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The Law of Scale Independence
Jonathan D. Phillips a,b

aDepartment of Geography, University of Kentucky, USA; bDepartment of Geography, Planning, and Environment, East Carolina University, 
New Bern, NC, USA

ABSTRACT
Geography and geosciences deal with phenomena that span spatial scales from the molecular to 
the planetary, and temporal scales from instantaneous to billions of years. A strong reductionist 
tradition in geosciences and spatial sciences tempts us to seek to apply similar representations and 
process-based explanations across these vast-scale ranges, usually from a bottom-up perspective. 
However, the law of scale independence (LSI) states that for any phenomenon that exists across a 
sufficiently large range of scales, there exists a scale separation distance at which the scales are 
independent with respect to system dynamics and explanation. The LSI is evaluated here from five 
independent perspectives: geographic intuition, dynamical systems theory, Kolmogorov entropy, 
hierarchy theory, and algebraic graph theory. All of these support the LSI. Results indicate that 
rather than attempting to identify the largest or smallest relevant scales and work down or up from 
there, the LSI dictates a strategy of focusing directly on the most important or interesting scales. An 
example is given from a hierarchical state factor model of ecosystem responses to climate change.
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1. Introduction
Explanation in geography and geosciences must con
front features and processes ranging from molecular to 
planetary, and from instantaneous to billions of years 
(Figure 1). The strong reductionist tradition in science 
seeks to apply similar representations and process-based 
explanations across these vastscale ranges, usually from 
a bottom-up perspective. This is despite the fact that 
abundant empirical evidence, supported by multiple 
theoretical perspectives, indicates that process-response 
relationships, and appropriate representations of them, 
vary with scale. In this paper several of the latter are 
reviewed and synthesized to propose and test the law of 
scale independence (LSI). The LSI asserts that in geogra
phical systems processes and controls that operate at 
sufficiently different spatial and/or temporal scales are 
independent of each other with respect to their effects 
on system function and evolution.

The aphorism everything is related to everything else, 
but near things are more related than distant things is 
often posed as the First Law of Geography. The second 
part of the law relates to spatial autocorrelation and 
distance decay. The LSI is analogous in that it relates to 
what might be called scale autocorrelation (relatedness 
across scales rather than distance), and distance decay, 
with distance conceptualized as the difference between 
scales. LSI can also be perceived as a scale-domain 

version of a putative principle of geographic similarity, 
whereby similarity of spatial configurations is propor
tional to the similarity of underlying processes.

The purpose of this paper is to examine the LSI from 
multiple perspectives. Before launching into those argu
ments and illustrations I will provide some background 
on the relevance of the topic, and on previous efforts to 
address scale independence.

1.1. Scale linkage and scale contingency

In the geosciences and geographical information 
science there are three broad, overlapping categories 
of scale problems. The first, resolution, concerns the 
level of detail necessary to properly observe and repre
sent a given phenomenon, and tradeoffs among sam
pling effort, sizes of data sets, and analysis and 
computational times.

Scale linkage is the second major issue, referring to 
the problems of linking representations along the 
often-vast range of applicable scales. In ecohydrology, 
for instance, how do we link processes operating in 
individual leaf stomata to biome-scale patterns of eva
potranspiration, both of which we know are important? 
How do we link the mechanics of flow acting on a sand 
grain in a streambed to evolution of fluvial landscapes? 
Scale linkage has operational and theoretical aspects. 
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Figure 1. The karst landscape in Estill County, Kentucky (as depicted by the Kentucky Geological Survey), like most geographical 
features, is affected by multiple scale causality. From the bottom, spatial scales as small as the molecular and as rapid as rates of 
chemical reactions and water flow are important. From the top, scales as large as global climate and as slow as geological evolution are 
important.
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The former involve identifying characteristic scales, 
determining conditions of scale independence, deci
sions as to what phenomena to represent at a given 
scale, and tools for transferring information and repre
sentations between scales. Theoretical scale linkage 
issues involve fundamental questions of whether any 
single rules, relationships or representations are even 
potentially valid across all relevant-scale ranges; bot
tom-up vs. top-down influences, and multiple-scale 
causality. These are the main topics addressed in this 
paper.

Closely related is the third basic issue, scale contin
gency. If the principles governing process-response and 
spatial relationships were constant across scales, then 
scale linkage would chiefly be a technical issue. These 
problems, though quite challenging, are well known in 
the context of problems, such as multiple-resolution 
models, upscaling, and downscaling. In physical geogra
phy and geosciences, however, the rules are typically not 
constant across scales. Problems of interpreting Earth 
surface systems associated with scale contingency of 
the critical controls have been discussed for example, 
for coastal dunes (Sherman 1995; Kim and Zheng 2011), 
salt marshes (Kim 2018), coastal landscapes (Walker et al. 
2017), prairie ecosystems (Zirbel et al. 2019), soil and 
hillslope hydrology (Ma et al. 2017; Glaser et al. 2019), 
soil-plant-water interactions (Manzoni et al. 2013), rock 
weathering (Viles 2001; Inkpen 2011), disturbance of soil 
landscapes (Sauchyn 2001), river bank erosion (Couper 
2004), and drainage basin sediment budgets (Slaymaker 
2006).

Problems of scale linkage have probably always 
been recognized, at least implicitly, in geography, geos
ciences and ecology. Broad, explicit consideration can 
be dated to 1965, when Haggett (1965) articulated the 
problem in geography, and Schumm and Lichty (1965) 
published their famous paper on the relationship 
between temporal scale and independence of variables 
in geomorphology. The significance of scale linkage is 
such that it has been described as geomorphology’s 
‘holy grail’ (Rhoads and Thorn 1996, 145; Couper 
2004, 392).

In geosciences, the term ‘scaling’ has become 
strongly associated with power-law scaling and related 
phenomena. Scaling is in some cases linked to scale 
linkage, but it is difficult to generalize because power- 
law scaling is an example of equifinality – that is, it can 
be produced by several different processes or histories. 
Jiang (2017) reduced the implications of power-law scal
ing to its essence, terming it the scaling law: there are far 
more small things than large ones in geographic space, 
and asserted the scaling law as the dominant design 
principle for cartography.

In short, the scale independence treated here con
cerns the question of whether, with respect to a given 
phenomenon, processes at different scales are indepen
dent. In some studies of scaling, particularly those using 
fractal analyses, scale independence refers to self-similar 
statistical and topological properties across (a range of) 
scales. This form of scale independence is quite different 
from scale independence as defined here. Essentially, 
self-similarity implies that scale (resolution) has no effect 
on patterns – that is, their properties are similar (they 
‘look’ the same) at any resolution at which self-similarity 
applies. The notion of scale (in)dependence examined 
here, by contrast, relates to processes, controls, and 
functional linkages rather than geometrical or topologi
cal patterns or statistical properties of spatial patterns or 
distributions. The latter may or may not be clearly linked 
to processes and controls, but in many studies of fractals 
and self-similarity the connection is ignored or assumed. 
For instance, numerous studies of stream networks 
using fractal analyses and other morphometric proper
ties have been carried out. However, in most cases, the 
self-similarity and other properties identified are asso
ciated with any hierarchically ordered branching net
work and not necessarily related to any hydrological or 
geomorphological factors (e.g. Richards 1982, 35; 
Abrahams 1984; Kirchner 1993; Peckham and Gupta 
1999; Zanardo, Zaliapin, and Foufoula-Georgiou 2013; 
Kovchegov and Zaliapin 2016). While fractal properties 
and other morphometric measurements can be and 
have been linked to environmental controls and hydro
logical and geomorphological processes, the morpho
metric indices by themselves (including self-similarity) 
are not physically meaningful.

1.2. Scale (in)dependence

If processes and controls operating at different scales are 
not independent, this suggests that a seamless linkage 
across those scales is at least possible. If the scales are 
independent, this can complicate scale linkage due to 
the need for application of multiple rules and represen
tations at different scales. Or, scale independence could 
simplify the problem by justifying the focus on some and 
exclusion of other scales.

Few would argue that in a practical, pragmatic sense 
it is useful and valid to emphasize some and ignore other 
scales. Palaeoclimatologists, for instance, might in many 
cases ignore solving the atmospheric equations of 
motion, while dynamic climatologists would often have 
no need to consult paleoclimate evidence. But is scale 
independence a general principle with the force of a 
geographic or scientific law? Or perhaps just a conveni
ent simplifying assumption?
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Forriez, Martin, and Nottale (2020) argued against 
scale independence from a reductionist, geometrical 
perspective grounded in fractal geometry. They pro
mote a continuum view of geographical scale (as 
opposed to a hierarchical concept), and argue for scale 
relativity, whereby every phenomenon is defined rela
tive to a reference system that is itself relative. Their 
programme is to discover geographic laws that are 
applicable regardless of the reference system, and there
fore the scale.

Geographical systems are networked, and arguing 
from actor-network theory, Allen (2011) questioned the 
whole concept of scale. If everything is networked, he 
claims, then scale as applied to any one landscape 
becomes irrelevant. Inkpen (2011) also takes a relational 
view of scale, rather than scale as part of a fixed, absolute 
reference point. However, his framework is geared 
towards identifying critical scales for analysis rather 
than making scale irrelevant.

In the context of Earth surface modelling using a 
combination of remote sensing and ground data, Yue 
et al. (2016) implicitly rejected scale independence, 
though they did not explicitly address scale linkage or 
contingency. Their fundamental theorem of Earth sur
face modelling is formulated on the basis of applying 
high accuracy surface modelling (HASM) to simulating 
surfaces. The theorem is that an Earth’s surface system or 
a component of Earth’s surface environment can be 
simulated with HASM when its spatial resolution is fine 
enough, which is uniquely defined by both extrinsic and 
intrinsic invariants of the surface. They derived seven 
corollaries, all based on upscaling, downscaling, and 
data fusion and assimilation. Thus, the implicit assump
tion is that the laws or principles operating at a certain 
(fine) scale are sufficient for all modelling purposes.

By contrast, the studies cited earlier all acknowledge 
or support a degree of scale independence (Sherman 
1995; Viles 2001; Couper 2004; Slaymaker 2006; Inkpen 
2011; Kim and Zheng 2011; Manzoni et al. 2013; Ma et al. 
2017; Walker et al. 2017; Kim 2018; Glaser et al. 2019; 
Zirbel et al. 2019). To be sure, not all directly address 
scale independence as a law or general principle, or 
explicitly reject or argue against the possibility of seam
less linkages across a large range of scales. But all, at 
least within the domains of study addressed, confirm 
that different rules or representations are sometimes 
necessary at different scales.

The analyses of scale independence that follow are 
organized by several different perspectives, arguments, 
and analytical approaches: intuition, dynamical systems 
theory, Kolmogorov entropy, hierarchy theory, and alge
braic graph theory. They are, to varying degrees, based 

on my own efforts to address scale independence over 
the years, to see if the arguments converge towards a 
general principle of scale independence.

2. Evaluating scale independence

2.1. Intuition

Intuition is defined as the ability to understand some
thing without conscious reasoning, or a thing that one 
knows or considers likely from instinctive feeling. It is 
intuitively evident, for instance, that while plate tec
tonics are relevant to landforms, tectonophysics is not 
useful to explain process mechanics at the scale of a 
hillslope or stream channel. Similarly, while we know 
that the physics of wind drag on a grain of sand is 
germane to dune dynamics, it is not helpful in studying 
Quaternary evolution of dune fields. Many other exam
ples exist – ecosystem functions cannot be explained by 
cellular microbiology (or cell biology by ecosystem 
science), for instance.

While intuition is not highly valued as a type of formal 
testing, it is in some cases based on extensive experience 
and insight. Inkpen (2011, 10), for example, stated that 
Schumm and Lichty’s (1965) argument with respect to 
temporal scales and geomorphology, that factors 
change from dependent to independent as scale 
changes ‘is more a statement of conviction than a theory 
but one that has served geomorphology well’. A formal 
mathematical basis for Schumm and Lichty’s arguments 
and an extension to spatial as well as temporal scale 
were provided later (Phillips 1986, 1988), but this had 
little or no role in their widespread acceptance by geo
morphologists. The popularity and success of Schumm 
and Lichty’s (1965) position is due to its consistency with 
common sense and geoscientific intuition, and also to a 
general respect for the value of the intuition of the 
authors.

Intuition also does not necessarily imply the absence 
of any formal logic or rigorous analysis in support of 
intuitive insights. At least at the far ends of the scale 
ranges that geography and geosciences deal with, intui
tion strongly supports scale independence. However, in 
many cases independence is far from intuitively obvious. 
For instance, in a modelling environment, consider an 
effort to model two phenomena that occur at different 
time scales (subscripts s and f for slower and faster). To 
ensure that changes are not propagated through space 
more rapidly than they actually happen, these condi
tions should be met: 

Δtf � ΔSf=C (1) 
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Δts � ΔSs=m (2) 

Δt, ΔS represent the time steps and spatial resolution (e. 
g. grid spacing), C is the rate of the most rapid fast 
processes, and m of the least rapid of the slower pro
cesses. In the specific case of numerical modelling of 
partial differential equation systems, these conditions 
correspond to the Courant-Friedrichs-Lewy (CFL) condi
tion, frequently used in climate models. Martin (1993) 
reviews CFL applications in the context of modelling 
vegetation/climate interactions, for example.

We can deduce from this that 

ΔSs=ΔSf � m=Cð Þ Δts=Δtfð Þ (3) 

Δts=Δtf � C=mð Þ ΔSs=ΔSfð Þ (4) 

For instance, if due to the use of a fixed spatial grid scale 
ΔSs = ΔSf, the time step for the slower processes should 
be longer than that of the faster processes by C/m. If Δts 
= Δtf due to use of a common time step, the grid size for 
the faster processes should be smaller than for the 
slower ones by m/C. If these criteria imply unrealistically 
large, small, or different grid sizes or time steps, spatial 
independence is indicated.

2.2. Dynamical systems

Geographical systems are often characterized as a set of 
interconnected, networked components and the inter
actions between them. The components may be pro
cesses, mass/energy storage components, or 
environmental factors or controls. Dynamical systems 
approaches are concerned with studying the system- 
level behaviour of these interconnected systems.

In the study of ecological systems (and other geogra
phical systems) one is often obliged to abstract selected 
factors or variables from the overall, broader system. 
Schaffer (1981) was concerned with such ecological 
abstraction. He developed the product theorem for 
abstracted eigenvalues, in the context of a dynamical 
system characterized by two different groups of compo
nents, one of which operates at faster rates, shorter time 
periods, or more localized scales, and the other at slower 
rates, longer time periods, or broader spatial scales. The 
Jacobian matrix of the system can then be partitioned 
into four submatrices: the mutual influences of the fast/ 
local components on each other; the mutual influences 
among the slow/broad scale components; effects of the 
slow on the fast components; and effects of the fast on 
the slow. The eigenvalues reflect the dynamical beha
viour of the system. Eigenvalues of a subgraph of the 
abstracted components of a system are related to those 
of the larger, parent system by 

Yn qð Þ

m¼1

λm að Þ ¼

QN
j¼1 λj

h i

QN� n qð Þ
k¼1 λk dð Þ

h i (5) 

λm(a) represents the eigenvalues of the abstracted sys
tem, λj those of the parent system, and λk(d) those of a 
subgraph consisting of the remaining components (not 
abstracted).

When subsystems a, d consist of components that 
operate at distinctly different scales (a ≪ d or a ≫ d), 
Schaffer (1981) proved, as eq. (5) suggests intuitively, 
that components that operate at distinctly different 
scales are independent of one another in regard to 
their effect on system dynamics. The principle can be 
extended to multiple scale levels or levels of abstraction.

Thus, at least for the case of the dynamics of geogra
phical systems that can be represented as nonlinear 
dynamical systems, the LSI is supported: if the scales 
are sufficiently different, they are independent. The 
abstracted eigenvalues theorem was used by Phillips 
(1986, 1988) to provide a formal basis for Schumm and 
Lichty’s (1965) principles and to demonstrate indepen
dence of human agency and Holocene sea-level rise 
variables in assessing aggradation of lower coastal 
plain streams (Phillips 1997). The approach can, of 
course, also be used to show that phenomena at differ
ent scales are not sufficiently different to be indepen
dent, as Phillips (1995) did for the case of relationships 
between floodplain ecological dynamics and alluvial 
sedimentation. Other applications of the abstracted 
eigenvalues theorem are mainly in ecology, and include 
Kerfoot and DeAngelis’s (1989) analysis of scale-depen
dent dynamics of ecological food webs, Auger and 
Benoit’s (1993) study of predator-prey dynamics, and 
O’Neill, Kahn, and Russell (1998) on conservation 
ecology.

2.3. Kolmogorov entropy

While numerous subcategories exist, three broad 
entropy concepts are common in Earth sciences, geo
graphy, and ecology, deriving from thermodynamics, 
information theory, and nonlinear dynamical systems 
(NDS) theory. The NDS-based entropy concept, called 
Kolomogorov (K-) entropy, measures the divergence or 
convergence in state space of a nonlinear dynamical 
system. If a spatial pattern or temporal sequence is the 
outcome or a manifestation of a nonlinear dynamical 
system, then the K-entropy is the same as change of 
the statistical or informational entropy (Oono 1978; 
Culling 1988; Zdenkovic and Scheidegger 1989; 
Fiorentino and Claps 1992). For example, if the 
Shannon (information) entropy of a spatial pattern 
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increases as the system evolves, K-entropy is positive, 
and vice-versa. Positive K-entropy is associated with 
dynamical instability and deterministic chaos (increasing 
variability over time), and negative K-entropy with dyna
mical stability. K-entropy is therefore a fundamental 
indicator of (spatial) system dynamics. If entropy 
switches between negative and positive at different 
scales, this is a clear indication of scale independence.

The arguments that follow are taken from Phillips 
(2005), who took a starting point from physics and gen
eralized to the more complex systems of geography.

Envision a simple situation where a fundamental 
minimal-scale ∆o > 0 applies. A process operating at ∆o 

becomes observable at a broader scale ∆, where ∆ = N ∆o. 
For example, in sediment transport studies the physical 
forces acting on a single grain are often considered the 
fundamental minimum scale. The processes at this scale 
become observable at the scales of, e.g. sediment trans
port and deposition, bedforms, and changes in channel 
or surface morphology. Entropy of the observed pattern 
H(∆) is directly related to the entropy of the fundamental 
process (Boyarsky and Gora 2001): 

HðΔÞ ¼ N HðΔoÞ (6) 

Equation (6), while appropriate for simplified physical 
systems, is inadequate for most spatial systems. 
Weather systems, landforms, soils, ecosystems, hydrolo
gical systems, and other Earth surface systems are gen
erally influenced by multiple processes and controls that 
operate at various spatial scales. Generalizing from equa
tion (6) to cases where multiple processes produce the 
observed pattern (initially assuming for simplicity that 
the observational scale is the broadest relevant scale), 
then at the observational scale the entire system entropy 
is additively composed of the entropies from the smal
ler-scale processes: 

H
m

i¼1
ðΔmaxÞ ¼ �½NiHðΔiÞ� (7) 

where there exist i = 1, 2, . . . m smaller-scale processes 
producing the system observed at ∆, and Ni ∆i = ∆. N 
represents the scale ratio, Ni = ∆/∆i. These equations 
follow from the additive properties of entropy, and 
assume that the generating processes are independent. 
In geography independence is often not the case, so 

H
m

i¼1
ðΔmaxÞ�½NiHðΔiÞ� (8) 

Geographical systems, unlike the physics laboratory, are 
typically influenced by broader as well as smaller scale 
phenomena. Now assuming that the system is observed 
at the most detailed relevant scale (again, for simplicity), 
observed entropy is composed of scaled portions of the 

entropies of the broader scale properties (following from 
eq. 6 and the additive properties of entropy). As the j = 1, 
2, . . . q broader scale controls may well not be 
independent, 

HðΔminÞ �
q

j¼1
½NjHðΔjÞ� (9) 

While Ni > 1, Nj < 1.
Combining equations (8) and (9): 

HðΔÞ ¼ �
m

i¼1
½NiHðDiÞ� þ �

q

j¼1
½NjHðΔjÞ� (10) 

This assumes that each of the m + q processes operates 
at a characteristic scale associated with Ni, Nj. Processes 
operating at >1 scale could be accommodated by treat
ing them as separate processes at each operative scale.

All relevant processes and controls can often not even 
be identified, much less measured or estimated. For 
convenience, all broader-scale phenomena relative to 
the observational scale are denoted with subscript g 
for global, and finer-scale ones with l for local. 

Hl < �
m

i¼1
½NiHðDiÞ� (11) 

Hg < �
q

j¼1
½NjHðDjÞ� (12) 

While assessing each process or control at all possible 
scale is often impossible or unfeasible, it is often possible 
to examine patterns at multiple scales and thereby esti
mate Hl, Hg.

From this point we replace H(Δ) with Hr to emphasize 
that the scale of observation may be only one of several 
possible, with Hr representing the entropy of a spatial 
system reflecting aggregate influences of local and glo
bal (smaller and broader relative to r) controls, with 
associated entropies Hl, Hg. Analogous to eq. (10), but 
with aggregate values for N, H: 

Hr � NlHl þ NgHg (13) 

For example, entropy of a soil map at the scale of interest 
could be Hr, and Hl, Hg the entropies of the soils mapped 
at more detailed and at broader scales (or in a GIS 
environment, aggregated at different resolutions) This 
assumes that the scales associated with l, g capture the 
relevant smaller and larger sources of variability. For the 
case of soils, Hg could be associated with regional varia
tions and gradients in geology, climate, and topography, 
and Hl might reflect variations within fields or hillslopes, 
and gradients in drainage, vegetation cover, and micro
climate. As an example, if the scale of the mapped 
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pattern (r) is 1:24,000 and Hl is based on soils mapped at 
1:600, then Nl = 40. If the scale of the ‘global’ map is 
1:100,000, Ng = 0.24.

Based on the chain rule for entropy 

Hr ¼ NlHl
þ ½ HgNg

� �
j HlNlð Þ ¼ NgHg þ

� �
HlNlð ÞjðHgNgÞ�

(14) 

where [(HgNg)|(HlNl)] and [(HlNl)|(HgNg)] indicate the 
global entropies as constrained by (or conditional on) 
the local entropies, and vice-versa. The mutual informa
tion (MI; reduction of uncertainty in either the local or 
global variables by knowing the other) is given by 

MI ¼ NlHl þ NgHg
� �

� Hr (15) 

Phillips (2005) showed that this indicates an approach 
where entropy estimated or measured at r and either g or 
l allows estimation of the contribution from either smaller 
or larger scales by solving for the appropriate term in eq. 
(15), and applied it to a soil geography case study.

Notwithstanding the fact that not all m local or q 
global factors can necessarily be identified or separated, 
from eq. (10) we can write 

Hr ¼ �
m

i¼1
NlHl½ � þ �

q

j¼1
NgHg
� �

¼ �Nl �Hl mþ �Ng �Hgq (16) 

Rearranging, we obtain 

�Nl �Hlm� >Hr � �
q

j¼1
NgHg
� �

(17) 

NgHgq� >Hr � �
m

i¼1
NlHl½ � (18) 

If Hr is fixed (no additional measurements or observa
tions are made at that scale), we can examine the impli
cations of identifying and including additional global or 
local scale controls (i.e. increasing m or q).

For the case of additional broader scale factors, Σ 
[NgHg] can only increase, ultimately resulting in negative 
local entropy (a net source of information). Similar logic 
applies to additional local factors and Σ[NlHl].

The sign of H is independent of the value of N, m or q, 
which must be finite positive. As long as the global 
(local) entropy contribution is positive, expanding 
(decreasing) the scale or the number of broader-scale 
controls decreases the local (global) entropy contribu
tion, which, at some point, must become negative. 
Because observed entropy of a spatial pattern must be 
≥ 0, negative entropy in this context indicates a source 
of information. This change in the direction of influence 
is termed a qualitative causal shift. An entropy change 

and causal shift of this type associated with scale or 
resolution is a clear indication that processes at the 
scales in question are independent.

This analysis shows that, as the range of scale is 
increased in either direction, either by broadening or 
narrowing resolutions or by incorporating more con
trols, the effect of larger/smaller scale influences not 
only changes, but may change qualitatively, for example, 
in terms of having positive (entropy-increasing) or nega
tive (entropy-decreasing) effects. Expanding the scale 
not only modifies the relative importance of larger or 
smaller scale influences but may change whether they 
have the effect of producing order or complexity into 
the observed spatial pattern. That a causal factor or 
mechanism may have qualitatively different explanatory 
implications, depending on the range of scales consid
ered, is consistent with scale independence.

The likelihood of qualitative causal shifts is reduced 
when there is a finite, and sometimes small, number of 
processes and controls that significantly affects a given 
observed spatial system. The range of scales that may 
influence the observation scale is also finite, and some
times relatively limited. This is, in fact, the basis of hier
archy theory, discussed in the next section.

2.4. Hierarchy theory

Hierarchy theory (HT) is based on a nested structure of 
scales, and has no direct relationship with the notion of 
social, political, economic, or chain-of-command hier
archies. At level i in the hierarchy, patterns and 
dynamics are affected by factors and processes operat
ing at that level, at one level above (coarser scale; i + 1), 
and at one level below (finer scale; i – 1). At two or 
more levels above or below i, factors operate either too 
rapidly or at too fine a resolution, or too slowly or at 
too coarse a scale, to be observed at i, or at least those 
effects are entirely mediated by intermediate hierarch
ical levels. HT is not a tool or framework potentially 
enabling seamless linkage across the entire range of 
relevant scales. Rather, HT implies that scale linkage 
must be stepwise; as one ascends or descends the 
‘scale ladder’, new factors and processes become 
important and others cease to be relevant. Thus HT 
inherently and by definition indicates scale 
independence.

The hierarchical nature of scale in geography and 
geosciences is often implicit. Sometimes the hierarchies 
are unambiguous, as they are functional and spatially 
nested. This is the case, for instance, with the hierarchy 
of hillslopes and zero-order drainage basins to first order 
to nth order basins, to subcontinental drainages. In these 
situations, the assumptions of HT are intrinsically 
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present. For instance, first-order basins, in the aggregate, 
cannot influence third-order without translation through 
second-order basins (though individual stream seg
ments may join higher-order channels). Similarly, mole
cular-scale atmospheric physics cannot influence local 
weather without translation through air parcels, which in 
turn cannot influence regional climate except via air 
masses.

Hierarchies may also be additive and clear in terms 
of their rank order, but less so in terms of causal chains 
because the physical boundaries are not always clear 
(e.g. individuals, populations, communities, ecosystems 
and ecological landscapes). Some hierarchies are 
imposed by nested scales or resolutions of maps or 
mapping programs or pixel sizes. Their conformity to 
HT is contingent on the extent to which the resolutions 
correspond to characteristic nested scales of processes 
or functional relationships, which is often uncertain, as 
resolutions are often dictated by technology or practi
cal measurement constraints. In still other cases, hier
archical levels are based on conceptual models with 
possibly fuzzy or arbitrary boundaries, but which are 
widely used and generally agreed upon within a 
research community (e.g. the widely used paedological 
hierarchy originally presented by Dijkerman 1974). 
These are valid from the HT perspective if the phenom
ena involved are functionally nested – in the case of 
the soil hierarchy, for instance, soil horizons cannot 
directly influence, or be influenced by, polypedons or 
higher levels independently of the intervening pedon 
level.

HT as a pedagogic or heuristic device is more com
mon than analytical applications, but the latter exist. HT 
is a key tool for addressing scale linkage in a GIS context 
(Dikau 1990; Wu 1999; Wu and David 2002) and in 
geography more generally (Meentemeyer 1989; Pereira 
2002). For example, Albrecht and Car (1999) developed a 
hierarchy-theory-based method for scale-sensitive GIS 
analysis. HT was applied to problems of choosing and 
integrating among scales in multiresolution remotely 
sensed data by Phinn et al. (2003). Bergkamp (1998) 
applied HT to analysis of runoff and infiltration interac
tions with vegetation and microtopography, and Yalcin 
(2008) showed that a hierarchical method produced 
more realistic results than alternative methods for map
ping landslide susceptibility. HT has also been applied to 
cross-scale modelling of nutrient loading in hydrologic 
systems (Tran et al. 2013) and the detection of landscape 
boundaries in ecology (Yarrow and Salthe 2008). Fryirs et 
al. (2018) used hierarchical methods to link analytical 
and informational, communicative models of the 
Okavanga River delta. Haigh (1987) seems to have 
been first to propose HT as a tool for addressing scale 

linkage in geomorphology. HT in ecology goes back a bit 
further (see reviews by O’Neill et al. 1986; Pelosi, Goulard, 
and Balent 2010; Reuter et al. 2010).

For at least some hierarchies (functional and additive, 
for instance), the scale independence implied by HT is 
entirely consistent with intuition and experience. Many 
techniques exist for determining the characteristic spa
tial or temporal scales at various levels, allowing a quan
titative determination of the relative scales, resolutions, 
or rates. Where the fundamental assumptions of HT hold 
true, scale independence between scales >2 levels apart 
exists.

Phillips (2016) was concerned with determining how 
relatedness varies with distance in a scale hierarchy, in a 
way analogous to spatial distance decay. Algebraic 
graph theory methods, which can be used more broadly 
to assess scale independence in geographical networks, 
were applied as discussed in the next section.

2.5. Algebraic graph theory

Geographical systems can be represented as networks 
and analysed using graph theory, with system compo
nents as the graph nodes and relationships between 
components as the links or graph edges. A graph’s adja
cency matrix is an N x N matrix, where N = the number of 
nodes. The entries are zero if the row and column com
ponents are connected, and non-zero otherwise. Here 
we will consider simple, unweighted, undirected graphs 
where entries are either zero, or 1 if the nodes are linked.

Two key measures from algebraic graph theory will 
be used. The spectral radius is the largest eigenvalue of 
the graph adjacency matrix A, which has N eigenvalues 
λ, such that λ1 ≥ λ2 ≥ . . . ≥ λN. Spectral radius (λ1) is a 
standard measure of graph complexity, and is directly 
related to graph entropy (Mowshowitz and Detmer, 
2012). The second is algebraic connectivity, which 
measures synchronization or synchronizability of the 
network. It is calculated from the Laplacian matrix L 
of A, where L = D – A and D is the degree matrix, 
where the diagonal represents the degree of each 
node and all other entries are zero. Eigenvalues of L 
are all positive except for the smallest, λ(L)N = 0. 
Algebraic connectivity is given by the smallest nonzero 
eigenvalue, α = λ(L)N-1. Literal synchronization may or 
may not be applicable to scale hierarchies, but α also 
represents inferential synchronization, or the extent to 
which inferences or observations at one point in the 
network can be applied to other components (Phillips 
2013). High algebraic connectivity and synchronization 
in a hierarchical network indicates relatively seamless 
scale linkage, and vice versa. These measures are dis
cussed in more detail in texts on algebraic or spectral 
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graph theory (e.g. Biggs 1994), and elsewhere in a 
geographical and geoscience context by Phillips 
(2013, 2016).

In a scale hierarchy consistent with HT, components 
at any level i will be connected to at least one other node 
at that level, and within a level full connectivity (every 
node connected to every other) may be approached or 
achieved. At least one component at i (and often several) 
will be linked to one or more nodes at i + 1 and i – 1. 
None will be connected to nodes more than one level 
away.

There are no doubt other possibilities for using graph 
theory and network analysis to analyse scale indepen
dence, but thus far such analysis been based on a set of 
functional relationships within and between hierarchical 
scale levels – for example, links between the fundamen
tal soil-forming factors at and between the levels of 
horizons, pedons, polypedons, etc. Phillips (2016) ana
lysed five hierarchical-scale networks. One was a fully 
connected reference graph that does not conform to HT, 
and two were archetypal networks designed to repre
sent structures likely to be found in geomorphological 
systems. Two were real world – a general model of the 
pedological hierarchy commonly used in pedology and 
soil geomorphology, and a specific graph model based 
on work on fluviokarst flow networks in central 
Kentucky. Complexity, as measured by spectral radius 
and entropy, increases with the number of hierarchical 
levels, at a linear or less-than linear rate. Synchronization, 
as measured by algebraic connectivity, declines at a 
greater-than-linear rate with the number of levels in 
the hierarchy. The α results indicate rapid decay of infer
ential synchronization as new levels are added or con
sidered, and that synchronization and relatedness 
decreases to very low levels when there are >3 levels – 
consistent with hierarchy theory assumptions of inde
pendence of components more than one level apart.

Algebraic connectivity is bound by 

4=ND � a � k Að Þ (19) 

D is the graph diameter, the maximum shortest path 
(number of links) between any two nodes, and κ(A) is 
vertex connectivity, the minimum number of nodes that 
could be removed to disconnect the graph. In a scale 
hierarchy, D is linearly dependent on the number of 
levels of the hierarchy, and N also grows with additional 
scale levels. The minimum α therefore must decrease 
rapidly as scales are added. In a hierarchical network, κ 
(A) depends on the minimum number of edges or links 
connecting adjacent levels. Maximum α is insensitive to 
the number of levels if the connectivity between adja
cent levels is consistent, but minimum values are very 

sensitive. Algebraic connectivity in scale hierarchies in 
geomorphic systems is more sensitive than spectral 
radius or complexity measures to separations in scale.

In the next section, algebraic graph theory and the 
other approaches described in this section are applied to 
the same example.

3. Case study: response to climate change

A network model of ecological, soil, and hydrogeo
morphic state factor interrelationships was analysed 
in Phillips (2019) to address potential complexity, 
resilience, and sensitivity in terrestrial ecosystem 
responses to climate change. Ecosystems can be 
delimited at a variety of spatial scales, and at any 
given scale of interest are influenced by biological, 
hydrological, pedological, and geomorphological 
processes and controls operating at both smaller 
and larger scales. Here, the state factor model is 
assessed with respect to scale independence.

The model is general and synthetic in that it 
represents a consensus understanding key factors 
involved in the establishment, evolution, and func
tioning of ecosystems, and the interrelationships 
among them. Classic sources include Jenny (1941, 
1961), Stephens (1947), Major (1951), Perring 
(1958), and Matthews (1992), with an excellent 
synthesis by Huggett (1995). Examples of recent stu
dies based on this general concept of key compo
nents and interactions are studies of changes in 
recently deglaciated terrains by Eichel et al. (2013); 
(2016)), Klaar et al. (2015), and Miller and Lane 
(2019).

State factor model components are substrate, propa
gules, climate, biotic establishment, hydrogeomorphic 
context, and soil. Substrate refers to the ground surface, 
or the parent material for pedogenesis. The supply of 
potentially reproducing individuals, seeds, rootstock, 
etc., available to colonize a site is indicated by propa
gules. Climate signifies factors such as moisture and 
temperature regimes and insolation that influence bio
logical habitat and pedogenesis. Climate-related factors 
such as floods, aeolian processes, and geomorphic dis
turbances are included in hydrogeomorphic context. This 
also includes drainage, hydrologic status, and topogra
phy and also the erosional or depositional regime. Biotic 
establishment refers to colonization and persistence of 
organisms. Significant modification of the parent mate
rial by biological, chemical, and physical processes dis
tinguishes soil from substrate. Interactions (graph links) 
shown in Figure 2 are summarized in Table 1.

Table 1, Figure 2 here
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Figure 2 shows the interrelationships among the state 
factors as a simple, unweighted, undirected graph, and a 
typical hierarchy of scales relevant to analysis of 
responses to climate change. The scale levels are gen
erally accepted as functionally nested in physical geo
graphy, pedology, and ecology (O’Neill et al. 1986; 
Bouma et al. 1998; Wu 1999; Sauchyn 2001; Wu and 
David 2002; Schlummer et al. 2014).

Functional interactions among the state factors are 
considered to occur mainly within each hierarchical 
level. Links between levels occur factor-by-factor. For 
example, soil at the catena or ecosystem level is linked 

to the soil factor at the polypedon and landscape scales. 
Figure 3 shows the relationships between adjacent 
levels. In section 3 the arguments and methods 
described above (intuition, abstracted systems, hierar
chy theory, K-entropy, graph theory) are applied to this 
case.

Figure 2. Hierarchical state factor model. Between-level links not 
shown for clarity.

Table 1. Links between components of ecosystem state factor 
model.

Component Links

Substrate Parent material for soil formation; medium for biotic 
establishment; influences hydrologic responses & 
geomorphic processes. Substrate determined or 
influenced by hydrogeomorphic processes.

Propagules Dispersal mechanisms for biotic establishment. Biota 
as sources for propagules; dispersal by 
hydrological & geomorphic processes.

Biotic 
establishment

Establishment is a function of propagule supply, 
medium (substrate), edaphic factors (soil, climate), 
and disturbance (hydrogeomorphology, climate). 
Establishment of organisms has reciprocal effects 
on all other factors.

Hydrogeomorphic 
context

Hydrologic responses, entrainment, transport & 
deposition processes influenced by substrate & 
soil properties & biota. Hydrogeomorphic 
processes important for dispersal & storage (e.g. 
seed banks) of propagules.

Soils Soils are a function of parent material (substrate), 
climate, biota, topography & drainage 
(hydrogeomorphology), & soils have reciprocal 
effects on those components.

Climate Climatea exerts influences through direct effects on 
soil & biota.

aClimate in this case represents moisture and temperature regimes and 
insolation. Climate-related disturbances are included in the hydrogeo
morphic context component.

Figure 3. Black lines show links among state factors within 
hierarchical levels, and thicker grey lines links between levels.
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3.1. Ecosystems and intuition

Responses to environmental change at any level of the 
hierarchy integrate the cumulative effects of lower 
levels. Using x to represent the hierarchical level of 
interest, S(x) is the ecosystem state or condition at level 
x, and Fi(x) represents the effects of processes or controls 
at level i manifest at x. Thus 

S xð Þ ¼
Xq

i¼1

Fi xð Þ (20) 

p Fi xð Þ½ � ~f x � ij j (21) 

where p[Fi(x)] is the probability of observing effects of level 
i at scale x, and the term at the right indicates that obser
vation is a function of how far apart x, i are in the hierarchy. 
When x = i, p[Fi(x)] = 1. If the hierarchy conforms to HT,

p[Fx(x)] = 1; 1 > p[Fi-1(x)], p[Fi+1(x)] > 0; and p[Fi(x)] = 0 
otherwise.

So what is the probability of observing direct effects 
of an individual pedon (or plant or vegetation clump) at 
the ecosystem or catena scale, as opposed to effects 
mediated by the patch, gap, or polypedon scale? Or 
observing ecoregion-level effects directly at a level 
below the landscape, without mediation through the 
landscape scale? Experience indicates that it is very 
low, so the state factor hierarchy passes the intuition 
test for scale independence.

3.2. Abstracted systems and subgraphs

Passing the abstracted systems test requires that a dyna
mical system can be subdivided into subsystems of 
components that interact at particular scales, and of 
components connecting those scales. This is inherent 
in the structure of the state factor hierarchical models, 
where the subsystems shown in Figures 1 and 2, in any 
grouping of three or fewer levels, satisfy this criterion.

This test also requires that independent levels differ by 
at least two orders of magnitude. This is also the case for 
scales more than one level apart, as indicated by the 
characteristic length, area, time scales, and rates for pro
cesses at each hierarchical level (see, e.g. Pachepsky and 
Hill 2017).

3.3. K-entropy

The connectance entropy for the state factor graph can 
be calculated by 

Hc ¼ � S½ðdj=2mÞln dj=2m
� �

� (22) 

where dj is the degree of the jthnode, with connectance 
entropy as a surrogate for the K-entropy (Phillips 2002). 
Results are shown in Table 2.

With reference to eq. (18) and taking Hr as the entropy 
at level 5, and entropy at level 4 as representing Σ[NlHl], 
we obtain NgHg q ≥ 0.190. If an additional smaller level 
was added below the pedon scale, with its entropy the 
same as that for i = 1, then a qualitative causal shift 
would occur if Nl for that new level is >9.132 – less 
than an order of magnitude, and quite likely in the 
state factor hierarchy. Thus, while a direct quantitative 
test is not possible with the generalized model consid
ered here the state factor hierarchy quite plausibly also 
passes the entropy test for scale independence.

3.4. Hierarchical structure, synchronization and 
scale

If the state factor hierarchy meets the criteria for hierarchy 
theory, then scale independence exists between non-adja
cent levels. The state factor model is both spatially and 
functionally nested, and is also consistent with hierarchy 
theory as applied in pedology, ecology, hydrology, and 
related fields (Pachepsky and Hill 2017). The intuitive argu
ments in section 3.1 also support the consistency with HT.

Algebraic graph theory tests can also be brought to 
bear. Spectral radius and algebraic connectivity were 
calculated for the state factor system considering one 
to five levels. Because the within- and between-level 
graph structures are identical throughout the hierarchy, 
in this case it does not matter which levels are indicated 
(this is not always the case; c.f. Phillips 2016). Algebraic 
connectivity decreases rapidly for more than two levels, 
while spectral radius increases more slowly. Figure 4 
shows λ1 and α relative to the values for a single level, 
and to the maximum possible for a graph of a given N. 
For both λ1 and α, maximum possible values are equal to 
N – 1 and would apply to fully connected graphs where 
every component is connected to every other. Given the 
number of state factors n, N = n q, where q is the number 
of hierarchical levels. The algebraic connectivity results 
are consistent with scale independence, given the rapid 
decline with distance in the hierarchy.

Table 3, Figure 4 here

Table 2. Connectance entropy (Hc) for the state factor model.
Level Ni Hc

1 6 1.735
2 12 2.452
3 18 2.857
4 24 3.146
5 30 3.336
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4. Discussion

The principle of distance decay in geography, part of 
Tobler’s (1970) First Law of Geography, has an analogue 
with respect to scale. That is, the greater the difference 
in spatial or temporal scale, the less likely things are to 
be directly interdependent. Unlike distance decay, how
ever, scale independence can be explicitly stated as a 
law: processes and controls that operate at sufficiently 
different spatial and/or temporal scales are independent 
of each other with respect to their effects on system 
function and evolution. Given the broad range of scales 
encountered in geography and geosciences, from mole
cular to planetary and from instantaneous to billions of 
years, scale independence is highly relevant – though, of 
course, many specific problems can be defined and 
analysed based on only a portion of these vast-scale 
ranges.

The Law of Scale Independence is consistent with 
intuition and experience, and also holds for any hier
archical or nested arrangement of scales if the funda
mental assumptions of hierarchy theory hold. In both 
instances, the scale independence can be tested quanti
tatively for specific cases. Algebraic graph theory also 
shows decreasing scale dependence with distance in a 

scale hierarchy, and the K-entropy analysis shows that 
scale independence is inevitable if the difference in 
resolutions in great enough. The abstracted eigenvalues 
theorem shows that scale independence exists with 
respect to effects on system dynamics. Together, these 
lines of argument converge to support the LSI.

The LSI signifies that we should not be surprised when 
different explanatory factors come into play at different 
scales. The law suggests a research strategy of identifying 
and focusing on the most important or interesting scale 
levels, rather than attempting to identify the smallest or 
largest scale levels and work top-down or bottom-up from 
there.

The answer to every question, it is sometimes said in 
the Earth and environmental sciences, is it depends on 
the scale. There is in this truism an element of observa
tional or epistemological scale contingency, in that what 
can or cannot be observed is frequently conditional on 
scale in the form of resolution. There also exists phenom
enological or ontological scale contingency, in that the 
dominant controls over Earth phenomena vary with 
scale, and processes operate, and patterns are mani
fested, over different time and space scales. The LSI 
solidifies this commonsense notion as inevitable given 
the range of scales encountered. Scale contingency is an 
innate, unavoidable aspect of Earth system evolution.

5. Conclusions

Processes and phenomena that operate at sufficiently dif
ferent spatial or temporal scales are independent of each 
other with respect to their effects on system dynamics and 

Figure 4. Spectral radius and algebraic connectivity relative to the values for a single level, and compared to the maximum possible for 
a graph of a given N.

Table 3. Complexity (spectral radius) and synchronization (alge
braic connectivity) measures for state factor model with up to 
five hierarchical levels.

Levels Spectral radius Algebraic connectivity

1 3.593 1.697
2 4.593 1.697
3 5.007 1.000
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behaviour. This is the Law of Scale Independence. The broad 
range of temporal and spatial scales encountered in geos
ciences and geography make it certain that the ‘sufficiently 
different’ standard is frequently met.

The LSI is supported by common sense, scientific and 
professional experience (and authority) and intuition. This 
intuition can be assessed and evaluated quantitatively for 
specific cases, if not formally tested, using ratios of char
acteristic lengths, areas, volumes, rates, and durations of 
phenomena involved (see examples in Phillips 1995, 
1997). For the case of geographical systems represented 
as (nonlinear) dynamical systems, scale independence 
can also be demonstrated using the product theorem 
for abstracted eigenvalues. Entropy analysis also supports 
the LSI. Kolmogorov entropy of multiple-scale processes 
and controls varies with scale and can result in qualitative 
causal shifts when scale is expanded sufficiently in either 
(broader or more detailed) direction.

The basic assumptions of Hierarchy Theory, often 
applied in geography, ecology, and geosciences, ensure 
that non-adjacent hierarchical scale levels are indepen
dent. When hierarchies are defined, as they often are, on 
spatially and functionally nested levels, these assump
tions are readily met. Algebraic graph theory, applied to 
hierarchies represented as networks or graphs, shows a 
rapid decay in inferential synchronization with differ
ences in hierarchical position, consistent with the LSI.

A previously used state factor model for assessing 
ecosystem response to climate change was evaluated 
here on five hierarchical levels, from pedon to ecoregion. 
The arguments above – intuition, abstracted systems, K- 
entropy, hierarchy theory, and algebraic graph theory – 
were applied as tests of scale independence. All tests were 
passed, supporting the relevance of the LSI for a broad 
range of problems in physical geography and geosciences.
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