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ABSTRACT OF DISSERTATION 

AN ASSESSMENT OF KENTUCKY BIRTH RECORDS FOCUSING ON EARLY-

ONSET HYPERTENSIVE DISORDERS OF PREGNANCY, ENVIRONMENTAL 

METAL EXPOSURES, AND GEOCODING PRECISION, 2008-2017 

 

Using live and stillbirth records from Kentucky (2008-2017), this dissertation 

assessed the county-level prevalence and geospatial patterns of early-onset hypertensive 

disorders of pregnancy (eHDP); examined the geocoding precision of addresses recorded 

on birth records, and evaluated the association between individual risk factors and 

environmental metal exposures on eHDP prevalence. After adjusting for maternal 

demographic factors and pre-existing health conditions, we observed that eHDP 

prevalence was 38% higher (aPR=1.38, 95%CI:1.16, 1.64) in counties with the highest 

prevalence of married women (>53.8%) compared to lower prevalence areas (<43%). We 

also found that counties with the highest prevalence of maternal obesity (>31.6%) had a 

20% higher prevalence of eHDP(aPR=1.20, 95%CI:1.00, 1.44) compared to counties 

with lower obesity prevalence (<22.6%) after adjustment. We also identified two county-

level clusters of eHDP in Appalachia. In the assessment of geocoding, we found that 

while address geocoding precision has improved over time, addresses of rural Black 

women were more likely to imprecisely geocode (aOR=1.41, 95%CI:1.22, 1.62) than 

rural White women. Adjusting for geocoding imprecision, we further assessed 

demographic and environmental factors associated with eHDP prevalence by augmenting 

records with census micro-block group toxicity concentration estimates of arsenic, 

cadmium, chromium, lead, and mercury from the Risk Screening Environmental 

Indicators (RSEI) model. Using a latent class analysis, we identified four classes of metal 

exposures. After adjusting for geocoding, imprecision, maternal demographics, and pre-

existing health conditions, we found that women with a higher probability of lead and 

chromium exposure had a 22% higher prevalence of eHDP (aPR=1.22, 95%CI:1.04, 

1.44) compared to women with a low probability of exposure to other considered metals. 

This study indicates an association between lead, chromium, and eHDP, even after 

adjusting for important covariates. Further research refining the use of RSEI scores and 

other exposures in association with eHDP is needed. 
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CHAPTER 1. INTRODUCTION 

Hypertensive disorders of pregnancy (HDP) accounted for 6.6% of maternal deaths from 

2014-2017 in the US, making HDP a leading cause of morbidity and mortality in mothers 

and infants. 1,2 Subsets of this disorder include gestational hypertension (GH), pre-

eclampsia (PE), pre-eclampsia with Hemolysis, Elevated Liver Proteins (PE + HELLP), 

superimposed pre-eclampsia, and eclampsia. These subsets are often progressive and 

include severe maternal outcomes such as placental abruption, pulmonary edema, stroke, 

and renal failure. 3,4 Long-term, women have an increased risk of cardiovascular and 

metabolic diseases. 5 Treatment options are limited, and often the only effective remedy 

is delivery of the placenta, which can be problematic in early-onset HDPs, as it increases 

the risk of poor outcomes for the infant. 5,6 

Between 1980 and 2003, the prevalence of HDP in the United States increased by 

25%, with southern US states identified as having notably elevated prevalence. 7-9 In a 

one-year study assessing national trends, Kentucky was identified as having the 8th 

highest prevalence of HDP. 7 Overall, HDP is estimated to impact 8-10% of all 

pregnancies. Late-onset, or symptom manifestation after 34 weeks, is estimated to affect 

2.7% of all pregnancies. Early-onset, characterized by symptoms manifesting before 34 

weeks, is considered more severe and impacts approximately 0.38% of all pregnancies. 

10,11 

Risk factors for HDP include primiparity, advanced maternal age, obesity, race, 

and use of infertility treatment; however, recent studies have suggested that risk factors 

for HDP, particularly PE, may need further refining, as there may be separate risk 

profiles for those who experience symptom earlier in their pregnancy. 6,12,13 Preliminary 

research suggests that environmental factors, such as exposure to arsenic, cadmium, 

chromium, lead, and mercury may also be associated with an increased risk of HDP. 14-21 

Long-term studies have found that arsenic (As), cadmium (Cd), chromium (Cr), 

lead (Pb), and mercury (Hg) are associated with cardiovascular disease (CVD) in non-

pregnant adults; however, studies assessing acute effects, such as HDP, have had 

inconsistent findings. 22-24 Nonetheless, studies have demonstrated that close proximity to 
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industrial activity and dense road networks are associated with increased levels of toxic 

chemicals of concern 25-29 and increased risk of poor health outcomes such as 

cardiovascular disease and HDP. 30-33 

These conflicts, in part, may be due to the wide range of environmental sampling 

techniques and available data sources. 34 While some studies extrapolate exposure 

estimates based on sampling stations, and others may use Toxic Release Inventory data 

(TRI), a dataset of industrial emission estimates complied by the EPA,  or conduct their 

own sampling. While the latter may be the gold standard, there may be limited resources 

to conduct robust environmental sampling. The TRI dataset, although robust, is an 

unadjusted dataset that contains estimated emissions, by volume, of specific chemicals 

tracked by the EPA and reported by mandated reporting facilities. To increase the 

usability of the TRI data, the EPA created the  Risk Screening Environmental Indicators 

(RSEI) model. The RSEI model utilizes Toxic Release Inventory (TRI) emission reports 

to estimate the average toxicity concentrations of a given chemical in 810 m x 810 m 

grids across the United States. These grids are then overlayed with geographic boundary 

files to provide estimates at a census micro-block group (CMBG), census tract, ZIP code, 

and county level. Using the TRI emissions data for tracked chemicals from each emission 

site, RSEI creates toxicity concentration estimates adjusted for the fate and transport of 

the chemical throughout the environment, meteorological conditions, and site 

characteristics (when available) in the medium in which it is released. 35 Further details 

on RSEI methodology are available in the RSEI documentation. 35 

Emissions data with high spatial resolution may lead to the implicit assumption 

that the linked health records have a similar precision. However, the precision of 

geocoding coordinates can range substantially. Coordinates can be as precise as the 

rooftop of the address to as broad as the midpoint of a city. Further, previous studies 

evaluating geocoding precision have observed demographic characteristics associated 

with the record – such as race or ethnicity – or the population density of the residential 

area, factors often associated with disease status and severity are also associated with 

geocoding imprecision. 36,37 Exploratory models have found that imprecise geocoding can 

lead to misidentification of spatial clusters, biased results, and erroneous conclusions. 38,39  
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The following chapters seek to address some of the described gaps by exploring 

the county-level prevalence and geographic distribution of eHDP, independent risk 

factors, and assessing the geocoding precision of maternal addresses obtained from birth 

records. Chapter two, ” Geocoding precision of birth records from 2008 to 2017 in 

Kentucky, USA,” focuses on the geocoding precision of birth records in Kentucky across 

rural-urban continuum codes (RUCCs) and sociodemographic factors associated with 

poor geocoding quality. In the third chapter, “County prevalence and geospatial trends of 

early-onset hypertensive disorders of pregnancy in Kentucky, 2008-2017,” county-level 

estimates of eHDP are presented, clusters of eHDP in the state are discussed, and 

covariates associated with an increased prevalence of eHDP are identified. The fourth 

chapter, “A cross-sectional examination of the association of environmental metal 

exposure with early-onset hypertensive disorders of pregnancy in Kentucky, 2008-2017”, 

explores the geospatial patterns of environmental emissions of arsenic, cadmium, 

chromium, lead, and mercury in Kentucky. Then, using a latent class analysis to identify 

subgroups of metal exposure, this study characterized the patterns within metal exposure 

classes and further assessed individual risk factors and environmental metal exposures on 

eHDP prevalence.  
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CHAPTER 2. GEOCODING PRECISION OF BIRTH RECORDS FROM 2008 TO 

2017 IN KENTUCKY 

2.1 Abstract  

Maternal address information captured on birth records is increasingly being used 

to estimate residential environmental exposures during pregnancy. However, there has 

been limited assessment of the geocoding precision of birth records, particularly since the 

adoption of the 2003 standard birth certificate in 2015. To address this gap, this study 

evaluated the geocoding precision of live and stillbirth records of Kentucky residents 

over ten years – from 2008-2017. This study summarized the demographic characteristics 

of imprecisely geocoded records and, using a bivariate logistic regression, identified 

covariates associated with poor geocoding precision among three population density 

designations – urban, non-metro, and rural. We found that in urban areas, after adjusting 

for area deprivation, education, and the physical attributes of both parents, records for 

Black mothers had a 48% reduction in the odds of imprecise geocoding (aOR=0.52, 95% 

CI: 0.48, 0.56), while Black women in rural areas had a 96% increase in the odds of 

imprecise geocoding (aOR=1.96, 95% CI: 1.68, 2.28). This study also found that over the 

study period, rural and non-metro areas began with a high proportion of imprecisely 

geocoded records (38% in rural areas, 19% in non-metro), but both experienced an 8% 

decline in imprecisely geocoded records over the study period (aOR=0.92, 95% CI: 0.92, 

0.94). This study shows that, while geocoding precision has improved in Kentucky, 

further work is needed to improve geocoding in rural areas and address racial and ethnic 

disparities.  

2.2 Introduction 

To assess retrospective environmental exposures during pregnancy, health 

researchers are increasingly employing US birth records as a source of residential 

information. However, studies evaluating birth record data quality predominantly focus 

on health information - the quality of address data are less frequently discussed in applied 

health research; although many of these studies employ geocoded address information to 

assess geospatial patterns of disease or evaluate residential environmental exposures 38-41. 
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Understanding the quality of residential address information, specifically the precision of 

geocoded addresses, is vitally important, as imprecise geocoding can result in records 

being assigned to an incorrect geographic location – leading to biased results and 

erroneous conclusions 38,39. Of further concern is the evidence suggesting maternal 

demographic characteristics, notably race and ethnicity, are associated with the 

geocoding precision 37.  

Geocoding assigns geographic coordinates to an address, using components such 

as address number, street name, city, state, or ZIP code 42-44. Input addresses are 

compared to a reference dataset that contains street segments with address ranges and 

verified coordinates. Coordinates from the reference dataset are matched to the 

corresponding record of the input dataset 41. These matches may be as precise as the 

'rooftop' of the actual residential structure or within a small range, e.g., a location along a 

street segment based on the address range of that segment. Addresses missing 

components, such as the address or apartment number, or contain errors that prevent a 

sufficiently probable address match are assigned less precise coordinates that correspond 

to the mid-point (centroid) of the spatial resolution to which they were matched. Issues 

that can impede geocoding include spelling errors, use of special characters, neglected or 

incorrect suffixes (drive, lane, etc.), incorrect ZIP codes, or inaccurate or absent 

apartment numbers or complex names. Rural areas can pose additional challenges as rural 

or hired contractor routes have limited coordinate data. However, this may be less of an 

issue in future geocoding projects as the precision of e911 databases continue to expand 

and the increasingly common practice to assign specific addresses 36. Overall, geocoding 

85% or more addresses to either a rooftop or a street segment is considered a benchmark 

for high quality 45. 

Many studies that employ geocoding to assign exposure status do not often report 

the proportion of records that geocoded imprecisely or the methods used to address 

imprecision and limit potential bias. 37,40,46 There has also been limited analyses of 

maternal characteristics that could be associated with poor geocoding precision – such as 

race, ethnicity, or education – which are factors that are also associated with disease 

status and severity.  This cartographic confounding, or association between disease status 

and exposure, can bias spatial analyses, as imprecise records may be assigned incorrect 
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geographic locations which could result in systematic exposure misclassification if one 

group has a higher probability of imprecisely geocoding.   

To address existing gaps in the literature, this study sought to describe the 

demographic characteristics of imprecisely geocoded records, identify covariates 

associated with imprecise geocoding, and explore regional variations in geocoding 

precision by examining maternal residential data from Kentucky birth records from 2008 

through 2017. We believe that there may be a difference among metropolitan status 

regions, demographic characteristics and between the Appalachian and non-Appalachian 

region.  

2.3 Materials and methods 

2.3.1 Data source and study population 

Kentucky Vital Statistics provided individual records of all live and stillbirths of 

Kentucky residents from January 1, 2008, through December 31, 2017. These records 

contained maternal addresses, maternal and paternal demographic information (age, race, 

ethnicity, education), self-reported marital status, maternal health information (height, 

pre-pregnancy weight), previous pregnancy history (parity), and characteristics of current 

pregnancy (birthplace, prenatal care, and plurality). Although live and stillbirth forms 

differ slightly, all variables used in this study were captured on both certificates.  Non-

singleton birth records were excluded to reduce the number of duplicate addresses 

(n=18,628), leaving 538,117 records for analysis.   

2.3.2 Address-matched geocoding  

We geocoded the maternal address using the ESRI Address Coder 10.7.1 (ESRI, 

Redlands, CA, USA). Address match score, or the level of agreement needed to match an 

address, was set at the program default of 93%. Geocoding outcomes were classified as 

precise (address point/street segment) or less precise (street name, ZIP code, city, or 

unknown). Addresses matched to a street name, city, or ZIP code were reviewed for 

spelling errors, inappropriate characters (for example, "0'Mally" rather than "O'Mally"), 

or neglected or incorrect designations (e.g., road vs. boulevard) (N=30,879). After 

corrections and re-geocoding, 14.5% (N=4,608) of addresses that had initially been 

imprecisely geocoded were geocoded to a point or street segment. 
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2.3.3 Covariates 

Maternal age in years was grouped into quartiles (<23, 23-25, 26-30, >30, 

unknown), as was paternal age (<24, 25-28, 29-33, >33, unknown). Due to small cell 

counts, race was classified into four categories (Black, White, Other, unknown). Maternal 

body mass index (BMI) was calculated using height and pre-pregnancy weight recorded 

on the birth record. Using standard classifications, BMI was then grouped into four 

categories: underweight (<18.5 kg/m2), normal (18.5-24.9 kg/m2), overweight (25.0-29.9 

kg/m2) and obese (>30.0 kg/m2). Appalachian designation, defined by the Appalachian 

Regional Commission (2020) (ARC), was assigned based on the geocoded county of 

residence.  Rural-urban continuum codes (RUCC) from the United States Department of 

Agriculture were classified into three categories: rural (7-9), non-metro (4-6), and urban 

(1-3). (Alexander, 2011; United States Department of Agriculture, 2021) Other covariates 

considered in the model included ethnicity (Hispanic, non-Hispanic, unknown), education 

(less than high school, high school, some college and above, unknown), marital status 

(yes/no, or not stated), child birthplace (hospital, home birth, other), and parity (0, 1, 2+ 

previous births). 

To classify prenatal care, we used the revised graduated prenatal care utilization 

index (R-GINDEX).  Based on ACOG recommendations for the frequency of prenatal 

visits, this index assigns a score based on the percent of prenatal visits attended, adjusting 

for the date of the first prenatal visit (obtained from the birth record) and gestational age 

at delivery. 47 To adjust for local (i.e., micro block -group level) socioeconomic 

disadvantage, the area deprivation index (ADI) was used. 48,49 The ADI values, which are 

scaled from 1 to 10, were collapsed into deprivation quartiles: lowest (1-3), low (4-5), 

mid-range (ADI 6-7), and highest (8-10). Out of the 3,285 micro-block groups in 

Kentucky, 81 did not have an assigned ADI score due to low population counts or high 

group population quarters. 

2.3.4 Analysis  

Demographic characteristics were summarized with counts and row percentages 

by RUCC (rural, non-metro, and urban). A Chi-Square test was used to assess the 

distribution of frequencies of demographic covariates in geocoding precision. We used a 

multivariate binary logistic regression model for the final model and a backward 
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elimination method to identify covariates for the model. Our final model included 

maternal age, race, BMI, marital status, father's age, race, education, ethnicity, infant 

birthplace, parity, adequacy of gestational care, year of birth, ADI, and the Appalachian 

region. All non-spatial analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, 

NC, USA). We created a line plot of the percentage of addresses imprecisely geocoded 

by rural-urban classification to visualize temporal trends.  

2.4 Results  

In this cross-sectional study, we found that 59% of birth records (n= 317,279) 

geocoded to an address point and 31% (n=166,752) geocoded to a street segment, 

yielding a precise geocoding rate of 90% (Figure 2.1).  

 

Figure 2.1 Description and summary of geocoding precision for Kentucky birth records, 

2008-2017 
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Figure 2.2 Prevalence of imprecise geocoding of Kentucky birth records by RUCC, 2008-

2017 

Figure 2.2 displays the proportion of records that geocoded imprecisely by RUCC 

over the study period. Rural areas experienced the sharpest decline (almost 10%) in 

imprecision. In contrast, urban areas had consistent geocoding imprecision over the study 

period. Non-metro areas experienced a slight decline.  

Table 2.1 presents the number of records among each subgroup and the percent of 

records that geocoded imprecisely among all RUCCs and the entire sample. Overall, the 

population of Kentucky births occurred to women predominantly between the ages of 26-

30 years old (n=154,789), who were non-Hispanic (n=509,425), White (n=450,425), had 

some college (n=293,878), and were married (n=311,817). 

In all RUCCs, the prevalence of imprecise geocoding was highest among non-

Hispanic women with less than a high school degree who were not married (Table 1). As 

educational attainment increased, the proportion of addresses that geocoded imprecisely 

decreased across all RUCCs. Among records with known maternal and paternal age, 

mothers < 23 years old and fathers who were < 24 years old had the highest proportion of 

imprecise records across all RUCCs as well. However, among RUCCs, the proportion of 

imprecisely geocoded records varied substantially among maternal and paternal racial 

groups. In urban areas, White mothers had a higher proportion of records not geocoded 

(5%); However, in non-metro and rural areas, a higher proportion of Black mothers did 
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not geocode precisely (non-metro: 16%, rural: 39%); which was similar to proportions 

observed within father's race. In urban areas, White fathers had the highest proportion of 

imprecise records (5%), while in non-metro and rural areas, we observed similar 

proportions as seen with Black mothers - 14% and 34%, respectively. Records with 

unknown characteristics, such as maternal age, paternal age, race, and ethnicity, did not 

have consistent geocoding precision patterns across RUCCs, except unknown paternal 

ethnicity, which had the largest proportion of imprecisely geocoded records across all 

RUCCs.  In non-metro areas, mothers with unknown maternal and paternal age and 

maternal BMI had the largest prevalence of geocoding imprecision. In contrast, records 

with fathers of unknown age and education in rural areas had the largest proportion for 

their respective subgroups. Areas with low economic deprivation had higher geocoding 

imprecision in urban (6%) and non-metro (24%) areas; however, in rural areas, those 

with no assigned ADI had the largest proportion of imprecision (33%).  

Table 2.1 Total population count and percent of imprecisely geocoded Kentucky birth 

records among rural-urban classifications, 2008-2017 

 Urban Non-metro  Rural Total  

 N (%‡) N (%‡) N (%‡) N (%‡) 

Mother’s Age (years) * * * * 

<23 75540 (6.2) 54255 (16.7) 15590 (30.0) 145385 (12.7) 

23-25 54212 (5.4) 32763 (15.0) 9194 (28.0) 96169 (10.8) 

26-30 97265 (4.4) 45658 (13.8) 11866 (27.4) 154789 (8.9) 

31-41 92288 (3.9) 34664 (14.1) 8712 (27.3) 135664 (8.0) 

Unknown 2985 (5.1) 1381 (17.0) 473 (29.8) 4839 (10.9) 

Mother’s Race * * * * 

White 250694 (5.3) 156255 (15.2) 43476 (28.1) 450425 (10.9) 

Other 30619 (3.3) 6785 (11.4) 1283 (31.2) 38687 (5.7) 

Black 40977 (3.3) 5681 (15.8) 1076 (39.4) 47734 (5.6) 

Mother’s Ethnicity * * * * 

Hispanic 21743 (3.0) 4668 (11.1) 1010 (32.5) 27421 (5.4) 

Not Hispanic 300547 (5.0) 164053 (15.1) 44825 (28.3) 509425 (10.3) 

Mother’s Education * * * * 

Less than HS 47345 (6.6) 30443 (20.0) 10530 (31.5) 88318 (14.2) 

High School 77265 (6.1) 54422 (15.5) 15463 (27.8) 147150 (11.9) 

Some College + 193311 (3.9) 81418 (12.9) 19149 (27.2) 293878 (7.9) 

Unknown 4369 (5.0) 2438 (14.2) 693 (27.8) 7500 (10.1) 

Mother’s BMI (kg/m 2) * * * * 

Underweight (<18) 13293 (6.0) 8387 (18.1) 2459 (32.4) 24139 (12.9) 

Normal (18-24.9) 137596 (4.5) 65378 (14.3) 17466 (27.6) 220440 (9.2) 
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Overweight (25-29.9) 79540 (4.8) 41048 (14.6) 11170 (28.4) 131758 (9.9) 

Obese (>30) 79093 (5.4) 48884 (15.5) 13337 (28.5) 141314 (11.1) 

Unknown 12768 (4.7) 5024 (18.1) 1403 (30.9) 19195 (10.1) 

Marital Status * * * * 

Yes 187167 (4.6) 97443 (14.1) 27207 (26.4) 311817 (9.5) 

No or not stated 135123 (5.1) 71278 (16.3) 18628 (31.4) 225029 (10.8) 

Father’s Age * * * * 

<24 48649 (6.4) 37215 (15.7) 10646 (28.4) 96510 (12.4) 

25-28 57280 (5.0) 33017 (13.8) 8998 (26.1) 99295 (9.8) 

29-33 78730 (3.9) 35148 (12.8) 9033 (25.4) 122911 (8.0) 

>33 73810 (4.0) 31462 (14.5) 8420 (27.4) 113692 (8.7) 

Unknown 63821 (5.7) 31879 (18.6) 8738 (34.9) 104438 (12.1) 

Father’s Race * * * * 

White 206370 (5.1) 127882 (14.8) 36132 (27.2) 370384 (10.6) 

Unknown 1738 (4.4) 1024 (14.4) 266 (20.3) 3028 (9.2) 

Other 80693 (4.8) 33323 (16.1) 8292 (33.2) 122308 (9.8) 

Black 33489 (3.3) 6492 (13.6) 1145 (34.1) 41126 (5.8) 

Father’s Ethnicity * * * * 

Hispanic 19136 (3.1) 4839 (11.0) 1106 (31.2) 25081 (5.9) 

Non-Hispanic 239191 (4.7) 132001 (14.5) 36138 (27.1) 407330 (9.9) 

Unknown 63963 (5.8) 31881 (17.9) 8591 (33.7) 104435 (11.8) 

Father’s Education * * * * 

Less than HS 32285 (6.7) 24573 (18.5) 9330 (28.3) 66188 (14.1) 

High School 83242 (5.9) 60518 (14.9) 17306 (26.9) 161066 (11.5) 

Some College + 140488 (3.4) 50757 (11.9) 10387 (26.9) 201632 (6.7) 

Unknown 66275 (5.6) 32873 (17.6) 8812 (33.4) 107960 (11.5) 

Birthplace * * * * 

Hospital 318892 (4.8) 166600 (15.1) 44421 (29.1) 529913 (10.1) 

Home 2947 (6.4) 1817 (9.4) 1241 (6.3) 6005 (7.3) 

Other 451 (11.5) 304 (15.5) 173 (6.4) 928 (11.9) 

R-GINDEX  * * * * 

Adequate (80%-109%,) 142625 (4.4) 80499 (13.6) 20110 (27.9) 243234 (9.4) 

Inadequate (< 50%) 21281 (7.2) 13382 (18.8) 4549 (27.9) 39212 (13.6) 

Intermediate (50-79%,) 114774 (4.8) 48528 (16.4) 14988 (28.7) 178290 (10.0) 

Intensive (>110%) 23579 (5.6) 18811 (13.2) 4042 (26.9) 46432 (10.5) 

Missing/No care 20031 (4.8) 7501 (19.2) 2146 (35.6) 29678 (10.6) 

Parity * *  * 

0 130713 (4.6) 68068 (15.1) 17662 (28.9) 216443 (9.9) 

1 102585 (4.7) 54893 (14.5) 14497 (28.4) 171975 (9.9) 

2 + 88992 (5.3) 45760 (15.6) 13676 (27.7) 148428 (10.5) 
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ADI * * * * 

Lowest (1-3) 143561 (3.2) 25357 (4.6) 1189 (20.9) 170107 (3.6) 

Mid-low (4-5) 65378 (5.0) 36980 (6.2) 4735 (20.1) 107093 (6.1) 

Mid-high (6-7) 59047 (6.4) 41800 (14.1) 11865 (20.0) 112712 (10.7) 

Highest (8-10) 51115 (5.9) 61757 (24.4) 27098 (33.3) 139970 (19.4) 

Missing ADI 3189 (27.8) 2827 (33.7) 948 (45.6) 6964 (32.6) 

Stillbirths   *  

No or not stated 320552 (4.8) 167697 (15.0) 45569 (28.5) 533818 (10.1) 

Yes 1738 (4.4) 1024 (14.4) 266 (20.3) 3028 (9.2) 

Appalachian * * * * 

Not Appalachia 307406 (4.7) 79709 (6.6) 12658 (15.2) 399773 (5.4) 

Appalachia 14884 (8.2) 89012 (22.6) 33177 (33.5) 137073 (23.6) 

Total 322290 (4.8) 168721 (15.0) 45835 (28.4) 536846 (10.1) 

BMI: Body Mass Index R-GINDEX: Revised Graduated Prenatal Care Index, ADI: Area 

Deprivation Index ‡ Percent imprecisely geocoded 

 

Figures 2.3 illustrates the county-level geocoding imprecision across the state. For 

additional context, Figure 4 displays the RUCC for each county and identifies larger 

cities (>50,000 inhabitants) and the state capital, Frankfort. The Appalachian region had 

multiple counties characterized by many imprecise geocodes. Counties with a high 

population density and their contiguous neighbors, on the other hand, had much higher 

percentages of addresses that geocoded precisely.
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Figure 2.3 Percent of Kentucky birth record addresses that geocoded to an address point 

or street segment by county, 2008-2017 

Figure 2.4 Kentucky rural-urban classification areas (RUCC), 2010 

The multivariable logistic regression, presented in Table 2, displays notable 

differences in the odds of imprecise geocoding among RUCCs. In urban areas, Black 

mothers had a 48% reduction in the odds of imprecise geocoding, adjusting for other 

covariates (aOR=0.48, 95% CI: 0.48, 0.56); however, in rural areas, Black women had 

96% higher odds of imprecise geocoding (aOR=1.96, 95% CI: 1.68, 2.28). Maternal 

ethnicity also varied by RUCC, with non-Hispanic mothers in urban areas having 74% 

higher odds of imprecise geocoding (aOR=1.74, 95% CI: 1.58, 1.94), 20% higher in non-
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metro areas (aOR=1.20, 95% CI: 1.06, 1.38), but 14% lower in rural areas, although the 

latter outcome was not statistically significant (aOR=0.86, 95% CI: 0.70, 1.04). Patterns 

within father's race and ethnicity were slightly different, with Black fathers in urban areas 

having a lower odds of imprecision (aOR=0.72, 95% CI: 0.66, 0.78); however, non-metro 

areas had a higher, although non-significant odds of imprecise geocoding, compared to 

White fathers (aOR=1.04, 95% CI: 0.94, 1.12). In rural areas, like maternal race, the odds 

of imprecision were higher with Black fathers than White (aOR=1.32, 95% CI: 1.14, 

1.54).  

As maternal age increased, the odds of imprecision decreased in urban areas, with 

those between the ages of 31-41 years experiencing the lowest odds (aOR=0.84, 95% CI: 

0.78, 0.90). However, in non-metro and rural areas, as maternal age increased, the odds 

of imprecision increased, with those aged 31-41 years reporting 10% higher odds of 

imprecision in non-metro areas (aOR=1.10, 95% CI: 1.04, 1.16) and 12% in rural areas, 

although non-significant (aOR=1.12, 95% CI: 0.90, 1.42). Paternal age also significantly 

impacted geocoding precision. In non-metro areas, paternal age >33 years had a 

significant 6% increase in the odds of imprecise geocoding (aOR=1.06, 95% CI: 1.00, 

1.12). In non-metro (aOR=1.24, 95% CI:  1.12, 1.34) and rural (aOR=1.26, 95% CI: 1.10, 

1.42) areas, unknown father's age was associated with a significantly increased odd of 

imprecise geocoding, compared to the fathers <24 years. Compared to mothers who were 

married, non-married mothers had 30% lower odds of imprecise geocoding (aOR=0.70, 

95% CI: 0.68, 0.74), although, in rural areas, those who were married had 10% higher 

odds (aOR=1.10, 95% CI: 1.06, 1.16). Inadequate care was associated with an increased 

odds of geocoding imprecision in all RUCCs, compared to adequate care started in the 

first trimester. Although non-significant in rural areas. In urban areas, intensive care had 

substantially higher odds of imprecision (aOR 1.26, 95% CI: 1.18, 1.34).  

Across all RUCCS, increased maternal education was associated with a decreased 

odds of imprecision compared to those with no high school degree. Father's education 

was protective against imprecision in urban and non-metro areas.  

Compared to mothers who were married, mothers were not married had 30% 

lower odds of imprecise geocoding (aOR=0.70, 95% CI: 0.68, 0.74), although, in rural 
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areas, those who were married had 10%  higher odds (aOR=1.10, 95% CI: 1.06, 1.16). 

Inadequate care was associated with an increased odds of geocoding imprecision in all 

RUCCs, compared to adequate care started in the first trimester. Although non-significant 

in rural areas. In urban areas, intensive care had substantially higher odds of imprecision 

(aOR 1.26, 95% CI: 1.18, 1.34). 

The impact of socioeconomic disadvantage, as measured by ADI, is also 

noteworthy concerning geocoding precision. Those who geocoded in areas without ADI 

scores had the highest odds of not being properly geocoded in urban (aOR=12.22, 95% 

CI: 11.22, 13.32) and non-metro areas (aOR=8.5, 95% CI: 7.68, 9.40). Over the study 

period, the odds of imprecise geocoding remained unchanged in urban areas. However, in 

non-metro areas, the odds declined by 8% (OR=0.92, 95% CI: 0.92, 0.94) and by 8% in 

rural areas (OR: 0.92, 95% CI: 0.92, 0.94).  

Table 2.2: Adjusted bivariate logistic regression of imprecise geocoding of Kentucky 

birth records by rural-urban classification 2007-2018 

 Urban Non-metro Rural 

 aOR (95% CI) aOR (95% CI) aOR (95% CI) 

Mother’s Age (years)    

<23 Reference Reference Reference 

23-25 0.94 (0.88, 0.98) 1.02 (0.98, 1.06) 1.06 (0.98, 1.12) 

26-30 0.88 (0.82, 0.92) 1.04 (1.00, 1.10) 1.06 (1.00, 1.14) 

31-41 0.84 (0.78, 0.90) 1.10 (1.04, 1.16) 1.12 (1.02, 1.22) 

Unknown 0.98 (0.82, 1.18) 1.16 (0.98, 1.36) 1.12 (0.9, 1.42) 

Mother’s Race    

White Reference Reference Reference 

Other 0.80 (0.74, 0.86) 1.16 (1.04, 1.3) 1.16 (0.98, 1.38) 

Black 0.52 (0.48, 0.56) 1.42 (1.3, 1.54) 1.96 (1.68, 2.28) 

Mother’s Ethnicity    

Hispanic Reference Reference Reference 

Not Hispanic 1.74 (1.58, 1.94) 1.20 (1.06, 1.38) 0.86 (0.70, 1.04) 

Mother’s Education    

Less than HS Reference Reference Reference 

High School 0.9 (0.86, 0.94) 0.84 (0.80, 0.86) 0.82 (0.78, 0.88) 

Some College + 0.76 (0.72, 0.8) 0.84 (0.80, 0.88) 0.84 (0.80, 0.90) 

Unknown 0.84 (0.72, 1) 0.68 (0.60, 0.78) 0.68 (0.54, 0.82) 

Mother’s BMI (kg/m2)    

Normal (18-24.9) Reference Reference Reference 

Underweight (<18) 1.14 (1.06, 1.24) 1.14 (1.08, 1.22) 1.12 (1.02, 1.24) 
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Overweight (25-29.9) 1.08 (1.04, 1.12) 1.06 (1.02, 1.08) 1.04 (1.00, 1.10) 

Obese (>30) 1.14 (1.10, 1.18) 1.1 (1.06, 1.14) 1.06 (1.00, 1.12) 

Unknown 1.02 (0.94, 1.12) 1.28 (1.18, 1.38) 1.22 (1.08, 1.38) 

Marital Status    

Yes Reference Reference Reference 

No or not stated 0.70 (0.68, 0.74) 1.02 (1.00, 1.06) 1.10 (1.06, 1.16) 

Father’s Age    

<24 Reference Reference Reference 

25-28 0.90 (0.86, 0.96) 0.96 (0.92, 1.00) 0.92 (0.86, 0.98) 

29-33 0.80 (0.76, 0.86) 0.96 (0.90, 1.00) 0.88 (0.82, 0.94) 

>33 0.88 (0.82, 0.94) 1.06 (1.00, 1.12) 0.96 (0.90, 1.06) 

Unknown 0.84 (0.76, 0.94) 1.24 (1.12, 1.34) 1.26 (1.10, 1.42) 

Father's Race    

White Reference Reference Reference 

Other 0.70 (0.64, 0.74) 0.78 (0.72, 0.84) 0.94 (0.84, 1.06) 

Black 0.72 (0.66, 0.78) 1.04 (0.94, 1.12) 1.32 (1.14, 1.54) 

Unknown 0.50 (0.38, 0.64) 0.68 (0.54, 0.82) 0.52 (0.38, 0.72) 

Father's Ethnicity     

Hispanic    

Non-Hispanic 1.28 (1.16, 1.44) 0.98 (0.86, 1.12) 0.82 (0.68, 0.98) 

Unknown 2.38 (2.02, 2.78) 1.28 (1.10, 1.50) 0.88 (0.70, 1.08) 

Father's Education    

Less than HS Reference Reference Reference 

High School 0.84 (0.78, 0.88) 0.90 (0.86, 0.94) 0.96 (0.90, 1.04) 

Some College + 0.54 (0.50, 0.56) 0.84 (0.80, 0.88) 1.06 (0.98, 1.14) 

Unknown 0.72 (0.64, 0.82) 0.78 (0.70, 0.86) 0.92 (0.78, 1.08) 

Birthplace    

Hospital Reference Reference Reference 

Home 0.88 (0.76, 1.04) 0.66 (0.56, 0.78) 0.18 (0.14, 0.24) 

Other 2.28 (1.70, 3.06) 0.78 (0.56, 1.08) 0.16 (0.08, 0.30) 

Parity    

0    

1 1.06 (1.02, 1.12) 0.96 (0.94, 1.00) 1.02 (0.96, 1.06) 

2+ 1.14 (1.10, 1.20) 1.00 (0.96, 1.04) 1.02 (0.96, 1.08) 

R-GINDEX    

Adequate (80%-109%)    

Inadequate (< 50%) 1.40 (1.32, 1.48) 1.12 (1.06, 1.18) 1.04 (0.96, 1.12) 

Intermediate (50-79%) 1.04 (1.00, 1.08) 1.10 (1.06, 1.14) 1.00 (0.96, 1.06) 

Intensive (>110%) 1.26 (1.18, 1.34) 0.98 (0.94, 1.04) 1.00 (0.92, 1.08) 

Missing/No care 0.98 (0.92, 1.06) 1.18 (1.10, 1.26) 1.36 (1.24, 1.52) 

ADI    

Lowest (1-3)    

Mid-high (6-7) 1.38 (1.32, 1.46) 1.30 (1.20, 1.40) 0.58 (0.48, 0.68) 
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Highest (8-10) 1.78 (1.70, 1.88) 2.66 (2.50, 2.84) 0.42 (0.36, 0.50) 

Mid-low (4-5) 1.68 (1.60, 1.76) 4.46 (4.20, 4.76) 0.68 (0.58, 0.80) 

Missing ADI 12.22 (11.22, 13.32) 8.50 (7.68, 9.40) 1.20 (0.98, 1.46) 

Appalachian Region    

Non-Appalachian    

Appalachia 1.38 (1.30, 1.48) 3.16 (3.04, 3.26) 2.72 (2.56, 2.90) 

Year 1.00 (1.00, 1.02) 0.92 (0.92, 0.94) 0.92 (0.92, 0.94) 

HS= High School; Body Mass Index; ADI=Area Deprivation Index R-GINDEX: Revised 

Graduated Prenatal Care Index 

2.5 Discussion  

To more adequately characterize potential limitation for studies that employ 

geocoding to assess disease prevalence and exposure status, further review is needed. 

This study used Kentucky birth records from 2008-2017 to characterize the prevalence of 

geocoding imprecision among RUCCs, identify characteristics associated with imprecise 

geocoding, and assess the geospatial distribution of geocoding imprecision in the state. 

We found that the proportion of addresses that geocoded imprecisely in rural and non-

metro areas declined over the study period. We also found maternal and paternal race, 

age, ethnicity, and education, along with marital status, prenatal care, and ADI were 

significantly associated with imprecision, but the magnitude and direction varied among 

RUCCs. Further, we identified that rural regions, particularly in the Appalachian region, 

had the highest proportion of imprecisely geocoded addresses. 

Racial and ethnic disparities have been found in other studies assessing geocoding 

precision in birth records.   In a study using birth data from Florida, Ha and colleagues 

reported that Black women had a higher odds of not geocoding than White women 37. 

Gilboa and colleagues reported a higher proportion of Latinas in non-geocoded records  

in an assessment of the precision of Texas birth records and birth defects registry data 50. 

In this study, although almost all records were geocoded, we found both parents' race and 

ethnicity influenced the odds of precise geocoding after adjusting for other factors, such 

as urban density, that impact the odds of precise geocoded.  Although records of Black 

women and men were more likely to geocode precisely in urban areas, this may be due to 

the allocation of GIS resources in communities that have a higher prevalence of pollution 

and contamination – such as historically redline non-white communities 34.  In rural 

areas, which are less likely to have historically redlined areas as they are not as racially 
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diverse, Black women had a lower geocoding precision. Further study exploring 

explanations, and solutions, in rural areas is needed.  

Rural residency has been cited as an important factor in the inability to geocode in 

Florida and Virginia 37,51,52.  However, certain conventions in rural areas have shifted, 

e.g., introducing emergency 911 telephone (E911) systems, allowing for more accurate 

identification of addresses53.  This study used the national address coder provided 

through the software manufacturer, but future work exploring other sources, including 

historical records, for geospatial coordinates is needed.  

This study also found that educational and economic factors were also associated 

with geocoding imprecision. Both maternal and paternal education was associated with a 

decreased odds of imprecision, compared to the respective parent not completing high 

school. The protective effect of education, which often serves as a proxy for income, may 

reflect financial means to choose more attentive hospitals or reflect form literacy; 

however, further work is needed. We also found that addresses geocoded in areas that 

were not assigned an ADI score, which was due to having either a low population count 

or high group population quarters, had a much higher odds of imprecise geocoding than 

areas with low economic deprivation. Across all RUCCs, however, an increase in 

economic deprivation was associated with an increased odds of imprecise geocoding. 

Given that economic deprivation is often associated with poor health outcomes, it is clear 

that further work to improve GIS capabilities in these areas is needed.  

Cartographic confounding, or the association demographic factors (such as race 

and rurality), with both the outcome of interest and geocoding precision, is an under-

discussed but pressing concern in studies of health geography. 51 In an assessment of 

research employing geographic information systems (GIS) methodologies Cromley 40 

noted that 25% of articles assessing health literature did not describe their techniques.  in 

a meta-analysis of electronic health records using GIS methods, Shinasi and colleagues 

noted that less than one-third of journal articles described their geocoding process. This 

lack of transparency in disclosing geocoding methodologies leaves other health 

researchers unable to evaluate a study's merits and limitations fully.   



27 

Limitations of this study include noted variations among hospitals in vital 

statistics collection and reporting.  We were also unable to assess the records for accuracy 

or identify addresses changes during the pregnancy or preconception period, as only 

current residential information is captured on the birth record. As we used the currently 

available geocoding reference file through ESRI, older records may contain addresses 

that no longer exist due to redevelopment, and would not have been able to be precisely 

identified. However, a noted strength of this study was the inclusion of all singleton birth 

records – still and live birth – in Kentucky, over ten years. Further, we were able to assess 

maternal and paternal demographic factors, economic factors and regional differences 

among all Kentucky births.  

Future work may consider using state specific geocoders, and employ historical 

records to improve geocoding of older records, and explore solutions for improving 

geocoding for all races and ethnicities, particularly in rural regions.  
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CHAPTER 3. COUNTY PREVALENCE AND GEOSPATIAL TRENDS OF EARLY-

ONSET HYPERTENSIVE DISORDERS OF PREGNANCY IN KENTUCKY, 2008-

2017 

3.1 Abstract 

Early-onset hypertensive disorders of pregnancy (eHDP) are associated with more 

severe maternal and infant outcomes than the later-onset disease; however, eHDP has had 

a limited evaluation of prevalence and geospatial trends. In this study, we used Kentucky 

certificates of live and stillbirth to assess county-level spatio-temporal trends and 

covariates associated with an increased prevalence of eHDP. We found that after 

adjusting for race (Black %), educational attainment (% completed college), maternal 

smoking (%) that counties with the highest obesity prevalence (>31.6%) had a 20% 

increase in eHDP prevalence compared to counties with the lowest obesity prevalence 

(<22.6%) (aOR=1.20, 95% CI: 1.00, 1.44). We also found counties with the highest 

proportion of primiparous mothers >34 years old (>6.1%) had a 26% increase in the 

prevalence of eHDP (OR=1.26, 95% CI: 1.04, 1.50), compared to counties with the 

lowest prevalence (<2.5%). We further identified two county-level clusters of elevated 

rates of eHDP in the Appalachian region. These trends may reflect poor reproductive 

literacy and poor community health.  

3.2 Introduction 

Hypertensive disorders of pregnancy (HDP), a progressive disease of pregnancy 

which includes diagnoses such as gestational hypertension (GH), preeclampsia (PE), and 

eclampsia and accounted for 6.6% of maternal deaths from 2014-2017 and impacts 

approximately 8-10% of US pregnancies each year. 1,2  Maternal complications of HDP 

can include pulmonary edema, renal failure, stroke, and death. 4,54,55 Women who have 

early-onset disease onset not only have an increased risk of experiencing an HDP in 

future pregnancies, they have a higher risk of cardiovascular disease, with a younger age 

of disease onset compared to women who had late-onset PE or normotensive 

pregnancies. 56 Pharmaceutical and behavioral prevention and interventions are incredibly 

limited. For women perceived as “high risk” a daily low dose aspirin can be 

recommended to reduce risk, but after the onset of symptoms delivery is often the only 
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option, however, premature delivery increases the infant's risk of poor health outcomes. 5 

Black women, primiparity, extreme maternal age, or those with pre-existing health 

conditions such as diabetes, chronic hypertension, or are obese, are at the highest risk of 

developing HDP. 57-59 However, recent literature suggests that subsets of HDP, such as 

PE, may encompass multiple conditions with different etiologies and risk factors, that in 

part, may be distinguishable by gestational age at disease onset. 59,60  

Between 1980 and 2003, the estimated prevalence of HDP in the United States 

increased by 25%, and several studies have identified the Southern US states as having 

elevated HDP prevalence. 7-9 In a more recent one-year study assessing national trends, 

Kentucky was identified as having the 8th highest prevalence of HDP. 7 Regional 

differences observed in geospatial trends of eHDP have been attributed to geographic 

variation in health behaviors and the prevalence of preexisting conditions. 61,62 However, 

our understanding of geospatial trends and population-level covariates associated with 

HDP and eHDP prevalence is limited.  

Although our understanding of HDP has improved, further exploration, 

particularly with early-onset disease, is needed. Using Kentucky birth records from 2008-

2017, this longitudinal ecological study will describe the distribution of eHDP among 

covariate subgroups, identify county-level covariates associated with increased 

prevalence eHDP, and assess spatiotemporal trends of eHDP.  

3.3 Methods 

We obtained IRB approval from both the Kentucky Cabinet for Health and 

Family Services and the University of Kentucky. We followed Strengthening the 

Reporting of Observational Studies in Epidemiology (STROBE) guidelines in reporting 

study results. 63  

3.3.1 Study Population and Outcome Ascertainment  

The Kentucky Department of Vital Statistics provided individual records for all 

live and still births to self-identified Kentucky residents from January 1, 2008, through 

December 31, 2017. These records contained addresses, maternal information (age, 

marital status, race, education, ethnicity, number of previous births, height, and pre-
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pregnancy weight), and pregnancy characteristics (gestation length, cigarettes smoked 

before and during each trimester of pregnancy, prenatal care, parity, number of previous 

pregnancies, and complications of pregnancy). Although live and stillbirth forms differ 

slightly, all variables used in this study were captured on both certificates. 64 We used 

individual records to identify singleton births to primiparous women (ages 13-50 years) 

between 20 to 45 weeks gestation and geocoded in Kentucky. Records that did not 

geocode (n=3) or indicate the mother had pre-existing chronic hypertension (n = 3,854) 

were excluded, as HDP and chronic hypertension are mutually exclusive on birth records. 

64,65 Individual-level data were assessed for patterns in missingness using PROC MI in 

SAS.  

The birth form provides separate checkboxes for chronic hypertension, gestational 

hypertension, and eclampsia. Gestational hypertension includes transient hypertension, 

PE, and HELLP (Hemolysis, Elevated Liver enzyme levels, and Low Platelet syndrome). 

65 Early-onset HDP (eHDP) was defined as check positive for HDP on the birth 

certificate and gave birth between 20 through 34 weeks of gestation.  

We used Rural-Urban Continuum Codes (RUCC) obtained from the United States 

Department of Agriculture to assess population density. 66 Cartographic boundary files 

were obtained from the United States Census Bureau. 67 Appalachian status, defined by 

the Appalachian Regional Commission (ARC), was based on the geocoded maternal 

county of residence. 68 

3.3.2 Data cleaning and dataset preparation 

Maternal age was calculated by subtracting the maternal date of birth from the 

child’s date of birth. Women >34 years or older were classified as being of advanced 

maternal age. Maternal obesity status was derived using the mother’s pre-pregnancy 

weight and height. A body mass index (BMI) of 30 kg/m2 or greater was classified as 

obese. 69 Smoking status was derived from the number of cigarettes reported being 

consumed during each trimester of pregnancy. Women who reported cigarette use during 

every trimester until delivery were classified as smokers. Women who reported no 

cigarette consumption or did not report cigarette consumption after the first trimester 

were considered non-smokers, as the current literature suggests that women who stopped 
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smoking during the first trimester had similar risks of HDP as those who were non-

smokers. 70,71 To adjust for the quality of prenatal care, we used the Revised Graduated 

Prenatal Care Index (R-GINDEX). The R-GINDEX compares the reported number of 

prenatal care visits to how many visits a pregnant person is expected to have, based on 

ACOG guidelines, adjusting for the gestational age at the first prenatal appointment and 

length of the pregnancy. This metric is classified into six categories – inadequate, 

intermediate, adequate, intensive, no care, and missing. 72 Inadequate care was defined as 

receiving less than 50% of expected visits, intermediate between 50-79% visits, adequate 

80%-109%, and intensive (previously called adequate plus) was greater than 110%. 73  

Each record was geocoded using the ESRI address coder (ESRI, Redlands, CA). 

Records with coordinates corresponding to the “rooftop” or a statement were classified as 

“precisely geocoded.” Coordinates that corresponded to the midpoint of a street, ZIP 

code, or city were considered imprecise. 45 For further details on the geocoding methods 

and precision of this dataset, see Chapter 2. Using standard geocoding convention, we 

considered counties with more than 85% of addresses geocoded as high precision areas; 

otherwise, they were considered low precision areas. 45 To create the county-level 

dataset, we used the individual records to characterize the yearly county-level prevalence 

of mothers of advanced maternal age (% > 34 years old), race (% Black), ethnicity (% 

Hispanic), educational attainment (% completed college), marital status (% married),  

pre-existing diabetes (%), maternal obesity, maternal smoking throughout pregnancy (%), 

and stillbirths (%). Prevalence estimates were then classified into quartiles using PROC 

RANK.  Rurality status, geocoding precision, and Appalachian designation was 

determined at the county level. 66 74  

3.3.3 Statistical Analysis  

Summary Statistics  

We summarized all covariates of interest as counts and percentages. To calculate 

the weighted average eHDP cases within each covariate level, we used the LS MEANS 

option within the PROC GENMOD with a negative binomial distribution and a log link.  
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Bivariate and multivariate models  

To screen for multicollinearity, we calculated Spearman’s rank pairwise 

correlation. No two variables had a rho greater than 0.6.  

For both the bivariate and multivariate models, we fit a fixed-effects negative 

binomial regression model for longitudinal data with an autoregressive (AR) correlation 

structure, offset with the natural log of the number of births in each county and year using 

PROC GENMOD. Time was treated as a categorical variable in all models. Fixed effects 

allowed us to adjust for the similarity within one county over time. The negative binomial 

model was selected because the mean and variance structure assumption was violated for 

the Poisson model. The AR correlation structure was chosen because it allows for a 

stronger correlation between temporally closer times, and the strength of association is 

assumed to reduce as distance among time points increases.  

For the bivariate model, initially, we used the negative binomial described above. 

We assessed each covariate interacted with time (categorical) to explore eHDP 

prevalence in relation to the changes in each covariate over time. However, none of the 

interactions were statistically significant; therefore, we reported the non-interacted results 

for brevity.  

For the final model, variables identified in the literature as important covariates 

were included in the base model |maternal age > 34 years, (%), race (Black %), maternal 

obesity (%), and smoking throughout pregnancy (%)|. All other covariates were removed 

with backward elimination. Variables that were statistically significant or changed the 

estimates of statistically significant covariates by more than 15% were retained in the 

model.  The final model included maternal age > 34 years, (%), race (Black %), 

educational attainment (% completed college), marriage (%), maternal obesity (%), 

smoking throughout pregnancy (%), and the Appalachian region. 

All analyses were conducted using used SAS v 9.4 (SAS Corp., Cary, NC)  

Mapping and temporal trend assessment  

To explore geographic patterns of eHDP and detect and evaluate the statistical 

significance of any identified clusters, we performed unadjusted retrospective space-time 

cluster analyses using the SaTScan (v 9.5) software.  
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SaTScan™ is a trademark of Martin Kulldorff. The SaTScan™ software was 

developed under the joint auspices of (i) Martin Kulldorff, (ii) the National Cancer 

Institute, and (iii) Farzad Mostashari of the New York City Department of Health and 

Mental Hygiene. 

 Briefly, this method delineates several overlapping cylinders of varied sizes and 

widths over the study area to identify possible clusters of cases in space and time. 75 For 

this study, each cylinder was centered on a point in a regular 5-mile grid and could 

encompass various surrounding counties. Generally, each cylinder’s radius corresponds 

to geographic distance, and the height corresponds to time. In our study, we focused only 

on high-prevalence clusters of at least two cases. Maximum spatial cluster size was 

initially set to 30% of the study area population, as this would capture large cities, such as 

Louisville. However, no clusters were identified in urban areas, and the identified clusters 

were too large to be useful (e.g., 42 counties). Therefore, the maximum size of the spatial 

clusters was gradually reduced by five percent until the number of counties identified was 

narrow enough in scope to identify potential areas for intervention. The final spatial 

cluster size was 10% of the covariate adjusted population at risk. We also assessed purely 

spatial clusters or those elevated for the entire study period. Under the null hypothesis, 

we assumed that cases were Poisson distributed and risk was constant over space and 

time. The alternative hypothesis was that the risk would be higher inside the cluster than 

outside the cluster.  

We created choropleth maps using QGIS (Madeira v 3.4) to display identified 

clusters and visualize the average prevalence of eHDP, marriage, maternal obesity, 

maternal smoking throughout pregnancy for each county over the duration of the study. 

We used the Jenks method to determine categories for choropleth maps. 76  

We used a general linear estimation (GLM) model with a Poisson distribution and 

a log link to obtain yearly estimates of eHDP and the average annual percent change 

(AAPC). Significant covariates (maternal obesity, smoking throughout pregnancy, 

marriage, and eHDP) were assessed for significant inflection points using Joinpoint 

software. 77 
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3.4 Results 

In this retrospective ecological study, we observed 1,936 cases of eHDP among 

212,544 births (9.1 cases per 1,000 births) in Kentucky from 2008 through 2017. Table 

3.1 displays the marginal means of eHDP for each subgroup. Counties with the highest 

prevalence of Black mothers had the lowest average number of eHDP cases (8.1, 95% CI: 

7.4, 9.0), as did the areas with the lowest obesity prevalence (7.9, 95% CI: 7.2, 8.5). The 

Appalachian region had one of the highest marginal means with 11.1 eHDP cases on 

average per 1,000 births (95% CI: 10.2, 12.0).  

 

Table 3.1 Number of counties in each demographic group, and average eHDP prevalence 

by demographic group  

 N (%)  

County level average 

eHDP (95% CI) 

Mothers >34 years old (%)  
 

<2.5 299 (24.9) 10.75 (9.45, 12.50) 

2.5 to 4.2 300 (25.0) 10.20 (9.20, 11.50) 

4.2 to 6.1 302 (25.2) 9.95 (9.00, 11.00) 

>6.1 299 (24.9) 8.35 (7.70, 9.00) 

Race (Black %)   

0 436 (36.3) 10.45 (9.30, 11.50) 

0.1-1.7 193 (16.1) 10.05 (8.95, 11.50) 

1.7 to 3.4 188 (15.7) 9.80 (8.70, 11.00) 

3.4 to 6.2 189 (15.8) 10.15 (9.05, 11.50) 

>6.2 194 (16.2) 8.05 (7.35, 9.00) 

Ethnicity (% Hispanic)    

0 386 (32.2) 11.45 (10.15, 13.00) 

0.1-1.7 205 (17.1) 9.70 (8.65, 11.00) 

1.7 to 2.8 198 (16.5) 10.05 (8.95, 11.50) 

2.8 to 4.5 209 (17.4) 9.40 (8.40, 10.50) 

>4.5 202 (16.8) 8.10 (7.40, 9.00) 

Educational attainment (% 

Completed college)   

<18.0 299 (24.9) 10.00 (8.75, 11.50) 

18.0 to 23.4 301 (25.1) 10.55 (9.45, 12.00) 

23.4 to 30.2 301 (25.1) 9.55 (8.60, 10.50) 

>30.2 299 (24.9) 8.80 (8.15, 9.50) 

Marriage (%)   

<43.6 300 (25.0) 8.95 (7.75, 10.50) 

43.6 to 48.6 300 (25.0) 9.70 (8.75, 11.00) 
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48.6 to 53.8 298 (24.8) 9.30 (8.45, 10.00) 

>53.8 302 (25.2) 9.80 (8.95, 10.50) 

Pre-existing diabetes (%)   

0 551 (45.9) 9.40 (8.45, 10.50) 

0.1-0.8 159 (13.3) 8.40 (7.65, 9.00) 

0.8 to 1.2 163 (13.6) 9.60 (8.60, 10.50) 

1.2 to 1.9 162 (13.5) 10.75 (9.40, 12.50) 

>1.9 165 (13.8) 11.80 (10.05, 14.00) 

Maternal obesity (%)   

<22.6 298 (24.8) 7.90 (7.20, 8.50) 

22.6 to 26.8 301 (25.1) 9.85 (8.95, 11.00) 

26.8 to 31.6 301 (25.1) 10.50 (9.50, 11.50) 

>31.6 300 (25.0) 10.85 (9.65, 12.00) 

Maternal Smoking throughout 

pregnancy (%)   

<13.2 301 (25.1) 8.50 (7.85, 9.00) 

13.2 to 17.8 298 (24.8) 10.10 (9.15, 11.00) 

17.8 to 23.0 301 (25.1) 10.40 (9.30, 11.50) 

>23.0 300 (25.0) 10.15 (8.95, 11.50) 

Prenatal care (% Inadequate*)   

<5.7 297 (24.8) 10.30 (9.20, 11.50) 

5.7 to 8.6 304 (25.3) 9.10 (8.35, 10.00) 

8.6 to 12.4 300 (25.0) 9.30 (8.40, 10.00) 

12.4 to 35.7 299 (24.9) 9.80 (8.70, 11.00) 

Stillbirths (%)   

0 647 (53.9) 9.50 (8.70, 10.50) 

0.1-0.7 181 (15.1) 8.90 (8.20, 9.50) 

0.7 to 1.5 191 (15.9) 9.85 (8.80, 11.00) 

>1.5 181 (15.1) 11.35 (9.65, 13.50) 

Rurality   

Metro/Non-Metro 850 (70.8) 10.60 (9.90, 11.50) 

Rural 350 (29.2) 8.35 (7.80, 9.00) 

Geocoding precision   

<85% geocoded precisely 468 (39.0) 10.35 (9.40, 11.50) 

>85% geocoded precisely 732 (61.0) 9.15 (8.60, 10.00) 

Appalachian Region   

Non-Appalachian 660 (55.0) 8.70 (8.15, 9.50) 

Appalachian 540 (45.0) 11.10 (10.20, 12.00) 
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Year   

2008 120 (10.0) 8.10 (6.85, 9.50) 

2009 120 (10.0) 8.45 (7.20, 10.00) 

2010 120 (10.0) 9.10 (7.75, 10.50) 

2011 120 (10.0) 8.50 (7.20, 10.00) 

2012 120 (10.0) 9.50 (8.10, 11.00) 

2013 120 (10.0) 10.95 (9.45, 12.50) 

2014 120 (10.0) 9.60 (8.20, 11.50) 

2015 120 (10.0) 10.35 (8.85, 12.00) 

2016 120 (10.0) 10.10 (8.60, 12.00) 

2017 120 (10.0) 10.45 (8.90, 12.50) 

*Inadequate care: Receiving less than 50% of expected prenatal visits, Maternal 

obesity: BMI >30 kg/m2 

 

Table 3.2 displays the unadjusted and adjusted models. In the unadjusted model, 

we observed that counties with the lowest proportion of mothers >34 years old had a 26% 

higher prevalence of eHDP (RR=1.26, 95% CI: 1.08, 1.52) than counties with the highest 

proportion of mothers > 34 years old. Also of note in the unadjusted model was the 33% 

reduction in eHDP prevalence in counties with the highest percentage of Black mothers, 

compared to counties with no Black mothers.  

In the final model, adjusted for mothers > 34 years old (%), race (Black %), 

marriage (%), maternal obesity (%), maternal smoking throughout pregnancy (%), the 

Appalachian region, and year, we observed that low proportions of mothers > 34 years 

old, and higher proportions of maternal obesity (%) and marriage (%) were associated 

with an increased prevalence of eHDP. In the unadjusted model, race showed a 

statistically significant decrease in eHDP prevalence; however, in the adjusted model, 

this relationship shifted to a non-significant increase in prevalence compared to counties 

with no Black mothers (RR=1.04, 95% CI: 0.86, 1.26). The proportion of married 

mothers, insignificant in the unadjusted model, increased the prevalence of eHDP by 38% 

in the adjusted model (95% CI: 1.16, 1.64). The relative risk of eHDP in the Appalachian 

region remained relatively unchanged following covariate adjustment (RR:1.22, 95% 

CI:1.11, 1.44, aRR:1.18, 95% CI:1.02, 1.42). 
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Table 3.2 Unadjusted and adjusted prevalence of eHDP by demographic category 

 PR (95% CI) p-value aPR (95% CI) p-value 

Mother >34 years old (%)     

<2.5 1.20 (1.08, 1.52) <0.01 1.26 (1.04, 1.50) 0.01 

2.5 to 4.2 1.21 (1.00, 1.43) 0.02 1.16 (1.00, 1.38) 0.05 

4.2 to 6.1 1.18 (1.02, 1.37) 0.02 1.14 (1.00, 1.30) 0.06 

>6.1 Reference  Reference  
Race (Black %)     

>6.2 0.77 (0.63, 0.93) <0.01 1.04 (0.86, 1.26) 0.62 

3.4 to 6.2 0.96 (0.80, 1.15) 0.72 1.18 (1.00, 1.38) 0.05 

1.7 to 3.4 0.94 (0.77, 1.14) 0.55 1.10 (0.92, 1.30) 0.30 

0.1-1.7 0.96 (0.81, 1.13) 0.68 1.02 (0.86, 1.18) 0.88 

0 Reference  Reference  
Educational attainment 

(% completed college)     
>30.2 0.88 (0.73, 1.05) 0.18 1.02 (0.82, 1.28) 0.81 

23.4 to 30.2 0.95 (0.79, 1.13) 0.57 0.92 (0.76, 1.10) 0.38 

18.0 to 23.4 1.05 (0.91, 1.21) 0.47 1.00 (0.86, 1.18) 0.95 

<18.0 Reference  Reference  
Marriage (%)     

>53.8 1.10 (0.90, 1.30) 0.23 1.38 (1.16, 1.64) <0.01 

48.6 to 53.8 1.04 (0.88, 1.24) 0.58 1.18 (1.02, 1.40) 0.03 

43.6 to 48.6 1.09 (0.90, 1.30) 0.35 1.16 (0.98, 1.36) 0.08 

<43.6 Reference  Reference  

Maternal obesity (%)     
>31.6 1.37 (1.13, 1.65) <0.01 1.20 (1.00, 1.44) 0.05 

26.8 to 31.6 1.32 (1.12, 1.50) <0.01 1.14 (0.98, 1.36) 0.11 

22.6 to 26.8 1.24 (1.07, 1.43) <0.01 1.14 (1.00, 1.32) 0.07 

<22.6 Reference  Reference  
Maternal smoking 

throughout pregnancy(%)     
>23.1 1.19 (1.00, 1.41) 0.04 1.16 (0.94, 1.42) 0.15 

17.9 to 23.1 1.22 (1.04, 1.42) <0.01 1.20 (1.02, 1.42) 0.03 

13.2 to 17.9 1.18 (0.99, 1.42) 0.05 1.16 (1.02, 1.32) 0.02 

<13.2 Reference  Reference  

Appalachian Region     

Appalachian 1.20 (1.11, 1.44) <0.01 1.18 (1.02, 1.36) 0.02 

Non-Appalachian Reference  Reference  
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Year     

2017 1.29 (1.06, 1.57) 0.01 1.34 (1.08, 1.66) 0.01 

2016 1.24 (1.04, 1.48) 0.01 1.36 (1.14, 1.64) <0.01 

2015 1.28 (1.06, 1.54) 0.01 1.34 (1.12, 1.60) <0.01 

2014 1.10 (0.97, 1.45) 0.09 1.28 (1.04, 1.58) 0.02 

2013 1.35 (1.11, 1.66) 0.01 1.46 (1.22, 1.74) <0.01 

2012 1.17 (0.93, 1.46) 0.16 1.22 (1.00, 1.50) 0.04 

2011 1.05 (0.84, 1.31) 0.64 1.10 (0.90, 1.34) 0.39 

2010 1.12 (0.93, 1.37) 0.22 1.16 (0.98, 1.38) 0.08 

2009 1.04 (0.85, 1.27) 0.66 1.08 (0.90, 1.32) 0.39 

2008 Reference  Reference  
Maternal obesity: BMI >30 kg/m2 

 

Three clusters were identified in the spatial analyses: two in Eastern Kentucky 

(part of the Appalachian region) and one in Western Kentucky (Figure 3.1). The largest 

cluster, located in Eastern Kentucky, was comprised of 14 counties (Table 3.1). Three 

counties in the largest cluster (Breathitt, Harlan, and Letcher) had more than 15 eHDP 

cases per 1,000 births throughout the study period (2008-2017). The smallest cluster of 

eHDP in Appalachia, comprised of two counties, was limited to only one year, 2012. The 

third cluster, elevated from 2013-2017, approached significance (p=0.1) and comprised 

four counties in Western Kentucky. 
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Figure 3.1 Choropleth map of the county-level prevalence of eHDP in Kentucky per 1000 

births and high-rate clusters of eHDP prevalence, 2008-2017 
 

Table 3.3 Details of identified clusters of elevated eHDP prevalence, 2008-2017 

Cluster description  

Counties Years 
In Cluster 

Case | Pop 

Out Cluster  

Case | Pop RR P-value 

1. Large cluster – Eastern KY:  2008-2017 148| 1083 1784 | 18339 1.54 0.03 

Breathitt, Perry, Knott, Magoffin, Leslie, 

Owsley, Wolfe, Lee, Clay, Floyd, Morgan, 

Letcher, and Harlan      
2. Small cluster – Central KY: 

Madison and Garrard  2012 18 | 466 176 | 20830 3.81 0.05 

3. Small cluster in Western KY: 

Webster, Hopkins, McLean, Union  2013-2017 38| 388 965 | 21500 2.28 0.10 

N: Number; RR: Relative Risk, Pop: Population  
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A. Births to women >34 years old (per 1000 births)  B. Married mothers (per 1000 births) 

 
 

c. Maternal Obesity (per 1000 births) d. Maternal smoking throughout pregnancy (per 1000 

births)  

  
Maternal obesity: BMI >30 kg/m2 

Figure 3.2 Choropleth maps of county-level proportions of marriage, maternal obesity, and maternal smoking per 1000 births 

in Kentucky, 2008-2017  
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To assess spatial trends in the covariates of interest, we created choropleth maps 

displaying the prevalence of maternal obesity, marriage, maternal age >34, and maternal 

smoking per 1000 births (Figure 3.2). It is important to note that the maps summarize the 

entire study period and are presented for illustrative purposes. We statistically assessed 

the residuals for each county and year with Moran’s I with GeoDa (v 1.18, December 

2020). There was no indication of patterns of poor model fit. 78  

There was a non-statistically significant increase in the prevalence of eHDP 

(AAPC:2.8, 95% CI: -4.3, 10.5) over the study period (Table 3.4). Both prevalence of 

maternal obesity (AAPC:2.3, 95% CI: 0.94, 3.7) and births to mothers older than 34 years 

(AAPC:3.4, 95% CI: 0.66, 6.3) increased over the study period. Maternal smoking 

decreased by almost 6% (AAPC:-5.8%, 95% CI: -7.5, -4.1). Upon visual inspection, there 

appeared to be a shift in the prevalence of obesity and smoking in 2012; however, further 

investigation using Joinpoint to assess inflection points yielded non-significant results.  
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Table 3.4 Prevalence of eHDP, marriage, maternal obesity, and maternal smoking per 1000 births in Kentucky, 2008-2017  

Year eHDP Married 

Maternal 

obesity 

Smoking during 

pregnancy 

Maternal age >34 

years 

2008 7.68 504.04 232.00 182.90 56.72 

2009 8.22 501.46 232.98 164.66 58.70 

2010 8.68 503.62 230.24 152.18 54.92 

2011 8.12 499.34 240.48 149.52 58.52 

2012 9.06 504.98 243.56 153.38 61.22 

2013 10.76 504.70 243.36 141.40 61.46 

2014 9.50 513.54 255.46 127.18 64.46 

2015 9.84 513.50 264.78 118.46 70.52 

2016 9.76 513.86 269.34 110.90 71.86 

2017 9.88 521.16 284.52 99.56 74.94 

AAPC  (95% CI) 2.84 (-4.26, 10.46) 0.40 (-0.56, 1.36) 2.32 (0.94, 3.74)‡ -5.80 (-7.52, -4.06)‡ 3.44 (0.66, 6.28) † 

eHDP: Early-onset HDP (HDP onset <34 weeks), Maternal obesity: BMI >30 kg/m2  

AAPC: Annual Average percent change  CI: Confidence Interval, † p-value <0.05, ‡ p-value <0.01 
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3.5 Discussion 

This retrospective ecological study sought to characterize the prevalence of 

eHDP, identify significant county-level covariates associated with increased eHDP 

prevalence,  and identify potential geospatial patterns of eHDP in Kentucky. This study 

demonstrated a low county-level prevalence of primiparous mothers > 34 years old, and 

high county-level prevalences of maternal obesity and smoking throughout pregnancy 

were associated with increased prevalence of eHDP. Additionally,  we detected two 

statistically significant clusters of eHDP in the Appalachian region of the state and one 

cluster approaching statistical significance in Western Kentucky.  

The prevalence of eHDP in Kentucky from 2008-2017 was approximately 9.2 

cases per 1,000 births. Although there are no nationwide estimates of eHDP prevalence, a 

study using birth records from Washington reported 3.8 eHDP per 1,000 births – slightly 

less than half of Kentucky rates. 57 These findings may reflect the general elevation of 

obesity and pre-existing diabetes in Kentucky relative to Washington; however, further 

study is needed, as other factors, such as environmental regulations and predominant 

industry, vary between these states. 79,80  

We found that county-level prevalence of maternal age > 34, maternal obesity, 

maternal smoking throughout pregnancy, and marriage was significantly associated with 

eHDP; however, contrary to existing literature, increased prevalence of marriage and 

maternal smoking was associated with increased rates of eHDP. 81 This finding may be 

due to an ecological fallacy – an inappropriate attribution of individual risk based on 

ecological (in this case county-level) data. Or, our findings could be an indication that the 

risks of eHDP may differ from late-onset HDP or other subsets of HDP.  59  

The detection of two statistically significant clusters of eHDP within the 

Appalachian region, an area that has historically had elevated rates of obesity and 

smoking, is also noteworthy.  This study found that within the Appalachian region, 

eighteen counties had a maternal obesity prevalence of 30% or greater, twelve counties 

reported 25% or more mothers engaged in smoking throughout their pregnancy, and six 

of the seven counties with an eHDP prevalence greater than 15 cases per 1000 births 
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were located in the Appalachian region. This, too, maybe the result of ecological fallacy 

or reflect the coincidence of obesity and high-risk health behaviors. Given the cross-

sectional nature of this study, we can not assess the causal associations between maternal 

obesity, smoking, and eHDP; however, further assessment of these relationships is 

needed, as previous studies of individual risks have found smoking to be protective.  

This study found that, over the study period, there was a 3% increase in eHDP 

prevalence. Wallis and colleagues reported that PE, a subset of HDP, increased by  

29.4%, and GH by 30.6% over 17 years (1987-2004). The rapid increase in HDP 

experienced in the Wallis study may reflect substantial changes within the population 

over the 17 years or could be due to the inclusion of all HDP cases, unlike in this study 

that focused only on early-onset disease. However, it is important to note that there were 

two changes in the definition that case definitions of gestational hypertension and pre-

eclampsia changed over the study period, which may have changed diagnoses and 

impacted rate calculations. 8  

The proportion of first-time mothers >34 years old increased over the study 

period, particularly in urban areas such as Louisville, Northern Kentucky, and Fayette 

County. Madison County, just south of Fayette, also had a high prevalence of 

primiparous mothers >34  years old – an anomaly in the Appalachia region. However, 

this may be due to the presence of two post-secondary institutions within this relatively 

small county. Existing research has suggested that obtaining a college education or higher 

is associated with delayed fertility; however, further research is needed.  82 In this study, 

we found that the largest high-prevalence cluster of eHDP largely comprised of counties 

with the lowest proportion of mothers >34 years of age. In other words, within Kentucky, 

women <34 could be driving the increase in eHDP. Although this finding may be due to 

the limitations inherent within ecological studies, notably ecological fallacy, and poor 

reproductive health literacy among young adults, especially in high-poverty regions, may 

also contribute to these findings.  

Unanticipated findings of this study were the 11-year trend of increasing eHDP 

prevalence in areas with a high proportion of married women. Marriage is often identified 

as protective against HDP, as long-term sexual partners and non-barrier methods of 
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contraception are associated with reduced risk of HDP. 83,84 The increased prevalence of 

eHDP found in communities with a high prevalence of maternal smoking was also 

surprising, as smoking throughout pregnancy has previously been associated with a 

decreased risk. This finding may be due to our exclusive focus on women who gave birth 

early; however, findings of this type require further study at the individual level.  

We also identified that maternal smoking prevalence has decreased by almost 6% 

and obesity increased by over 2% over the study period. Further work evaluating the 

larger impact of these demographic changes and what may be a contributing factor to 

each covariate's positive and negative growth is needed.  

Limitations and Strengths  

Given some of our unexpected findings, unmeasured confounding from factors 

such as maternal stress during pregnancy, environmental or occupational exposures, and 

other environmental characteristics may be influencing our estimates. 15,85-89 However, as 

an ecological study, there is the risk of ecological fallacy, or the trends we see at the 

county level may not be representative of or exist in the same manner at the individual 

level.  

This study used only birth record data for maternal demographic information, 

pregnancy characteristics, and birth outcomes, which has been shown to have 

underreporting biases with other pregnancy conditions. 90 The collection of birth records 

have also been found to vary among Kentucky hospitals. 91  We believe any biases 

introduced due to clerical error are non-differential as there is no indication that 

misclassification occurred based on any covariates of concern. 91,92 Additional limitations 

in this study include the case definition. We were also unable to determine the gestational 

age of disease onset from the birth record. To ensure we had identified cases of early-

onset HDP, we used births before 35 weeks gestational age as the cut point. However, 

women could have developed eHDP but given birth at or after 35 weeks. 

 Further, the certificates of live and stillbirth do not distinguish between GH, PE, 

and HELLP syndrome and are mutually exclusive with a diagnosis of chronic 

hypertension as pre-existing hypertension is a noted risk factor for HDP. 65 However, the 

diagnostic criteria for PE and GH were modified in 2013, as these are not individually 
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distinguishable on the birth record; we do not expect it to have overly impacted rates. 

However, changes in procedure can lead to the over or underreporting of cases.  5,8 There 

may be interviewer and recall biases due to questions that might be perceived as 

stigmatizing – such as self-reported pre-pregnancy weight,  marital status, number of 

cigarettes smoked throughout the pregnancy.  

Geocoding maternal addresses provided on the birth certificates is another source 

of potential bias in this study, as the maternal county of residence was determined from 

the mother’s residential address. Previous research has shown that Kentucky birth records 

in rural areas geocode less precisely than their urban counterparts (Chapter 2). However, 

given the overall precision of the records and the spatial unit of analysis being at the 

county level, we believe that the impact of geocoding imprecision on cluster 

identification to be limited. However, changes in residences, which are not reported on 

the birth certificate,  may have led to non-differential misclassification of women who 

changed residence during pregnancy. 93  

There are some notable strengths of this study. The certificates of live and 

stillbirth are established administrative data collection forms that undergo routine quality 

control. Furthermore, the form’s questions remained relatively unchanged throughout the 

study period. The form captures important demographic information (maternal age, race, 

ethnicity, and education) and pregnancy characteristics (gestation, prenatal care, pre-

pregnancy weight, height, and gestational age at birth) to better adjust for confounders. 94-

96 We had sufficient study power to detect a statistically significant spatio-temporal 

cluster of eHDP, an infrequent pregnancy complication.  

Although research on individuals have suggested that smoking is protective, this 

study shows that on a county level, smoking may be indicative of other health conditions 

unaccounted for in the birth record which could have increased prevalence of eHDP. 97 

Furthermore, this study confirms that the prevalence of eHDP and known risk factors, 

notably obesity, are increasing in Kentucky, and targeted health intervention is needed to 

improve maternal and fetal health. Lastly, this study has shown that there are clear spatial 

patterns in the incidence of eHDP incidence. Further research exploring explanations for 

high-rate clusters, such as air and water quality, occupational exposures, and the impact 
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of community amenities that encourage physical activity (green spaces and access to 

healthy foods), will further help identify potential interventions that could alleviate the 

disease burden.  
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CHAPTER 4. A CROSS-SECTIONAL EXAMINATION OF THE ASSOCIATION OF 

ENVIRONMENTAL TOXICITY WITH EARLY-ONSET HYPERTENSIVE 

DISORDERS OF PREGNANCY IN KENTUCKY 2008-2017 

4.1 Abstract  

This exploratory study merged geocoded residential information from birth 

records (2008-2017) with aerosol toxicity concentration estimates from the Risk 

Screening Environmental Indicators (RSEI) model (2007-2017) to assess geospatial 

patterns in industrial emissions of toxic metals (arsenic, cadmium chromium, lead, and 

mercury) and to evaluate the prevalence of early-onset hypertensive disorders of 

pregnancy (eHDP) in association with exposures to this set of metals. Four distinct 

classes of toxic metal exposure were identified using a latent class analysis. Women 

classified as having a high probability of exposure to both lead (Pb) and chromium (Cr) 

had a statistically significantly greater prevalence of eHDP (aPR=1.22, 95% CI: 1.04, 

1.44), relative to those with low or no exposure. Our findings contribute to the emerging 

literature on the association of metal exposures with pregnancy outcomes.  

4.2 Introduction 

Exposure to environmental toxicants has been shown to increase the risk of 

respiratory and cardiovascular disease, breast cancers, and poor pregnancy outcomes such 

as hypertensive disorders of pregnancy (HDP). 98-100 Hypertensive disorders of 

pregnancy, generally considered progressive, impacts 8-10% of pregnancies in the US 

each year, and are among the leading causes of morbidity and mortality in mothers and 

infants. Subsets of HDP include gestational hypertension (GH), pre-eclampsia (PE), and 

eclampsia. 1,2 Short-term adverse events of HDP can include preterm birth, stroke, and 

renal failure. Even after the resolution of the pregnancy, women who experience more 

severe HDP, such as PE, are at an increased risk of hypertension, stroke, metabolic 

disease, and HDP in subsequent pregnancies. 3,4 Pharmacologic interventions and 

treatment are extremely limited. Thus far, only low-dose aspirin has been shown to be 

minimally effective at reducing the risk of HDP if taken beginning at 12 weeks gestation; 

use after symptom onset has not been shown to be effective. 101  Risk factors for HDP 

include primiparity, maternal age, obesity, race, and use of infertility treatment. 6 
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Preliminary research suggests the presence of heavy metals in the maternal system may 

also be associated with an increased risk of HDP; however, some findings have been 

inconclusive, notably for As and Hg. 14-21 These contradictory findings may indicate no 

relationship between HDPs and specific metal exposure;  however, given substantial 

variation in the frequency and type of the biological samples used among studies, further 

study is needed.  

Also of concern with many HDP studies is their ability to generalize to US 

maternal populations. Although the underlying biological mechanisms resulting in 

disease would be consistent regardless of geography, maternal diet, environmental 

regulations, and health infrastructure could vary enough to impact both volume/types of 

exposures and the likelihood of disease. 102   

Inconsistencies in sampling methodologies have also plagued studies assessing 

environmental concentrations of metal exposure in air or water, leading to challenges in 

synthesizing results. 34 One potential option to address this limitation is to use the 

Environmental Protection Agency’s Risk Screening Environmental Indicators model. The 

Risk Screening Environmental Indicators (RSEI) approach uses emissions data reported 

to the Toxic Release Inventory (TRI) program to characterize yearly ambient aerosol 

concentrations of individual chemicals of concern across the U.S., adjusted for 

physicochemical properties and site characteristics (such as stack height, when available). 

35 These data are attractive, particularly in pilot studies, as they are easily accessible, 

include over 700 chemicals tracked by the EPA, are weighed for their overall toxic 

effects on human health and can be linked to administrative boundaries, such as ZIP 

codes, census tracts, or micro-block groups. 35  

To assess the utility of RSEI data, we selected birth records from Kentucky, a 

state with a high prevalence of eHDP risk factors (obesity, pre-existing diabetes) 103 and a 

high prevalence of smoking, which has generally been found to be protective. 104 The 

state also hosts large industrial complexes in both urban and rural areas, making it well 

suited to explore the relationship between environmental metal exposures and eHDP. 105 

In this study, we had four aims: 1) examine the distribution of emissions of chemicals of 

concern across the state 2) identify patterns of exposure to industrial metal emissions and 
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describe the sociodemographic characteristics of mothers in these areas, 3) evaluate the 

impact of environmental exposures to industrial metal emissions, adjusting for 

sociodemographic factors on risk eHDP and 4) identify areas in the state that have a high 

prevalence of individuals with eHDP. We hypothesize that women living in areas with an 

overlap in elevated exposures to As, Cd, and Pb during pregnancy would have a higher 

probability of eHDP than those living in areas with singular exposures. We also expected 

that women who lived in areas with elevated Se or Zn concentration would be less likely 

to have an eHDP diagnosis, as Se and Zn have been shown to be protective against the 

effects of cadmium toxicity. 106 

4.3 Methods 

The Kentucky Cabinet for Health and Family Services IRB and the University of 

Kentucky IRB reviewed and approved this cross-sectional study. Strengthening the 

Reporting of Observational Studies in Epidemiology (STROBE) guidelines were used as 

a template for reporting this study. 

4.3.1 Study Population  

The Kentucky Department of Vital Statistics provided 557,751 individual records 

for all live (n=553,476) and stillbirths (n=3,268) to self-identified Kentucky residents 

from January 1, 2008, through December 31, 2017. All covariates assessed for model 

inclusion were present in both forms. 64 Records were excluded if the mother had chronic 

hypertension, as it is mutually exclusive with HDP on birth records (n=10,752),  non-

primiparous (n=327,459), a multifetal pregnancy (n=5,206), to a mother younger than 11 

or older than 50 years old (n=215), delivered before 20 weeks gestation or after 45 weeks 

(n=565), the sex of the child was not known (n=20) the record did not geocode (n=3) or 

geocoded outside of the state (n=473), leaving 212,051 for analysis (1247 stillbirth and 

210,804 live births) for analysis. 65 Early-onset hypertension (eHDP) was defined as 

giving birth before 34 weeks and being positive for gestational hypertension, which 

includes diagnoses of gestational hypertension, pre-eclampsia, or HELLP (Hemolysis, 

ELevated Liver enzymes, Low Platelet count), on the birth record. 65 Individual-level 

data were assessed for patterns in missingness using PROC MI in SAS.  
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4.3.2 Outcome and Exposure Ascertainment 

Rural-Urban Continuum Codes (RUCC), a metric of population density, were 

obtained from the United States Department of Agriculture. The Area Deprivation Index 

(ADI) was used as a metric for the economic conditions of a given census tract. 107   

The ADI dataset incorporates American Community Survey (ACS) data on 

income, housing, educational, and employment data into principal component analysis to 

derive a score that is then standardized across the state. Higher scores correspond to 

higher levels of economic distress. 48 For this study, the 2019 Kentucky-specific census 

micro-block group ADI data were linked to the birth records by the geocoded census 

micro-block group. The ADI scores were dichotomized into upper quintiles (ADI of  9-

10) and lower (ADI 1-8) of neighborhood poverty. 107 Cartographic boundary files for 

county and census micro-block groups were obtained from the United States Census 

Bureau. 67 Appalachian status, defined by the Appalachian Regional Commission (ARC), 

was based on the geocoded maternal county of residence. 68  

To assess environmental exposure, disaggregated census micro-block group 

(CMBG) air emissions data were requested and obtained from the Environmental 

Protection Agency’s (EPA) Risk Screening Environmental Indicators (RSEI) program for 

the years 2007 through 2017.  108 Briefly, RSEI uses the yearly chemical-specific stack 

and fugitive aerosolized emissions reported to the Toxic Release Inventory (TRI) by 

federal and mandated facilities. Facilities are required to report if: 1) they have ten or 

more full-time employees, 2) the industry is in a required sector (such as mining), or is a 

federal facility and 3) manufactures, processes, or uses TRI-listed chemicals and the 

production, use, or transfer of a chemical amount exceeds the threshold set for a chemical 

in a given category. 109  

The PROC RANK procedure in SAS was used to identify and classify the highest 

quintiles for each exposure. As few CMBG had an estimated toxicity concentration of 

cadmium, records that had any cadmium exposure in their respective CMBG were 

characterized as such in a binary fashion. The yearly RSEI data were linked to birth 

records by CMBG using the residential address and year the majority (>50%) of the 

pregnancy period took place, including a 12-week preconception period to account for 



52 

pre-pregnancy exposures. 110,111 Therefore, although birth records were from 2008-2017, 

we used exposure data from 2007-2017.  

4.3.3 Data cleaning and dataset preparation  

Individual-level covariates were obtained from the birth certificate records. 

Maternal age was calculated by subtracting the mother and infant date of birth and 

rounding down to the nearest year, then categorized into five groups (>20, 21-24, 25-28, 

29-34, >35). Maternal race was collapsed into three categories (Black, Other,  White). 

Maternal Body Mass Index (BMI) was calculated using self-reported height and pre-

pregnancy weight and categorized into: underweight/normal (<25 kg/m2 ), overweight 

(25-30 kg/m2 ), and obese (>30 kg/m2 ). 69 Current literature suggests that women who 

quit smoking during their first trimester have an equivalent risk of HDP as women who 

do not smoke. Therefore, those who reported no smoking throughout their pregnancy or 

reported no cigarette use after the second trimester were considered non-smokers. 

Otherwise, women were classified as smokers. 70 Other covariates captured on the birth 

record included maternal ethnicity (Hispanic/non-Hispanic), education (less than high 

school, high school, some college, and college degree), marital status (yes/no, or not 

stated), and pre-existing diabetes (yes/no, or not stated).  

Each record was geocoded using an ESRI address coder (ESRI, Redlands, CA). 

This process provides geographic coordinates, the precision of coordinates, and local 

administrative boundaries (county and census tract information) for each address. 

Precisely geocoded addresses were those that were identifiable at the rooftop or street 

segment. Addresses that geocoded to the centroid of a street, city, or ZIP code were 

considered imprecise. Further details are geocoding methodology are provided in Chapter 

2. A summary of the geocoding precision of the records is reported in Appendix B.  

4.3.4 Statistical analysis 

Spatial Analysis  

To assess geospatial patterns of disease, SaTScan software was used to conduct a 

retrospective spatiotemporal scan statistic (Bernoulli model) with a circular scan window 

to detect clusters of high eHDP rates in Kentucky over the time period. 75 This method 

identifies candidate clusters using overlapping cylinders of increasing heights and 



53 

diameters representing time and spatial dimensions, respectively until a user-defined 

maximum population (10%) and temporal inclusion (5 years) restriction is reached. The 

maximum population is defined by the number of cases and non-cases in the input file.  

Using the likelihood ratio test, SaTScan compares the number of observed and expected 

cases within a candidate cluster to the area outside the cluster, adjusting for the 

underlying population density. The Monte Carlo method was used to estimate the p-

value.  

Both purely spatial candidate clusters, or those that spanned the entire study 

period, and clusters that encompassed 50% or less of the study period were assessed. 75 

To identify high-rate clusters of eHDP, the maximum cluster size was restricted to 10% 

of the population after confirming that larger population centers such as Lexington and 

Louisville had no clusters, as population size restrictions would effectively exclude them 

from reported results.  

SaTScan™ is a trademark of Martin Kulldorff. The SaTScanTM software was 

developed under the joint auspices of (i) Martin Kulldorff, (ii) the National  Cancer  

Institute,  and  (iii)  Farzad  Mostashari of the  New  York  City  Department of  Health 

and Mental Hygiene. 

Latent class analysis  

PROC LCA, developed by Lanza and colleagues, was used to conduct the latent 

class analysis. 112 In this analysis, the goal was to identify homogenous subgroups 

characterized by a combination of environmental emissions exposures using the 

dichotomized CMBG estimates of exposure. Zinc (Zn) and Selenium (Se) were also 

included, given recent findings that suggest they can moderate or reverse the impact of 

cadmium on the risk of HDP. 106 To determine the most appropriate class structure, 

following the guidance from Lanza, ten sets of models with random starting values 

consisting of two to five classes were run. The model was considered identified in sets 

where at least 80% of the models converged to the same solution. 112 Model fit was 

assessed using the Akaike information criterion (AIC), Bayesian information criterion 

(BIC), entropy, visual distinctiveness of each class, and class size. 112,113 Specifically, 
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models with the highest entropy, relatively low AIC and BIC, and class sizes greater than 

five records were prioritized. 

 

Statistical Modeling   

To assess the distribution of demographic characteristics, we summarized the 

overall sample with frequencies and percentages and provided row percentages for each 

demographic subgroup by exposure class. We used counts and column percentages to 

summarize the prevalence of eHDP among sociodemographic factors. A bivariate logistic 

regression was fit to examine the relationship between eHDP and covariates 

(sociodemographic factors and environmental exposure class). Variables were selected 

for inclusion into the final model, a multivariable logistic regression, if they were noted 

as being statistically associated with the prevalence of eHDP in the literature (maternal 

age, race, obesity, pre-existing diabetes, smoking), 6 were exposures of concern (As, Cd, 

Cr, Hg, and Pb), or were significantly associated with eHDP in the bivariate logistic 

regression (mother’s ethnicity, education, ADI, Appalachian region, RUCC status, and 

stillbirth). Geocoding precision was included to adjust for geocoding misclassification. 

The final model consisted of latent class metal exposures, mother’s age (years), mother’s 

race, mother’s ethnicity, mother’s BMI, pre-existing diabetes, smoking through 

pregnancy, ADI, and the Appalachian region, Geocoding precision, RUCC and stillbirth 

To assess any potential biases that resulted from using the latent class assignment as a 

categorical variable, we conducted an additional multivariable logistic regression with a 

subset of the participants with a posterior probability (PPr) of less than 80%. The 

proportion of records in each class with a PPr of less than 80% are summarized in 

Appendix A.  

SAS v 9.4 (SAS Institute, Cary, NC) was used for all non-spatial statistical 

analyses.  
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4.4 Results 

4.4.1 Spatial Analysis  

Figure 4.1 displays a series of maps that display the two individual level clusters 

of eHDP and choropleth maps of the median emissions for each chemical over the study 

period. Women living within the largest cluster, located within the Appalachian region, 

had a 63% greater risk of eHDP compared to women located outside the cluster 

(RR=1.63, 95% CI 1.38, 1.93). The second cluster, in Western Kentucky, was smaller, 

but women within this cluster had a 2-fold greater risk of eHDP compared to women 

outside of the cluster. (RR=2.21, 95% CI: 1.69, 2.90). Both clusters were significant for 

the entire duration of the study period (2007-2017). We also observed that, compared to 

other regions of the states, Louisville, Kentucky’s largest city, had high median 

concentration estimates of As, Cr, Se, and Zn. The state's southwestern border (near 

Hopkinsville) had elevated median emissions of  Zn, Se, and Cd. The majority of the 

Appalachian region in eastern Kentucky had low emission medians over the study period.  
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A: Median Concentration of Arsenic (As) B: Median concentration of Cadmium (Cd) 

  
D: Median concentration of Chromium (Cr) E: Median concentration of Lead (Pb) 

  
C: Median concentration of Mercury (Hg) F: Median concentration of Selenium (Se) 

  
G: Median concentration of Zinc (Ze)  

 

 

Figure 4.1 Median toxicity concentrations of emissions for each census micro-block 

group, Kentucky 2007-2017 

 

4.4.2 LCA 

Table 4.1 summarizes the model fit characteristics for LCAs with 2-4 classes. We 

chose the four-class model as the groups were distinctive, all classes had greater than five 

records, the AIC and the BIC were the lowest of the four models, and entropy was the 
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highest. Figure 4.2 visualizes the item response probabilities for each class. The first class 

(N=25,596) had a 74% probability of elevated Cd exposure, 62% probability of elevated 

As exposure, and a 74% probability of Pb exposure. Women in the second class 

(N=439,778) had a high probability of living in an area with both Se (91%) & Zn (86%) 

exposure. Those in the third exposure class (n=16,575) had a 99% probability of Pb 

exposure and a slightly elevated probability of Cr (51%). The final class, which 

constituted the majority of first-time mothers (n=119,687), had almost no metal exposure.  

Table 4.1 Indicators of fit for latent class analysis with two through four classes of 

emission exposures 

Number of 

Classes AIC BIC Entropy 

2 85797 85950.9 0.95 

3 34648 34884.1 0.86 

4 7388.41 7706.61 0.89 

LCA: Latent Class Analysis, AIC: Akaike’s Information 

Criteria.BIC: Bayesian Information Criteria; 
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Figure 4.2 Class membership probabilities as a function of environmental chemical 

exposure 

4.4.3 Statistical Modeling 

Table 4.2 describes the demographic characteristics of the study population 

overall and by latent class. The sample predominantly was comprised of non-Hispanic 

(96%) White (85%) women between the ages of 21-24 (35%), with a BMI less than 25 

(kg/m2) (52%), and largely non-smoking (86%). The first class, which had high 

probabilities of As, Cd, & Pb exposure, contained 16% of Hispanic and 32% of Black 

women. Almost 9% of mothers that experienced eHDP were in this class. The second 

class, which had elevated Se & Zn exposures, included 24% of Hispanic women and 22% 

of White women. Approximately 22% of smokers fell in the second class, 19% of 

stillbirth records, and 22% of eHDP cases. The third class, defined by the high 

probability of elevated Pb & Cr exposure, had the smallest proportion of Black mothers 

(10%) of any metal exposure class and included 9% of eHDP records. The fourth class, 

the low exposure group, comprised 60 of those <20 years old and almost 60% of White 

mothers.
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Table 4.2 Demographic characteristics summary by latent metal class and the total population of primiparous mothers 2008-

2017  

 Total  Elevated As, Cd & Pb Elevated Se & Zn  Elevated Pb & Cr Low Exposure 

 205836 (100%) 25596 (12.4%) 43978 (21.4%) 16575 (8.1%) 119687 (58.2%) 

 N (%) % % % % 

Mother’s age (years) †      

>35 10054 (4.7) 13.9 22.1 7.4 56.7 

29-34 27686 (13.1) 13.8 22.6 7.5 56.2 

25-28 55338 (26.1) 12.5 23.1 8.2 56.3 

21-24 73473 (34.7) 11.9 20.6 8.4 59.0 

<20 45500 (21.5) 13.0 19.8 7.7 59.5 

Mothers race†      

Black 17512 (8.3) 31.4 14.8 10.1 43.7 

Other 14222 (6.7) 18.8 21.0 8.2 51.9 

White 180317 (85.0) 10.3 22.1 7.8 59.8 

Mother’s ethnicity†      

Non-Hispanic 203521 (96.0) 12.5 21.3 8.0 58.2 

Hispanic 8530 (4.0) 16.3 24.2 8.0 51.4 

Mother’s education†      

College Degree 69526 (33.1) 12.6 23.5 7.9 56.0 

Some College 49760 (23.7) 13.2 21.5 8.8 56.5 

High School 58018 (27.6) 10.8 20.5 7.9 60.8 

Less than HS 32824 (15.6) 14.8 18.5 7.6 59.1 

Mother married†      

Yes 107478 (50.7) 10.7 22.5 8.6 58.3 

No or not stated 104573 (49.3) 14.7 20.3 7.5 57.5 



 

 

Mother’s BMI (kg/m2)†      

Obese (>30) 49608 (24.1) 11.6 20.9 7.4 60.1 

Overweight (25-30) 50122 (24.4) 12.4 21.4 7.9 58.4 

Underweight/Normal (<25) 106106 (51.6) 12.9 21.6 8.5 57.1 

Pre-existing diabetes †      

Yes 1608 (0.8) 10.8 21.3 7.2 60.8 

No or not stated 210443 (99.2) 12.6 21.4 8.1 57.9 

Smoking throughout 

pregnancy†      

No or not stated 182021 (85.8) 13.0 21.7 8.1 57.2 

Yes 30030 (14.2) 10.5 19.6 7.8 62.2 

ADI†      

Impoverished* 33473 (15.8) 12.5 8.9 3.7 74.9 

No/lower impoverishment 178578 (84.2) 12.7 23.8 8.9 54.8 

Appalachian†      

Appalachian 53904 (25.4) 0.3 8.1 10.1 81.4 

Not Appalachian 158147 (74.6) 16.8 25.9 7.3 49.9 

Geocoding precision†      
Address point/Street 

segment 189367 (89.3) 13.5 22.3 8.3 55.9 

Imprecise** 22684 (10.7) 5.7 13.8 5.9 74.7 

RUCC Status†      

Rural 17261 (8.1) 0.0 5.9 2.9 91.2 

Non-metro 66531 (31.4) 0.5 15.8 4.4 79.3 

Urban  128259 (60.5) 20.6 26.4 10.6 42.4 

      



 

 

Stillbirth†      

Yes 1247 (0.6) 14.4 18.6 7.3 59.7 

No or not stated 210804 (99.4) 12.6 21.4 8.1 57.9 

eHDP: an early-onset hypertensive disorder of pregnancy, where hypertensive symptoms present before 35 weeks; BMI: Body Mass Index; 

RUCC rural-urban continuum codes, Metal Abbreviations: As: Arsenic, Cd: Cadmium, Cr: Chromium, Hg: Mercury, Pb: Lead, Se: Selenium, 

Zn: Zinc 

*Impoverished Upper quintile of economic deprivation (9-10) **Imprecise address: Midpoint of street/ City/Zip/ No Geocode,  

† Chi-square test statistics <0.05, 
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Table 4.3 Bivariate and multivariable associations between demographic characteristics, environmental 

exposures, and class membership  
 

eHDP N (%) PR (95% CI) aPR (95% CI) Sensitivity aPR (95% CI) 

Latent class metal exposure  
   

Elevated As, Cd & Pb 166 (8.6) 0.64 (0.56, 0.76) 0.72 (0.60, 0.86) 0.82 (0.20, 3.46) 

Elevated Se & Zn  418 (21.6) 0.96 (0.86, 1.08) 1.08 (0.96, 1.22) 0.82 (0.50, 1.32) 

Elevated Pb & Cr 180 (9.3) 1.12 (0.94, 1.30) 1.22 (1.04, 1.44) 1.58 (1.02, 2.46) 

Low Exposure 1168 (60.5) Reference Reference Reference 

Mother’s age (years) 
    

>35 142 (7.3) 2.06 (1.70, 2.52) 1.96 (1.54, 2.50) 2.68 (1.20, 5.98) 

29-34 289 (15.0) 1.52 (1.30, 1.78) 1.54 (1.26, 1.88) 1.68 (0.82, 3.46) 

25-28 541 (28.0) 1.42 (1.24, 1.64) 1.38 (1.16, 1.66) 1.26 (0.68, 2.36) 

21-24 647 (33.5) 1.28 (1.12, 1.46) 1.12 (0.96, 1.30) 1.38 (0.82, 2.30) 

<20 313 (16.2) Reference Reference Reference 

Mother’s race 
    

Black 237 (12.3) 1.52 (1.32, 1.74) 1.60 (1.36, 1.88) 2.08 (1.28, 3.34) 

Other 76 (3.9) 0.60 (0.48, 0.74) 0.72 (0.56, 0.94) 0.18 (0.02, 1.32) 

White 1619 (83.8) Reference Reference Reference 

Mother’s ethnicity 
    

Non-Hispanic 1879 (97.3) 1.50 (1.14, 1.96) 1.04 (0.76, 1.44) 2.42 (0.32, 18.84) 

Hispanic 53 (2.7) Reference Reference Reference 

Mother’s education 
    

College Degree 612 (32.0) 1.40 (1.20, 1.64) 1.12 (0.92, 1.38) 0.86 (0.40, 1.78) 

Some College 540 (28.3) 1.74 (1.48, 2.04) 1.38 (1.14, 1.66) 1.50 (0.78, 2.88) 

High School 553 (28.9) 1.52 (1.30, 1.78) 1.28 (1.08, 1.52) 1.34 (0.72, 2.48) 

Less than HS* 206 (10.8) Reference Reference Reference 



 

 

Mother's BMI (kg/m2) 
    

Obese (>30) 766 (42.4) 2.80 (2.50, 3.12) 2.44 (2.18, 2.72) 3.06 (2.06, 4.54) 

Overweight (25-30) 448 (24.8) 1.60 (1.42, 1.82) 1.52 (1.34, 1.72) 2.04 (1.34, 3.14) 

Underweight/Normal (<25) 592 (32.8) Reference Reference Reference 

Pre-existing diabetes 
    

Yes 87 (4.5) 6.46 (5.18, 8.06) 4.62 (3.64, 5.84) 3.64 (1.40, 9.50) 

No or not stated 1845 (95.5) Reference Reference Reference 

Smoking throughout pregnancy 
    

No or not stated 1700 (88.0) 1.22 (1.06, 1.38) 1.30 (1.10, 1.50) 1.74 (0.98, 3.10) 

Yes 232 (12.0) Reference Reference Reference 

ADI 
    

Impoverished area (9-10) 353 (18.3) 1.20 (1.06, 1.34) 1.08 (0.94, 1.22) 1.46 (0.82, 2.6) 

No/lower impoverishment (1-8) 1579 (81.7) Reference Reference Reference 

Appalachian 
    

Appalachian 599 (31.0) 1.32 (1.20, 1.46) 1.20 (1.04, 1.36) 0.66 (0.38, 1.16) 

Not Appalachian 1333 (69.0) Reference Reference Reference 

Geocoding precision 
    

Address point/Street segment 1701 (88.0) 0.88 (0.76, 1.02) 0.98 (0.84, 1.14) 1.18 (0.64, 2.24) 

Imprecise** 231 (12.0) Reference Reference 
 

RUCC Status 
    

Rural 169 (8.7) 1.20 (1.02, 1.42) 1.06 (0.86, 1.28) 2.60 (0.78, 8.70) 

Non-Metro 720 (37.3) 1.34 (1.22, 1.46) 1.20 (1.04, 1.36) 1.60 (1.06, 2.44) 

Urban 1043 (54.0) Reference Reference Reference 

Stillbirth 
    

Yes 56 (2.9) 5.24 (4, 6.88) 4.30 (3.20, 5.78) 7.42 (3.06, 18.02) 

No or not stated 1876 (97.1) Reference Reference Reference 

BMI: Body Mass Index, ADI: Area Deprivation Index, RUCC: Rural-Urban Continuum Codes,  

*HS: High School  

**Imprecise address: Midpoint of street/ City/Zip/ No Geocode,  
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Table 4.3 summarizes the proportion of eHDP cases by covariate and displays the 

results of the bivariate, multivariate, and sensitivity analyses with posterior probabilities 

(PPr) of less than 80%. Please see the appendix for counts, percentages, and average PPr 

of each class for the overall sample and those with a PPr of less than 80%. 

Approximately 22% of women who experienced eHDP were in the second latent 

class, with high probabilities of exposures to elevated Se & Zn (22%). Women who 

experienced eHDP were predominantly White (84%) non-Hispanic (97%) between 21-24 

years old (34%). Over 42% were obese, 12% reported smoking throughout their 

pregnancy, and 52% reported being married.  

In the bivariate assessment, women in the first class with a high probability of 

concurrent exposure to As, Cd, & Pb, had a 36% reduction in the prevalence of eHDP 

(PR=0.64, 95% CI: 0.56, 0.76) compared to women with low metal exposure. In contrast, 

women in the third class, with concurrent elevated Pb & Cr exposure, had a 22% increase 

in the prevalence of eHDP (PR=1.12, 95% CI: 0.94, 1.30). Age was also associated with 

the prevalence of eHDP, with women > 35 years old having twice the prevalence of 

eHDP compared to those < 20 years old (PR=2.06, 95% CI: 1.70, 2.52). Mothers with an 

obese BMI had an almost three times higher prevalence of eHDP than those 

underweight/normal BMI (PR=2.80, 95% CI: 2.50,3.12). Black women also experienced 

a 52% higher prevalence of eHDP (PR=1.52, 95% CI: 1.32, 1.74) than White women.  

Following covariate adjustment, those in the first latent class with elevated As, 

Cd, & Pb had a 38% reduction in eHDP compared to those with low exposure 

(aPR=0.72, 95% CI: 0.60 0.86), and those in the third class with an elevated Pb & Cr 

experience had 22% increase prevalence of eHDP (aPR=1.22, 95% CI: 1.04, 1.44).  The 

prevalence of eHDP in those > 35 years old remained high after adjustment, compared to 

those < 20 years old (aPR=1.96, 95% CI: 1.54, 2.50). After adjustment, the prevalence of 

eHDP among those that were obese declined slightly (aPR=2.44, 95% CI: 2.18, 2.72) but 

still two times higher among women with an obese BMI.  Prevalence estimates were 

similar among age, race, smoking throughout pregnancy, stillbirth, and among 

geographic covariates such as Appalachian status, geocoding precision, and RUCC 

status. For those who had pre-existing diabetes, there was a marked decline in the 
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prevalence of eHDP after adjustment (PR=6.46, 95% CI: 5.18, 8.06 vs. aPR=4.62, 95% 

CI: 3.64, 5.84).  

Most estimates in the sensitivity analysis were within the bounds or did not 

deviate substantially from the adjusted analysis. However, the mother’s race saw the 

prevalence ratios become more extreme (sensitivity aPR=2.1, 95% CI 1.28, 3.34), as did 

the aPR for ADI (aPR =1.46 95% CI: 0.82, 2.60). In Appalachia, the prevalence of eHDP 

reversed from the adjusted multivariable logistic regression (sensitivity aPR=0.66, 95% 

CI: 0.38, 1.16).  

4.5 Discussion 

This study sought to identify geospatial trends and exposure patterns of 

environmental air emissions of As, Cd, Cr, Hg, and Pb in Kentucky and assess the 

relationship between these exposures and eHDP, adjusting for demographic risk factors 

for eHDP. Our findings contribute to emerging literature on the association of metal 

exposures with HDP, specifically, eHDP. Using individual-level birth records, we 

discovered two statistically significant clusters of eHDP, one in Western Kentucky and a 

second larger cluster in the Appalachian region. Employing an LCA, we identified four 

subgroups of metal exposures and further detected that women in the latent class with 

elevated exposure to Pb & Cr had a statistically significant increase in the prevalence of 

eHDP after covariate adjustment. 114 We also found that individual factors such as Black 

race, maternal age  > 34 years, obesity, and smoking throughout the pregnancy were 

associated with an increased prevalence of eHDP. Non-metro women or those who lived 

within the Appalachian region also had a higher prevalence of eHDP. Demographic 

covariates that strongly influence the prevalence of eHDP support most of the existing 

literature, with smoking being a notable exception. 70,71 

Although elevated emissions were largely in more urban areas and along the 

border, the eHDP cluster in Western Kentucky overlapped with census micro-block 

groups (CMBG) with elevated median estimates of As. However, the second cluster, 

located in the eastern, Appalachian region of the state, had very little visual overlap with 

the examined metal emissions. These clusters may reflect the geospatial patterns of eHDP 
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risk factors, such as obesity and pre-existing diabetes, which are particularly elevated in 

the Appalachian region.112 However, further study, particularly assessing the specific 

environmental characteristics of the cluster areas, is needed. 

While there have been limited studies assessing the impact of environmental 

metal exposures, specifically those identified in our study – Pb and Cr – on eHDP, 

individual-level assessments suggest a relationship between exposure and eHDP. 

Porporat and colleagues concluded in a recent literature review that leads exposure is 

among the most important risk factors for pre-eclampsia yet identified. 115 In a cohort 

study, Yazbeck and colleagues found a statistically significant relationship between blood 

levels of Pb at 24-28 weeks gestation was significantly higher in women with HDP than 

their non-HDP counterparts. Chromium has had less clear results. Researchers noted that 

pregnancies in areas with drinking water contaminated with metals such as Cr, Pb, and 

As, that women had elevated odds of HDP. 32 A case-control study of South African 

women found cases had significantly elevated levels of chromium in pubic hair compared 

to controls. 116 

To assess environmental metal exposures, we employed toxicity concentration 

estimates from RSEI, a promising publically available population-level dataset that, 

among other things, estimates the environmental volume of chemicals of concern at small 

spatial scales (810 m x 810 m grids, CMBG, census tracts, and ZIP codes). Although 

RSEI data has had a limited assessment in health research, preliminary work has found 

that children living in areas with RSEI estimated elevated aerosolized concentrations of 

Hg and Cd and reported elevated blood metal levels. 117  In a study assessing geospatial 

patterns and risk factors for preterm birth, Ogneva-Himmelberger and colleagues 

reported an association between pre-term births and RSEI estimated hazard scores. 118  

However, the use of RSEI data is not without limitations. These data are based on 

Toxic Release Inventory (TRI) reports, which are self-disclosed yearly estimates of 

fugitive and stack emissions by only a subset of facilities located in the US. Although 

site-specific characteristics are incorporated if available, generalizations are often made 

to similar facilities' characteristics if not. The RSEI model also does not incorporate non-

TRI sources of contamination and does not examine, integrate, or estimate decay 
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products of emissions, which may not have equivalent health risks as the parent product. 

However, RSEI data offer estimates of environmental concentrations of almost 700 

specific contaminants of concern in both air and water (this study focused exclusively on 

air), adjusted for characteristics of the contaminant at a spatially confined resolution. 

Estimates are updated based on the most current data (facilities can correct reported 

emissions information for up to 3 years) and the most up-to-date methodologies. Changes 

in reporting standards have also been relatively few since the program’s inception in 

1988, making the data appropriate for longitudinal analyses.  

The use of RSEI data, which employs consistent methodologies to estimate the 

local environmental burden of chemicals of concern, also allowed for the exploration of 

novel methodologies to assess concurrent environmental exposures to chemicals of 

concern. Traditionally, to assess the impact of environmental emissions exposure on poor 

pregnancy outcomes, studies employ a generalized linear model to individually assess the 

impact of exposures, adjusting for other important risk factors, on the outcome of interest, 

with limited (if any) assessment of interactions. Although helpful, these statistical models 

may not adequately address the impact of interactions among various chemicals, which 

rarely occur in isolation. To explore concurrent environmental exposures, we employed a 

latent class model to identify patterns of exposure. The latent class analysis (LCA) 

creates homogenous and mutually exclusive subgroups using the similarities of response 

patterns among records.  119 This person-centered approach allows for evaluating 

complex interactions without sacrificing statistical power, as multiple exposures are 

combined based on the probability of concurrent exposure. However, these classifications 

may not accurately reflect subgroups within the population, and records may be 

inappropriately assigned to exposure classifications if they do not have a clear class 

assignment. To assess potential bias in latent classes, we conducted a sensitivity analysis 

for those with low posterior probabilities (<80%). We found that, although the point 

estimates for measures of association were more extreme, the majority of prevalence 

ratios were in the same direction and had overlapping confidence intervals. However,  a 

few covariates reversed direction (elevated Se & Zn exposure, college education, 

Appalachian status, and address point/street segment geocoding precision). Overall, this 

suggests although there was some bias, the impact appears to be limited.  
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Although this study has notable strengths, such as assessing all of the primiparous 

births in Kentucky over ten years (2008-2017), there are significant limitations. Birth 

certificates may be subject to recall and interviewer bias, particularly with health 

information such as smoking and pre-pregnancy weight. Additionally, although the 

geocoding precision of Kentucky birth certificates has been found to be adequate, 

previous analyses have found that White women in urban areas and Black women in rural 

areas have an increased prevalence of geocoding imprecisely (see Chapter 2 for further 

details). Moreover, we could not determine the mother’s length of time at the residential 

address provided on the birth certificate. 93  

Also of concern is the impact of geocoding imprecision on exposure classification 

and spatial cluster detection. In this study, we determined the CMBG based on the 

geographic coordinates of the geocoded maternal addresses. The CMBG was then used to 

assign exposure status and assess the geospatial clustering of eHDP. Overall, 90% of 

records used in this study were geocoded precisely;  within the non-Appalachian region, 

the proportion of precise addresses was almost 95%, which supports our belief that the 

clusters detected are accurate, and there is limited exposure misclassification. 

In contrast, however, almost 24% of addresses within the Appalachian region 

geocoded imprecisely; that is to either the midpoint of the street, ZIP code, or city.  As 

the emission patterns of environmental metals were homogenous across the Appalachian 

region, we do not suspect substantial misclassification of exposure. However, we 

encourage a cautious interpretation of the spatial cluster identified within the 

Appalachian region. Although we believe that the Appalachian region has a high burden 

of eHDP, the cluster identified in this study may not be precise. Further study in the 

cluster area and neighboring communities is needed.  

In addition to improving the GIS resources within the Appalachian region, future 

assessments focusing on evaluating a broader range of exposure sources such as drinking 

water, residential air quality, and occupational exposures would allow for a fuller picture 

of metal exposures and lead to a better evaluation of health outcomes. Additionally, 

further exploration of the interaction among toxic exposures would help expand some of 



 

69 

the results observed in this study, such as the protective effect of As, Cd, & Pb, but the 

increased risk for those with a high probability of Pb & Cr exposure.  

4.5.1 Conclusions 

This study adds to the limited literature examining the risk of HDP by focusing 

explicitly on early-onset HDP and employing a latent class methodology to assess 

multiple environmental exposure patterns. Further, we identified metal exposures, 

specifically Pb & Cr exposures, as contributing to the prevalence of eHDP. Findings from 

this study suggest that efforts to mitigate metal exposures among women of childbearing 

age are highly warranted.   
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CHAPTER 5. DISCUSSION 

Hypertensive disorders of pregnancy (HDP) are increasing in the United States, 

with noted elevation in Kentucky. 7,9 These disorders are among the leading causes of 

maternal and infant mortality in the morbidity in the US, and associated healthcare costs 

exceed over $6 billion in the first year after birth. 6,120 Early-onset hypertensive disease 

(eHDP), a subset of HDP, is particularly concerning, as it is associated with the highest 

risks of maternal death and long-term chronic conditions. 11,54,60 Further, clinical research 

has indicated early-onset disease may not share the same risk factors of late-onset 

disease, although some risk factors such as obesity, pre-existing diabetes, and advanced 

maternal age; appear to be consistent across classification, even if the strength of the 

association varies among disease classifications. 56,121 There has been limited exploration 

of environmental risk factors; however, early results indicate associations with 

environmental exposures and HDP. 6,14-21 With the increased prevalence of risk factors 

such as obesity and advancing maternal age in primiparous mothers, it is crucial that we 

characterize the disease burden of eHDP, one of the most severe forms of HDP, and 

assess environmental risk factors associated with disease to improve maternal and infant 

health outcomes.  

To better characterize eHDP in Kentucky and explore potential geospatial trends, 

we used Kentucky birth records (2008-2017) and merged geocoded maternal addresses 

with data from the environmental protection agency’s (EPA) Risk Screening 

Environmental Indicators (RSEI) model (2007-2017) to assess environmental exposures. 

However, before merging these datasets, the geocoding precision of the address records 

needed to be characterized to discern and articulate limitations in future studies. This 

process and the geocoding precision of Kentucky birth records are discussed in chapter 

three, “Geocoding precision of birth records from 2008 to 2017 in Kentucky, USA.”  In 

the second chapter, “County prevalence and geospatial trends of early-onset hypertensive 

disorders of pregnancy in Kentucky, 2008-2017,” we assess county-level geospatial and 

temporal trends and identify covariates associated with eHDP. The fourth chapter, “A 

cross-sectional examination of the association of environmental metal exposure with 

early-onset hypertensive disorders of pregnancy in Kentucky, 2008-2017”, explores 
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patterns of exposure to aerosolized metals through industrial activity (specifically, 

arsenic, cadmium, chromium, lead, and mercury) and the association with eHDP, 

adjusting for geocoding precision.  

 The first study of this dissertation, “Geocoding precision of Kentucky birth 

records, 2008-2017,” assessed geospatial patterns of geocoding precision and identified 

covariates associated with poor geocoding precision to increase the transparency of our 

analytic procedures and to understand potential bias in future studies, as the later projects 

would use geocoded coordinates to assess county-level prevalences and assign exposure 

status.  Previous studies have found that geocoding precision is impacted by both 

population density, as urban areas tend to geocode with more precision than rural areas, 

and demographic characteristics, such as race – factors often associated with disease 

status. 37,51 In a meta-analysis of electronic health records using GIS methods, researchers 

noted that less than one-third of journal articles described their geocoding process. 40,46,122 

This lack of disclosure prevents other researchers from assessing the potential for bias in 

any study that uses geocoded address data. We found that Kentucky vital statistics data 

addresses geocoded precisely in metropolitan areas but lower in non-metro and rural 

areas. However, there was an improvement over the study period. We also identified 

disparities in geocoding precision among each of the rural-urban continuum codes 

(RUCCs). Specifically, in metropolitan areas, the addresses of White, non-Hispanic 

mothers had the highest odds of poorly geocoded addresses; however, in rural areas, 

Black or Hispanic mothers had a higher odds of imprecise geocoding.  Future work 

exploring geospatial trends would benefit from assessing patterns of geocoded precision, 

particularly within racial groups and population density metrics, such as RUCC 

designations, as both urban-metro status and race have been associated with the odds of 

geocoding imprecisely. 

The second study, “County prevalence and geospatial trends of early-onset 

hypertensive disorders of pregnancy in Kentucky, 2008-2017,” explores temporal and 

geospatial patterns of eHDP and identifies demographic factors associated with an 

increased prevalence of eHDP. There has been limited assessment of disease prevalence 

based on the gestational age of symptom onset, as most studies focus on diagnoses of any 

HDP or general pre-eclampsia. However, the rates of HDP, which include eHDP, are 
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concerning. In a study on trends of non-specific pre-eclampsia across the U.S. from 1996-

2004, Wallis and colleagues reported that the rate of P.E. in the Southern portion of the 

U.S. was approximately 34.1 per 1000 live births, a 12 higher prevalence compared to the 

Northeast region of the U.S. (RR=1.12, 95% CI: 1.03, 1.21). 8 In a one-year cross-

sectional study of 2017 birth data, Butwick and colleagues reported that Kentucky had 

approximately 70 cases of HDP per 1000 live births – the 8th highest prevalence in the 

US. 7 In the second study, which focused on early-onset disease manifestation in 

Kentucky, found that the prevalence of eHDP was, on average, 9.2 cases per 1,000 births 

across all counties during the study period and that there was an almost 3% rate increase 

during the study period (2008-2017). Although there are no nationwide estimates of 

eHDP prevalence, a study using birth records from Washington reported 3.8 eHDP per 

1,000 births – slightly less than half of Kentucky rates. 57 These findings may reflect the 

general elevation of obesity and pre-existing diabetes in Kentucky relative to 

Washington; however, further study is needed, as other factors, such as environmental 

regulations and predominant industry, vary between these states. 79,80  

Variations in HDP rates in the U.S. have been attributed to the geographic 

variation in health behaviors and pre-existing conditions such as obesity and smoking; 

however, there has been very little assessment of non-clinical explanations for rate 

changes. 8,9 We found that elevated county-level proportions of obesity, current cigarette 

smoking, and marriage were associated with an increased prevalence of eHDP. These 

findings may be due to the limitations inherent within ecological studies, notably the 

ecological fallacy; however, poor reproductive health literacy among young adults, 

especially in high-poverty regions, may also contribute to these findings.  

In the fourth chapter, “Cross-sectional analysis of Risk Screening Environmental 

Indicators toxicity concentration estimates and early-onset hypertensive disorders of 

pregnancy in Kentucky, 2008-2017,” we focused on the incidence of eHDP, adjusting 

for, among other covariates, geocoding precision. In this study, we sought to identify 

geospatial trends and exposure patterns of environmental air emissions of arsenic, 

cadmium, chromium, lead, and mercury in Kentucky and describe the prevalence of 

eHDP according to levels of toxic metal exposure. Using individual-level data, we 

discovered two statistically significant clusters of eHDP, one in Western Kentucky and a 
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second larger cluster in the Appalachian Region. Employing a latent class analysis 

(LCA), we identified four subgroups of metal exposures. Women in the latent class with 

elevated probability of exposure to lead and chromium had a statistically significant 

increase in the prevalence of eHDP after covariate adjustment. 114 We also observed that 

the prevalence of eHDP in Kentucky, 9.1 per 1000 births, was higher than reported in a 

similar study conducted in Washington (3.8 per 1000 live births). There was no 

statistically significant association between geocoding precision and eHDP prevalence, 

suggesting that although there is bias in geocoding precision, it is not strongly associated 

with eHDP (see Chapter 2). These findings may reflect the general elevation of obesity 

and pre-existing diabetes in Kentucky relative to Washington. 79,80 Differences in the 

distribution of risk factors within the state may also explain the location of these clusters 

in the Western and Appalachian regions of the state, as rural areas have a higher 

prevalence of obesity and pre-existing diabetes. 103  

This study contributes to an emerging literature on the association of 

environmental exposures with HDP, specifically, early-onset HDP. The use of RSEI data, 

which provides estimates of air and water chemical toxicity concentrations for each 810 

m x 810 m grid across the United States, can provide precise estimates of industrially 

emitted exposures of concern, with the flexibility of scaling to larger spatial areas, such 

as the census micro-block groups used in this study. The use of the LCA allowed for the 

assessment of patterns of metal exposure across the study region. This person-centered 

approach creates groups based on the similarities of response patterns, which allows for 

the evaluation of complex interactions without sacrificing statistical power. 119 

5.1 Strengths and limitations  

Birth and RSEI data, although useful, have several noted limitations. First, birth 

data has been shown to underreport maternal and infant complications, and we could not 

verify health or address data. 123 Further, a recent study found substantial variation in 

collection procedures in Kentucky hospitals. Also of note is the inability to explore the 

association of chronic hypertension with eHDP, as on the birth certificates, chronic 

hypertension and HDP are treated as mutually exclusive. Additionally, this dissertation 

focused on those that gave birth before 34 weeks, which invariable missed cases and 
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could have biased our estimates, as these individuals had the most severe disease. The 

environmental exposure data, RSEI, likewise has notable shortcomings. Foremost is self-

report bias, as RSEI obtains information on volumes emitted from reports submitted to 

the Toxic Release Inventory (TRI) program. These may not be verifiable, as TRI 

guidelines state that estimates are sufficient. 109 RSEI may incorporate additional 

estimates within the modeling protocol if specific facility information (such as stack 

heights) is unavailable. Estimates of environmental chemical burden also do not account 

for product decay or sources of exposure outside of TRI reporting.  

Strengths of this study include using the majority of births to Kentucky residents 

to estimate prevalence rates accurately. In addition, the high precision of geocoding 

within the population indicates that for most areas and people, we are able to locate their 

residence precisely. Therefore exposure estimates, which were on a microblock group 

level – are more likely to reflect the environmental conditions of those residential areas. 

Finally, although there are noted concerns of RSEI data, their methodologies are 

consistent throughout the entire study period.  

5.2 Future work 

Future work is needed given the prevalence of risk factors associated with eHDP 

and the association with environmental exposures and eHDP risk. First and foremost, a 

more accurate assessment of HDP in Kentucky is needed. This study focused on those 

who gave birth before 34 weeks, as the birth data could not ascertain the gestational age 

of symptom onset. Future research should accurately identify disease and gestational age 

of onset to identify risk factors and more accurately describe cases.  

This research also identified clusters of disease with an elevated prevalence 

compared to the rest of the state. A more thorough health and family history assessment 

and accurate characterization of local environmental and occupational exposures of 

primiparous women and their partners living in these areas could further elucidate causal 

factors associated with eHDP. 
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APPENDIX A 

To further assess the LCA results presented in chapter 3, we also assessed the 

posterior probabilities or the probability that a record would be assigned to a given class. 

To ensure that the classes were sufficiently distinctive, we calculated each class's average 

posterior probability (PPr). The average lowest posterior probability, which was the low 

exposure group, was 86%, with an average of 85% indicating adequate class assignments. 

There were 19,087 (9%) records with a posterior probability of less than 80%; the 

proportion by latent class is displayed in Table 4. Most of the records were assigned a 

posterior probability >80% for the latent class assignment, although those in the low 

exposure class had the lowest proportion (70.1%) of records assigned with confidence.  

Table A 1 Summary of Latent metal class and average posterior probability for class 

assignment 

 Total  <80% Posterior Probability  

Class description N(%) X (SD) N (%) X (SD) 

1. Elevated As, Cd, & Pb 26773 (98.5) 96.4 (5.9) 411 (1.5) 70.2 (3.9) 

2. Elevated Se & Zn 45391 (91.0) 95.1 (13.1) 4514 (9.1) 57.1 (5.1) 

3. Elevated Pb & Cr 122829 (94.7) 95.9 (6.5) 6896 (5.3) 78.1 (0.4) 

4. Low Exposure 17058 (70.1) 86.4 (13.9) 7266 (29.9) 70.5 (1.1) 
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APPENDIX B   

This table presents the geocoding precision of the records before excluding 

records that geocoded outside of the state. (For Chapter 4)  

 

Figure B.1: Description and summary of geocoding precision for Kentucky addresses, 

2008-2017 
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