during mapping by subtracting the number of MT in graphs containing is_a, par-

t_of, and has_part edges from those with only is_a and part_of edges. As shown in Table 2,

Cellular Component lost 6,346 mappings, Molecular Function lost 6,242 mappings, and Bio-

logical Process lost 27,674 mappings, which equates to 11%, 10%, and 5% loss of information

Table 1. Frequency of relations in the gene ontology and suggested semantic correspondence classes to reduce ambiguity†.

Relationship Frequency in

GO (CC+BP

+MF)

Frequency in GO

CC

Frequency in GO

BP

Frequency in GO

MF

Correspondence Class Correspondence Members

is_a 72455 5591 54689 12175 Scoping (hyponymy) hyponym "is_a" hypernym

part_of 8613 1702 5751 1160 Scaling (meronymy) meronym "part_of" holonym

has_part 736 156 339 241 Scaling (meronymy) holonym "has_part"

meronym

happens_during 24 0 24 0 Spatiotemporal

(process-process)

process "happens_during"

process

ends_during 1 0 1 0 Spatiotemporal

(process-process)

process "ends_during"

process

occurs_in 181 0 180 1 Spatiotemporal (process-entity or

process-process)

process "occurs_in" entity

OR

process "occurs_in" process

regulates 3368 0 3322 46 Active (actor-subject) actor "regulates" subject

positively_regulates 2916 0 2880 36 Active (actor-subject) actor "positively_regulates"

subject

negatively_regulates 2937 0 2285 52 Active (actor-subject) actor "negatively_regulates"

subject

regulated_by‡ 0 0 0 0 Active (actor-subject) subject "regulated_by" actor

before‡ 0 0 0 0 Spatiotemporal

(prior-latter)

prior "before" latter

† GO-core data-version: releases/2016-01-12 (available in Scripts Directory)

‡ These relationships are not found in GO but are part of the Relations Ontology

https://doi.org/10.1371/journal.pone.0220728.t001
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in these sub-ontologies, respectively. It is important to note here that the mapping combina-

tions were limited to those nodes containing is_a, part_of, and has_part relations only. Because

paths in GO are heterogeneous with respect to relation edges, this loss of information is a

Fig 2. The has_part relation creates incongruent paths with respect to semantic scoping. Some tools may create questionable GO term mappings, i.e.

“nuclear envelope” to “plasma membrane,” since the has_part relation edges point in from super-concepts to sub-concepts. GOCats avoids this by re-

interpreting the has_part edges into part_of_some edges.

https://doi.org/10.1371/journal.pone.0220728.g002

Table 2. Prevalence of potential has_part relation mapping errors in GO.

Sub-Ontology Estimated Potential False

Mappings

(epMF)

True Mappings

(MT)

MT \ epMF Potential False Mappings

pMF = epMF—(MT \

epMF)

True Mappings without

HP

(IA_POMT)�

Lost Mappings

(MT—IA_POMT)�

Cellular

Component

30036 56025 6396 23640 49679 6346

Molecular Function 10074 62436 1746 8328 56194 6242

Biological Process 93092 555543 3277 89815 527869 27674

� IA_PO refers to a graph created with only is a and part of relationship edges.

https://doi.org/10.1371/journal.pone.0220728.t002
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lower-bound estimate since other relations exist that connect additional nodes, but in a man-

ner unusable for semantic correspondence interpretation. This is especially true for Biological

Process, which has many regulatory relations that were not evaluated here.

While the potential for false mappings are high considering the has_part relation alone, this

statistic does not illuminate the scale of the issue facing users of current ontology mapping

software. Importantly, it does not address a fundamental limitation and danger facing software

like map2slim (M2S) (http://search.cpan.org/~cmungall/go-perl/scripts/map2slim), which

non-discriminately evaluates relation edges. For example, terms linked by an active relation

like regulates, or by the has_part edge are categorized as if they are related by a scoping relation

like is_a. Therefore, we calculated the total number of possible mappings produced by M2S

and enumerated the intersection of these mappings against those made by GOcats which were

constrained to paths that contained only scoping relations, is_a, part_of, and has_part (Meth-

ods, Eqs 6 and 7). Overall, M2S made 325,180 GO term mappings, i.e. categorizations, which

did not intersect GOcats’ full set of corrected scoping relation mappings. We consider these

false mapping pairs (Mpair,M2S), since they represent a problematic evaluation of scoping

semantics. This contrasted with 710,961 correct mappings that intersected the GOcats map-

ping pairs (Mpair,GOcats) giving a percent error of 31.4%. Cellular Component, Molecular Func-

tion, and Biological Process contained 22,059, 29,955 and 273,166 erroneous mappings, which

accounted for respective percent errors of 30.7%, 34.8%, and 31.1% (Table 3).

GOcats’ reinterpretation of has_part relations provides improved

annotation enrichment statistical power

We incorporated GOcats-derived ontology ancestor paths (paths from fine-grained terms to

more general, categorical terms) into the categoryCompare version 1.99.158 [14] annotation

enrichment analysis pipeline and performed annotation enrichment on an Affymetrix micro-

array dataset of ER+ breast cancer cells with and without estrogen exposure [9]. We compared

these enrichment results to those produced when unaltered ancestor paths from GO—exclud-

ing the has_part relation—were incorporated into the same categoryCompare pipeline (Meth-

ods, Scripts Directory 3).
We also performed enrichment analyses comparing the ancestor traversals of DEseq2 dif-

ferential gene expression datasets across time points during the fetal development of two carti-

lage tissue types in Equus caballus (Methods, Scripts Directory 4).
Assessment of adjusted p-values from significantly enriched terms using GOcats’ paths ver-

sus the traditional method that omits has_part edges shows that GOcats reliably improves the

statistical significance of term enrichment results through its re-interpretation of has_part

Table 3. Summary of GO term mapping errors resulting from misevaluation of relations with respect to semantic scoping.

(Sub)

Ontology

Map2Slim

Mappings

(Mpair,M2S_ont)
�

GOcats Scoping

Mappings

(Mpair,Gocats_ont)
�

Potentially false Map2Slim Mappings

pMF,M2S = Mpair,M2S - (Mpair,M2S \

Mpair,Gocats_all)
�

Map2Slim Correct

Mappings

MT,M2S = Mpair,M2S \Mpair,

Gocats_all
�

Possible Map2Slim Error

Fraction

pMF,M2S / Mpair,M2S_ont

All GO 1036141 820467 325180 710961 0.314

Cellular

Component

71835 56025 22059 49776 0.307

Molecular

Function

86163 62436 29955 56208 0.348

Biological Process 878143 555543 273166 604977 0.311

� GOcats_all refers to GOcats-derived mapping pairs across all of GO, while GOcats_ont refers to GOcats-derived mapping pairs for the indicated ontology in each row.

https://doi.org/10.1371/journal.pone.0220728.t003
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relation semantics (Fig 3 and Table A in S1 File). In the breast cancer dataset, of the 217 signifi-

cantly enriched terms found using the traditional enrichment method at an alpha of 0.01 for

FDR-adjusted p-values, 182 had adjusted p-values that were improved when GOcats part_of_

some paths were used. This number of improved p-values is statistically significant as indi-

cated by a one-sided binomial test p-value of 1.86E-25 (i.e. 1.86 x 10−25).

Additionally, GOcats was able to identify 15 unique significantly-enriched terms at an

alpha of 0.01 for adjusted p-values that would otherwise be omitted due to the loss of has_part

edges (Table 4). Four of these terms involve purinergic nucleotide receptor activity, which has

been implicated elsewhere in other investigations related to breast cancer in both ER+ and ER-

breast cancer cell lines [15].

GOcats’ path tracing showed similar improvements when comparing p-values from GO

annotation enrichment derived from the differential gene expression analyses between horse

cartilage development time points (Table 5). In this analysis (see Methods), neighboring time

point analyses (early and late) were compared to extreme time point analyses (extreme)

(Table 6). The traditional enrichment method yielded between 82 to 233 total enriched terms,

with 67% to 92% of these terms’ adjusted p-values being improved when GOcats ancestor path

tracing was used. Quantifying the improvements in the p-values via a binomial test generates

p-values ranging from 1.32E-03 to 2.58E-44 (i.e 1.32 x 10−3 to 2.58 x 10−44). Even with a Bon-

ferroni multiple test correction, the adjusted p-value of the six binomial tests performed range

from 7.92E-03 and 1.55E-43.

Also, all but one of the binomial test p-values was below 6.22E-21; however, the comparison

of the fetal interzone tissue at 45 days of gestation to neonatal epiphyseal cartilage had drastically

fewer total enriched terms. Furthermore, GOcats was able to identify additional significantly-

enriched terms from the first and second neighboring time point analyses as compared to the

traditional method applied to the extreme analysis. GOcats extracts a notable number of

uniquely enriched terms from the individual time point comparisons (Table 6, UniqueEnriched-

TermsGOcats). A few of these enriched terms (Table 6, SupportedEnrichedTerms) are directly

supported by the traditional method enrichment of the extreme time point comparisons. In

Fig 3. Comparison of adjusted p-values for significantly-enriched annotations using GOcats paths vs excluding has_part edges.

Most significantly-enriched GO terms had an improved p-value when GOcats re-evaluated has_part edges for the enrichment of the

breast cancer data set in this investigation.

https://doi.org/10.1371/journal.pone.0220728.g003
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other words, the traditional method enrichment of the extreme time point comparisons provides

some ground truth for validating uniquely enriched terms detected by the GOcats enrichment

analysis of the nearest-neighbor time point comparisons.

Discussion

Issues with semantic correspondence

As early as the late 1980s, explicit definitions of semantic correspondence for a relation

between ontological terms have been stressed in the context of relational database design [16].

This includes concepts of part-whole (mereology), general-specific (hyponymy), feature-event,

time-space (i.e spaciotemporal relations), and others. OBO’s and GO’s ontological edges are

Table 4. Uniquely enriched terms between GOcats paths and traditional paths from the breast cancer dataset analysis.

GO Term Description Adjusted p-value Uniquely enriched in

GO:0035590 purinergic nucleotide receptor signaling pathway 0.000119296 GOcats

GO:0016502 nucleotide receptor activity 0.000103448 GOcats

GO:0035586 purinergic receptor activity 0.000129432 GOcats

GO:0036387 pre-replicative complex 6.03E-05 GOcats

GO:0042023 DNA endoreduplication 2.70E-10 GOcats

GO:0006313 transposition, DNA-mediated 1.31E-28 GOcats

GO:0031261 DNA replication preinitiation complex 5.55E-06 GOcats

GO:0032196 transposition 1.31E-28 GOcats

GO:0004888 transmembrane signaling receptor activity 0.006197782 GOcats

GO:0035587 purinergic receptor signaling pathway 0.000129432 GOcats

GO:0098039 replicative transposition, DNA-mediated 1.31E-28 GOcats

GO:0099600 transmembrane receptor activity 0.006197782 GOcats

GO:0001614 purinergic nucleotide receptor activity 0.000119296 GOcats

GO:0005656 nuclear pre-replicative complex 6.03E-05 GOcats

GO:0000988 transcription factor activity, protein binding 0.002944403 GOcats

GO:0051716 cellular response to stimulus 0.008043537 Traditional paths

GO:0007059 chromosome segregation 1.54E-06 Traditional paths

GO:0045005 DNA-dependent DNA replication maintenance of fidelity 0.001514676 Traditional paths

GO:0008094 DNA-dependent ATPase activity 0.000454406 Traditional paths

GO:0140097 catalytic activity, acting on DNA 6.04E-09 Traditional paths

GO:0050896 response to stimulus 0.000712619 Traditional paths

GO:1902969 mitotic DNA replication 0.001852706 Traditional paths

https://doi.org/10.1371/journal.pone.0220728.t004

Table 5. Binomial test results for GOcats vs no_hp enrichment for horse cartilage development time point comparisons.

Tissue Type Time Series Comparison Total

Enriched Terms

Enriched Terms with Lower

P-value with GOcats�
One-sided Binomial Test

Anlagen 45-day fetal to 60-day fetal (early) 228 183 6.22E-21

60-day fetal to neonatal (late) 140 129 5.31E-27

45-day fetal to neonatal (extreme) 158 139 5.01E-24

Interzone 45-day fetal to 60-day fetal (early) 82 55 1.32E-03

60 day fetal to neonatal (late) 233 196 1.23E-27

45-day fetal to neonatal (extreme) 233 215 2.58E-44

�The enriched terms with improved adjusted p-values from GOcats traversal.

https://doi.org/10.1371/journal.pone.0220728.t005
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directional insofar as their relations accurately describe how the first node relates to the second

node empirically, providing axioms for deriving direct semantic inferences. However, the

directionality of these edges is ambiguous in that they do not explicitly describe how the terms

relate to one another semantically in terms of scope, and this is due largely to the lack of

explicit semantic correspondence qualifiers.

A simple way to avoid mapping problems associated with non-scoping relation direction is

to omit those relations from the analysis. This strategy avoids incorrect scoping interpretation

at the expense of losing information. As an example, EMBL-EBI’s QuickGO term mapping

service omits has_part type under its “filter annotations” by GO identifier options [13]. Fur-

thermore, Bioconductor’s GO.db (https://bioc.ism.ac.jp/packages/3.3/data/annotation/html/

GO.db.html) also avoids mapping issues by indirectly omitting this relation; it uses a legacy

MySQL dump version of GO which does not contain relation tables for has_part. We argue

that while avoiding problematic relations altogether does prevent scope-specific mapping

errors, it also limits the amount of information that can be gleaned from the ontology. By elim-

inating has_part from graphs created by GOcats, we see a ~11% decrease in information

content (as indicated by a decrease in the number possible mappings) in Cellular Compo-

nent. Likewise, there is a 10% and 5% decrease of information content in Molecular Func-

tion and Biological Process, respectively (Table 2). Thus, omitting these relations from

analyses removes a non-trivial amount of information that could be available for better

interpretation of functional enrichment. However, the total impact is not completely appre-

ciated here, because not all relations were evaluated in this study; only the scoping relations

of is_a, part_of, and has_part. The potential for additional information loss is very high in

Biological Process, for example, when considering the large number of unaccounted rela-

tions: regulates, positively_regulates, and negatively_regulates (Table 1). These relations

add critical additional regulatory information to ontological graph paths, which would also

be lost when ignoring the has_part relation, if they occurred along a path that also contained

has_part. The same is also true for Molecular Function, although the frequency of addi-

tional, non-scoping relations are lower.

Furthermore, automated summarization of annotations enriched in gene sets requires a

more sophisticated evaluation of the scoping semantics contained in ontologies, which prior

tools are not fully equipped to provide. M2S is one widely-utilized GO term categorization

Table 6. Neighbor vs extreme time point comparison of enriched terms in horse cartilage development enrichment analyses.

Tissue type GO Term Set Terms in set

anlagen EarlyEnrichedTerms 50

EarlySupportedEnrichedTerms
��I 1

EarlyUniqueEnrichedTermsGocats
��I 49

LateEnrichedTerms 41

LateSupportedEnrichedTerms
��I 0

LateUniqueEnrichedTermsGocats
��I 41

Interzone EarlyEnrichedTerms 22

EarlySupportedEnrichedTerms
��I 3

EarlyUniqueEnrichedTermsGocats
��I 19

LateEnrichedTerms 81

LateSupportedEnrichedTerms
��I 3

LateUniqueEnrichedTermsGocats
��I 78

��I Sets defined in Eqs 8–11

https://doi.org/10.1371/journal.pone.0220728.t006
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method that is available as part of the OWLTools Java application (https://github.com/

owlcollab/owltools). The Perl version of M2S has been integrated into the Blast2GO suite since

2008 [17] and this gene function annotation tool has been cited in over 1500 peer-reviewed

research articles (Google Scholar as of Nov. 28, 2017). We verified that the Perl and Java ver-

sions of M2S produced identical GO term mappings for a given dataset and GO slim, and

therefore have the same mapping errors (Scripts Directory 2). Although the number of pMFs

reported in the results represent the upper limit of the possible erroneous mappings, the fact

that at least 120,000 of these exist in GO for the has_part relation alone or that the removal of

this edge type results in up to an 11% reduction of information content provide bounds on the

scope of the issue. To be clear, tools like M2S can be safe and not produce flawed mappings if

they are used alongside ontologies that contain only those relations that are appropriate for

evaluation, such as go-basic. However, we intentionally utilized go-core to illustrate the danger

in using tools that do not provide explicit semantic control on how ontologies are utilized.

GOcats represents a step toward a more thorough evaluation of the semantics contained

within ontologies by handling relations differently according to the type of correspondence

that they represent. In the case of relations such as has_part, this involves altering the corre-

spondence directionality for the task at hand, which is to organize terms into categories. As a

proof-of-concept, we classified the is_a, has_part, and part_of relations into a common “scop-

ing” correspondence type and hard-coded assigned graph path tracing heuristics to ensure

that they are all followed from the narrower-scope term to the broader-scope term. One caveat

of this approach is that because of previously mentioned issues in universality logic, the inverse

of has_part is not strictly part_of, but rather part_of_some. We argue that the highly unlikely

misinterpretation of universality in this strategy is preferable to the loss of information experi-

enced when using trimmed versions of ontologies for term categorization. To elaborate, most

current situations calling for term categorization involve gene enrichment analyses. Spurious

incorrect mappings through part_of_some edges would not enrich to statistical significance,

unless a systematic error or bias is present in the annotations. Even if a hypothetical term cate-

gorization resulted in enrichment of a general concept that was not relevant to the system in

question (i.e. “nucleus” enriched in a prokaryotic system), it would be relatively straight-for-

ward to reject such an assignment by manual curation and find the next most relevant term.

Conversely, it is not reasonable to manually curate all possible missed term mappings resulting

from the absence of an edge type in the ontology.

Another potential complication in semantic correspondence of relations is that some rela-

tions are inherently ambiguous. The clearest example of this again can be found in the well-uti-

lized part_of relation. This relation is used to describe relations between physical entities and

concepts (e.g. “nuclear envelope” part_of “endomembrane system”) and between two concepts

(e.g. “exit from mitosis” part_of “mitotic nuclear division”) with no explicit distinction. To

address the former issue, future work will augment our use of hard-coded categorization of

semantic correspondences through the development of heuristic methods that identify and

categorize these among the hundreds of relations in the Relations Ontology (http://www.

obofoundry.org/ontology/ro.html) [18]. As a good starting point, we suggest using five general

categories of relational correspondence for reducing ambiguity (Table 1): scope (hyponym-

hypernym), mereological, a subclass of scope (meronym-holonym), spatiotemporal (process-

process, process-entity, entity-entity), active (actor-subject), and other.

Using GOcats for annotation enrichment

While we reported the loss of information available for annotation enrichment with has_part

excluded from GO and quantified the effect of incorrect inferences that can be made if
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has_part is included in GO during enrichment, these results only represent hypothetical effects

that might be overcome when GOcats reinterprets this relation. One of GOcats’ original

intended purposes was to improve the interpretation of results from annotation enrichment

analyses. However, in the process of designing heuristics to appropriately categorize GO termi-

nology, we also sought to overcome the limitations that come with following the traditional

methods of path tracing along relations in GO. Here we focused on overcoming the loss of

information encountered when ignoring has_part relations. Our solution was to re-evaluate

these relations under the logic of part_of_some and invert the direction of has_part. While this

re-interpretation is limited in usage, we believe that, in the scope of annotation enrichment, it

is valid for reasons previously explained.

Our first evaluation of enrichment results compared GOcats ancestor paths to traditional

GO ancestor paths in the enrichment analysis of an older, publicly-available microarray breast

cancer dataset, generated from an Affymetric HG-U95Av2 array which only covered 9000

genes. With this comparison, we demonstrate a highly statistically significant improvement

(p-value = 1.86E-25) in the statistical power of annotation enrichment analysis. Specifically,

182 out of 217 significantly enriched GO terms from the traditional analysis had improved p-

values in the GOcats-enhance enrichment analysis. Importantly, we also detect significantly

enriched GO terms in the GOcats’ results that were not detected using the traditional analysis.

The inclusion of the re-interpretation of has_part edges allowed for the significant enrichment

(adjusted-p-value < 0.002 with FDR set to 0.01) of four terms related to purinergic nucleotide

receptor signaling which has been associated with ER+ MCF-7 breast cancer cell proliferation

[19,20]. Furthermore, purinergic nucleotide receptor signaling has been implicated in predict-

ing breast cancer metastasis in other studies; however, these studies involved ER- metastatic

breast cancer cell lines [21]. We again confirmed this effect in our evaluation of GO annotation

enrichment results of recently collected, RNAseq horse cartilage development datasets. Here

we saw an improvement in 67% to 92% of enriched terms across the six time point enrichment

analyses. Fundamentally, the addition of part_of_some interpretation of has_part relations

improves the statistical power of the annotation enrichment analysis, allowing the detection of

additional enriched annotations with statistical significance from the same dataset. In addition,

the GOcats annotation enrichment analysis extracts a notable number of uniquely enriched

annotations from the neighboring, individual time point differential gene expression analyses.

Some of these uniquely enriched terms are directly supported by the traditional annotation

enrichment analysis of the extreme time point differential gene expression analyses (Table 6).

These results on multiple datasets involving two separate experimental designs using both

older and newer transcriptomics technologies demonstrate the ability of utilizing GOcats-aug-

mented ontology paths to derive additional information from annotation enrichment analyses.

While these results demonstrate an improvement in statistical power of annotation enrich-

ment analyses, no data analysis method can address unknown bias in a dataset. Bias that leads

to confounding factors is best addressed at the point of experimental design, but sometimes

the effects from identified confounding factors can be mitigated after the experiment is per-

formed during data analysis [22].

To conclude, GOcats enables the simultaneous extraction and categorization of gene and

gene product annotations from GO-utilizing knowledgebases in a manner that respects the

semantic scope of relations between GO terms. It also allows the end-user to organize ontologies

into user-defined biologically-meaningful concepts—a feature that we have explained elsewhere

[12]. This categorization lowers the bar for extracting useful information from exponentially

growing scientific knowledgebases and repositories in a semantically safer manner. In sum-

mary, GOcats is a versatile software tool applicable to data mining, annotation enrichment anal-

yses, ontology quality control, and knowledgebase-level evaluation and curation.
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Materials and methods

Evaluating hypothetical false mapping and true mapping pairs in GO

involving the has part relation

To determine how significant mapping issues are because of semantic scope inconsistencies

with has_part relations, we built the GO graph, data-version: releases/2016-01-12 using only

the scoping relations is_a, part_of, and has_part edges, while omitting other relation edges in

the graph, such as regulates, happens_during, and ends_during. Next, we counted the number

of potential false mappings (pMF) that could result if has_part was left in its unaltered direc-

tionality; i.e. the edge directionality that currently exists in GO. To accomplish this, we define

sets of potentially problematic ancestors (PAe) for every has_part edge (e) as

PAe ¼ fAechild þ echildg � fAepar þ eparg ð1Þ

where Aechild and Aepar are sets of nodes that are ancestors of the edge’s child and parent

nodes, respectively, and echild and epar are the edge’s parent and child nodes. Similarly, we

define the potentially problematic descendants (PDe) for every has_part edge (e) as

PDe ¼ fDepar þ eparg � fDechild þ echildg ð2Þ

where Depar and Dechild are sets of nodes that are descendants of the edge’s parent and child

nodes, respectively. We then calculate the potential mappings that can occur across each edge,

e by the following:

pMF;e ¼ fðd; aÞjd 2 PDe; a 2 PAeg ð3Þ

The total number of potential false mappings that can result from an edge type, in this case the

has_part relation, is given by

pMF ¼ j
Sn
e¼1
pMF;ej ð4Þ

Finally, we calculate the number of total possible true mappings (MT) between any two arbi-

trary nodes (n1, n2) in a given sub-ontology graph (G) in GO:

MT ¼ jfn1anc \ n2descjn1 2 G; n2 2 Ggj ð5Þ

In Eq 6, we used GOcats to calculate the possible number of true mappings while considering

is_a, part_of, and re-evaluated has_part (part_of_some) relations in GO.

Evaluating hypothetical false mappings encountered when the unaltered

has_part relation is parsed with Map2Slim

The Java implementation of OWLTools’ Map2Slim (M2S) does not include the ability to out-

put a mapping file between fine-grained GO terms and their GO slim mapping target from the

GAF that is mapped. To identify target ancestor terms of individual GO terms, we created a

special custom GAF where the gene ID column and GO term annotation column of each line

were each replaced by a different GO term for each GO term in Cellular Component, data-ver-

sion: releases/2016-01-12. We then allowed M2S to map this GAF with a provided GO slim.

The resulting mapped GAF was parsed to create a standalone mapping between the terms

from the GO slim and a set of the terms in their subgraphs. Because M2S’s custom term list

option removes terms subsumed by other mappings, we were forced to also perform separate

mappings for each GO term; e.g. the entire GO was mapped to one GO term at a time for each

~44,000 terms. These computations were done in parallel on a small TORQUE-managed

Advances in gene ontology utilization

PLOS ONE | https://doi.org/10.1371/journal.pone.0220728 August 15, 2019 14 / 20

https://doi.org/10.1371/journal.pone.0220728


Linux cluster to complete the calculations in a reasonable amount of time. We combined and

converted the results into a set of ordered term pairs (Mpair,M2S), where the first position is the

mapped term and the second position is the term to which the first is mapped; self-mappings

were ignored. Using the GOcats’ evaluation of the three scoping relations, is_a, part_of, and

has_part, to create the “correct” set of mappings in a scoping paradigm, we defined the set of

potentially false M2S mappings (pMf,M2S) as

pMf ;M2S ¼ fMpair;M2Sg � ðfMpair;M2Sg \ fMpair;GOcatsðscopingÞgÞ ð6Þ

where Mpair,GOcats(scoping) is the set of ordered GO term mapping pairs produced from GOcats,

under the constraint that only scoping relations were used in the graph (is_a, has_part, and

part_of). The ratio of potential false scoping-type mappings to correct scoping mappings pro-

duced by M2S (M2Serror) is given by

M2Serror ¼
jpMf ;M2Sj

jfMpair;GOcatsðscopingÞgj
ð7Þ

To look specifically at individual sub-ontologies, we filtered the M2S mapping pairs to those

where both terms were a member of each sub-ontology. These were also intersected with the

full set of GOcats mapping pairs. Scripts for generating these results can be found in Scripts

Directory 1.

Comparing mapping functionality between the Java and Perl versions of

Map2Slim

To ensure that the same mapping errors encountered using the Java version of M2S, which is

integrated in OWLTools, are also present in the Perl version of M2S (http://search.cpan.org/~

cmungall/go-perl/scripts/map2slim), which is integrated in Blast2GO, we tested whether the

mapping functionality was consistent between the two versions. Since the Perl version only sup-

ports GO slims and does not support custom specification of a list of GO terms, we compared

the output of each version’s mapping of the HPA-sourced knowledge data to the “generic” GO

slim dataset (http://geneontology.org/page/go-slim-and-subset-guide). Since some minor GAF

formatting differences exist between the output files, we wrote a script to directly compare the

gene-to-GO annotation mappings made by each version (Scripts Directory 2).

Annotation enrichment analysis of breast cancer dataset

To evaluate the effects that GOcats ancestor paths had on real data, we performed GO annota-

tion enrichment using categoryCompare [14]—and an updated version of the GO graph, data-

version: releases/2017-12-02—on an Affymetrix microarray dataset of ER+ breast cancer cells

with and without estrogen exposure [9]. In this dataset, we ignored time point information

and only considered data associated with the presence and absence of estrogen exposure.

The categoryCompare package can consider GO ancestor terms for annotated terms in the

experimental dataset when calculating enrichment. We therefore created two mapping dictio-

naries in Python where a key of each term in GO maps to a set of its ancestor terms in the GO

graph. For the traditional method of inferring ancestors, we created this mapping from a ver-

sion of the GO graph with the has_part relation omitted. For testing GOcats’ effect on enrich-

ment, we created a version of this mapping with the has_part relation re-interpreted as

part_of_some. We applied these ancestor mappings to all annotations in the human GOA

database, generated: 2017-11-21 08:07 [23]. R scripts and Python scripts for generating the

enrichment results can be found in Scripts Directory 3.
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To compare FDR-adjusted (target FDR = 0.01) p-values between enrichment results pro-

duced by GOcats ancestors and traditional ancestors, we filtered the enriched terms identified

by the traditional method with an alpha cutoff of 0.01 and counted the number of terms identi-

fied by GOcats’ analysis whose adjusted p-value was less than the traditional analysis. Identical

adjusted p-values were ignored. We then performed a one-sided binomial test (i.e. “coin-toss

analysis” with directional change from 0.5) comparing the number of significantly enriched

adjusted p-values that improved with GOcats versus total number of enriched terms found in

the traditional analysis (with identical adjusted p-values excluded). To identify uniquely

enriched terms found using the GOcats-enhanced enrichment analysis, we compared the sets

of significantly enriched terms (alpha cutoff 0.01 for adjusted p-values) in each enrichment

results table and selected terms only found in the GOcats-enhanced set.

Annotation enrichment analysis of horse cartilage development dataset

To further test the effects that GOcats’ ancestor path tracing has on term enrichment, we again

performed GO annotation enrichment using categoryCompare [14] applied to differentially-

expressed genes identified by DESeq2 from RNAseq datasets derived from developing equine

cartilaginous tissues (interzone and anlagen) across two gestational time points and their neo-

natal derivatives (articular cartilage and epiphyseal cartilage, respectively). The time points

were fetal interzone tissue at 45 days of gestation (iz_45); fetal anlagen tissue at 45 days

(anl_45); fetal interzone tissue at 60 days of gestation (iz_60); anlagen fetal tissue at 60 days

(anl_60); neonatal articular cartilage (ac_neo); and neonatal epiphyseal cartilage (epi_neo). At

least six biological replicates were acquired for each tissue type and time point (separate horse

fetuses from similar breeds) with RNA-seq readings of 30–40 million reads per sample.

We downloaded horse gene annotations from AgBase [24] and built two full ancestor anno-

tation mappings for each gene, one using GOcats’ re-evaluation of the has_part relation and

the other using the traditional method of omitting the has_part relation altogether.

For each pairwise time point comparison from the DESeq2 analyses (IZ/ANL_45-IZ/

ANL_60, IZ/ANL_60-AC/Epi_neo, or IZ/ANL_45-AC/Epi_neo), we selected positively- or

negatively-changing genes by filtering to those changing genes which had an adjusted p-

value� 0.01. Based on the sign of each gene’s fold expression from the dataset we classified

these genes into categories for categoryCompare as “positive”, “negative”, or “all” (either posi-

tively or negatively changing in expression). Enrichment was performed on each of these three

categories for each three pairwise time point comparisons (early, late, and extreme) for each

two tissue types using two ancestor mappings: GOcats’ and the traditional omission of has_-

part, yielding 36 total enrichment analyses.

Using the enrichment results from the “all” category for each pairwise time point compari-

son and tissue type, we again evaluated the improvement in the adjusted p-value seen using

the GOcats’ ancestors when compared to the traditional method of mapping ancestors using a

binomial test (see Annotation enrichment analysis of breast cancer dataset).
In addition to the “positive”, “negative”, and “all” gene sets identified from the individual

pairwise time point analyses, we also defined special gene sets relating to the scope of the

whole time series. These were defined as i) early: those genes that significantly increased or

decreased in fold-change during the iz/anl_45-iz/anl_60 time point comparison but did not

significantly change in the iz/anl_60-ac/epi_neo time point comparison, ii) late: those genes

that did not have a significant fold-change in the iz/anl_45-iz/anl_60 time point comparison

but did significantly change in the iz/anl_60-ac/epi_neo time point comparison, and iii) tran-

sient: those genes that significantly change during the iz/anl_45-iz/anl_60 time point compari-

son but then significantly change in the opposite direction during the iz/anl_60-ac/epi_neo
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time point comparison and iv) consistent: those genes that experience fold change in expres-

sion consistently throughout the time series. We also divided each of these whole time series

gene sets into positive and negative sets corresponding to the sign of the fold-change. In the

case of transient, the directionality corresponds to the fold change in the first, iz/anl_45-iz/

anl_60 time point comparison.

To evaluate GOcats’ potential to improve the statistical power of annotation enrichment,

we compared early and late time point annotation enrichments derived from GOcats ancestor

traversal to the extreme time points annotation enrichment derived from traditional ancestor

traversal. Here we define the following sets of annotations for each tissue type evaluated:

EarlyUniqueEnrichedTermsGocats ¼ 45 to 60Gocats � 45 to 60no hp � Transientno hp ð8Þ

The 45_to_60GOcats and 45_to_60no_hp variables are the sets of GO terms identified when com-

paring the iz/anl_45 time point to the iz/anl_60 time point using GOcats or the traditional

ancestor mapping method of ignoring the has_part relation, respectively. Transientno_hp is the

set of enriched terms categorized as transient for the whole time series using the traditional

ancestor mapping method.

EarlySupportedEnrichedTerms ¼ EarlyEnrichedTermsGOcats \ Consistentno hp ð9Þ

Consistentno_hp is the set of enriched terms categorized as consistent for the whole time series

using the traditional ancestor mapping method.

LateUniqueEnrichedTermsGocats ¼ 60 to neoGocats � 60 to neono hp � Transientno hp ð10Þ

The 60_to_neoGOcats and 60_to_neono_hp variables are the sets of GO terms identified when

comparing the iz/anl_60 time point to the ac/api_neo time point using GOcats or the tradi-

tional method of ignoring the has_part relation, respectively.

LateSupportedEnrichedTerms ¼ LateEnrichedTermsGOcats \ Consistentno hp ð11Þ

RNASeq analysis of horse cartilage development time points

Tissue samples were collected across six experimental groups (Table 7) and compared for dif-

ferential gene expression at a transcriptome level using mRNA sequencing. Sample collection

methods have been described previously [10,25] and were conducted in accordance with an

approved University of Kentucky Institutional Animal Care and Use Committee protocol (#

2014–1215). Total RNA was isolated using a commercial kit (Qiagen RNeasy Micro Kit, cat#

74004) after homogenization on ice as previously described [26]. Following ethanol precipita-

tion and re-solubilization in sterile distilled water, the total RNA was quantified using a fluoro-

metric assay (Qubit, Life Technologies, Q10210, Q32852) and assessed for chemical

contaminants using a spectrophotometer (NanoDrop ND 1000) and for structural integrity

with a Bioanalyzer 2100 (Agilent Technologies, Eukaryotic Total RNA Nano & Pico Series II).

Table 7. Comparison of equine fetus tissue samples.

Sample Description Age Tissue source

Equine Fetus Interzone (n = 7) 45–46 days gestation Carpal and tarsal joints

Anlage (n = 6) Metaphysis of distal humerus and femur

Equine Fetus Interzone (n = 7) 57–66 days gestation Carpal joints

Anlage (n = 7) Metaphysis of distal humerus and femur

Equine Neonate Articular cartilage (n = 7) 0–9 days postnatal Femorotibial joint

Epiphyseal cartilage (n = 7) Proximal tibia

https://doi.org/10.1371/journal.pone.0220728.t007
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All RNA samples met quality thresholds of 260/280 absorbance ratios of 1.7–2.0, 260/230

absorbance ratios of 1.8–2.1, and an Agilent RNA integrity number (RIN) of� 7.0.

RNAseq libraries were constructed using the TruSeq HT Stranded RNA Sample Prepara-

tion Kit (Illumina San Diego, CA). PolyA+ RNA was selected from 1 μg of total RNA and first-

strand synthesis performed using random hexamer primers and SuperScript II reverse tran-

scriptase (Life Technologies). Resulting double-stranded cDNA was then blunt-ended and

ligated to indexed adaptors, followed by PCR amplification for 12 cycles with Kapa HiFi poly-

merase (Kapa Biosystems, Woburn, MA). Libraries were initially quantitated using Quant-it

(Life Technologies, Grand Island, NY) and the average size determined on an AATI Fragment

Analyzer (Advanced Analytics, Ames, IA). They were then diluted to a final concentration of

5nM and further quantitated by qPCR on a BioRad CFX Connect Real-Time System (Bio-Rad

Laboratories, Inc. CA).

Strand-specific sequencing was performed using a paired-end mRNA-seq protocol (http://

www.illumina.com/technology/paired_end_sequencing_assay.ilmn) at the Roy J. Carver Bio-

technology Center, University of Illinois at Urbana-Champaign. A minimum of 30 million

reads were generated for each sample, trimmed (Trimmomatic Version 0.36, http://www.

usadellab.org/cms/?page=trimmomatic), and then mapped to the equine reference genome

(EquCab2.0, chromosomes 1–31, M, X, and Un, NCBI Annotation Release 102) using MapS-

plice 3.0 Beta [27]. Default settings were used. Steady state levels of mRNA levels were com-

pared between the six experimental groups at all protein-coding gene loci structurally

annotated in the equine genome (EquCab2.0, NCBI Annotation Release 102) by DESeq2 anal-

ysis [28]. DESeq2 modeled the read count data using negative binomial distribution and per-

formed the statistical testing for differential gene expression. The analysis returned a p-value

determined by Wald statistics and an adjusted p-value (to apply corrections for multiple com-

parisons testing). The Benjamini-Hochberg multiple-test correction was applied to evaluate

the false-discovery rate (FDR). The DESeq2 identified 5572 (ANL_45 to ANL_60), 5464

(ANL_45 to Epi_neo), 7049 (ANL_60 to Epi_neo), 9929 (IZ_45 to IZ_60), 9975 (IZ_45 to

AC_neo), and 8329 (IZ_60 to AC_neo) differentially expressed genes, which have an adjusted

p-value < 0.01 after multiple testing corrections.

Scripts and snakemake [29] workflows for performing these analyses can be found in

Scripts Directory 4 in the FigShare directory available at. https://figshare.com/s/

9d55b2e5932992e6a068

Supporting information

S1 File. Comparing adjusted p-values between omitted has_part and GOcats part_of_some

edges.
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