University of Kentucky

UKnowledge

Center for Applied Energy Research Faculty Patents

Center for Applied Energy Research

8-9-2016

Method of Increasing Mass Transfer Rate of Acid Gas Scrubbing Solvents

Joseph E. Remias University of Kentucky

Cameron A. Lippert University of Kentucky, cameron.lippert@uky.edu

Kunlei Liu University of Kentucky, kunlei.liu@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/caer_patents

Part of the Engineering Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Remias, Joseph E.; Lippert, Cameron A.; and Liu, Kunlei, "Method of Increasing Mass Transfer Rate of Acid Gas Scrubbing Solvents" (2016). *Center for Applied Energy Research Faculty Patents*. 41. https://uknowledge.uky.edu/caer_patents/41

This Patent is brought to you for free and open access by the Center for Applied Energy Research at UKnowledge. It has been accepted for inclusion in Center for Applied Energy Research Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

US009409125B2

(12) United States Patent

Remias et al.

(54) METHOD OF INCREASING MASS TRANSFER RATE OF ACID GAS SCRUBBING SOLVENTS

- (71) Applicant: The University of Kentucky Research Foundation, Lexington, KY (US)
- Inventors: Joseph E. Remias, Lexington, KY (US);
 Cameron A. Lippert, Lexington, KY
 (US); Kunlei Liu, Lexington, KY (US)
- (73) Assignee: THE UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION, Lexington, KY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 488 days.
- (21) Appl. No.: 13/853,292
- (22) Filed: Mar. 29, 2013

(65) **Prior Publication Data**

US 2014/0294705 A1 Oct. 2, 2014

(51) Int. Cl.

B01D 53/14	(2006.01)
B01D 53/86	(2006.01)
C07F 9/54	(2006.01)
C07F 15/06	(2006.01)
C07F 3/00	(2006.01)

- (52) U.S. Cl.
 - CPC B01D 53/8681 (2013.01); B01D 53/1475 (2013.01); B01D 53/1493 (2013.01); C07F 3/003 (2013.01); C07F 9/5456 (2013.01); C07F 9/5463 (2013.01); C07F 15/065 (2013.01); B01D 2252/20431 (2013.01); B01D 2252/20442 (2013.01); B01D 2252/20447 (2013.01); B01D 2252/20452 (2013.01); B01D 2252/20484 (2013.01); B01D 2252/20489 (2013.01); B01D 2252/602 (2013.01); B01D

(10) Patent No.: US 9,409,125 B2

(45) **Date of Patent:** Aug. 9, 2016

2256/245 (2013.01); B01D 2257/504 (2013.01); Y02C 10/06 (2013.01); Y02P 20/152 (2015.11)

(58) **Field of Classification Search** None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,240,922	Α	12/1980	Sartori et al.
4,376,101	Α	3/1983	Sartori et al.
4,407,784	Α	10/1983	Blanc et al.
4,545,965	Α	10/1985	Gazzi et al.
4,729,883	Α	3/1988	Lam et al.
5,026,904	Α	6/1991	Lodge et al.
5,618,506	Α	4/1997	Suzuki et al.
5,911,964	Α	6/1999	Iwanami et al.
6,165,432	Α	12/2000	Rooney
6,337,059	B1	1/2002	Schubert et al.
6,582,498	B1	6/2003	Sass et al.
6,921,733	B2	7/2005	Mahajan

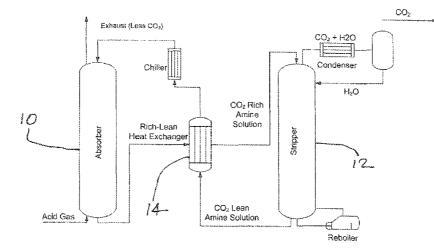
(Continued)

FOREIGN PATENT DOCUMENTS

CA	1277985	С	12/1990
JP	11079725	Α	3/1999

(Continued)

OTHER PUBLICATIONS


Salanti et al., "Oxidation of Isoeugenol by Salen Complexes with Bulky Substituents", Int. J. Mol. Sci. 2010, 11, 912-926.* (Continued)

Primary Examiner — Jonathan Johnson Assistant Examiner — Anita Nassiri Motlagh (74) Attorney, Agent, or Firm — King & Schickli, PLLC

(57) **ABSTRACT**

A method of increasing the overall mass transfer rate of acid gas scrubbing solids is disclosed. Various catalyst compounds for that purpose are also disclosed.

6 Claims, 6 Drawing Sheets

(56) **References Cited**

U.S. PATENT DOCUMENTS

7,056,482 7,601,315 7,758,673 7,763,562 7,939,461 8,329,929 2002/0081256 2008/0025893 2009/0214408 2010/0105909 2010/0192770 2010/0217029 2011/0015059 2011/0160819 2011/0176981	B2 B2 B2 B2 B2 A1 A1 A1 A1 A1 A1 A1 A1 A1	6/2006 10/2009 7/2010 7/2010 5/2011 12/2012 6/2002 1/2008 8/2009 8/2010 8/2010 8/2010 1/2011 7/2011	Fukuzumi et al. Matsunaga et al. Chakravarti et al. Asprion et al. Blake et al. Matsunaga et al. Andarcia et al. Sundermeyer et al
2011/0176981 2012/0021897		7/2011 1/2012	Jacquin et al. Iwata et al.

2012/0063978	A1	3/2012	Baugh et al.
2012/0063980	A1	3/2012	Kortunov et al.
2012/0237421	A1	9/2012	Millner et al.

FOREIGN PATENT DOCUMENTS

JP	2003260364	Α	9/2003
WO	2012034027	A1	3/2012

OTHER PUBLICATIONS

Sonar et al., "Synthesis and application of Co(salen) complexes containing proximal imidazolium ionic liquid cores", Can. J. Chem. 90: 60-70 (2012).*

J. Cullinane, et al.; "Kinetics of Carbon Dioxide Absorption into Aqueous Potassium Carbonate and Piperazine"; Industrial & Engineering Chemistry Research 2006, vol. 45, No. 8, pp. 2531-2545.

* cited by examiner

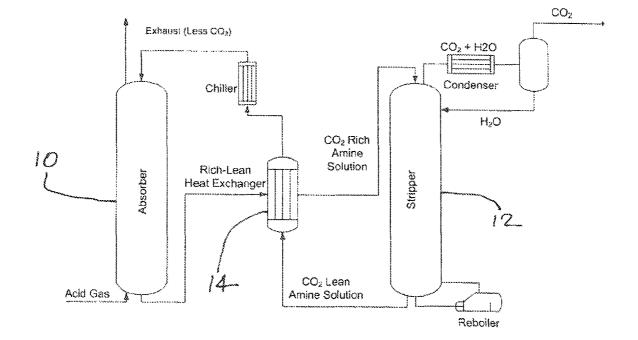
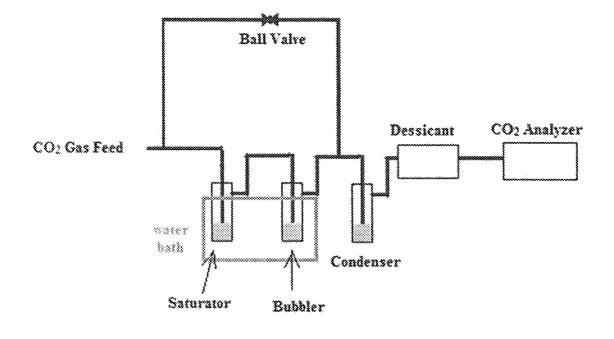



FIG. 1

FIG. 2

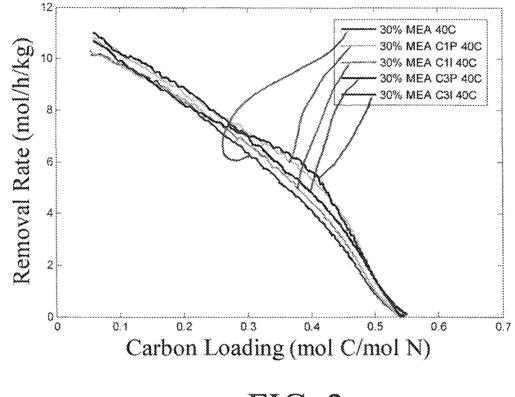


FIG. 3

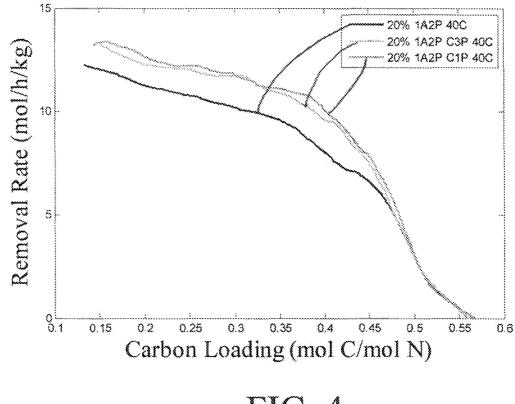
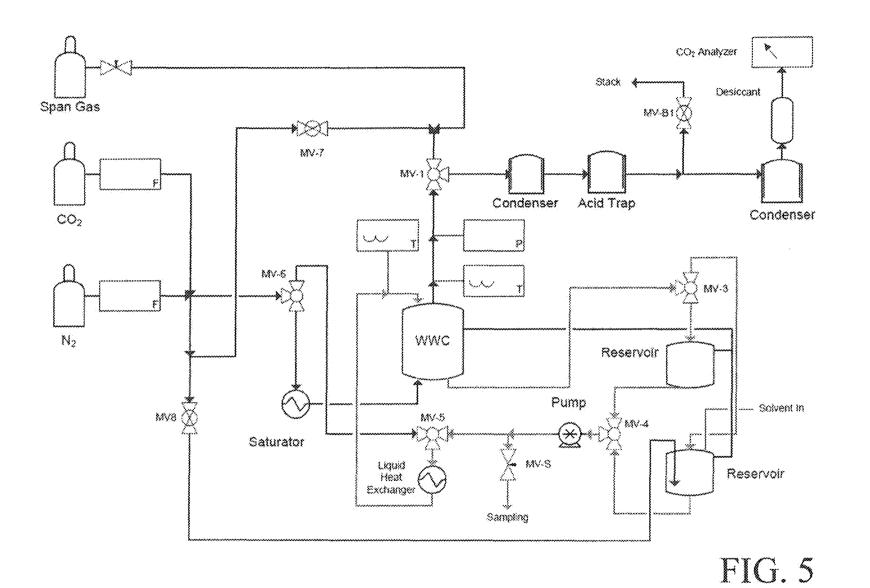
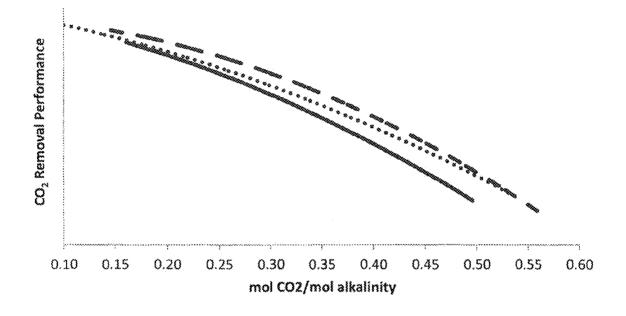




FIG. 4

U.S. Patent

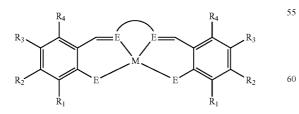
Aug. 9, 2016

FIG. 6

METHOD OF INCREASING MASS TRANSFER RATE OF ACID GAS SCRUBBING SOLVENTS

TECHNICAL FIELD

The present invention relates generally to various methods of increasing the overall mass transfer rate of acid gas scrubbing solvents utilizing various catalysts compounds.


BACKGROUND

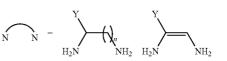
The cleanup of acid gasses or sour gas, such as CO₂ in particular, from natural gas and in oil refining has been an extensively practiced technology. The industrial removal of 15 CO_2 from natural gas dates back to the 1930's. In the 21st century, due to the potential impact of anthropogenic CO₂ emissions on the climate, post-combustion CO₂ capture has gained tremendous attention. While several technologies exist for the removal of acid gasses one of the most commonly 20 employed practices is the use of aqueous amines. Of these amines, tertiary amines are often used for natural gas applications due to their low energy of regeneration. For postcombustion CO₂ capture applications primary and secondary amines tend to be in part favored by their faster rate at the low 25 CO₂ driving force condition. Regardless of the application, the mass transfer rate in the absorber column dictates the size of the column (capital cost) used and, consequently, has a substantial impact on the overall process cost. An overall process depicting a thermal swing process is presented in 30 FIG. 1. An aqueous amine solution is circulated between the absorber 10 and stripper 12. The gas, containing CO₂, enters the bottom of the absorber where it contacts the aqueous amine absorbent removing it from the gas stream. The liquid solution, CO₂ rich amine solution, is then passed through a 35 heat exchanger 14 to improve efficiency before being heated to a higher temperature in the stripper 12. The stripper 12 removes the CO_2 as a gas from the amine solution to produce a lean, or CO2 deficient solution. The lean solution is returned to the absorber 10 by way of the heat exchanger 14 to repeat 4∩ the process.

In order to minimize system capital (absorber cost) it is important to maximize the overall mass transfer rate for the scrubber system as there is a direct correlation between the two. This invention relates to methods for this purpose as well as to catalyst compounds useful in those methods. 45

SUMMARY

A method is provided for increasing the overall mass transfer rate of acid gas scrubbing solvents. The method comprises 50 adding a catalyst compound to a fluid stream including an acid gas and an acid gas scrubbing solvent wherein that catalyst compound has a chemical formula:

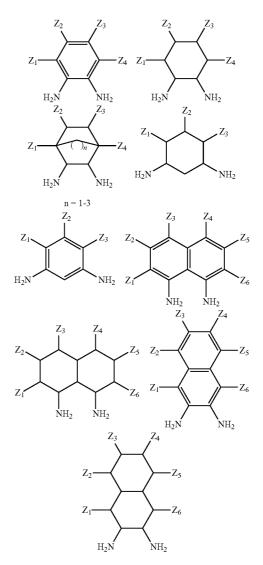
where:


(a) M is any group VII B through XII B element; (b) E is any combination of N, O, S having a net 2⁻ charge per individual ligand;

(c) R_{1,2,4}=--H, --COOH, --[OCH₂CH₂]_n--OR₉, CH₃, amine, amide, phosphate, -OH, -R₅OH, -[SO₃]⁻;

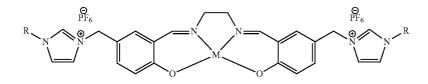
(d) $R_3 = -H$, -COOH, $-[OCH_2CH_2]_n - OR_9$, amine, amide, phosphate, -OH, $-R_5OH$, $-[SO_3]^-$, $-[(CH_2)_nQ]^+$ $[A]^{-}$

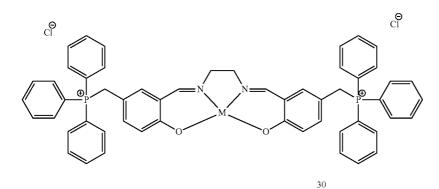
(e) R₅=C₁-C₅ alkyl; (f) A=monovalent anion: Cl, Br, I, F, PF₆, BF₄, acetate, trifluoroacetate, ClO₄, NO₃;


(g) Q=monovalent cation: PX3 where X=alkyl, cyclic alkyl, aryl, O-alkyl, O-aryl, N(R₆)₃ where R₆=alkyl, cyclic 10 alkyl, N-heterocyclic ring, imidazole;

(h)

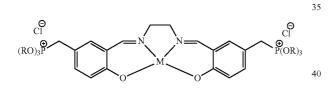
where Y=-H, -COOH, -R7OOH (R7=alkyl ranging from 2-10 carbons);


 $-[OCH_2CH_2]_n$ $-OR_9$; -OH; $-SO_3$; $-NO_2$; amine, amide; or

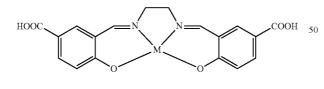

where Z₁₋₆=-H, any alkyl, -COOH, -R₈OOH $(R_8 = alkyl ranging from 2-10 carbons), --[OCH_2CH_2]_n$ 65 OR₉; OH; SO₃; NO₂; amine, amide; and (i) where n=1 to 10; and

(j) $R_9 = H$ or alkyl.

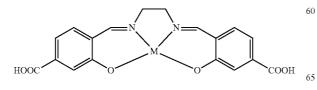
In one possible embodiment the catalyst compound has a chemical formula:



where R=any alkyl M=Co, Zn. In another possible embodiment the catalyst compound has a chemical formula:

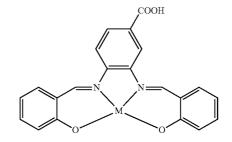

where M=Co, Zn.

In another possible embodiment the catalyst compound has a chemical formula:

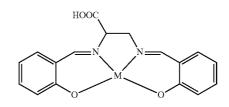


where M=Co, Zn R=any alkyl.

In still another possible embodiment the catalyst com- 45 pound has a chemical formula:



where M=Co, Zn. 55 In yet another possible embodiment the catalyst compound has a chemical formula:



where M=Co, Zn.

In yet another possible embodiment the catalyst compound has a chemical formula:

where M=Co, Zn. In still another possible embodiment the catalyst compound has a chemical formula:

where M=Co, Zn.

In any of the embodiments the acid gas scrubbing solvent includes an amine or a mixture of amines. In one possible embodiment the acid gas scrubbing solvent includes a mixture of (a) a promoter amine and (b) a tertiary amine.

In one possible embodiment the acid gas scrubbing solvent includes chemical compounds selected from a group including but not limited to, monoethanolamine (MEA), 1-amino-2-propanol (1A2P), 3-amino-1-propanol, 2-amino-1-pro-

10

20

25

where:

panol, 2-amino-1-butanol, 1-amino-2-butanol, 3-amino-2butanol, 2-(methylamino)ethanonol (MAE), 2-(ethylamino) ethanol, morpholine, piperazine (PZ), 1-methylpiperazine (NMP), 2-methylpiperazine, hydroxypiperadine, 2-piperidineethanol, N-aminoethylpierazine (AEP), aminopropy-Imorpholine, 4-aminopiperidine, 2-amino-2-methyl-1-propanol (AMP), diethanolamine (DEA), diisopropanolamine (DIPA), glycine, alanine, β -alannine, sarcosine, ethylene diamine (EDA), 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, methyldiethanolamine (MDEA), triethanolamine (TEA), dimethylethanolamine (DMEA), N,N,N',N'-tetramethyl-1,8-naphthalenediamine, diethylmonoethanolamine, dipropylmonoethanolamine, 1,4-dimethylpiperazine, N N,N',N'-tetramethyl-1,6-hexanediamine, N,N,N',N'-tetrakis 15 (2-hydroxyethyl)ethylenediamine, N,N,N',N',N"-pentamethyldiethylenetriamine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethylpropane-1,3-diamine, N,N,N', N'-tetramethylbutane-1,4-diamine, N,N,N',N'-tetramethyl-1, 5-pentanediamine, alkali carbonate, and mixtures thereof.

Further the catalyst compound is provided at a concentration of between about 0.05 mM and about 100 mM.

Various catalyst compounds are also claimed.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawings incorporated herein and forming a part of the specification, illustrate several aspects of the present method and together with the description serve to 30 explain certain principles thereof. In the drawings:

FIG. 1 is a schematical illustration of a process for removing acid gas from a fluid stream utilizing solvent and thermal swing regeneration.

FIG. 2 is a schematical illustration of a simple CO_2 bub-35 bling apparatus used for catalyst testing.

FIG. 3 is a graphical illustration of removal rate versus carbon loading for various catalysts used with 30 wt % MEA at 40° C.

FIG. 4 is a graphical illustration of removal rate versus carbon loading for various catalysts in 20% 1-amino-2-pro- 40 panol solvent with 13% CO₂ at 40° C.

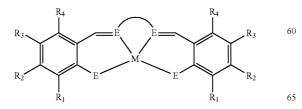

FIG. 5 is a schematical illustration of a wetted wall column (WWC) apparatus used in testing the catalysts.

FIG. 6 is a graphical comparison of CO_2 overall mass transfer as measured on a wetted wall column for 30 wt % 45 MEA at 40° C. with catalyst CAER-CIP and CAER-C3I.

DETAILED DESCRIPTION

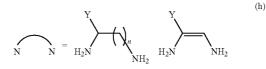
This document relates generally to methods of increasing 50 overall mass transfer rate of acid gas scrubbing solvents as well as to novel transition metal monomer complexes incorporating a single transition metal atom.

The method may be broadly described as comprising adding a catalyst compound to a fluid stream including an acid gas and an acid gas scrubbing solvent. The catalyst compound 55 has a chemical formula:

6

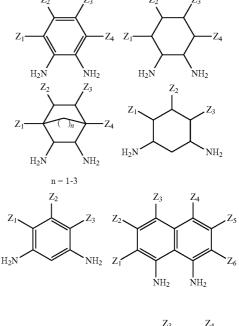
(a) M is any group VII B through XII B element;

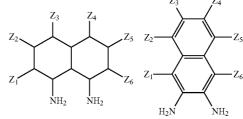
(b) E is any combination of N, O, S having a net 2⁻ charge per individual ligand;

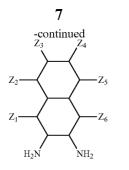

(c) R_{1,2,4}=--H, --COOH, --[OCH₂CH₂]_n--OR₉, amine, amide, phosphate, -OH, -R₅OH, -[SO₃]⁻;

(d) $R_3 = -H$, -COOH, $-[OCH_2CH_2]_n - OR_9$, amine, amide, phosphate, -OH, $-R_5OH$, $-[SO_3]^-$, $-[(CH_2)_nQ]^+$ [A]⁻;

(e) $R_5 = C_1 - C_5$ alkyl;

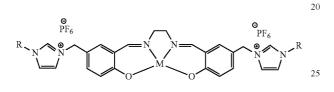

(f) A=monovalent anion: Cl, Br, I, F, PF₆, BF₄, acetate, trifluoroacetate, ClO₄, NO₃;


(g) Q=monovalent cation: PX3 where X=alkyl, cyclic alkyl, aryl, O-alkyl, O-aryl, N(R₆)₃ where R₆=alkyl, cyclic alkyl, N-heterocyclic ring, imidazole;



where Y=-H, -COOH, -R7OOH (R7=alkyl ranging from 2-10 carbons);

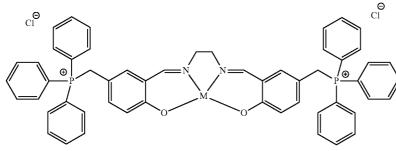
-[OCH₂CH₂]_n-OR₉; -OH; -SO₃; -NO₂; amine, amide; or



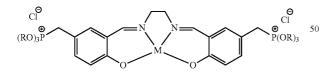
where Z_{1-6} —H, any alkyl, —COOH, — R_8 OOH (R_8 =alkyl ranging from 2-10 carbons), —[OCH₂CH₂]_n—OR₉; OH; SO₃; NO₂; amine, amide;

(i) where n=1 to 10; and

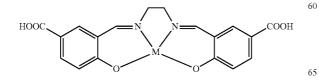
(j) R₉=H or alkyl.


In one particular embodiment the catalyst compound has a chemical formula:

where R=any alkyl


M=Co, Zn.

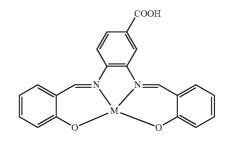
In another particular embodiment the catalyst compound has a chemical formula:


where M=Co, Zn.

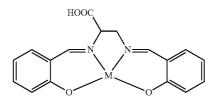
In another possible embodiment the catalyst compound has 45 pound has a chemical formula: a chemical formula:


where M=Co, Zn R=any alkyl.

In another possible embodiment the catalyst compound has a chemical formula:


where M=Co, Zn.

In yet another possible embodiment the catalyst compound has a chemical formula:


where M=Co, Zn.

In yet another possible embodiment the catalyst compound 15 has a chemical formula:

where M=Co, Zn.

In still another possible embodiment the catalyst compound has a chemical formula:

where M=Co, Zn.

55

For any embodiment of catalyst compound, the terms "alkyl" or "any alkyl", when not otherwise stipulated, include at least C_2 - C_{10} alkyl compounds.

For any of the method embodiments the acid gas scrubbing solvent may include an amine. In one possible embodiment the acid gas scrubbing solvent includes a mixture of (a) a promoter amine, selected from a group of primary and secondary amines and (b) a tertiary amine.

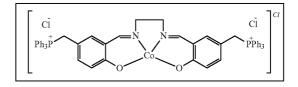
Such a mixture is described in detail in copending U.S. patent application Ser. No. 13/853,186, filed on Mar. 29, 2013 and entitled "Solvent and Method for Removal of an Acid Gas from a Fluid Stream", the full disclosure of which is incor

porated herein by reference. Promoter amines useful in the present method include, but are not limited to, the primary and secondary amines such as 3-N-sulfonylamine (SA), 3-aminopropionitrile (APN), diethyl 2-aminoethanephosphonate (EtP2), N-methyltetrahydrothiophen-3-amine 1,1dioxide, 2,2'-sulfonyldiethanamine, 3,3'-sulfonyldipropaneamine, 4,4'-sulfonyldibutanenamine, 2-aminoethyl methyl sulfone, 4-aminobutanenitrile, 6-aminohexanenitrile, 3-(methylamino)propanenitrile, diethyl[2-(methylamino)ethyl] 10 phosphonate, diethyl(3-aminopropyl)phosphonate, diethyl (4-aminobutyl)phosphonate, diethyl(5-aminopentyl) phosphonate, diethyl(6-aminohexyl)phosphonate, 2-(tertbutoxy)ethan-1-amine, N-methyl-2-[(2-methyl-2-propanyl) oxy]ethanamine and mixtures thereof.

Tertiary amines and carbonate based salts useful in the present method include but are not limited to methyldiethanolamine (MDEA), triethanolamine (TEA), N,N,-dialkylethanolamine, N,N,N',N'-tetraalky-1,8-naphthalenediamine, 20 N,N,-dialkylbenzylamine, 1,4-dialkylpiperazine, N,N,N',N'tetraalkyl-1,6-hexanediamine, N,N,N',N'-tetraalkyl-1,5-pentanediamine, N,N,N',N'-tetraalkyl-1,4-butanediamine, N,N, N',N'-tetraalkyl-1,3-propanediamine, N,N,N',N'-tetraalkyl-N,N,N',N'-tetrakis(2-hydroxyethyl) 25 1,2-ethanediamine, ethylenediamine, N,N,N',N',N"pentaalkyldiethylenetriamine, N,N,N',N',N"pentaalkyldipropylaminetriamine, N.N.-N,N,N',N'-tetraalkylbis dialkylcyclohexylamine, N,N,-dimethyl-2(2-aminoethoxy) (aminoethyl)ether, ethanol, alkali carbonates where alkyl represents any methyl,

ethyl, propyl, butyl isomer, and mixtures thereof. In one possible embodiment, the catalyst compound is provided in the fluid stream with a concentration of between about 0.05 mM 35 and about 50 mM. In another possible embodiment the catalyst compound is provided in the fluid stream with a concentration of between 50.1 mM and 75 mM. In yet another possible embodiment the catalyst compound is provided in the fluid stream with a concentration of between about 75.1 mM and 100 mM.

Primary and secondary amines useful in the present method include but are not limited to monoethanolamine (MEA), 1-amino-2-propanol (1A2P), 3-amino-1-propanol, 45 2-amino-1-propanol, 2-amino-1-butanol, 3-amino-2-butanol, 1-amino-2-butanol, 2-(alkylamino)ethanonol (MAE), diglycolamine, morpholine, piperazine (PZ), 1-methylpiperazine (NMP), 2-methylpiperazine, hydroxypiperadine, hydroxymethylpiperazine, 2-piperidineethanol, N-aminoethylpierazine (AEP), aminopropylmorpholine, 4-aminopiperidine, 3-aminopiperidine, 2-amino-piperidine, diethanolamine, 2-amino-2-methyl-1-propanol (AMP), diethanolamine (DEA), diisopropanolamine (DIPA), glycine, alanine,

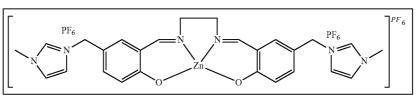

β-alannine, sarcosine, isopropanolamine, benzylamine, ethylene diamine (EDA), 1,3-propanediamine, 1,4-butanediamine, 1.5-pentanediamine, 1.6-hexanediamine.

In any of the embodiments, the catalyst compound must be stable under the relatively high temperature conditions (e.g. between perhaps 70 and 170° C.) found within the stripper 12. The present catalyst compounds meet this requirement.

The following examples further illustrate how to synthesize or manufacture certain representative catalysts used in the method of increasing the overall mass transfer rate of acid gas scrubbing solvents.

Example 1

CAER-C1P


Preparation of H₂LP

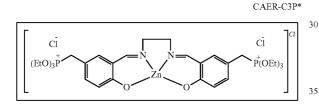
To a solution of 1-(3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride (5.00 g, 11.55 mmol) in dry ethanol (40 mL) was added ethylenediamine (0.40 mL, 6 mmol) slowly at room temperature. The resulting solution was stirred at reflux temperature for 3 h. The solution was allowed to cool to room temperature and the solvent was removed under reduced pressure. The yellow residue was dissolved in dichloromethane (50 mL) and slowly added dropwise to 150 mL of stirring ethyl acetate to give a bright yellow powder which was collected via filtration (4.9958 g, 97%) in >95% purity based on ¹H NMR spectroscopy.

Preparation of CAER-CIP

A 100-mL round-bottom flask was charged with H₂LP (4.594 g, 5.17 mmol) and CoCl₂.(H₂O)₆ (1.3541 g, 5.7 mmol), and EtOH (40 mL) was added to make a slurry. 2 equiv. of Et₃N (1.5 mL, 11 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and the solvent was removed under reduced pressure to give a brown powder. The brown powder was washed with ice cold water to remove ammonium salts and then triturated with ether to give the desired product as a brown solid (3.2295 g, 63%)

Example 2

CAER-C3I


Preparation of H₂LI

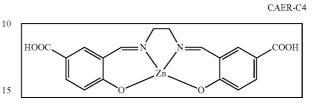
To a solution of 1-(3-formyl-4-hydroxybenzyl)-3-methylimidazolium hexafluorophosphate (5.00 g, 13.80 mmol) in dry ethanol (40 mL) was added ethylenediamine (0.50 mL, 5 7.5 mmol) slowly at room temperature. The resulting solution was stirred at reflux temperature for 6 h. The solution was allowed to cool to room temperature after which a solid separated out. The solid was washed with ethanol (3×5 mL) then ether (3×10 mL) and dried in vacuo to give a yellow solid 10 (5.4375 g, 97%) in >95% purity based on ¹H NMR spectroscopy.

Preparation of CAER-C3I

A 100-mL round-bottom flask was charged with H_2LI (5.011 g, 6.68 mmol) and $ZnCl_2$ (1.3630 g, 10 mmol), and EtOH (40 mL) was added to make a slurry. 2 equiv. of Et_3N (2.0 mL, 14 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a pale yellow solid was collected via filtration (4.6390 g, 85%) in >95% purity based on ¹H NMR spectroscopy.

Example 3

Preparation of H₂LP*


40 A 100-mL round-bottom flask was charged with 5-chloromethyl-2-hydroxybenzaldehyde (10.3327 g, 60.4 mmol) and dissolved in ethyl acetate (40 mL) and triethylphosphite (11.5 mL, 67 mmol) was added. The mixture was heated at reflux (80° C.) for 3 hours. The mixture was cooled to room $_{45}$ temperature and the solvent removed under reduced pressure to give triethoxy(3-formy1-4-hydroxybenzyl)phosphonium chloride as a viscous oil which was used without further purification. The viscous oil (10.003 g, 30 mmol) was dissolved in ethanol (40 mL) and ethylenediamine (1.2 mL, 18 50 mmol) was added slowly. The mixture was heated at reflux (80° C.) for 3 hours. The mixture was cooled to room temperature and the solvent was removed under reduced pressure to give a thick, yellow, oily substance. The oil was washed with ether $(3 \times 10 \text{ mL})$. The ether was evaporated slowly over 5524 hours to produce a thick, yellow, viscous oil (10.2215 g, 98%) in ~85% purity based on ¹H NMR spectroscopy.

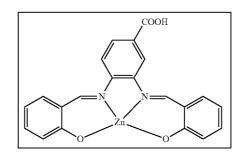
Preparation of CAER-C3P*

A 100-mL round-bottom flask was charged with H_2LP^* ⁶⁰ (5.028 g, 7.2 mmol) and ZnCl₂ (1.4652 g, 10.8 mmol), and dissolved in EtOH (40 mL). 2 equiv. of Et₃N (2.1 mL, 15 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and the solvent was removed under reduced pressure to give a thick, ⁶⁵ oily substance. The oil was washed with ether (3×10 mL) to produce a white solid which was removed via filtration. The

ether was evaporated slowly over 24 hours to produce a thick, colorless, viscous oil (4.8832 g, 89%) in >90% purity based on ¹H NMR spectroscopy.

Example 4

Preparation of H₂L4


A 50 mL round bottom flask was charged with 2 equiv. 4-formyl-3-hydroxybenzoic acid (0.2471 g, 1.49 mmol) and dissolved in EtOH followed by addition of 1 equiv. ethylenediamine (50μ L, 0.75 mmol). The mixture was heated at reflux for 2 hr. The reaction mixture was cooled to room temp. and a yellow powder was collected via filtration (247.3 mg, 93%) >95% purity based on ¹H NMR spectroscopy.

Preparation of CAER-C4

A 100-mL round-bottom flask was charged with H_2L4 (0.06980 g, 0.196 mmol) and $ZnCl_2$ (0.0433 g, 0.318 mmol), and EtOH was added to make a slurry. 2 equiv. of Et_3N (58 μ L, 0.417 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a pale yellow solid was collected via filtration (66.7, 81%) in >95% purity based on ¹H NMR spectroscopy.

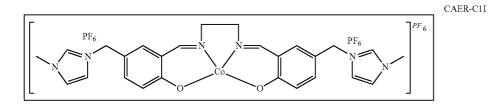
Preparation of H₂L5

A 100-mL round bottom flask was charged with 3,4-diaminobenzoic acid (2.0067 g, 13.2 mmol) and dissolved in EtOH. 2 equiv. salicylaldehyde (2.8 mL, 26.3 mmol) was added and the reaction mixture was heated at reflux for 2 hr, at which point an orange solid had formed. The mixture was cooled to room temp, and the orange solid was collected via filtration (1.8274, 38%). The orange filtrate was stored at 8° C. for 15 hours and a second crop of orange solids was collected via filtration (2.3211 g, 48%), for a combined 86% yield in >95% purity based on ¹H NMR spectroscopy.

25

35

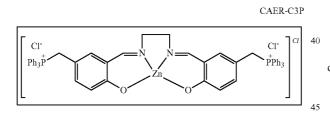
2


Preparation of CAER-C5 $_Z$

A 100-mL round-bottom flask was charged with H_2L5 (0.4921 g, 1.37 mmol) and $ZnCl_2$ (0.3224 g, 2.37 mmol), and EtOH was added to make a slurry. 2 equiv. of Et_3N (390 µL, 5 2.8 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a pale yellow/orange solid was collected via filtration (0.5613, 97%) in >95% purity based on ¹H NMR spectroscopy.

Example 6

tion with respect to time is continuously recorded through a LABVIEW® package with 1 second interval. A line that bypasses the saturator and the bubbler is set up for inlet CO_2 concentration determination. Before each experiment, the alkalinity of the testing solvent is precisely determined through acid-base titration.


The difference of inlet and outlet CO_2 concentration represents the absorbed amount of CO_2 at a particular time. The integration of the concentration difference represents the CO_2 loading as expressed

Preparation of CAER-ClI

A 100-mL round-bottom flask was charged with H_2LI (3.023 g, 4.04 mmol) and $CoCl_2.(H_2O)_6$ (1.0641 g, 4.44 mmol), and EtOH (40 mL) was added to make a slurry. 2 equiv. of Et_3N (1.2 mL, 8.63 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled 30 to room temperature and a dark brown solid was collected via filtration (3.592 g, 93%).

Example 7

Preparation of CAER-C3P

A 100-mL round-bottom flask was charged with H_2LP ⁵⁰ (5.002 g, 5.63 mmol) and ZnCl₂ (1.3630 g, 10 mmol), and EtOH (40 mL) was added to make a slurry. 2 equiv. of Et₃N (1.75 mL, 12 mmol) was added and the mixture was heated at reflux for 3 hours. The mixture was cooled to room temperature and a pale yellow solid was collected via filtration ⁵⁵ (4.9790 g, 93%) in >95% purity based on ¹H NMR spectros-copy.

Catalyst Testing in Concentrated Primary Amines: Breakthrough Method

A schematic of the apparatus used is shown in FIG. **2**. Briefly, 0.85 L/min feed gas containing $\sim 13\%$ CO₂ mixed ⁶⁰ with N₂ is firstly saturated with water in the first impinger and then bubbled through 15 ml of testing solvent in the second impinger. Both the saturator and bubbler are immersed in a water bath at 40° C. The gas effluent is dried through an ice condenser and a Drierite tube before it is analyzed for CO₂ ⁶⁵ concentration using a dual-beam NDIR online CO₂ analyzer (Model 510, HORIBA, Ltd). Data of CO₂ outlet concentra-

CO₂ Loading (t)(mol CO₂/kg solution) =
$$\frac{\int_0^t (C_{in} - C_{out}(t))dt}{m}$$
Eq

1

in which C_{in} is the CO₂ feed gas rate in mol/s, C_{out} is the CO₂ effluent rate in mol/s, t is the time in second, and m_{sol} is the mass of solution in kg. The CO₂ loading at $C_{out} = C_{in}$ is the equilibrium CO₂ capacity at 13% CO₂ and 40° C. With the alkalinity (mol N/kg of solution) of the solution known, the CO₂ loading can also be written as

$$\alpha = \frac{\text{CO2 Loading (mol CO2/kg solution)}}{\text{Alkalinity (mol N/kg solution)}} = \frac{\text{mole of CO2}}{\text{mole of N}}$$

In addition, the absorption rate can be described by the derivate of CO_2 loading with respect to time:

Absorpton rate (mol CO₂/kg solution/s) =
$$\frac{dCO_2 \text{ Loading}}{dt}$$
 Eq 3

As illustrated in FIGS. **3** and **4**, the current catalyst compounds improve the removal rate of a 30 wt % MEA acid gas scrubbing solvent.

Catalyst Testing in Concentrated Primary Amines: WWC Method

The wetted wall column (WWC) is used to determine mass transfer of CO_2 into a process absorption solvent. The WWC apparatus is illustrated in FIG. **5**. The improved overall mass transfer resulting from the use of two catalysts is illustrated in FIG. **6**.

In each test, solvent is loaded to a molCO₂/molN level of approximately 0.1 with CO₂ by sparging the solution reservoir with a concentrated CO_2/N_2 mixture. The initially loaded solution is then circulating through the wetted wall column and a pre-heater which heats the solution to the desired temperature. Once the solution is thermally stable, a simulated flue gas stream (CO₂ balanced with N₂) saturated with water flows into the wetted wall column. In the wetted wall column, liquid flows downwards on the outside surface on an annular tube while CO₂ gas stream flows upwards around the annular tube. CO₂ absorption from the gas phase into the liquid takes

15

25

40

place along the tube's wall. Gas effluent from the WWC is dried and analyzed by an infrared CO₂ analyzer for CO₂ concentration determination. CO2 inlet concentration is analyzed by directing the gas stream to bypass the WWC. A liquid sample downstream of the WWC is collected at each solution carbon loading and tested for total liquid CO2 loading, viscosity, density, and pH measurements. Liquid film thickness is calculated by Eq. 1. The bulk solution is then loaded with more CO₂ and the data collection cycle is repeated

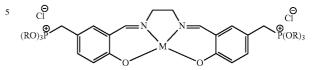
$$\delta = \sqrt[3]{\frac{3\mu Q_{sol}}{\rho g W}}$$
 Eq. 1

in which μ is the viscosity, Q_{sol} is the liquid flow rate, p is the density of liquid, and W is the circumference of the column.

The overall mass transfer coefficient at the operating condition can be calculated from Eq. 2.

$$K_G = \frac{N_{CO_2}}{\Delta P_{CO_2}}$$
 Eq. 2

in which N_{CO2} is the flux of CO₂, K_G is the overall mass transfer coefficient, ΔP_{CO2} is the log mean of driving force which is defined by


$$\Delta P_{CO_2} = \frac{P_{CO_2}^{in} - P_{CO_2}^{out}}{\ln \left(\frac{P_{CO_2}^{in} - P_{CO_2}^{out}}{P_{CO_2}^{out} - P_{CO_2}^{out}} \right)}$$
Eq. 3

in which P_{CO2}^{in} and P_{CO2}^{out} represent the CO₂ partial pressure at the inlet and outlet of the wetted wall column, and P^*_{CO2} is the equilibrium partial pressure of CO₂. The P^{*} co2is obtained by making the flux N_{CO2}^{1} to be zero at zero driving force and solving the 2 equations simultaneously using a trial-and-error routine in MATLAB®.

The foregoing has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the embodiments to the precise form disclosed. Obvious 45 modifications and variations are possible in light of the above teachings. All such modifications and variations are within the scope of the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.

16

1. A catalyst compound having a chemical formula:

where M=Co, Zn

What is claimed:

2. A method of increasing overall mass transfer rate of acid gas scrubbing solvents, comprising:

adding the catalyst compound of claim 1 to a fluid stream including an acid gas and an acid gas scrubbing solvent.

3. The method of claim 1 wherein said acid gas scrubbing solvent includes an amine.

4. The method of claim 1, wherein said acid gas scrubbing solvent includes a mixture of a primary or secondary amine 20 and a tertiary amine.

5. The method of claim 1, wherein said acid gas scrubbing solvent includes a material selected from a group consisting of monoethanolamine (MEA), 1-amino-2-propanol (1A2P), 3-amino-1-propanol, 2-amino-1-propanol, 2-amino-1-butanol, 1-amino-2-butanol, 3-amino-2-butanol, 2-(alkylamino)ethanonol (MAE), diglycolamine, morpholine, piperazine (PZ), 1-methylpiperazine (NMP). 2-methylpiperazine, hydroxypiperadine, hydroxyalkylpiperazine, 2-piperidineethanol, N-aminoethylpierazine (AEP), aminopropylmorpholine, 4-aminopiperidine, 3-aminopiperidine, 2-amino-piperidine, diethanolamine, 2-amino-2-methyl-1-propanol (AMP), diethanolamine (DEA), diisopropanolamine (DIPA), glycine, alanine, β-alannine, sarcosine, isopropanolamine, benzylamine, methyldiethanolamine (MDEA), triethanolamine (TEA), alkali carbonate, N,N,-di-35 alkylethanolamine, N,N,N',N'-tetraalky-1,8-naphthalenediamine, N,N,-dialkylbenzylamine, 1,4-dialkylpiperazine, N,N,N',N'-tetraalkyl-1,6-hexanediamine, N.N.N',N'-tet-N,N,N',N'-tetraalkyl-1,4-buraalkyl-1,5-pentanediamine, N,N,N',N'-tetraalkyl-1,3-propanediamine, tanediamine, N,N,N',N'-tetraalkyl-1,2-ethanediamine, N,N,N',N'-tetrakis (2-hydroxyethyl)ethylenediamine, N,N,N',N"-pentaalkyldiethylenetria mine, N,N,N',N"-pentaalkyldipropylaminetriamine, N,N,-dialkylcyclohexylamine, N,N,N',N'tetraalkylbis(aminoethyl)ether, N,N,-dimethyl-2(2aminoethoxy)ethanol, where alkyl represents any methyl, ethyl, propyl, butyl isomer, and mixtures thereof.

6. The method of claim 1, wherein said catalyst compound is provided at a concentration of between about 0.05 mM and about 100 mM.