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OPTICAL TOMOGRAPHY ON GRAPHS

FRANCIS J. CHUNG, ANNA C. GILBERT, JEREMY G. HOSKINS, AND JOHN C. SCHOTLAND

Abstract. We present an algorithm for solving inverse problems on graphs analogous
to those arising in diffuse optical tomography for continuous media. In particular, we for-
mulate and analyze a discrete version of the inverse Born series, proving estimates charac-
terizing the domain of convergence, approximation errors, and stability of our approach.
We also present a modification which allows additional information on the structure of
the potential to be incorporated, facilitating recovery for a broader class of problems.

1. Introduction

Inverse problems arise in numerous settings within discrete mathematics, including graph
tomography [42, 28, 29, 25, 19] and resistor networks [20, 21, 22, 23, 30, 11, 10]. In
such problems, one is typically interested in reconstructing a function defined on edges
of a fixed graph or, in some cases, the edges themselves. In this paper, we focus on
recovering vertex properties of a graph from boundary measurements. The problem we
consider is the discrete analog of optical tomography. Optical tomography is a biomedical
imaging modality that uses scattered light as a probe of structural variations in the optical
properties of tissue [4]. The inverse problem of optical tomography consists of recovering
the potential of a Schrödinger operator from boundary measurements.

Let G = (V,E) be a finite locally connected loop-free graph with vertex boundary δV .
We consider the time-independent diffusion equation [36]

(Lu)(x) + α0[1 + η(x)]u(x) = f(x), x ∈ V, (1)

t u(x) + ∂u(x) = g(x), x ∈ δV, (2)

which, in the continuous setting, describes the transport of the energy density of an optical
field in an absorbing medium. Here we assume that the absorption of the medium is nearly
constant with background absorption α0 and inhomogeneities represented by the vertex

potential η. In place of the Laplace-Beltrami operator, we introduce the combinatorial
Laplacian L defined by

(Lu)(x) =
∑

y∼x

[u(x)− u(y)] , (3)

where y ∼ x if the vertices x and y are adjacent. We make use of the graph analog of
Robin boundary conditions, where the normal derivative is defined by

∂u(x) =
∑

y∈V
y∼x

[u(x)− u(y)] , (4)

1
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2 FRANCIS J. CHUNG, ANNA C. GILBERT, JEREMY G. HOSKINS, AND JOHN C. SCHOTLAND

and t is an arbitrary nonnegative parameter, which interpolates between Dirichlet and
Neumann boundary conditions. If the vertex potential η is non-negative, then there exists
a unique solution to the diffusion equation (1) satisfying the boundary condition (2), [see
24 and the references therein].

In [24] we presented an algorithm for solving the forward problem of determining u,
given η. Our approach was a perturbative one, making use of known Green’s functions for
the time-independent diffusion equation (or Schrödinger equation) [3, 8, 9, 7, 13, 14, 15,
16, 41, 43], with η identically zero. The corresponding inverse problem, which we refer
to as graph optical tomography, is to recover the potential η from measurements of u on
the boundary of the graph. More precisely, let G = (V,E) be a connected subgraph of
a finite graph Γ = (V, E) and let δV denote those vertices in V adjacent to a vertex in
V. In addition, let S,R denote fixed subsets of δV . We will refer to elements of S and R
as sources and receivers, respectively. For a fixed potential η, source s ∈ S and receiver
r ∈ R, let u(r, s; η) be the solution to (1) with vertex potential η and boundary condition
(2), where

g(x) =

{

1 x = s,

0 x 6= s.
(5)

We define the Robin-to-Dirichlet map Λη by

Λη(s, r) = u(r, s; η). (6)

The inverse problem is to recover η from the Robin-to-Dirichlet map Λη.
Eqs. (1) and (2) also arise when considering the Schrödinger equation on graphs and

related inverse problems [39, 31, 2, 11, 12]. For circular planar graphs, or lattice graphs in
two or more dimensions, [39, 31, 2, 11] outline an algorithm that can be used to recover the
vertex potential. In particular, the first three employ special combinations of boundary
sources which force the solution in the interior to be zero except on a small, controllable
set of vertices. Using this approach, the potential at each vertex can be calculated. Then,
starting at the boundary, the entire potential can be recovered. The resulting algorithm
relies on the lattice structure of the graphs and is unstable for potentials with large support.

In this paper we present a reconstruction method for graph optical tomography that is
based on inversion of the Born series solution to the forward problem [36, 6, 34, 37, 35, 5, 32].
Using this approach, we show that it is possible to recover vertex potentials for a general
class of graphs under certain smallness conditions on the boundary measurements. Our
results are complementary to those in [12], where a discrete analog of complex geometrical
optics solutions are used to show that if the linearized problem is solvable, then the Robin-
to-Dirichlet map is invertible almost everywhere. We also note that our algorithm applies
to complex η, a case that arises in optical tomography. In addition, we obtain sufficient
conditions under which the inverse Born series converges to the vertex potential. We
also obtain a corresponding stability estimate, which is independent of the support of the
potential. In numerical studies of the inverse Born series for large potentials or large
graphs, where exact recovery is not guaranteed, we nevertheless find that good qualitative
recovery of large scale features of the potential is possible. Moreover, our approach can
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OPTICAL TOMOGRAPHY ON GRAPHS 3

be easily modified to incorporate additional information on the structure of the potential,
improving both the speed and accuracy of the algorithm. As an application of this idea,
we show how to determine the potential η using data for multiple values of α0, assuming η
is independent of α0. This allows us to apply our method to graphs whose structure makes
exact potential recovery otherwise impossible.

The remainder of this paper is organized as follows. In Section 2 we briefly review
key results on the solvability of the forward problem and introduce the Born series. We
obtain necessary conditions for the convergence of the inverse Born series depending on the
measurement data and the graph. We also describe related stability and error estimates.
In Section 3 we discuss the numerical implementation of the inverse series and present the
results of numerical simulations. Finally, in Section 4 we extend our results to the case
where measurements can be taken at multiple values of α0.

2. Inverse Born series

2.1. Forward Born series. In this section we formulate the inverse Born series. We begin
by reviewing some important properties of the Born series, based in part on [24, 36].

We recall that the background Green’s function [24] for (1) is the matrix G0 whose i, jth
entry is the solution to (1), with η ≡ 0, at the ith vertex for a unit source at the jth vertex.
Under suitable restrictions this matrix can be used to construct the Robin-to-Dirichlet map

Λη giving the solution of (1) on R ⊂ δV to unit sources located in S ⊂ δV. To write a
compact expression for Λη in terms of G0, let Dη denote the matrix with entries given by

(Dη)i,j =

{

ηi if i = j,

0 else.

Additionally, for any two sets U,W ⊂ V ∪δV, let GU ;W
0 denote the submatrix of G0 formed

by taking the rows indexed by U and the columns indexed by W. For η sufficiently small
we may write the Robin-to-Dirichlet map as a Neumann series

Λη(s, r) = G0(r, s)−
∞
∑

j=1

Kj(η, · · · , η) (r, s), r ∈ R, s ∈ S, (7)

where Kj : ℓ
p(V n) → ℓp(R× S) is defined by

Kj(η1, · · · , ηj) (r, s) = (−α0)
jGr;V

0 Dη1 G
V ;V
0 Dη2 · · ·G

V ;V
0 DηjG

V ;s
0 . (8)

We refer to the series (7) as the forward Born series.
In order to establish the convergence and stability of (7), we seek appropriate bounds

on the operators Kj : ℓ
p(V × · · · × V ) → ℓp(δV × δV ). Note that if |V | and |δV | are finite

then all norms are equivalent. However, since we are interested in the rate of convergence
of the inverse series it will prove useful to establish bounds for arbitrary ℓp norms.

Proposition 1. Let p, q ∈ [1,∞] such that 1/p+ 1/q = 1 and define the constants νp and
µp by

νp = α0‖G
R;V
0 ‖ℓq(V )×ℓp(R)‖G

V ;S
0 ‖ℓq(V )×ℓp(S), and µp = α0CGV ;V

0 ,q
, (9)
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4 FRANCIS J. CHUNG, ANNA C. GILBERT, JEREMY G. HOSKINS, AND JOHN C. SCHOTLAND

where

C
GV ;V

0 ,q
= maxv∈V ‖G

V ;v
0 ‖ℓq(V ). (10)

The forward Born series (7) converges if

µp‖η‖p < 1. (11)

Moreover, the N -term truncation error has the following bound,
∥

∥

∥

∥

∥

∥

Λη −



G0−
∞
∑

j=N

Kj(η, · · · , η)





∥

∥

∥

∥

∥

∥

ℓp(R×S)

≤ νp‖η‖
N+1
p µNp

1

1− µp‖η‖p
. (12)

Remark 2. The bounds we obtain are similar to those found in the continuous setting
[36], though here we present a novel proof of ℓ2-boundedness and extend our results to
include p ∈ [1, 2); a case not previously considered.

Before proving the proposition, we first establish the following useful identities.

Lemma 3. LetM be an n×n matrix, and Da, Db be n×n diagonal matrices with diagonal
entries given by vectors a and b, respectively. Let M(k) denote the kth row of M, and

CM,q = max
k

‖M(k)‖q, (13)

for 1 ≤ q ≤ ∞. Then for any vectors uT and v, and p, q ∈ [1,∞], such that 1/p+ 1/q = 1,

|uTDaMDbv| ≤ CM,q‖u‖q‖a‖p‖b‖p‖v‖∞. (14)

Proof. We begin by observing that if ek is the kth canonical basis vector, a =
∑

kDaek
and I =

∑

k eke
T
k , where I is the n× n identity matrix. Hence

|uTDaMDbv| ≤

(

∑

k

|uTDaek|

)

max
k

|M(k)Dbv| ,

≤ ‖u‖q‖a‖pmax
k

∑

j

|M(k)Db ej |max
j

|eTj v|,

≤ ‖u‖q‖a‖p‖b‖pmax
k

‖M(k)‖q max
j

|eTj v|.

(15)

�

We can iterate the result of the Lemma to obtain the following corollary.

Corollary 4. Let M1, · · · ,Mj−1 be n × n matrices and Da1 , · · · , Daj be n × n diagonal
matrices with diagonal elements given by the vectors a1, · · · , aj . If Mi(k) and CMi,q are
defined as in the previous Lemma, then for all u and v,

∣

∣uTDa1M1Da2 · · ·Mj−1Dajv
∣

∣ ≤ ‖a1‖p · · · ‖aj‖pCM1,q · · ·CMj−1,q‖u‖q‖v‖∞, (16)

where once again p, q ∈ [1,∞] and 1/p+ 1/q = 1.

We now return to the proof of Proposition 1.
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OPTICAL TOMOGRAPHY ON GRAPHS 5

Proof. Since Dηi is a diagonal matrix, Dηi =
∑

k∈V ηi(k)eke
T
k , where ηi(k) is the kth

component of the vector ηi and ek is the canonical basis vector corresponding to the vertex
k. From the definition of Kj , we see that

‖Kj(η1, · · · , ηj)‖p ≤ αj
0





∑

r∈R, s∈S

[

Gr;V
0 Dη1 G

V ;V
0 Dη2 · · ·G

V ;V
0 DηjG

V ;s
0

]p





1/p

. (17)

The previous Corollary implies that
∣

∣

∣G
r;V
0 Dη1 · · ·DηjG

V ;s
0

∣

∣

∣ ≤ ‖η1‖p · · · ‖ηj‖pC
j−1

GV ;V
0 ,q

‖Gr,V
0 ‖q‖G

V,s
0 ‖∞. (18)

Thus

‖Kj‖p ≤ αj
0‖G

R,V
0 ‖ℓp(R)×ℓq(V )‖G

V,S
0 ‖ℓq(V )×ℓp(S)C

j−1

GV ;V
0 ,q

,

≤ νp µ
j−1
p ,

(19)

where νp = α0‖G
R,V
0 ‖ℓq(V )×ℓp(R)‖G

V,S
0 ‖ℓq(V )×ℓp(S) and µp = α0CGV ;V

0 ,q
, from which the

result follows immediately.
�

2.2. Inverse Born series. Proceeding as in [36], let φ ∈ ℓ2(R× S) denote the scattering

data,

φ(r, s) = G0(r, s)− Λη(r, s), (20)

corresponding to the difference between the measurements in the background medium and
those in the medium with the potential present. Note that if the forward Born series
converges, we have

φ(r, s) =

∞
∑

j=1

Kj(η, . . . , η). (21)

Next, we introduce the ansatz

η = K1(φ) +K2(φ, φ) +K3(φ, φ, φ) + · · · , (22)

where each Kn is a multilinear operator. Though φ can be thought of as an operator from
ℓ2(R) to ℓ2(S), in (22) we treat it as a vector of length |R| · |S|. Similarly, though it is often
convenient to think of η as a (diagonal) matrix, in (22) it should be thought of as a vector
of length |V |. Treating η and φ as matrices results in a different inverse problem related
to matrix completion [33]. With a slight abuse of notation, we also use K1 to denote the
|R||S| × |V | matrix mapping η (viewed as a vector) to K1η, once again thought of as a
vector.

To derive the inverse Born series, we substitute the ansatz (22) into the forward series
(21) and equate tensor powers of φ. We thus obtain the following recursive expressions for
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6 FRANCIS J. CHUNG, ANNA C. GILBERT, JEREMY G. HOSKINS, AND JOHN C. SCHOTLAND

the operators Kj [36]:

K1 = K+
1 ,

K2 = −K1K2K1 ⊗K1,

K3 = − (K2K1 ⊗K2 +K2K2 ⊗K1 +K1K3)K1 ⊗K1 ⊗K1,

Kj = −





j−1
∑

m=1

Km

∑

i1+···+im=j

Ki1 ⊗ · · · ⊗Kim



K1 ⊗ · · · ⊗ K1,

(23)

where K+
1 denotes the (regularized) pseudoinverse of K1.

The following result provides sufficient conditions for the convergence of the inverse Born
series for graphs where |V | = |R × S|, corresponding to the case of a formally determined
inverse problem.

Theorem 5. Let |V | = |R×S| and p ∈ [1,∞]. Suppose that the operator K1 is invertible.
Then the inverse Born series converges to the true potential η if ‖φ‖p < rp. Here the radius
of convergence rp is defined by

rp =
Cp

µp

[

1− 2
νp
Cp

(√

1 +
Cp

νp
− 1

)]

, (24)

where
Cp = min

‖η‖p=1
‖K1(η)‖p (25)

and νp, µp are defined in (9).

Remark 6. The convergence of the inverse Born series in the continuous setting was
analyzed in [35]. It was found that certain smallness conditions on both ‖K1‖p and ‖K1φ‖p
are sufficient to guarantee convergence. Note that such a condition on ‖K1‖p is not present
in Theorem 5, Proposition 10 or Theorem 11. As explained below, this is due to the use
of different techniques than in [35].

The proof of Theorem 5 depends on the following multi-dimensional version of Rouché’s
theorem.
Theorem 7. [Theorem 2.5, 1] Let D be a domain in C

n with a piecewise smooth boundary
∂D. Suppose that f, g : Cn → C

n are holomorphic on D̄. If for each point z ∈ ∂D there
is at least one index j, j = 1, . . . , n, such that |gj(z)| < |fj(z)|, then f(z) and f(z) + g(z)
have the same number of zeros in D, counting multiplicity.

Proof of Theorem 5. Put n = |V | = |R×S|. Let F : Cn×C
n → C

n be the function defined
by

F (η, φ) = φ−
∞
∑

j=1

Kj(η, . . . , η). (26)

Note that F has n components F1, . . . , Fn, each of which is well-defined and holomorphic
for all φ if ‖η‖p < 1/µp, since they are defined by a convergent Taylor series in φ and η.
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Let
Cp = min

‖η‖p=1
‖K1(η)‖p, (27)

which is non-zero for all p since K1 is invertible. Then

‖F (η, 0)‖p ≥ Cp‖η‖p −
∞
∑

j=2

‖Kj(η, . . . , η)‖p,

≥ Cp‖η‖p − νp

∞
∑

j=2

µj−1
p ‖η‖jp,

≥ Cp‖η‖p − νpµp‖η‖
2
p

1

1− µp‖η‖p
,

(28)

where the second inequality follows from the bounds on the forward operators obtained in
the proof of Proposition 1. For 0 < ‖η‖p < 1/µp, ‖F (η, 0)‖p is non-vanishing if

‖η‖p <
1

µp

Cp

Cp + νp
. (29)

Suppose λ ≥ 1. We then define

Rλ =
1

µp

Cp

Cp + νpλ
, (30)

and let Ω1,λ = {η ∈ C
n | ‖η‖p < Rλ}.

Next, we observe that F (η, φ)− F (η, 0) = φ and hence if

‖φ‖p < ‖F (η, 0)‖p, (31)

then
‖F (η, φ)− F (η, 0)‖p < ‖F (η, 0)‖p. (32)

Note that

‖F (η, 0)‖p ≥ Cp‖η‖p − νpµp
‖η‖2p

1− µp‖η‖p
, (33)

and thus (31) holds if

‖φ‖p < Cp‖η‖p − νpµp
‖η‖2p

1− µp‖η‖p
. (34)

If η ∈ ∂Ω1,λ, (31) holds if

‖φ‖p < RλCp

(

1−
1

λ

)

≡ rp,λ. (35)

Defining Ω2,λ = {φ ∈ C
n | ‖φ‖p < rp,λ}, we note the following: for all (η, φ) ∈ Ω1,λ × Ω2,λ,

F (η, 0) 6= 0; and, for all (η, φ) ∈ ∂Ω1,λ × Ω2,λ, ‖F (η, φ) − F (η, 0)‖p < ‖F (η, 0)‖p. By
Theorem 7, F (η, 0) and F (η, φ) have the same number of zeroes counting multiplicity on
Ω1,λ × Ω2,λ, namely precisely one. Thus, for all φ ∈ Ω2,λ there exists a unique η = ψ(φ)
such that F (ψ(φ), φ) = 0. Since the unique zero must have multiplicity one,

det
(

{∂ηjFi (ψ(φ), φ)}
n
i,j=1

)

6= 0. (36)
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8 FRANCIS J. CHUNG, ANNA C. GILBERT, JEREMY G. HOSKINS, AND JOHN C. SCHOTLAND

Consequently, by the analytic implicit function theorem [Theorem 3.1.3, 40], ψ is analytic
in a neighborhood of each φ ∈ Ω2,λ, which is sufficient to prove that ψ is analytic on all of
Ω2,λ. Hence ψ has a Taylor series converging absolutely for all φ ∈ Ω2,λ. By construction,
the terms in this series must be the same as those of the inverse Born series, since they are
both power series for the same function. It follows that the inverse Born series must also
converge for all φ ∈ Ω2,λ. Optimizing over λ ≥ 1, the inverse Born series converges for all
φ ∈ C

n, such that

‖φ‖p <
Cp

µp

[

1− 2
νp
Cp

(√

1 +
Cp

νp
− 1

)]

, (37)

which completes the proof. �

Remark 8. We note that Theorem 6 is closely related to the problem of determining
the domain of biholomorphy of a function of several complex variables, where the radii of
analyticity of the function and its inverse are referred to as Bloch radii or Bloch constants
[27, 26, 18]. In the context of nonlinear optimization a related result was obtained in [17],
which also made use of Rouché’s theorem.

Remark 9. The bound constructed in Theorem 5 is only a lower bound for the radius of
convergence. In practice, the series converges well outside this range, as the example in the
next section confirms. Additionally, if in the proof of Theorem 5 we instead define F (η, φ)
by

F (η, φ) = K1φ−
∞
∑

j=1

K1Kj(η, . . . , η), (38)

then it can easily be shown that the inverse series converges if

‖K1φ‖p < r̃p :=
1

µp

[

1− 2
νp
Cp

(√

1 +
Cp

νp
− 1

)]

. (39)

Though the right-hand side is slightly more complicated, it is often easily computed and
gives a better bound.

Figure 1 shows a plot of the bound on the radius of convergence,

rp =
Cp

µp

[

1− 2
νp
Cp

(√

1 +
Cp

νp
− 1

)]

for various values of Cp/νp. For large graphs we expect the determinant of K1 to be small,
corresponding to a small value of Cp. In this regime we observe that the first term in the
asymptotic expansion of (37) is

rp =
C2
p

4νpµp
+O

(

C3
p

)

. (40)

We now consider the stability of the limit of the inverse scattering series under pertur-
bations in the scattering data. The following stability estimate follows immediately from
Theorem 5.
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OPTICAL TOMOGRAPHY ON GRAPHS 9

Figure 1. The bound on the radius of convergence of the inverse Born
series as a function of Cp/νp. The radius rp (multiplied by µp/νp) is shown
in blue. The red curve is the asymptotic estimate given in (40).

Proposition 10. Let E be a compact subset of Ωp = {φ ∈ C
n | ‖φ‖p < rp} , where rp is

defined in (24) and p ∈ [1,∞]. Let φ1 and φ2 be scattering data belonging to E and ψ1 and
ψ2 denote the corresponding limits of the inverse Born series. Then the following stability
estimate holds:

‖ψ1 − ψ2‖p ≤M‖φ1 − φ2‖p ,

where M =M(E, p) is a constant which is otherwise independent of φ1 and φ2.

Proof. In the proof of Theorem 5 it was shown that ψ is analytic on Ωp. In particular, it
follows that there exists an M <∞ such that

‖Dψ‖p ≤M, (41)

for all φ ∈ Ω. Here Dψ is the differential of ψ and ‖ · ‖p is its induced matrix p-norm. By
the mean value theorem,

‖ψ1 − ψ2‖p ≤M‖φ1 − φ2‖p, (42)

for all φ1, φ2 ∈ Ω. �

Theorem 5 guarantees convergence of the inverse Born series, but does not provide an
estimate of the approximation error. Such an estimate is provided in the next theorem.
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10 FRANCIS J. CHUNG, ANNA C. GILBERT, JEREMY G. HOSKINS, AND JOHN C. SCHOTLAND

Theorem 11. Suppose that the hypotheses of Theorem 5 hold and ‖φ‖p < τrp, where
τ < 1. If η is the true vertex potential corresponding to the scattering data φ, then

∥

∥

∥

∥

∥

η −
N
∑

m=1

Km(φ, . . . , φ)

∥

∥

∥

∥

∥

∞

< M

(

1

1− τ

)n(‖φ‖p
τrp

)N 1

1−
‖φ‖p
τrp

.

Proof. The proof follows a similar argument to one used to show uniform convergence of
analytic functions on polydiscs, see [Lemma 1.5.8 and Corollary 1.5.9, 40] for example. By
Theorem 5, since ‖φ‖p < rp, the inverse Born series converges. Moreover, the value to
which it converges is precisely the unique potential η corresponding to the scattering data
φ.

Let ψj be the jth component of the sum of the inverse Born series, which is of the form

ψj =

∞
∑

|α|=0

c(j)α φα, (43)

for suitable c
(j)
α , consistent with (22). Here we have used the following notational conven-

tion: if α = (α1, . . . , αn) then φ
α ≡ φα1

1 . . . φαn
n . Additionally, for a given multi-index α we

define |α| = α1 + · · · + αn. Note that each α in the sum has exactly n elements, though
any number of them may be zero.

Let

ψ
(N)
j =

N
∑

|α|=0

c(j)α φα,

and ∆φ be the polydisc

∆φ =

{

z ∈ C
n | |zs| < |φs|

rp
‖φ‖p

, s = 1, . . . , n

}

.

We note that φ ∈ ∆φ ⊆ {φ | ‖φ‖p < rp}. It follows by Cauchy’s estimate [Theorem 1.3.3,
40] that

|c(j)α | ≤M

(

‖φ‖p
rp

)|α| 1

|φ|α
, (44)

where M = max‖φ‖p<rp ‖ψ‖p. To proceed, we employ the following combinatorial iden-
tity, [Example 1.5.7, 40],

∞
∑

|α|=0

t|α| =
1

(1− t)n
, (45)

for all t ∈ (−1, 1). In light of the above, we see that

M
∑

|α|=0

(

‖φ‖p
rp

)|α|

=M

(

∞
∑

m=1

(

‖φ‖p
rp

)m
)n

=M





1

1−
‖φ‖p
rp





n

.
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OPTICAL TOMOGRAPHY ON GRAPHS 11

The function 1/(1− t)n is bounded by

M

(

1

1− τ

)n

for all |t| < τ < 1. Thus the one-dimensional Cauchy estimate implies that the kth coeffi-
cient of its Taylor series, bk, is bounded by

|bk| ≤M

(

1

1− τ

)n 1

τk
,

and so

∑

|α|>N

(

‖φ‖p
rp

)|α|

≤M

∞
∑

k>N

(

1

1− τ

)n(‖φ‖p
τrp

)k

,

=M

(

1

1− τ

)n(‖φ‖p
τrp

)N 1

1−
‖φ‖p
τrp

.

(46)

Hence, independent of j,

∣

∣

∣
ψj − ψ

(N)
j

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

|α|>N

c(j)α φα

∣

∣

∣

∣

∣

∣

,

≤
∑

|α|>N

|c(j)α ||φ|α,

≤M
∑

|α|>N

(

‖φ‖p
rp

)|α|

,

≤M

(

1

1− τ

)n(‖φ‖p
τrp

)N 1

1−
‖φ‖p
τrp

,

(47)

from which the result follows immediately. �

Remark 12. Note that in the previous theorem we can minimize our bound over τ ∈
(‖φ‖p/rp, 1). Letting γ = ‖φ‖p/rp the minimum occurs at

τ∗ =
γ

2





(

1 +
N − γ

γ(n+N)

)

+

√

(

1−
N − γ

γ(N + n)

)2

+ 4
1− γ

γ(N + n)



 .

Finally, we conclude our discussion of the convergence of the inverse Born series by
proving an asymptotic estimate for the truncation error. Specifically, we show that for a
fixed number of terms N the error in the N -term inverse Born series goes to zero as η goes
to zero. We note that our estimate does not apply to the case of fixed φ and N → ∞ since
CN,ax

N → ∞ for any fixed positive x.
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12 FRANCIS J. CHUNG, ANNA C. GILBERT, JEREMY G. HOSKINS, AND JOHN C. SCHOTLAND

Theorem 13. Let ‖η‖pµp < a < 1. Then there exists a constant CN,a, depending on N
such that

∥

∥

∥

∥

∥

∥

η −

N
∑

j=1

Kj(φ, · · · , φ)

∥

∥

∥

∥

∥

∥

p

≤ CN,a‖η‖
N+1
p . (48)

Proof. We begin by considering the truncated inverse Born series,

ηN (φ) =
N
∑

j=1

Kj(φ, · · · , φ). (49)

If µp‖η‖p < 1, φ is equal to its forward Born series, and hence

ηN − η =

N
∑

j=1

∞
∑

i1,··· ,ij=1

Kj [Ki1(η, . . . , η), · · · ,KiN (η, . . . , η)]− η. (50)

Using (23) we find that

ηN − η =
n
∑

j=1

∞
∑

i1+···+ij>N

Kj [Ki1(η, . . . , η), · · · ,KiN (η, . . . , η)], (51)

which follows from the construction of the inverse Born series. Therefore

‖ηN − η‖p ≤
N
∑

j=1

‖Kj‖p ν
j
p

∞
∑

k>N

µk−j
p ‖η‖kp,

≤

N
∑

j=1

‖Kj‖p

(

νp
µp

)j ∞
∑

k>N

µkp‖η‖
k
p,

≤
N
∑

j=1

‖Kj‖p

(

νp
µp

)j

‖η‖N+1
p µN+1

p

∞
∑

k=0

(µp‖η‖p)
k,

=

N
∑

j=1

‖Kj‖p ν
j
pµ

N+1−j
p ‖η‖N+1

p

1

1− µp‖η‖p
.

(52)
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In order to proceed, we require a bound on ‖Kj‖p. As in [36], we begin by observing
that if p ∈ [1,∞], j > 2,

‖Kj‖p ≤ ‖K1‖
j
p

j−1
∑

m=1

‖Km‖p
∑

i1+···+im=j

‖Ki1‖p · · · ‖Kim‖p,

≤ ‖K1‖
j
p

j−1
∑

m=1

‖Km‖p
∑

i1+···+im=j

(

νp
µp

)m

µjp,

= ‖K1‖
j
p

j−1
∑

m=1

‖Km‖p

(

j − 1

m− 1

)(

νp
µp

)m

µjp,

≤ νpµ
j−1
p ‖K1‖

j
p

(

j−1
∑

m=1

‖Km‖p

)

j−2
∑

m=0

(

j − 1

m

)(

νp
µp

)m

,

(53)

where we have shifted the index m in the last expression. It follows immediately from the
binomial theorem that

‖Kj‖p ≤ ‖K1‖
j
pνp

[

(µp + νp)
j−1 − νj−1

p

]

(

j−1
∑

m=1

‖Km‖p

)

,

≤ [‖K1‖p (µp + νp)]
j

(

j−1
∑

m=1

‖Km‖p

)

,

≤ ‖K1‖p (µp + νp) ‖Kj−1‖p +
νp

µp + νp
[‖K1‖p (µp + νp)]

j ‖Kj−1‖p,

≤ ‖K1‖p(µp + νp)
[

1 + (µp + νp)
j−1‖K1‖

j−1
p

]

‖Kj−1‖p.

(54)

Further note that if j = 2, then

‖K2‖p ≤ ‖K1‖
3
pν

2
p ≤ ‖K1‖

3
p(µp + νp)

2. (55)

For ease of notation, let r = (µp + νp)‖K1‖p and note that

‖Kj‖p ≤ ‖K1‖p(µp + νp)
[

1 + (µp + νp)
j−1‖K1‖

j−1
p

]

‖Kj−1‖p,

≤ r [1 + rj−1]‖Kj−1‖p,

≤ ‖K1‖pr
j2j [max{1, r}]

j(j−1)
2 .

(56)
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14 FRANCIS J. CHUNG, ANNA C. GILBERT, JEREMY G. HOSKINS, AND JOHN C. SCHOTLAND

If we define C = max{1, r}, then it follows from (52) and (56)

‖ηN − η‖p ≤
‖η‖N+1

p µN+1
p ‖K1‖p

1− µp‖η‖p

N
∑

j=1

(

2νp r

µp

)j

C
j2

2 ,

≤
‖η‖N+1

p µN+1
p ‖K1‖p

1− µp‖η‖p

1−
(

2νpµ
−1
p r
)N+1

1− 2νpµ
−1
p r

C
N2

2 ,

≤ C̃(N)
‖η‖N+1

p

1− µp‖η‖p
.

(57)

Thus, for ‖η‖p < µ−1
p a < µ−1

p ,

‖ηN − η‖p ≤ C ′(N)‖η‖N+1
p (58)

for some constant C ′(N). �

3. Implementation

3.1. Regularizing K1. In the previous section we found that the norm of K1 plays an
essential role in controlling the convergence of the inverse Born series. In practice, for
large graphs ‖K1‖p is too large to guarantee convergence of the inverse series. Moreover,
even if the series converges, a modest amount of noise can lead to large changes in the
recovered potential. Regularization improves the stability and radius of convergence of
the inverse Born series by employing a regularized pseudoinverse, K+

1 in place of the true

inverse K−1
1 in the definition of K1. In our numerical studies we compute K1 using a

Tikhonov-regularized singular value decomposition of K1 [38]. In the following we denote
the regularization parameter by ǫ, noting that when ǫ = 0 no regularization has been
performed.

3.2. Numerical examples. In the following we present numerical reconstructions for a
12 × 12 lattice with boundary vertices connected to the outermost layer of vertices, as
illustrated in Figures 2-6. Note that each outgoing edge connects to a boundary vertex.
The scattering data is obtained by solving the forward problem by applying a direct solver
to to the linear system (1). As is often the case in biomedical applications, we consider a
homogeneous medium with a small number of large inclusions.

Figures 2–6 show typical results of the inverse Born series reconstruction. Note that due
to the rapid increase in the number of terms at each order in the inverse Born series, it is
seldom practical to proceed beyond the first few terms of the series. As such, in each of our
experiments it is not possible to say whether the series converges, since we are well beyond
the radius of convergence guaranteed by Theorem 5. Instead, we consider the behavior of
the first five terms. If the sum grows exponentially in the order of truncation then we say
that the series diverges.

In Figure 3 the potental η is scaled by a factor of 10 compared to Figure 2. The in-
verse Born series diverges for the larger potential, and regularization is necessary to ensure
convergence. Though this regularization improves the rate of convergence of the inverse
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Born series, it no longer converges to the true potential. We note, however, that there is
still good qualitative recovery of the potential. Moreover, the method of regularization we
have used here, Tikhonov regularization, has a smoothing effect on the recovered potential
in the continuous setting. The same effect is evident in the transition from Figure 3 to
Figure 4 where the regularization parameter, ǫ, has been increased from 10−7 to 10−5.
Figure 5 shows the effect of changing the boundary condition parameter t. In particular,
decreasing t appears to shrink the radius of convergence, necessitating a larger regular-
ization parameter. Finally, in Figure 6 we see the effect of partial boundary data. Note
that a larger regularization parameter is required since the forward operator K1 is more
ill-conditioned.

(a) 

0

0.05

0.1

(b) 

-1

0

1

(c) 

-0.05

0

0.05

0.1 (d) 

0

0.05

0.1

Figure 2. a) True potential b) first term of the inverse Born series, c) first
two terms of the inverse Born series, d) first five terms of the inverse Born
series. Here α0 = 0.1, t = 1, ǫ = 0, and every boundary vertex is both a
source and a receiver. µ2 = 0.0874, ν2 = 0.4702, and r̃2 = 3.7× 10−7.
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Figure 3. a) True potential b) first term of the inverse Born series, c) first
two terms of the inverse Born series, d) first five terms of the inverse Born
series. Here α0 = 0.1, t = 1, ǫ = 10−7, and every boundary vertex is both
a source and a receiver. µ2 = 0.0874, ν2 = 0.4702, and r̃2 = 1.215 × 10−6.
Note that without the regularization the inverse Born series diverges.
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Figure 4. a) True potential b) first term of the inverse Born series, c) first
two terms of the inverse Born series, d) first five terms of the inverse Born
series. Here α0 = 0.1, t = 1, ǫ = 10−5, and every boundary vertex is both
a source and a receiver. µ2 = 0.0874, ν2 = 0.4702, and r̃2 = 1.224× 10−4.
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Figure 5. a) True potential b) first term of the inverse Born series, c) first
two terms of the inverse Born series, d) first five terms of the inverse Born
series. Here α0 = 0.1, t = 0, ǫ = 10−5, and every boundary vertex is both
a source and a receiver. µ2 = 0.1738, ν2 = 10.7463, and r̃2 = 2.677× 10−6.
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Figure 6. a) True potential b) first term of the inverse Born series, c)
first two terms of the inverse Born series, d) first five terms of the inverse
Born series. Here α0 = 0.1, t = 1, ǫ = 10−9, and every boundary vertex
on the top and bottom edges of the lattice is both a source and a receiver.
µ2 = 0.0874, ν2 = 0.2351, and r̃2 = 2.656× 10−7.
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4. Incorporating potential structure

The inverse Born series algorithm can be extended to take into account additional con-
straints on the vertex potential η, such as restrictions on its support or requirements that it
is constant on some subset of the domain, allowing the recovery of vertex potentials which
would otherwise be unrecoverable using the inverse Born series described above.

Theorem 14. Let F be a linear mapping from R
k → R

|V |, where k ≤ |V | and suppose
that η is in the image of F. Let η′ be its pre-image,

η′ = F−1(η). (59)

Then

η′ = K′
1(φ) +K′

2 (φ, φ) + · · ·+K′
n(φ, . . . , φ) + · · · , (60)

and

K′
1 = (K1 ◦ F )

+,

K′
2 = −K′

1 ◦K2 ◦ ((F ◦ K1)⊗ (F ◦ K1)) ,

K′
n = −

n−1
∑

j=1

K′
j ◦





∑

i1+···+ij=n

Ki1 ⊗Ki2 ⊗ · · · ⊗Kij



 ◦ ((F ◦ K1)⊗ · · · ⊗ (F ◦ K1)) ,

(61)

where (K1 ◦ F )
+ denotes the (regularized) pseudoinverse of (K1 ◦ F ).

Proof. We begin by rewriting the discrete time-independent diffusion equation as

Lu+ α0[I +DF (η′)]u−AT
V,δV v = 0,

−AV,δV u+Dv = g,
(62)

where DF (η′) is the diagonal matrix whose diagonal elements are given by the vector F (η′).

If Λ′
η′ : ℓ

2(Rk) → ℓ2(R × S) denotes the Robin-to-Dirichlet map for the modified system

(62) and η is in the image of F, then

Λ′
η′ = Λη. (63)

Thus the forward Born series of (62) is given by

Λ′
η′(s, r) = G0(r, s)−

∞
∑

n=1

Kn

(

F (η′), . . . , F (η′)
)

. (64)

Following the construction of the inverse Born series, we let φ represent the measured data,
and consider the ansatz

η′ = K′
1(φ) +K′

2 (φ, φ) + · · ·+K′
n(φ, . . . , φ) + . . . (65)
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We see immediately that

K′
1 ◦K1 ◦ F = I,

K′
1 ◦K2 ◦ (F ⊗ F ) +K′

2 ◦ ((K1 ◦ F )⊗ (K1 ◦ F )) = 0,

. . .

n
∑

j=1

K′
j ◦





∑

i1+...ij=n

Ki1 ⊗Ki2 ⊗ · · · ⊗Kij



 ◦ (F ⊗ · · · ⊗ F ) = 0.

(66)

If (K1 ◦ F )
+ denotes the (regularized) pseudoinverse of (K1 ◦ F ), then we obtain

K′
1 = (K1 ◦ F )

+,

K′
2 = −K′

1 ◦K2 ◦ ((F ◦ K1)⊗ (F ◦ K1)) ,

K′
n = −

n−1
∑

j=1

K′
j ◦





∑

i1+···+ij=n

Ki1 ⊗Ki2 ⊗ · · · ⊗Kij



 ◦ ((F ◦ K1)⊗ · · · ⊗ (F ◦ K1)) .

(67)

�

We observe that bounds on the radius of convergence, truncation error, and stability of
the modified inverse Born series can be easily obtained using arguments similar to those
made in Section 2. Theorem 14 can easily be applied to incorporate measurements from
multiple values of α0, provided the vertex potential η is independent of the value of α0. In
optical tomography, this corresponds to varying the optical wave wavelength so that the
absorption coefficients of the background medium and the inhomogeneities to be imaged
have the same wavelength dependence.

In particular, let Γ = (E, V ) be a graph and suppose we have measurements for α0 =
(αi)

m
1 . Let Γ′ = {Γ1, . . . ,Γm} be the graph with vertices V ′ = {V1, . . . , Vm} and edges

E′ = {E1, . . . , Em}, consisting of m copies of Γ. Here the subscript denotes the copy of
E, V, or Γ to which we are referring. Let π : V ′ → V denote the projection map taking
a vertex in Vi or δVi to the corresponding vertex in V or δV, respectively. Finally, for a
given vertex potential, η, on Γ let η′ denote the corresponding potential on Γ′. Thus, for
each vertex v ∈ V ′,

η′(v) = η(π(v)). (68)

Next we construct the following modified time-independent diffusion equation

Liui + αi[I +Dη′ ]ui − (Ai)
T
V,δV vi = 0,

−(Ai)V,δV ui +Dvi = gi,
(69)

where ui and vi, i = 1, . . . ,m, are supported on Vi and δVi, respectively, and Li is the
Laplacian corresponding to the ith subgraph. As before Dη′ denotes the diagonal matrix
with entries given by η′.

Note that Γ′ consists of m disconnected components, and hence the solution in one

component is independent of the solution in another. If W,U ⊂ Vi × δVi let G
W ;U
i denote
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the submatrix of Gi consisting of the rows indexed by W and the columns indexed by U.
It follows that the background Green’s function for (69) is given by

G0 =































GV1;V1

1 GV1;δV1

1

GV2;V2

2 GV2;δV2

2

. . .
. . .

GVm;Vm

m GVm;δVm

m

GδV1;V1

1 GδV1;δV1

1

GδV2;V2

2 GδV2;δV2

2

. . .
. . .

GδVm;Vm

m GδVm;δVm

m































(70)

Thus, if u = (u1, . . . , um, v1, . . . , vm)T solves (69) when η′ ≡ 0, and

g = (0, . . . , 0, g1, . . . , gm)T ,

then

u = G0g. (71)

Using this we can define the operators K1, . . . ,Kn for (69), where we replace G0 by

G
′

0 =

































α1

α0
G

V1;V1

1
α1

α0
G

V1;δV1

1
α2

α0
G

V2;V2

2
α2

α0
G

V2;δV2

2

. . .
. . .

αm

α0
GVm;Vm

m
αm

α0
GVm;δVm

m

α1

α0
G

δV1;V1

1
α1

α0
G

δV1;δV1

1
α2

α0
G

δV2;V2

2
α2

α0
G

δV2;δV2

2

. . .
. . .

αm

α0
GδVm;Vm

m
αm

α0
GδVm;δVm

m

































,

(72)

to account for the different α value in each component.
We now enforce the condition that η is identical on each copy of Γ, and hence is inde-

pendent of α. The map F : ℓp(V1) → ℓp(V1 × · · · × Vm) in (59) is defined by

F{η}(v) = η(π(v)). (73)

Using this we form the modified inverse Born series operators in (67) and thus construct
the modified inverse Born series. Provided that (K1◦F ) is invertible and the measured data
φ is sufficiently small, by Theorem 5 the inverse Born series converges to the true (unique)
value of η. Since η is the α-independent absorption of the vertices in Γ, we have constructed
a reconstruction algorithm using data from multiple α0. To illustrate this algorithm we
consider a path of length 10, noting that it cannot be imaged using the standard inverse
Born series, that is with one value of α0. Observe that, more generally, any graph containing
a path of length greater than six in its interior, connected to the remainder of the graph
only at its endpoints, the corresponding K1 is not invertible. In fact, it can be shown that
for such graphs that the absorption η cannot be uniquely determined from the data φ.
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Figure 7. Reconstructions using the multi-frequency inverse Born series

for αi = 0.1
(

1 + 4 i
N−1

)

, i = 0, . . . , N − 1, t = 0.01, and ǫ = 10−10.

To illustrate the effect of the number of αi on recovery, we choose one boundary vertex

to act both as source and receiver and take αi = 0.1
(

1 + 4 i
N−1

)

, i = 0, . . . , N − 1, for

N = 8, 16, 24, and 32; see Figure 7. Here η is chosen to be a function supported on the
interior vertices 2, 3 and 6, with a height of 0.01. In each case the sum of the first 6 terms
of the inverse Born series is taken with the Tikhonov regularization parameter ǫ = 10−10).
The effect of regularization on the recovery of the potential is similar to that obtained in
the results presented in Section 3.
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