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ABSTRACT OF DISSERTATION 
 
 
 

MIDDLE TO LATE HOLOCENE (7200-2900 CAL. BP) ARCHAEOLOGICAL  
SITE FORMATION PROCESSES AT CRUMPS SINK AND THE ORIGINS OF 

ANTHROPOGENIC ENVIRONMENTS IN CENTRAL KENTUCKY, USA 
 
Though some researchers have argued that the Big Barrens grasslands of Kentucky 

were the product of anthropogenic land clearing practices by Native Americans, heretofore, 
this hypothesis had not been tested archaeologically. More work was needed to refine 
chronologies of fire activity in the region, determine the extent to which humans played a 
role in the process, and integrate these findings with the paleoenvironmental and 
archaeological record. With these goals in mind, I conducted archaeological and 
geoarchaeological investigations at Crumps Sink in the Sinkhole Plain of Kentucky. The 
archaeological record and site formation history of Crumps Sink were compared with 
environmental and archaeological data from the Interior Low Plateaus and Southern 
Appalachian Mountains for an understanding of how the site fits into the larger story of 
human-environmental interactions in the Eastern Woodlands. Based on the data recovered, 
I argue that through land burning Archaic hunter-gatherers were active managers of 
ecosystems to a greater degree than previously acknowledged. 

 
Excavations at Crumps Sink revealed stratified archaeological deposits spanning 

the late Middle Archaic to Terminal Late Archaic periods. Radiocarbon dates and an 
analysis of projectile point typologies provided information on the chronological and 
cultural history of the site. Magnetic susceptibility, loss-on-ignition, plant available 
phosphorous, and soil micromorphological analyses were conducted to examine landform 
dynamics in response to environmental change and to trace the anthropogenic signature 
created by human activities at the site. Masses of lithic debitage, animal bone, and burned 
sediment nodules per ten-cm-level provide an indication of human occupation intensity 
and shifting activities over time. Radiocarbon dates were used to reconstruct rates of 
sediment accumulation in the sink. These varying datasets were considered together for a 
holistic understanding of localized environmental and anthropogenic impacts on the 
landform. 

 
Between 7200 and 5600 cal. BP, during the Middle Holocene Thermal Maximum 

and corresponding with the late Middle Archaic period, sediment accumulation was 
sustained with one identifiable episode of very weak soil development. Background 
magnetic and chemical signatures in the soils were greater than they were at pre-occupation 
levels, demonstrating that human activities left a lasting imprint in soils as early as the late 



     
 

Middle Archaic period. Between 5600 and 3900 cal. BP, periods of diminished 
sedimentation led to more pronounced episodes of soil formation. However, these soil 
horizons are interposed by pulses of enhanced sediment accumulation. These soil data may 
signal shifting environmental regimes during the Middle to Late Holocene transition. 
Between 5600 and 3900 cal. BP scattered plant ash, elevated masses of burned sediment 
nodules, and pestle fragments in Late Archaic deposits suggest that hunter-gatherers were 
intensively processing nut mast, potentially in association with early forest clearance and 
silviculture. Botanical assemblages from a coincident archaeological sequence at the 
Carlston Annis site in the nearby middle Green River region has demonstrated woodland 
disturbance and potential silviculture in central Kentucky during this time. 

 
During the Late Archaic and Terminal Late Archaic periods (3900-3000 cal. BP), 

substantial plant ash deposition occurred in a stratum that accumulated relatively quickly. 
Very low burned sediment nodule masses in this deposit indicate that combustion features 
were not common in the immediate vicinity and that elevated frequencies of plant ash were 
the result of burning on a broader expanse of the surrounding landform. Chronologically, 
the zone with enhanced plant ash deposition is coeval with previously demonstrated 
occurrences of increased forest fires, grassland expansion, and a shift to early horticultural 
economies throughout the region. Soil development occurred after 3000 cal. BP, and this 
episode of landform stability may have lasted for over two millennia until being capped by 
sediment accumulation from historic agriculture.  

 
The late Middle Archaic through Terminal Late Archaic data from Crumps Sink 

demonstrates that hunter-gatherer activities left lasting signatures in soils in Kentucky. The 
data from the Late Archaic to Terminal Late Archaic periods (ca. 5600-3000 cal. BP) may 
indicate intentional land burning by hunter-gatherers to create anthropogenic 
environments, first for silviculture and then for early plant domestication. This forces a 
rethinking of labor and subsistence systems within hunter-gatherer societies. Thus, if 
hunter-gatherers were utilizing long-term forest management methods, they were 
employing a delayed-return economic system relying on labor investment and negotiated 
understandings about land tenure. Further characterization of the origin of fire management 
activities will help us to elucidate the nature of incipient indigenous plant domestication in 
the Eastern Woodlands. 
 

 
KEYWORDS:Big Barrens Grasslands, Geoarchaeology, Karst Environments, Archaic 

Hunter-Gatherers, Historical Ecology, Fire Histories  
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CHAPTER 1.  INTRODUCTION 

 In the Interior Low Plateaus and Southern Appalachian Mountains of the Eastern 

United States, marked increases in fire activity (Delcourt et al. 1998; Fesenmyer and 

Christensen Jr. 2010; White 2007), changes in vegetation patterns (Delcourt et al. 1998; 

Wilkins et al. 1991), independent domestication of weedy annuals (Smith 2006; Watson 

1985), shifts in ground stone tool technology (Applegate 2008; Jefferies 2008), and the 

decline of the Shell Midden Archaic (Crothers 2008) began in the Late Archaic and 

intensified during the Early Woodland period. These significant changes suggest that 

humans impacted surrounding ecosystems in complex and diverse new ways (Baskin et al. 

1994; Crawford 2005; Delcourt et al. 1998; Wagner 2003, 2005; Wilkins et al. 1991). 

While many data have been gathered and models developed to explain the origins of 

agriculture between the Late Archaic and Early Woodland periods (see Crothers 2008; 

Smith 2006; Watson 1985), there has not been a comprehensive effort to interweave 

environmental proxy data with cultural developments during this time, or in the preceding 

millennia. 

In my dissertation, I attempt to understand how cultural events relate to 

environmental variability in the Midcontinent during the transition from the Middle 

Holocene (ca. 9000-4200 cal. BP) to early Late Holocene (ca. 4200-3000 cal. BP) (Walker 

et al. 2012), while also considering the developments in Middle Archaic (ca. 9000-5800 

cal. BP) human-environmental interactions that set the stage for the origins of agriculture 

in the Late Archaic (ca. 5800-3200 cal. BP) and Terminal Late Archaic (ca. 3200-2500 cal. 

BP) periods (Jefferies 2009). I explore these larger questions with data collected from 

excavations at Crumps Sink (15Wa6), an archaeological site that spans both the Middle-
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Late Holocene and Middle-Late Archaic transitions, and also having a Terminal Late 

Archaic component (7200-2900 cal. BP). I consider the archaeological record (cultural 

developments) in conjunction with soil geomorphology (environmental change) at Crumps 

Sink, and assess human adaptations to Holocene climatic conditions as well as the 

possibility that hunter-gatherers were creating anthropogenic environments through land 

burning in south-central Kentucky by the Late Archaic period and perhaps even as early as 

the late Middle Archaic period. Baskin et al. (1994) make a convincing case for the Big 

Barrens of Kentucky being the product of anthropogenic land clearing practices, although 

heretofore this hypothesis has not been tested archaeologically. 

The latter half of the Middle Archaic period was marked by the increased 

importance of formalized ground stone tool technologies including pestles and grooved-

axes and the intensive processing and consumption of hickory nuts, acorns, and black 

walnuts, trends that continued through the Late Archaic period (Gardner 1997; Jefferies 

2008, 2009; Moore and Dekle 2010; Simon 2009; Stafford 1994, 2000). Through 

management of arboreal nut crops, Native Americans were already modifying and 

cultivating the landscape (Gardner 1997; Wagner 2003, 2005). Based on botanical work 

conducted on nut shell collected from the Carlston Annis site in the middle Green River 

region of Kentucky, Wagner (2003, 2005) has argued that Late Archaic hunter-gatherers 

in central Kentucky created anthropogenic ecosystems, through woodland disturbance, 

perhaps in relation to silviculture. Corroborating Wagner’s findings, Crawford (2005) 

identified plant remains from Carlston Annis that indicated increased forest disturbance. 
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Debate on the Origin of the Big Barrens 

Native American land management by fire has been hypothesized to have occurred 

in the south-central Kentucky karst region (Baskin et al. 1994). Within the south-central 

Kentucky karst, the Sinkhole Plain is a holokarst landscape with no surficial drainage and 

only subterranean rivers (Hess et al. 1989; Wells 1973). Water can only be accessed 

through sinkholes, cave entrances, and karst windows, which would have made them 

important places on the landscape for hunter-gatherers. The lack of surface water also 

would have made the environment more amenable to fire management. In the late 

eighteenth and early nineteenth century, the first European visitors to south-central 

Kentucky noted the prairie-like landscape characterized by expansive grasslands 

composed of grasses, forbs, shrubs, and scattered trees, calling it the “Big Barrens” (Baskin 

et al. 1994).  

Originally assumed to be a climate-induced extension of Midwestern Tallgrass 

Prairies (Transeau 1935) that occurred during the Middle Holocene Thermal Maximum 

(ca. 9000-4200 cal. BP), the grasslands and limestone prairies that spanned parts of 

Kentucky, Tennessee, Indiana, Illinois, Ohio, and Missouri are now believed to have been 

created by indigenous land burning (Anderson et al. 2000; Baskin et al. 1994; Chester et 

al. 1997; Guyette et al. 2003; Heikens and Robertson 1994; Jefferies 2009; Wilkins et al. 

1991). A variety of prairie species are found in barren-like ecosystems in the south-central 

Kentucky karst, with the most dominant one being little bluestem (Schizachyrium 

scoparium) (Baskin et al. 1994; Chester et al. 1997). 

Baskin et al. (1994) argue that the Big Barrens should not be considered part of a 

climate-induced extension of the Prairie Peninsula and provide several lines of evidence 
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to make their case, including expected climax vegetation in the region being forest, types 

of soils, paleoecological studies, and indigenous plant and animals species (see Chapter 

3). This evidence led the authors and others to argue that the barrens are of anthropogenic 

origin resulting from indigenous use of fire (Anderson et al. 2000; Baskin et al. 1994; 

Baskin et al. 1997; Chester et al. 1997; Guyette et al. 2003; Heikens and Robertson 1994; 

Jefferies 2009; Wilkins et al. 1991). However, not all agree on the origins of barrens 

ecosystems. Among potential catalysts for changing vegetation structure from forest to 

grassland are climate, lightning strikes, trampling by large animals such as bison, and 

human fire regimes (Ray 1997). It is likely that all played a role in the creation and 

maintenance of the barrens. However, today, when fire is suppressed these environments 

gradually transition back to woodlands (Anderson et al. 2000; Baskin et al. 1994), 

suggesting that fire and disturbance was a key element in maintaining this successional 

habitat.  

The timing and origin of the Big Barrens is not known, but it seems possible that 

they originated during the Middle Holocene Thermal Maximum (ca. 9000-4200 cal. BP), 

also known as the Hypsithermal or Climatic Optimum (Walker et al. 2012). This was a 

period of generally warmer and drier conditions throughout the Interior Low Plateaus. By 

the early Late Holocene, environmental conditions began trending to a cooler and wetter 

regime, more similar to the climate we see today. Despite the wetter and cooler conditions 

of the early Late Holocene, pollen records from a sediment core at Jackson Pond in Larue 

County, Kentucky, show that grassland species became more prominent in central 

Kentucky by at least 4000 years ago (Delcourt and Delcourt 1979; Wilkins et al. 1991; 

Jefferies 2008). The continuation and expansion of grasslands in south-central Kentucky, 
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despite Late Holocene environmental conditions favoring forest development, suggests 

another factor aside from climate may have played a role. Wood charcoal abundance in 

ponds, deep cave sediments, and upland forest stand soils throughout the Interior Low 

Plateaus and Southern Appalachian Mountains demonstrate an increased landscape 

burning by at least 4000 years ago. Increased fire activity occurred contemporaneously 

with plant domestication in the region, which does not seem to be a coincidence. Based on 

this data, it is plausible that indigenous populations perpetuated these grasslands by land 

burning through fire regimes that persisted over four millennia (Baskin et al. 1994; 

Delcourt et al. 1998; Fesenmyer and Christensen Jr. 2010; White 2007; Wilkins et al. 

1991). 

This leads us to ask when did Native Americans begin to modify the landscape with 

fire in the Sinkhole Plain and how does it relate to the archaeological record? Few 

paleoecologists have comprehensively incorporated the archaeological record into their 

discussions of regional vegetation and fire histories (Delcourt et al. 1998 is an exception). 

Similarly, few archaeologists have adequately considered the historical particulars of 

environmental and cultural developments in preceding millennia that would have preceded 

or played a role in the origins of agriculture. While Baskin et al. (1994) were able to 

demonstrate that the origin and maintenance of the barrens does not match expectations 

based on the climate, more work is needed to refine chronologies of fire activity in the 

region, determine the extent to which humans played a role in the process, and integrate 

these findings with the paleoenvironmental and archaeological record. Here, I test Baskin 

et al.’s (1994) hypothesis that barrens ecosystems in the south-central Kentucky karst were 

created and maintained by indigenous land burning by at least 4000 years ago. I will argue 
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that Native Americans played a significant, complex role in managing ecosystems through 

prescribed burns as early as the Archaic period.  

Theoretical Background 

I employ an historical ecological approach that challenges the nature-culture 

dichotomy and recognizes that humans and the environment are not disconnected, but 

rather are historically intertwined, mutually affecting each other (Balée 1998a, 2006). The 

historical ecological perspective also acknowledges that even small-scale societies such as 

hunter-gatherers and horticulturalists can transform the environment, resulting in persistent 

ecosystem legacies (Hayashida 2005; Lightfoot et al. 2013). I view forest management as 

long-term investment in land, drawing from the concept of landesque capital (Håkansson 

and Widgren 2014). I utilize an institutional economic perspective to model how hunter-

gatherers in Kentucky may have begun managing their environments through collective 

action. Social negotiations over land as a common-pool resource are fundamental to 

successful management (Ostrom 1990). These investments in land are historically 

contingent and change over time depending on the values and needs of the users (Widgren 

and Håkansson 2014). Diachronic changes in human land use may leave traces in the soil 

geomorphological record, even if only evident at a microscopic level. These traces can be 

interpreted in conjunction with archaeological and environmental data for a holistic 

understanding of human-environmental relations in the past (Balée 1998b, 2006; Crumley 

1994, 1998). Shifts in property rights regimes, silviculture, fire ecology, plant 

domestication, changing tool technologies, and changes in vegetation structure in central 

Kentucky, and throughout the Eastern Woodlands, were likely mutually dependent and 
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historically contingent. To identify the relationship between cultural and environmental 

developments, an interdisciplinary data set is needed. 

Research Questions 

1. What is the relationship between natural climatic/environmental regimes and humans 

intentionally manipulating the environment beyond these climatic proxies in the 

grassland barrens of the Sinkhole Plain? 

2. What is the chronology for human manipulation of barrens ecosystems by fire?  

3. What evidence distinguishes human induced fire regimes from a natural fire history? 

4. What were the effects of prehistoric vegetation change and human land modification 

on sediment deposition and soil formation in sinkholes of the south-central Kentucky 

karst? 

Geoarchaeology at Crumps Sink 

In 2015, I conducted excavations in Crumps Sink in the Sinkhole Plain of south-

central Kentucky and collected an interdisciplinary and complementary dataset, including 

(1) soil and sediment samples to understand the environmental history of the site, (2) 

artifacts to understand technological developments in relation to environmental change, 

and (3) botanical and faunal records to understand human diet over time.  Archaeological 

deposits were hand excavated to 3.8 meters, until reaching archaeologically sterile 

colluvium, likely redeposited loess. Bucket augering of this lower deposit extended an 

additional 1.4 meters until reaching rock, possibly roof fall from the cave when the sinkhole 

collapsed. Thousands of artifacts were recovered, including flaked stone projectile points, 
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ground stone tools, bone awls and needles, a gorget and shell beads. Refuse representing 

hunter-gatherer diet over a 4300-year time span included thousands of fragments of animal 

bone from deer, turkey, and aquatic species, mussel shell, and a high density of charred 

nutshell. Pit and hearth features were also encountered suggesting humans were occupying 

or doing activities within the sinkhole, aside from trash disposal.  

A series of twelve radiocarbon dates show archaeological deposits at the site date 

between 7200 and 2900 cal. BP. The dates reveal very little mixing and demonstrate that 

consistent colluvium and sheet-wash accumulation from the sinkhole edge capped 

archaeological remains relatively quickly during the 4300-year sequence, resulting in a 

deposit with exceptional stratigraphic integrity. Upon documentation of the soil profile, it 

was evident that the deposit was stratified with a succession of four buried soils, and the 

modern A horizon at the surface. Being in a catchment basin, these soils are cumulative, 

meaning that they are constantly receiving sediment at varying rates. However, these 

former surfaces indicate decreased sedimentation and some degree of landform stability. 

Colluvium and sheet-wash were deposited during periods of enhanced sedimentation 

indicating some degree of landform instability. With extensive radiocarbon dating, the soil 

geomorphology of the sinkhole could also be correlated with the climatic pulses of the 

Middle to Late Holocene periods and with key cultural developments and perhaps human 

impacts on the landform during the late Middle Archaic, Late Archaic, Terminal Late 

Archaic periods. 

After profile documentation, I collected loose soil/sediment samples in a vertical 

column at 5 cm intervals for bulk sediment analyses including magnetic susceptibility, loss-

on-ignition, and plant available phosphorous. Magnetic susceptibility and loss-on-ignition 
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lab analyses helped further establish that these were buried soils, while also providing 

information on human impacts on the landform. Plant available phosphorous analyses also 

provided information concerning human impacts on the landform. To assess anthropogenic 

impacts, I quantified anthropogenic “inputs” of lithic material, burned sediment, and 

animal bone at 10 cm intervals throughout the vertical extent of the archaeological deposit. 

Non-culturally modified rock, which may be evidence of exposed bedrock around the 

sinkhole, was also weighed to provide information on erosion at the site. 

In addition to bulk sediment analyses, I conducted soil micromorphological 

analyses to better understand soil development and sediment deposition at the site. I also 

considered a key anthropogenic input that may provide information on prescribed fire 

regimes at the site; plant ash manifested as microscopic calcium carbonate spherical 

nodules and rhombs. These nodules form during the combustion of plant cells. The data 

collected from the Crumps Sink investigations are compared with comprehensive climatic 

data indicated in sedimentological sequences from central Kentucky and the greater 

Interior Low Plateau and Southern Appalachian regions. To my knowledge, no site like 

Crumps Sink within a sinkhole has been excavated in Kentucky, and this study provides 

new information on how humans used these landforms. It is evident that as sedimentary 

catchment basins, sinkhole landforms have significant potential for archaeological and 

paleoenvironmental studies.  

In Chapter 2, I outline the theoretical concepts that guide this study. Chapters 3 and 

4 discuss the environmental and archaeological background, respectively, for the study 

area. Chapter 5 summarizes the 2015 archaeological investigations and materials recovered 

at Crumps Sink. Chapter 6 assesses data gathered from field and lab analyses to discuss 
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soil geomorphology and environmental change over time around Crumps Sink and 

integrates these data into the larger context of the Middle to Late Holocene environmental 

transition. In Chapter 6, I also explore anthropogenic impacts on the site and the role of 

Archaic hunter-gatherers in managing ecosystems, including barrens, surrounding Crumps 

Sink through burning, as well as when and how this may have occurred. Chapter 7 

evaluates the diachronic trends in soil formation, erosion, and human activities at Crumps 

Sink derived from this study and models how hunter-gatherers may have made decisions 

concerning sustainable management of the resources in and around the sink. This is 

followed by a discussion of larger environmental and cultural developments in the region, 

considering how early anthropogenic environments may have established social and 

ecological legacies contributing to the advent of horticultural economies in Central 

Kentucky. 

Implications 

This research is significant for a variety of reasons: (1) the implications of changing 

human-land interactions in relation to the origins of agriculture in the Eastern U.S. 

(Crothers 2008; Smith 2006; Watson 1985); (2) further assessment of recent research 

suggesting that prehistoric small-scale societies were more active agents in transforming 

their landscapes than previously believed (Lightfoot et al. 2013); (3) developing a model 

of how hunter-gatherers and horticulturalists occupy and utilize holokarst landscapes; (4) 

determining the catalysts for prehistoric origins of grasslands in the Interior Low Plateaus 

(Baskin et al. 1994); (5) contributing to contemporary dialogue concerning barren 

grassland management in the Midwestern United States (Anderson et al. 2000); (6) 
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elucidating the Holocene history of geogenic, biogenic, and anthropogenic sediment 

deposition in a karst setting; and (7) offering a framework for distinguishing between 

human activities and environmental processes over time.  

Through studies of land management in hunter-gatherer and horticultural societies, 

I argue that these groups were active managers of the landscape to a greater degree than 

previously acknowledged. This forces a rethinking of labor and subsistence systems within 

these societies, as well as the social and ritual elements that play a role prohibiting or 

enabling specific types of land-use (Lightfoot et al. 2013). Thus, if hunter-gatherers in 

Archaic Period Kentucky were utilizing long-term forest management methods to increase 

nut yields, or perhaps for a variety of other social, ritual, and economic reasons, then this 

suggests a delayed-return economic system relying on labor investment and negotiated 

understandings about land tenure. Characterizing the origin of fire management activities 

in central Kentucky will help us to further elucidate the nature of incipient indigenous plant 

domestication. 

 

 

 

 

 

 

 
 

Copyright © Justin Nels Carlson 2019  



12 
 
 

CHAPTER 2. THEORETICAL BACKGROUND 

Anthropogenic Environments 

 Landscape modification predates the industrial age by thousands of years and few 

ecosystems are truly pristine (Denevan 1992; Hayashida 2005). Recent literature has 

demonstrated that, throughout history, humans have modified landscapes in a variety of 

ways through terraforming and creating raised fields, complex geoglyphs, monumental 

architecture, irrigation systems, anthropogenically enhanced soils, and land burning (Balée 

1998a, b; Crumley 1994; Doolittle 2000; Håkansson and Widgren 2014; Pyne 1998, Smith 

and Wishnie 2000). Depending on the social, political, and economic needs of the users, 

these anthropogenic environments were created, maintained, and abandoned throughout 

their history, though the signatures of such activities may remain and influence later use 

(Dean 2010; Zaro 2014).  

While examples of environmental degradation are evident in the archaeological 

record, many modifications, such as land burning, had beneficial ecological effects 

including enhancing floral and faunal diversity or overall biological productivity and 

mitigating the severity of future forest fires (Håkansson and Widgren 2014; Pyne 1998; 

Roos 2008). For example, ethnohistoric accounts show that Native Americans used fire in 

North America to supplement cultivation practices, increase forest and prairie biodiversity, 

and improve hunting success (Williams 2002). This evidence challenges the “Pristine” and 

“Forest Primeval” myths that the forests of the Americas encountered by early European 

visitors had never been modified by indigenous populations (Denevan 1992, 2011; 

Doolittle 2000; Hicks, Jr. 2000). 
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In the Cumberland Plateau, prescribed fire has been implemented by restoration 

ecologists as a tool to manage forest structure and composition and increase floral and 

faunal biodiversity. Royse et al. (2010) conducted controlled burns in the Daniel Boone 

National Forest of the Cumberland Plateau. They were primarily concerned with white oak 

(Quercus alba) and chestnut oak (Quercus prinus) regeneration (i.e., the success rates of 

acorns developing into trees). Fire suppression in the Cumberland Plateau since the 1930s 

had allowed fire intolerant mid-story species such as red maple (Acer rubrum) and white 

pine (Pinus strobes) to dominate canopy space and restrict sunlight to oak seedlings. 

Monitoring revealed that oak mortality was largely correlated with how deeply acorns were 

buried within leaf litter and the amount of sunlight available to the seedlings and saplings. 

In burned areas, leaf litter was shallower and more sunlight passed through the canopy, 

allowing for more successful regeneration of oak seedlings (Royse et al. 2010). 

Throughout the Southeastern United States, it has been shown that prescribed burns 

can promote the carrying capacity of animals that thrive in edge areas between woodlands 

and grasslands, such as deer and some birds. For example, Key deer on Big Pine Key Island 

in south Florida seek environments with a range of diverse stands for cover and subsist on 

herbs in open habitats formed by fire in rockland pine ecosystems (Carlson et al. 1993). In 

the Blue Ridge Mountains of Western North Carolina, bird species richness increased after 

high-intensity controlled burns, and it potentially increased after low-intensity controlled 

burns (Greenberg et al. 2013). In the Southern Appalachian uplands of Georgia, bird 

species diversity increased 26 to 44 percent after low- and high-intensity burns (Klaus et 

al. 2010). However, ecosystems can vary in their response to fire, requiring land managers 

to consider season, fire intensity, species composition, and goals of burning prior to this 
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applied approach. For example, prescribed fires affected bird species in east-central 

Missouri differently; certain species favor disturbed areas over others. This suggests that 

burns should be prescribed in a way to maintain both burned and unburned stands (Blake 

2005). In pine forests of the Atlantic Coastal Plain of Georgia, burning helps maintain 

brood habitat for wild turkey populations, though it was suggested that prescribed burns 

should be conducted in the winter after the spring nesting season (Sisson and Speake 1994). 

The preceding examples from restoration ecology literature are important for 

understanding how Native Americans may have improved landscapes for subsistence in 

the past, and archaeological evidence demonstrates that certain resources that would 

increase from fire activity were prominent food sources. For example, hardwood tree nut 

crops were a major food source for Native Americans, and it is probable that they were 

practicing a form of silviculture through land clearing by fire to encourage nut-bearing 

trees (Abrams and Nowacki 2008; Gardner 1997; Munson 1986; Wagner 2003, 2005). 

Prescribed burning and land clearance also may have played a role in the early 

domestication of plants in the Cumberland Plateau (Delcourt et al. 1998; Ison 2000). 

Additionally, records of animals from archaeological sites in the Eastern Woodlands and 

Midwest demonstrate that species such as white-tailed deer were a large component of the 

Native American diet (Crothers 2005; Styles and McMillan 2009). To address the research 

questions presented in Chapter 1, we must consider past environments and archaeology in 

in a holistic way. Below, I outline the theoretical foundation for such an analysis. 
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Historical Ecology 

The historical ecological approach challenges the nature-culture dichotomy and 

recognizes that humans and the environment are not disconnected, but rather are 

historically intertwined and mutually affect each other to varying degrees (Balée 1998a, 

2006). It also acknowledges that even small-scale societies, such as hunters and gatherers, 

can transform the environment resulting in persistent ecosystem legacies (Hayashida 2005; 

Lightfoot et al. 2013). An historical ecological approach attempts to account for the 

diachronic changes in a landscape over time or the longue durée (Balée 1998; Crumley 

1994, 1998). To do this, interdisciplinary efforts involving the “hard” and “soft” sciences 

must be undertaken for a holistic understanding of a region (Crumley 1998).  

The landscape is an important focus of an historical ecological study (Balée 1998b, 

2006; Crumley 1994). Historical ecology postulates that (1) humans have impacted nearly 

all landscapes on earth in some way and few places are truly pristine, (2) humans do not 

only leave landscapes in environmental ruin, (3) human impacts differ depending on 

cultural and historical conditions and in some cases they can actually improve species 

diversity, and (4) the manifestations of human action can be studied in interdisciplinary 

ways over large areas (Crumley 1994; Balée 2006; Hayashida 2005).  

Societies and ecosystems are not static or unilineal in their trajectory and have long, 

dynamic histories (Crumley 1994; Winterhalder 1994). Because of this, the ways in which 

people negotiate use of land resources are historically contingent.  Additionally, ecosystem 

“adaptations are a response to an exact historical sequence of environmental conditions” 

and species do not always respond as expected in an ecological systems approach that 

emphasizes equilibrium (Winterhalder 1994:31). Rather, ecosystems are dynamic and 



16 
 
 

human induced disturbance may leave lasting signatures in the environment (Winterhalder 

1994). These transformed ecosystems may influence cultural or ecological circumstances 

that occur after their development. 

Historical ecology builds on a variety of earlier theoretical paradigms with the 

purpose of understanding human-environmental interactions, including cultural ecology, 

evolutionary ecology, human behavioral ecology, and human ecology. Cultural ecology 

focuses on how humans adapt to environmental conditions, though it does not adequately 

account for human agency in transforming those environments or the dynamic nature of 

ecosystems. Because cultural ecology was primarily developed for studying egalitarian 

societies, it has been difficult to apply to state-level societies (Balée 1998b, 2006; Crumley 

1994). Evolutionary ecology has also been important in the development of historical 

ecology (Winterhalder 1994). However, an historical ecological approach argues for 

historical and cultural processes being as important in shaping ecosystems and society as 

evolutionary processes (Balée 1998b, 2006). Human behavioral ecology builds upon 

evolutionary ecology, though there is more of a focus on adaptive human behaviors in 

response to social and environmental conditions. Human behavioral ecology predicts how 

people should act in specific environmental conditions and tests these predictions with 

ethnographic data. By applying evolutionary models to cultural ecology, human behavioral 

ecology suggests that natural selection guides variation (Kelly 2013). Human ecology has 

been used effectively in conjunction with a contextual approach that considers 

interdisciplinary data sets, including archaeological, geological, biological, and climatic, 

to answer questions about human land relationships and recognizes that humans can cause 

geomorphological change that can have environmental effects (Butzer 1982; Waters 1992). 
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Yet, human ecology has been critiqued for lacking “an explicit historical component” 

(Crumley 1994:4). The contextual approach relies on an ecological systems approach that 

assumes equilibrium (Waters 1992).  

Though historical ecology offers a comprehensive methodology for tracing human-

environmental interactions over time, critiques of the approach suggest the need for greater 

consideration of the role of human decision-making in modifying or adapting to 

environments. Whitehead (1994:36) wrote “Simply to chart changes in landscape through 

time once again places phenomena rather than persons at the center of explanation,” and 

“the history of an ecology is more complex…and must include an account of the synergetic 

impacts of changing human ideas”. Similarly, Widgren and Håkansson (2014:12) argue 

that historical ecology has not adequately considered “how different types of social 

processes are linked to different human-environmental relationships”. Thus, for historical 

ecology to better address anthropological questions it requires additional explanatory 

scaffolding to go beyond the data and into the social processes that were occurring over 

the longue durée. Below, I consider theory on common-pool resources, property rights, 

social institutions, landesque capital, and traditional ecological knowledge among hunter-

gatherers and horticulturalists to model how humans may have actively managed past 

environments in central Kentucky. 

Common-Pool Resources 

Societies throughout the world have found diverse ways to manage common-pool 

resources (CPRs) (Acheson 1989; Ostrom 1990; 2000). A CPR is “a natural or man-made 

resource system that is sufficiently large as to make it costly (but not impossible) to exclude 
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potential beneficiaries from obtaining benefit from its use” (Ostrom 1990:30).  In CPR 

systems (1) the resources must be bound physically/spatially, biologically, or socially, (2) 

a distinct group of users has free rein over the resources, (3) several users take part in 

extracting resources, (4) there are understood rules, formal or informal, in regard to the 

right way to extract resources, (5) all users are entitled to resources that have yet to be 

extracted, (6) there is competition for resources, and finally, (7) a group of people who 

have exclusive rights exist, who may or may not be the people using the resource 

(Stevenson 1991). Individuals must be willing to accept certain costs (Smith and Wishnie 

2000) and work with others to construct “a good that helps a community or collectivity 

achieve a goal” (Acheson 1989:376). Thus, “the management of common pool resources 

often relies on the existence of sharing systems” (Kagi 2001:5). The benefits of such 

management must outweigh the costs (Acheson 1989). 

Societal conceptions of property rights play a key role in negotiations around 

resources. Barnard and Woodburn (1988:10) argue that “rights in property, together with 

other socially recognized links between people and things, are vehicles for the expression 

of ideals and values and other manifest concerns about the nature of human beings and the 

way they relate and should relate to others”. Bromley (1992:4) writes that “property is a 

social instrument, and particular property regimes are chosen for particular social 

purposes”. Though generally egalitarian, hunter-gatherer groups do have conceptual 

understandings of property, and they structure their lives in relation to property. Cashdan 

(1989:40) notes that “virtually all foragers have systems of land tenure (usually communal) 

that control access to the land and its resources”. In hunter-gatherer societies, there are 

several types of property rights, including those over (1) landscapes and the resources that 
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can be found upon them, (2) portable property such as tools and other utilitarian wares, 

weaponry, clothing, and decorative items, (3) food such as meat and harvested vegetables, 

(4) the labor and capacities of others, and finally (5) knowledge (Barnard and Woodburn 

1988:14).  

In terms of portable property in hunter gatherer societies, there often are cultural 

norms in place which do not allow for any one person to accumulate wealth beyond that 

required for day to day life. Hunter-gatherers must share these items. Food items often 

belong to those who acquire it, but must be shared if the person has more than they can 

immediately consume. Types of sharing include giving of gifts in the form of goods or food 

without expecting anything in return, exchange in which both people or groups get 

something, redistribution, and demand sharing (Kagi 2001; Peterson 1993). In terms of 

technological investment, hunter-gatherer groups can expend a great deal of labor 

gathering materials for production and maintenance of tools (Kelly 2013). Mobility, 

common in hunter-gatherer societies, is a risk aversion strategy that preserves access to a 

wide and diverse resource base for water, food, and raw materials for tools. It also allows 

for social interaction with other groups (Cashdan 1989; Crothers and Bernbeck 2004; Kelly 

2013). In general, there are few foraging societies in which people impose control over the 

rights of the capabilities and labor of other people. However, that does not mean that such 

tactics do not occur in hunter-gatherer societies (Barnard and Woodburn 1988). 

Access to CPRs can range from open to restricted (Kagi 2001; Ostrom 1990). Kagi 

(2001:6) defines an open-access system as “a situation in which there is no clearly defined 

group of economic agents, entitled to use the resource, and where there exist no rules or 

restrictions on resource use”, and a common property system as “a situation in which a 
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clearly defined group of economic agents has sole access to the resource and where rules 

and restrictions on using the resource exist”. In an open-access situation, the concept of 

ownership does not exist, “only the opportunity to use something” (Bromley 1992:11). If 

resources in an area are highly variable, patchy, or diffuse, providing limited productivity, 

groups may decide that it is not worth defending or claiming them (Acheson 1989; Crothers 

2008; Eerkens 1999). In this sense, the groups would be employing an open-access system.  

In hunter-gatherer societies, it can be expected that people are “naturally endowed” 

with the right to access and extract resources from the surrounding landscape: “The general 

principle in use of land is that access to resources in one’s home area is automatic and 

unchallengeable, untrammeled by formalities or gestures of any sort towards one’s seniors, 

the living or the dead, who have used these resources before oneself but who are given no 

role in handing them on” (Barnard and Woodburn 1988:15). In his discussion of hunter-

gatherers during the Archaic period in Kentucky, Crothers (2008:138) suggests that as long 

as there was low population density and resources were not overused, social networks 

would remain “intimate, interaction…iterative, and information…freely obtained and 

given”. While open-access systems often are the most effective method of resource 

maintenance, they do have potential disadvantages, including uncoordinated land use 

where it “can be life threatening if a group unknowingly enters a region already harvested 

by another group” (Eerkens 1999:311).  

Common property systems may occur in areas where resource patches are defined 

and highly productive (Acheson 1989). In areas where commonly open-access systems are 

employed, common property regimes may be enforced in times of uncertainty, ecological 

catastrophe, or demographic change.  Eerkens (1999) suggests three reasons traditional 
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societies might decide to create and enforce common property systems: (1) the cost-benefit 

of defendability, (2) environmental risk buffering, and (3) social conflict buffering. If an 

area has only sparse resources or the needed extraction technology for the available 

resources is too costly then groups will decide that it is not to their benefit to defend. 

Concerning environmental risk buffering, through CPR systems, harvesting agreements are 

established to minimize the potential of overharvesting or adversely affecting others. Social 

conflict buffering is a mechanism that can be used if social relations fail to a point where 

they cannot be mended. In this way, open areas allow for buffer zones, places to escape, 

and an area where game and resources can regenerate due to lack of harvesting (Eerkens 

1999).  

When an area is deemed worth protecting, and rich in resources, there are two 

mechanisms to attain a necessary balance, those being perimeter defense and social 

boundary defense. Perimeter defense involves guarding a spatially bounded area with the 

intent to exclude others from obtaining resources. Social boundary defense involves 

withholding critical information, thus, preventing others from harvesting resources 

(Eerkens 1999). Resources that at one time may have been open-access may become more 

exclusive as common property regimes develop, with groups increasingly controlling 

access to territories and developing alliances with surrounding groups to maintain these 

territories (Johnson 1989). 

Stevenson (1991) argues that CPRs are not “physical or tangible objects” but rather, 

social institutions put in place to manage resources. Land management goals can be 

achieved through enforcement of these social institutions (Ostrom 1990, 2000). North 

(1990:1) defines institutions as “the rules of the game in a society or, more formally,…the 
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humanly devised constraints that shape human interaction”. For Ostrom (2000:143-144), 

institutions and social norms can be defined as “shared understandings about actions that 

are obligatory, permitted, or forbidden”. Berkes and Turner (2006:490) suggest institutions 

“develop out of the accumulation of knowledge and the elaboration of resource 

management practices of a group of people capable of making decisions to alter their 

actions through learning”. 

Failure to reproduce or adhere to these norms within small groups will be noticed 

by others in the group, which is often reason enough not to resist or disregard them (Ostrom 

2000). Rules may be enforced through “socially regulated access, management rules 

governing resource harvests, means of monitoring compliance to these rules, and sanctions 

to punish those who violate them” (Smith and Wishnie 2000:504). For North (1990:1), 

“institutional change shapes the ways societies evolve through time and hence is the key 

to understanding historical change”. The concept of CPRs helps us understand how groups 

negotiate resources. However, to understand how and why people create anthropogenic 

environments we must understand how and why humans invest in those resources. Rather 

than ecosystem resources being static, they are dynamic and can be transformed through 

active management. 

Landesque Capital 

Amartya Sen introduced the concept of landesque capital for increased land 

productivity and laboresque capital for increased labor productivity in what he deemed 

‘underdeveloped countries’ (Widgren and Håkansson 2014). When discussing 

preindustrial agriculture in the Pacific, Brookfield (1984:16) utilized the concept of 



23 
 
 

landesque capital: “Some innovations create ‘landesque’ capital, which once created 

persists with the need only of maintenance; other innovations require continued application 

and leave no lasting mark on the land”.  

 Blaikie and Brookfield (1987:9) define the concept of landesque capital as “any 

investment in land with an anticipated life well beyond that of the present crop, or crop 

cycle”. Investment occurs with the intent to improve the capacity of the landscape for 

economic benefits. Widgren and Håkansson (2014) expound upon the concept of landesque 

capital and state that “such investments, although physical, are both an integral part of, and 

reflection of, social processes” (Widgren and Håkansson 2014:13). There may be social, 

ritual, or economic incentives for institutions to be enacted and individuals to invest labor 

and time to alter the environment. Investment in the land is often not temporary, and may 

lead to land tenure by certain individuals with vested interest in the land, while also 

sparking innovation (Håkansson and Widgren 2014). In some cases, signatures of 

landscape modification may be apparent for millennia (Brookfield 1984; Widgren and 

Håkansson 2014). Landesque capital recognizes that changing property rights over land 

are central to the creation, maintenance, and even the abandonment of modified 

environments. A key question that landesque capital asks is: what are the incentives for 

people to invest labor in land management (Widgren and Håkansson 2014)? 

Some researchers have questioned the applicability of landesque capital to small-

scale societies such as hunter-gatherers and horticulturalists, most notably due to the use 

of the term ‘capital’, as in ‘capitalist societies’. Widgren and Håkansson (2014:21) believe 

that precapitalist anthropogenic alterations such as irrigation, terraces, and enriched soils 

“qualify as capital (in a Marxist sense) because they are integral parts of economic flows 
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and wealth accumulation”. Bayliss-Smith (2014) warns against only considering landscape 

modification in an economic sense and recommends considerations of both intrinsic 

(social) value and instrumental (economic) value. Morrison (2014) suggests that the 

economic leaning concept of capital does not adequately account for social and cultural 

complexities. Hornborg et al. (2014) offer “symbolic” capital to address monumental 

nonagricultural constructions such as mounds. For Widgren and Håkansson (2014:23), 

though, when landesque capital is considered with historical ecology, it allows for a 

discussion that goes beyond economic choice, into an approach that is “deeply contextual 

and historically contingent”. Morrison (2014) suggests that a contribution of landesque 

capital is that small-scale societies were capable of altering their surrounding landscape, 

sometimes improving them in an economic sense.  

In some prehistoric precapitalist societies, human labor investment over long 

periods of time has been demonstrated by agricultural practices that leave lasting 

impressions including terraces and irrigation canals constructed with stone and earthen 

materials. However alteration of vegetation structure by hunter-gatherers may leave less 

obvious traces upon the landscape. Thus, these investments often are not recognized in the 

archaeological record (Börjeson 2014). Börjeson describes three different types of capital 

as grey (stone construction), brown (earthen construction), and green (vegetation 

alteration) and argues we must investigate green capital transformations with innovative 

and interdisciplinary approaches. It is my contention that subtle human impacts on the 

forest and its soils can be evaluated through a variety of chemical, magnetic, and 

microscopic methods, allowing for the recognition of difficult to see landscape 

modifications by foraging societies. With the concept of investment, landesque capital 
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helps us further understand how and why people might make efforts to alter their 

surrounding environs. 

Immediate vs. Delayed Return Systems 

Generally, it has been argued that hunter-gatherer groups operate under immediate-

return systems and sometimes delayed-return systems, while horticulturalists and 

agriculturalists operate under delayed-return systems. Immediate-return groups procure 

resources with the intent of using them within a short time of initial extraction, while 

delayed-return groups input labor over time with the expectation of future resource yields 

(Barnard and Woodburn 1988). Although many hunting and gathering peoples have 

immediate-return economic systems, it is apparent that they may also make long-term 

investments in their landscapes. The degree to which hunter-gatherer societies, in 

particular, played a role as active managers of their surrounding ecosystems has been 

debated, though more evidence is demonstrating a considerable degree of organization and 

investment towards those ends (Lightfoot et al. 2013). Therefore, we can no longer assume 

that hunter-gatherers passively adapted to surrounding environments. Instead we should 

favor a view that acknowledges and investigates the agency hunter-gatherers had/have in 

transforming those environs (Lightfoot et al. 2013). If hunter-gatherers were burning the 

landscape with an expectation of future yields well beyond the act, then we should consider 

this a delayed-return system and must also rethink how these groups were negotiating 

relations over land, portable objects, food resources, people, and knowledge. These 

investments also can be considered in relation to debates about whether human impacts on 
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the environment were purposeful in aim of conservation, or rather indirect results of other 

activities, and more reminiscent of sustainability. 

Conservation and Sustainability in Traditional Societies 

As we learn more about the amount of cultural knowledge and degrees of landscape 

modification by indigenous societies, we begin to realize how successful many groups were 

in managing and increasing the biodiversity of natural resources. This has led many people 

to equate human-environment coexistence with conservation. However, others suggest that 

we should be cautious in our application of the term “conservation” to these practices 

(Berkes and Turner 2006; Low 1996; Smith and Wishnie 2000). Low (1996:354-355) 

argues that many have viewed traditional societies as “ecologically aware, and 

environmentally altruistic” due to “romantic misconceptions”. Low (1996:353) argues that 

“the low ecological impact of many traditional societies results not from conscious 

conservation efforts, but from various combinations of low population density, inefficient 

extraction technology, and lack of profitable markets for extracted resources”. In other 

words, small-scale groups are often quite successful at not over-exploiting surrounding 

resources, though it is based upon demographic and ecological circumstances rather than a 

conscious strategy or “sacred prohibition” (Low 1996:353). 

Additionally, while restraint from depleting resources has been shown to conserve 

ecosystems, anthropogenic disturbance has been demonstrated to increase resource 

diversity creating ‘habitat mosaics’ in novel ways, including prescribed land burning 

(Smith and Wishnie 2000:514). Alvard (1995:790) defines conservation as “subsistence 

decisions that are costly to the actor in the short term but aimed at increasing the 
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sustainability of the harvest in the long term.” Smith and Wishnie extend this definition 

arguing that “any action or practice must not only prevent or mitigate resource 

overharvesting or environmental damage, it must also be designed to do so” (2000:493). 

One way in which conservation is beneficial for the natural environment is through 

increasing biological diversity or species richness. The most conducive environments to 

increasing species richness are early successional habitats created by disturbance, 

sometimes anthropogenic. Oftentimes, the maintenance of disturbed environments over the 

long-term enhances biological diversity, as there is a mosaic of habitats created along a 

spectrum ranging from recently disturbed (early successional) to relatively undisturbed 

(late successional) (Smith and Wishnie 2000). Thus, according to this definition, 

propagating or protecting certain plant species through irrigation, seed dispersal, and 

periodic burning are conservation practices. 

Smith and Wishnie (2000) suggest that conservational successes occur when (1) 

land is controlled or exclusively owned, (2) there are easily distinguishable resources, 

which (3) rapidly renew themselves in response to disturbance, (4) delayed returns 

outweigh the immediate returns, and (5) resource using groups are small and stable, 

accepting institutions governing the use of the resources. They propose that ineffective 

conservation would result from (1) high demand from groups beyond the resource base (2) 

rapidly increasing population density, (3) scarcity of resources, (4) availability of 

alternative resources that are easily substitutable for the scarce resources in question, (5) 

introduction of novel technologies or ability to move into novel habitats, and (6) ability to 

relocate loci of production (Smith and Wishnie 2000). 
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If biodiversity increases as an indirect, nonpurposeful result of human actions, then 

it can be categorized as sustainability. Switching patches prior to patch depletion would be 

an example of sustainability, following the marginal value theorem that “predicts that an 

efficient forager will generally leave a patch well before total exhaustion of resources has 

occurred” (Smith and Wishnie 2000:512). While the ultimate product may appear as a 

result of people considering a collective good, Smith and Wishnie (2000:493) suggest that 

enforcement of institutions hints at the need to diminish the tendencies of self-interested 

individuals: “Theory thus predicts, and evidence suggests, that voluntary conservation is 

rare. However, sustainable use and management of resources and habitats by small-scale 

societies is widespread and may often indirectly result in biodiversity preservation or even 

enhancement via creation of habitat mosaics”. 

Adaptive Learning and Traditional Ecological Knowledge 

With the explanatory framework outlined above, we can develop models for how 

humans and the environment interact through feedbacks, as well as how humans approach 

surrounding landscapes depending on a variety of historical circumstances. Citing 

ethnographic and ethnohistoric studies, Berkes and Turner (2006) propose three models of 

how conservation regimes develop in association with cultural knowledge. These include: 

(1) Depletion Crisis, (2) Ecological Understanding, and (3) Adaptive Co-management. In 

the Depletion Crisis model humans begin to conserve landscapes as a reaction to resource 

depletion that adversely affects them. The Ecological Understanding model suggests that 

humans develop knowledge as part of constant interactions with the surrounding landscape, 

modifying their approaches as necessary (Turner and Berkes 2006). This requires 
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incremental learning, a distinct amount of social memory, and ecological knowledge. The 

Adaptive Co-management model combines Depletion Crisis and Ecological Understanding 

scenarios and “may be defined as a process by which institutional arrangements and 

ecological knowledge are tested and revised in a dynamic, ongoing, self-organizing process 

of learning-by-doing” (Berkes and Turner 2006: 486). The authors see the process as 

related to feedbacks within a system, and conservation is something that is learned. Berkes 

and Turner (2006:491) write “A communal knowledge base takes a long time to develop, 

and practices based on such knowledge even longer”. 

Modelling the Origins of Anthropogenic Environments in Central Kentucky 

As indicated by current efforts in restoration ecology, prescribed fire can enhance 

bio-productivity (more bird species, edge species such as deer, or nut mast), perhaps 

indirectly or purposefully. Along with the environment, the advent of fire management 

may transform social institutions through new conceptualizations of property rights, 

information exchange, and land tenure relations. In Archaic period Kentucky, the 

Common-Pool Resource may have been land and resources upon that land. If people 

considered land burning to be a useful economic strategy, there would have been an 

incentive to continue the activity, social norms governing burning at specific times and 

places would have been enforced, and more people would have joined in collective action 

to manage these environments. As groups invested in the land through burning, there may 

have been a movement from open-access to common-property systems to maintain these 

enhanced resource locales.  
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The modification of ecosystems, with expected increased future yield of resources 

such as nut mast or areas that attracted species such as white-tailed deer, would indicate a 

movement from immediate-return to delayed-return subsistence economies, even before 

the advent of horticulture. In fact, this property regime may have been foundational for the 

origins of agriculture in central Kentucky (see Crothers 2008; North 1990). In his 

discussion of the origins of plant domestication in the upper and middle Green River region 

of central Kentucky, Crothers finds the concept of property rights to be a valuable 

explanatory tool for changing human-plant relationships. He writes that such a 

“transformation…is fundamentally an institutional change in the way humans perceive 

resources, negotiate rights of access or ownership, and organize the social relations of 

production” (Crothers 2008:128). 

It is unlikely that this occurred as a slow, uni-directional progression. Rather, these 

processes occurred in concert with sociopolitical and environmental circumstances, and it 

is likely that groups were frequently refining their approaches to adapt to and manage 

surrounding resources. Some groups may have even resisted new adaptations in favor of 

more familiar methods. Changing strategies may have been in response to resource 

depletion, greater understanding of existing and newly emerging ecosystem conditions, 

and/or a combination of the two. Additionally, some strategies of resource management or 

sharing would have changed depending on the needs of those using the resources. Through 

changing approaches to the landscape, we may expect that humans gain incremental 

knowledge of how different approaches to the landscape may influence biodiversity, with 

their approaches changing depending on the success or failure of ecosystem feedback. We 

also may expect that activities such as land burning would leave an imprint on the 
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landscape transforming the environment in such a way as to shape future ecosystems in the 

region. Such ecosystem legacies, combined with land management strategies, could have 

played a role in early horticultural economies in the region. 

As property rights and organizational systems were negotiated around the land and 

its resources, so were they negotiated around portable items such as tools, food, human 

labor, and knowledge (Barnard and Woodburn 1988). Tool technologies such as grooved 

axes and celts can require investment in raw material acquisition, manufacture, and 

curation, but these tools would have played an important role in forest management. 

Depending on land clearance needs, these tools might have been re-engineered. 

Information exchange concerning scheduling of burns and resource access would be 

critical for resource management and claims to resource patches, perhaps leading to greater 

efforts toward communication. If a group decided to set a fire over a large area, many 

people potentially would be affected. 

Implications 

If Archaic hunters and gatherers in Kentucky were burning to create a forest mosaic 

of varying resources, the implications are profound. These groups, already successfully 

adapted to resource availability associated with seasonal changes and flux in population 

parameters, were actively managing surrounding ecosystems through delayed-return 

systems that suggest investment strategies more similar to horticultural economies, rather 

than passively encountering available resources. In horticultural societies, corporate kin 

groups often control access to territories and develop alliances to maintain these territories 
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and social interaction with surrounding groups. These groups rely more heavily on 

domesticated plants to supplement their diets (Johnson 1989). 

In my view, this does not discount the idea of human adaptation. In fact, I believe 

that recognition of a need to adapt may provide the impetus for agentive innovations. Much 

as environmental conditions impact us today, they were an important variable in hunter-

gatherer lifeways in Kentucky’s past. Some have argued that there has been too much focus 

on the environment, especially in Archaic period research, and question the explanatory 

strength of environmental models (see discussion in Emerson and McElrath 2009). Of 

course, as research on anthropogenic environments has demonstrated, groups make 

decisions to alter their environments, requiring us to view their social and historical 

circumstance that affect these decisions. However, environmental data are still important, 

and we must not divorce environmental models from the social and economic conditions 

of human interaction. We must find holistic ways to connect the two, and I believe that this 

chapter has provided a comprehensive framework for such an analysis. 

To understand how the creation of anthropogenic environments by fire may have 

happened over millennia in central Kentucky, and more specifically how an associated 

property regime would take hold in the Sinkhole Plain, I compare data from archaeology, 

soil geomorphology, forest ecology, karst hydrogeology, and paleoenvironmental 

reconstructions. I then use data collected from my excavations at Crumps Sink to show that 

the archaeological and soil geomorphological record of the site are manifestations of 

environmental and social conditions that were in place at the time of deposition. Thus, 

these data can be interpreted to better track human-environmental interactions through 

time. Finally, I merge the environmental and archaeological record with the theoretical 
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approaches outlined in this chapter to model how humans created anthropogenic 

environments in central Kentucky. But first, in line with an historical ecological approach, 

we must consider the landscape. 
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CHAPTER 3.  ENVIRONMENTAL BACKGROUND 

South-Central Kentucky Karst 

The karst landscapes of south-central Kentucky are ideal for an historical ecological 

approach because of well-defined boundaries which allow for a focused and detailed study, 

the presence of cave and sinkhole contexts with excellent preservation potential for 

inferring paleoenvironments, and valuable previous studies in archaeology (Carstens 1980; 

Gardner 1987; Prentice 1996; Watson 1969, 1974), ecology (Baskin et al. 1994; Wilkins 

et al. 1991), geology, and hydrology (Quinlan et al. 1990; White and White 1989). Located 

within the Interior Low Plateaus physiographic region that extends across much of the 

Midcontinental United States, south-central Kentucky is a classic example of a karst 

terrain. It is characterized by caves, rockshelters, sinkholes, karst valleys, and underground 

rivers. True karst terrains are primarily formed by dissolution of bedrock by water. 

Solution, precipitation, subsidence, and collapse are responsible for bedrock weathering 

and the formation of karst landforms. The most common soluble rocks in karst 

environments are limestones and dolomites. Limestones generally contain 50 to 90 percent 

calcium carbonate (CaCO3). Dolomites (present in small amounts in the area) have at least 

50 percent and up to 90 percent calcium-magnesium carbonate (CaMg(CO3)2) (Huggett 

2011).  

The south-central Kentucky karst can be further subdivided into four physiographic 

sections: (1) Chester Cuesta, (2) Dripping Springs Escarpment, (3) Sinkhole Plain, and (4) 

Glasgow Uplands (Quinlan et al. 1990; Wells 1973; Figure 3.1). The Chester Cuesta is 

characterized by soluble limestone overlain by relatively impermeable sandstones forming 

the longest mapped cave systems in the world including Mammoth Cave (Palmer 2007). 
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The Dripping Springs Escarpment marks the boundary between the Chester Cuesta and 

Sinkhole Plain. The Sinkhole Plain and Glasgow Uplands are within the Pennyroyal 

Plateau, underlain by highly soluble Upper Mississippian limestones of the Ste. Genevieve 

and St. Louis formations and prone to extensive sinkhole and cave development (Chester 

et al. 1997; Dougherty 1985; Quinlan et al. 1990). The Sinkhole Plain is a holokarst 

landscape, characterized by numerous dolines or sinkholes, and lack of surface drainage 

(Hess et al. 1989, Wells 1973).  

 

Figure 3.1. Map showing major sections of the south-central Kentucky Karst.  
Note that Crumps Sink sits at the interface between exposed Ste. Genevieve and St. Louis 

Limestones, resulting in differential sinkhole development. Map created using online 
platform KGS LiDAR. Geological profile adapted from Toomey and Olson (2008). 
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Lithology 

The underlying lithology plays a prominent role in the hydrogeology of the region. 

Marine fossils in the limestone matrices indicate that the earliest sedimentary rocks began 

forming during the Mississippian and Pennsylvanian Periods of the Paleozoic Era over 

three hundred million years ago (Mya) when a shallow sea covered southern North 

America (Palmer 1981). The St. Louis Limestone is the oldest layer and is more than two 

hundred feet (61 m) thick. It contains many flat nodules of chert and beds of gypsum that 

seem to have formed due to a high evaporation rate, indicating a dry climate. Overlying 

the St. Louis Limestone is the Ste. Genevieve Limestone, which is 110-120 feet (33.5-36.5 

m) thick. The Ste. Genevieve Formation contains most of the passageways in Mammoth 

Cave. It comprises light gray limestone and dolomite with isolated nodules of chert. There 

are no gypsum beds, leading geologists to postulate that the climate was humid at the time 

of deposition. Overlying the Ste. Genevieve Formation, at 135-140 feet (41-43 m) thick, is 

the youngest layer of limestone in the region, the Girkin Formation. It also contains light 

gray limestone and small amounts of dolomite with shale (Palmer 1981). The Big Clifty 

formation is an insoluble sandstone, at 50-100 feet (15-30.5 m) thick that overlies the 

limestone formations. At the end of the Mississippian Period either continental uplift or a 

drop in the sea level caused the region to be periodically at or above sea level. The final 

deposited sedimentary rocks were conglomerates, sandstones, and shales that formed 

during the Pennsylvanian Period as near-shore deltaic or beach deposits (Wallace 2003). 
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Structure and Bedding 

The dip of the limestone bedrock plays an integral role in the formation of caves 

and other landforms in south-central Kentucky. Originally deposited as horizontal beds, 

the limestone and sandstone formations in the area now gently dip in a northerly direction 

toward the Green and Barren rivers. This influences the direction of hydrological flow and 

the dip of lithological formations exposed at the surface (Palmer 1981). For example, the 

interface between the St. Louis and overlying Ste. Genevieve formations is exposed at the 

surface, with the northern half of the Sinkhole Plain composed of Ste. Genevieve 

Limestones at the surface, and the southern half St. Louis Limestones. The more soluble 

nature of the limestones in the St. Louis formation has led to the extensive development of 

sinkholes that dot the landscape. It has been hypothesized that the random pattern of 

sinkhole formation is related to random outcropping of interbedded chert (Hess et al. 1989; 

Wells 1973). Though rocks of both formations are extremely soluble (Dougherty 1985), 

there is a much lower incidence of sinkholes in the Ste. Genevieve limestones. In the 

Chester Cuesta (or Mammoth Cave Plateau), Big Haney Limestones and Big Clifty 

Sandstones are often exposed at the surface and comprise the caprock protecting the 

massive cave passages in the underlying limestones. 

Hydrology 

 Hess et al. (1989) have identified five ways water enters the hydrological system of 

the south-central Kentucky karst. These include (1) sinking streams that enter the Sinkhole 

Plain from the Glasgow Uplands through swallow holes, (2) sinkholes in the Sinkhole Plain 

proper that act as conduits for precipitation, recharging below-ground cave systems; (3) 
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aquifers recharged by precipitation on sandstone ridges of the Chester Cuesta where water 

enters vertical shafts at the edge of the impermeable sandstone, (4) precipitation entering 

the water table through karst valleys, and (5) back-flooding by the Green River into 

underground systems.  

 As base-level catchments for water from the region, the Green and Barren rivers 

are important components of the hydrological system of the area (Hess et al. 1989; Quinlan 

et al. 1990). The Sinkhole Plain is a holokarstic landscape, meaning that there are few to 

no surficial streams and thus no riverine terrace development (Hess et al. 1989; Huggett 

2011; White 1988).  Upon reaching the Sinkhole Plain, surficial creeks from the Glasgow 

Uplands sink into expansive subsurface drainage systems that travel in a northwesterly 

direction toward the Barren and Green Rivers, following the dip of the underlying 

limestone formations (Quinlan et al. 1990). Based on extensive dye tracing, hydrologists 

have delineated three distinct subsurface drainage systems within the Sinkhole Plain. These 

include the Graham Springs basin that feeds into the Barren River and the Turnhole Springs 

and Bear Wallow basins that feed into the Green River (Quinlan et al. 1990). Underground 

streams are often restricted, and they are guided by the interbedded chert formations that 

are far less soluble than the limestone matrix (Hess et al. 1989).  

Chester Cuesta 

Sandstones, common in the Chester Cuesta, often contain rocks including quartz 

that are not as easily weathered by chemical dissolution as limestones. Mechanical 

processes are much more effective than solutional processes in weathering sandstones 

(Huggett 2011). Protection of cave passages from roof fall by relatively impermeable 
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sandstone is a major reason for the extensive length of the Mammoth Cave system. It is the 

longest known cave system in the world, currently more than 400 miles (644 km) in 

mapped length (Palmer 2007; Wallace 2003). Situated alongside the Green River, 

Mammoth Cave was formed by a variety of factors. As the upper Green River lowered its 

base level through downcutting into its current valley, tributary streams, which largely flow 

underground from the Sinkhole Plain, also cut horizontal passages into the surrounding 

limestones. There are four levels of passage development in Mammoth Cave, each created 

when the Green River was at a higher base level than it is at present. Granger et al. (2001) 

analyzed sediments using cosmogenic radionuclide dating of 26Al and 10Be to date passage 

development. The upper levels of the cave were formed prior to 2.4 Mya, with sediment 

being deposited in these levels between 2.3-2.4 Mya. Upon further downcutting followed 

by stabilization 2 Mya, the second oldest level of cave passages was formed. Significant 

downcutting was caused by a shift in the course of the Ohio River at 1.5 Mya and again at 

1.2 Mya which was caused by glacial advances that reached the Ohio River valley. Over 

the past 3.5 million years sandstone weathering has been relatively slow (2 to 7 meters per 

million years), compared to weathering of limestone in the region, which has been incised 

about 30 meters every million years (Granger et. al 2001). 

Creation of cave passages by hydrological processes occurs most commonly at the 

water table in the lower passages, although dissolution can still occur in all parts of the 

cave. The upper passages of Mammoth Cave are unsaturated (vadose zone), while the 

lower levels closer to the water table are saturated and remain hydrologically active 

(phreatic zone). Vadose zones are more stable, dry environments than phreatic zones. The 

dry environment in the upper levels of Mammoth Cave has allowed for the preservation of 
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commonly perishable Late Archaic to Early Woodland archaeological materials, including 

textiles, basketry, and gourd bowls (Crothers and Watson 1993).  Ridges and knobs such 

as Flint Ridge and Indian Hill, respectively, are also prominent in the Chester Cuesta, 

demonstrating that differential weathering can result during the formation of drainage 

networks in a landscape containing lithological units with different structural properties. 

Sinkholes are also present throughout the Chester Cuesta. 

Dripping Springs Escarpment 

 Demarcating the boundary between the Sinkhole Plain and the Chester Cuesta is 

the Dripping Springs Escarpment. This conspicuous boundary is perceptible as a 

considerable increase in elevation (approximately 150 feet (45 m)) from south to north. 

The Dripping Springs Escarpment contains vertical shafts, knobs, rockshelters, and karst 

valleys. In the knobs and on the escarpment edge, water from precipitation travels through 

soluble rock and further dissolves joints, creating vertical shafts that eventually reach 

underground drainages leading to the Barren and Green Rivers. Vertical shafts form when 

water cuts vertically through the lithological units, regardless of the orientation of bedding 

planes. Solution chimneys are primarily controlled by the structure of the formation (e.g., 

bedding planes) and are irregular. Water drains through small passageways at the base of 

these features (White 1988). Knobs are present in the Dripping Springs Escarpment. Based 

on models of rockshelter development from other parts of the world, it is likely that 

limestone and sandstone rockshelters and caves at the edge of the escarpment were initially 

formed due to differential erosion rates, events of mass wasting, and restricted weathering 

action (Barton and Clark 1993) caused by base level river or stream scouring, water 
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seepage, processes of freeze-thaw, and wind blasting (Straus 1990), all of which attack 

weak areas of bedrock. 

Sinkhole Plain 

 The Sinkhole Plain is a holokarst landscape, characterized by numerous dolines or 

sinkholes, and lack of surface drainage. This seeming lack of available water has resulted 

in characterizations of the Sinkhole Plain as a marginal environment that would not have 

supported significant prehistoric occupations (e.g., Fowke 1922). Though the lack of 

surface drainage creates the illusion that water is unavailable, water can still be accessed 

at point locations such as springs, sinkholes, and karst windows, and archaeological sites 

are prominent around these features (Carstens 1980; Gatus and Maynard 1978). Sinkholes 

like Crumps Sink pockmark the landscape of the Sinkhole Plain, penetrating the soluble 

Ste. Genevieve and St. Louis limestones (Groves et al. 2013). Other common features of 

the Sinkhole Plain are uvalas, caves, springs, karst windows, knobs (outliers of the Chester 

Cuesta), sinking streams, and vertical shafts/solution chimneys (Hess et al. 1989, Wells 

1973; White 1988). Uvalas are formed by collapse along an underground drainage network, 

connecting several sinkholes (White 1988). Karst windows are underground rivers that are 

exposed after collapse of cave roofs (Hess et al. 1989). Springs are the upwelling of water 

from the below ground aquifers (White 1988). A complex underground drainage network 

guides water to the Barren and Green rivers. These caves often have some degree of 

hydrological flow. For example, Crumps Cave is a large cave passage in the Graham 

Springs Basin that is the location of an abandoned river passage (Quinlan et al. 1990). 

Knobs (or residual hills) are remnants of the Chester Cuesta to the north, and often still 
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have caprock, preserving the lower soluble strata, and rising as high as 100 meters above 

the plain (Hess et al. 1989; White 1988). Vertical shafts often ring the edges of knobs. 

Prehistorically, some of these shafts were used for interment of the dead (Applegate 2008; 

Haskins 1988). These knobs are also known to have chert outcrops (Quinlan et al. 1990) 

and may have been quarried by Native Americans for tool production. Prehistoric groups 

accessed water at point locations such as springs, sinkholes, and karst windows, which are 

often located near or within caves and rockshelters. Caves and rockshelters are the primary 

archaeological site type in the south-central Kentucky karst region (Carstens 1980; Fowke 

1922; Gatus and Maynard 1978). 

Glasgow Uplands 

 The Glasgow Uplands have features similar to the Sinkhole Plain. Two key 

landforms (sinking streams and swallow holes) are apparent in the Glasgow Uplands and 

Glasgow Upland/Sinkhole Plain boundary. For their surficial extent, sinking streams form 

valleys as deep as 35 meters below the present surface (Hess et al. 1989). Swallow holes 

are locations where sinking streams of the Glasgow Uplands go below ground and enter 

the Sinkhole Plain. The transfer of water from the surface to below ground can be abrupt 

(White 1988). 

Sinkhole Geomorphology 

 Throughout the world, sinkholes vary significantly in size, ranging from barely 

noticeable depressions to immense openings hundreds of meters wide and hundreds of 

meters deep (Hess et al. 1989; White 1988). Sinkholes are closed depressions and water 
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must exit through the base of the depression. They most often are formed through 

dissolution or collapse. White (1988) notes that all closed depressions have three 

characteristics: (1) a drain acting as a conduit for water to travel into underground drainage 

systems, (2) a zone at bedrock that has been altered by solution, and (3) a cover of soil or 

sedimentary material. Processes such as dissolution (a relatively slow process), soil and 

sediment transport through piping, sheet wash, and sudden collapse of clastic bedrock can 

occur.  

 Two key sinkhole types are solution sinks and collapse depressions. Solution sinks 

are bowl shaped depressions formed by dissolution of limestone matrices through weak 

joints and fractures over a long period of time. The drain at the base of these features can 

be plugged by accumulated sediments and soils. When water is unable to exit the sinkhole 

through the conduit a pond may form. Similar ponds can also suddenly drain when the plug 

opens. Collapse depressions are formed when bedrock overlying a cave passage is 

weakened through solution of joints, causing roof collapse. Over time, constant dissolution 

makes sinkholes deeper and wider until they reach the edge of another sink. As sinkholes 

meet each other, they form compound sinks (or uvalas). Valley sinks are those in which 

surficial drainage has gone underground through sinking streams. Runoff and sinking 

streams further dissolve these sinks. After formation of these closed depressions, sediments 

are deposited through alluvial, colluvial, aeolian, and chemical processes (Hess et al. 1989; 

White 1988). Soils form in place through weathering and biological reworking of deposited 

sediments (Birkeland 1999). Soils and sediments can also collapse by a process called soil 

piping, where soils are transported into vertical joints and fractures in the rock that have 

been dissolved by water. As soils and sediments travel into the subsurface, they leave a 
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void or cavity below the soil surface. Eventually the arch above this cavity collapses (Hess 

et al. 1989; White 1988).  

 Sinkholes can act as catchment basins for sediments and can preserve the soil 

geomorphological and archaeological record providing important paleoenvironmental and 

archaeological information. However, because sinkholes are dynamic features under 

continuous, variable dissolution and weathering dependent on a number of conditions, it is 

difficult to predict which locations will have the most complete sedimentary record. 

However, knowledge of karst and, in large sinks, hillslope processes, can help us make 

informed guesses concerning locations with intact deposits. Flat areas (summit and 

shoulder) on the edges of sinks have thin soils because they contribute sediments to the 

depression through alluvial, colluvial, and aeolian processes. Changes in vegetation in karst 

terrains (e.g., from forest to grassland) can lead to significant erosion through sheetwash 

(Martin 2006). In Kentucky, historic agriculture has eroded soils around the edges of 

sinkholes. These eroded soils were redeposited within sinkholes, thereby, capping older 

sediments (Dicken and Brown 1938). Dicken and Brown (1938) note that a major episode 

of erosion occurred in the karst regions of Kentucky after historical land clearing and 

cultivation resulting in significant sediment accumulation in sinkholes. Unless undisturbed, 

it is unlikely that sinkhole margins will contain deep deposits. The mid slope of a sink may 

be altered through mass and fluid movement of soils (creep, flow, slides, heaves, falls, and 

subsidence) (Huggett 2011). The footslope of a sinkhole is the location in which many of 

these erosional debris accumulate and is most likely to contain deeper deposits that have 

been capped by sediments from the summit, shoulder, and mid slope. However, karst 

processes such as subsidence and soil piping may compromise the deposits from below, 
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something which may not be noticeable at the surface. The four primary soils found in the 

Sinkhole Plain are Crider, Pembroke, Nicholson, and Baxter. Soils in the region can be 

“(1) deep, moderately- to well-drained soils on level to steeply rolling uplands; (2) deep, 

well- to poorly-drained soils on floodplains, upland flats, and depressions; and (3) shallow 

to moderately deep, well-drained soils of ridges, knobs and benches that are often 

associated with limestone outcrops” (Baskin et al. 1994: 233). Parent materials “include 

loess, residuum weathered from high grade and cherty limestones, old alluvium, and recent 

alluvium” (Baskin et al. 1994: 233). 

Paleoenvironments and Holocene Climate Change 

Today the south-central Kentucky karst “has a mild temperate rainy climate without 

a distinct dry season and with a hot summer” (Baskin et al. 1994:235). Braun (1950) 

characterized the physiography of the south-central Kentucky karst as the Mississippian 

Plateau section within the Western Mesophytic Forest region. Kuchler (1964) described 

the vegetation of the region as oak-hickory forest fragmented by bluestem prairie. 

According to Baskin et al. (1997:333) the vegetation in the region, “ranges from redcedar-

hardwood forests on xeric, rocky upland sites to swamp forests of poorly-drained upland 

depressions”. Early European visitors to south-central Kentucky in the late eighteenth and 

early nineteenth century noted a prairie-like landscape characterized by expansive 

grasslands, with herbs, shrubs, and a few trees, calling it the “Big Barrens” (Baskin et al. 

1994). In Kentucky, when present, barren and cedar glade ecosystems occur primarily on 

karstic limestones and dolomites extending throughout the Pennyroyal Plateau of the 

Mississippian Plateau (Baskin et al. 1994; Chester et al. 1997). 
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Baskin et al. (1994) developed definitions of specific barrens-like ecosystems 

including cedar glades, xeric limestone prairies, and deep-soil barrens. Cedar glades occur 

naturally on very shallow soils or even on limestone bedrock. Xeric limestone prairies 

develop on sloped landforms that have thin soils due to erosion caused by human influences 

on the landscape (e.g., historic agriculture). Barrens have deep soils and are more likely to 

develop woodlands because of these deep soils. However, human modification through fire 

may have allowed barrens ecosystems to persist in prehistory (Baskin et al. 1994). A 

variety of prairie species are found in barrens, cedar glade, and xeric limestone prairie 

ecosystems in the Pennyroyal Plateau, with the most dominant one being little bluestem, a 

C4 perennial bunch grass (Baskin et al. 1994; Chester et al. 1997). Some of these 

ecosystems still remain in the Pennyroyal Plateau (Chester et al. 1997). Initially, it was 

argued that the barrens in Kentucky and the greater Interior Low Plateaus were an 

expansion of Midwestern Tallgrass Prairies primarily through climate change (Transeau 

1935), though this has more recently been questioned. 

Baskin et al. (1994) argue that the Big Barrens should not be considered part of a 

climate induced extension of the Prairie Peninsula and provide several lines of evidence to 

make their case: (1) deciduous forest is the climax vegetation for the region, not barrens; 

(2) soils are forest-developed; (3) forests regrew after burning stopped; (4) similar response 

(as 3) when agricultural land stops being cultivated; (5) the current regional climate is more 

favorable for forest than grassland; (6) maps of paleovegetation show no extension of 

prairies into the area, and a pollen analysis from Jackson Pond and Salts Cave shows that 

grasslands appear after the Hypsithermal; (7) paleoclimate was more amenable to grassland 

development in the Midwest than south-central Kentucky; and (8) although there is some 
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overlap in the fauna and flora of the Big Barrens and Tallgrass Prairies, there are also 

significant differences in them. These lines of evidence led the authors and others to argue 

that the barrens are anthropogenic in origin, presumably created by land burning by 

indigenous people (Anderson et al. 2000; Baskin et al. 1994; Chester et al. 1997; Guyette 

et al. 2003; Heikens and Robertson 1994; Jefferies 2009; Wilkins et al. 1991). More 

recently, humans have suppressed wild fires, and former barren ecosystems are reverting 

to forests, further suggesting that fire was a key element in maintaining this early 

successional habitat (Anderson et al. 2000; Baskin et al. 1994). 

However, based on his mapping of twentieth century lightning strike data in 

Mammoth Cave National Park, Ray (1997:179) suggests that while “most agree that 

wildfires occurring on flat-lying, streamless terrain were responsible for maintaining this 

eastern grassland”, lightning strikes may have been the key ignition source in the barrens 

and not only an anthropogenic creation. He suggests that Native Americans likely set fires 

as a supplement to lightning fires. Ray also questions whether we can accurately say soils 

originally developed in forests, one of the reasons Baskin and others say that they are not 

an extension of Midwestern Tallgrass Prairies. Ray notes that grasslands did not expand in 

the region until after the Middle Holocene Hypsithermal but does not investigate this 

further. Instead, he opts for lightning strikes as the most important contributor to barrens 

vegetation in the region.  

The past climate in the region was different than that we experience today. To fully 

assess how the barrens may have originated and the role of climate and humans in their 

origin, we must consider a wide range of paleoenvironmental data for south-central 

Kentucky and surrounding states. Below, I consider numerous data sets, including pollen 
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diagrams and charcoal frequencies from pond sediments and soil/sediment profiles, faunal 

remains, sediment accumulation histories as seen in soil profiles, and stable isotopes 

(carbon and oxygen) from soil profiles and speleothems (Table 3.1).  

Table 3.1. Paleoenvironmental proxy sites discussed in text. 
Site Name Landform State Dataset Source 
Cliff Palace Pond Pond KY Pollen, Charcoal Delcourt et al. 1998 
Jackson Pond Pond KY Pollen Wilkins et al. 1991 
Salt’s Cave Cave KY Pollen Schoenwetter 1974 
Koster Colluvial 

Fan 
IL Soil Profile Hajic 1990 

Napoleon Hollow Colluvial 
Fan 

IL Soil Profile Styles 1985 

Modoc Rockshelter Rockshelter IL Sediment Profile Ahler 1993, 1998 
Devil’s Icebox Cave Cave MO Speleothem Denniston et al. 2007 
Patton Bog Bog OH Pollen, Charcoal Abrams et al. 2014 
Anderson Pond Pond TN Micromorphology Driese et al. 2017 
Cheek Bend Cave TN Faunal Klippel and Parmalee 1982 
Savannah Creek Floodplain TN Soil Profile, 

Isotopes 
Driese et al. 2008 

Wine Spring Forest Stand TN Charcoal Fesenmyer and Christensen 2010 
Tennessee River Floodplain TN/AL Soil Profile, 

Isotopes 
Kocis 2011 

Buckeye Creek Cave Cave W. VA Speleothem, 
Sediment Profile, 
Charcoal  

White 2007, Springer et al. 2010 

Douthard Creek Floodplain W. VA Soil Profile Driese et al. 2005 
 

Though the data sets differ in type and in the landforms they were collected from, 

the information they have yielded helps us characterize the climatic history of the Middle 

and early Late Holocene periods in Kentucky, the greater Interior Low Plateaus and 

Southern Appalachian Mountains, and the Midwestern United States. 

Middle Holocene (ca. 9000 to 4200 cal. BP) 

When the Big Barrens first formed is still unclear, but they may have originated 

during the Middle Holocene Thermal Maximum, (also known as the Hypsithermal or 

Climatic Optimum between 9000 and 4200 cal. BP). This was a period of generally warmer 
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and drier conditions throughout the Interior Low Plateaus (Delcourt and Delcourt 1979; 

Walker et al. 2012). During the early Holocene, mesic woodlands were prominent, with 

oak and hornbeam being dominant species. Spruces, which had been more common during 

the Pleistocene, were declining (Wilkins et al. 1991). In the Pennyroyal Plateau, this 

resulted in mesic tree taxa being replaced by oaks, hickories, and chestnuts in upland 

forests (Wilkins et al. 1991). In the Highland Rim of Tennessee (an extension of the 

Pennyroyal Plateau), decreased rainfall and increased temperatures allowed for barrens and 

cedar glades to expand in the region, resulting in an open vegetation structure. At Cheek 

Bend Cave in middle Tennessee, Stratum V (correlated with the onset of the Middle 

Holocene Climatic Optimum) contained insectivore remains, suggesting an environment 

with decreased summer rainfall and/or increased summer heat, which would have allowed 

cedar glades to expand in the region. Drought tolerant vegetation increased while mesic 

deciduous species decreased, allowing for a more open vegetation structure (Klippel and 

Parmalee 1982). Stratum VI, (deposited during the later stage of the Middle Holocene 

Thermal Maximum), contained insectivore remains that showed the conditions were 

ameliorating and becoming wetter (Klippel and Parmalee 1982). The degree to which the 

Middle Holocene Thermal Maximum influenced the development of barrens ecosystems 

in south-central Kentucky is unclear, and based on pollen diagrams, it seems that grassland 

expansion occurred during the early Late Holocene, after the onset of the Holocene 

Climatic Optimum (Wilkins et al. 1991; Schoenwetter 1974). 

It has been argued that the more open vegetation structure associated with the 

Middle Holocene Thermal Maximum caused significant upslope erosion/downhill 

accumulation at several archaeological sites in the Midwestern United States, where the 
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process has been demonstrated consistently. In Illinois, Hajic’s (1990) investigations of 

colluvial and alluvial contexts at Koster and Styles’ (1985) geomorphological 

investigations of a colluvial fan at nearby Napoleon Hollow show enhanced sedimentation 

during the Middle Holocene. At Modoc Rockshelter in Illinois, Ahler (1993, 1998) noted 

that enhanced sedimentation rates had occurred early in the Middle Holocene. Though 

many attribute erosion in the Midwestern United States to climatic conditions and a 

transition toward more open vegetation structure associated with the ebbs and flows of the 

eastern margin of the Prairie, the extent to which climate was responsible for such 

manifestations has been questioned (Van Nest 1997).  

Citing the concept of equifinality, which argues that there are always a number of 

possible reasons for a final outcome, Van Nest (1997) argues that the climatic model for 

sediment erosion has been accepted uncritically, without consideration for other possible 

catalysts for such geomorphological change and offers other explanations for this change. 

These erosional events preserved in the soil geomorphological record have not been 

considered sufficiently or documented outside of the Midwestern United States. However, 

similar manifestations are seen as far east as the Appalachian Mountains and to the south 

in Tennessee. At Buckeye Creek Cave in West Virginia, sedimentation rates seem to be 

most rapid between 7000 and 6000 cal. BP, after which these sedimentation rates decrease 

(Springer et al. 2010). Between 7100 and 5600 cal. BP at Anderson Pond in Tennessee, 

soil formation along with desiccation was occurring in the pond (Driese et al. 2017). By 

the beginning of the Late Holocene sedimentation slowed and aggradation had decreased 

(Hajic 1990). 
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New techniques are nuancing our understanding of Holocene environmental history 

in the region and providing more direct indicators of climate and environment. Stable 

carbon isotopic analyses of soil organic matter (δC13
som) have been used to assess late 

Quaternary paleoenvironments in the Eastern United States. The key focus is on the 

proportions of C3 plants, primarily trees, shrubs, and cool-season grasses, and C4 plants, 

open grassland species adapted to more arid conditions. Due to differing photosynthetic 

pathways, C3 plants discriminate more than C4 plants against 13CO2 in the atmosphere, 

leading to more negative values, often -21‰ and -35‰, with an average of -27‰ for C3 

plants, -10‰ and -16‰, averaging 13‰ for C4 plants. These negative values represent the 

ratio of C3 vs. C4 plants. Tracking changes in these ratios (from more negative to less 

negative; or vice versa) in a vertical column of a soil profile allows for a relative 

understanding of vegetation dynamics over time as ecosystems ebb and flow in species, 

structure, temperature, and moisture (Boutton 1996; Holliday 2004; Stinchcomb et al. 

2013).  

Though only a few stable carbon isotope studies of soil organic matter have been 

undertaken in the Interior Low Plateaus, they have yielded interesting results. For instance, 

at Savannah Creek in southeastern Tennessee, Driese et al. (2008) identified four cyclical 

events during the Middle Holocene over consecutive 300-year time spans, in which δC13
som 

became less negative (interpreted this as shift to warmer and drier conditions) followed by 

a shift back to more negative values (interpreted as a shift to wetter and cooler conditions). 

The warmer and drier events appear as a narrow spike, suggesting they were ephemeral in 

nature. These findings hint that the Middle Holocene was more variable than the simplified 

explanations of homogenous warming and drying. With data from three research sites 
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along a stretch of the Tennessee River extending from southeastern Tennessee to 

northeastern Alabama, Kocis (2011), demonstrated similar cyclical episodes to those 

recognized by Driese et al. (2008).  

Early Late Holocene (ca. 4200-3000 cal. BP) 

By the early Late Holocene (4200-3000 cal. BP), environmental conditions began 

trending to a cooler and wetter regime, more similar to the current climate (Walker et al. 

2012). The forests of the Interior Low Plateaus became mesic and deciduous, a trend which 

has continued to the present (Delcourt and Delcourt 1979). However, xeric grassland 

species became increasingly common, contrary to what should be expected in mesic 

environments. At Jackson Pond in the Pennyroyal Plateau, grasslands became more 

prominent, interspersed with deciduous forests, notably after the end of the Middle 

Holocene Thermal Maximum. The timing of increased grassland development after the 

Middle Holocene suggests that while the Middle Holocene Thermal Maximum may have 

influenced the more open forest structure and grassland initially, there may have been other 

catalysts for maintenance of those communities (Wilkins 1991:236).  

Drought or human manipulation of vegetation by fire are among factors that may 

have contributed to Late Holocene grassland development. At Devil’s Icebox Cave in 

central Missouri, oxygen and carbon isotopes preserved in speleothems demonstrate 

increasing aridity at 3500-2600 cal. BP. The values found in the speleothems may indicate 

an increase in the ratio of C4 vs. C3 plants associated with expanding grasslands. These 

drought patterns have been noted throughout the Great Plains, though some areas remained 

warm and moist, further indicating the variability of climate throughout prehistory 
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(Denniston et al. 2007). However, it is important to note that Devil’s Icebox Cave is along 

the eastern margin of Midwestern Tallgrass Prairie and may signal ebbs and flows in those 

ecosystems. In West Virginia, Driese et al. (2005) found increased levels of C4 plants at 

3830 cal. BP, though based on other climatic models, cooler, mesic conditions had arisen 

(Delcourt and Delcourt 1979; Walker et al. 2012). Another plausible explanation could be 

that increased C4 plant representation relates to grassland expansion associated with 

anthropogenic forest clearance. 

Cores from Jackson Pond in Larue County, Kentucky yielded pollen assemblages 

showing increases in pollen of grassland species such as prairie clover after the Middle 

Holocene (Wilkins et al. 1991). Pollen records from Salts Cave in Mammoth Cave National 

Park demonstrate an increase in Ambrosia pollen after human occupation of the cave 

(Schoenwetter 1974) during the Late Archaic and Early Woodland periods (Gardner 1987; 

Watson 1969, 1974). Further dating of these deposits is discussed in Chapter 4. These 

examples demonstrate that despite a shift back to mesic conditions in the Interior Low 

Plateaus, xeric species were becoming increasingly common, suggesting another process 

either in concert with or other than climate may have been responsible for grassland 

expansion. 

By the Late Archaic period, fire activity also had become more common in the 

Cumberland Plateau in Kentucky and Southern Appalachian Mountains of Tennessee and 

North Carolina, changing forest structure from red cedar forests to oak-chestnut forests 

(Delcourt et al. 1998). Similar changes in vegetation occurred in surrounding regions 

throughout the Interior Low Plateaus and Southern Appalachian Mountains after at least 

4000 cal. BP, coincident with consistent increases in wood charcoal in the sedimentological 
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record (Delcourt et al. 1998; Fesenmyer and Christensen 2010; White 2007; Springer et al. 

2010).  

Based on pollen records and charcoal deposition at three pond sites in Kentucky, 

Tennessee, and North Carolina Delcourt and Delcourt (1998) postulated that humans 

burned the forest to promote the oak-chestnut forests between the Late Archaic and 

Woodland periods which “increased biological diversity” through creation of a range of 

habitats from early successional to old-growth (Delcourt and Delcourt 1998). Delcourt et 

al. (1998) hypothesized that land clearance through prescribed burns also may have played 

a role in the early domestication of plants in the Cumberland Plateau. Fesenmyer and 

Christensen (2010) collected charcoal samples from a forest in North Carolina and found 

that consistent burning occurred at 4000 cal. BP. Deep cave sediments from Buckeye Creek 

Cave in West Virginia show increased charcoal frequencies after 4000 radiocarbon years 

BP. Unlike the previous examples which show burning of the landscape by the Late 

Archaic, observable burning, indicated by an increase in charcoal frequencies, did not 

occur at Patton Bog until the Middle Woodland period (Abrams et al. 2014).  

While more recent studies in the Interior Low Plateaus and Southern Appalachian 

Mountains have hypothesized the occurrence of prehistoric anthropogenic burning based 

on wood charcoal abundance, palynology, and sedimentology (Fesenmyer and Christensen 

Jr. 2010; White 2007), few studies have comprehensively incorporated the archaeological 

record into their discussions (see Delcourt et al. 1998), and none has speculated about how 

indigenous populations organized such land management. To distinguish between natural 

climatic regimes, which humans were taking advantage of, and humans actively 
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manipulating the environment, we must connect fire histories and vegetation changes with 

human land use over time.   

Returning to the south-central Kentucky study area, while Baskin et al. (1994) 

demonstrated that the origin and maintenance of the barrens does not match expectations 

based on the climate, more work needs to be done to understand the relationship between 

humans and environmental variability in the region. One question is: how did these 

environmental changes manifest in the Sinkhole Plain? If these overall climatic and human 

impacts models are correct then evidence for them should be present in the soil 

geomorphological record, including erosion in the Middle Holocene, variability in climate, 

transition to the early Late Holocene and fires on the landscape. But, first we must integrate 

paleoecological and fire proxy information with the archaeological record. 
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CHAPTER 4.  ARCHAEOLOGICAL BACKGROUND 

Middle to Late Archaic Human-Environmental Interactions and Social Dynamics in 
the Lower Ohio River Valley 

The Middle and Late Archaic periods in the Midcontinent were witness to 

considerable transitions in climatic and social developments. Climatically, the lower Ohio 

River valley experienced the onset of the Middle Holocene Climatic Optimum, which 

spanned through the entirety of the Middle Archaic period and into the Late Archaic period, 

followed by the transition toward more temperate early Late Holocene conditions more 

similar to those of the present. In addition to environmental shifts, major social 

developments occurred related to settlement-subsistence strategies, social interaction, 

exchange, demography, and conflict (Jefferies 2008). Considerations of these factors are 

critical for modeling how and when Native Americans changed their approaches to 

surrounding ecosystems. The focus of the dissertation is on the late Middle Archaic and 

Late Archaic periods. I consider developments in the Middle and Late Archaic period that 

may have had created cultural legacies associated with shifting human-environmental 

interactions that resulted in the creation of anthropogenic environments. 

Below, I highlight previous archaeological interpretations concerning shifting 

settlement-subsistence strategies, the debate on hunter-gatherer sedentism vs. sustained 

mobility, and the relationship between humans and ecosystems during the Middle and Late 

Archaic period in the lower Ohio River valley region. Following a discussion of overall 

trends and modeling of human behaviors in the larger region, I focus more specifically on 

the archaeology of the south-central Kentucky region, as outlined in Chapter 3. As outlined 

in Chapter 2, I view humans and the environment as mutually interdependent and believe 
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that a comprehensive understanding of nature and people is essential to a holistic study. 

Further, neither environment nor society is unilineal in their trajectory and each are shaped 

by specific, variable historical contexts.  

There has been some debate in the archaeological community concerning how we 

should approach and theorize the Archaic archaeological record (see Emerson and 

McElrath 2009). Among the criticisms of previous Archaic studies are that they have been 

environmentally deterministic, with too great a focus on human responses or adaptations 

to climatic conditions and minimal scrutiny of social developments and human decision 

making in cultural process. More recently, archaeologists have considered more social, 

economic, and political models and evidence for understanding increasing complexity of 

hunter-gatherer populations in the Midcontinent. Perhaps the most used indicator of 

increasing complexity during the Middle and Late Archaic are mound sites such as Watson 

Brake (Middle) and Poverty Point (Late) in the lower Mississippi valley. The presence of 

such sites so early in North American prehistory has intrigued archaeologists, and some of 

them have even suggested that shell midden sites further north are purposeful constructions 

(Emerson and McElrath 2009; Anderson 2002).  

Anderson utilized the concept of tribal societies in his discussion of monumentality 

in the Southeastern United States. He writes “the Middle Archaic appears to have been a 

time of interrelated environmental stress and population pressure” and restricted mobility 

(Anderson 2002:257).  Emerson and McElrath (2009:33) write that “the systematic 

construction of monumental forms does require ‘formal’ conceptions of planning and 

organization and perceptions of time and space that would seem at a premium 

among…Middle Archaic” hunter-gatherers. However, human landscape modification need 
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not only be demonstrated by the presence of monumental architecture. Perhaps the origins 

of such earthen construction has its roots in forest manipulation and the creation of 

anthropogenic environments. It seems possible that humans had already learned how to 

organize such events through seasonal activities that were being undertaken toward these 

ends. I agree that social developments must not be ignored. Yet, I still consider 

environment to play a significant role in Archaic lifeways in Kentucky. How can we 

reconcile this?  

First, we must recognize the role of human agency and ingenuity in transforming 

landscapes and that even construction of earthen mounds occurred in a specific topographic 

setting and left a lasting environmental legacy. It seems possible that hunter-gatherers were 

practicing silvicultural methods of managing nut trees (Munson 1986). If hunter-gatherers 

were practicing delayed return methods, then we must reassess the common view of hunter-

gatherer societies as passive (Lightfoot et al. 2013). Thus, environmental proxies should 

not be viewed only as a manifestation of environmental processes but also cultural (Leach 

1992). Second, with more recent methodologies from a variety of sciences that provide 

fine-grained information on the paleoenvironmental record in the Midcontinent over 

millennia, Archaic archaeology is poised to make significant breakthroughs in charting the 

interplay between humans and their environment. We cannot ignore such data or models 

completely in favor of altogether separate or opposing lines of inquiry, but instead we 

should venture to revise previous models that were developed with more coarse-grained 

data. I argue that one of the greatest contributions of Archaic period archaeological 

research over the last century has been its aim at modeling human-environmental history 

over 9000 years through data-rich climatic and geomorphological studies. With this in 
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mind, we have the capability to trace how humans in the past responded to climatic change 

and impacted their environments and the consequences of these events. Continuing to 

nuance this understanding will inform our own circumstances about how we respond to 

contemporary regional and global climatic events as well as how we impact the 

environment.  

Middle Archaic (ca. 9000-5800 cal. BP) 

The Middle Archaic period is best understood when separated into two 

components: early Middle Archaic (ca. 9000-7000 cal. BP) and late Middle Archaic (ca. 

7000-5800 cal. BP) (Jefferies 2008, 2009). Much like previous Early Archaic groups, early 

Middle Archaic hunter-gatherers were highly mobile (Jefferies 1996), and they had similar 

subsistence strategies, socioeconomic organization, and material culture (Jefferies 2009). 

Caldwell (1958) proposed the primary forest efficiency model in which Archaic 

populations developed a greater knowledge of their surrounding resources and began using 

them more effectively through the Holocene. However, it is likely that groups had already 

adapted to their respective regions and become regionalized by the Paleoindian period 

(Maggard and Stacklebeck 2008). Additionally, ecosystems did not remain static, and, over 

millennia, indigenous populations negotiated shifting environmental regimes that affected 

plant and animal communities, hydrological regimes, and landscape geomorphology. 

These groups would have had to adjust to these conditions as well as changing their 

conceptions of property rights. 

The Middle Holocene Climatic Optimum, beginning at around 9000 cal. BP, 

allowed for a patchwork of ecological zones to emerge throughout the Midcontinent, and 
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by the early Middle Archaic period Native American populations were responding with 

new resource extraction strategies (Caldwell 1958; Homsey-Messer 2015; Jefferies 1996). 

It has been argued that the Holocene Climatic Optimum created an open, patchy forest 

structure in which nut mast became more important than it previous had been. Through her 

study of cave and rockshelter sites in Alabama (Dust Cave, Stanfield Worley Bluff Shelter, 

Russell Cave) and Illinois (Modoc Rockshelter), Homsey-Messer (2015) utilized the 

concept of foragers vs. collectors (see Binford 1980) as a spectrum and argued that early 

Middle Archaic groups were launching task-oriented excursions to upland settings with the 

primary goal of processing nut mast: “This change in function is embedded in the broader 

shift from high to low residential mobility prompted by warming and drying associated 

with the Middle Holocene” (Homsey-Messer 2015:349). Thus, the Early Archaic period 

was characterized by high residential mobility, and the early Middle Archaic period by low 

residential mobility. Early Middle Archaic low residential mobility seems to have been 

reworked into a logistical collection strategy by the late Middle Archaic period (Stafford 

1994; Stafford et al. 2000).  

Another shift in settlement and resource extraction strategies is apparent by the late 

Middle Archaic period. Stafford (1994; Stafford et al. 2000), also utilizing the concept of 

foragers vs. collectors employed by Homsey-Messer (2015), argued that hunter-gatherers 

were establishing base camps from which they could send task groups to acquire different 

resources (logistical collection strategy) rather than mapping onto resources and moving 

whole groups as earlier hunter-gatherers had done (residential foraging strategy) as had 

been seen in the Early and early Middle Archaic periods. While during the Early Archaic 

and early Middle Archaic periods hunter-gatherer groups appear to be operating as 
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residential foraging groups mapping onto a variety of resources, by the late Middle Archaic 

period groups were beginning to occupy certain areas such as wetlands more intensively, 

a trend that continued into the Late Archaic (Jefferies 2008; Stafford 1994; Stafford et al. 

2000). 

Jefferies (2008) suggested that with rich (primarily aquatic) resources nearby, base 

camps occupied during multiple seasons and having deep middens, greater diversity in 

tools and cultural features, and exchange of nonlocal materials at the Black Earth site 

(southern Illinois), Bluegrass site (southern Indiana), the KYANG (falls of the Ohio), and 

the Green River shell middens are evidence of increased complexity and sedentism among 

hunter-gatherer groups. As populations became larger and better established in these 

locations, territories may have been formed and mobility restricted. Hunter-gatherer groups 

were no longer as independent as they once were and were forced to consider other groups 

throughout the region when exploiting resources (Jefferies 2008; Crothers 2008).  

Brown and Vierra (1983) considered climate to be the driving force behind the 

movement to the lowlands. They proposed the push-pull hypothesis in which they surmised 

that hunter-gatherer groups were either pushed into floodplains during the dry 

Hypsithermal as uplands became more xeric or were pulled into the floodplains by the 

attractive array of resources available to them. Fluvial geomorphology studies of major 

river valleys in the Midwest, Midcontinent, and Southeastern United States suggest that 

fluvial systems had stabilized by the late Middle Archaic and Late Archaic period (Hajic 

1990; Schuldenrein 1996; Stafford 2004). These geomorphological trends were also used 

to explain why humans increasingly settled in floodplain settings. This stabilization 

feasibly could have allowed greater access to aquatic resources (Jefferies 2008; Styles and 
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McMillan 2009). Though the push-pull model provided a feasible explanation for the 

Middle to Late Archaic archaeological record, later research has demonstrated that groups 

did not move only to the lowlands nor focus only on aquatic resources. Occupation at the 

upland Bluegrass site in southern Indiana, suggests continued use of the uplands with a 

focus on upland terrestrial species (Stafford 1994). Not only this, but more data is needed 

on how the Middle Holocene Climatic Optimum manifested in the region. 

Throughout the Middle Archaic period, humans relied on a variety of plant 

resources such as hickory nuts, black walnuts, hazelnuts, and acorns. Additionally, grape, 

persimmon, sumac, and raspberry/blackberry seeds were utilized during the Middle 

Archaic throughout the Midcontinent (Jefferies 1996). Grape seeds have been found as far 

north as Michigan, and as far south as Tennessee. However, they are most pronounced in 

the lower Ohio and Tennessee river valleys. Persimmon distribution in the archaeological 

record matches the geographic range of the tree, which is south of the Illinois River. Fleshy 

fruit trees and shrubs would have done well in disturbed environments, meaning that 

human alteration of the vegetation could make these species more pronounced (Simon 

2009). Tubers seem to have been more commonly used in the western portion of the 

Midcontinent found in contexts in Michigan, Missouri, and Illinois, but one specimen was 

found in Tennessee. They do not preserve well, contributing to their spotty occurrence at 

archaeological sites throughout the Midcontinent. Wild bean is found throughout the 

Midcontinent in Middle Archaic assemblages. Nuts appear to have been very important 

throughout the Midcontinent, though hickory nut shells are very thick and can preserve 

better than other plant specimens which may introduce bias in archaeological 

interpretations of subsistence (Simon 2009). 
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Among the animal species consumed were small mammals, deer, and turkey. In 

some river valleys there was an increased focus on shellfish (Jefferies 1996). While 

considering faunal resource utilization, primarily within and along the margins of the 

Prairie Peninsula, Styles and McMillan (2009) found that resource availability increased 

due to the differential nature of the warming and drying episode of the Hypsithermal across 

the Midcontinent. They suggest that patchy anthropogenic fire would have contributed to 

variability across the landscape. In xeric prairies such as those in the southern part of the 

Prairie Peninsula, groups focused more on small mammals than on deer and aquatic 

animals. Logistical mobility may have allowed for better procurement of deer and aquatic 

animals such as fish during the Middle Holocene. Highlighting the spatial variability, 

Styles and McMillan (2009:72) write “where sustainable, high-ranked animal resources 

were available—bison in the prairies, deer in the deciduous forest, and fish in the large 

river valleys—hunters and foragers tended to focus their economies on these resources, 

which interplayed with the settlement and mobility strategies of the respective groups”. 

Although slightly further afield from the lower Ohio River valley, this acknowledgement 

of ecosystems managed by fire during the Archaic period in the Midwestern prairies is 

important as we consider advents of such fire management in the central Kentucky study 

area. 

The late Middle Archaic period was marked by the increased importance of ground 

stone technology such as pestles, mortars, and grooved axes and more intense processing 

of hickory nuts, acorns, and black walnuts (Jefferies 2008). The higher frequencies of 

nutshell have been attributed to the ecological success and expansion of oak and hickory 

forests (Gardner 1997), which could feasibly have been the result of fire activity and the 
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alteration of forests by selective tree-girdling (Delcourt et al. 1998; Munson 1986). The 

use of ground stone tools such as pestles and axes further suggests changes in how people 

procured and processed resources from the surrounding environment. These ground stone 

implements allowed for vegetal foods to be more efficiently exploited and processed 

(Jefferies 1996).   

In addition to these shifts in settlement and subsistence, there is evidence suggesting 

increased social interaction and integration shown through “decreased group mobility, 

reorganization of settlement and subsistence strategies, use of formal mortuary areas, 

elaboration of interregional exchange networks” (Jefferies 2009:648), and the creation of 

elaborate bone pins and atlatl weights (Burdin 2004). Jefferies (2008:185) found that 

specific bone pin designs are often found in certain regions, suggesting “a restructuring of 

inter-group relationships and a more broadly defined cultural identity”. Interestingly, bone 

pins north of the Ohio River differ from those south of the Ohio River, which may mean 

that the river was a “social boundary demarcating distinctly different regional hunter-

gatherer groups” (Jefferies 2008:185). The late Middle Archaic signifies a shift in human 

approaches to the environment, first affected by the Middle Holocene Climatic Optimum, 

then followed by new mobility and resource extraction strategies. It seems possible that by 

this time, people were impacting the environment through fire to affect edge species and 

nut mast. There were also new tools to process vegetal materials. New forms of social 

interaction and integration may have forced groups to alter land tenure relations. 
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Late Archaic (ca. 5800-3200 cal. BP) 

 The early part of the Late Archaic period was chronologically situated within the 

Middle Holocene Climatic Optimum, which ended ca. 4200 cal. BP (Walker et al. 2012). 

However, with the climatic transition from the Middle to early Late Holocene, climatic 

conditions at the end of the Late Archaic period had become more similar to present 

conditions (Jefferies 2008). Thus, the beginning of the Late Archaic period is not directly 

correlated with the Middle to Late Holocene transition, which may be significant, 

warranting future attention. At the very least, the chronological offset of cultural and 

environmental epochs suggests some degree of mutual exclusivity in development.  

Throughout Kentucky, the number of Late Archaic sites increased as compared to 

earlier components, suggesting increases in population or changes in settlement strategies. 

The archaeological record of the Late Archaic period exhibits similarities to the 

archaeological record of the late Middle Archaic period, including continued focus on 

floodplain settings, epitomized by the shell middens in a number of regions including the 

middle Green River valley, where shell was first deposited in the late Middle Archaic or 

earlier. The substantial size of shell middens along the Green River suggests that these sites 

were important locations visited by hunter-gatherer groups over a long period of time 

(Marquardt and Watson 2005). However, these groups continued to utilize upland settings 

(Jefferies et al. 2005). Though during the Early and Middle Archaic periods, Native 

American populations occupied rockshelter and cave entrances, it was not until the Late 

Archaic period that they began exploring dark zones of caves (Watson 1974). Late Archaic 

settlements were more dispersed than those in the Middle Archaic period and populations 

steadily increased. 
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Many archaeologists have pointed to increased settlement in floodplain settings as 

an example of increased sedentism and complexity (Jefferies 2008). However, Crothers 

and Bernbeck (2004) suggest that archaeologists should recognize the significance of 

autonomy in hunter-gatherer social dynamics. They argue that the Green River shell 

middens could have formed over a long period of time as autonomous foragers frequented 

sites, rather than as areas that were occupied continuously by related groups. These sites 

became important locales as people frequented them over thousands of years. Crothers and 

Bernbeck (2004:406) posit that sites along the Green River can best be explained with the 

aid of the foraging mode of production model. The authors suggest that “mobility, dynamic 

forager interaction, and institutional structure are at the core,” of the model and propose 

that complexity can be quantified by considering the interrelationship which occurs 

between the overlying institutional structure and the individual agents either reproducing 

or resisting it. The authors “see in a foraging mode of production a set of social 

relationships – some of them economic, others rather political or ideological in nature” 

(Crothers and Bernbeck 2004:406). The crux of the model lies in the idea that mobility is 

the key component, and social institutions are necessary to maintain such patterns of 

movement. These foragers are also operating under an immediate-return system in which 

they remain autonomous. As autonomous individuals integrate with and disperse from 

these mobile groups, these groups continuously change in composition due to the necessity 

“for any individual to be highly flexible in her/his adaptation to a constantly shuffled 

environment” (Crothers and Bernbeck 2004:412).  

 Crothers (2008) has also suggested that a focus on increasing sedentism is limited 

in explanatory power and disregards the dynamic nature of hunter-gatherer groups. He 
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suggests that a focus on resource access was dependent on agreements between different 

groups. For example, in the Green River, shell resources seem to have been attractive 

during the Late Archaic. Those who had access to these resources could allow others to use 

them. In turn, information and material exchange would have occurred. Crothers does not 

agree with the idea that the populations that used these sites were sedentary, and among his 

reasoning is a lack of evidence of structures and the random placement of burials (Crothers 

2008).  

Late Archaic hunter-gatherers seem to have been impacting the landscape in 

significant ways, including creating large shell middens in the middle Green River valley 

through continued reuse of important places, plant domestication of weedy annuals that 

thrive in disturbed environments, and continued consumption of nut mast resources that 

were perhaps enhanced by silviculture (Jefferies 2008; Smith 2006; Wagner 2005). While 

there are few starchy or oily seeds in the assemblage from Late Archaic Carlston Annis in 

the middle Green River valley, fleshy fruit seeds such as grape, persimmon, and honey 

locust and seeds such as knotweed have been found (Crawford 2005), suggesting their 

economic importance. However, domesticated plants are apparent in Early Woodland cave 

contexts in the Mammoth Cave region. Wagner (2005) argues that botanical remains from 

Carlston Annis demonstrate that humans were purposefully managing the surrounding 

landscape. Though there is no evidence of domestication, people appear to have been 

manipulating the forests, increasing “patch diversity in a vegetation type typified by 

diversity” (Wagner 2005:238). One of the key pieces of evidence of silviculture is the 

heavy use of nut mast at Carlston Annis. If people were modifying surrounding forests with 

fire, this may have affected land tenure relations with other people and also would have 
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required some investment of labor. Thus, the creation of anthropogenic landscapes may be 

an indicator of increasing social complexity.  

In Late Archaic contexts in the Tennessee River valley area, Western Illinois/Iowa, 

and Western Kentucky, Simon noted differences in frequencies of certain types of nutmeats 

(Simon 2009: 97). In the Tennessee River valley area, acorn contribution averaged 60 

percent, while it averaged less than 20 percent in Western Illinois/Iowa and Western 

Kentucky. Hickory nut shell frequencies in the archaeological record averaged nearly 90 

percent in western Kentucky, slightly over 70 percent in Western Illinois/Iowa, and under 

30 percent in the Tennessee River valley area. While black walnut is scarcely represented 

in Western Kentucky, it is better represented in Western Illinois/Iowa (~7 percent) and the 

Tennessee River valley area (~15 percent). Simon suggests a relationship between latitude 

and presence of certain types of nuts and that “nutshell quantities are also closely tied to 

occupation intensity and site type” (Simon 2009:97). She also suggests that prominence of 

nut types in areas where the trees are less common may indicate a focus on those resources. 

Late Middle and Late Archaic human burial populations have yielded data on life 

expectancy, pathology, social inequality, and violence. Some people were buried with 

nonlocal exchange goods, while others were not, suggesting social inequality (Jefferies 

2008). The increased evidence of violence among burial populations throughout the 

Midcontinent, though variable across the landscape, has been offered as evidence of 

increasing social tension. Mensforth (cited in Crothers 2008) found that there were 

increases in violence and trophy taking during the Late Archaic in the Green River valley. 

He interpreted this as relating to exclusive access of some groups to resources during the 

Late Archaic and conflict related to access to certain resources such as shoals. Such trophy 
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taking is also seen in Indiana (Schmidt and Osterholt 2014). Throughout the lower Ohio 

River valley evidence for violence includes burials with projectile points piercing bone, 

scalping, and dismemberment (Jefferies 2008). 

In the lower Ohio River valley, late Middle and Late Archaic material culture 

indicates efforts by hunter-gatherers to communicate group affiliations.  Jefferies (1997) 

and Burdin (2004) identified a number of styles in late Middle Archaic and Late Archaic 

period bone pins and bannerstones, respectively. For both artifact types, there are patterns 

in the regional distribution of specific styles. However, during the Late Archaic the bone 

pins became less elaborate, and atlatl weights became more similar to each other over a 

large area, perhaps indicating increased social interaction (Burdin 2004; Jefferies 1997). 

Marine shells and copper artifacts were also found in Green River shell middens suggesting 

interaction with southern groups along the Gulf and southern Atlantic coasts and with 

northern groups possibly as far as Michigan (Jefferies 1996, 2008). Similar projectile point 

styles over large areas have also been considered as evidence for increased social 

interaction and exchange (Jefferies 2008). 

 The diet of Late Archaic hunter-gatherers was of a greater variety as well with 

people exploiting white-tail deer, small mammals, birds, fish, seeds, fruits, nuts and river 

mussels. Excavations indicate that hunter-gatherers began cultivating plants that had been 

supplementary during the Middle Archaic period, such as maygrass, goosefoot, squash, 

and gourds, more intensively (Jefferies 1996). As hunter gatherer groups grew in size and 

population density increased, the productivity of mussel shoals steeply declined. Increasing 

violence suggests competition that was plausibly associated with resource stress (Crothers 

2008). Increased violence may indicate that while groups were becoming more integrated, 
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they were also becoming more protective of resources as populations surged. The presence 

of Late Archaic cave art at Adair Glyph Cave (Kentucky) and 3rd Unnamed Cave 

(Tennessee) suggests that humans were beginning to change their approach to the 

landscape and to each other. Glyphs include meanders and chevrons either as mud glyphs 

or incisions in rock (Simek et al. 2001). 

When modeling how early agriculture may have begun, Smith (cited in Gremillion 

2002) offered the floodplain weed hypothesis in which floodplains stabilized during the 

mid-Holocene (Schuldenrein 1996), and therefore people aggregated in floodplains, taking 

advantage of a variety of aquatic animals and plants, and also disturbed the surrounding 

environment through daily activities. Plants such as chenopodium, sumpweed, and 

maygrass could thrive in these disturbed areas. Gremillion et al. (2008) proposed that the 

earliest domestication (at least in the Cumberland Plateau area) occurred in the uplands. 

Lack of domesticates in Green River shell midden contexts does not corroborate the 

floodplain weed hypothesis (Crawford 2005). 

Advantages of plant domestication include an increased resource base, and the 

ability to consume more easily processed, larger and edible plants. However, one of the 

major disadvantages of plant domestication would have been controlling the land upon 

which the plants are growing. As people invest labor in cultivating certain plants, they must 

also protect the land that these resources are on. Groups must be less mobile, and 

interpersonal violence may be more common as others encroach on their territory. Social 

institutions must be put in place that allow for people to negotiate access to these resources 

(Crothers 2008). The Terminal Late Archaic period (ca. 3200-2500 cal. BP) (Jefferies 
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2009) is the cultural period defining the end of the Late Archaic period and marking a 

transitional stage to the Early Woodland period. 

Human-Environmental Interactions in Central Kentucky 

To better understand the data behind these interpretations, I consider archaeological 

investigations in three important regions of Central Kentucky. First, I discuss previous 

investigations and interpretations related to the Cave Research Foundation Archaeological 

Project (CRFAP), with a focus on the South-Central Kentucky Karst, in particular the 

Chester Cuesta and the Sinkhole Plain, and with the goal of summarizing human 

occupations of karst settings and human-environmental interactions between the Archaic 

and Woodland periods. Next, I review previous work conducted through the Shell Mound 

Archaeological Project (SMAP) on Archaic period occupations in the middle Green River 

valley, located northwest of the South-Central Kentucky Karst region. This is followed by 

a discussion of interpretations by previous researchers of human-environmental 

interactions during the Archaic and Woodland periods. Finally, I discuss how it relates to 

larger trends throughout the Interior Low Plateaus and Midcontinent. 

South-central Kentucky has been the subject of interdisciplinary, systematic, 

archaeological investigation for over a century. However, much of what we know about 

human use of rockshelters in south-central Kentucky comes from surveys and excavations 

in the Chester Cuesta, with minimal work in the Sinkhole Plain (Carstens 1980; Prentice 

1996; Watson 1974). In the late 1800’s, Frederick Putnam from the Peabody Museum of 

Natural History at Harvard University, visited the Mammoth Cave area (Nelson 1917; 

Watson 1974). In 1917 Nels C. Nelson published his work on excavation of the historic 
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entrance of Mammoth Cave. He believed that because the caves of Kentucky had been 

south of the farthest extent of the Pleistocene glaciers they may contain evidence of 

Pleistocene human occupations. In the cave entrance, Nelson (1917) found midden deposits 

and many artifacts assignable to the Archaic and Woodland periods.  Though less studied, 

early investigations in the south-central Kentucky karst in the 1920’s and 1930’s yielded 

promising archaeological and paleontological sequences associated with sinkholes and 

caves (e.g., Fowke 1922, Webb and Funkhouser 1934). Gerard Fowke (1922) from the 

Smithsonian Institution was also interested in the archaeological potential of sinkhole and 

cave sites in the region. Among the sites he visited was Crumps Cave. Fowke (1922:123) 

wrote a rather grim assessment of the archaeological potential of the region: 

It would seem useless to make any further examination of the level limestone 

region of central or southern Kentucky. Nearly all the minor drainage is 

underground, and most of the caves have inlets through sink holes or in 

small crevices. The water supply is scanty except along streams, and in such 

situations the caves are usually, for various reasons, of such character as 

to preclude a continuous occupation, or one extending to a very ancient 

date. 

However, referring to Crumps Cave entrance, he alluded to the presence of 

archaeological remains: “There is abundant room and a good light near the front and it is 

reported that quantities of ash were formerly to be seen on the earth a short distance in” 

(Fowke 1922:118). Patty Jo Watson initiated the ongoing CRFAP in the 1960’s. Watson’s 

(1969, 1974) research initially focused on Salts Cave, in Mammoth Cave National Park, 

and she documented some of the earliest and most extensive cave exploration in Eastern 
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North America. Between the Late Archaic and Early Woodland periods (ca. 3500 to 2000 

cal. BP) Native Americans traversed miles of sinuous passages guided by the light of cane 

torches in their efforts to collect several cave minerals. These explorers left behind torch 

debris, gourd bowls, basketry, footwear, paleofeces, and occasionally, human bodies 

(Crothers 2012; Watson 1969, 1974). In the 1960s and 1970s, Watson and her colleagues 

launched a multidisciplinary study of the remains in Salts Cave that included archaeology, 

botany, zoology, geology, chemistry, and medicine (Crothers 2014). Through excavations 

of Salts Cave and analysis of paleofeces, Watson and paleoethnobotanist Richard Yarnell 

identified the remains of plants that were in the early stages of domestication, including 

sunflower and sumpweed, meaning that these cave explorers were horticulturalists 

(Watson 1969, 1974). 

Occupation levels dated to the Late Archaic and Early Woodland periods (between 

3,490 RCYBP and 2,200 RCYBP) (Gardner 1987; Watson 1969, 1974). Radiocarbon dates 

obtained for Test Unit J showed that occupation occurred between 2510 RCYBP and 2340 

RCYBP. In Units J and C a layer with a high density of hydrologically deposited 

disintegrated charcoal was located directly below the primary occupation layers, 

suggesting a large forest fire had occurred outside of the cave (Watson 1974). It is unclear 

whether this fire was natural or cultural or how large it was, but in relation to the upper 

deposits, it is quite intriguing. Artifactual debris found above the layer included 

woodworking tools such as flaked and ground stone celts, nut processing tools such as 

pestles, and Turkey-tail type projectile points (Gardner 1987; Watson 1974). In both units, 

colluvial and alluvial wash from the entrance buried cultural layers between occupations 

at the site, as demonstrated by sand overlying occupational horizons. Salts Cave is a drain 
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for water entering the sinkhole, and it is still very wet. In addition, fragmentary pollen 

records from the cave deposits demonstrate an increase in Ambrosia pollen after human 

occupation of the cave, further suggesting changes in vegetation from forest to grasslands 

outside of the vestibule (Gardner 1987; Schoenwetter 1974; Watson 1974). Notably, this 

change in vegetation structure was occurring after the Middle Holocene Climatic 

Optimum. 

Though there are dates for the occupational horizons in Unit J, there was a need for 

dates for the earlier fire episode. Thus, three nut shell samples from Level 20 were 

submitted by Carlson and Crothers (2015) for analysis. The three AMS dates for that layer 

are shown in Table 4.1. This fire episode either predates the major occupation of the 

vestibule and exploration of Salts Cave interior by a small margin or is coeval with the 

beginning of occupation and exploration of the cave. 

Table 4.1. Radiocarbon Dates from Salts Cave.  
Ages calibrated using CALIB 7.1 (Stuiver et al. 2018). 

Lab No. Provenience RCYBP Calibrated Range BP* 

  BP 1σ error Two σ 

ISGS-A3571 JIV-20 2575 15 2750-2730 

D-AMS 009910 JIV-20 2618 28 2758-2742 

D-AMS 009911 JIV-20 2805 27 2991-2845 

 
Carstens’ (1980) investigations of rockshelter sites in the south-central Kentucky 

karst region collected evidence spanning the Middle Archaic to Late Prehistoric periods, 

providing information about subsistence and seasonality in the area over several millennia. 

In Horizon I of Owl Cave, located at the edge of a sinkhole in the Mammoth Cave Plateau, 

Early Archaic to Middle Archaic inhabitants primarily subsisted on deer and hickory nuts 
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from transitional forest edge environments. There was also a gradual decrease in the 

hunting of smaller mammals over time (Carstens 1980). 

 Significant changes in subsistence strategies occurred during the Late Archaic and 

Early Woodland periods. In Horizons II and III of Owl Cave, an increase in represented 

floral habitat diversity over time is indicated (Carstens 1980). There was also an increase 

in the frequency of hickory nut remains, coupled with a decrease in wood charcoal in 

Horizon II.  The documented plant remains led Carstens to argue that plants became more 

economically significant by the Late Archaic period (Carstens 1980:91). This was further 

corroborated by the discovery of pestles and nutting stones in the Late Archaic Horizons 

II and III, but not in Horizon I.  However, deer hunting remained very important. To 

Carstens, the increase in exploited niches during the Late Archaic suggested 

transformations “in the overall social structure”, and “a new mode of cultural adaptation in 

the Central Kentucky Karst” associated with early horticulture (Carstens 1980:93-94).  

At Crumps Cave, Early Woodland period occupants of the cave began exploiting 

resources from a more diverse array of habitats than during the Late Archaic period. 

However, at the end of the Early Woodland period, the diversity of habitats exploited 

decreased. To Carstens this indicated a “return to an apparent focal economy, occurring 

sometime during the Middle Woodland period”, that focused on deer (Carstens 1980:104-

105). In the levels that Carstens suggested date to the late Middle Woodland and early Late 

Woodland periods, a greater diversity of habitats were once again exploited. Carstens noted 

that the increase in represented ecological niches during the Early Woodland period is 

similar to subsistence practices occurring at Salts Cave and Owl Cave at a similar time. 
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Carstens also noted that no domesticates were found at Crumps Cave, suggesting unique 

differences between it and other cave sites in the Chester Cuesta/Mammoth Cave Plateau. 

Crumps Cave Vestibule and Sink 

Crumps Cave is a large cave formed by an abandoned river, and it is accessible 

through a sinkhole (Quinlan et al. 1990). The vestibule and surrounding sinkhole have 

produced evidence of human occupation dating from the Early Archaic to Late Prehistoric 

periods. The first systematic excavations at the site were undertaken by Kenneth Carstens 

(1980). Carstens was investigating human occupations throughout the south-central 

Kentucky karst, and he excavated multiple cave entrances and rockshelter sites in the 

Chester Cuesta, in Mammoth Cave National Park, and Crumps Cave entrance, the only site 

he investigated in the Sinkhole Plain. Carstens excavated one 1x1 meter test unit to a depth 

of 80 centimeters in the vestibule entrance and identified deposits dating from the Middle 

Archaic to Late Prehistoric periods. The unit that Carstens excavated had “11 natural and 

cultural levels of deposition…in the grid-east wall profile…Each stratum contained…ash, 

charred botanical remains, limestone breakdown, and loamy sands and clays that alternated 

in bands of thickness” (Carstens 1980:98). Carstens hoped to complete excavations in the 

unit at a later date, but in his absence, looters pillaged much of the vestibule. Upon his 

return to the cave, Carstens could no longer identify the original unit and ceased his 

investigations of the vestibule. 

In the late 1980s, mud glyphs were found further in the cave interior and were 

radiocarbon dated to the early Woodland period. These mud glyphs show a variety of 

images etched into the mud, including spirals, human figures, animal figures such as a 
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rattlesnake and tools such as an ax (Davis 1996). The rarity of such glyphs throughout the 

Interior Low Plateaus further attests to the cultural significance of the site (Davis 1996; 

DiBlasi 1996; Simek et al. 2001). Since the looting in the 1970s, there had been concern 

about the integrity of deposits in Crumps Cave. In his assessment of the cave vestibule, 

George Crothers determined that there were intact deposits along the cave walls and also 

in a location that previously was protected by a large wooden barrel used as a water 

reservoir. 

The question remains: Are periods with greater representation of habitat diversity 

the result of far ranging procurement strategies or of the purposeful creation of 

environmental niches with the use of fire? Lack of domesticates at rockshelter sites also 

suggests that if fires were being set on the landscape, they were not only set to improve 

gardening plots (Delcourt et al. 1998), but also likely to promote oak-hickory forests 

through the limiting of litter and opening of canopy (Royse et al. 2010), and promote the 

exploitation of edge species such as deer and turkey. 

The subsistence trends identified by Watson (1974), Carstens (1980), and Prentice 

(1996) in the Chester Cuesta/Mammoth Cave Plateau and Sinkhole Plain area are seen 

throughout the Interior Low Plateaus region. The Middle Archaic period was marked by 

the advent of ground stone technology, such as pestles, pitted stones, and grooved axes, 

and more intensive processing and consuming of hickory nuts, acorns, and black walnuts, 

trends that continued through the Late Archaic and Woodland periods (Crawford 2005; 

Crothers 1999; Gardner 1997; Jefferies 1996; 2008, 2009; Moore and Dekle 2010; Munson 

1986; Simon 2009; Stafford 1994; Stafford et al. 2000; Wagner 2005). The higher 

frequencies of nutshell have been attributed the ecological success and expansion of oak 
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and hickory forests (Gardner 1997), which could feasibly have been the result of fire 

activity and selective management of habitats by indigenous forms of silviculture. 

In both the Chester Cuesta/Mammoth Cave Plateau and the Sinkhole Plain, 

botanical and faunal data indicate that there was an increase in exploited habitats at multiple 

rockshelter sites during the Late Archaic and Early Woodland periods, suggesting that 

plants became more economically significant (Carstens 1980:91). This was corroborated 

by the discovery of presumed plant processing tools such as pestles and nutting stones in 

Late Archaic levels of Owl Cave. Deer hunting remained important. The increase in 

exploited niches during the Late Archaic and Early Woodland coincides with the presence 

of early domesticated plant species found in the diets of cave explorers in deep cave zones 

of Mammoth and Salts Caves. However, domesticated plant species are absent in many 

rockshelter sites, which may be a result of seasonal differences in occupations, different 

functional uses between caves and rockshelters, or use by horticultural and non-

horticultural groups (Carstens 1996). 

Middle Green River Valley 

After previous work was conducted in cave contexts of south-central Kentucky, 

Watson, in collaboration with William Marquardt, was curious to see if early domesticates 

could be identified at the late Middle and Late Archaic shell middens in the middle Green 

River region (ca. 5500 and 3500 cal. BP), slightly earlier than the use of Mammoth Cave, 

which came to be known as the Shell Mound Archaeological Project (SMAP) (Marquardt 

and Watson 2005). The only native cultigen in either their domestic or ruderal forms was 

squash, though at the time squash was believed to be Mesoamerican in origin. However, 
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paleoethnobotanist, Gail Wagner, identified high frequencies of nut charcoal and suggested 

that Late Archaic hunter-gatherers were already impacting and diversifying surrounding 

ecosystems in complex ways. She postulated that through forest management activities 

such as silviculture, they were already creating anthropogenic environments (Wagner 

2005). Further, she stated that “The record of plant remains through time at the Carlston 

Annis site is significant for revealing the nature of how forest management could 

eventually lead to the tending of domesticated plants” (Wagner 2005:213). In a discussion 

of anthropogenic ecology throughout the Eastern Woodlands based on the archaeological 

record, Wagner also referred to the Big Barrens as a likely anthropogenic ecosystem 

(Wagner 2003).  

Crawford (2005:181) wrote that “Anthropogenic communities are visible, in my 

view, although they are more forest edge or forest opening types of communities than 

garden associated communities. The possibility of a local, fire-induced ecology is 

proposed. The Late Archaic Green River material is consistent with an early stage in a 

continuum culminating in Early and Middle Woodland husbandry systems”. Both argued 

that the primary goal for these hunter-gatherers was woodland management rather than for 

agricultural economies. Wagner (2005:237) wrote: 

We can understand how girdling selected trees or using low-intensity 

ground fires enhanced mast production and encouraged game by clearing 

the understory and maintaining an open woods where patches of sunlight 

could reach the ground. But were these Middle-to-Late Archaic folks 

actively creating openings in the woods that centered around mast trees, 

but rather centered around useful weeds and early succession plants? And 
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where and how was this ground disturbed or churned? Open, disturbed 

ground is indicated by a number of plants, some of which were later to 

become important cultivated foods. 

Was the increase in niche exploitation during the Late Archaic and Early Woodland 

periods associated with longer and more expansive foraging forays or the localized human 

creation of niches through ecosystem manipulation? Based on the ecological history of the 

area, human manipulation of vegetation seems a plausible factor. Did it happen even earlier 

in the Archaic with silviculture as Wagner (2005) has posited from data collected at the 

Green River Shell Middens? Interestingly, vegetation change and increased fire activity 

occurred contemporaneously with more diffuse plant exploitation practices, domestication, 

and changing wood-working technologies (from grooved axes to celts) during the Late 

Archaic/Early Woodland transition (Applegate 2008). The potential significance of this 

correlation must be assessed in greater detail. Late Archaic to Early Woodland plant 

domestication has been documented elsewhere in Kentucky, most prominently in the 

Cumberland Plateau in eastern Kentucky (Delcourt and Delcourt 1998; Delcourt et al. 

1998; Gremillion 1997; Gremillion et al. 2008). In the following chapters, I explore 

whether another significant cultural development occurred in south-central Kentucky: 

prescribed fire regimes by humans.  

For many hunter-gatherer studies, archaeologists have employed adaptationist 

models for understanding changes in hunter-gatherer land use and, in turn, social 

complexity. For example, explanations of increased cultural complexity have relied on 

population pressure, risk minimization for access to resources, or environmental stress. 

More recently, there have been critiques against adaptationist models of Archaic societal 
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evolution (see Emerson and McElrath 2009 for an in depth summary of competing models). 

Among the criticisms is that environment is considered to be too large a factor, and human 

agency is not taken into account. It is my view that adaptationist models relating to the 

environment should not be totally disregarded. Instead, they must be nuanced further, with 

addition of the concept of human agency in impacting environments. It is likely that 

interplay between humans and their environments is marked by societal successes and 

failures, but due to the coarse-grained nature of the dataset we cannot see this. 

Environmentally based models that have fallen out of favor may be reexamined as we 

encounter environmental changes in the Anthropocene. While the Archaic period spans 

9000 years, the extent of our theoretical grounding in Archaic traditions perhaps extends 

back only a century. There is no doubt that early models of hunter-gatherer environmental 

interactions are flawed, but they provide important foundations that we can build upon. 

One of the greatest strengths of the Archaic studies is the fact that many of them have 

considered a number of environmental variables including vegetation, geomorphology, and 

climate change in relation to socio-cultural developments.  

The richness of the archaeological dataset and environmental models that have been 

developed through Archaic period research should be considered a strength, not a 

weakness. As finer-grained environmental data and chronologies of the archaeological 

record become available, I believe that this will be better recognized. The Archaic period 

in the Midcontinent witnessed dramatic environmental transitions from the 

Pleistocene/Holocene transition and Younger Dryas (ca. 11,000 cal. BP), to the cooling 

episode (ca. 8200 cal. BP), to the Middle Holocene Climatic Optimum (ca. 9000-4200 cal. 

BP), followed by the Late Holocene conditions we experience today. The effects of those 
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environmental circumstances were variable across the region and no doubt affected cultural 

developments. With impending climatic changes over the next century, we may encounter 

increasingly severe environmental conditions, such as temperature fluctuations and shifting 

fluvial regimes, soil erosion, altered vegetation communities, and many other potentialities. 

As we search for solutions to these dilemmas, we may reconsider the Holocene 

environmental record and Archaic hunter-gatherer responses as informative historical 

examples. Although I believe that social and economic developments and movements 

towards complexity should be taken into account and that models should be constructed to 

aid in understanding those developments, environmental studies in conjunction with 

human dynamics provide an opportunity for holistic studies. The excavations at Crumps 

Sink provide an opportunity to better integrate archaeological and environmental data sets, 

trace ebbs and flows in human-environmental interactions, and identify anthropogenic 

impacts on past ecosystems. 
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CHAPTER 5.  ARCHAEOLOGICAL INVESTIGATIONS AT CRUMPS SINK 

Auger Tests and Excavation Units 

As part of assessment of the Crumps Site for the Heritage Land Conservation Fund, 

in 2009 Crothers cored within Crumps Sink to assess its archaeological potential and 

identified buried archaeological deposits to a depth of at least 3 meters below the present 

ground surface. Based only on small diameter auger cores made across the sinkhole, it was 

not clear whether the anthropogenic soils observed in the auger were a primary deposit or 

sediments that had been eroded from the rim of the sinkhole and redeposited in the bottom 

of the sink. Therefore, in July 2015, an excavation unit was placed in Crumps Sink (Figure 

5.1).  

 

Figure 5.1. Crumps Sink excavations, looking west. 
 

It was located outside of the cave entrance and corresponded to the deepest core 

containing buried deposits. The grid from the 2009 investigations was reestablished to geo-

reference the unit with the rest of the cores and spot-finds. The 2009 bucket auger locations 
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were still visible and were flagged and then remapped with a total station. Unit 1, 

measuring 1m east-west by 2 m north-south, was oriented to magnetic north. A second 1x2 

m unit (Unit 2), oriented SW-NE was placed in the cave vestibule, with the goal of 

capturing the apparent orientation of sediment deposition. Excavations were not begun in 

the vestibule until fall 2016 and because the deposits were secondarily deposited and 

greatly eroded those investigations are not discussed here. 

Collection and Documentation Methodology 

From the beginning of the excavation, faunal remains, botanical remains, and 

artifacts from arbitrary 10 cm levels within natural levels (zones) were collected by dry-

screening with quarter-inch (6.35 mm) mesh for each 1x1m subunit. Zones were identified 

based on changes in sedimentary characteristics during excavation. The south subunit was 

always excavated first, followed by the north subunit. Generally, the first 8-9 cm of each 

level were excavated with a shovel, followed by troweling to clean and level the floor for 

photographs. After photographing each level, a plan map of the level was drawn to show 

differences in sediment properties and potential features. Diagnostic and other artifacts 

were piece-plotted on level forms when exposed in situ. Prior to excavation, due to 

expectation of deep deposits and the necessity of only excavating a small area, precautions 

were taken to ensure safety, and preparations were made to shore the walls of the unit. As 

excavations progressed, a ladder was used to enter and exit the unit, and with further depth 

buckets were lifted out of the unit by rope. The unit walls were shored with plywood boards 

and a combination of foundation jacks and 2x4s buttressing vertically oriented 2x6s with 

vertical 4x4s in the center (Figure 5.2). Beginning with Level 8, which was 70-80 
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centimeters below surface (cmbs), culturally unmodified rock (principally limestone) 

greater than ½ inch (12.7 mm) in greatest dimension was weighed in the field with a 

Berkeley spring scale and discarded. Also, beginning with Level 8, after obvious artifacts 

and bone were removed, all residual material retained in the ¼ inch screen was bagged to 

be washed and further sorted at the field station or archaeology laboratory. Prior to Level 

8, artifacts were removed from the ¼ inch screen, but residual material was not collected 

nor was the unmodified rock weighed before discarding. After washing, all remaining 

material greater than ¼ inch was sorted and the rock was weighed and discarded.  

 

Figure 5.2. Showing Unit 1, and shoring of walls during excavations, looking north. 
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The rock weight from the lab sample was added to the field weight to get total 

weight of rock per level. In addition, the weight of each major artifact type (lithic debitage, 

bone, and burned sediment) was recorded. This material is discussed in Chapter 6. 

Beginning with Level 5B, due to its appearance as a midden or a buried soil horizon, 

flotation samples were collected, but they were from the general matrix, not from a specific 

location or corner of each level.  These samples were approximately 20 cubic liters (l3) in 

volume.  In Level 8, flotation samples were collected systematically from a column in the 

NE and SW corners of Unit 1. The float column samples were 30x30x10 cm.  

Zone Designations 

The original stratigraphic zone distinctions during excavations were assigned 

Roman numerals I, II, III, and IV based on changes in soil/sediment color and texture seen 

during excavation. Following documentation of the profile and further consideration of the 

sediment analyses, several sub-horizons were distinguished. These were designated by 

adding a suffix in the form of an uppercase letter for each sub-horizon. As shown in Table 

5.1, I determined that Zone III contained two similar but slightly different sub-zones and 

separated them into Zones III A and III B. Likewise, I separated Zone IV into several 

subzones (IV A through IV I). The deposits at the terminus of cultural horizons, with few 

to no artifacts and with sediment texture more similar to non-anthropogenic than to 

anthropogenic deposits, were designated Zone V. Thus, hereafter, I use zone distinctions 

determined by profile documentation and soil description. The following zones are based 

on soil/sediment color and texture, not on archaeological material, radiocarbon dates, or 

soil pedology (Table 5.1). However, archaeological material and soil geomorphological 
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analyses are considered in Chapter 6 for a better understanding of the chronological and 

site formation history. 

Table 5.1. Zone Designations at Crumps Sink. 
Level Zones During Excavation Revised Zones after Profile Documentation 

1 I I 
2  

II 
 

II 3 
4 

5A 
5B  

III 
 

III A 6 
7 
8 III B 
9  

 
 
 
 
 
 
 
 
 
 
 
 
 

IV 

IV A 
10 IV A, IV B 
11  

IV B 12 
13 
14  

IV C 15 
16 
17 IV D 

 18 
19 IV D, IV E 
20  

IV E 21 
22 
23  

IV F 24 
25 
26 
27 IV F, IV G 
28  

 
IV G 

29 
30 
31 
32 
33 IV H 
34 
35 IV I 
36 IV I, V 
37 V 
38 

 

Processing of Artifacts 

  After the residual dry-screen material was washed through window screen, the 

primary material sorted from each level included rock, lithic debitage, bone, burned 

sediment, charcoal, mussel shell, and terrestrial gastropods, as well as small lithic, bone, 

and shell artifacts. Unmodified rock identified in the lab was weighed and added to the 
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field mass of rock of each 1x1m ten-centimeter level. Artifacts and other material were 

catalogued according to standard University of Kentucky archaeology laboratory protocol 

(Appendix).  

Flotation 

Flotation column samples were collected beginning with level 5A. The samples 

were collected in the northeast and southwest corners of the North and South subunits in 

10-cm levels (with the exception being that Level 5B was 5 cm thick). Each sample was 

approximately 30x30x10cm and on average contained 20 cubic liters (l3) of sediment. The 

bags of sediment were transported back to the lab weekly by crews returning to the UK 

Archaeology Laboratory. Flotation processing has not been completed and is not discussed 

here. Therefore, the mass of artifacts and rocks in the flotation samples are not included in 

the coarse fraction masses presented in Chapter 6. 

Stratigraphy 

Zone I  

Zone I is between 0 and 10 cmbs and is a 10YR3/4 dark yellowish brown, silty clay 

loam. It is slightly darker and contains more organic material than Zone II. Zone I was 

interpreted as a weakly developed modern A horizon. 

Zone II 

 Zone II is between 10 and 45 cmbs and is a 10YR3/4 dark yellowish brown silt 

loam flecked with small fragments of charcoal and burned sediment. This zone may be the 

result of erosion/deposition from historic agricultural activities around the sink. This zone 
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has been truncated, and these areas have been filled in with a mix of darker and lighter 

sediment. These disturbances may be from tree falls or other recent disturbances in the 

sink. Zone II was interpreted as the B horizon of the modern soil surface. 

Zone III A 

 Zone III A is between 45 and 70 cmbs and is a 10YR2/2 very dark brown silt loam. 

There is a layer of well-sorted rock (2-5 cm in diameter) at the top of this horizon. The 

upper surface of this zone is undulating, and the rock layer is discontinuous. Below the 

rock layer, sediment is friable with some gravel-sized limestone inclusions and a low 

contains a low density of charcoal flecking. It was interpreted as buried A horizon Ab1 and 

midden. 

Zone III B 

Zone III B is between 70 and 80 cmbs and is a 10YR2/1 black to 10YR2/2 very 

dark brown silt loam that is friable with white, degraded limestone fragments. Both the 

surface and basal topography of this layer are undulating, though the basal topography of 

this stratum undulates to a greater degree than the upper surface of the stratum. This layer 

is discontinuous throughout the unit. It was interpreted as a continuation of buried A 

horizon Ab1 and midden. This may be the root zone of Zone III. 

 



90 
 
 

 

Figure 5.3. North profile photo and drawing. 
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Zone IV A 

Zone IV A is between 80 and 95 cmbs and is a 10YR3/2 very dark grayish brown, 

(slightly more gray than Zone IV B) silty clay loam that is friable with some limestone 

inclusions. It has more pore space than previous zones. Surface and basal topography range 

from planar to wavy. It was interpreted as the B horizon or a transitional AB horizon of 

buried A horizon Ab1 and it is midden. 

Zone IV B 

 Zone IV B is 95 to 135 cmbs and is a 10YR3/2 very dark grayish brown to 10YR3/3 

dark brown silt loam with some clay that is friable and flecked with abundant large pieces 

of charcoal (>2cm in diameter), poorly sorted angular limestone, burned sediment, and 

terrestrial gastropod shells. It has significant pore space, and pockets of diffuse silt 

(10YR5/6 yellowish brown) are apparent. This zone was interpreted as the B horizon and 

parent material of buried A horizon Ab1 and midden.  

Zone IV C 

 Zone IV C is 135 to 160 cmbs and is a 10YR3/2 very dark grayish brown silt loam 

that is friable to very friable. It has much pore space and a greater density of subangular-

angular, poorly sorted limestone than IV B and IV D. This zone is flecked with charcoal, 

burned sediment, terrestrial gastropod shells, and some mussel shell, and it was interpreted 

as buried A horizon Ab2 and midden. 
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Zone IV D 

 Zone IV D is 160 to 185 cmbs and is a 10YR3/2 very dark grayish brown to 

10YR3/3 dark brown silty clay loam and friable to very friable. It has much pore space and 

a lower density of charcoal flecking, burned sediment, and sub-angular limestone than 

Zone IV C. It is slightly more gray than Zone IV E. Zone IV D was interpreted as midden 

and this zone may represent the transitional AB horizon of buried A horizon Ab2. 

Zone IV E 

Zone IV E is 185 to 220 cmbs and is a 10YR3/3 dark brown friable silt loam flecked 

with charcoal. It contains subangular to angular limestone inclusions and has much pore 

space. Zone IV E has a lower density of limestone compared to the above Zone IV D and 

lower Zone IV F. It is interpreted as midden and the B horizon of buried A horizon Ab2. 

Zone IV F 

Zone IV F is 220 to 265 cmbs and is a 10YR3/2 very dark grayish brown friable 

silt loam with dense charcoal flecking throughout. It contains more poorly sorted, 

subangular-angular limestone than Zone IV E. Limestone fragments range in size from 

small to large gravels that often are oriented horizontally. Zone IV F is less porous than 

any of the Zone IV zones that rest above Zone IV F. The upper and lower boundaries are 

clear to gradual. Zone IV F is interpreted as buried A horizon Ab3 and midden. 

Zone IV G 

Zone IV G is 265 to 320 cmbs and is a 10YR3/3 dark brown silt loam. It is less 

friable and porous than Zone IV F (porosity is very low) and also has a lower density of 
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charcoal flecking and subangular to angular limestone than IV F. Limestone fragments 

range in size from small to medium gravel. Zone IV G was interpreted as midden and the 

B horizon of buried A horizon Ab3. 

Zone IV H 

 Zone IV H is 320 to 340 cmbs and is a 7.5YR3/3 dark brown silty clay loam. It has 

a similar amount of charcoal to Zone IV G. In addition to color difference, it is 

distinguished from IV G by the presence of moderately sorted gravel-sized reddish 

limestone. Zone IV H was interpreted as part of the B horizon of buried A horizon Ab3. 

Zone IV I 

 Zone IV I is 340 to 355 cmbs and is a 7.5YR3/3 dark brown silty clay loam, flecked 

with some charcoal and limestone. Feature 5 (a combustion feature) and an ash layer that 

may have been associated with the feature are evident at the interface between IV H and 

IV I. Zone IV I was interpreted as a faint buried A horizon (Ab4). 

Zone V 

 Zone V is 355 to 380 cmbs and is a 7.5YR3/4 dark brown silty clay loam. It has 

few inclusions and very little charcoal, which is only apparent toward the upper boundary. 

No charcoal is apparent near the lower boundary of this zone. Zone V marks the beginning 

of archaeologically sterile deposits and its matrix may be primarily or secondarily 

deposited loess. 
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Archaeologically Sterile Deposits 

Archaeologically sterile deposits were reached at 380 cmbs. A bucket auger was 

used to collect systematic sediment samples below this depth. The use of the bucket auger 

was terminated upon reaching impenetrable rock at 517 cmbs. In general, all samples are 

7.5YR brown silt loams to silty clay loams with some very small gravel-sized inclusions. 

Small gravel sized inclusions present between 380 and 460 cmbs were absent at depths 

below 460 cmbs. At 517 cmbs rock was encountered. It is possible that this rock is the top 

of the roof-fall from the collapsed sink. The deposits between 380 and 517 cmbs are 

considered to be a continuation of Zone V. 

Features 

Pit and hearth features were also encountered, suggesting humans were directly 

occupying or performing activities within the sinkhole, aside from trash disposal. Five 

features were encountered during excavation. Feature 1 appears to be a result of undulating 

topography of the base of Zone III B interface with Zone IV, rather than cultural in origin, 

and is not considered here. The remaining features were one rock cluster (Feature 2; Figure 

5.4) and three apparent surface hearths (Features 3-5; Figures 5.5-5.8). 
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Figure 5.4. Feature 2 looking west, a cluster of limestone in a shallow pit feature. 
 

 

Figure 5.5. Feature 3, diffuse oxidized sediment and ash in the center of north half from 
in situ burning. 
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Figure 5.6. Feature 4, distinctly oxidized sediment and ash from in situ fire. 
 

 

Figure 5.7. Feature 5, pedestalled in the northwest corner of the north half. 
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Figure 5.8. Feature 5 profile, facing west. 

Radiocarbon Dating 

Twelve samples of nut charcoal were submitted to DirectAMS (Bothell, WA) for 

radiocarbon dating. Archaeological deposits at Crumps Sink spanned the Middle Archaic 

to Late Archaic periods (7200-2900 cal. BP) (Table 5.2).  

Table 5.2. Radiocarbon dates from Crumps Sink.  
Ages calibrated using CALIB 7.1 (Stuiver et al. 2018). 

Lab No. Sample ID Level Depth Below Surface (m) RCYBP Calibrated BP 
    BP 1σ error Two σ 
D-AMS 024358 CS6N 6 0.50-0.60  2866 28 2882-3070 
D-AMS 013555 CS8N-1 8 0.70-0.80 3005 26 3078-3326 
D-AMS 024359 CS12N 12 1.1-1.2 4232 30 4650-4857 
D-AMS 013556 CS16N-1 16 1.5-1.6 3562 38 3722-3971 
D-AMS 024360 CS18N 18 1.7-1.8 4081 27 4446-4803 
D-AMS 024361 CS20N 20 1.9-2.0 4118 31 4527-4815 
D-AMS 013557 CS25N-1 25 2.4-2.5 4880 28 5588-5652 
D-AMS 024362 CS28N 28 2.7-2.8 4999 28 5653-5884 
D-AMS 024363 CS32N 32 3.1-3.2 6092 29 6860-7153 
D-AMS 024364 CS34N 34 3.3-3.4 6033 31 6788-6957 
D-AMS 013558 CS37N-1 37 3.65 6106 38 6887-7156 
D-AMS 024365 CS38N 38 3.7-3.8 6206 33 7003-7241 
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Based on radiocarbon dating and projectile point types, I correlated deposits to specific 

environmental and cultural periods, which is discussed below. The radiocarbon dates are 

further discussed along with projectile point typologies from Crumps Sink. 

Artifacts 

Artifacts recovered consisted of flaked stone projectile points, flaked/ground stone 

hoes, ground stone pestles, a grooved axe fragment, bone awls and needles, and shell beads. 

Refuse representing hunter-gatherer food preparation over a 4300-year time span includes 

thousands of fragments of animal bone, mussel shell, and charred nutshell. Diagnostic 

projectile points (n=19) were analyzed, and correlated with the nearest associated 

radiocarbon dates to develop a chronology for projectile point technologies at Crumps Sink 

and to compare this chronology with previously accepted age ranges throughout the 

Midcontinental and Eastern United States (Table 5.3).  

Table 5.3. Diagnostic projectile points from Crumps Sink, Unit 1, North half. 
Field Specimen # Level Zone Depth below surface (m) Type 
18-7 5B III A 0.43 Motley 
18-8 5B III A 0.43-0.50 Saratoga Broad Bladed 
18-9 5B III A 0.43-0.50 Raddatz Side Notched 
44-6 10 IV A, B 0.9-1.0 Motley 
63-7 13 IV B 1.2-1.3 Motley 
69-16 14 IV C 1.3-1.4 Merom 
71-10 15 IV C 1.4-1.5 McWhinney Heavy Stemmed 
71-11 15 IV C 1.4-1.5 Table Rock Cluster 
73-18 16 IV C 1.5-1.6 Late Archaic Stemmed 
126-7 22 IV E 2.1-2.2 Raddatz Side Notched 
126-8 22 IV E 2.1-2.2 Stanly Stemmed 
170-18 25 IV F 2.4-2.5 Helton 
150-10 26 IV F 2.5-2.6 Raddatz Side Notched 
150-11 26 IV F 2.5-2.6 Raddatz Side Notched 
173-20 27 IV F, G 2.6-2.7 Raddatz Side Notched 
176-8 29 IV G 2.8-2.9 Raddatz Side Notched 
178-10 30 IV G 2.9-3.0 Raddatz Side Notched 
181-11 31 IV G 3.0-3.1 Raddatz Side Notched 
181-10 31 IV G 3.0-3.1 Raddatz Side Notched 
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The results of the projectile point analysis are summarized below. I then summarize the 

types, depths, and age ranges for formalized groundstone tools recovered from Crumps 

Sink. 

Motley Cluster 

The North subunit sample yielded three Motley Cluster projectile points. Field 

Specimen #44-6 was recovered from Zone IVA/B, Level 10 and Field Specimen #63-7 was 

recovered from Zone IV B, Level 13 (Figure 5.9). One radiocarbon date was acquired from 

Zone IV B, Level 12, placing it between the two mentioned projectile points in depth. 

Projectile points from this cluster have been assigned to the Late Archaic through Early 

Woodland periods, with an age range of 3400-2600 RCYBP (Justice 1987). The nearest 

radiocarbon date at Crumps Sink was 4232+30 RCYBP (4650-4857 cal. BP) making it 

inconsistent with previously reported ranges. For the Motley cluster this date is too early 

(Justice 1987). 

In the stratigraphic sequence, this date is out of place in comparison to other 

radiocarbon dates. The date suggests that charcoal was exhumed from older deposits 

(possibly Zone IV E) and redeposited. Field specimen #18-7 was located in Zone IIIA, 

Level 5B (Figure 5.10). Charcoal from Zone IIIA, Level 6 yielded a radiocarbon date of 

2866+28 RCYBP (2882-3070 cal. BP). This date is consistent with the expected range of 

the Motley projectile points from throughout the Midcontinent (Justice 1987).  
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Figure 5.9. Motley Cluster.  
a) FS #44-6, Zone IV A/B, Level 10; b) FS #63-7, Zone IV B, Level 13. 

 

Figure 5.10. Motley Cluster.  
FS #18-7: Zone III A, Level 5B. 

 

a b 
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Saratoga Broad Bladed 

 One Saratoga Broad Bladed projectile point (FS#18-8; Figure 5.11) was 

recovered from Zone III A, Level 5B. Charcoal from Zone IIIA, Level 6 yielded a 

radiocarbon date of 2866+28 RCYBP (2882-3070 cal. BP). Saratoga Cluster projectile 

points have been recovered from contexts dating to between 4000 and 2600 RCYBP 

(Justice 1987). Thus, this date is consistent with the expected range of Saratoga projectile 

points from throughout the Midcontinent (Justice 1987). 

 

Figure 5.11. Saratoga Broad Bladed.  
FS# 18-8, Zone III A, Level 5B. 

 
Merom Cluster 

The North subunit yielded one projectile point from the Merom projectile cluster 

(FS#69-16; Figure 5.12).  This point was recovered from Zone IV C, Level 14. One sample 
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was submitted for radiocarbon dating from Zone IV C, Level 16 and yielded a date of 

3562+38 RCYBP (3722-3971 cal. BP). Merom cluster projectile points have been assigned 

to the Late Archaic period, ranging in age from 3600 to 3000 RCYBP (Justice 1987). Thus, 

the date is consistent with age ranges of projectile points from the Merom cluster 

throughout the Midcontinental and Eastern United States.  

 

Figure 5.12. Merom Cluster.  
FS#69-16, Zone IV C, Level 14. 

 
McWhinney Heavy Stemmed 

The North subunit at Crumps Sink yielded one McWhinney Heavy Stemmed 

projectile point, which is classified within the Late Archaic Stemmed cluster (Figure 5.13). 

The example recovered from Crumps Sink was found in Zone IV C, Level 15. The nearest 

associated date was Zone IV C, Level 16 at 3562+38 RCYBP (3722-3971) cal. BP. 
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McWhinney projectile points have been assigned to the Late Archaic period with dates 

ranging from 6000 to 3000 RCYBP (Justice 1987). This date is consistent with date ranges 

for this point type in the Midcontinental and Eastern United States.  

 

 

Figure 5.13. McWhinney Heavy Stemmed.  
FS#71-10, Zone IV C, Level 15. 

 
Table Rock Cluster 

 One Table Rock Cluster projectile point was recovered from the North half of Unit 

1 at Crumps Sink (Figure 5.14). Field Specimen #71-11 was recovered from Zone IV C, 

Level 15. The nearest associated date was Zone IV C, Level 16 at 3562+38 RCYBP (3722-

3971) cal. BP. Table Rock Cluster projectile points were manufactured during the Late 

Archaic period with dates ranging from 5000 to 3000 RCYBP (Justice 1987). Thus, this 
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radiocarbon date is consistent with accepted radiocarbon date ranges for Table Rock 

Cluster projectile points in the Midcontinental and Eastern United States. 

 

 

Figure 5.14. Table Rock Cluster.  
FS#71-11: Zone IV C, Level 15. 

 

Late Archaic Stemmed Cluster 

One Late Archaic Stemmed Cluster projectile point (FS#73-18) was found in Zone 

IV C, Level 16 (Figure 5.15). A radiocarbon date from Zone IV C, Level 16 was 3562+38 

RCYBP (3722-3971 cal. BP). Late Archaic Stemmed Cluster projectile points were 

manufactured during the Late Archaic period with dates ranging from 6000 to 3000 

RCYBP (Justice 1987). Thus, the radiocarbon date associated with the projectile point from 

Crumps Sink is consistent with date ranges for this point type in the Midcontinental and 

Eastern United States. 
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Figure 5.15. Late Archaic Stemmed Cluster.  
FS#73-18, Zone IV C, Level 16. 

 
Helton 

One corner notched projectile point was classified as a Helton due to similarities to 

corner notched Helton projectile points identified at Modoc Rock Shelter in southwest 

Illinois (Ahler and Koldehoff 2009) and the Lone Wolf site in east-central Missouri (Harl 

2009). Field Specimen #170-18 (Figure 5.16) was recovered from Zone IV F, Level 25. A 

charcoal sample from the same level as this projectile point yielded a radiocarbon date of 

4880+28 RCYBP (5588-5652 cal. BP). Helton phase deposits at Modoc have a date range 

of 5500-5000 RCYBP, and Helton phase deposits at Lone Wolf have a date range of 

approximately 5650-4850 RCYBP (Ahler and Koldehoff 2009; Harl 2009). The 

radiocarbon date associated with the Helton projectile point at Crumps Sink is at the later 
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portion of this accepted range, but there is overlap, demonstrating contemporaneity. The 

presence of this projectile point style this far to the east may be significant and warrants 

further attention. 

 

Figure 5.16. Helton.  
FS#170-18, Zone IV F, Level 25. 

 
Stanly Stemmed 

One projectile point assignable to the Stanly Stemmed Cluster was recovered in the 

north half of Unit 1. It was FS# 126-8 (Zone IV E, Level 22) (Figure 5.17). Stanly Stemmed 

projectile points were manufactured during the Middle Archaic period between 

approximately 8000 and 7000 RCYBP. The nearest radiocarbon date was from Zone IV E, 

Level 20 and had an age of 4118+31 RCYBP (4527-4815 cal. BP), inconsistent with the 

accepted age range of Stanly Stemmed projectile points in the Midcontinental and Eastern 

United States. A charcoal sample collected from below this Stanly Stemmed projectile 
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point, in Zone IV F, Level 25 yielded an age of 4880+28 RCYBP (5588-5652 cal. BP), 

also inconsistent with the accepted range for the Stanly Stemmed Cluster. As was noted 

earlier in this chapter, Zone IV E is interpreted as the B horizon of buried A horizon Ab2. 

This horizon seems to have formed during a period of enhanced sediment accumulation in 

the sink, and may indicate an erosional episode. Thus, the chronological inconsistency may 

be related to this projectile point being redeposited during this period of upslope 

erosion/downhill accumulation. 

 

Figure 5.17. Stanly Stemmed.  
FS#126-8, Zone IV E, Level 22. 
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Raddatz Side Notched 

Nine Raddatz Side Notched projectile points were recovered from Crumps Sink 

(Figures 5.18-5.20). Seven examples (Figure 5.18) were recovered from deposits with 

accepted age ranges for this projectile point type (FS#’s 150-11, 173-20, 176-8, 178-10, 

181-10, and 181-11).   

 

Figure 5.18. Raddatz Side Notched.  
a) FS#150-11, Zone IV F, Level 26; b) FS#150-10, Zone IV F, Level 26; c) FS#173-20, 
Zone IV F/G, Level 27; d) FS#176-8, Zone IV G, Level 29; e) FS#178-10, Zone IV G, 

Level 30; f) FS#181-10, Zone IV G, Level 31; g) FS#181-11, Zone IV G, Level 31. 

a b c 

d e f g 
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These seven projectile points were found in Zone IV F, Level 26 (n=2), Zone IV 

F/G, Level 27 (n=1), Zone IV G, Level 29 (n=1), Zone IV G, Level 30 (n=1), and Zone IV 

G, Level 31 (n=2). The dates that encompass the span of these projectile points were Zone 

IV F, Level 25 at 4880+28 RCYBP (5588-5652 cal. BP), Zone IV G, Level 28 at 4999+28 

RCYBP (5653-5884 cal. BP) and Zone IV G, Level 32 at 6092+29 RCYBP (6860-7153 

cal. BP). Raddatz Side Notched projectile points have distinct U-shaped side notches with 

prominent squared basal ears and a straight to concave basal edge. These points were often 

bifacially resharpened. Additionally, if the distal end of the blade was broken these 

projectile points were often repurposed into hafted endscrapers with the repurposed edge 

being steeply angled and sharply incurvate (Jefferies 1990; Justice 1987). 

Two of these seven specimens were repurposed into hafted endscrapers. Raddatz 

projectile points have a general geographic range within the lower Ohio River valley, 

though similar side notched variants are evident for the Middle Archaic period in other 

parts of the Midcontinent (see Emerson and McElrath 2009). They have been assigned to 

the Middle Archaic period with dates ranging from 8000 to 5000 RCYBP (Justice 1987). 

Stafford and Cantin (2009) note that these points need better dating, but based on dates 

from 15Pe925 in southern Indiana, they have assigned them to an age range of 5500-6300 

RCYBP in Southern Indiana. At the Knob Creek site a deep side notched point was 

associated with a radiocarbon date of 5830+90 RCYBP. McBride noted a number of Large 

Side Notched Specimens assignable to the Raddatz or Brannon Side Notched cluster at the 

late Middle Archaic Baker site in the middle Green River valley (McBride 2000). The 

specimens at Crumps Sink were recovered between Levels 26 and 31. Radiocarbon dates 
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from the same deposits suggest that the projectile points date ranges are between 4850 and 

6100 RCYBP (5600-7150 cal. BP), consistent with the previously reported ranges.  

The remaining two Raddatz Side Notched projectile points were recovered from 

shallower deposits. Field Specimen #126-7 (Figure 5.19) was recovered in Zone IV E, 

Level 22. The closest radiocarbon date is from Zone IV E, Level 20 with an age of 4118+31 

RCYBP (4527-4815 cal. BP). This is inconsistent with the accepted age range for this type. 

This projectile point was recovered from the accumulated sediment horizon Zone IV E 

along with the previously described Stanly Stemmed projectile point. As with the Stanly 

Stemmed projectile point, it is plausible that this Raddatz Side Notched projectile point 

was redeposited during a period of uphill erosion/downhill accumulation. 

 

Figure 5.19. Raddatz Side Notched.  
FS#126-7: Zone IV, Level 22. 

 

Field Specimen #18-9 is a heavily resharpened projectile point that was recovered 

in a very shallow stratum in Zone IIIA, Level 5B (Figure 5.20). Charcoal from Zone IIIA, 
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Level 6 yielded the closest associated radiocarbon date of 2866+28 RCYBP (2882-3070 

cal. BP). Again, this date is inconsistent with the expected range of Raddatz Side Notched 

points in the Midcontinental and Eastern United States (Justice 1987). Zone IIIA, Level 5B 

is at the surface of buried A horizon Ab1. This buried A horizon appears to have been 

stable for over 2000 years until it was capped by Zone II, which may be the result of 

erosion/deposition from historic agricultural activities around the sink. The most likely 

explanation for the stratigraphic placement of this projectile point is that it was redeposited 

at the time that buried A horizon Ab1 was at the surface. 

 

Figure 5.20. Raddatz Side Notched.  
FS#18-9: Zone III A, Level 5B. 

 

Formalized Groundstone Tools 

Though many groundstone objects were recovered from the North half of Unit 1 of 

Crumps Sink, not all could be classified as a specific formalized tool. However, the objects 
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that could be classified included pestle and flaked limestone hoe fragments. Six objects 

identified as fragments of pestles were found in the North half deposits of Unit 1. These 

were FS#’s 73-17, 141-7, 170-20, and 150-9. For FS#150-9 three pestle fragments were 

cataloged as a group. Five of the pestles fragments were found in Zone IV F, Levels 24-

26, with an associated radiocarbon date from Level 25 of 4880+28 RCYBP (5588-5652 

cal. BP). One pestle fragment (FS #73-17) was recovered from Zone IV C, Level 16, with 

an associated radiocarbon date in Level 16 of 3562+38 RCYBP (3722-3971 cal. BP). One 

flaked limestone hoe fragment (FS#27-8) was recovered from the North half and was in 

Zone IIIB, Level 8 and had an associated radiocarbon date in Level 8 of 3005+26 RCYBP 

(3078-3326 cal. BP) 

Conclusions 

 
 Archaeological investigations at Crumps Sink revealed that it has exceptional 

stratigraphic integrity. Evidence for this can be seen in minimal mixing of nut charcoal 

revealed by radiocarbon dates, the fact that projectile points and associated radiocarbon 

dates are consistent with accepted date ranges throughout the Midcontinental and Eastern 

United States with few exceptions, and the presence of primary features. Projectile point 

types represented in the north half of Unit 1 at Crumps Sink are Motley (n=3), Saratoga 

Broad Bladed (n=1), Merom (n=1), McWhinney Heavy Stemmed (n=1), Late Archaic 

Stemmed (n=1), Table Rock Cluster (n=1), Stanly Stemmed (n=1), Helton (n=1) and 

Raddatz Side Notched (n=9). The presence of these projectile points suggests cultural use 

of the site extending from the late Middle Archaic to Early Woodland periods. With depth, 

radiocarbon dates range from 2870-6100 RCYBP (2900-7200 cal. BP) suggesting cultural 
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occupation between late Middle Archaic and Terminal Late Archaic periods. Thus, 

projectile point typologies and radiocarbon dates complement each other well. Examples 

such as an outlier radiocarbon date in Zone IV B, and the three redeposited projectile points 

are informative about site formation processes, especially when considered in conjunction 

with descriptions of stratigraphic zones. These zones and the site formation processes that 

created them will be considered in greater detail in Chapter 6. 

Table 5.4. Inferred cultural periods for deposits at Crumps Sink.  
Ages calibrated using CALIB 7.1 (Stuiver et al. 2018). 

Level Zones Calib. BP* 
Two σ 

Projectile Points (North Half) Formalized 
Ground Stone 

Assigned Cultural Period 

1 I    Historic-Modern 
2-5A II    
5B-7 III A 2882-3070 Motley (n=1) 

Saratoga Broad Bladed (n=1) 
Raddatz Side Notched (n=1) 

 Terminal Archaic- 
Early Woodland 
 

8 III B 3078-3326  Limestone Hoe 
Fragment (n=1) 

9 IV A     
Late Archaic- 
Terminal Archaic 
 

10 IV A,  
IV B 

 Motley (n=1)  

11-13 IV B 4650-4857 Motley (n=1)  
14-16  

IV C 
 
3722-3971 

Merom (n=1) 
McWhinney Heavy Stemmed (n=1)  
Table Rock Cluster (n=1) 
Late Archaic Stemmed (n=1) 

Pestle Fragment 
(n=1) 

 
 
 
 
 
Late Archaic 
 
 

17-18 IV D 4446-4803   
19 IV D,  

IV E 
   

20  
IV E 

4527-4815   
21-22  Raddatz Side Notched (n=1) 

Stanly Stemmed (n=1) 
 

23-24  
IV F 

  Pestle Fragment 
(n=1) 

25-26 5588-5652 Helton (n=1) 
Raddatz Side Notched (n=2) 

Pestle Fragment 
(n=4) 

 
 
 
 
 
Late Middle Archaic 
 

27 IV F,  
IV G 

 Raddatz Side Notched (n=1)  

28-32 IV G 5653-5884 
6860-7153 

Raddatz Side Notched (n=1) 
Raddatz Side Notched (n=1) 
Raddatz Side Notched (n=2) 

 

33-34 IV H 6788-6957   
35 IV I    
36 IV I,  

V 
   

37-38 V 6887-7156 
7003-7241 

  

 
Also of note is the where formalized ground stone tools are present in the deposit 

(Table 5.4). Pestle fragments were found in Level 16, and Levels 24-26, placing the 
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appearance of such formalized tools at the end of the late Middle Archaic and into the Late 

Archaic period. In fact, with five of the six pestle fragments recovered in deposits dating 

to 4880+28 RCYBP (5588-5652 cal. BP), it suggests that at the site the greatest use of 

pestles was during late Middle to Late Archaic transition or the very early part of the Late 

Archaic period. This corresponds in age with intensive nut processing, likely associated 

with silviculture, identified in the middle Green River region (Wagner 2005). The single 

flaked limestone hoe fragment was recovered from Zone III B, Level 8 which had an 

associated Terminal Late Archaic period radiocarbon date. This corresponds in age with 

early plant domestication seen in the region and also cave exploration seen at Mammoth 

Cave. The changes in formalized ground stone tools present between the late Middle/Late 

Archaic and Terminal Late Archaic periods seems significant and could be another 

indicator of the shift from silvicultural to horticultural economies in the region.  

The presence of discernable, horizontally laid stratigraphic zones further suggests 

integrity of the deposits at Crumps Sink. In Chapter 6, I summarize the magnetic, chemical, 

trace elemental, and soil micromorphological characteristics of these layers and consider 

the results to understand site formation processes at Crumps Sink. With these data, I 

reconstruct environmental conditions and human activities throughout the site’s history and 

evaluate the timing and nature of anthropogenic land burning in the region. 

 

 

 

 
 

Copyright © Justin Nels Carlson 2019  
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CHAPTER 6.  SITE FORMATION PROCESSES AT CRUMPS SINK 

Geoarchaeology 

Waters (1992:3-4) defines geoarchaeology as the “application of concepts and 

methods of the geosciences to archaeological research”, utilizing “techniques and 

approaches from geomorphology (the study of landform origin and morphology), 

sedimentology (the study of the characteristics and formation of deposits), pedology (the 

study of soil formation and morphology), and geochronology (the study of time in a 

stratigraphic sequence) to investigate and interpret the sediments, soils, and landforms at 

archaeological sites”. Geoarchaeological investigations are multiscalar in their scope, 

considering space and time (Stein 1993). Through the contextual or human ecological 

approach, archaeologists must consider a variety of datasets including archaeological, 

geological, biological, and climatic (Butzer 1982). Stein (2005:121) utilizes concepts from 

sedimentology for interpreting site formation processes of archaeological deposits, writing 

“principles state that a sediment deposit of a solid material on the earth’s surface is the 

result of four factors: (1) source, (2) transport mechanism, (3) environment of deposition, 

and (4) post-depositional changes that alter the original character of the sediment.” One of 

the most common post-depositional changes is soil formation (Birkeland 1999; Holliday 

2004; Stein 2005).  

Soil Geomorphology 

Birkeland (1999:1) defines soil geomorphology as “the study of soils and their use 

in evaluating landform evolution and age, landform stability, surface processes, and past 

climates”. In 1941, Hans Jenny (cited in Barnes et al. 1998 and in Holliday 2004) proposed 
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that five factors are involved in soil formation: climate, organisms, topography, parent 

material, and time. As soils form, a variety of processes can occur, including eluviation (or 

transfer of particles out of a horizon) illuviation (transfer of particles into a horizon), 

leaching, erosion, calcification/ decalcification, salinization/desalinization, decomposition, 

humification, ferrugination (where iron is released and soils become more red), and 

gleization (graying as iron is reduced in anaerobic soils) (Holliday 2004). Periods of soil 

formation versus sediment deposition can indicate the relative stability of the local 

landscape over time (Holliday 2004). I utilize concepts from soil geomorphology to 

reconstruct paleoenvironmental conditions at Crumps Sink and test the hypothesis by 

Baskin et al. (1994) that barrens ecosystems in the Sinkhole Plain were created and 

maintained by indigenous land burning. 

Anthropogenic Impacts 

 Leach (1992:409) views “the geological environment of human beings as being 

culturally defined”. Humans have the ability to cause geomorphological change (Butzer 

1982). If shown to have been created by humans, the processes that have occurred on a 

landscape are manifestations of specific socioeconomic conditions, and their effects on the 

landscape can be traced back to these specific historical conditions (Widgren and 

Håkansson 2014). Thus, many site formation processes at archaeological sites are not fully 

explainable by environmental conditions. Anthropogenic inputs can be used as a measure 

of human activities and occupation intensity. Human alteration of vegetation structure and 

agricultural activity can lead to rapid erosion and sediment deposition through sheet-wash 

in sensitive karst terrains (Dicken and Brown 1938; Martin 2006; White 1988). Here, I 
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utilize the concept of anthropogenic inputs to understand the degree to which humans 

altered the landscape at Crumps Sink.   

Geoarchaeological Investigations at Crumps Sink 

Identifying the fingerprints of prehistoric forest management can prove to be 

difficult, requiring interdisciplinary approaches (Börjeson 2014). Using various datasets 

collected from Crumps Sink, I describe sediment deposition and soil formation in a karst 

landform to understand landscape responses to climatic processes and human activities 

over four millennia. To understand human and environmental impacts on the landform I 

utilized concepts and methods from soil geomorphology. I ask, how do events, such as (1) 

Middle Holocene warming and drying, (2) wetter and cooler conditions favoring forest 

development in the Late Holocene, and (3) human impacts on the environment, manifest 

in the sedimentological record?  

Recognizing that the depositional processes are localized, I still consider the phases 

of sediment accumulation and soil formation in relation to environmental conditions 

documented throughout the Interior Low Plateaus. I utilize observations from macroscopic 

field description, loss-on-ignition analysis, magnetic susceptibility analysis, and plant 

available phosphorous readings, soil micromorphology, and artifacts and ecofacts 

recovered, to identify buried soils and anthropogenic impacts in deposits. I use charcoal 

samples for radiocarbon dating to develop a chronology of these histories. Along with the 

archaeological record, I use soil geomorphology to reconstruct the paleoenvironmental 

history and evolution of a landscape (Birkeland 1999; Holliday 2004). The analyses 

summarized in this chapter were used to distinguish between climatic and human induced 
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impacts on the Crumps Sink landform and, ultimately, to determine whether increased 

forest burning occurred in the region during the Late Holocene, or even earlier. 

Landform Context of Crumps Sink 

Crumps Sink is a sinkhole with a surficial catchment area of 2.56 ha, and thus 

provides an opportunity to focus on localized site formation processes without 

complicating factors such as alluvial deposition from distant sources. The following 

analysis focuses on characterizing the Crumps Sink deposits site formation processes 

between 7200 and 2900 cal. BP. The underlying geology of Crumps Sink is the interface 

between Ste. Genevieve and St. Louis limestones. Crumps Cave was formed by an 

underground river, and the sink may have opened up with collapse of the cave before 7200 

years ago, which is the oldest radiocarbon date we have from the sink deposits. Based on 

the modified Köppen-Geiger world climate classification system, the Central Kentucky 

Karst is within a humid subtropical to temperate oceanic climate. The mean annual 

precipitation within an area of a radius of 35km surrounding Crumps Sink is 1300 mm per 

year, and the average annual temperature of 14.7 ̊C (Groves et al. 2013).  

Crumps Sink is located in the area of the Hammack-Baxter and Baxter-Nicholson 

soil associations. The landform surrounding the sinkhole is a Crider silt loam with 2-6 

percent slopes, while within the sinkhole, it is a Baxter gravelly silt loam with 12-20 

percent slopes (Mitchell 2004). Crider silt loams are generally found on undulating ridges 

and have a parent material of loess and residuum from limestone. They are well-drained 

and usually have a depth to bedrock exceeding 60 inches (152 cm). Baxter gravelly silt 

loams are generally found on hillsides and side slopes of depressions and form from 
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limestone residuum. They are well-drained and the depth to bedrock exceeds 60 inches 

(152 cm) (Mitchell 2004). 

Stratigraphy 

Field descriptions of the profile yielded important information that allowed for 

preliminary interpretations of the stratigraphic history of the site. Fourteen stratigraphic 

zones were identified (Table 6.1; Figure 6.2). Based on the field descriptions and the 

following lab analyses, I have separated the deposits conceptually into 5 soil/sediment units 

that will aid in reconstructing the depositional sequence at the site (Table 6.1). 
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Table 6.1. Zone descriptions and soil designations. 
Soil 
horizon 

Date Range 
(cal. BP) 

Zone Depth 
(mbs) 

Soil/Sediment Description 

A Modern I 0-0.10 10YR3/4, dark yellowish brown, silty clay loam, friable. 
B Historic II 0.10-0.45 10YR3/4, dark yellowish brown, silty loam, flecked with small fragments of 

charcoal and burned sediment. 
 
 
 
Ab1 

 
 
 
 
 
 
2880-3700 

III A 0.45-0.70 10YR2/2, very dark brown silt loam. There is a layer of well sorted rock (2-5 
cm in diameter) at the top of this horizon. The upper topography of this zone 
is undulating and the rock layer is discontinuous. Below rock layer, matrix is 
friable, with some gravel-sized limestone inclusions, and a low density of 
charcoal flecking. 

III B 0.70-0.80 10YR2/1 black to 10YR2/2 very dark brown, silt loam, friable, with white, 
degraded limestone fragments. The surface and basal topography is 
undulating, though the basal topography undulates more. This layer is 
discontinuous throughout the unit. 

 
 
 
B1 

IV A 0.80-0.95 10YR3/2 very dark grayish brown, silty clay loam, friable with some 
limestone inclusions. Zone IV A has much pore space. Surface and basal 
topography range from planar to wavy. Zone IV A is slightly more gray than 
Zone IV B. 

IV B 0.95-1.35 10YR3/2 very dark grayish brown to 10YR 3/3 dark brown, silt loam with 
some clay, friable, flecked with high density of large pieces of charcoal (> 2 
cm in diameter), poorly sorted angular limestone, burned sediment, and 
terrestrial gastropod shells. Zone IV B has much pore space. Pockets of 
diffuse silt (10YR 5/6 yellowish brown) are evident in matrix. 

 
 
Ab2 

 
 
 
3720-5590 

IV C 1.35-1.60 10YR3/2 very dark grayish brown, silt loam, friable to very friable, much 
pore space, higher density of subangular-angular poorly sorted limestone than 
the above Zone IV B and the lower Zone IV D. Flecked with a high density 
of charcoal, burned sediment, terrestrial gastropods, and some mussel shell. 

IV D 1.60-1.85 10YR3/2 very dark grayish brown to 10YR 3/3 dark brown, silty clay loam, 
friable to very friable. Zone IV D has much pore space. In relation to Zone IV 
C it has a lower density of charcoal flecking, burned sediment, and sub-
angular limestone. Zone IV D is slightly grayer than IV E. 

 
B2 

IV E 1.85-2.20 10YR3/3 dark brown silt loam, friable, flecked with charcoal, and subangular-
angular limestone. Zone IV E has much pore space. Lower density of 
limestone compared to the above Zone IV D and below Zone IV F. 

 
Ab3 

 
 
 
 
5590-6950 

IV F 2.20-2.65 10YR3/2 very dark grayish brown silt loam, friable with dense charcoal 
flecking throughout. There is an increase in poorly sorted, subangular-angular 
limestone compared to IV E. Limestone ranges in size from small to large 
gravels, often oriented horizontally. Zone IV F is less porous than any of the 
Zone IV zones that rest above Zone IV F. The upper and lower boundaries 
are clear to gradual.  

 
 
B3 

IV G 2.65-3.20 10YR3/3 dark brown silt loam. Zone IV G is less friable and porous (low 
porosity) than Zone IV F. Zone IV G has a lower density of charcoal flecking 
and subangular-angular limestone than Zone IV F. Limestone ranges in size 
from small to medium gravel. 

IV H 3.20-3.40 7.5YR3/3 dark brown silty clay loam. Zone IV H contains a similar amount 
of charcoal to previous layer. Zone IV H is distinguished from Zone IV G by 
the presence of moderately sorted gravel sized reddish limestone. Zone IV G 
has low porosity. 

Ab4 6880-7240  IV I 3.40-3.55 7.5YR3/3 dark brown silty clay loam, flecked with some charcoal and 
limestone. Zone IV I is less friable than friable than the above zones within 
Zone IV, but it is still easily broken. Feature 5 and an ash layer are evident at 
the interface between IV H and IV I. 

B4 V 3.55-3.80 7.5YR3/4 dark brown silty clay loam, with few inclusions. Very little 
charcoal is apparent and this charcoal is found towards the upper boundary of 
this zone. No charcoal is apparent at the base of the excavation. This zone 
continues beyond the final depth of hand excavations. 
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Following excavation of cultural deposits, a bucket auger was used to core the lower 

archaeologically sterile deposits. With depth, retrieved loose sediment samples from these 

tests were described (Table 6.2), with half of the sample screened in the field, and the 

remainder collected for bulk sediment analyses. 

Table 6.2. Sediment descriptions from archaeologically sterile deposits. 
Soil horizon Date Range Zone Depth (mbs) Soil/Sediment Description 
- - - 3.8-3.94 7.5YR3/3 dark brown silty clay loam 
- - - 3.94-4.05 7.5YR3/3 dark brown silty clay loam 
- - - 4.05-4.16 7.5YR4/2 brown silt clay loam small gravel 
- - - 4.16-4.28 7.5YR4/2 brown silt clay loam small gravel 
- - - 4.28-4.40 7.5YR5/3 brown silt clay loam small gravel 
- - - 4.40-4.51 7.5YR5/3 brown silt clay loam small gravel (pockets of grey silt) much 

smaller pebbles <.5 cm (Sieved 1/2/17 No charcoal found) 
- - - 4.51-4.60 7.5YR/5(2 or 3) brown silt loam, very fine, cement-like 
- - - 4.60-4.71 7.5YR5/3 brown silt loam, very fine, cement-like, inclusions absent 
- - - 4.71-4.81 7.5YR5/3 brown silt loam, very fine, cement-like, inclusions absent 
- - - 4.81-4.91 7.5YR5/3 brown silt loam, very fine, cement-like, inclusions absent 
- - - 4.91-5.01 7.5YR5/3 brown silt loam, very fine, cement-like, inclusions absent 

(possible charcoal) (sieved 1/2/17, No charcoal found) 
- - - 5.01-5.12 7.5YR5/3 brown silt loam, very fine, cement-like, inclusions absent 
- - - 5.12-5.17 7.5YR5/3 brown silt loam, very fine, cement-like, small inclusions 

(began hitting rock layer). Resting atop bedrock at base of sinkhole or 
collapsed roof-fall of Crumps Cave. 

 

Field Methods 

Soil Profiles and Sampling 

Each exposed profile in the test unit was documented with scale drawings and high-

resolution photography. Loose, unconsolidated sediments were collected systematically in 

a vertical column every five centimeters as one cup volume (500 gram) samples from the 

South profile to capture the entire vertical extent of the profile (Figure 6.2). The first 3.8 

meters samples were collected every 5cm (0-5, 5-10, 10-15…..). The cmbs captures the 

midpoint of the sample (e.g., if 0-5 cmbs, then here documented as 2.5 cmbs). This is to 

allow creation of line graphs documenting change over time. After 3.8 meters samples were 
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collected with a bucket auger with thickness of each sample ranging from 10-14 cm. 

Midpoints for these samples are also displayed here.  

 

Figure 6.1. Collection of soil micromorphology samples from North profile. 
 

Forty-six in situ soil samples were collected from the North profile in overlapping 

sections of burlap inundated with plaster, as outlined in Goldberg and MacPhail (2003), 

capturing nearly the entire vertical extent of the profile. After sample locations were 

determined, blocks were carved into the wall, and strips of burlap were dipped in fast-

setting plaster and placed directly on these blocks to encapsulate them. They were left to 

dry overnight (Figure 6.1). Each sample was assigned a numeric identification based on 

location in the wall and labelled with an arrow to clarify orientation. Labels were written 

on the side of the sample that was once the profile face. Photographs were taken, and their 

location on the profile was documented. 
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Figure 6.2. North and South Profile walls and locations of analyzed soil samples. 
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Upon collection, samples were sealed and transported to the UK Archaeology 

Laboratory in Lexington, and ten selected samples (Figure 6.2) were commercially 

prepared as thin-sections by Applied Petrographic Services, Inc. (Greensburg, PA) for 

micromorphological analyses with a petrographic microscope. 

Laboratory Methods 

 I performed magnetic susceptibility and loss-on-ignition analyses in the 

Geoarchaeology Laboratory at Washington University in St. Louis. 

Magnetic Susceptibility 

Soil formation and exposure to fire will alter the magnetic signatures of the soils, 

forming secondary ferromagnetic oxides that make soils redder and elevate the magnetic 

susceptibility (Holliday 2004; Teixeira et al. 2002).  Therefore, magnetic susceptibility 

analysis is useful for identifying periods of landform stability and also for providing 

evidence of human land burning that may have caused erosion. I conducted magnetic 

susceptibility analysis using a Bartington MS2B sensor as outlined by Dearing (1999). For 

the analysis, approximately 10 grams of sample in a sealed polystyrene bottle was placed 

in the sample sensor and measured for magnetic susceptibility. The higher the presence of 

ultrafine magnetic grains in a sedimentary matrix, the higher the frequency dependence. 

Zones that exhibit both higher magnetic susceptibility readings and frequency dependence 

readings may be interpreted as the result of soil formation (Dalan 2006).  

Magnetic susceptibility results are reported in high field and percent frequency 

dependence. Table 6.3 shows the low field values and frequency dependence 
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measurements. Magnetic susceptibility demonstrates the presence of five soil horizons at 

Crumps Sink, including one modern soil and four buried soils (Figure 6.3). 

Loss-on-Ignition 

Loss-on-ignition was determined by weighing of the sample before and after being 

burned in an oven at 550 ̊C and 1000 ̊C resulting in measurement of the percentage of 

organic matter (OM) and calcium carbonate (CaCo3) content, respectively. Spikes in 

calcium carbonate may indicate environmental dynamics such as arid environments or soil 

formation such as a calcium enriched B horizon. Increased calcium carbonate may also 

result from inputs such as plant ash, a possibility that is explored for Crumps Sink with soil 

micromorphology. Spikes in soil organic matter may indicate buried A horizons and/or 

periods of increase in addition of organic material, such as charcoal (Holliday 2004).  

Loss-on-ignition was performed following the procedures outlined by Rosenmeier 

and Abbott (2005). I first weighed the samples in a crucible (4-6 grams per crucible) and 

then placed them in a Model 30 GC Lab Oven (Quincy Lab, Inc., Chicago IL) overnight at 

200 ̊C to remove all moisture. Upon removal from the oven, the sample material was 

transferred to smaller (pre-weighed) crucibles. All measurements of mass were made on a 

Sartorius analytical balance (Goettingen, Germany) that measured mass to one thousandth 

of a gram. Then, each crucible with sample was weighed before being placed in a Vulcan 

oven at 550 ̊C for the organic content measurement. After burning, the samples were 

allowed to cool, and then reweighed to record the change from pre-ignition to post-ignition. 

Then, they were again placed in the oven at a temperature of 1000 ̊C for the calcium 

carbonate content measurement. After cooling, the samples were weighed to record the 

post-ignition weight. 
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Table 6.3. Data from bulk sediment analyses. 
(Table continues on following page) 

  Magnetic Susceptibility Loss-on-Ignition Phosphorous 
cmbs Zone LF (x) % fd % OM % CaCO3 PPM 
2.5 I 

 
1.98E-02 11.8710 7.7 19.2 94.04 

7.5 1.78E-02 12.0036 4.9 12.2 85.97 
12.5  

 
 
 
II 
 

1.77E-02 11.8903 3.7 9.2 87.28 
17.5 1.74E-02 11.7923 3.4 8.6 89.90 
22.5 1.85E-02 11.8781 3.5 8.8 98.19 
27.5 1.86E-02 11.6439 3.6 9.2 101.46 
32.5 1.89E-02 12.1587 4.0 10.0 99.94 
37.5 2.01E-02 12.4845 4.5 11.2 101.46 
42.5 2.36E-02 12.5108 5.2 13.2 120.88 
47.5  

 
III A 
 

3.26E-02 12.8682 7.4 18.3 128.74 
52.5 3.64E-02 13.2003 8.6 21.2 125.47 
57.5 3.82E-02 12.7594 8.3 20.6 126.56 
62.5 3.76E-02 12.6768 7.9 20.0 137.68 
67.5 3.63E-02 12.3035 8.1 20.6 159.94 
72.5      

III B 
3.65E-02 12.3394 8.3 24.2 195.29 

77.5 3.24E-02 12.3943 6.8 36.3 163.43 
82.5 IV A 

 
2.66E-02 12.3671 5.7 47.3 133.32 

87.5 2.48E-02 12.5922 5.7 45.6 128.30 
92.5 IV A,  

IV B 
2.46E-02 12.2197 5.1 43.6 126.99 

97.5 2.38E-02 12.4182 4.9 44.7 130.48 
102.5   

 
IV B 
 

2.34E-02 12.2631 5.3 44.0 125.90 
107.5 2.27E-02 12.2795 5.2 42.4 129.61 
112.5 2.38E-02 11.8507 5.5 43.0 132.23 
117.5 2.50E-02 12.2262 5.7 38.3 132.45 
122.5 2.68E-02 12.3761 5.1 37.3 132.67 
127.5 2.71E-02 12.1987 5.6 36.9 125.03 
132.5  

 
 
IV C 
 

2.71E-02 12.0520 5.4 38.7 125.47 
137.5 2.83E-02 12.0302 5.6 39.0 117.83 
142.5 2.84E-02 12.1267 5.9 39.0 114.12 
147.5 3.15E-02 12.5585 6.0 37.2 113.68 
152.5 3.35E-02 12.3258 5.9 36.2 114.77 
157.5 3.45E-02 12.5683 6.1 33.4 107.14 
162.5  

 
IV D 
 

3.67E-02 12.6904 6.5 33.1 101.03 
167.5 3.59E-02 12.6851 6.0 32.4 96.44 
172.5 3.54E-02 12.4700 5.4 30.9 87.28 
177.5 3.21E-02 12.2968 5.1 30.7 90.55 
182.5 IV D,  

IV E 
3.06E-02 12.3563 4.6 30.6 88.59 

187.5 2.79E-02 12.7285 3.9 29.4 90.55 
192.5  

 
 
IV E 
 

2.54E-02 12.6677 3.8 31.9 87.50 
197.5 2.44E-02 12.4438 4.0 36.6 88.15 
202.5 2.29E-02 12.6279 3.8 30.0 84.23 
207.5 2.31E-02 12.5790 3.5 27.7 84.88 
212.5 2.33E-02 12.4561 3.6 32.6 89.03 
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  Magnetic Susceptibility Loss-on-Ignition Phosphorous 
cmbs Zone LF (x) % fd % OM % CaCO3 PPM 
217.5 2.38E-02 12.2404 4.3 35.2 85.75 
222.5  

 
 
 
IV F 
 

2.34E-02 12.4643 3.8 35.4 87.93 
227.5 2.74E-02 12.3313 3.7 30.5 86.41 
232.5 2.65E-02 12.5036 3.9 26.3 84.23 
237.5 2.62E-02 12.6721 3.9 24.4 78.77 
242.5 2.69E-02 12.5586 4.1 20.3 77.46 
247.5 2.89E-02 12.4685 4.4 18.1 82.92 
252.5 2.91E-02 12.5926 4.7 17.8 109.54 
257.5 2.94E-02 12.5545 4.5 17.0 84.44 
262.5 IV F,  

IV G 
2.97E-02 12.9896 4.6 15.9 85.10 

267.5 2.78E-02 12.6283 4.1 14.0 80.30 
272.5  

 
 
 
 
IV G 
 

2.70E-02 12.8203 4.3 14.3 75.72 
277.5 2.63E-02 12.7597 4.1 13.6 75.06 
282.5 2.58E-02 12.7631 3.7 14.5 65.46 
287.5 2.59E-02 12.9232 3.8 15.2 61.97 
292.5 2.42E-02 12.7400 3.5 13.3 59.57 
297.5 2.47E-02 12.6616 3.7 13.1 62.84 
302.5 2.39E-02 12.6410 3.6 11.3 65.46 
307.5 2.33E-02 12.5106 3.7 10.1 71.57 
312.5 2.17E-02 12.8015 3.5 9.8 83.57 
317.5 1.99E-02 12.4964 3.3 9.3 85.97 
322.5  

 
IV H 
 

1.82E-02 12.3944 3.1 8.6 86.41 
327.5 1.82E-02 12.7130 3.2 8.9 82.48 
332.5 1.85E-02 12.3267 3.3 9.3 87.06 
337.5 1.91E-02 11.8734 3.3 9.6 90.55 
342.5 IV I 

 
2.06E-02 11.7979 3.3 9.5 102.34 

347.5 2.21E-02 12.0023 3.2 9.4 97.10 
352.5 IV I,  

V 
2.26E-02 12.6920 3.2 9.7 87.06 

357.5 2.14E-02 11.9690 3.0 10.3 73.97 
362.5  

 
V 
 

1.95E-02 12.1560 3.1 9.3 69.17 
367.5 1.86E-02 12.6464 3.2 9.7 58.91 
372.5 1.77E-02 12.0726 2.5 8.9 56.08 
377.5 1.73E-02 11.9790 2.5 8.4 63.93 
387 - 1.20E-02 11.9572 2.2 7.0 49.31 
410.5 - 1.01E-02 11.3786 1.9 6.3 45.39 
422 - 8.44E-03 10.5555 1.8 6.0 43.86 
434 - 8.65E-03 10.9176 1.9 6.3 38.84 
445.5 - 8.77E-03 10.7577 2.2 6.8 39.71 
455.5 - 8.73E-03 10.6326 2.0 6.4 38.84 
465.5 - 8.90E-03 10.6299 2.0 6.6 40.15 
476 - 8.72E-03 10.5836 2.0 6.4 40.80 
486 - 8.73E-03 10.4568 2.1 6.6 41.02 
496 - 9.71E-03 10.4346 2.2 6.9 42.11 
506.5 - 9.21E-03 10.5392 2.2 6.7 41.68 
514.5 - 8.08E-03 10.0828 2.2 6.9 41.24 
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Plant Available Phosphorous 

Phosphorous concentrations in soils are an indicator of human occupation intensity. 

Anthropogenic soil phosphorous is added to soil as human waste, food refuse, and animal 

manure. Phosphorous fixes to soil particles and is geochemically stable (Holliday 2004). 

This analysis was undertaken to identify periods when humans were intensively using the 

sink, with the goal of relating these periods with soil geomorphological histories and to 

understand to what degree human activities left a signature on the landscape and also 

whether there were periods when humans influenced landform stability and instability. 

Phosphorous analyses were undertaken by the University of Kentucky’s Regulatory 

Services Soils Laboratory. The analysis is part of a routine soil test in which nutrients are 

extracted through Mehlich III and analyzed by inductively coupled plasma spectroscopy 

(http://soils.rs.uky.edu/tests/methods.php#Detailed).  The analyses are reported as pounds 

per acre, which I have converted to parts per million (ppm) in Table 6.3. 

Bulk Sediment Results 

The magnetic susceptibility signature elevates when late Middle Archaic hunter-

gatherers begin using the sink and this signature remains evident for the extent the 

archaeological sequence (Table 6.4; Figure 6.3). This likely relates to the use of 

combustion features such as hearths at the site. However, magnetic susceptibility signatures 

correlate most dramatically with soil horizons. For example, magnetic susceptibility 

signatures are lower in correlation with B horizons and greater in correlation with A 

horizons. Though soil formation occurred in the Middle Holocene, the most pronounced 

soil horizons occur during the early Late Holocene which may relate to increasingly 

http://soils.rs.uky.edu/tests/methods.php#Detailed
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forested conditions in the sinkhole. Buried A horizons Ab1 and Ab2 have the most distinct 

elevated magnetic signatures, and Ab3 and Ab4 have the least distinct, but still apparent, 

spikes in magnetic susceptibility (Figure 6.3). The most clear correlative spike between 

magnetic susceptibility and frequency dependence is in Ab1. The modern A horizon has 

very weak soil development and is indicated by slightly heightened magnetic susceptibility 

readings at ground surface. Below Ab1, frequency dependence percentages remain 

consistent until dropping relatively significantly to their lowest values in archaeologically 

sterile deposits. These data suggest that soil development played a role in magnetic 

signatures at the site. This soil formation may have occurred during periods of decreased 

sediment accumulation allowing for organic buildup. Buried soils Ab1, Ab2, Ab3, and Ab4 

may be interpreted as formed during periods of landform stability, though the degree of 

landform stability is differential. For example, Ab4 may have been formed during a brief 

episode of decreased sediment accumulation, as it was faint during field documentation 

and in the signatures from lab analyses.  

Table 6.4. Means for soil stratigraphic units from Crumps Sink. 
Soil Stratigraphic Unit Pedon Distinction Xlf  

(mean) 
Xfd  
(mean) 

% OM 
(mean) 

% CaCO3 
(mean) 

Plant Available 
Phosphorous 
(ppm) 

1 A 1.88E-02 11.94 6.30 15.70 90.01 
B 1.93E-02 12.05 3.99 10.03 99.87 

2 Ab1 3.57E-02 12.65 7.91 23.03 148.16 
B1 2.49E-02 12.28 5.38 42.31 129.70 

3 Ab2 3.23E-02 12.38 5.79 31.16 106.83 
B2 2.38E-02 12.50 3.83 32.34 86.59 

4 Ab3 2.69E-02 12.52 4.13 23.73 86.46 
B3 2.26E-02 12.60 3.58 10.06 75.26 

5 Ab4 2.13E-02 12.33 3.25 9.45 99.72 
B4 1.83E-02 12.21 2.83 9.08 62.02 

Culturally Sterile B4 continued 9.16E-03 10.74 2.06 6.58 41.91 
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Figure 6.3. Line graph showing trends in bulk sediment analysis. 
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Soil Ab3 was more pronounced than Ab4. This pattern of more pronounced soils 

in younger deposits is also exhibited when comparing Ab3 to Ab2, and Ab2 to Ab1, which 

could suggest leaching in the profile over time, or what I argue to be the more plausible 

explanation, periods of landform stability became longer as climates trended from warmer 

and drier to wetter and cooler between the Middle and Late Holocene. That Ab1 had the 

highest magnetic susceptibility in conjunction with a higher frequency dependence 

suggests that this soil formed during an extensive period of landform stability, perhaps 

lasting over two millennia. However, despite this seeming movement toward more 

prominent soil development, it is evident that these buried soils are capped by lighter 

sediments.  

Lower magnetic susceptibility readings correspond with these buried B horizons 

(B, B1, B2, B3, B4). These zones likely formed during periods of enhanced sediment 

accumulation and suppressed biological activity and organic buildup. Thus, the soil 

geomorphological model proposed for Crumps Sink is that periods of enhanced 

sedimentation occurred, suggesting landform instability. After, sediment accumulation, 

soil development occurred at the ground surface within these sediments. Eventually, soil 

surfaces were capped by another episode of enhanced sedimentation. Whether climate or 

humans influenced periods of landform stability vs. periods of landform instability must 

be considered for each horizon. When comparing archaeological deposits with 

archaeologically sterile deposits, magnetic susceptibility values are higher after human 

occupation in the sink, even during periods of enhanced sediment accumulation. This 
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indicates that human activities left an identifiable signature in soils throughout human 

history at the site, starting in the late Middle Archaic period. 

The percent organic matter (%OM) values are greatest in the modern A horizon and 

buried A horizon Ab1. Buried A horizon Ab2 has a higher %OM than B horizons B1 and 

B2. Though minor blips, soil horizons Ab3 and Ab4 are exhibited in the %OM at the site. 

Comparing the archaeological and archaeologically sterile deposits, it is apparent that 

%OM is higher in archaeological deposits than in archaeologically sterile deposits from 

prior to 7200 cal. BP. Also of note is that average %OM increases at approximately 180 

cmbs and remains relatively high to around 45 cmbs, encompassing horizons Ab2, B1, and 

Ab1. Percent calcium carbonate (%CaCO3) values increase slightly after human 

occupation of the sink, though they are increasingly pronounced between 240 and 50 cmbs, 

beginning in the upper portion of Ab3, and elevating through B2, Ab2, B1, and the lower 

portion of Ab1, which is correlated with Zone III B. More prominent spikes in this range 

trend with horizons B1 and B2. Concentrations of calcium carbonate in Late Holocenen B 

horizons suggest downward movement of calcium carbonate precipitates, a process 

associated with soil formation. The very high levels of calcium carbonate in these soil 

levels relative to the rest of the profile may be due to specific anthropogenic inputs and 

environmental trends at the time of their formation. Possible anthropogenic and 

environmental contributions of calcium carbonate will be discussed in the soil 

micromorphology section of this chapter. 

Plant available phosphorous levels are enhanced throughout human occupation in 

the sinkhole, suggesting human impacts on soil chemistry through various camp activities 

as early as the late Middle Archaic. Spikes are exhibited in correlation with soil horizons 
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Ab4, Ab3, and Ab1. The general values are increasingly more pronounced between 160 

and 40 cmbs, encompassing horizons Ab1, B1, and Ab2. The results indicate that by the 

Late Holocene or Late Archaic/Terminal Late Archaic phosphorous levels steadily 

increased. Higher values may relate to the more intensive use of the sink. If environmental 

conditions were wetter during this time then heightened phosphorous levels may also be 

related to weathering of bone and plant ash incorporated into the soil/sediment matrix. 

For all bulk sediment analyses, the data show consistent, though subtle, background 

traces during human occupation at the site, suggesting that human activities left discernable 

chemical, magnetic, and mineral signatures. Certain datasets trend with specific site 

formation processes. Magnetic susceptibility and organic matter spikes correspond with 

periods of soil formation, with the most prominent spikes being in the Late Holocene buried 

A horizons. The lowest values of magnetic susceptibility are correlated with B horizons. 

Higher percentages of calcium carbonate are correlated with Late Holocene B horizons. 

One very distinct occurrence is that of the increasing organic matter, calcium carbonate, 

and plant available phosphorous signatures starting at 160-180 cmbs and trending upward. 

These increased levels may indicate increased human impacts on the landform by additions 

of charcoal and plant ash through burning and other activities. Increased precipitation 

during the Late Holocene may have resulted in dissolution of phosphorous rich 

archaeological components such as animal bone. These possibilities are explored further 

in the soil micromorphological analysis. 

Coarse Fraction (>6.35mm) 

 The mass of three artifact/ecofact classes (lithic debitage, bone, and burned 

sediment measured in grams per excavation level) is used as a proxy to understand general 
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trends in human occupation intensity in the sinkhole. Due to its ubiquitous nature in 

archaeological sites, lithic debitage is a good indicator of human occupation intensity over 

time. For this study, utilized flakes, retouched flakes, and formal tools are not included in 

this quantity. For this study, bone fragments are used as a proxy for intensity of hunting 

and food processing. Bone tools are not included in this quantity. 

The third indicator of human activity that is considered is burned sediment. During 

camp activities, such as the use of hearths, the heating of sediments can cause sediments to 

become reddened from an increase in ferromagnetic oxides. Many of the burned sediment 

nodules recovered from Crumps Sink have nutshell impressions, suggesting that these 

nodules were created by burning nut shell after the processing of nut mast. The mass of 

burned sediment by level may indicate when humans increased the use of combustion 

features, which presumably are related to processing of nut mast. In addition to these 

artifact classes, I quantify kg of rock recovered per level. This rock may have been 

deposited during erosion and exposure of bedrock around the rim of the sink or it could 

have been deposited in the sink from the gathering rock by hunter-gatherers for hearths, 

hot-rock cooking techniques, and other camp activities. 
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Table 6.5. Mass of recovered materials (0.25 inch/6.35 mm mesh).  
Note different collection methodology was implemented in Levels 1-7 vs. 8-38. 

 Anthropogenic Geogenic 
Level Zone Flakes (g) Bone (g) Burned 

Sediment (g) 
Rock (kg) 

1 I 103.30 4.80 - - 
2  

II 
54.60 11.90 - - 

3 22.00 4.40 - - 
4 2.70 0.00 - - 
5A 137.40 1.00 - - 
5B  

III A 
138.20 11.80 - - 

6 155.70 23.10 - - 
7 123.00 60.00 - - 
8 III B 141.20 200.00 7.30 32.87 
9 IV A 258.17 169.57 1.78 14.78 
10 IV A, B 112.80 161.70 14.00 21.90 
11  

IV B 
184.80 193.40 18.80 24.41 

12 142.00 163.90 4.70 21.69 
13 152.40 250.00 7.30 20.07 
14  

IV C 
161.20 254.80 1.60 19.51 

15 106.80 276.30 22.10 23.01 
16 179.20 576.50 43.70 26.59 
17 IV D 171.20 454.50 23.90 21.91 
18 68.93 206.29 28.12 10.87 
19 IVD, E 110.10 222.90 15.60 10.60 
20  

IV E 
82.60 277.10 39.20 17.59 

21 69.20 134.80 17.20 6.65 
22 105.90 114.40 10.40 12.01 
23  

IV F 
132.20 162.20 3.60 11.57 

24 143.50 138.40 18.50 16.81 
25 108.10 114.70 12.90 15.68 
26 177.40 189.40 10.80 17.70 
27 IV F, G 76.60 233.84 8.38 16.45 
28  

 
IV G 

121.56 122.29 3.59 16.16 
29 107.70 247.00 16.70 12.43 
30 76.30 138.60 11.90 9.46 
31 66.00 54.50 2.40 9.64 
32 135.20 83.90 1.60 15.34 
33 IV H 98.00 83.20 0.00 20.49 
34 150.50 104.90 4.50 25.05 
35 IV I 35.90 72.10 0.00 13.82 
36 IV I, V 33.10 21.50 0.00 8.62 
37 V 1.50 0.20 0.00 6.50 
38 0.00 0.20 0.00 0.47 
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Figure 6.4. Showing actual masses of coarse fraction. 
 
Coarse Fraction Results 

The results of coarse fraction analysis are presented as a bar graph and the 

significance of the presence of different artifact classes is assess using Chi-Squared 

Goodness of Fit statistical analysis (Zar 1984), where I compared the expected g/m3 values 

with the observed g/m3 values for lithic debitage, bone, burned sediment, and expected 
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versus observed kg/m3 values for rock from each ten-cm-level at Crumps Sink (Figure 6.4; 

Table 6.6). The null hypothesis is that material would be distributed evenly throughout the 

deposit. However, trends emerge that show periods of significantly greater than or lower 

than expected levels of these materials. 

Table 6.6. Chi-Square goodness of fit for coarse fraction. 
Soil Lithic Debitage 

g/m3 
Bone 
g/m3 

Burned Sediment 
g/m3 

Rock 
kg/m3 

 Exp. Obs. χ2 Exp. Obs. χ2 Exp. Obs. χ2 Exp. Obs. χ2 
Ab1 1083.65 1594.57  240.89 1464.03 842.57 263.80 39.80 7.3 26.54 150.57 94.50 20.88 
B1 1238.58 1843.43 295.37 1673.34 1942.18 43.19 45.48 32.6 3.65 172.09 257.13 42.02 
Ab2 1547.59 1374.66 19.32 2090.81 3536.78 1000.01 56.83 119.42 68.93 215.03 203.78 0.59 
B2 928.72 859.00 5.23 1254.72 1754.33 198.94 34.11 66.8 31.33 129.04 156.17 5.70 
Ab3 1238.58 1403.00 21.83 1673.34 1511.75 15.60 45.48 45.8 0.00 172.09 154.4 1.82 
B3 2166.46 1078.94 545.91 2926.90 1191.99 1028.36 79.56 40.69 18.99 301.02 178.6 49.79 
Ab4 309.86 359 7.79 418.62 721 218.42 11.38 0 11.38 43.05 138.2 210.30 

 

 
Figure 6.5. Chi-square goodness of fit for coarse fraction. 
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Lithic debitage is present throughout the deposits, but greater than expected 

quantities are exhibited in buried horizons Ab1 and B1 (Figure 6.4). Much lower than 

expected quantities are seen in B3. The greater amount of lithic debitage in B1 may indicate 

increased human occupation on the landform. The greater levels of lithic debitage in Ab1 

may be related to it being a former surface on the landform that accumulated a much lower 

amount of sediment over a long period of time, with more flakes accumulating from visits 

to the site for perhaps over two millennia. The much lower amount of lithic debitage in B3 

may be a result of a higher ratio of sedimentation than deposition of lithic debitage or less 

prominent use of the site at this time.  Bone quantities are much higher than expected in 

Ab2. This may relate to increased processing of faunal remains in the sink at this time. As 

seen with lithic debitage, bone quantities are much lower than expected in B3, which also 

may relate to more rapid sedimentation or less processing of faunal resources at the site 

during this time (Table 6.6, Figure 6.5). 

Burned sediment nodules are increasingly represented from B3 to Ab3 to B2 and 

reach their highest quantities in Ab2. This may be due to increased use of in situ 

combustion features at the site for daily camp activities during the Late Archaic period. 

Burned sediment nodules may have first formed as part of larger, intact combustion 

features that were later broken up by trampling and soil formation. Lower than expected 

levels of burned sediment were observed in Ab4 (initial human occupation) and Ab1. For 

Ab4, the low representation of burned sediment nodules may be due to minimal human 

activity in this early period. However, a combustion feature (Feature 5) is evident on top 

of this buried A horizon. For Ab1, Native Americans may have been involved in different 

activities at the site. For example, it seems that there was increased use of cave entrances 
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and deep cave zones (including at Crumps Cave) during the time of formation of Ab1, 

which based on radiocarbon dates and projectile points, was first formed during the 

Terminal Late Archaic and Early Woodland periods. Another potential reason for the low 

amount of burned sediment in Ab1 is that this buried horizon was once at the surface for 

at least two millennia. Weathering activities may have obliterated the traces of this artifact 

class over time. Also of note is the significant decrease in burned sediment in horizon B1. 

As will be discussed in the soil micromorphology section, this is a period of increased plant 

ash deposition. Charcoal was also prominent in this zone. With the high amounts of plant 

ash and charcoal, it is odd that burned sediment nodule quantities are lower in this zone. 

One explanation could be that the burning exhibited in this horizon occurred elsewhere on 

the landform, rather than in place as would be suggested by burned sediment nodules. 

Rock levels are higher than expected in Ab4, Ab1, and B1 and lower than expected 

in B3 (Table 6.6, Figure 6.5). Based on the bar graph, rock levels seem to trend higher with 

buried A horizons (Figure 6.4). Rock levels are consistently high between 170 and 70 cmbs, 

with the greatest mass at 70 to 80 cmbs. Increased rock quantities may indicate exposure 

of bedrock around the sinkhole rim or humans actively bringing rock into the site. That 

larger amounts of rock generally trend with buried soils, which may relate to a higher rock 

to sediment deposition ratio or to no sediment uphill to be redeposited.  Low levels of rock 

in B3 may relate to secondarily deposited loess. 

Overall, the data suggests lower than expected values of artifact classes in B3. This 

may relate to increased sedimentation associated with erosion during the Middle Holocene, 

diluting the archaeological record. There are increased levels of lithic debitage, bone, 

burned sediment, and rock in Ab2. This may be related to increased human activity or more 
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intensive processing activities at the site during this time. Bone and burned sediment levels 

decrease fairly significantly in B1, though lithic debitage increases. Increasing 

phosphorous at this time may indicate that bone was dissolved and redeposited during the 

wetter Late Holocene. 

 
Soil Micromorphology 

Soil micromorphology is the study of in situ soils and sediments that have been 

collected as naturally oriented samples. Soil micromorphology has been used in soil 

science to identify the factors responsible for soil development or alteration. The technique 

has been useful for classifying soils and interpreting soil formation (Stoops 2003). The 

benefits of the approach for soil geomorphology are that with the use of a petrographic 

microscope one can identify and assess soil fabric, mineralogy, organic features, and 

processes such as translocation of clays (Courty et al. 1989). Though the method has been 

employed in soil sciences since the early twentieth century (Kubiena 1938), more recently 

soil micromorphology has been advocated as a viable technique for archaeological 

investigations (Goldberg 1983). Micromorphology can also aid in identifying microscopic 

organic components such as bone, grass, or charcoal in archaeological deposits (Goldberg 

and Sherwood 2006). It also is a complementary technique when combined with bulk 

sediment analyses (Goldberg and Sherwood 2006). Micromorphology has been used in 

conjunction with geochemical analyses to infer the function and post-depositional 

processes of specific anthropogenic features at Dust Cave in Alabama (Homsey and Capo 

2006). In archaeology, micromorphology has been used most often outside the United 

States (Courty et al. 1989), though the technique has become more common in the United 
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States over the last twenty years (Josephs 2000; Homsey and Capo 2006; Sherwood 2001; 

Sherwood and Goldberg 2001).  

Soil micromorphology may detect thin lenses of water-deposited silts caused by 

disturbance to the matrix from water percolation in temperate climates (Teixeira et al. 

2002), and/or soil aggregates that were broken from soil matrices by mechanical 

disturbances and redeposited through colluvial processes (Courty et al. 1989; Holliday 

2004). Courty et al. (1989) used micromorphological analysis to understand the intensity 

of occupation and land management in Chalcolithic, Late Bronze Age, and Iron Age 

deposits in Genoa, (Liguria) Italy. They found evidence of increased deforestation, 

colluvial erosion, and cultivation. Courty et al. (1989:298) interpreted “the inclusion of 

organic matter and charcoal, rounded soil relics and nodules, including papules of 

translocated clay and…differing brown soil materials” in Layer 6 (Chalcolithic) as 

evidence for colluvial origin likely related to erosion. In a younger layer from the Iron Age, 

they were able to identify charred grass (Courty et al. 1989). 

 Cruise et al. (2009) used micromorphology in conjunction with palynology, 

magnetic susceptibility, and chemistry in a peat site in Liguria, Italy to identify periods of 

deforestation and grassland expansion between the Iron Age and Roman period. 

Micromorphology showed evidence of increased soil erosion and burning through the 

presence of fine charred fragments, though there was an absence of coarser charcoal. They 

interpreted this as evidence of “light, controlled burning” of lower lying weedy, herbaceous 

plants rather than clearance of forests. At a site in southwestern Norway, Sageidet (2009) 

suggested that “coarse to micro fine charcoal particles…and…dusty clay coatings and 

infillings may indicate clearance by burning” during the Early Bronze Age. In the Rio 
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Puerco Basin of New Mexico, French et al. (2009) found macroscopic charcoal (identified 

in soil profile description) and microscopic charcoal (identified with micromorphology as 

lenses of mixed microcharcoal and alluvial sediment). With these studies in mind, and 

questions about soil development in relation to environmental change, as well as Native 

American forest management during the Archaic period in Kentucky, I looked for similar 

features at Crumps Sink. 

Of the 47 in situ blocks collected from the profile, ten samples were selected for 

analysis based on specific questions that were raised during excavations, profile 

documentation, and loose sediment analysis. Excluding the modern A horizon, these 

samples capture each A horizon and associated B horizon exhibited in the profile. I began 

my analysis at University of Tübingen’s Geoarchaeology Laboratory. I continued and 

completed my analysis and photographed analyzed micromorphological features at Murray 

State University’s Stinchcomb Laboratory. Descriptions of thin-section slides were made 

with the aid of manuals (Bullock 1985; Stoops 2003). Other references I considered to aid 

in identification of specific minerals and features include Courty et al. (1989), Macphail 

and Goldberg (2017), Stoops et al. (2010), and Nicosia and Stoops (2017).  

For the following soil micromorphology framework, I use definitions from Bullock 

et al. (1985) and Stoops (2003). The microstructure describes how the soil/sediment matrix 

is arranged, considering aggregates and voids (Bullock et al. 1985), and it can often inform 

about the degree of soil formation at a site. To determine the microstructure, various optical 

analyses were undertaken, including description of peds, degree of ped separation, degree 

of accommodation, pedality, and types of voids. The course/fine (c/f) related distribution 

is the comparison of coarse and fine components in the soil/sediment matrix. For this study, 
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60µm marked the separation between silt and very fine sand particles (Bullock et al. 1985; 

Stoops 2003). 

Pedofeatures identified in the thin-section are the result of post-depositional 

processes associated with soil formation and may be evidence of depletion or accumulation 

of certain minerals. They can include mineral precipitates, such as calcium carbonate, or 

clay-sized particles mechanically transported downward through the solum. Calcium 

carbonate hypocoatings are deposited along void walls as water that is rich in calcium 

carbonate travels through preferential pathways in the soil until evaporating and allowing 

the mineral to recrystallize in place. Pedogenic carbonate nodules are impregnative features 

in the sediment matrix that are created when minerals such as calcium carbonate are 

deposited in the same place consistently. These nodules can incorporate or displace the 

surrounding matrix. When calcium carbonate is redeposited in microcrystalline form that 

is infused with the soil matrix, creating a calcitic crystallitic b-fabric that can be identified 

in thin-section under cross polarized light. 

When considering anthropogenic/archaeological components, I used Nicosia and 

Stoops (2017) as a reference. Ash pseudomorphs form during the burning of plant tissue 

such as wood or leaves, and they generally have a rhomboidal or spherical shape (Canti 

and Brochier 2017). These ash pseudomorphs are first mineralized as calcium oxalates. 

During soil formation they are quickly weathered and become calcium carbonates (Durand 

et al. 2010).  Calcium carbonate features, including calcitic crystallitic b-fabric and 

weathered ash pseudomorphs, were identified in the Crumps Sink thin-sections. These 

features are discussed and further considered in relation to CaCO3 percentages from loss-

on-ignition analyses. These features provide valuable information concerning 
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anthropogenic impacts, fire histories, and changing Holocene environmental conditions at 

Crumps Sink. 

Soil Micromorphology Results 

In soil stratigraphic units 5 and 4 (see Table 6.7), the b-fabric ranges from 

undifferentiated in B horizons B4 and B3 to undifferentiated with minimal calcitic 

crystallitic b-fabric in A horizons Ab4 and Ab3. The minimal calcitic crystallitic b-fabric 

may be expected in the A horizons and is likely in association with soil formation and 

minor dissolution and redeposition of calcium carbonate in these buried soils. However, 

for soil stratigraphic units 4 and 5 the amount of calcitic crystallitic b-fabric is relatively 

low, when compared to shallower deposits. These horizons are Middle Holocene in age 

and correspond with the late Middle Archaic cultural period. In soil stratigraphic unit 3 (B2 

and Ab2) and the B horizon in soil stratigraphic unit 2 (B2) the b-fabric is calcitic 

crystallitic, meaning that this mineralization covers a majority of the surface area when 

viewed in thin-section.  

These deposits date to the Late Archaic period and possibly the early part of the 

Terminal Archaic period. High percentages of calcium carbonate indicated by the loss-on-

ignition analyses in these horizons corroborate the soil micromorphological findings. 

However, what contributed these high amounts of calcium carbonate in a deposit that has 

otherwise much lower levels of calcium carbonate is investigated further by assessing plant 

ash levels in these deposits. The other important question is: what environmental conditions 

caused the increasing hydrological activity that dissolved and redeposited this calcium 

carbonate within the matrix in microcrystalline form? This deposit is early Late Holocene 

in age, so these processes could relate to increased precipitation in the region. In the A 
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horizon of soil stratigraphic unit 2 (Ab1) and the B horizon for soil stratigraphic unit 1 the 

b-fabric is fully undifferentiated.  

The peds are angular blocky to subangular blocky and granular in B4. From Ab4 

and upward through Ab2 the peds are subangular blocky and granular. In Ab1 and B2 the 

granular matrix becomes more dominant. In B the ped structure is angular blocky. The ped 

separation is generally weak to moderate between B4, Ab4, B3, and Ab3.  The separation 

becomes greater between B2, Ab2, B1, and Ab1. The ped separation is again weak in B. 

The accommodation generally ranges from accommodated to partially accommodated 

between B4, Ab4, B3, at least in B horizons. The pedality is weak throughout, which 

suggests consistent sedimentation over time. Thus, the buried soils at the site may best be 

described as cumulic. Voids seen throughout the profile include channels, planes, vughs, 

and compound packing voids. In Ab2 and B1, voids present include large compound 

packing voids within a granular microstructure of large aggregates suggesting that these 

zones were mixed through disturbance. The c/f related distribution is well sorted between 

B4, Ab4, and B3, trending towards moderately sorted in Ab3, and is moderately sorted in 

B2, Ab2, B1, and Ab1. Again it is well-sorted in B. Plant ash is evident though very 

sporadic in Ab4. It does not appear again until Ab3, B2, and Ab2, B1, and it was observed 

at increasingly greater amounts between Ab3, B2, Ab2, and B1. Notably, plant ash is 

present in large amounts in Ab2 and B1. Note that the amounts of plant ash have not been 

quantified and frequencies are only discussed based on qualitative observations. In Ab1 no 

plant ash was observed. though the amount was not quantified. The presence of plant ash 

trends with the presence of calcitic crystallitic b-fabric. 
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These data show that soil stratigraphic units 5 and 4 are similar to each other with 

generally a channel vughy microstructure. Soil stratigraphic unit 3 transitions from a 

vughy, subangular microstructure with granular infillings to a granular subangular blocky 

microstructure. The B1 microstructure is only granular and this deposit appears to have 

experienced much disturbance. Ab1, which seems to be a soil horizon that was at the 

surface ofr at least two millennia, has a granular, subangular blocky, and to some degree 

channel microstructure. Generally these microstructure features are smaller than seen in 

the lower horizons, which suggests different factors in the formation of this horizon than 

the soils below. The B1 horizon is also the deposit with the highest levels of plant ash and 

little evidence of in situ burning which suggests that this burning was not local to the 

immediate area, but rather occurred on the surrounding landform. Increased rock quantities 

were seen in horizons Ab2 and B1, also suggesting erosion of bedrock on the surrounding 

landform, and also increased camp activities at the site. This zone also has calcitic 

crystallitic b-fabric. The original zone designations for this level are Zones IV A and IV B 

and it has been radiocarbon dated to the Late Archaic to Terminal Archaic periods.  The 

presence of calcitic crystallitic b-fabric in horizons B1, Ab2, and B2 relates to the high 

levels of plant ash and the process of hydrological dissolution and recrystallization of this 

plant ash.
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Table 6.7. Soil micromorphological analysis of thin-sections. 
Soil 

Strat. 
Unit 

Pedon Zone Sample 
ID 

Peds Ped 
Separ. 

Accommodation Pedality Voids Microstructure c/f related 
distribution 

c/f 60µm 

Micromass/ 
b-fabric 

Plant 
Ash   

1 
Historic 

to 
Modern 

A I - NA NA NA NA NA NA NA NA NA 
 

B 
 

II 
SI-5 

37-47 
cmbs 

Angular blocky Weak Accommodated-
partially 

accommodated 

Weak Plane, vugh, 
compound packing 

(granular), lenticular 

Subangular blocky Open porphyric, 
well sorted 

Undifferentiated No 

 
 
2 
 

 
 
 

2880-
3700 

cal BP 

 
 
 
 
 

Ab1 

 
III A 

 

SI-5 
37-47 
cmbs 

Granular and 
subangular 

blocky 

High Unaccommodated Weak Plane, compound 
packing (granular), 

channel 

Granular, subangular 
blocky 

Open porphyric, 
moderately 

sorted 

Undifferentiated No 

 
III A 

SI-6 
54-65 
cmbs 

Angular blocky 
and granular 

High Partially 
accommodated-

Unaccommodated 

Weak-
Moderate 

Many micro-planar, 
also large channel, 

and vugh, very small 
granular infills 

Subangular blocky 
channel 

Open porphyric, 
moderately 

sorted 

Undifferentiated No 

 
III B 

SI-7 
69-82 
cmbs 

Granular and 
subangular 

blocky 

High Partially 
accommodated-

unaccommodated 

Weak Compound packing 
(granular), many 

plane, few channel, 
vugh 

Granular, subangular 
blocky 

Open porphyric, 
moderately 

sorted 

Undifferentiated No 

 
B1 

 
IV B 

SI-11 
105-116 

cmbs 

Granular and 
subangular 

blocky 

High Unaccommodated Weak Compound packing 
(granular), few plane, 

channel, and vugh 

Granular Open-double 
spaced 

porphyric, 
moderately 

sorted 

Calcitic crystallitic Yes 

 
3 
 

3700-
5590 

cal BP 

 
Ab2 

 
IV C 

SI-17 
149-159 

cmbs 

Subangular 
blocky and 

granular 

High Partially 
accommodated-

unaccommodated 

Weak Compound packing 
(granular), plane, few 

channel, few vugh 

Granular subangular 
blocky microstructure 

Open porphyric, 
moderately 

sorted 

Calcitic crystallitic Yes 

 
B2 

 
IV E 

SI-23 
190-202 

cmbs 

Subangular 
blocky and 

granular 

Mod.-
High 

Partially 
accommodated-

unaccommodated 

Weak Vugh, planes, few 
channel, compound 
packing (granular) 

Vughy, subangular 
with granular 

infillings 

Double-spaced 
porphyric, 
moderately 

sorted 

Calcitic crystallitic Yes 

 
4 

 
5590-
6950  

cal BP 

 
Ab3 

 
IV F 

SI-29 
236-246 

cmbs 

Subangular 
blocky and 

granular 

Mod. Partially 
accommodated-

unaccommodated 

Weak Plane, channel, vugh, 
compound packing 

Subangular, channel, 
vughy, with granular 

infillings 

Open porphyric, 
well-moderately 

sorted 

Undifferentiated 
and minimal 

calcitic crystallitic 

Yes 

 
B3 

 
IV G 

SI-36 
291-303 

cmbs 

Subangular 
blocky and 

granular 

Weak Accommodated-
partially 

accommodated 

Weak Channel, planes, 
vughs, and compound 

packing voids 

Channel vughy, 
subangular, with 

bioturbated areas that 
are granular 

Open porphyric, 
well sorted 

Undifferentiated No 

 
 
5 
 
 

6880-
7240 

cal BP 

 
Ab4 

 
IV I 

SI-43 
 

344-356 
cmbs 

Subangular 
blocky and 

granular 

Mod. 
 

Partially 
accommodated-

unaccommodated 

Weak Channel, planes, 
vughs, granular in 

infilled voids 

Channel to vughy, 
with granular 

infillings 

Open-porphyric, 
well sorted 

Undifferentiated 
and minimal 

calcitic crystallitic 

Yes 

 
B4 

 
V 

SI-46 
 

367-380 
cmbs 

Angular 
blocky- 

subangular 
blocky and 

granular 

Weak-
Mod. 

Accommodated- 
unaccommodated 

Weak Channel, planes, 
vughs, with 

compound packing 
voids in granular 
microstructure 

Channel to vughy Open porphyric, 
perfectly-well 

sorted 

Undifferentiated No 
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Figure 6.6. Plant ash from Crumps Sink deposits Zone IVB, Sample ID SI 11. 
a, 10x calcium oxalates (co) within cell structure of wood charcoal and calcium carbonate 

(cc) in highly organic matrix, possibly degraded charcoal plane polarize light (PPL); b, 
same as a cross polarize light (XPL); c and d, 20x calcium carbonate nodules in calcitic 

crystallitic soil/sediment matrix, PPL and XPL, respectively; e and f, 40x. 
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Sedimentation Histories 

Using zone depths and radiocarbon dates it was possible to statistically model 

sediment accumulation rates over time at Crumps Sink (see Blaauw and Christen 2011). A 

sedimentation curve based on this model was created by Gary Stinchcomb (see Figure 6.7). 

The results show a fairly consistent sediment accumulation, with slightly enhanced 

sediment accumulation during the Middle Holocene (Figure 6.7).  

 

Figure 6.7. Sediment accumulation rates at Crumps Sink. 
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There is one major outlier seen in Zone IV B, Level 12, that dates to 4232+30 

RCYBP (4650-4857 cal. BP) (Table 5.2). This outlier is in the deposit with much plant ash 

and a period of steady erosion (Horizon B1 or Zones IV A and IV B). It is possible that the 

charcoal fragment was exhumed by erosion around the sink and then redeposited within 

the sink. It is important to recognize that sediment deposition did not cease altogether. 

Rather, there were periods during which soil formation outpaced sediment accumulation 

to a degree that left a signature. Thus, with the possible exception of Ab1, the soil horizons 

at Crumps Sink may be best described as cumulic (Buol et al. 2011). Ab1 may not be a 

cumulic soil, but rather it may have been a stable land surface for 2000-2500 years.  

Environmental History and Human Activities at Crumps Sink 

The deposits spanning the Middle to Late Holocene transition and late Middle 

Archaic to Terminal Late Archaic periods (7200-2900 cal. BP) provide a dataset that 

addresses specific questions of human behavior, landform stability, and climate change 

throughout the Holocene. These deposits are significant due to the relatively rapid 

deposition of sediment, preserving the archaeological and paleoenvironmental record. 

During the Middle Holocene Thermal Maximum, Crumps Sink experienced consistent 

sediment accumulation. Crumps Sink contains a deep, well preserved soil profile, 

representing four thousand years of climatic and human impacts on the landform. 

Excavation and bucket augering revealed five horizons of sediment deposition (B4, B3, 

B2, B1, B) indicating landform instability resulting in uphill erosion/downhill 

accumulation. Each of these B horizons is the parent material for one of five soil horizons 

(Ab4, Ab3, Ab2, Ab1, A) which formed during periods of decreased uphill 
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erosion/downhill accumulation and some degree of landform stability. Because Crumps 

Sink is a catchment basin that continually received sediment, these soils (with the possible 

exception of Ab1) were generally cumulic, meaning that sediment deposition did not cease 

altogether when these soils were forming (see Buol et al. 2011 for discussion of 

cumulization). Today, sediment movement, likely through sheetwash, is evident on the 

ground surface. With a very organic matrix, high magnetic susceptibility coupled with an 

elevated frequency dependence, and highly weathered limestone rock, it is clear that this 

surface received relatively little sedimentation for very long period of time, allowing much 

time for soil formation activities. This will be discussed more in the Late Holocene 

environmental summary. 

The magnetic susceptibility signature elevates when late Middle Archaic hunter-

gatherers begin using the sink and this signature remains elevated through the Late Archaic, 

Terminal Archaic, and potentially and Early Woodland component in the sink. This likely 

relates to the use of combustion features burning sediments during a variety of camp 

activities.  

Middle Holocene (ca. 7200-4200 cal. BP) 

Humans began frequenting the sink around 7200-7000 cal. BP during the late 

Middle Archaic period and Middle Holocene Thermal Maximum or Hypsithermal. Prior 

to this, there does not seem to have been a prominent activity location for hunter-gatherers, 

although the cave entrance may have been frequented. The first archaeological materials 

are associated with a weakly developed soil that overlies 1.4 meters of colluvium. Between 

7200 and 5600 cal. BP Crumps Sink experienced slow but consistent sediment 

accumulation, presumably secondarily deposited loess that may have been in flux due to 
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erosion during the Middle Holocene. Holocene deposits remain light, compact and 

apparently colluvial. Erosion and desiccation have been seen in the geomorphological 

record throughout the Midcontinental United States during the Middle Holocene Thermal 

Maximum (Butzer 1978; Hajic 1990; Styles 1985; Ahler 1993, 1998; Springer et al. 2010; 

Driese et al. 2017). 

At 5500 cal. BP, sediment accumulation slowed, allowing enough animal and root 

activity, and buildup of organic matter to result in soil formation. Between 5500 and 4800 

cal. BP, another erosional event occurred, although less pronounced and shorter in time 

than that prior to 5500 cal. BP. This was at roughly the same time as an episode of 

decreased precipitation in the middle Green River valley reflected in terrestrial gastropod 

species at Carlston Annis (Baerreis 2005).  This was followed by soil formation between 

4800 and 3800 cal. BP. These 3 episodes of Middle Holocene soil formation (Ab4: ~7200-

7000 cal. BP; Ab3 5500 cal. BP; and Ab2: 4800-3800 cal. BP) interposed with periods of 

sediment accumulation may relate to recently documented trends of cyclical wet/dry cycles 

observed in oxygen and carbon isotopes in Middle Holocene soil profiles in West Virginia, 

Tennessee, and Pennsylvania (Driese et al. 2005; Driese et al. 2008; Kocis 2011; 

Stinchcomb et al. 2013). The periods of soil formation may reflect wetter conditions with 

more closed or forested vegetation structure, and the periods of sediment accumulation 

may be associated with warmer conditions leading to more open vegetation structure. 

Late Holocene (ca. 4200 cal. BP-present) 

Geoarchaeological analyses suggest more prominent soil formation, bioturbation, 

and addition of organic material occurring during the early Late Holocene and multiple 

buried A horizons are apparent throughout the Late Holocene. Greater addition of organics 
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in buried A horizons may relate to shifting environmental regimes toward wetter, more 

forested conditions at the end of the Holocene Thermal Maximum (ca. 4200 cal. BP). An 

alternative explanation is that the greater addition of organic matter to the matrix due to a 

lack of source sediment around the rim of the sinkhole. 

The most rapid sediment deposition occurred between 3900 and 3000 cal BP. At 

the same time, stable carbon isotope values from a cave speleothem in Missouri suggest an 

increase C4 vs. C3 species between 3500 to 2600 cal BP, and in a soil profile an increased 

level of C4 plants in West Virginia at around 3800 cal BP. (Denniston et al. 2007; Driese 

et al. 2005). This may lead to a similar interpretation for the cause of sedimentation at 

Crumps Sink. However, one thing that may suggest human influence is the highest levels 

of plant ash occurring at this time. It is possible that C4 species showing up in Missouri and 

West Virginia may relate to grassland expansion, as seen in pollen profiles from Jackson 

Pond and Salts Cave in central Kentucky. The high levels of plant ash between 3900 and 

3000 cal. BP may suggest that humans were burning the surrounding environment, 

something that will be explored later in this chapter. Based on radiocarbon dating, with one 

date being errant, and geoarchaeological analyses, the most rapidly deposited and mixed 

layer is Zones IV A and IV B. Humans seem to be occupying the site more intensively in 

the Late Archaic/early Late Holocene period and may be causing erosion. 

The b-fabric in the thin-sections is calcitic crystallitic, which is only the case in 

minor instances during times of soil formation in Middle Holocene deposits. Also, calcium 

carbonate levels are at their highest in the Late Holocene between 4500 and 3000 cal BP. 

Increased plant ash deposited in these levels contributed a source of calcium carbonate that 

could be dissolved and recrystallized in the matrix. After 3000 cal. BP soil formation 
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persisted for over two millennia, suggesting landform stability until burial by erosion 

associated by what has been interpreted as historic agriculture. This occured during the 

Terminal Late Archaic and Woodland periods, after the expansion of grasslands at Jackson 

Pond, and at the same time as early horticulture and cave exploration at nearby Mammoth 

Cave. Preliminary micromorphological analyses suggest a different structure of soil fabric 

than seen in the deeper horizons which may suggest different factors in its development 

than those responsible for deeper horizons. This soil first formed after grassland expansion 

was first documented for the region (Wilkins et al. 1991; Schoenwetter 1974).  

Anthropogenic Impacts at Crumps Sink 

Late Middle Archaic (7200-5600 cal. BP) 

 In late Middle Archaic deposits lithic debitage, bone, and burned sediment are all 

evident at low to moderate, but consistent quantities over time. After hunter-gatherers 

began using the sink, magnetic susceptibility, organic matter, plant available phosphorous, 

and calcium carbonate (though to a lesser degree) all elevate, demonstrating that camp 

activities left an identifiable human signature in the soils at the site. 

Late Archaic (5600-3900 cal. BP) 

Plant ash is sparsely present in Late Archaic deposits starting at around 5600 cal. 

BP, and is likely a result of use of hearth features, but also could be associated with early 

minimal land burning. Burned sediment nodules steadily rise to their highest levels 

between 4800 and 3900 cal. BP, during the Late Archaic period, indicating in situ hearth 

activity. Plant ash levels increase in Ab2, suggesting an increase in burning. Ab2 is dated 
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to between 4400-4800 cal. BP. Ab2 also has the highest level of animal bone and a high 

amount of lithic debitage. Burned sediment shows a spike between 4800 and 3900 years 

ago, which falls within the range of the sparse ash rhombs. Rock levels also rise in these 

deposits. Bone and lithic debitage quantities are generally consistent during prehistoric 

occupation of the site. The burned sediment with nutshell impressions and high levels of 

animal bone suggest that combustion features were being used for more intensive 

processing of nut mast and faunal resources. Maybe increased use of sink, population may 

be higher, at least looks like intensive processing of nut mast, high bone in second soil. 

This evidence may suggest silvicultural activities at the site, and it is contemporaneous 

with the data suggesting woodland management in the middle Green River region 

(Crawford 2005; Wagner 2005). 

Late Archaic-Terminal Late Archaic (3900-2900 cal. BP) 

Plant ash is most prominent in B1 (Zones IVA and IV B) suggesting this is the 

period of the greatest amount of combustion in the sink. However, burned sediment 

quantities drop in this deposit, suggesting that the burning occurred elsewhere on the 

landform, and may have been from different activities rather than surface hearths. Rock 

increases dramatically during this time and is sustained suggesting erosion and also 

possibly increased camp activities or use of rock for camp activities. The %OM is relatively 

high and much charcoal flecking was evident during field descriptions of sediments at the 

site. Calcium carbonate levels are also highest in these deposits, with plant ash plausibly 

being the primary contributor. In thin-section these zones have a calcitic crystallitic b-

fabric. Also evident is that phosphorous levels increase in these deposits. This may relate 

to increased precipitation dissolving animal bone in the matrix. This deposit appears to 
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have accumulated fairly rapidly, based on radiocarbon dates, and may indicate a period of 

erosion as indicated by an outlier radiocarbon date that is earlier than would be expected. 

Remember, that the early Late Holocene was a time when we should expect increasingly 

forested conditions creating stable soils. I argue that this deposit was created by increased 

indigenous forest burning and disturbance on the surrounding landform, causing enhanced 

uphill erosion/downhill accumulation in the sink.  

By 3000 cal. BP the landform stabilized, and no plant ash is evident in thin-sections 

from soil horizon Ab1 (Zones III A and III B). This is at the same time as Native Americans 

began frequenting Crumps Cave with greater intensity (Carstens 1980), suggesting that 

there were changing preferences in landform use. This is also contemporaneous with cave 

exploration seen in Mammoth Cave. This surface may have remained stable for over two 

millennia, before it was capped by an apparent historic horizon (B; Zone II) possibly from 

erosion during historic agriculture in the region (see Dicken and Brown 1938). A weakly 

developed A horizon (A; Zone I) is now forming at ground surface. 
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CHAPTER 7.  SUMMARY AND CONCLUSIONS 

Baskin et al. (1994) made the case that the Big Barrens of Kentucky is 

anthropogenic in origin, the result of land burning by Native American populations. 

Charcoal data from forest stands, pond sediments, and deep cave sediments throughout the 

Interior Low Plateaus and Southern Appalachian Mountains show increased forest fires by 

at least 4000 years ago (Delcourt et al. 1998; Fesenmyer and Christensen 2010; White 

2007). Pollen records from central Kentucky demonstrate expansion of grassland 

ecosystems by the end of the Middle Holocene Thermal Maximum and into the Late 

Holocene despite environmental conditions that should favor forest development (Delcourt 

and Delcourt 1979; Schoenwetter 1974; Walker et al. 2012; Wilkins et al. 1991). 

Formalized groundstone tool technologies associated with land clearance (grooved axes) 

and processing of nut mast (pestles) appear in the archaeological record by the late Middle 

Archaic period (Jefferies 2008). Late Archaic period data from the middle Green River 

region suggest that Native Americans were creating anthropogenic ecosystems through 

disturbance, perhaps related to silviculture (Wagner 2005). Plant domestication occurred 

in Central Kentucky, including at Mammoth Cave, between the Late Archaic and Early 

Woodland periods (Smith 2006; Watson 1985). When considered together, these data 

suggest a major shift in human-environmental interactions during and after the Middle 

Holocene/Late Holocene transition, and between the late Middle Archaic and Early 

Woodland periods. However, heretofore, a multidisciplinary study was still needed to link 

Holocene environmental proxy data with the Archaic archaeological record at a single site 

to understand how these developments correlate over time. Here, I consider 

paleoenvironmental and archaeological data collected during my dissertation excavations 
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at Crumps Sink in the Sinkhole Plain. With these data, I test the hypothesis that Archaic 

hunter-gatherers played a role in creating and maintaining Big Barrens ecosystems in 

Kentucky through land burning. The data from Crumps Sink suggest that hunters and 

gatherers were burning to create a forest mosaic of varying resources. These groups were 

actively managing surrounding ecosystems through delayed-return systems that suggest 

investment strategies more similar to horticultural economies. 

Archaeological Investigations in the Sinkhole Plain 

The unique geological, topographic, and ecological nature of the Sinkhole Plain, 

characterized by thin soils, few hydrological obstacles, and xeric ecosystems, may have 

made it especially conducive to fire ecology. Karst features such as sinkholes and caves 

are prevalent throughout this region. These closed catchments accumulate sediment and 

have the potential for containing important paleoenvironmental and archaeological 

information. As access points to water from underground drainages, these sites became 

important points on the landscape for human occupation. However, until this study, the 

archaeological significance of sinkholes in the region was not recognized to the same 

degree as cave entrances and deep cave contexts. I directed archaeological excavations in 

the summer of 2015 at Crumps Sink to assess the chronology of occupation, range of 

prehistoric activities, and geomorphological history of the site. Stratified archaeological 

deposits spanning the Middle to Late Holocene transition and the late Middle Archaic to 

Terminal Late Archaic periods (7200-2900 cal. BP) were excavated to a depth of 3.8 m 

below ground surface. Projectile points were analyzed to provide information on cultural 

periods represented at the site. Geoarchaeological analyses, including magnetic 
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susceptibility, loss-on-ignition, plant available phosphorous, soil micromorphology, and 

anthropogenic inputs measured by artifact mass were considered to examine landform 

dynamics in relation to environmental change during the Middle-Late Holocene transition 

and human activities that include silviculture, plant domestication, and potential use of fire 

for land clearance. 

Archaeological Site Formation Processes at Crumps Sink 

With the exception of a faint buried soil indicating slightly suppressed sedimentation 

between 7200 and 7000 cal. BP, sediment accumulation was consistent and apparently 

accelerated between 7200 and 5600 cal. BP, corresponding with the generally warmer and 

drier conditions of the Middle Holocene Thermal Maximum. After humans began 

occupying the sinkhole, background magnetic and chemical signatures became greater than 

they were at pre-occupation levels. During the transition from the Middle Holocene to the 

Late Holocene between 5600 and 3900 cal. BP, data show horizons of more prominent soil 

development, possibly reflecting shifting environmental regimes toward wetter climate and 

more densely forested conditions at the end of the Holocene Thermal Maximum (ca. 4200 

cal. BP). However, also between 5600 and 3900 cal. BP, there are overlapping episodes of 

soil formation and sediment accumulation, suggesting cyclical episodes of drier conditions 

(enhanced sedimentation) and wetter conditions (decreased sedimentation allowing soil 

development) during the Middle to Late Holocene transition. Similar cyclical wet/dry 

cycles have been observed from oxygen and carbon isotope studies in Middle Holocene 

soil profiles in West Virginia, Tennessee, and Pennsylvania (Driese et al. 2005; Driese et 
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al. 2008; Kocis 2011; Stinchcomb et al. 2013). Thus, the soil horizons at Crumps Sink may 

reflect larger Holocene climatic trends.  

Scattered ash pseudomorphs in Late Archaic deposits from 5600 to 3900 cal. BP may 

be remnants of combustion features associated with increased use of the site and focused 

processing of nut mast and/or the beginnings of forest management by fire. Burned 

sediment nodules with nut shell impressions are at the highest masses between 4800 and 

3900 cal. BP. Ground stone pestle fragments are present between 5600 and 3900 cal. BP. 

The trends in plant ash, burned sediment nodules, pestle fragments, and animal bone data 

combined suggest that hunter-gatherers were using the site to process nut mast and fauna 

with in situ combustion features. The combination of burned sediment and faunal remains 

suggests that humans were increasingly using combustion features at the site, perhaps for 

more intensive resource extraction of nut mast and animals such as deer. Although it does 

not point directly toward human land burning, it certainly suggests that hunter-gatherers 

were more intensively processing nut mast and this is occurring at the same time that 

Wagner suggests the creation of anthropogenic environments at the Green River Shell 

Middens. During this period of enhanced sedimentation and peaking at the end of this 

period, burned sediment increases dramatically continuing into a period of soil formation 

that may suggest another episode of wetter conditions favoring forest development between 

4800 and 4000 years ago. This is occurring at the same time as major population increases 

in the middle Green River valley. These features may have been disturbed and 

disaggregated through bioturbation and trampling. These activities may be associated with 

early silviculture in the region, and are contemporary with postulated anthropogenic 

ecology in the middle Green River region (Wagner 2005). The greatest density of plant ash 
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is found in deposits, which appear to have been deposited relatively rapidly, dating between 

3900 and 3000 cal. BP spanning the Late Archaic to Terminal Late Archaic periods. From 

the Late Archaic to Terminal Late Archaic periods (ca. 4000-3000 cal. BP), archaeological 

deposits contain the highest amounts of plant ash seen in the sink, evidence of increased 

sediment accumulation, and high quantities of rock accumulation, landscape burning may 

have disturbed vegetation to a degree that caused extensive erosion and exposure of 

bedrock. Burned sediment nodule masses drop dramatically suggesting few in situ 

combustion features and rather burning coming from around the landform. A single 

radiocarbon date from this deposit is older than expected and out of date in the sequence. 

This suggests that this deposit was create by erosion from the surrounding landform and 

accumulation in the sink.  

The data from 5600 to 3900 cal. BP at Crumps Sink suggest a focus on faunal remains 

and intensive processing of nutmast, perhaps associated with silvicultural activities, such 

as woodland management. The data from 3900 to 3000 cal. BP at Crumps Sink suggest 

that there was increased burning on the landform of Crumps Sink, which may relate to 

regional trends of increased forest fires in Kentucky and the greater Interior Low Plateaus. 

The timing of this proposed land burning sequence fits with larger trends seen in charcoal 

frequencies by at least 4000 cal. BP throughout the Interior Low Plateaus and Southern 

Appalachian Mountains (Delcourt et al. 1998; Fesenmyer and Christensen Jr. 2010; White 

2007), potential silviculture seen in the middle Green River region (ca. 5600-3900 cal. BP) 

(Wagner 2005), and early horticulture (ca. 4000-2500 cal. BP) (Crothers 2008; Smith 2006; 

Watson 1985), grassland expansion (after ca. 4500 cal. BP) (Wilkins 1991; Schoenwetter 
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1974), and the transition from the Middle to Late Holocene (ca. 4200 cal. BP) (Walker 

2012). 

The most prominent soil development at the site over the past 7200 years begins at 

approximately 3000 cal. BP. This soil may have been the interior ground surface of the 

sinkhole for at least two millennia. This was also at a time when humans were exploring 

major caves in the region and experimenting with plant domestication. In the north half of 

Unit 1, a flaked limestone hoe fragment was found within this soil, which may suggest 

cultivation activities at the site. At this time, Native Americans began using the cave 

entrance more frequently (Carstens 1980), and though there is a high quantity lithic 

debitage in this soil, there are no diagnostics lithic artifacts from periods later than the Early 

Woodland period and no radiocarbon dates later than the Terminal Late Archaic period. 

Plant ash was not evident in this level and the calcium carbonate percentages are relatively 

low. This may be a result of processes of weathering during soil formation that would have 

dissolved calcium carbonate and redeposited it in the B horizon during translocation. This 

soil was eventually capped by a yellow silt deposit, potentially deposited during erosion 

from historic agriculture in the region (see Dicken and Brown 1938). A weak soil horizon 

is currently forming at the present ground surface. However, starting 3000 years ago during 

the Terminal Late Archaic period, and for at least two millennia, likely until the historic 

period, the landform was at its most stable during the last 7000 years. 

Distinguishing between Human and Climate Induced Fires 

Though Baskin et al. (1994) suggested that the Big Barrens grasslands were formed 

by anthropogenic burning, Ray (1997) argued that these fires may be the result of lightning 
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strikes. We must consider both possibilities. Therefore, if these fires are forest fires, then 

how can we distinguish between them as created by humans or by changes in climate? 

Bowman et al. (2011:224) argue that there are three key factors in distinguishing human 

activities from climatic processes:  

(1) temporal or spatial changes in fire activity and vegetation apparent 

from palaeoecological proxies, (2) a demonstration that these changes are 

not predicted by climate-fuels-fire relationships and paleoclimate 

reconstructions for the period of fire regime change, and (3) a 

demonstration that fire regime changes coincide in space and time with 

changes in human history (e.g., technological, economic, political, or 

demographic changes, including colonization of new lands) known from 

archaeology, anthropology and historical sources. 

Aside from very sparse ash rhombs in soil Ab4 at 7200-7000 cal. BP from which 

the micromorphological sample was collected just beneath a hearth, no plant ash was 

evident between 7000 and 5600 cal. BP. Plant ash begins being deposited consistently, and 

based on calcium carbonate percentages, likely in increasing quantities, between 5600 and 

3900 cal. BP. Burned sediment with nut impressions and animal bone masses indicate this 

may be related to in situ combustion features for cooking. Climatically, this is a time of 

environmental transition from the Middle Holocene Thermal Maximum to the early Late 

Holocene. Plant ash becomes much more pronounced in a sediment accumulation layer 

dating between 3900 and 3000 years ago, at the beginning of the early Late Holocene. 

Increased burning is also seen in the Interior Low Plateaus and Southern Appalachian 

Mountains in other studies by at least 4000 years ago. 
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For the second factor, this was at a time when forested conditions should have 

become more common during the transition to a wetter and cooler period during the early 

Late Holocene (Delcourt and Delcourt 1979; Walker et al. 2012). However, grasslands 

expand in central Kentucky (Schoenwetter 1974; Wilkins et al. 1991). There is also greater 

C4 plant representation in West Virginia (Driese et al. 2005) and Missouri (Denniston et 

al. 2007), though the Missouri example is along the edge of the prairie peninsula. At 

Crumps Sink, there is more prominent soil development, or at least decreased 

sedimentation allowing for increased organic accumulation and pronounced bioturbation. 

However, there is a period of erosion associated with the highest amount of plant ash. 

Either there was a drought at this time or greater C4 representation relates to landscape 

burning promoting grassland species. However, in the Interior Low Plateaus, climatically, 

it seems that forest development was favored. 

For the third factor, there are significant changes in human history in the lower 

Ohio River valley during the late Middle Archaic and Late Archaic periods, 

contemporaneous with increases in plant ash seen at Crumps Sink. In the middle Green 

River valley, there is population increase, increased interregional exchange, the 

manufacture of formalized groundstone tools (possibly associated with silviculture) such 

as pestles, grooved axes, and celts, and evidence of land clearing. Perhaps the most 

significant change is the beginning of agriculture in the region. Crothers (2008) has 

identified changing property rights associated with early horticultural economies in the 

region. This study adds time-depth and an understanding of the socioecological legacies 

that led into early agriculture and builds upon Crothers’ recognition of changing property 

rights. 
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Modelling the Origins of Anthropogenic Environments in Central Kentucky 

Generally, models of human-environmental interactions during the Archaic period 

strongly emphasize humans adapting to their environments. However, my dissertation 

study demonstrates that Archaic hunter-gatherers also impacted their surrounding 

environments, possibly as early as the Middle Archaic period and certainly by the Late 

Archaic period. In fact, Archaic hunter-gatherers at Crumps Sink impacted the landform in 

ways that left signatures in the soils and potentially transformed the surrounding 

ecosystem. The strength of this study is that it demonstrates these impacts, even on a 

microscopic scale, and should set a precedent for future studies at Archaic period sites.  

Human actions through disturbance may create ecosystem legacies (sensu 

Winterhalder 1994) that are the impetus for future ecological developments. For example, 

the transitions seen in settlement-subsistence strategies: Early Archaic high residential 

mobility → early Middle Archaic low residential mobility → late Middle Archaic logistical 

collecting (see Homsey-Messer 2015; Stafford 1994; Stafford et al. 2000; Jefferies 2008) 

may indicate incremental learning associated with adaptations to environmental conditions 

and likely social conditions perhaps associated with population increases. For example, 

proponents of the push-pull hypothesis argued that xeric conditions during the Middle 

Holocene may have influenced Native American settlement and subsistence strategies such 

as the movement toward base camps in river valleys (Brown and Vierra 1983). By the late 

Middle Archaic and Late Archaic periods, increased sedentism and social complexity may 

have led to the constriction of resource bases, thus requiring new approaches to maintain 

and perhaps increase the biodiversity of resource yields. Ecosystem disturbance by humans 

to create and/or maintain diverse resource patches, perhaps associated with silviculture, 
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beginning during the Middle Archaic and reaching prominence in the Late Archaic 

(Wagner 2005). Nut mast increased in importance throughout the Holocene, and beyond 

the Archaic, though perhaps its greatest importance was during the Archaic period. If such 

changes are demonstrated, we can argue that Late Archaic hunter-gatherers were adapting 

to environmental conditions favoring forest development in active ways. By the Late 

Holocene (Delcourt and Delcourt 1979), and seemingly in cyclical episodes during the 

Middle Holocene (Driese et al. 2005, 2008; Kocis 2011; Stinchcomb 2013), wetter 

environmental conditions favoring forest development prevailed throughout the 

Midcontinent. This may have required new strategies to maintain open vegetation structure. 

Finally, major cultural developments played a significant role in human-environmental 

interactions. These include increasing population size, interaction, and trade. 

During the late Middle Archaic period, which correlated with the Middle Holocene 

Thermal Maximum, hunter-gatherers may have been focusing more intensively on reliable 

locations with access to water such as Crumps Sink. This may explain why the first 

observable use of the sink by hunter-gatherers was during this period. By the Late Archaic 

period, they may have burned the landscape to intensively process nut mast at levels not 

seen in previous time periods. To manage nut trees with high yields, especially in times 

when conditions were trending wetter during the early Late Holocene, creating a closed 

canopy structure not beneficial for growth and germination of saplings, people were 

burning the surrounding landscape. Thus, hunter-gatherers were active managers of their 

surrounding ecosystems, while also adapting to environmental conditions. Thus, rather 

than merely altering collection strategies by passively responding to “where the resources 

are”, they were creating resource bases that could be exploited on demand. This would 
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have required investment, or landesque capital and perhaps institutional land tenure 

systems. 

By the late Middle Archaic period (at the same time as logistical collection 

strategies) there seems to be increased social interaction, complexity, and sedentism. In the 

Late Archaic period this continues and leads to increased interpersonal violence, 

suggesting ranges are being contested. Thus, a common-pool resource model for 

management of resources in the Sinkhole Plain may have developed: Early Archaic (open 

access), early Middle Archaic (open access, but with greater importance of point locations 

such as caves), late Middle Archaic (open access, but large base camps suggesting 

conceptions of land tenure), Late Archaic (a shift towards common-property regimes where 

resources are defended, associated with increased investment at sites through fire), 

Terminal Late Archaic (continued shift toward common-property regimes, but population 

increases and interactions with land increasingly destructive), Terminal Late Archaic to 

Woodland (common-property system in place) and land tenure relations established. My 

assumption is that the barrens were an open access area during much of the Archaic, though 

changes in environmental conditions such as the Hypsithermal may have affected how 

people gathered on the land. There was likely open-access to resources, especially during 

the Early and Middle Archaic periods. Information on resources was likely freely and 

openly disseminated, which would have been necessary due to the fact that permanent 

water could only be accessed by way of karst windows and caves. However, in times of 

resource depletion it is likely that groups reformulated institutions, practicing regulated 

common property systems, in which information was withheld from incoming groups in 
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order for more localized groups to conserve water and other resources found in such 

microenvironments. 

 As populations increased during the Late Archaic and Early Woodland period, and 

shellfish resources potentially declined, there may have been a need to access new, lower 

ranked resources (Crothers 2008). Corporate groups may have been responsible for 

prescribed fire regimes, with specific groups having access to such systems. If the Sinkhole 

Plain was a cultural buffer zone, or only visited for specific logistical tasks during the 

Middle Archaic through Middle Woodland periods, then it would be an ideal place to 

establish prescribed fire regimes with delayed benefits since few settlements would be 

adversely affected. Changes in social structure surrounding resource acquisition may 

indicate incremental learning of ecological knowledge (sensu Turner and Berkes 2006), as 

well as adjustments to shifting resource bases and environmental conditions. 

 The degree of access to common-pool resources is historically contingent. 

Therefore, it would have been difficult to control, and the dispersed nature of sinkhole 

resources may have meant that it was too costly to defend. However, the unique geological, 

topographic, and ecological nature of the Sinkhole Plain may have made it especially 

conducive to fire ecology. In the karst terrain, with thin soils, few hydrological obstacles, 

and species which thrive in disturbed conditions, it also may have had increasing value to 

prehistoric groups for hunting, weedy plants, and expansive open areas. Over time there 

may have been fluctuations between open access and common property systems. During 

periods where human use of fire was important, the Sinkhole Plain may have also been a 

coveted land resource which was controlled communally among many different local 

groups interested in resources such as game. 
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 Though it seems that an active management strategy is undertaken by the Late 

Archaic period, it would not be surprising (especially as seen in squash domestication by 

the Middle Archaic period) if humans are actively managing their environments much 

earlier. Thus, this model can be built upon and will likely be altered once we begin to 

recognize traditional societies as ecosystem managers. I believe that this can open up 

valuable new investigations of human-environmental interactions by considering humans 

and environment as mutually responding to and acting upon each other, as advocated in 

historical ecology (sensu Balée 2006). No doubt, we may consider altering settlement-

subsistence strategies as an active strategy, though perhaps passive in its impacts on the 

environment. Additionally, principles of long-term investment would have already been 

quite well understood, as resources such as nut trees have different time frames or cycles 

in which they are productive (Turner and Berkes 2006). 

It seems that burning on the landscape may have initially resulted from silviculture 

and management of land to increase important game animals. If this is the case, it may be 

the precursor for early horticulture. Chronologically, an increase in plant ash is 

demonstrated during the Middle to Late Holocene transition and during the early Late 

Holocene. If conditions were wetter during this time, this may have been an adaptation to 

maintain more open forest structure or promote nut-bearing trees. A firm understanding of 

human-environmental interactions during the Archaic period is important for 

understanding the domestication of native cultigens in eastern North America. 
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Future Directions 

The geoarchaeological work in this dissertation provides an important 

paleoenvironmental foundation for exploring human-environmental interactions in the 

region. However, more work needs to be done. It will be essential to find a non-site context 

to obtain another stratified paleoenvironmental record. To avoid archaeological deposits 

overshadowing natural deposits, features such as sinkholes, cave entrances, talus slopes or 

deep caves that have little evidence of human habitation must be identified. A systematic 

coring program throughout the Sinkhole Plain will aid in this endeavor. Also, throughout 

the Interior Low Plateaus and Southern Appalachian Mountains, efforts have been made to 

chart charcoal frequencies over time with success. My study suggests the presence of a 

previously unrecognized feature that may indicate large-scale land burning: plant ash in 

micro-geomorphological thin-sections. Future work on botanical and faunal remains from 

Crumps Sink will also reflect the immediate environment and the species selected by 

hunter-gatherers that may relate to fire ecology. In addition, analysis of the 

archaeobotanical record will better quantify changes in nut mast and whether any 

domesticates are present at the site and whether they correlate with the fire history and 

human activities at the site.  

Future comparison of sites among the Mammoth Cave Plateau, Dripping Springs 

Escarpment, and Sinkhole Plain can provide more detail about the aforementioned 

environmental and cultural changes. Site location in distinct physiographic regions will 

allow a greater assessment of differences in land use among regions.  I hypothesize that the 

unique geological, topographic, and ecological nature of the Sinkhole Plain characterized 

by thin soils, few hydrological obstacles, and more xeric ecosystems may have made it 
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especially conducive to fire ecology and suggest that it was the first region to be affected 

by fire management in central Kentucky. 

Implications and Significance 

This research is significant for a variety of reasons: (1) the implications of changing 

human-land interactions in relation to the origins of agriculture in the Eastern U.S.; (2) 

further assessment of recent research suggesting that prehistoric small-scale societies were 

more active agents in transforming their landscapes than previously believed; (3) 

developing a model of how hunter-gatherers and horticulturalists occupy and utilize 

holokarst landscapes; (4) determining the catalysts for prehistoric origins of grasslands in 

the Interior Low Plateaus; (5) contributing to contemporary dialogue concerning barren 

grassland management in the Midwestern United States; (6) elucidating the Holocene 

history of geogenic, biogenic, and anthropogenic sediment deposition in a karst setting; 

and (7) offering a framework for distinguishing between human activities and 

environmental processes over time. My investigations began with the Big Barrens 

grasslands and have brought us through a variety of interweaving datasets, models, and 

patterns. Such is the strength of an historical ecological approach that recognizes all things 

are interconnected, and minor changes can ricochet across lithospheric, biospheric, 

atmospheric, and human dimensions. Such a consideration of long-term human dynamics, 

especially intertwining impacts of environmental change on landforms and people, as well 

as human impacts of landforms and environments, can be useful in our own solutions for 

current and future environmental dilemmas. 

Copyright © Justin Nels Carlson 2019  
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APPENDIX 

Artifact Catalog, Unit 1, North Half. 

Unit 1, North ½, Level 1, Zone I, 0-10 cmbs, Field Specimen No. 2 
Catalogue No. Material Count Weight (g) 
2-1 Bone - 4.8  
2-2 Debitage - 103.3 
2-3 Coal - 2.8 

Unit 1, North ½, Level 2, Zone II,10-20 cmbs, Field Specimen No. 5 
5-1 Bone - 11.9 
5-2 Shell - 0.2 
5-3 Charcoal - 2.1 
5-4 Debitage - 54.6 
5-5 Modified Bone-Awl 1 1.0 
5-6 Glass 4 3.7 
5-7 Groundstone 1 106.1 
5-8 PPK Fragment-Proximal 1 1.9 
5-9 Retouched Flake 1 0.4 
5-10 Retouched Flake 1 7.0 
5-11 Utilized Flake 1 3.0 

Unit 1, North ½, Level 3, Zone II, 20-30 cmbs, Field Specimen No. 9 
9-1 Bone 8 4.4 
9-2 Debitage - 22.0 
9-3 Mussell Shell - 1.6 
9-4 Historic Ceramic-Rim 1 0.2 
9-5 PPK Fragment 1 1.6 
9-6 Charcoal - 1.6 

Unit 1, North ½, Level 4, Zone II, 30-40 cmbs, Field Specimen No. 11 
11-1 Bone - <0.1 
11-2 Debitage - 2.7 
11-3 Charcoal - 1.2 
11-4 Glass 1 0.7 

Unit 1, North ½, Level 5A, Zone II, 40-44 cmbs, Field Specimen No. 16 
16-1 Bone - 1.0 
16-2 Debitage - 137.4 
16-3 PPK Fragment 1 2.9 
16-4 Graver/Multitool 1 3.5 
16-5 Thick Biface Fragment 1 6.3 
16-6 Repurposed PPK-Burin? 1 1.5 
16-7 Utilized Flake 1 1.7 
16-8 Retouched Flake 1 7.6 

Unit 1, North ½, Level 5B, Zone III A, 43-50 cmbs, Field Specimen No. 18 
18-1 Bone - 11.8 
18-2 Debitage - 138.2 
18-3 Charcoal 2 0.3 
18-4 PPK Fragment-Distal 1 3.4 
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18-5 Biface Fragment 1 1.6 
18-6 Utilized Flake 1 1.8 
18-7 PPK B-See Plan Map 1 8.0 
18-8 PPK C- See Plan Map 1 14.6 
18-9 PPK D-See Plan Map 1 8.9 

Unit 1, North ½, Level 6, Zone III A, 50-60 cmbs, Field Specimen No. 23 
23-1 Bone - 23.1 
23-2 Debitage - 155.7 
23-3 Charcoal - 0.9 
23-4 Utilized Flake 1 38.9 
23-5 Utilized Flake 1 1.0 
23-6 Utilized Flake 1 2.6 
23-7 Utilized Flake 1 0.7 
23-8 Utilized Flake 1 1.6 
23-9 Utilized Flake 1 3.2 
23-10 Utilized Flake 1 3.9 
23-11 Utilized Flake 1 5.0 
23-12 Utilized Flake 1 2.6 
23-13 PPK/Drill Fragment 1 2.0 
23-14 Biface Fragment 1 0.8 
23-15 PPK Fragment 1 3.6 
23-16 PPK Fragment 1 3.2 

Unit 1, North ½, Level 7, Zone III A, 60-70 cmbs, Field Specimen No. 33 
33-1 Bone - 60.0 
33-2 Debitage - 123.0 
33-3 Charcoal - 1.1 

Unit 1, North ½, Level 8, Zone III B, 70-80 cmbs, Field Specimen No. 27 
27-1 Bone - 200.0 
27-2 Debitage - 141.2 
27-3 Charcoal - 10.6 
27-4 Burned Sediment - 7.3 
27-5 Mussel Shell - 0.9 
27-6 Bone Awl 1 1.9 
27-7 Cannel Coal/Coal 3 2.1 
27-8 Hoe Fragment 1 80.8 
27-9 Gorget Fragment 1 19.6 
27-10 Utilized Flake 1 3.6 
27-11 Utilized Flake 1 1 
27-12 Utilized Flake 1 3.6 
27-13 Utilized Flake 1 2.6 
27-14 Utilized Flake 1 2.1 
27-15 Utilized Flake 1 1.3 
27-16 Utilized Flake 1 3.6 
27-17 Land Snail 1 0.2 
27-18 Biface Fragment 1 0.4 
27-19 Biface Fragment 1 0.5 
27-20 Biface Fragment 1 0.8 
27-21 Biface Fragment 1 10.8 
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Unit 1, North ½, Level 9, Zone IV A, 80-90 cmbs, Field Specimen No. 43 
43-1 Bone - 169.6 
43-2 Shell - 5.8 
43-3 Debitage - 258.2 
43-4 Charcoal - 4.3 
43-5 Burned Sediment 3 1.8 
43-6 Modified Antler 1 5.4 
43-7 Groundstone 1 210.8 
43-8 Retouched Flake 1 0.3 
43-9 Retouched Flake 1 1.5 
43-10 Retouched Flake 1 1.2 
43-11 Utilized Flake 1 2.8 
43-12 Scraper Fragment 1 1.3 

Unit 1, North ½, Level 10, Zones IV A & B, 90-100 cmbs, Field Specimen No. 44 
44-1 Bone - 161.7 
44-2 Debitage - 112.8 
44-3 Charcoal - 7.3 
44-4 Land Snail - 22.9 
44-5 Burned Sediment - 14.0 
44-6 PPK Base (diagnostic) 1 7.9 
44-7 Biface Fragment (distal) 1 7.5 
44-8 PPK Fragment (distal) 1 0.4 
44-9 PPK Fragment (distal) 1 0.2 
44-10 Endscraper? 1 2.5 
44-11 Utilized Flake 1 1.4 
44-12 Utilized Flake 1 11.7 
44-13 Drilled Ground Stone Fragment- Bannerstone? 1 6.6 

Unit 1, North ½, Level 11, Zone IV B, 100-110 cmbs, Field Specimen No. 47 
47-1 Bone - 193.4 
47-2 Debitage - 184.8 
47-3 Land Snail - 31.2 
47-4 Charcoal - 8.8 
47-5 Mussel Shell 1 0.2 
47-6 Burned Sediment - 18.8 
47-7 Worked Bone-Turtle Shell 1 1.2 
47-8 Groundstone Fragments 4 7.8 
47-9 PPK Fragment (distal) 1 1.1 
47-10 PPK Fragment (distal) 1 3.1 
47-11 PPK Fragment (distal) 1 2.6 
47-12 Utilized Flake 1 0.3 
47-13 Quartz Pebble 1 4.5 

Unit 1, North ½, Level 12, Zone IV B, 110-120 cmbs, Field Specimen No. 56 
56-1 Bone - 163.9 
56-2 Shell - 38.5 
56-3 Debitage - 142.0 
56-4 Charcoal - 33.0 
56-5 Burned Sediment - 4.7 
56-6 Bone Awl 1 3.3 
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56-7 Utilized Flake 1 9.6 
56-8 Biface Fragment 1 7.5 
56-9 Hafted Drill 1 3.4 
56-10 Biface Fragment 1 7.6 
56-11 Retouched Flake 1 1.2 

Unit 1, North ½, Zone IV B, Level 13, 120-130 cmbs, Field Specimen No. 63 
63-1 Bone - 250.0 
63-2 Debitage - 152.4 
63-3 Shell - 40.8 
63-4 Charcoal - 26.3 
63-5 Burned Sediment - 7.3 
63-6 Utilized Flake 1 1.6 
63-7 PPK Fragment 1 6.3 
63-8 Groundstone 1 209.4 

Unit 1, North ½, Level 14, Zone IV C, 130-140 cmbs, Field Specimen No. 69 
69-1 Bone - 254.8 
69-2 Debitage - 161.2 
69-3 Shell - 54.5 
69-4 Charcoal - 17.4 
69-5 Burned Sediment - 1.6 
69-6 Scraper 1 2.4 
69-7 Utilized Flake 1 12.5 
69-8 Utilized Flake 1 3.6 
69-9 Utilized Flake 1 7.5 
69-10 Utilized Flake 1 2.3 
69-11 Utilized Flake 1 1.7 
69-12 Thick Biface 1 26.9 
69-13 PPK 1 3.7 
69-14 PPK 1 3.2 
69-15 PPK 1 0.8 
69-16 PPK 1 2.6 
69-17 PPK 1 10.0 
69-18 PPK 1 0.5 

Unit 1, North ½, Level 15, Zone IV C, 140-150 cmbs, Field Specimen No. 71 
71-1 Bone - 276.3 
71-2 Shell - 77.7 
71-3 Debitage - 106.8 
71-4 Charcoal - 35.6 
71-5 Burned Sediment - 22.1 
71-6 Polished Bone 1 0.3 
71-7 Drill Fragment 1 1.4 
71-8 PPK Fragment 1 5.7 
71-9 PPK Fragment 1 5.2 
71-10 PPK 1 19.2 
71-11 PPK 1 4.3 
71-12 Retouched Flake 1 17.8 

Unit 1, North ½, Level 16, Zone IV C, 150-160 cmbs, Field Specimen No. 73 
73-1 Bone - 576.5 
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73-2 Debitage - 179.2 
73-3 Charcoal - 14.3 
73-4 Burned Sediment - 43.7 
73-5 Land Snail - 84.8 
73-6 Mussel Shell - 1.0 
73-7 Groundstone Fragment (pestle?) 1 237.8 
73-8 Worked Bone 1 4.2 
73-9 Worked Bone 1 1.1 
73-10 Utilized Flake 1 0.4 
73-11 Utilized Flake 1 3.2 
73-12 Utilized Flake 1 1.0 
73-13 Biface Fragment 1 0.3 
73-14 Biface Fragment  1 1.1 
73-15 Biface Fragment (medial) 1 5.1 
73-16 Biface Fragment 1 0.8 
73-17 Groundstone Pestle Fragment 1 64.4 
73-18 PPK  1 14.2 
73-19 PPK Base 1 1.8 

Unit 1, North ½, Level 17, Zone IV D, 160-170 cmbs, Field Specimen No. 84 
84-1 Bone - 454.5 
84-2 Debitage - 171.2 
84-3 Shell - 151.3 
84-4 Charcoal - 22.8 
84-5 Burned Sediment - 23.9 
84-6 Pedogenic Carbonate Sample - 1.5 
84-7 Biface Fragment 1 15.5 
84-8 Utilized Flake 1 3.5 
84-9 Modified Bone 1 1.1 
84-10 Groundstone 1 287.4 
84-11 Groundstone 1 16.4 

Unit 1, North ½, Level 18, Zone IV D, 170-180 cmbs, Field Specimen No. 89 
89-1 Bone - 206.3 
89-2 Debitage - 69.0 
89-3 Land Snail - 138.9 
89-4 Charcoal - 11 
89-5 Mussel Shell - 12.9 
89-6 Burned Sediment - 28.1 
89-7 Groundstone Tool Fragment? 1 1.3 
89-8 Bone Awl 2 18.2 
89-9 Bone Projectile Point 1 2.2 
89-10 Projectile Point 1 8.3 
89-11 Projectile Point Fragment (distal) 1 6.1 
89-12 Projectile Point Fragment (medial) 1 8.8 
89-13 Projectile Point Fragment (medial) 1 0.8 
89-14 Biface Fragment 1 0.3 
89-15 Bannerstone Fragment (quartz) 1 2.2 
89-16 Utilized Flake 1 5.1 
89-17 Utilized Flake 1 31.3 
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89-18 Utilized Flake 1 46.8 
89-19 Utilized Flake 1 4.3 
89-20 Pedogenic Carbonate Sample - 2.6 

Unit 1, North ½, Level 19, Zones IV E & D, 180-190 cmbs, Field Specimen No. 94 
94-1 Bone - 223.0 
94-2 Shell - 278.5 
94-3 Debitage - 110.1 
94-4 Charcoal - 14.2 
94-5 Burned Sediment - 15.6 
94-6 Pedogenic Carbonate Sample - 2.9 
94-7 Bone Tool 1 1.7 
94-8 Utilized Flake 1 2.2 
94-9 Rough Biface Fragment 1 14.7 
94-10 Groundstone 1 18.8 

Unit 1, North ½, Level 20, Zone IV E, 190-200 cmbs, Field Specimen No. 100 
100-1 Bone - 277.1 
100-2 Debitage - 82.6 
100-3 Shell - 307.7 
100-4 Charcoal - 13.3 
100-5 Burned Sediment - 39.2 
100-6 Groundstone 1 108.0 
100-7 Retouched Flake 1 23.0 
100-8 Retouched Flake 1 11.7 
100-9 PPK 1 11.8 
100-10 Modified Bone 2 8.1 
100-11 Modified Rock? 1 10.0 

Unit 1, North ½, Level 21, Zone IV E, 200-210 cmbs, Field Specimen No. 119 
119-1 Bone - 134.8 
119-2 Shell - 175.2 
119-3 Charcoal - 23.1 
119-4 Debitage - 69.2 
119-5 Burned Sediment - 17.2 
119-6 Pedogenic Carbonate Sample - 2.2 
119-7 Antler Tine 1 61.1 
119-8 Modified Bone 8 14.3 
119-9 Groundstone? 1 202.5 

Unit 1, North ½, Level 22, Zone IV E, 210-220 cmbs, Field Specimen No. 126 
126-1 Bone - 114.4 
126-2 Shell - 72.1 
126-3 Debitage - 105.9 
126-4 Charcoal - 22.8 
126-5 Burned Sediment - 4.7 
126-6 Modified Bone 3 3.2 
126-7 PPK 1 13.3 
126-8 PPK 1 5.2 
126-9 Groundstone 2 85.8 
126-10 Groundstone 1 750.0 

Unit 1, North ½, Level 23, Zone IV F, 220-230 cmbs, Field Specimen No. 127 
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127-1 Bone - 162.2 
127-2 Debitage - 132.2 
127-3 Shell - 39.4 
127-4 Charcoal - 7.7 
127-5 Burned Sediment - 3.6 
127-6 Bifacial Tool 2 36.0 
127-7 Bifacial Tool 1 30.9 
127-8 PPK Fragment 1 3.1 
127-9 Modified Bone 1 0.8 

Unit 1, North ½, Level 24, Zone IV F, 230-240 cmbs, Field Specimen No. 141 
141-1 Bone - 138.4 
141-2 Debitage - 143.5 
141-3 Charcoal - 3.9 
141-4 Mussel Shell - 12.6 
141-5 Land Snail - 45.6 
141-6 Burned Sediment - 18.5 
141-7 Pestle Fragment 1 11.7 
141-8 Hammerstone 1 134.8 
141-9 Worked Bone 1 1.5 
141-10 Worked Bone 1 1.4 
141-11 Utilized Flake 1 2.3 
141-12 Utilized Flake 1 1.3 
141-13 Biface Fragment 1 0.9 
141-14 Biface Fragment 1 0.7 
141-15 Biface Fragment 1 0.6 
141-16 Biface Fragment 1 0.9 
141-17 Biface Fragment 1 1.4 
141-18 Drill Fragment 1 2.2 

Unit 1, North ½, Level 25, Zone IV F, 240-250 cmbs, Field Specimen No. 170 
170-1 Bone - 114.7 
170-2 Debitage - 108.1 
170-3 Land Snail - 23.9 
170-4 Mussel Shell - 2.3 
170-5 Burned Sediment - 12.9 
170-6 Charcoal - 10.3 
170-7 Pedogenic Carbonate Sample 3 0.8 
170-8 Biface Fragment 1 6.2 
170-9 Utilized Flake 1 5.1 
170-10 Utilized Flake 1 1.8 
170-11 Utilized Flake 1 3.2 
170-12 Utilized Flake 1 1.1 
170-13 Utilized Flake 1 1.4 
170-14 Biface Fragment 1 11.8 
170-15 Worked Bone 1 0.7 
170-16 Utilized Flake 1 9.4 
170-17 PPK Fragment (base) 1 1.0 
170-18 PPK Fragment (base) 1 4.6 
170-19 Groundstone Fragment 1 166.6 
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170-20 Pestle Fragment 1 174.6 
Unit 1, North ½, Level 26, Zone IV F, 250-260 cmbs, Field Specimen No. 150 

150-1 Bone - 189.4 
150-2 Shell - 31.4 
150-3 Debitage - 177.4 
150-4 Charcoal - 21.0 
150-5 Burned Sediment - 10.8 
150-6 Pedogenic Carbonate Sample - 3.8 
150-7 Groundstone Fragments 2 28.1 
150-8 Modified Bone Fragments 6 6.1 
150-9 Pestle Fragments 3 302.9 
150-10 PPK 1 7.5 
150-11 PPK Fragment 1 5.9 

Unit 1, North ½, Level 27, Zones IV F & G, 260-270 cmbs, Field Specimen No. 173 
173-1 Bone - 233.8 
173-2 Debitage - 76.6 
173-3 Shell - 11.8 
173-4 Charcoal - 11.0 
173-5 Burned Sediment - 8.4 
173-6 Ash - 1.3 
173-7 Pedogenic Carbonate Sample - 8.6 
173-8 Utilized Flake 1 7.1 
173-9 Utilized Flake 1 2.4 
173-10 Utilized Flake 1 2.6 
173-11 Utilized Flake 1 3.7 
173-12 Utilized Flake 1 1.9 
173-13 Utilized Flake 1 0.7 
173-14 Utilized Flake 1 0.6 
173-15 Utilized Flake 1 0.2 
173-16 Groundstone Fragment 2 5.7 
173-17 Bone Tool Refit 2 1.8 
173-18 PPK Fragment 1 3.5 
173-19 PPK Fragment 1 5.7 
173-20 PPK Fragment 1 4.5 

Unit 1, North ½, Level 28, Zone IV G, 270-280 cmbs, Field Specimen No. 174 
174-1 Bone - 122.3 
174-2 Debitage - 121.6 
174-3 Land Snail - 1.5 
174-4 Charcoal - 7.3 
174-5 Mussel Shell - 0.7 
174-6 Burned Sediment - 3.6 
174-7 Worked Bone Fragment (medial) 1 0.9 
174-8 Biface Fragment (medial) 1 3.5 
174-9 Biface Fragment 1 4.1 
174-10 Pedogenic Carbonate Sample - 5.7 
174-11 Groundstone Tool Fragment 1 2.4 
174-12 Utilized Flake 1 11.3 
174-13 Utilized Flake 1 1.2 
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174-14 Utilized Flake 1 0.9 
174-15 Utilized Flake 1 1.0 
174-16 Utilized Flake 1 0.7 
174-17 Utilized Flake 1 1.5 
174-18 Utilized Flake 1 0.6 

Unit 1, North ½, Level 29, Zone IV G, 280-290 cmbs, Field Specimen No. 176 
176-1 Bone - 247.0 
176-2 Shell - 2.2 
176-3 Charcoal - 5.3 
176-4 Debitage - 107.7 
176-5 Burned Sediment - 16.7 
176-6 Pedogenic Carbonate Sample - 1.4 
176-7 Retouched Flake 1 8.2 
176-8 PPK Fragment 1 5.2 
176-9 PPK Fragment 1 1.5 
176-10 PPK Fragment 1 4.1 

Unit 1, North ½, Level 30, Zone IV G, 290-300 cmbs, Field Specimen No. 178 
178-1 Bone 1 138.6 
178-2 Debitage 1 76.3 
178-3 Shell 1 <0.1 
178-4 Charcoal - 22.1 
178-5 Burned Sediment - 11.9 
178-6 Core 1 82.2 
178-7 Utilized Flake 1 6.0 
178-8 Biface Fragment 1 2.7 
178-9 Biface Fragment 1 12.1 
178-10 PPK 1 7.7 
178-11 Modified Bone, Antler Tine Fragments 2 0.6 

Unit 1, North ½, Level 31, Zone IV G, 300-310 cmbs, Field Specimen No. 181 
181-1 Bone - 54.5 
181-2 Debitage - 66.0 
181-3 Charcoal - 2.7 
181-4 Burned Sediment - 2.4 
181-5 Chunk of Wood Charcoal - - 
181-6 Biface Fragment 1 4.4 
181-7 Utilized Flake 1 3.9 
181-8 Biface Fragment-PPK? 1 1.1 
181-9 Land Snail 1 0.1 
181-10 PPK 1 2.9 
181-11 PPK 1 4.5 
181-12 Pedogenic Carbonate Sample 8 4.7 

Unit 1, North ½, Level 32, Zone IV G, 310-320 cmbs, Field Specimen No. 182 
182-1 Bone - 83.9 
182-2 Debitage - 135.2 
182-3 Charcoal - 5.0 
182-4 Land Snail 1 0.3 
182-5 Burned Sediment 2 1.6 
182-6 Worked Bone? 1 0.7 
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182-7 Scraper? 1 34.9 
182-8 Utilized Flake 1 1.6 

Unit 1, North ½, Level 33, Zone IV H, 320-330 cmbs, Field Specimen No. 185 
185-1 Bone - 83.2 
185-2 Debitage - 98.0 
185-3 Charcoal - 11.3 
185-4 Biface Fragment 1 1.7 
185-5 Drilled Bone-Needle Fragment? 1 0.7 
185-6 Worked Bone 1 0.7 

Unit 1, North ½, Level 34, Zone IV H, 330-340 cmbs, Field Specimen No. 187 
187-1 Debitage - 150.5 
187-2 Bone - 104.9 
187-3 Charcoal - 2.5 
187-4 Burned Sediment 2 4.5 
187-5 Utilized Flake 1 4.8 
187-6 Utilized Flake 1 0.8 
187-7 Worked Bone? 1 <0.1 
187-8 Pedogenic Carbonate Sample 5 0.8 

Unit 1, North ½, Level 35, Zone IV I, 340-350 cmbs, Field Specimen No. 189 
189-1 Bone - 72.1 
189-2 Debitage - 35.9 
189-3 Charcoal - 1.2 

Unit 1, North ½, Level 36, Zones IV I & V, 350-360 cmbs, Field Specimen No. 191 
191-1 Bone - 21.5 
191-2 Debitage - 33.1 
191-3 Piece-Plot Charcoal (358.5 cmbs, 5 cm E, 56 cm S) - - 
191-4 Piece-Plot Charcoal (358 cmbs, 41 cm S, 20 cm E) - - 
191-5 Piece-Plot Charcoal (359 cmbs, 83 cm S, 21 cm 

W) 
- - 

191-6 Charcoal (general matrix) - 1.0 
191-7 PPK Fragment  1 4.3 
191-8 Drilled Bone Fragment 1 1.7 
191-9 Pedogenic Carbonate Sample 5 0.4 

Unit 1, North ½, Level 37, Zone V, 360-370 cmbs, Field Specimen No. 194 
194-1 Debitage 2 1.5 
194-2 Retouched Flake 1 1.7 
194-3 Bone 1 0.2 
194-4 Charcoal (general matrix) - 0.2 
194-5 Piece-Plot Charcoal (366 cmbs, 4 cm E, 57 cm S) - - 
194-6 Piece-Plot Charcoal (365 cmbs, 70 cm S, 1 cm E) - - 
194-7 Piece-Plot Charcoal (368.5 cmbs, 26 cm S, 13 cm 

E) 
- - 

194-8 Pedogenic Carbonate Sample 5 0.5 
Unit 1, North ½, Level 38, Zone V, 370-380 cmbs, Field Specimen No. 196 

196-1 Bone - 0.2 
196-2 Charcoal - 0.2 
196-3 Pedogenic Carbonate Sample - 31.4 
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