Zirconia-Based Compositions for Use in Passive NO\textsubscript{x} Adsorber Devices

Deborah Jayne Harris
Magnesium Elektron Ltd., UK

David Alastair Scapens
Magnesium Elektron Ltd., UK

John G. Darab

Mark Crocker
University of Kentucky, Mark.crocker@uky.edu

Yaying Ji
University of Kentucky, yaying.ji@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/chemistry_patents

Part of the Chemical Engineering Commons, and the Chemistry Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Harris, Deborah Jayne; Scapens, David Alastair; Darab, John G.; Crocker, Mark; and Ji, Yaying, "Zirconia-Based Compositions for Use in Passive NO\textsubscript{x} Adsorber Devices" (2019). *Chemistry Faculty Patents*. 41.
https://uknowledge.uky.edu/chemistry_patents/41

This Patent is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
ZIRCONIA-BASED COMPOSITIONS FOR USE IN PASSIVE NOX ADSORBER DEVICES

A passive NOx adsorbent includes: palladium, platinum or a mixture thereof and a mixed or composite oxide including the following elements in percentage by weight, expressed in terms of oxide: 10-90% by weight zirconium and 0.1-50% by weight of least one of the following: a transition metal or a lanthanide series element other than Ce.

Although the passive NOx adsorbent can include Ce in an amount ranging from 0.1 to 20% by weight expressed in terms of oxide, advantages are obtained particularly in the case of low-Ce or a substantially Ce-free passive NOx adsorbent.

19 Claims, No Drawings
References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

EP 2 783 741 A3* 12/2014 B01D 53/9418
MX PA01010287 A* 9/2002 B01D 53/9422

* cited by examiner
This disclosure relates to treating gas streams so as to remove nitrogen oxides (NOx) therefrom and in particular, to passive NOx adsorbents (PNA) that store NOx at lower temperatures and then release the NOx at higher temperatures.

TECHNICAL BACKGROUND

Urea-SCR (Selective Catalytic Reduction) is a well-known solution for treating the NOx emissions from diesel engines, but requires the exhaust temperatures to be above 200°C. [1]. The heating rate on diesel engines/exhaust can be relatively slow, and this results in a delay between switching the engine on and being able to dose urea and effectively remove NOx by SCR (“cold-start” period). The NOx emissions during this cold start period comprise a large portion of the total emissions during the FTP-75 and NEDC test protocols for example, and this has significant implications for real world driving.

In Europe, the legislated NOx limits for diesel vehicles have been constantly falling since the introduction of the Euro standard, and the current Euro VI limit is 0.080 g/km (September 2014).

One solution is to utilize a “passive NOx adsorbent” (PNA) material upstream of the SCR catalyst, which is capable of storing NOx below 200°C (i.e., during the cold start period) and then releasing it above this temperature (i.e., once the SCR catalyst is active).

Standard lean NOx trap materials (e.g., Pt/Ba/Al2O3) which require the oxidation of NO to NO2 are useful at higher temperatures but do not tend to store NOx efficiently below 150°C. In this regard, an alternative class of materials are necessary that are more active at lower temperatures (from ambient up to 200°C).

In addition to the low temperature NOx storage capability, PNA materials must also have suitable thermal stability. Depending on the location (e.g., on DOC), it may experience temperatures up to 800-850°C (hydrothermal) under high engine load conditions. The PNA will always be upstream of the SCR catalyst but may be downstream of a filter, which could be regenerated actively or passively. Hence the PNA must maintain its low temperature activity after such thermal excursions.

Further to these thermal stability demands, candidate PNA materials should also be robust to the presence of sulfur-containing species in the exhaust gas. This implies that the materials should have a relatively low propensity for adsorbing sulfur species, but also tend to desulfate under suitable conditions (e.g. preferably below 700°C in lean conditions).

U.S. Pat. No. 8,105,559 refers to the use of palladium on ceria (Pd—CeO2) as an effective PNA candidate. NOx is allegedly stored effectively at 120°C, 160°C or 200°C, and is allegedly desorbed almost immediately upon ramping the temperature. However, no data is provided on the effect of sulfur in the feed gas.

U.S. Pat. No. 8,920,756 refers to the use of an Ag/Al2O3 component in combination with another material to create a passive NOx adsorber system. The second material may contain manganese, but only in combination with ceria, and this is likely to be inherently sulfur-intolerant. In addition to this, the function of the second component is to store NOx once the temperature is above 190°C. (NOx during the initial cold start period being stored on the Ag/Al2O3 component).

U.S. Pat. No. 9,687,811 discusses the use of various materials/combinations for use in the PNA application. Specific mention is made of manganese, but this is used as a bulk Mn3O4 component (i.e., not part of a solid solution) which is expected to lead to poor thermal stability and low sulfur-tolerance. Further to this, the Mn3O4 component is always added in combination with a ceria component.

Zhao-shun Zhang and co-workers (Appl. Cat. B: Environmental, 165 (2015) 232-244) investigated the addition of manganese into a model lean NOx trap (Pd/Ba/Al2O3). They demonstrated enhanced NO oxidation activity but required temperatures above 300°C for efficient NOx storage.

Li-Hong Guo and co-workers (Catal. Today, June 2017) also investigated model manganese oxide systems under more relevant NOx storage conditions (i.e., <200°C) and found that NOx could be stored effectively. However, although Mn3O4 had the greatest NOx storage capacity, the strong adsorption of NOx meant that desorption was more difficult, and Mn3O4 showed more facile NOx release. So, when designing manganese-containing PNA materials, one should consider the state of the Mn species and the impact of other components of the mixed or composite oxide on this. Oxidation of NO to NO2 is not always beneficial, with surface nitrites being generally less stable than nitrites, and thus more easily desorbed.

U.S. Patent application publication No. 2009/0191108 refers to the use of praseodymia-zirconia mixed oxides (optionally containing ceria) in NOx trapping applications for lean burning internal combustion engines. Although the materials showed improved sulfur-tolerance compared to Ba/Al2O3 reference (after rich regeneration at 550°C), there is no low temperature activity promoting element (such as a transition metal) and these materials require temperatures of 200-300°C for suitable NOx storage.

And finally, the palladium-on-zeolite system has received a lot of attention for the PNA application, such as U.S. published patent application No. 2012/0308439. Although efficient low temperature NOx storage is observed, the palladium usage can be quite high (>50 g/ft3) which has cost implications, and these materials also tend to adsorb hydrocarbons which may or may not be advantageous.

SUMMARY OF THE DISCLOSURE

This disclosure features a composition for a passive NOx adsorbent comprising Zr-based mixed or composite-oxides. The passive NOx adsorbent includes at least one of the following: a transition metal (e.g., Mn, W, Fe) and a lanthanide series element (e.g., Pr). In some instances structural promoters, for example, an oxide of Y, La or Nd, may be used to improve the thermal durability of Zr-based mixed or composite-oxides [Applied Catalysis, 1991; Topics in Catalysis, July 2004].

The passive NOx adsorbents of this disclosure compensate for a deficiency in performance of conventional catalysts in removing NOx in gasoline and diesel engine exhaust from motor vehicles. The passive NOx adsorbents herein are able to store or adsorb NOx from the lean exhaust gas stream at lower temperatures (e.g., below 200°C) at a point when conventional catalysts do not perform well. Then, above 200°C, the passive NOx adsorbents herein release or desorb the NOx at a point when the conventional catalysts can perform well. For example, the passive NOx adsorbent of
the disclosure releases the NO\textsubscript{x} at temperatures above 200° C. to a downstream and different SCR catalyst device which reduces the NO\textsubscript{x} to nitrogen gas so as to satisfy stringent NO\textsubscript{x} emission regulations for motor vehicles.

A first aspect of this disclosure features a passive NO\textsubscript{x} adsorbent including: palladium, platinum, or a mixture thereof and a mixed or composite oxide. The mixed or composite oxide includes the following composition: 10-90\% by weight zirconium and 0.1-50\% by weight of at least one of the following: a transition metal or a lanthanide series element other than Ce.

It should be appreciated that in the mixed or composite oxides of this disclosure, for example, the recited weight percentages of elements on an oxide basis are based on a total weight of the mixed or composite oxide and when combined equal 100\%. Further, use of “comprising” transitional claim language does not exclude additional, unrecited elements or method steps. Moreover, the disclosure also contemplates use of “consisting essentially of” transitional claim language, which limits the scope of the claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s) of the claimed invention which include the function of the mixed or composite oxide as a passive NO\textsubscript{x} adsorbent. When numerical ranges are used, the range includes the endpoints unless otherwise indicated.

Specific features of the first aspect of the disclosure will now be described. The mixed or composite oxide can include at least one of W, Mn and Fe as the transition metal. The transition metal(s) can be present in an amount ranging from 0.1\% to 20\% by weight of the mixed or composite oxide, on an oxide basis.

Particular mixed or composite oxides include the following: Pr—Zr; Mn—Zr; W—Zr; and Mn—Pr—Zr; any of the foregoing including Fe; and any of the foregoing including optional amounts of Ce or being substantially free of Ce as discussed further in the Summary of the Disclosure below.

In another feature, the mixed or composite oxide can include at least one of Pr, Tb, or a mixture of Pr and Tb, as the lanthanide series element other than Ce.

Yet another feature is that the mixed or composite oxide can include Pr as the lanthanide series element other than Ce, and at least one of the following metals selected from W, Mn, and Fe as the transition metal.

A further feature is that the mixed or composite oxide can include Mn and Fe as the transition metal. The mixed or composite oxide herein includes Mn, Fe, and at least one of the following metals selected from W and Pr as the transition metal.

In another feature, the mixed or composite oxide can include Pr and at least one of Y, La and Nd as the lanthanide series element other than Ce in an amount ranging from 0.5\% to 20\% by weight, and at least one of the following metals selected from W, Mn, and Fe as the transition metal in an amount ranging from 0.1\% to 20\% by weight.

A further feature is that the mixed or composite oxide can include Mn as the transition metal in an amount of 0.1\% to 20\% by weight and Pr as the lanthanide series element other than Ce, in an amount of 0.5\% to 30\% by weight, the total amount of Mn and Pr being not more than 50\% by weight.

The following specific features may apply to the above feature. In one feature, the mixed or composite oxide can further include at least one of W and Fe as the transition metal. In addition, the mixed or composite oxide can further include at least one of Y, La and Nd as the lanthanide series element other than Ce. Moreover, the mixed or composite oxide can include an element from Group 14 of the Periodic Table (e.g., Si or Sn) in an amount ranging from 0.1 to 20\% by weight expressed in terms of oxide.

The mixed or composite oxide of the passive NO\textsubscript{x} adsorbent can include Ce in the following amounts: not more than 20\% by weight expressed in terms of oxide; in particular, in an amount ranging from 0.1\% to 20\%; further ranging from 0.1\% to less than 5\%; further still ranging from 0.5\% to less than 5\%; and in particular, the passive NO\textsubscript{x} adsorbent can be substantially free of Ce.

The passive NO\textsubscript{x} adsorbent as a fresh material can have a minimum NO\textsubscript{x} storage capacity of 7.5 \textmu mol/g after 5 minutes at 120° C.

Further, the passive NO\textsubscript{x} adsorbent as an aged material can have a minimum NO\textsubscript{x} storage capacity of 5 \textmu mol/g after 5 minutes at 120° C.

Another feature is a passive NO\textsubscript{x} adsorbent according to the first aspect in which the mixed or composite oxide includes Mn as the at least one transition metal and includes optional element X, wherein when element X is present it is: at least one of Ce; or Pr as the lanthanide series element other than Ce, with a minimum fresh NO\textsubscript{x} storage capacity of at least 40 \textmu mol/g after 5 minutes at 120° C.

Yet another feature is a passive NO\textsubscript{x} adsorbent according to the first aspect in which the mixed or composite oxide includes Mn as the at least one transition metal and optional element X, wherein when element X is present it is: at least one of Ce; or Pr as the lanthanide series element other than Ce, with a minimum aged NO\textsubscript{x} storage capacity of at least 19 \textmu mol/g after 5 minutes at 120° C.

Another feature is a passive NO\textsubscript{x} adsorbent according to the first aspect in which the mixed or composite oxide includes Mn as the at least one transition metal and Pr as the lanthanide series element other than Ce, with a minimum fresh NO\textsubscript{x} storage capacity of at least 50 \textmu mol/g after 5 minutes at 120° C.

Still further is featured a passive NO\textsubscript{x} adsorbent according to the first aspect in which the mixed or composite oxide includes Mn as the at least one transition metal and Pr as the lanthanide series element other than Ce, with a minimum aged NO\textsubscript{x} storage capacity of at least 45 \textmu mol/g after 5 minutes at 120° C.

Another feature is a monolithic substrate supporting a washcoat, the washcoat comprising the passive NO\textsubscript{x} adsorbent of the first aspect of the disclosure.

Further the passive NO\textsubscript{x} adsorbent of the first aspect of the disclosure can be used in combination with a Selective Catalytic Reduction catalyst.

A second aspect of the disclosure features a method for reducing nitrogen oxides (NO\textsubscript{x}) present in a lean gas stream including at least one of nitric oxide (NO) and nitrogen dioxide (NO\textsubscript{2}), including the following steps. The passive NO\textsubscript{x} adsorbent of the first aspect of the disclosure is provided in the lean gas stream. NO\textsubscript{x} is adsorbed from the lean gas stream on or in the passive NO\textsubscript{x} adsorbent at a temperature below 200° C. NO\textsubscript{x} is thermally net desorbed from the passive NO\textsubscript{x} adsorbent in the lean gas stream at 200° C. and above. The NO\textsubscript{x} is catalytically reduced on a downstream catalyst situated downstream of the passive
NO\textsubscript{x} adsorbent, with at least one of the following reductants: a nitrogenous reductant, a hydrocarbon reductant, hydrogen and a mixture thereof.

In one specific feature of the second aspect the lean gas stream emanates from a gasoline fueled or diesel fueled engine.

Many additional features, advantages and a fuller understanding of the disclosure will be had from the Detailed Description that follows. It should be understood that the above Summary of the Disclosure describes the subject matter of the disclosure in broad terms while the following Detailed Description describes the subject matter of the disclosure more narrowly and presents particular embodiments that should not be construed as necessary limitations of the broad subject matter of the disclosure.

DETAILED DESCRIPTION

Fresh Mn-zirconia passive NO\textsubscript{x} adsorbents and Mn—Pr-zirconia passive NO\textsubscript{x} adsorbents exhibit NO\textsubscript{x} storage values after, for example, 5 minutes at 120° C. comparable to those of analogous fresh materials containing Ce but drop off after 15 minutes at 120° C. As known in the art, aging represents expected behavior of a material after being in use for a period of time. Looking at aged PNA materials, the Mn—Pr-zirconia passive NO\textsubscript{x} adsorbent compositions of this disclosure exhibit NO\textsubscript{x} storage values after all times up to 15 minutes at 120° C. comparable or considerably greater than those of the Ce-containing analogues.

The term “passive NO\textsubscript{x} adsorbent (PNA)” as used in this disclosure means an adsorbent disposed in a gas stream, which stores NO\textsubscript{x} from the gas stream at temperatures up to 200° C, and releases the stored NO\textsubscript{x} into the gas stream at temperatures greater than 200° C. If an SCR catalyst is used, the PNA can be located upstream of the SCR catalyst, for example. When the term “fresh” is used in this disclosure it means an adsorbent material that has only been calcined under such conditions as to decompose any precursor constituents into an “active” form, and hasn’t undergone any accelerated and/or in-use ageing.

Tungstated zirconia (WO\textsubscript{3}—ZrO\textsubscript{2}) passive NO\textsubscript{x} adsorbent material has also been shown to exhibit considerably greater NO\textsubscript{x} storage values compared to pure zirconia (in the presence of Pt or Pd, and tested fresh).

Equally important for passive NO\textsubscript{x} adsorbents, the stored NO\textsubscript{x} can be thermally desorbed from the adsorbent with high efficiency in the working temperature range of 200 - 350° C. The tungstated zirconia adsorbent discussed above has also been shown to exhibit a greater percentage of the amount of NO\textsubscript{x} desorbed to the amount stored compared to other materials presented here. Similar to the addition of Pr to Mn-zirconia adsorbent has been shown to be beneficial in terms of facilitating thermal NO\textsubscript{x} release between 200 and 250° C. compared to non-Pr containing and Ce-containing analogues.

Therefore, comparable properties and even definite advantages are obtained in the passive NO\textsubscript{x} adsorbents of this disclosure when avoiding use of Ce, compared to Ce containing compositions. The passive NO\textsubscript{x} adsorbents of this disclosure advantageously can limit Ce to the following amounts on an oxide basis: Ce in an amount not more than 20% by weight; Ce in an amount ranging from 0.1 to 20% by weight; Ce in an amount less than 5% by weight; Ce ranging from 0.5% to less than 5% by weight; and in particular, the composition is substantially free of Ce.

While the addition of Fe to Ce-zirconia passive NO\textsubscript{x} adsorbent material provides for less overall NO\textsubscript{x} storage compared to a Mn—Ce-zirconia passive NO\textsubscript{x} adsorbent material, the Fe-containing adsorbent material exhibits a greater percentage of the amount of NO\textsubscript{x} desorbed to the amount stored. By extrapolation, it is believed this desorbing behavior resulting from use of Fe would also be evident in non-ceria containing passive NO\textsubscript{x} adsorbent material or low-ceria containing passive NO\textsubscript{x} adsorbent material.

The mixed or composite oxide compositions of the passive NO\textsubscript{x} adsorbents of this disclosure may include the listed elements as oxides. However, a portion of the elements may be in a form of hydroxides or oxhydroxides. The passive NO\textsubscript{x} adsorbents can be in the form of a powder. Typical characteristics of the PNA powder include: particle size; d\textsubscript{50} may range from about 1 µm to about 100 µm, although for washcoated materials the d\textsubscript{50} will generally be <10 µm. The surface area of the fresh PNA powder will typically fall in the range 40-250 m2/g. The total pore volume of the fresh PNA powder will typically fall in the range 0.10-1.0 cm3/g. Impurity levels of the fresh PNA powder are <500 ppm of Na or Cl and <0.1% SO\textsubscript{4}2- typical impurities. Naturally occurring H\textsubscript{2}O\textsubscript{2} may be present in an amount of 1-2% in the ZrO\textsubscript{2} used in the adsorbents of this disclosure. The PNA powder may be applied as an aqueous washcoat that coats a substrate, for example, onto a monolithic substrate, and in particular, onto a honeycomb shaped monolithic substrate. Examples of monolith coating methods suitable for use in this disclosure can be found in US2011/0268634A1 and WO2017/144493A1, which are incorporated herein by reference in their entireties, although other techniques could be used.

The passive NO\textsubscript{x} adsorbents of this disclosure may be used in various gas streams containing NO\textsubscript{x} and, in particular, in lean gas streams. An example lean gas stream includes the following components in the indicated percentages by volume: CO\textsubscript{2} about 12%, H\textsubscript{2}O about 11%, O\textsubscript{2} about 9%, NO\textsubscript{x} 50-1000 ppm, CO 100-500 ppm, PM 1-30 mg/m3, HC 20-300 ppm. One particular application is in an exhaust stream of a gasoline fueled engine of a motor vehicle. Another application is in the exhaust stream of a diesel fueled engine of a motor vehicle. Non-automotive applications such as trains and ships are also relevant with regard to use of the materials of this disclosure, along with stationary emissions sources such as power stations, refineries, and general industrial facilities that generate NO\textsubscript{x}.

Given that interest in this type of automotive application is growing (in an effort to decrease cold start emissions from lean-burn engines), the commercial application of these devices can be expected in the near future.

Suitable methods for preparing the passive NO\textsubscript{x} adsorbents of this disclosure may include (but are not limited to) the methods described in the following references, all of which are incorporated herein by reference in their entireties:

2. J. A. Navio, et al., Chem. Mater. 1997, 9, 1256-1261. (Alkaline precipitation);
5. U.S. Pat. No. 7,431,910;
7. U.S. Pat. No. 7,794,687.

The subject matter of the disclosure will now be described by reference to the following examples, which are for
purposes of illustration and should not necessarily be used to limit the subject matter herein.

Example 1

A portion of tungstate zirconia mixed or composite oxide (15.6% WO₃/84.25% ZrO₂) (e.g., can be made using the process described in U.S. Pat. No. 7,945,471) was used as a support for palladium and tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 2

A portion of undoped zirconia (e.g., can be made using the process described in U.S. Pat. No. 7,632,477) was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 3

A portion of ceria-zirconia mixed or composite oxide (25.7% CeO₂/74.3% ZrO₂) (e.g., can be made using the process described in U.S. Pat. No. 7,431,910) was first impregnated with an aqueous solution of manganese nitrate, then dried and calcined at 500° C. for 3 h. The resulting Mn—ZrO₂ oxide (20.0% MnO₂/80.0% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate and further calcined at 500° C. for 3 h. Pd loading in the catalysts was maintained at 1 wt %.

The material of EXAMPLE 2 was then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 4

A portion of manganese-zirconia mixed or composite oxide (13.3% MnO₂/86.7% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate in an aqueous solution of manganese nitrate, then dried and calcined at 500° C. for 3 h. The resulting Mn—ZrO₂ oxide (20.0% MnO₂/20.0% CeO₂/59.4% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate and further calcined at 500° C. for 3 h. Pd loading in the catalysts was maintained at 1 wt %.

The material of EXAMPLE 3 was then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 5

A portion of manganese-zirconia mixed or composite oxide (13.3% MnO₂/86.7% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate in an aqueous solution of manganese nitrate, then dried and calcined at 500° C. for 3 h. The resulting Mn—ZrO₂ oxide (20.0% MnO₂/20.0% CeO₂/59.4% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate and further calcined at 500° C. for 3 h. Pd loading in the catalysts was maintained at 1 wt %.

The material of EXAMPLE 3 was then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 6

A portion of manganese-praseodymia-zirconia mixed or composite oxide (14.3% MnO₂/14.0% Pr₆O₁₇/71.7% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate in an aqueous solution of manganese nitrate, then dried and calcined at 500° C. for 3 h. The resulting Mn—ZrO₂ oxide (20.0% MnO₂/14.0% Pr₆O₁₇/71.7% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate and further calcined at 500° C. for 3 h. Pd loading in the catalysts was maintained at 1 wt %.

The material of EXAMPLE 3 was then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 7

A portion of manganese-ceria-zirconia mixed or composite oxide (13.0% MnO₂/10.0% CeO₂/77.0% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate in an aqueous solution of manganese nitrate, then dried and calcined at 500° C. for 3 h. The resulting Mn—ZrO₂ oxide (20.0% MnO₂/10.0% CeO₂/77.0% ZrO₂) was subsequently impregnated with aqueous tetra-amine palladium (II) nitrate and further calcined at 500° C. for 3 h. Pd loading in the catalysts was maintained at 1 wt %.

The material of EXAMPLE 3 was then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 8

A portion of manganese-praseodymia-zirconia mixed or composite oxide (7.0% MnO₂/13.6% Pr₆O₁₇/79.4% ZrO₂)
was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1. This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,632,477. The results are presented in Table 1.

Example 9

A portion of EXAMPLE 8 (with palladium added) was hydrothermally aged and then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 10

A portion of a manganese-ceria-zirconia mixed or composite oxide (6.3% MnO/9.7% CeO/84.0% ZrO₂) was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1. This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,431,910. The results are presented in Table 1.

Example 11

A portion of EXAMPLE 10 (with palladium added) was hydrothermally aged and then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 12

A portion of a manganese-ceria-zirconia mixed or composite oxide (20.0% MnO/10.0% CeO₂/70.0% ZrO₂) was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1. This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,431,910. The results are presented in Table 1.

Example 13

A portion of EXAMPLE 12 (with palladium added) was hydrothermally aged and then tested based on the procedures detailed in EXAMPLE 1. The results are presented in Table 1.

Example 14

A portion of an iron-ceria-zirconia mixed or composite oxide (20.0% Fe₂O₃/10.0% CeO₂/70.0% ZrO₂) was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1. This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,431,910. The results are presented in Table 1.

Example 15

A portion of an iron-ceria-zirconia mixed or composite oxide (10.0% Fe₂O₃/10.0% CeO₂/80.0% ZrO₂) was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1. This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,431,910. The results are presented in Table 1.

Example 16

A portion of an iron-ceria-zirconia mixed or composite oxide (5.0% Fe₂O₃/10.0% CeO₂/85.0% ZrO₂) was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1. This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,431,910. The results are presented in Table 1.

Example 17

A manganese-silica-praseodymia-zirconia mixed or composite oxide was prepared (7.0% MnO₂/13.6% Pr₆O₁₅/5.0% SiO₂/74.4% ZrO₂); analogous to EXAMPLE 8 but with silica present. This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,632,477.

Conclusions:

Conclusions drawn from the test results described in the discussed in EXAMPLES 1-16 and COMPARATIVE EXAMPLE 1 are shown in Table 1 and discussed below. In the discussion, amounts of the elements in the mixed or composite oxides are rounded to the nearest whole number.

TABLE 1

Results of testing the Indicated PNA materials for a storage temperature of 120° C. and a desorption time of 15 minutes.

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount NOₓ Stored at 120° C. (μmol/g)</th>
<th>Amount NOₓ Desorbed at 15 min</th>
<th>% of Amount NOₓ Desorbed to Amount Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 min</td>
<td>2 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Comparative</td>
<td>4.97</td>
<td>9.71</td>
<td>14.62</td>
</tr>
<tr>
<td>Example 1 (Pt)</td>
<td>3.59</td>
<td>5.62</td>
<td>10.73</td>
</tr>
<tr>
<td>Example 1 (Pd)</td>
<td>3.67</td>
<td>5.01</td>
<td>7.77</td>
</tr>
<tr>
<td>Example 1 (Pd)</td>
<td>9.42</td>
<td>15.76</td>
<td>24.19</td>
</tr>
<tr>
<td>Example 2 (Pd)</td>
<td>10.69</td>
<td>21.10</td>
<td>45.73</td>
</tr>
<tr>
<td>Example 3 (Pd)</td>
<td>10.19</td>
<td>19.19</td>
<td>43.59</td>
</tr>
<tr>
<td>Example 12 (Pd)</td>
<td>11.10</td>
<td>21.47</td>
<td>53.78</td>
</tr>
<tr>
<td>Example 13 (Pd)</td>
<td>10.41</td>
<td>18.23</td>
<td>27.30</td>
</tr>
<tr>
<td>Example 4 (Pd)</td>
<td>10.96</td>
<td>21.65</td>
<td>53.64</td>
</tr>
</tbody>
</table>
Results of testing the indicated PNA materials for a storage temperature of 120° C. and a desorption time of 15 minutes.

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount NOx Stored at 120° C. (µmol/g)</th>
<th>Amount NOx Desorbed to 15 min <250° C. (µmol/g)</th>
<th>% of Amount NOx Stored to Amount NOx Desorbed to 15 min <350° C. (µmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 5 (Pd)</td>
<td>9.61 13.87 20.10 31.88</td>
<td>14.86 19.96</td>
<td>63</td>
</tr>
<tr>
<td>Example 7 (Pd)</td>
<td>10.78 21.24 53.55 136.66</td>
<td>34.44 100.70</td>
<td>74</td>
</tr>
<tr>
<td>Example 6 (Pd)</td>
<td>10.70 21.35 53.34 113.94</td>
<td>36.72 75.04</td>
<td>66</td>
</tr>
<tr>
<td>Example 8 (Pd)</td>
<td>10.68 21.33 52.88 118.95</td>
<td>36.33 58.74</td>
<td>49</td>
</tr>
<tr>
<td>Example 9 (Pd)</td>
<td>10.47 20.62 46.53 69.91</td>
<td>16.26 48.41</td>
<td>69</td>
</tr>
<tr>
<td>Example 10 (Pd)</td>
<td>10.76 21.43 53.63 114.76</td>
<td>41.26 75.03</td>
<td>65</td>
</tr>
<tr>
<td>Example 11 (Pd)</td>
<td>10.62 20.30 31.95 37.69</td>
<td>22.81 36.23</td>
<td>96</td>
</tr>
<tr>
<td>Example 14 (Pd)</td>
<td>2.79 4.87 10.55 25.59</td>
<td>12.86 22.77</td>
<td>89</td>
</tr>
<tr>
<td>Example 15 (Pd)</td>
<td>2.99 5.30 11.22 27.75</td>
<td>13.53 24.11</td>
<td>87</td>
</tr>
<tr>
<td>Example 16 (Pd)</td>
<td>2.99 5.11 10.79 26.62</td>
<td>16.58 27.83</td>
<td>100</td>
</tr>
</tbody>
</table>

Example 1 (Pd)

The Pd—W—Zr material exhibits greater NOx storage at 120° C. at all times explored compared to the Pd—Zr material (see COMPARATIVE EXAMPLE 1 (Pd)) and greater percentage of the amount NOx desorbed to the amount stored. In particular, the Pd—W—Zr material exhibits an amount of NOx adsorbed to the amount stored of 96%.

Example 2 (Pd)

The Pd—Mn(20)—Zr material exhibits NOx storage values after 5 minutes at 120° C. comparable to those of the Pd—Mn(20)—Ce(21)—Zr material (see EXAMPLE 3 (Pd)) but less storage after 15 minutes at 120° C. However, the Pd—Mn(20)—Zr material exhibits considerably better NOx desorption at all temperatures explored relative to the amount stored, compared to the Pd—Mn(20)—Ce(21)—Zr material. This illustrates a definite advantage over materials that include Ce, for use as passive NOx adsorbents.

Example 4 (Pd)

The Pd—Mn(13)—Zr material exhibits NOx storage values after 5 minutes at 120° C. comparable to those of the Pd—Mn(13)—Ce(10)—Zr material (see EXAMPLE 7 (Pd)) but less storage after 15 minutes at 120° C. However, the Pd—Mn(13)—Zr material exhibits a greater percentage of the amount NOx adsorbed to the amount stored. This shows a definite advantage over Ce containing adsorbent material.

Example 6 (Pd)

The Pd—Mn(14)—Pr(14)—Zr material exhibits NOx storage values after 5 minutes at 120° C. comparable to those of the Pd—Mn(13)—Ce(10)—Zr material (see EXAMPLE 7 (Pd)).

Example 8 (Pd)

The Pd—Mn(7)—Pr(14)—Zr material exhibits NOx storage values after 5 minutes at 120° C. comparable to that of the Pd—Mn(6)—Ce(10)—Zr material (see EXAMPLE 10 (Pd)).

Example 9 (Pd)

The Pd—Mn(7)—Pr(14)—Zr (HT aged) material exhibits comparable or better NOx storage values at 120° C. at all times explored with respect to the Pd—Mn(6)—Ce(10)—Zr (HT aged) material (see EXAMPLE 11 (Pd)). In particular, the Pd—Mn(7)—Pr(14)—Zr (HT aged) material of Example 9 exhibited the greatest amount of NOx storage of all the aged materials explored in these EXAMPLES and COMPARATIVE EXAMPLES at about 70 µmol/g.

Example 14 (Pd)

While the Pd—Fe(20)—Ce(10)—Zr material exhibits less NOx storage compared to a Pd—Mn—Ce—zirconia material (e.g. see EXAMPLE 12 (Pd)), the Pd—Fe(20)—Ce(10)—Zr material exhibits a large percentage of the amount NOx desorbed to the amount stored. By extrapolation, this behavior resulting from use of Fe would also be evident in non-ceria containing materials.

Example 15 (Pd)

While the Pd—Fe(10)—Ce(10)—Zr material exhibits less NOx storage compared to a typical Pd—Mn—Ce—zirconia material (e.g. see EXAMPLE 7 (Pd)), the Pd—Fe(10)—Ce(10)—Zr material exhibits a large percentage of the amount NOx desorbed to the amount stored. By extrapolation, this behavior resulting from use of Fe would also be evident in non-ceria containing materials.

Example 16 (Pd)

While the Pd—Fe(5)—Ce(10)—Zr material exhibits less NOx storage compared to a Pd—Mn—Ce—zirconia material (e.g. see EXAMPLE 10 (Pd)), the Pd—Fe(5)—Ce(10)—Zr material exhibits a large percentage of the amount NOx desorbed to the amount stored. By extrapolation, this behavior resulting from use of Fe would also be evident in non-ceria containing materials.

The disclosure now turns to further examples and a comparative example for illustrating the subject matter of the disclosure, which should not be used to necessarily limit the subject matter herein.
Example 18

A portion of a praseodymia-zirconia mixed or composite oxide (25.5% Pr$_6$O$_{11}$/74.5% ZrO$_2$) was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1.

This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,632,477. The results are presented in Table 2 below.

Example 19

A portion of a ceria-praseodymia-zirconia mixed or composite oxide (20.6% CeO$_2$/5.1% Pr$_6$O$_{11}$/74.3% ZrO$_2$) was used as a support for palladium and then tested based on the procedures detailed in EXAMPLE 1.

This mixed or composite oxide can be made using the process described in U.S. Pat. No. 7,431,910. The results are presented in Table 2 below.

Conclusions drawn from the test results described in Examples 18 and 19 and Comparative Example 2 are shown in Table 2 and discussed below.

TABLE 2

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount NO$_x$ Stored at 120° C. (μmol/g)</th>
<th>Amount NO$_x$ Desorbed at <250° C. (μmol/g)</th>
<th>Amount NO$_x$ Desorbed at <350° C. (μmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 18 (Pd)</td>
<td>5.02</td>
<td>8.35</td>
<td>16.78</td>
</tr>
<tr>
<td>Example 19 (Pd)</td>
<td>4.99</td>
<td>8.03</td>
<td>15.68</td>
</tr>
<tr>
<td>Comparative Example 2 (Pd)</td>
<td>5.67</td>
<td>10.18</td>
<td>20.65</td>
</tr>
</tbody>
</table>

While the praseodymia-zirconia mixed or composite oxide of Example 18 and the ceria-praseodymia-zirconia mixed or composite oxide of Example 19 did not have high storage of NOx after 5 minutes at 120° C. minutes compared to other materials tested, they exhibited a relatively high amount of NOx desorbed. Although the high ceria-praseodymia-zirconia mixed or composite oxide of Comparative Example 2 exhibited slightly better storage of NOx after 5 minutes at 120° C. compared to the adsorbents of Examples 18 and 19, this is for a significant increase in ceria/praseodymia level (and therefore expense) and it exhibited only a comparable or a lesser amount of NOx desorbed at the temperatures tested (a significant facet of the PNA function).

Table 3 below shows Surface area, total pore volume and crystallite size for fresh and aged PNA material of the indicated EXAMPLES and COMPARATIVE EXAMPLES.

TABLE 3

<table>
<thead>
<tr>
<th>Material</th>
<th>Fresh SA (m2/g)</th>
<th>Fresh TPV (cm3/g)</th>
<th>Fresh CS (nm)</th>
<th>Air Aged (900° C./2 hr) SA (m2/g)</th>
<th>Air Aged (900° C./2 hr) TPV (cm3/g)</th>
<th>Air Aged (900° C./2 hr) CS (nm)</th>
<th>Hydrothermally aged (750° C./16 hr) SA (m2/g)</th>
<th>Hydrothermally aged (750° C./16 hr) TPV (cm3/g)</th>
<th>Hydrothermally aged (750° C./16 hr) CS (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP. 84</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 4</td>
<td>149</td>
<td>0.41</td>
<td>8.2</td>
<td>7</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 6</td>
<td>153</td>
<td>0.40</td>
<td>4.2</td>
<td>25</td>
<td>0.11</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 7</td>
<td>146</td>
<td>0.41</td>
<td>8.3</td>
<td>11</td>
<td>0.05</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 8</td>
<td>156</td>
<td>0.45</td>
<td>11</td>
<td>27</td>
<td>0.12</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 10</td>
<td>98</td>
<td>0.39</td>
<td>9.6</td>
<td>13</td>
<td>0.07</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 12</td>
<td>103</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 14</td>
<td>80</td>
<td>0.36</td>
<td>12</td>
<td>46</td>
<td>0.26</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 15</td>
<td>82</td>
<td>0.34</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 17</td>
<td>150</td>
<td>0.63</td>
<td>6.3</td>
<td>46</td>
<td>0.26</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 18</td>
<td>80</td>
<td>0.36</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 19</td>
<td>82</td>
<td>0.34</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARATIVE EXAMPLE 2</td>
<td>94</td>
<td>0.24</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SA = Surface Area
TPV = Total Pore Volume
CS = Crystallite Size (from XRD)
A passive NOx adsorbent according to claim 1 in which the mixed or composite oxide includes Mn as said at least one transition metal and optional Ce, with a minimum fresh NOx storage capacity of at least 40 µmol/g after 5 minutes at 120° C.

13. A passive NOx adsorbent according to claim 1 in which the mixed or composite oxide includes Mn as said at least one transition metal and optional Ce, with a minimum aged NOx storage capacity of at least 19 µmol/g after 5 minutes at 120° C.

14. A passive NOx adsorbent according to claim 1 in which the mixed or composite oxide includes Mn as said at least one transition metal, with a minimum fresh NOx storage capacity of at least 50 µmol/g after 5 minutes at 120° C.

15. A passive NOx adsorbent according to claim 1 in which the mixed or composite oxide includes Mn as said at least one transition metal, with a minimum aged NOx storage capacity of at least 45 µmol/g after 5 minutes at 120° C.

2. A passive NOx adsorbent according to claim 1 further comprising at least one of Y, La and Nd as said lanthanide series element other than Ce.

4. A passive NOx adsorbent according to claim 3 further comprising at least one of W and Fe as said transition metal.

5. A passive NOx adsorbent according to claim 3 further including at least one of Y, La and Nd as said lanthanide series element other than Ce.

6. A passive NOx adsorbent according to claim 3 further comprising an element from Group 14 of the Periodic Table in an amount ranging from 0.1 to 20% by weight expressed in terms of oxide.

7. A passive NOx adsorbent according to claim 1 comprising Ce in an amount ranging from 0.1% to not more than 20% by weight expressed in terms of oxide.

8. A passive NOx adsorbent according to claim 1 comprising Ce in an amount ranging from 0.5 to not more than 5% by weight expressed in terms of oxide.

9. A passive NOx adsorbent according to claim 1 with the proviso that the passive NOx adsorbent is substantially free of Ce.

10. A passive NOx adsorbent according to claim 1 with a minimum fresh NOx storage capacity of 7.5 µmol/g after 5 minutes at 120° C.

11. A passive NOx adsorbent according to claim 1 with a minimum aged NOx storage capacity of 5 µmol/g after 5 minutes at 120° C.

12. A passive NOx adsorbent according to claim 1 in which the mixed or composite oxide includes Mn as said at least one transition metal and optional Ce, with a minimum fresh NOx storage capacity of at least 40 µmol/g after 5 minutes at 120° C.

16. A passive NOx adsorbent according to claim 1 in combination with a Selective Catalytic Reduction catalyst.

17. A monolithic substrate supporting a washcoat, said washcoat comprising said passive NOx adsorbent according to claim 1.

18. A method for reducing nitrogen oxides (NOx) present in a lean gas stream comprising at least one of nitric oxide (NO) and nitrogen dioxide (NO2), comprising the steps of:
 (i) providing the passive NOx adsorbent according to claim 1 in the lean gas stream;
 (ii) adsorbing NOx from the lean gas stream on or in the passive NOx adsorbent at a temperature below 200° C.;
 (iii) thermally net desorbing NOx from the passive NOx adsorbent in the lean gas stream at 200° C. and above;
 (iv) catalytically reducing the NOx on a downstream catalyst situated downstream of the passive NOx adsorbent, with at least one of the following reductants: a nitrogenous reductant, a hydrocarbon reductant, hydrogen and a mixture thereof.

19. A method according to claim 18 wherein the lean gas stream emanates from a gasoline fueled or diesel fueled engine.