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ABSTRACT OF DISSERTATION 

 

 

MECHANISMS OF CADMIUM-INDUCED AND EPIDERMAL GROWTH 

FACTOR RECEPTOR MUTATION-DRIVEN LUNG TUMORIGENESIS 

 

 

Cadmium (Cd) is a ubiquitous pollutant in the environment and a known 
carcinogen for lung cancer. Cd has been shown to act as a weak mutagen, which 
suggests that it may exert tumorigenic effect through non-genotoxic ways, such as 
epigenetic mechanisms. The goal of this project is to investigate the mechanisms 
of Cd carcinogenesis focusing on the role of lncRNA dysregulations. The Cd-
exposed cells formed significantly more colonies in soft agar, displayed cancer 
stem cell (CSC)-like property and formed tumors in nude mice. Mechanistically, 
the lncRNA microarray analysis revealed that chronic Cd exposure dysregulates 
lncRNA expressions. Q-PCR analysis confirmed the significant upregulation 
of the oncogenic lncRNA DUXAP10 level in Cd-transformed cells. Knockdown of 
DUXAP10 in Cd-transformed cells significantly reduced their CSC-like property. 
Further mechanistic studies showed that DUXAP10 activates the Hedgehog 
pathway to promote Cd-induced CSC-like property. Furthermore, it was 
determined that chronic Cd exposure upregulates DUXAP10 expression by 
inducing Pax6 expression. 

In addition to oncogenic lncRNA upregulation, Cd exposure was also found 
to downregulate the expression of a tumor suppressive lncRNA MEG3 in Cd-
transformed cells. Meanwhile, the levels of DNMTs in Cd-transformed cells were 
found significantly elevated. Bisulfite-sequencing study revealed that the 
differentially methylated region (DMR) upstream of MEG3 is hypermethylated in 
Cd-transformed cells, indicating that the promoted DNMTs activity contributed to 
downregulation of MEG3. Stably expressing MEG3 in Cd-transformed 
cells decreased cell proliferation and induced CSC-like property. Further studies 
showed that MEG3 inhibits cell transformation by limiting cell proliferation and 
inducing apoptosis. Mechanistic studies revealed that MEG3 reduced cell 
proliferation by regulating the levels of cell cycle proteins and induced apoptosis 



by inhibiting the level of Bcl-xL. These findings suggest that dysregulations of 
lncRNAs play important roles in Cd carcinogenesis.  

As well as epigenetic dysregulations, we also determined the effect of 
genetic factor contributing to lung cancer. Enhanced EGFR signaling contributes 
to 60% of NSCLC cases. However, there is an unmet need to solve acquired 
resistance to tyrosine kinase inhibitors and low response rate for immunotherapy 
in lung cancer patients. This study was performed to investigate the role of SOCS3 
in EGFR mutation-driven lung cancer and to explore the potential of its regulatory 
axis as therapeutic target for the development of novel approach. In our transgenic 
mouse model, overexpression of SOCS3 significantly inhibited tumor formation 
with mutated EGFR. Further investigation for the underlying mechanism revealed 
that SOCS3 downregulates YAP protein, which further suppressed Bcl-2 family 
proteins. External YAP inhibitor was shown to efficiently inhibit the growth of tumor 
organoids. In vivo studies demonstrated that SOCS3 downregulating YAP leads 
to less immunosuppressive tumor microenvironment. Lastly, SOCS3 was often 
found to be silenced in cancers. To mimic this circumstance, the therapeutic 
efficacy of utilizing external YAP inhibitor combined with anti-PD-L1 was assessed 
and showed promising outcomes. These results suggest the critical role of SOCS3 
as a biomarker for the oncolytic immune environment and provide a novel insight 
for improving lung cancer immunotherapy. 
 
KEY WORDS: EGFR, cadmium, carcinogenesis, SOCS3, DUXAP10, MEG3 
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CHAPTER 1. INTRODUCTION 

1.1.1 Lung cancer 

Lung cancer is the leading cause of cancer mortality. Each year, almost a 

quarter of all cancer patients die from lung cancer in the United States, for both 

males and females. While most lung cancer cases are determined by tobacco 

consumption, approximately 10 to 16% of cases are never-smokers. For those 

never smokers, the risk factors could be poor diet, environmental and 

occupational exposures to toxicants, and genetic susceptibility (Rivera et al., 

2016; Warren et al., 2013; Malhotra et al., 2016). Histologically, around 15% of 

lung cancer is small cell lung cancer (SCLC), while around 85% of cases are 

non-small cell lung cancer (NSCLC). Based on the cell types and the location of 

tumors, NSCLC can be further categorized the following main subtypes: 

squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Based on 

anatomic information (tumor sizes, location, invasion) and the overall survival 

rate, lung cancer could be categorized to different stages. However, with the 

advances of medicine in the past several years and considering the complexity of 

lung cancer itself, the traditional staging system has several limitations. For 

example, the factors that affect the overall survival rate are not merely the 

anatomical grade of the tumors, but also the progression of the disease which in 

fact is quite dynamic and could rely on the medical resources available to the 

patients (de Sousa et al., 2018). In addition, around 70% of the patients already 

have metastasis by the time of diagnosis, which add to the difficulty of precise 

diagnosis and efficient treatment. For better clinical outcome, it is essential to 
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investigate the underlying mechanisms of tumor initiation and progression for 

lung cancer. In addition, understanding the driving force of the disease would 

be beneficial for the establishment novel therapeutic strategies. 

1.1.2 Genetic alteration of lung cancer 

Several genetic alterations have been discovered to associate with lung 

cancer progression and utilized for prognosis. Patients with BRAF mutation is a 

distinct subpopulation which includes approximately 3.5% of NSCLC cases. 

BRAF mutation has been found responsible for constitutive activation of 

MAPK/ERK pathway and for the rare cases of axillary lymph node metastasis 

(Leonetti et al., 2018; McEvoy et al., 2017). RET rearrangement is another rare 

genetic alteration found in lung cancer. Transmembrane protein RET is a 

receptor tyrosine kinase which stimulate downstream signaling, such as MAPK 

pathway, PI3K-AKT pathway, and STAT3 pathway. Gain of function mutation 

results in aberrant activation of the receptor which has been found common in 

adenocarcinoma (Ju et al., 2012).  The receptor for hepatocyte growth factor, 

MET, is often found overexpression in NSCLC and responsible for tumor 

migration and invasion, particularly in squamous cell carcinoma (Birchmeier et al., 

2003; Go et al., 2010). Unlike these mutations with relatively low incidences, 

KRAS and EGFR mutation are the most common genetic changes found in lung 

cancer. Interestingly, while mutated KRAS often demonstrates poor prognosis, 

mutations of EGFR at different points could have different biological effects and 

varied therapeutic outcomes. Furthermore, combined mutations of these 
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oncogenes could further exacerbate cancer progression and hamper the 

therapeutic efficacy. 

1.1.3 Lung cancer therapy targeting EGFR 

Conventionally, platinum-based chemotherapy, such as carboplatin and 

cisplatin, is the standard and the primary method for both SCLC and NSCLC at 

early stage. Particularly for NSCLC, the five-year survival rate is around 5%. 

Nonetheless, the response rate usually decreases after a period of time due to 

acquired resistance to chemotherapy, which results in a median survival time of 8 

to 10 months. In addition, the patients with advanced NSCLC would display low 

response rate or eventually experience relapse (Nagasaka and Gadgeel, 2018; 

1Yang et al., 2019; Rossi and Di Maio, 2016). Hence, there is an urgent need for 

more effective therapy (da Cunha Santos et al., 2010). 

Targeted therapy has been under extensive study and achieved 

significance advance by targeting the molecules involved in the signaling 

pathways which regulates the growth of cancer cells, such as PI3K/mTOR 

pathway, STAT pathway, and MAPK/ERK pathway. Upstream of these internal 

pathways, transmembrane protein epidermal growth factor receptor (EGFR) 

activates these signaling transduction upon receiving external cues for cell 

growth. The EGFR gene is located on the chromosome 7p11.2, encoding 28 

exons and 27 intron for the 170 kDa transmembrane protein (Yarden and 

Sliwkowski, 2001). Structurally, EGFR contains an extracellular ligand binding 

domain, a short a-helix transmembrane domain, and the cytoplasmic domain. 



4 
 

The cytoplasmic portion contains two distinct regions: the tyrosine kinase domain, 

and the C-terminal which is critical for the receptor autophosphorylation and the 

subsequent signal transduction. Upon binding of its ligands, homodimerization of 

EGFR monomer or heterodimerization with other HER family members (HER2, 

HER3, HER4) initiates the signaling cascade to activate its downstream 

pathways (Wells, 1999). So far, there have been seven EGFR ligands identified: 

epidermal growth factor (EGF), transforming growth factor-alpha (TGFA), 

amphiregulin (AREG), epiregulin (EREG), betacellulin (BTC), heparin-binding 

epidermal growth factor-like growth factor (HBEGF), and epigen (EPGN) (Singh 

et al., 2016). Though all binds to EGFR, the biological responses induced by 

these different ligands are different, given each of these ligands display different 

binding affinity with EGFR and the rest of the HER family (Macdonald-Obermann 

et al., 2014). 

External stimulation activates EGFR to induce corresponding biological 

effects, such as cell proliferation and anti-apoptosis. Under normal circumstances, 

EGFR activity remains dormant and is regulated by various mechanisms, such 

as phosphorylation, ubiquitination, and methylation, to prevent excessive 

activation (Hsu et al., 2011; Nguyen et al., 2013). In cancers, dysregulated EGFR 

signaling has been shown to be oncogenic, through mechanisms such as 

amplified EGFR copy number, or enhanced EGFR protein expression, or genetic 

activating mutations at the kinase loop (Bethune et al., 2010). Among those, 

targeted therapy is often found hampered due to EGFR mutations. 
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1.1.4 Effects of EGFR mutation subtypes on therapy 

The most commonly found EGFR mutations are the deletion at the exon 

19 and the point mutation L858R at the exon 21. Exon 19 deletion contains 

roughly 45~47% of total EGFR mutation cases, whereas the point mutation 

L858R accounts for 40~41% of total, and left around 10~12% of rare mutations. 

For exon 19 deletion, more than 10 subtypes have been identified, with mostly 

the deletion of E746-A750. For the rare mutations, around one third of the cases 

are the exon 20 insertion or the point mutation G719X at the exon 18 (Kobayashi 

et al., 2016; Harrison et al., 2020). Identified these EGFR mutations is crucial for 

diagnosis and prognosis, given the fact that patients’ response to tyrosine kinase 

inhibitors (TKIs) could be highly variable due the altered interaction between the 

compound and the EGFR mutant. For example, several studies have been 

shown that the exon 19 deletion and L858R at the exon 21 granted sensitivity to 

TKI and displayed prolonged overall survival rates. Moreover, some have shown 

that exon 19 deletion leads to higher response rate to TKI gefitinib and erlotinib, 

compared to L858R (Sun et al., 2011; Choi et al., 2018; Jackman et al., 2006; 

Hong et al., 2019). However, the patients with those rare mutations usually 

display varied sensitivity to different types of TKIs. For example, point mutations 

G719X and E709K at exon 18, exon 18 deletion, exon 19 insertion, S768I at 

exon 20, and L861Q at exon 21 favored the therapy with afatinib but showed 

moderate response to gefitinib or erlotinib (Castellanos et al., 2017). 

However, even displaying high response rate to TKI at the beginning, 

acquired resistance to the treatment is almost inevitable after a period of time. 
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The known mechanisms of the acquired resistance include secondary EGFR 

mutation (e.g., T790M, C797X), acquired MAPK/PI3K mutation, cell cycle-related 

gene mutations, oncogene amplification (such as MET, BRAF) and fusion of 

oncoproteins (such as CCDC6-RET, EML4-ALK). As the acquired resistances 

often further complicate the therapeutic regimen, EGFR T790M at the exon 20 

occurs in the majority of cases and often found to limit therapeutic efficacy (Yun 

et al., 2008). The third generation TKI, Osimertinib which is an irreversible EGFR 

inhibitor displays variable response targeting T790M (Suda et al., 2009; Leonetti 

et al., 2019). Much effort thus has been made to investigate combination therapy 

to improve efficacy, such as combining targeted therapy, chemotherapy, and 

immunotherapy. Nonetheless, T790M has also been shown to elevate the 

expression of PD-L1 which could result in immune escape (Peng et al., 2019). 

Studying the underlying mechanism of the resistance would be beneficial for 

innovating effective lung cancer therapy. 

In addition to genetic alterations, epigenetic dysregulation is also a risk 

factor contributing lung cancer progression. Following, we would cover epigenetic 

dysregulations induced by a lung cancer carcinogen. 

 

1.2.1 Cadmium – lung cancer carcinogen 

Cadmium (Cd) is a transient heavy metal and a natural element which is 

usually found in small amounts in air, water, and soil. However, due to its widely 

used in industries such as pigments production, batteries manufacturing, metal 
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coating, and plastics production, Cd contamination has become a public health 

concern in the United States and worldwide. The major routes of Cd exposure for 

general population could be cigarette smoke, consumption of Cd-contaminated 

water and food, and occupational exposure. Studies of Cd toxicity have long 

been established, and mostly has been shown oncolytic. Since the 90s, Cd has 

been listed as group I carcinogen by International Agency for Research on 

Cancer (IARC). With the property of long biological half-life, accumulated Cd in 

human bodies has become a critical health concern. While Cd is a known 

carcinogen for lung cancer, its toxic effects have also been observed in other 

organs such as breast, renal, liver, pancreas, prostate, and immune system. 

Nonetheless, the mechanisms of its carcinogenesis remain to be defined. 

1.2.2 Cd toxicity for prostate cancer  

In the study of Cd-induced prostate benign prostatic hyperplasia cell 

transformation, Cd exposure led to increased expression of androgen receptor 

(AR), estrogen receptor (ER), and prostate-specific antigen (PSA), as well as 

matrix metalloproteinase 2 and 9 which are critical for the migration and invasion 

(Prajapati et al., 2020). Besides disrupting endocrine system, it has been 

reported that Cd exposure benefits cell survival through stimulating the 

expressions of autophagy protein Pla8, pro-survival protein Bcl-2, and NFB (Pal 

et al., 2017; Kolluru et al., 2017). Mechanistically, Cd has been shown to activate 

signaling of ERK pathway and PI3K/AKT pathway in malignant prostate cells 

(Dasgupta et al., 2020; Kulkarni et al., 2020). Androgen receptor signaling and 

PI3K signaling have been demonstrated the two important signaling pathways for 



8 
 

the growth and survival of prostate cancer cells (Lamb et al., 2011; Kaarbø et al., 

2010). These studies revealed the oncolytic activity of Cd in prostate. However, 

the underlying mechanisms of Cd promoting these pathways would need further 

study. 

1.2.3 Cd toxicity for liver & pancreatic cancer 

Liver is another organ vulnerable to environmental toxicants such as Cd. 

While many studies regarding Cd hepatoxicity focused on short term, high 

concentration of Cd causing DNA damage, rarely has the evidence been 

presented to show the mechanism of Cd carcinogenesis for hepatocellular 

carcinoma (Skipper et al., 2016; Ikediobi et al, 2004). It has been shown that 

hepatocytes respond to Cd-induced oxidative stress by increasing the levels of 

nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (OH-1) 

(He et al., 2008; Lawal et al., 2015). However, Qu et al. described that chronic 

exposure to Cd only induced oxidative stress at the early stage of cell 

transformation. Sustained Cd treatment eventually increased the liver cell 

tolerance to reactive oxygen species (ROS). They further demonstrated that the 

induced cell transformation by Cd was due to the overexpression of oncogenes 

such as cMyc and c-jun, as well as transcription factor AP-1 and NFB (Qu et al., 

2005). In addition to liver, pancreas is another digestive organ which is 

vulnerable to Cd toxicity, though the hypothesis of Cd causes pancreatic cancer 

seems plausible (Schwarz and Reis, 2000). Earlier evidence suggests that Cd 

causes excessive DNA synthesis and increases cAMP level in rats (Kacew et al., 

1976). It was also reported that acute Cd exposure induces oxidative stress and 
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aberrant activity of caspase (Djordjevic et al., 2019). Interestingly, Wallace et al. 

proposed that other than oxidative stress, Cd meditates mitochondrial toxicity in 

pancreatic cancerous cells (Wallace et al., 2019). With scarce evidence 

presented, further investigation would be needed to delineate the mechanism of 

Cd carcinogenetic effects for pancreatic cancer. 

1.2.4 Cd toxicity for kidney cancer 

Nephrotoxicity of Cd has also been widely discussed as a health concern, 

as kidney is one of the major targets for Cd accumulation. Like what has been 

found in liver cells, acute toxicity induced by Cd overloading involves generation 

of ROS which further escalates oxidative stress and causes cellular injury. 

However, for long term exposure to low dose of Cd, oxidative stress plays minor 

role for the carcinogenesis. In a mouse model, it was found that Cd led to 

increased expression of cyclin D1 and c-Myc, suggesting potentially disrupted 

cell cycle. Furthermore, Cd challenge also promoted Wnt/-catenin pathway, 

evidenced by increased levels of Wnt ligands and the receptor Frizzled in the 

mouse kidney cells. The upregulated Wnt/-catenin signaling was further found 

associated with increase of epithelial mesenchymal transition (EMT) markers 

such as Twist and fibronectin (Chakraborty et al., 2010). In renal cancer cells, Cd 

was found to promote cell migration and invasion, which were associated with 

the upregulation of N-cadherin and vimentin and downregulation of E-cadherin. 

The enhanced EMT here was due to the activation of cAMP/PKA-COX2 signaling 

with prostaglandin E2 (PGE2) positive feedback loop (Shi et al., 2021). 
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1.2.5 Cd toxicity for breast cancer 

Studies of Cd toxic effects on breast cancer progression have long been 

established, though whether Cd is a driving force for the development of breast 

cancer has not been determined (Aquino et al., 2012). While initiation of 

tumorigenesis of breast cancer could be hormone-dependent or hormone-

independent, Cd has been found to mimic the action of estrogen on estrogen 

receptor to induce the downstream response and promote the growth of cancer 

cells (Garcia-Morales et al., 1994; Sun et al., 2007). Though rarely addressed, 

Cd has also been proposed to stimulate the cancer stem cell population in breast 

cancer, identified by stem cell markers such CD44, CD24, CD133, and ALDH1. 

Mechanistically, the authors discovered enhanced Ras/Raf/MEK/ERK signaling 

in the Cd-treated breast cancer cells (Ju et al., 2017). In addition to the enhanced 

cell proliferation, studies have also revealed that Cd promotes the phenotype of 

migration and invasion. Cd exposure could increase the expression of TGFB 

Induced Factor Homeobox 1 (TGIF), matrix metalloproteinase-2 (MMP2), matrix 

metalloproteinase-9 (MMP9), and integrins, as well as enhanced -catenin 

signaling in breast cancer cells (Wei et al., 2017; Wang et al., 20191). As the 

evidence above well explained the mechanisms of Cd-enhanced migratory and 

invasive phenotypes, Liang et al. further discovered that Cd might promote 

metastasis through down-regulating ACSS2/ATG5 axis mediated autophagy 

(Liang et al., 2021). However, these studies have used cancer cell models to 

describe Cd-induced malignancy. It still remains unclear whether Cd initiates 

breast cancer development and more studies would be needed. 
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1.2.6 Cd toxicity for lung cancer 

Cd is a well-known lung cancer carcinogen. To general population, the 

exposure routes could be cigarette smoke or Cd-contaminated food/water. To 

occupational workers in the industries such as mining or battery manufacturing, 

the impact of Cd toxicity is profound and has been widely discussed ('t Mannetje 

et al., 2011; Chen et al., 2016). Several studies examined the toxic effects of Cd 

in lung cancer cells. Similar to the studies mentioned above in the breast cancer 

part, it has been found that Cd also exerts estrogen-like activity and activate 

MAPK/ERK pathway in the lung cancer cells (Huff et al., 2016; Zhai et al., 2019). 

Meanwhile, Cd also induced the expression of TGIF which plays a crucial role 

migration and invasion (Wang et al., 20192). In lung adenocarcinoma cells (A549), 

Cd promoted enhanced cell proliferation and inflammatory response which was 

indicated by the increase of IL-1, IL-6, and TNF- (Kundu et al., 2011). The 

underlying mechanism of such inflammatory response might be due to the 

generation of ROS, suggested by the study described below (Wang et al., 2018). 

In addition to the cancer cell lines utilized, many studies have showed that Cd 

exposure leads to cell malignant transformation (Person et al., 2013; Wang et al., 

2018; Cao et al., 2020). In the model of human lung epithelial cell (HPL-1D) 

transformed by Cd, enhanced cell proliferation and upregulation of vimentin and 

metalloproteinases were observed (Person et al., 2013). Human bronchial 

epithelial cell line (BEAS-2B) is another common cell line utilized for the study of 

Cd-induced cell transformation. Cao et al. reported that MAPK signaling pathway 

was highly activated in the BEAS-2B cells exposed to Cd. Wang et al. presented 
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that the challenge of Cd to the BEAS-2B cells stimulated pro-inflammatory 

response, in which the generation of ROS played the major role to create an 

inflammatory microenvironment. Interestingly, these two studies observed 

different aspect of apoptotic response upon the Cd toxicity. The results of Cao et 

al. revealed that Cd exposure led to ROS accumulation and increased apoptosis, 

as well as downregulated Bcl-2 and upregulated Bax and cleaved caspase-3 

(Cao et al., 2020). On the other hand, the data of Wang et al. showed that the 

generated ROS contributed to cell transformation, in which upregulated Bcl-2 and 

Bcl-xL, along with apoptosis resistance was observed (Wang et al., 2018). 

Comparing these two studies, the Cd exposure time and dosage were different, 

which might explain the inconsistent outcomes. These studies are good 

examples to demonstrate the complexity of Cd toxicity and suggest that to 

investigate the mechanisms of Cd carcinogenesis, multi-dimensional factors 

should be thoroughly considered. 

1.2.7 Cd toxicity for embryogenesis and the immune system 

Though the mechanism of Cd carcinogenesis remains inconclusive, Cd 

seems to exert the oncolytic effects in a tissue-dependent context, with targeting 

cell type-specific signaling pathways. Furthermore, Cd has been demonstrated to 

impact embryogenesis and organ development. In a prostate model, Cd 

exposure has been shown to deregulate the expressions of development related 

genes, including EYA2, KPNA7, and PITX2 (Kolluru et al., 2019). This study 

suggests potential role of developmental signaling pathways involved in Cd 

carcinogenesis. In addition, several studies have revealed that Cd interferes with 
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the immune system. Cd has been shown to increase the level of metallothionein 

in human lymphocytes and monocytes (Sone and Kimura, 1988). Metallothionein 

is an important protein against metal toxicity and oxidative stress, however, it has 

also been shown to associate with the expression of VEGF-A and stabilization of 

HIF-1 (Kim et al., 2008; Kojima et al., 2008; Wierzowiecka et al., 2016). A study 

of Palazon et al. reported the inverse correlation between the HIF-1-VEGF-A 

axis and CD8+ T cell infiltration (Palazon et al., 2017). Although the role of 

metallothionein in carcinogenesis has not been determined, these studies 

suggest a potential oncogenic role of metallothionein (Cherian et al., 2003; Bizoń 

et al., 2017). It further hints that Cd induced metallothionein expression in the 

immune cells could lead to malignant outcomes. Another study regarding Cd-

induced dysregulation in the immune system is that chronic Cd exposure resulted 

in abnormal production of interferon-gamma (IFN-) and interleukin 10 (IL-10) by 

various T cell subgroups (Turley et al., 2019). Though there is no direct evidence 

showing positive correlation between Cd-induced disrupted immune system and 

Cd oncolytic effects, malfunctioning immune system has been shown to favor 

tumor progression. Hence, it would be beneficial to include the study of Cd 

toxicity to the immune system for investigating Cd carcinogenesis in general. 

While most metals have been shown genotoxic, Cd, however, has been 

speculated to exert carcinogenic function through non-genotoxic ways such as 

epigenetic modifications. It has been shown that unless at high concentration, Cd 

usually does not cause genetic toxicity and has been seen as a weak mutagen. 
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The most studies of Cd oncolytic toxicity have been focused on epigenetic 

modifications. 

1.2.8 Cd caused DNA & histone modifications  

Aberrant DNA methylation is a commonly found epigenetic dysregulation 

associated with Cd oncolytic effects. In the liver of the mice exposed to Cd at 

high dose (40 mg/kg) for two weeks, promoter of protease-activate receptor-4 

(PAR-4) was found demethylated, which contributed to deregulation of MAPK 

pathway and PI3K-Akt pathway. While PAR-4 exerts tissue-specific functions, 

further experiments would be needed to explore the downstream affected targets 

in the liver (Ren et al., 2021). In general, PAR-4 creates a local environment 

which is prone to inflammatory (Heuberger et al., 2019). The finding echoes what 

has been discussed above that Cd exposure induces inflammatory response in 

breast cancer and lung cancer. In hepatocarcinoma cell HepG2 and breast 

cancer cell MCF-7, Cd exposure at 1 M induced global DNA methylation due to 

decreased expression of DNA methyltransferases (DNMTs), which further led to 

demethylated promoters and increased expressions of protein arginine 

methyltransferase 5 (PRMT5) and enhancer of Zeste homolog 2 (EZH2). The 

upregulation of PRMT5 and EZH2 resulted in globally increased levels of 

H3K27me3, H4R3me2s, and symmetric dimethylarginine (SDMA) which is a pro-

inflammatory agent (Ghosh et al., 2019). Nonetheless, there were studies which 

observed increased levels of DNMTs under the stress of Cd. In the study of Yuan 

et al., rats exposed to Cd for 8 to 12 weeks demonstrated enhanced lymphocyte 

proliferation. The followed up in vitro study identified upregulated DNMT1 and 
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DNMT3B in human lymphoblast cells which were exposed to Cd for 3 months. 

The induced DNMTs caused remarkably decrease of tumor suppressor p16 

(Yuan et al., 2013). In addition to p16, p14 and RASSF1A were also found 

inactivated in melanoma and Cd transformed human prostate cells (Benbrahim-

Tallaa et al., 2007; Venza et al., 2015). While the role of Cd in the expression of 

DNMTs seems polarized, Takiguchi et al. found that the expression of DNMTs 

under Cd stress could be dynamic. In the rat liver cells which were exposed to 

Cd for 1 week, DNMT activity was dramatically decreased for nearly 40% and 

genomic hypomethylation was observed. However, prolonged exposure (10 

weeks) not only induced cell malignant phenotypes, but also significantly 

increased DNMTs activity and thus genomic hypermethylation (Takiguchi et al., 

2003). Histone modification is another epigenetic mechanism and has been 

described in Cd associated cell transformation. Under both acute and chronic Cd 

exposure (5 M for 48 h; 2 M for 20 weeks), BEAS-2B cells displayed global 

increased levels of H3K4me3 and H3K9me2. Meanwhile, the activities of H3K4 

and H3K9 demethylases KDM5A and KDM3A were found inhibited, while the 

protein levels of the two demethylases were not significantly affected (Xiao et al., 

2015). The authors claimed that Cd might directly bind to these proteins to inhibit 

their activities, but further experiments would be needed to address this. 

Non-coding RNAs dysregulation is another often discussed epigenetic 

modification in the studied of Cd carcinogenesis. A microRNA (miRNA) is a small 

single strand non-coding RNA containing around 22 nucleotides. A long non-

coding RNA (lncRNA), on the other hand, is the one with more than 200 
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nucleotides. Both types of non-coding RNAs could interact with DNA, RNA, or 

protein to exert various biological functions, such as RNA silencing and post-

transcriptional modification. Both miRNA and lncRNA have been reported to 

involve in Cd carcinogenesis. 

1.2.9 Cd-induced miRNA dysregulation 

Cd exposure in the cells could result into either downregulation of tumor-

suppressive miRNA or upregulation of oncogenic miRNA. In bladder cancer 

patients, Cd concentration in the blood has been found strongly associated with 

the level of miR-21 (Awadalla et al., 2020). MiR-21-21 has been demonstrated to 

play critical roles in diseases such as cancer and cardiovascular diseases. 

Specifically, miR-21 regulates several immune response and developmental 

process (Kumarswamy et al., 2011). Cd-induced miR-21 might be a potential 

regulatory axis to explain Cd-induced inflammation. In rat ovarian granulosa cells 

with high concentration of Cd exposure (20 M), miR-204-5p reduced the level of 

Bcl-2, which led to apoptosis (Zhong et al., 2020). Similarly, Sun et al. reported 

that acute exposure to Cd largely reduced Bcl-2 level due to another miRNA, 

miR-92a-2-5p which was promoted by Cd-induced c-Myc. (Sun et al., 2021). 

These results suggest that Cd could regulate Bcl-2 level through different sets of 

miRNA network. In human bronchial epithelial cells (16HBE) transformed by 

chronic Cd exposure, miR-27b-3p was found significantly upregulated and 

regulates multiple target mRNAs, such as ADAMTS10 and CCM2 (Liu et al., 

2015). ADAMTS10 is a member of disintegrin and metalloproteinases which was 

critical during embryo development (Somerville et al., 2004). CCM2 is a scaffold 
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protein involved in various signaling pathway such as MAPK pathway (Fisher et 

al., 2014). MiR-27b-3p has been shown to promote migration and invasion in 

colorectal cancer (2Yang et al., 2019). In addition, Tanwar et al. also reported 

that acute Cd exposure stimulates the level of miR-30, which results in enhanced 

expression of Snail in BEAS-2B cells (Tanwar et al., 2019). The results suggest 

that Cd might promote metastatic characteristics through upregulation of the 

miRNA. 

1.2.10 Cd-induced lncRNA dysregulation 

LncRNAs, one of the non-coding RNA subgroups, have been often found 

interacting with miRNAs or proteins to modulate downstream response. In Cd 

carcinogenesis, the discovered lncRNA activities include DNA-damage response, 

apoptosis/ferroptosis control, cell proliferation, and invasion. In prostate cancer 

patients, serum Cd concentration was found positively correlation to tumor-node-

metastasis. Further study demonstrated a lncRNA, OIP5-AS1, promotes cancer 

progression and ferroptosis resistance through regulating the level of oncoprotein 

SLC7A11. SLC7A11 has been shown overexpressed in KRAS-mutated lung 

adenocarcinoma with major function of protecting cells from oxidative stress (Hu 

et al., 2019). The expression of SLC7A11 is regulated by miR-128-3p. LncRNA 

OIP5-AS1 functions as a sponge for miR-128-3p, which facilitate the expression 

of SLC7A11 (Zhang et al., 2021). In contrast to the endogenous competing 

mechanism described above, another mechanism has been brought up, that 

lncRNA binding to miRNA to promote its stability upon the stress of Cd. Gao et al. 

described that lncRNA MT1DP which is induced by Cd in hepatocytes binds to 
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miR-365 to repress the level of nuclear factor erythroid 2-related factor 2 (Nrf2) 

and promote cell death (Gao et al., 2018). In addition to apoptosis/ferroptosis 

regulation, Cd-induced lncRNA also involves in compromised DNA repair system. 

A study from Zhou et al. revealed that inhibiting lncRNA-ENST00000446135 

rescued the expression of a set of DNA repair-related genes, including DDB1/2, 

MSH2, OGG1, ERCC1, XRC1, and BARD1 (Zhou et al., 2020). Moreover, in Cd 

transformed 16HBE, Cd has also been shown to upregulate the level of 

oncogenic lncRNA MALAT1 which regulates cell proliferation, migration, invasion, 

as well as apoptosis (Huang et al., 2017). 

1.2.11 epitranscriptomic modification 

Lastly, epitranscriptomic regulation is a relatively novel mechanism found 

to be involved in Cd carcinogenesis. Briefly, epitranscriptome studies 

biochemical modifications on RNAs that affect gene expression (e.g., mRNA 

stability). Among the various types of epitrancriptomic regulations reported, m6A 

modification is the most common one. There has been a study demonstrating 

that m6A modification on lncRNA MALAT1 could stabilize the lncRNA or facilitate 

its binding to target proteins (He et al., 2020). In pancreatic  cells that treated 

with Cd, aberrant m6A modification was portrayed in lncRNAs including MALAT1 

and lncRNA PVT1, along with the affected levels of m6A “writer” – 

methyltransferase-like 3 (METTL3) and the “eraser” – fat mass and obesity-

associated protein (FTO), suggesting that epitranscriptomic dysregulation could 

play an important role in Cd carcinogenesis (Qu et al., 2021).  
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Together, Cd toxic effects could be varied in different cell types and could 

be dependent on the exposure dosage and time. Acute exposure to Cd at high 

concentration, the rapidly built-up oxidative stress or Cd-induced mitochondrial 

toxicity could result in programmed cell death. However, several responses could 

be evoked to facilitate cell survival, such induction of Bcl-2 or autophagic related 

protein expression. Meanwhile, the estrogen-like action of Cd could also promote 

the cell survival and proliferation pathways such as MAPK.ERK pathway. In 

addition to become tolerant to Cd toxicity, sustained Cd exposure brings in other 

modifications which further allow the cells to adopt more malignant phenotypes, 

including enhanced migration and invasion. Furthermore, as Cd mostly exerts 

oncolytic functions through non-genotoxic ways, we could see the intertwined 

epigenetic modifications, including DNA methylation, histone modification, and 

non-coding RNA dysregulation. These intricated modifications further link to 

another level of regulation – epitranscriptomics. To delineate the underlying 

mechanism of Cd carcinogenesis, it is important to identify the dominant 

signaling pathways in the specific type of cells. And it is essential to investigate 

different networks of each epigenetic modifications. 
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CHAPTER 2. LONG NON-CODING RNA DUXAP10 ACTIVATES THE 

HEDGEHOG PATHWAY TO PROMOTE CHRONIC CADMIUM EXPOSURE-

INDUCED CANCER STEM CELL-LIKE PROPERTY AND TUMORIGENESIS 

 

2.1 ABSTRACT 

Cadmium (Cd) is a ubiquitously present pollutant in the environment and a 

known carcinogen for lung cancer. However, the mechanism of Cd carcinogenesis 

remains to be clearly defined. Cd has been shown to act as a weak mutagen, which 

suggests that it may exert tumorigenic effect through non-genotoxic ways, such as 

epigenetic mechanisms. Long non-coding RNAs (LncRNAs) refer to RNA 

molecules that are longer than 200 nucleotides in length but lack protein coding 

capacities. Regulation of gene expression by lncRNAs is considered as one of 

important epigenetic mechanisms. The goal of this study is to investigate the 

mechanism of cadmium carcinogenesis focusing on the role lncRNA 

dysregulations. Cadmium-induced malignant transformation of human bronchial 

epithelia BEAS-2B cells was accomplished by 9 month of low dose Cd (CdCl2, 2.5 

µM) exposure. The Cd-exposed cells formed significantly more colonies in soft 

agar, displayed cancer stem cell (CSC)-like property and formed tumors in nude 

mice. Mechanistically, chronic low dose Cd exposure did not cause significant 

genotoxic effects. However, the lncRNA microarray analysis revealed that chronic 

low dose Cd exposure dysregulates lncRNA expressions. Further Q-PCR analysis 

confirmed the significant up-regulation of the oncogenic lncRNA DUXAP10 level 

in Cd-transformed cells. Moreover, siRNA knockdown of DUXAP10 expression in 
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Cd-transformed cells significantly reduced their CSC-like property. Further 

mechanistic studies showed that DUXAP10 activates the Hedgehog pathway to 

promote Cd-induced CSC-like property. Furthermore, it was determined that 

chronic low dose Cd exposure up-regulates DUXAP10 expression by inducing 

Pax6 expression. In summary, these findings suggest that the lncRNA DUXAP10 

up-regulation may play an important role in Cd carcinogenesis.  

Key words: cadmium; cancer stem cell-like property; long non-coding RNA; 

DUXAP10; Hedgehog pathway; Pax6. 

 

2.2 INTRODUCTION 

Cadmium (Cd) is a naturally occurring toxic metal. It has been widely used 

in industries for productions of, for example, batteries, cell phones, and computer 

circuit boards. Hence, occupational exposure is the major route for the first-line 

workers during these manufacturing process. Several studies have revealed 

elevated levels of Cd contamination in the workers’ blood and urine (Akerstrom et 

al., 2013; Baloch et al., 2020). For the general population, the exposure routes 

could be Cd-contaminated water or food or tobacco smoke. With long biological 

half-life of 15-20 years, toxicity of Cd is considered cumulative and poses a great 

health risk. Cd is listed as a class I carcinogen by International Agency for 

Research on Cancer (IARC). It is a known carcinogen for lung cancer (Huff et al., 

2007). Many studies have also reported its association with other types of cancer, 

including breast cancer (Wei et al., 2018; Song et al., 2015), liver cancer (Xiao et 
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al., 2015; Ali et al., 2015), prostate cancer (Achanzar et al., 2001; Golovine et al., 

2010; Dasgupta et al., 2020), melanoma (Venza et al., 2015), and lymphoma 

(Yuan et al., 2013). However, the exact carcinogenic mechanism of Cd remains 

unclear. 

Cd has only minor or barely genotoxicity, especially at low dose, and has 

been considered a weak mutagen (Misra et al., 1998; Waalkes, 2000). It has been 

proposed that Cd exerts its oncogenic effect more likely through epigenetic non-

genotoxic ways. Regulations of gene expression by non-coding RNAs such as 

microRNAs and long non-coding RNAs (lncRNAs) are considered as important 

epigenetic mechanisms (Wang et al., 2021; Zhang et al., 2019; Dykes et al., 2017; 

Humphries et al., 2016; Mercer et al., 2013). LncRNAs refer to RNA molecules that 

are longer than 200 nucleotides in length but lack protein coding capacities. 

Studies have shown that lncRNA dysregulations are critically involved in cancer 

initiation and progression (Chi et al., 2019; Li et al., 2016). While emerging 

evidence suggests that lncRNA dysregulations may play important roles in 

environmental carcinogenesis (Wang et al., 2021), how Cd exposure dysregulates 

lncRNA expression and whether lncRNA dysregulations play a role in Cd 

carcinogenesis remain largely unknown. 

Although the mortality rate of lung cancer has dropped since 2017 due to 

improved treatment, lung cancer remains the leading cause of cancer death to 

both males and females in the US (Siegel et al., 2020; Siegel et al., 2021). Lung 

cancer cells can metastasize at early stage even before it can be detected, which 

complicates the prognosis, diagnosis, and the therapy. Eventually the hindered 
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therapeutic efficiency leads to low overall survival rate of lung cancer patients 

(Cheng et al., 2021; Cui et al. 2021.; Rudin et al., 2021). The presence of cancer 

stem cells (CSCs) has been considered the driven force for such metastasis and 

tumor relapse after the therapy (Perona et al., 2011). Critical properties of this 

distinct population, including self-renewal, drug resistance, and multilineage 

differentiation, make it difficult to be eliminated in the therapy. Previously others 

and our studies have reported hexavalent chromium [Cr (VI)]- induced CSC-like 

properties and the related mechanic studies in human bronchial epithelial cells (Dai 

et al., 2017; Wang et al., 2018; Wang et al., 2019; Clementino et al., 2020; Li et al., 

2021). However, it is unknown whether and how chronic low dose Cd exposure is 

capable of inducing CSC-like property. In the present study, human bronchial 

epithelial cells (BEAS-2B) were exposed to Cd at a low dose for nine months, 

mimicking chronic exposure of heavy metal to humans. The goal of this study is to 

investigate the mechanism of Cd carcinogenesis focusing on the role of lncRNA 

dysregulations. 

 

2.3 MATERIALS AND METHODS 

2.3.1 Cell culture and chemical treatments 

Immortalized human bronchial epithelial BEAS-2B cell line was purchased from 

America Type Culture Collection (ATCC, Manassas, VA). BEAS-2B cells were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Thermo Fisher, MA) 
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supplemented with 5% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin 

(P/S). 

 

2.3.2 Cell transformation by chronic exposure of cadmium (CdCl2) 

BEAS-2B cells were first treated with different doses of CdCl2 (2.5, 5, and 10 M) 

(Sigma-Aldrich) for 24 h and observed the morphology under the microscope to 

determine the cytotoxic effect of Cd. It was found that 5 and 10 M of CdCl2 had 

toxic effects on the viability and proliferation of BEAS-2B cells, while 2.5 M of 

CdCl2 had no obvious cytotoxic effects. This dose was then chosen for chronic cell 

transformation experiment following our published protocol (Wang et al., 2011). 

Briefly, BEAS-2B cells were continuously exposed to a vehicle control (H2O) or 2.5 

M of CdCl2. When reaching about 80-90% confluence after exposure, cells were 

sub-cultured. Cd was freshly added to cells each time after overnight cell 

attachment. Soft agar colony formation assay was performed after every 4-week 

Cd exposure to assess cell transformation. This process was repeated for 38 

weeks. 

 

2.3.3 Microarray analysis 

Total RNA was extracted from passage-paired BEAS-2B control and Cd-

transformed cell pellets by TRIzol reagents according to the manufacturer’s 

protocol (Invitrogen, CA). The RNA samples were then sent to Arraystar Inc. 
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(Rockville, MD) for microarray analysis. The array raw data was further analyzed 

by Arraystar Inc. and the microarray raw data was deposited to the National Center 

for Biotechnology Information (NCBI)’s data repository (Access ID: GSE175472). 

 

2.3.4 Soft agar colony formation assay 

The soft agar colony formation assay was carried out in 60 mm cell culture dishes 

for each group as previously described (Yang et al., 2005). Briefly, cultured cells 

were collected by trypsinization and suspended in DMEM containing 10% FBS at 

density of 0.25 x 104 cells/mL. Normal melting point agarose (4 mL of 0.6% 

agarose in DMEM containing 10% FBS) was placed into each 60 mm cell culture 

dish as the bottom layer. After solidification, 4 mL of cell mixture consisting of 2 mL 

of cell suspension and 2 mL of 0.8% low melting point agarose in DMEM containing 

10% FBS were poured over the bottom layer agarose. After solidification of the 

upper layer, 3 mL of DMEM containing 10% FBS was added, and dishes were 

incubated at 37℃ in cell incubator with 5% CO2. After 4-week incubation, colonies 

formed in the agarose dishes were stained with 0.003% crystal violet, 

photographed and counted. 

 

2.3.5 Suspension culture spheroid formation assay 

The spheroid formation assay was performed following the published protocol 

(Dontu et al., 2003) with minor modifications. Briefly, single cells were plated in 

ultra-low attachment 24-well culture plates (Corning, NY) at a density of 2 x 103 
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cells per well suspended in serum-free DMEM containing human recombinant 

basic fibroblast growth factor (bFGF, 20 ng/mL) (R&D, Minneapolis, MN), human 

recombinant epidermal growth factor (EGF, 20 ng/mL) (R&D, Minneapolis, MN), 

B27 (Invitrogen, Carlsbad, CA) and heparin (4 g/mL, Sigma-Aldrich). Plates were 

incubated at 37℃ in cell incubator with 5% CO2. Spheres > 50 m were viewed, 

photographed and counted under a phase-contrast microscope after 10-day 

culture. 

 

2.3.6 Nude mouse xenograft tumorigenesis study 

Passage-matched control and Cd-transformed cells (1.5 x 106 cells in 0.1 mL of 

1:1 growth factor-reduced Matrigel and serum-free DMEM) were injected 

subcutaneously into the right flank of female nude mice (Nu/Nu, Charles River 

laboratories, ten mice in each group). Animals were maintained under specific 

pathogen-free conditions, and animal protocols were reviewed and approved by 

the University of Kentucky Institutional Animal Care and Use Committee. All mice 

were euthanized 12 weeks after injection, and the xenograft tumors were 

harvested and photographed. 

 

2.3.7 Western blot analysis 

Cells were lysed using lysis buffer following our published protocol (Yang et al., 

2006; Wang et al., 2014). The cell lysates were then applied to the bicinchoninic 

acid assay (Bio-rad) to determine protein concentration, followed by SDS-
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polyacrylamide gel electrophoresis (PAGE) (20-30 g of protein/lane). The 

separated proteins were then transferred to polyvinylidene fluoride membrane 

(PVDF, Millipore, MA). Five percent milk in PBS was applied for the blocking step 

before primary antibody incubation. The following primary antibodies were used: 

anti-KLF4, anti-KLF5, anti-Nanog, anti-GLI1, anti-SHH, anti-PTCH1, anti-PTCH2, 

anti-Pax6 (Cell Signaling Technology, Beverly, MA) (dilution 1:1000); anti-

phospho-histone H2A.X (Ser139) (H2AX) (dilution 1:1000), and anti--actin 

(Millipore Sigma, St. Louis, MO) (dilution 1:8000). After overnight primary antibody 

incubation at 4 °C, the membranes were washed and then incubated with HRP-

conjugated antibodies for 1 h at room temperature. Images were developed by 

Amersham Imager 680 (GE Healthcare Life Sciences, MA). 

 

2.3.8 Kaplan-Meier plotter survival analysis 

The Kaplan-Meier potter (KM plotter, http://kmplot.com/analysis/) was utilized to 

analyze the correlation between levels of Pax6/DUXAP10 and overall survival 

(OS)/recurrence-free survival (RFS) in 1144 lung cancer patients. 

 

2.3.9 Flow cytometry analysis of CD133+ cells 

Cells were detached from the culture dishes with Versene solution (Gibco). After 

centrifugation, cells were re-suspended in DMEM with 2% FBS and 1% PS. 0.25 

g of PE-anti CD 133 (Promini-1) (Biolegend, CA) was added to the cells. After 40 

minutes of incubation, cells were washed and stained with DAPI for viability. 
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Fluorescence-activated cell sorting was carried out by the flow cytometer BD LSR 

II (Becton Dickinson). Raw data was analyzed by using Flowjo software (Becton 

Dickinson). 

 

2.3.10 Quantitative PCR 

Total RNA extraction was performed by TRIzol reagent following the 

manufacturer’s instruction (Invitrogen, CA). Quality and Quantity of extracted RNA 

was determined by NanoDropTM spectrophotometer (Thermo Fisher, MA) before 

applying to TaqMan gene expression assays. Quantitative PCR was performed by 

ABI QuantStudio 3 qPCR System (Applied Biosystems). The 2- ct analysis 

method was utilized to quantify relative RNA expression levels of each gene, with 

human 18S RNA as the internal control. 

 

2.3.11 Immunofluorescence (IF) staining of cultured cells 

Cells were seeded on cover-glass placed in 6-well plates and cultured for 48 h 

(including the inhibitor treatment or RNA interference) before the antibody staining. 

For the staining process, cells were first washed and fixed with 4% 

paraformaldehyde for 20 min at room temperature. Permeabilization was 

performed by the use of 1% Triton X-100 in PBS and incubated for 1.5 min at room 

temperature, followed by blocking with 3% bovine serum albumin (BSA) for 30 min. 

The primary antibodies, phospho-histone H2A.X (Ser139) (H2AX) (Santa Cruz) 

and GLI1 (Cell Signaling Technology), were diluted in PBS with 1% BSA at a ratio 
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of 1:200. Following the primary antibody incubation for overnight at 4°C, cells were 

washed before the secondary antibody incubation (Alexa 546 goat anti-

mouse/rabbit IgG, 1:300, Invitrogen). After 1 h of incubation at room temperature, 

cells were washed again and stained with nuclear 4’6-diamidino-2-phenylinodole 

(DAPI) for 10 min before mounting. IF staining pictures taken under a Nikon 

fluorescent microscope are presented as the overlaid images of H2AX, GLI1 

staining in red fluorescence with nuclear 4’6-diamidino-2-phenylinodole (DAPI) 

staining in blue fluorescence. The image overlaid was done using Nikon NIS-

Elements software. 

 

2.3.12 Chromatin immunoprecipitation (ChIP) -qPCR assay 

The ChIP-qPCR assay was utilized to detect the abundance of transcription factor 

Pax6 in the promoter region of DUXAP10. The ChIP assay was performed by using 

the PierceTM Agarose ChIP kit (Thermo Scientific) following the manufacturer’s 

protocol. Briefly, cells were cross-linked with 1% formaldehyde, followed by 

Micrococcal Nuclease digestion. The fragmented DNA were applied to 

immunoprecipitation with 5 g of anti-Pax6 antibody (#sc-32766, Santa Cruz) per 

reaction. The ChIP DNA was then examined by qPCR for the enrichment of the 

target protein at the promoter region of interest. The Percent Input Method was 

adopted to present the ChIP-qPCR results. 
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2.3.13 RNA interference by transient transfection 

Cells were seeded in 6-well plates or 60 mm dishes (Corning) 24 h before 

transfection in DMEM supplemented with 5% FBS and 1% P/S. Before transfection, 

the culture medium was refreshed with serum-free DMEM. siRNA was then 

transfected using Lipofectamine 3000 (Invitrogen) according to the manufacturer’s 

protocol. Four hours after, equal volume of DMEM with 10% FBS and 1% P/S was 

added to the plates/dishes. The cells would be ready for further analysis in 48 h. 

 

2.3.14 Plasmid construction 

The sequence of DUXAP10 was submitted to GenScript Biotech (NJ, USA) for the 

synthesis and subcloning of DUXAP10 into the vector pBluescript II SK(+). The 

DUXAP10 anti-sense (DUXAP10-AS) fragment was the PCR product using the 

DUXAP10 plasmid as the template. The amplified DUXAP10-AS was digested with 

restriction enzymes KpnI and XhoI (BioLabs, New England) and then subcloned 

into vector pBluescript II SK(+). Both plasmids bearing sense and anti-sense 

DUXAP10 were introduced into competent cells DH5, followed by plasmid 

extraction using ZymoPURETM II Plasmid Midiprep Kit (Zymo Research). The 

extracted plasmids from DH5-DUXAP10 –sense and –antisense strains were 

evaluated by restriction enzyme PstI (BioLabs, New England) before proceeding 

to RNA pulldown assay. 
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2.3.15 RNA pulldown assay 

The plasmids pBluescript-DUXAP10 and pBluescript-DUXAP10-AS were 

linearized by restriction enzyme EcoRI-HF (BioLabs, New England), followed by in 

vitro transcription for synthesis of biotinylated RNA and RNA pulldown described 

in the study of Feng et al., 2014. In brief, four g of linearized plasmids were added 

to the mixture of 10X Biotin mix (Roche), T7 RNA polymerase (Promega), 5X 

Transcription buffer (Promega), and DNAse/RNase-free water, incubated at 37°C 

for 3 h, and proceeded to DNase I digestion at 37°C for 15 min. Biotinylated RNA 

was purified using G-50 Sephadex Columns (Roche). RNA pulldown was then 

carried out by incubating 20 g of the biotinylated RNA with total protein lysates 

from Cd-T cells on a rotator at 4°C for 1 h, followed by repeated washing and 

centrifugation steps. Finally, the precipitated protein-beads complexes were 

resuspended with protein loading buffer and boiled for 10 min. After centrifugation, 

the supernatant containing the pulled-down proteins were applied to Western blot 

analysis. 

 

2.3.16 Statistical analysis 

The statistical analyses for the significance of differences in presented numerical 

data (mean ± SD) were carried out by testing different treatment effects using two-

tailed t-tests for comparison of two data sets. A p-value of < 0.05 was considered 

statistically significant. 
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2.4 RESULTS 

2.4.1 Chronic low dose of Cd exposure induces CSC-like property and 

tumorigenesis 

To establish a Cd-induced cell transformation model, we treated 

immortalized human bronchial epithelial cells (BEAS-2B) to Cd at the 

concentration of 2.5 M twice a week. The transformation process was monitored 

by the soft agar colony formation assay monthly. After 9 months of exposure, the 

Cd-treated cells displayed more than 50 times of colony formation, compared to 

the passage-matched control-treated cells (Figure 2.1A), suggesting that cell 

transformation by Cd was achieved. Meanwhile, Cd-induced cell transformation 

was further analyzed by determining the cancer stem cell (CSC)-like property and 

tumorigenicity of Cd-exposed cells (Cd-T). The suspension culture sphere 

formation assay showed that Cd-T cells form significantly more suspension 

spheres than the passage-matched control cells (Figure 2.1B). Furthermore, the 

first generation sphere cells from Cd-transformed cells formed significantly more 

secondary spheres (Figure 2.1B), demonstrating the self-renewal capacity of this 

distinct population within the transformed cells. CD133 (Prominin-1), a 

transmembrane glycoprotein, has been used as a CSC surface marker in many 

cancer types, including lung adenocarcinoma (Miyata et al., 2017). As shown in 

Figure 2.1C, the number of CD133 positive cells in Cd-transformed cells is 5 times 

more than that in control cells, providing another evidence that chronic Cd 

exposure induces CSC-like property. Moreover, Cd transformed cells were further 

sorted into CD133 positive and negative populations and applied to suspension 
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sphere formation. It was found that CD133+ cells displayed a much stronger 

sphere-forming capacity than the CD133- cells (Figure 2.1D), suggesting that 

CD133 could serve as one of the cell surface markers of the CSC-like population 

induced by chronic Cd exposure. Moreover, we further examined several 

stemness-related markers at their protein levels. Elevated expressions of KLF4, 

KLF5, and Nanog were observed in Cd-transformed cells (Figure 2.1E). Since 

CSC or CSC-like cells are considered as tumor initiating cells, we also determined 

the tumor forming capability of Cd-transformed cells. To study tumorigenic capacity 

of Cd-transformed cells, we injected Cd-T cells, as well as the passage-matched 

control group cells, into the right flank of nude mice. Comparing to the control group 

which had no tumor formed, 60% of tumor incidence in the Cd-T group was 

observed (Figure 2.1F). Together, these results demonstrated that long-term 

exposure to a low dose of Cd causes cell malignant transformation, along with the 

induction of CSC-like property and tumorigenesis. 

 

2.4.2 Chronic exposure to a low dose of Cd does not induce significant DNA 

damage, but causes long non-coding RNA dysregulations 

Next, we set to determine the mechanism by which chronic low dose of Cd 

exposure induces CSC-like property. We first determined whether chronic low 

dose of Cd exposure causes genetic toxicity in BEAS-2B cells. We performed 

immunofluorescence staining to examine the presence of DNA damage marker 

phospho-histone H2A.X (H2AX) in passage-matched control BEAS-2B cells and 

Cd-T cells. Figure 2.2A shows that no significant amount of H2AX is present in 
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the control cells and Cd-transformed cells. We next determined the genotoxic 

effect of acute low dose and high doses of Cd exposure on control BEAS-2B cells. 

While treating control BEAS-2B cells with Cd 2.5 M, no significant H2AX 

formation was detected, treating control BEAS-2B cells with 10 M of Cd 

significantly induced H2AX formation (Figure 2.2B), indicating large amount of 

DNA damage. These results suggested that the Cd exposure concentration of 2.5 

M is not genotoxic and that the cell malignant transformation could be the result 

of other non-genotoxic effects such as epigenetic modifications. To further 

determine the mechanism of Cd inducing CSC-like property, we performed lncRNA 

microarray analysis and the results were deposited to the NCBI data repository 

(Access ID: GSE175472). The lncRNA microarray results revealed that 225 

lncRNAs were up-regulated in Cd-T cells, while 75 were down-regulated (with cut-

off 2-fold change) (Figure 2.2C). Among the up-regulated lncRNAs, there were 

four lncRNAs identified as oncogenic by other studies (Table 2.1) and the 

expression levels were 2.5 times or higher in Cd-transformed cells than the control 

cells: LUCAT1; LINC00473; HOTAIRM1; and DUXAP10 (Figure 2.2D). Further 

qPCR analysis confirmed the up-regulation of the 4 oncogenic lncRNAs: 

DUXAP10 was up-regulated around 5.6-fold, while HOTAIRM1 and LINC00473 

were up-regulated around 3-fold, and LUCAT1 was up-regulated less than 2-fold. 

As DUXAP10 was confirmed the highest expression level in Cd-transformed cells 

(Figure 2.2E), we decided to focus on DUXAP10. 
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2.4.3 Knockdown of DUXAP10 in Cd-T cells significantly reduces their CSC-like 

property 

The lncRNA DUXAP10 has been shown oncogenic in various cancer 

models, including non-small cell lung cancer (Wei et al., 2017). Our bioinformatics 

analysis shown in Figure 2.3A demonstrated that its overexpression is associated 

with significantly worse overall survival (OS) for lung cancer patients, further 

confirming its oncogenic role in lung cancer. To perform functional studies, we 

knocked down DUXAP10 by small interfering RNA which’s efficiency was around 

50% (Figure 2.3B). After the knockdown, the stemness markers which were 

shown upregulated in Cd-T cells decreased at the protein levels, including KLF4 

and Nanog (Figure 2.3C). Furthermore, sphere formation with DUXAP10 

knockdown dropped by 50%, compared to the Cd-T – control siRNA cells (Figure 

2.3D). In addition, we examined the stem cell surface marker CD133 by flow 

cytometry. In Cd-T cells with DUXAP10 knockdown, CD133 positive population 

decreased 60% (Figure 2.3E). These results demonstrate the importance of 

DUXAP10 in maintaining CSC-like property of Cd-transformed cells. 

 

2.4.4 The Hedgehog pathway is highly activated in Cd-T cells promoting their CSC-

like property 

As the previous results revealed the induced CSC-like property in Cd-T cells, 

we next set to explore the pathways associated with this property. Downstream 

targets of three stemness-related pathways were screened first, including the 
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Hedgehog pathway, Notch pathway, and Wnt/-catenin pathway. Glioma-

associated oncogene homolog 1 (GLI1) acts as the effector of the Hedgehog 

signaling, and is also one of the downstream targets of this pathway. Transcription 

factor HES1 plays an important role during embryogenesis and is the downstream 

target of the Notch signaling pathway. The transcription factor 12 (TCF12) is one 

of important target genes of the Wnt/-catenin pathway. The qPCR results showed 

2.3-fold increase in GLI1 expression, while the levels of HES1 and TCF12 show 

no change between the control cells and Cd-T cells (Figure 2.4A). Important 

proteins involved in the Hedgehog pathway were then checked by Western blot. 

We found upregulated levels of GLI1, Protein patched homolog 2 (PTCH), and 

Sonic hedgehog protein (SHH) in Cd-T cells, while the levels of Smoothened (SMO) 

and Suppressor of fused homolog (SUFU) remained unchanged between control 

and Cd-T cells (Figure 2.4B). Translocation of GLI1 from cytoplasm to nucleus is 

essential to activate the transcription of Hedgehog downstream target genes. Here, 

we checked the cellular localization of GLI1 in the control BEAS-2B and Cd-T cells 

by immunofluorescence staining. In Cd-T cells, GLI1 is mostly localized in the 

nucleus as indicated by the pink color resulting from the overlapping of nuclear 

DAPI staining in blue and GLI1 staining in red (Figure 2.4C). On the contrary, in 

the BEAS-2B control cells, the nucleus color remained blue, which demonstrates 

no significant amount of GLI1 nuclear translocation (Figure 2.4C). Cyclopamine, 

an inhibitor of the Hedgehog pathway (Incardona et al., 1998), was then utilized to 

confirm that Hedgehog pathway plays a critical role in the CSC-like property of Cd-

T cells. Immunofluorescence staining showed no significant GLI1 nucleus 
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translocation under the treatment of cyclopamine at 10 M. (Figure 2.4D). At the 

same time, treatment of 10 M of cyclopamine abolished the sphere forming 

capability of Cd-T cells (Figure 2.4E). Furthermore, protein levels of stemness 

markers KLF4, KLF5, Nanog, as well as GLI1 in Cd-T cells, were down-regulated 

by the cyclopamine treatment (Figure 2.4F). Together, these results indicated that 

the Hedgehog pathway activity is essential to maintain the CSC-like properties in 

Cd-T cells. 

 

2.4.5 Knockdown of DUXAP10 inactivates the Hedgehog pathway in Cd-T cells 

We next determined whether DUXAP10 regulates the Hedgehog pathway 

activity in Cd-transformed cells. Figure 2.5A shows that knockdown of DUXAP10 

leads to decreased levels of GLI1, SHH, and PTCH in the Cd-T cells. 

Immunofluorescence staining revealed no significant presence of GLI1 in the 

nucleus while DUXAP10 was knocked down (Figure 2.5B). These results suggest 

that DUXAP10 plays an important role in activating the Hedgehog signaling 

pathway. We then further determined how DUXAP10 activates the Hedgehog 

pathway. Modes of lncRNA actions in tumor cells could be: (1) mediating 

transcription by binding with proteins such as transcription factors; (2) acting as 

scaffold molecule to assemble protein complex; (3) acting as decoy or guide 

molecule to regulate functions of DNA, mRNA and miRNA (Gao et al., 2020). 

Though with little evidence presented regarding the regulatory role of DUXAP10, 

the previous studies hinted a higher chance of DUXAP10 interacting with proteins 
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(Wei et al., 2017; Xu et al., 2018). We next proceeded to predict the interaction 

between DUXAP10 and the proteins in the Hedgehog pathway by RPIseq (RNA-

Protein Interaction Prediction, powered by Iowa State University). The outcome 

indicated that the interaction probability between DUXAP10 and GLI1 is 0.9, while 

it is 0.7 between DUXAP10 and SHH (Table 2.2). RNA pulldown assay was then 

performed to confirm the interaction between the lncRNA DUXAP10 and the 

proteins. The results showed that DUXAP10 sense strain binds to GLI1, with its 

antisense as the negative control (Figure 2.5C). However, the RNA pulldown 

assay revealed no interaction between DUXAP10 and SHH. As the interaction of 

DUXAP10 and GLI1 was confirmed, we next study the impact of this interaction on 

GLI1 level. Previously, a study suggested that destruction of GLI1 is regulated by 

proteosome degradation (Huntzicker et., 2005). Here, we treated the cells with 

proteosome inhibitor MG132, and observed increased level of GLI1 in Cd-T cells, 

which confirmed that GLI1 stability could be regulated by the proteosome 

mechanism. MG132 treatment also increased the level of GLI1 in the Cd-T with 

DUXAP10 knockdown (Figure 2.5D). This demonstrates that DUXAP10 

contributes to the stability of GLI1 to promote the downstream signaling. 

 

2.4.6 Chronic Cd exposure increases the expression of Pax6 to up-regulate 

DUXAP10 level 

We further determined how chronic low dose Cd exposure up-regulates 

DUXAP10 level. Pax6 has been inferred as a putative transcription factor for 

DUXAP10. The predicting binding site of Pax6 locates at the end of DUXAP10 
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promoter region (Figure 2.6A). In Cd-T cells, we observed significantly elevated 

expression level of Pax6 (Figure 2.6B). This is the first study to show that Cd 

exposure induces the expression of Pax6. Further bioinformatics analysis shows 

that the expression level of this transcription factor is negatively corelated to the 

overall survival rate of lung cancer patients (Figure 2.6C). ChIP-qPCR analysis 

revealed that Pax6 binds to DUXAP10 promoter region (Figure 2.6D). 

Furthermore, knockdown of Pax6 decreased the expression of DUXAP10 by 50% 

(Figure 2.6E), as well as down-regulating GLI1 level (Figure 2.6F). 

Immunofluorescence staining also shows decreased nuclear localization of GLI1 

in the Cd-T with knockdown of Pax6 (Figure 2.6G). Finally, the knockdown of Pax6 

also led to reduced sphere formation by 50% (Figure 2.6H) in Cd-T cells.  

 

2.5 DISCUSSION 

Cd is a known carcinogen to lung cancer. However, as the most of those 

studies utilized cancer cell models, the exact mechanism of Cd carcinogenesis 

remains to define. CSCs or CSC-like cells play important roles in cancer initiation 

and progression. Moreover, ours and other recent studies showed that CSC-like 

cells may be also play critical roles in metal carcinogenesis (Dai et al., 2017; Wang 

et al., 2018, Wang and Yang, 2019). However, whether and how Cd induces CSC-

like population remains unknown. In the present study, immortalized human 

bronchial epithelial cells were exposed to Cd at a low dose for 9 months and 

utilized for studying the underlying mechanisms. Our results demonstrated that Cd 
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exposure led to cell malignant transformation and induced CSC-like property 

through dysregulation of oncogenic lncRNA DUXAP10 (Figure 2.7). 

It is generally accepted that Cd is relatively low genotoxic. Most studies thus 

focused more on the non-genotoxic effects caused by Cd exposure, especially 

DNA methylation. Venza et al. and Yuan et al. found that Cd contributes to 

silencing of tumor suppressor p16 through DNA hypermethylation in melanoma 

and lymphoma cells (Venza et al., 2015; Yuan et al., 2013). Aberrant DNA 

methylation profiles have also been shown in breast cancer cells exposed to Cd 

(Liang et al., 2020; Liang et al., 2021). On the other hand, little is known about the 

role of non-coding RNA(s) in Cd oncogenic effect. Huang et al. and Zhou et al. 

reported overexpression of lncRNA MALAT1 and lncRNA-ENST00000446135 in 

the Cd-transformed16HBE cells and the lungs of Cd-exposed rats, as well as in 

the blood of the workers exposed to Cd (Huang et al., 2017; Zhou et al., 2020). 

However, no study has reported the role of lncRNAs in cancer stem cell-like 

populations induced by this heavy metal. 

The findings from this study suggested a potential role of the oncogenic 

lncRNA DUXAP10 in the induced stemness of Cd-T cell. DUXAP10 was first 

identified oncogenic in the study of Wei et al. in 2017, in which the results 

demonstrated DUXAP10 inhibited the expression of tumor suppressors Large 

tumor suppressor 2 (LATS2) and Ras-related associated with diabetes (RRAS) 

(Wei et al., 2017). In addition, it has been shown that DUXAP10 enhances cell 

proliferation and metastasis through activating the PI3K/AKT pathway in 

hepatocellular carcinoma (Sun et al., 2019; Han et al., 2019; Yue et al., 2019) and 
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AKT/mTOR pathway in papillary thyroid carcinoma (Li et al., 2020). Our study 

provides the first evidence to show that DUXAP10 contributes to CSC-like property. 

Furthermore, our mechanistic studies delineated that DUXAP10 contributes to Cd-

induced CSC-like property likely by regulating the sonic hedgehog pathway.  

It has been shown that lncRNAs could interact with various macro 

molecules, including DNA, RNA, and protein, to exert biological functions (Xu et 

al., 2021; Ming et al., 2021; Jiang et al., 2021). DUXAP10 has been shown to 

interacts with histone demethylase lysine specific demethylase 1 (LSD1) in non-

small cell lung cancer (Wei et al., 2017). The interaction between DUXAP10 and 

LSD1 was also reported by Lian et al. later, which suppressed the expression of 

p21 and phosphatase and tensin homolog (PTEN) in colorectal cancer cells (Lian 

et al., 2017). Our study showed that DUXAP10 interacts with GLI1 protein and 

stabilizes GLI1 to activate the Hedgehog pathway. We identified a new protein 

binding partner for DUXAP10, offering a new mechanism for understanding the 

oncogenic role of DUXAP10.  

In addition to stabilizing GLI1, DUXAP10 also elevated the levels of SHH 

and PTCH2 in Cd-T cells. As the driving force of the Hedgehog pathway, 

upregulated SHH and its receptor PTCH would further enforce the downstream 

signaling. The facts that DUXAP10 stabilizes GLI1 and that DUXAP10 enhances 

the level of SHH and PTCH altogether presented a novel oncogenic function of 

DUXAP10 contributing not only to the initiation of the Hedgehog pathway but also 

augmenting the positive feedback loop within the pathway. Our RNA pull-down 

studies did not detect the interaction between DUXAP10 and SHH, further studies 
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are needed to determine the mechanism by which DUXAP10 up-regulates the 

protein levels of SHH and PTCH. 

CD133 has been regarded as one of the stemness markers for various 

cancers, including lung cancer (Alama et al., 2015; Bertolini et al., 2009; Wu et al., 

2014), and is one of the downstream targets of the Hedgehog pathway. Cd is a 

known carcinogen for lung cancer, yet there is no study discussing the relationship 

of Cd carcinogenesis and CD133 in lung cancer. In the present study, we first 

demonstrated that Cd promotes CD133 level through DUXAP10 dysregulation in 

Cd-transformed cells. Moreover, CD133 positive cells among Cd-T cells could form 

significantly more spheres in the suspension culture than CD 133 negative cells, 

suggesting that CD133 is potentially a cell surface marker of the Cd-induced CSC-

like population. This representative role of CD133 for the Cd carcinogenesis may 

serve as a predictive biomarker and potentially benefit prognostics and diagnostics 

for the lung cancer patients exposed to Cd. 

While the studies of DUXAP10 all focused on its oncogenic regulations, little 

is known about how DUXAP10 expression level is upregulated. Pax6 is predicted 

as one of the putative transcription factors for DUXAP10. Here we provided the 

first evidence showing that Pax6 serves as a transcription factor for DUXAP10. 

Pax6 has been shown indispensable for neurodevelopmental processes, 

particularly for neuroectodermal epithelial tissues. Aberrant expression of Pax6 

has been reported in various cancer types, including colon cancer, colorectal 

cancer, breast cancer, and lung cancer. However, Pax6’s oncogenic role is 

debatable. Down regulation of Pax6 due to its promoter hypermethylation was 
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found significantly correlated to poorer prognosis and lower overall survival rate of 

NSCLC patients (Zhang et al., 2015). Kiselev et al. have elucidated that Pax6 acts 

as a tumor suppressor, given the significant correlation between high Pax6 level 

and longer disease-specific survival in NSCLC patients (Kiselev et al., 2018). On 

the contrary, several studies provided an opposite view toward the role of Pax6 in 

cancer. There were studies revealing that the level of Pax6 is positively correlated 

to tumor cell proliferation, migration, and invasion (Liu et al., 2020; Jiang et al., 

2020; Qian et al., 2018). In addition, Ooki et al. reported that Pax6 is responsible 

for the cancer stem cell characteristics (Ooki et al., 2018). With these studies 

discussing the role of Pax6 in cancer cells, its role in heavy metal carcinogenesis 

has not been reported yet. The present study is the first one to show that the 

expression of Pax6 is elevated in the Cd transformed cells and that Pax6 acts as 

a transcription factor of DUXAP10. As we described the oncogenic role of Pax6 

here, the mechanism underlying its overexpression would need to be further 

examined. However, Pax6 has been described to be upregulated due to Cd-

induced oxidative stress in rat cerebellum model (P M et al., 2018). This could 

provide a direction for further study. 

In summary, long term exposure to a low dose of Cd induces cell malignant 

transformation and CSC-like property. The evoked stemness is regulated by Pax6-

up-regulated oncogenic lncRNA DUXAP10, which in turn activates the sonic 

hedgehog signaling pathway. This study shows an important role of DUXAP10 for 

Cd-induced CSC-like property and tumorigenesis. 
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Table 2.1 Up-regulated oncogenic lncRNAs in Cd-transformed cells. 
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Table 2.2 Interaction probability between DUXAP10 and GLI1, SHH, respectively. 

Interaction probabilities DUXAP10-GLI1 DUXAP10-SHH

Prediction-RF classifier 0.8 0.65

Prediction-SVM classifier 0.99 0.97  

*The predictions were performed on RPISeq powered by Iowa State University and based on 

Random Forest (RF) or Support Vector Machine (SVM) classifiers. 
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Figure 2.1 Chronic exposure to a low dose of Cd induces CSC-like property and 

tumorigenesis. (A) Representative images of soft agar colonies formed from the 
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passage-paired BEAS-2B cells and the Cd transformed BEAS-2B cells (Cd-T) 

(means ± SD, n=3), ***p< 0.001. (B) Representative images of the first and the 

second generation of suspension spheres formed from the passage-paired BEAS-

2B cells and Cd-T cells. Scale bar: 100 m. The bar graph represents the average 

numbers of the spheres formed in the repeated assays (means ± SD, n=3), ***p< 

0.001. (C) Representative images of flow cytometry analysis of CD133 positive 

cells in the control BEAS-2B cells and Cd-T cells. The Bar graph shows the 

average percentage of CD133+ population in each group (means ± SD, n=3), **p< 

0.01. (D) Representative images of suspension spheres formed from the FACS-

sorted CD133+ and CD133- Cd-T cells. Scale bar: 100 mm. The bar graph 

represents the average numbers of the spheres formed in the repeated assays 

(means ± SD), **p< 0.01. (E) Representative Western blot analysis images of 

stemness marker levels in the control BEAS-2B and Cd-T cells. The assay was 

repeated, and similar results were obtained. (F) Nude mouse xenograft 

tumorigenesis study as described in Materials and Method (n=10). 
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Figure 2.2 Chronic exposure to Cd does not induce significant DNA damage but 

cause long non-coding RNA dysregulations. (A) Representative IF staining 

overlaid images of H2A.X in red fluorescence and DAPI in blue fluorescence from 

control BEAS-2B and Cd-T cells. Scale bar: 100 m. (B) Representative IF staining 
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overlaid images of H2A.X in red fluorescence and DAPI in blue fluorescence from 

the BEAS-2B treated with Cd 2.5 M or 10 M, respectively. Scale bar: 100 m. 

(C) Microarray result shows 225 lncRNA upregulated and 75 lncRNA 

downregulated (cut off 2). (D) Quantitative PCR analysis of the relative lncRNA 

levels in control BEAS-2B and Cd-T cells. The RNA level in the Cd-T is expressed 

relative to control BEAS-2B cells. (E) Quantitative PCR analysis of the relative 

DUXAP10 level in control BEAS-2B and Cd-T cells. The RNA level in the Cd-T is 

expressed relative to control BEAS-2B cells (means ± SD, n=3), ***p< 0.001. 
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Figure 2.3 Knockdown of DUXAP10 in Cd-T cells significantly reduces their CSC-

like property. (A) Kaplan-Meier plotter survival analysis revealed negative 

correlation between DUXAP10 level and the overall survival rate, relapse-free 

survival rate in lung cancer patients. (B) Quantitative PCR analysis of the relative 

DUXAP10 level in Cd-T cells transfected with control siRNA and the siRNA 

targeting DUXAP10. The RNA level in the Cd-T with DUXAP10 knockdown is 

expressed relative to the control group (means ± SD, n=3), **p< 0.01. (C) 

Representative Western blot images of stemness marker levels in Cd-T cells 
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transfected with control siRNA or the siRNA targeting DUXAP10. The assay was 

repeated, and similar results were obtained. (D) Representative images of 

suspension spheres formed from Cd-T cells transfected with control siRNA or 

DUXAP10 siRNA. Scale bar: 100 m. The bar graph represents the average 

numbers of the spheres formed in the repeated assays (means ± SD, n=3), **p< 

0.01. (E) Representative images of flow cytometry analysis of CD133 levels in the 

Cd-T cells transfected with control siRNA or DUXAP10 siRNA. The Bar graph 

shows the average percentage of CD133+ population in each group (means ± SD, 

n=3), **p< 0.01. 
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Figure 2.4 The Hedgehog pathway is highly activated in Cd-T cells promoting their 

CSC-like property. (A) Quantitative PCR analysis of the relative levels of GLI1, 

HES1, TCF12 mRNA in control BEAS-2B and Cd-T cells. The mRNA levels in the 

Cd-T are expressed relative to the control group (means ± SD, n=3), **p< 0.01. (B) 

Representative Western blot images of the levels of GLI1, SHH, PTCH2, SMO, 

SUFU in control BEAS-2B and Cd-T cells. The assay was repeated, and similar 

results were obtained. (C) Representative IF staining overlaid images of GLI1 in 
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red fluorescence and DAPI in blue fluorescence from control BEAS-2B and Cd-T 

cells. Scale bar: 100 m. (D) Representative IF staining overlaid images of GLI1 

in red fluorescence and DAPI in blue fluorescence from Cd-T cells treated with 

DMSO (vehicle control) and cyclopamine (10 M), respectively. Scale bar: 100 m. 

(E) Representative images of suspension spheres formed from Cd-T cells treated 

with DMSO (vehicle control) or cyclopamine (10 M), respectively. Scale bar: 100 

m. The bar graph represents the average numbers of the spheres formed in the 

repeated assays (means ± SD, n=3), ****p< 0.0001. (F) Representative Western 

blot images of the levels of GLI1, KLF4, KLF5, Nanog in Cd-T cells treated with 

DMSO (vehicle control) or cyclopamine (10 M). The assay was repeated, and 

similar results were obtained. 
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Figure 2.5 Knockdown of DUXAP10 inactivated the hedgehog pathway in Cd-T 

cells. (A) Representative Western blot images of the levels of GLI1, SHH, PTCH2 

in Cd-T cells transfected with control siRNA or DUXAP10 siRNA. The assay was 

repeated, and similar results were obtained. (B) Representative IF staining overlaid 

images of GLI1 in red fluorescence and DAPI in blue fluorescence from the Cd-T 

cells transfected with control siRNA or DUXAP10 siRNA. Scale bar: 100 m. (C) 
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Representative Western blot images of the levels of GLI1 and SHH in the Cd-T 

protein lysates applied to DUXAP10-sense and DUXAP10-antisense biotinylated 

RNA pull down, respectively. The assay was repeated, and similar results were 

obtained. (D) Representative Western blot images of the level of GLI1 in Cd-T cells 

transfected with control siRNA or DUXAP10 siRNA and treated with 10 M MG132 

or a vehicle control DMSO, respectively. The assay was repeated, and similar 

results were obtained. 
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Figure 2.6 Chronic Cd exposure increases the expression of Pax6 to upregulate 

DUXAP10 level. (A) Schematic map shows that the putative binding site of Pax6 

locates 3 kb upstream of the DUXAP10 transcription start site, close to the 3’ end 

of the promoter region. (B) Representative Western blot images of Pax6 level in 

control BEAS-2B and Cd-T cells. The assay was repeated, and similar results were 
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obtained. (C) Kaplan-Meier plotter survival analysis revealed negative correlation 

between the expression level of Pax6 and the overall survival rate in lung cancer 

patients. (D) ChIP qPCR analysis of relative level of DUXAP10 promoter bound by 

Pax6 in control BEAS-2B and Cd-T cells. Rabit IgG was used as negative control. 

Percentage of input method was adopted to analyze the raw data. The repeated 

results are presented as means ± SD (n=3), ****p< 0.0001. (E) Quantitative PCR 

analysis of the relative level of DUXAP10 in Cd-T cells transfected with control 

siRNA or siRNA targeting Pax6, respectively. The RNA level in the Cd-T with Pax6 

knockdown is expressed relative to the control group (means ± SD, n=3), *p< 0.05. 

(F) Representative Western blot images of levels of Pax6 and GLI1 in Cd-T cells 

transfected with control siRNA or Pax6 siRNA, respectively. The assay was 

repeated, and similar results were obtained. (G) Representative IF staining 

overlaid images of GLI1 in red fluorescence and DAPI in blue fluorescence from 

the Cd-T cells transfected with control siRNA or Pax6 siRNA. Scale bar: 100 m. 

(H) Representative images of suspension spheres formed from the Cd-T cells 

transfected with control siRNA or Pax6 siRNA. Scale bar: 100 m. The bar graph 

represents the average numbers of the spheres formed in the repeated assays 

(means ± SD, n=3), *p< 0.05. 

 

 

 

 



58 
 

 

 

Figure 2.7 A schematic summary of the mechanism of Cd-induced CSC-like 

property and tumorigenesis through DUXAP10 dysregulation. 
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CHAPTER 3. DOWN-REGULATION OF LONG NON-CODING RNA MEG3 

PROMOTES CHRONIC LOW DOSE CADMIUM EXPOSURE-INDUCED CELL 

TRANSFORMATION  

 

3.1 ABSTRACT 

Cadmium (Cd) is a toxic heavy metal and one of carcinogens that cause 

lung cancer. However, the exact mechanism of Cd carcinogenesis remains 

unclear. To investigate the mechanism of Cd carcinogenesis, we exposed human 

bronchial epithelial cells (BEAS-2B) to a low dose of Cd (2.5 M, CdCl2) for 9 

months, which caused cell malignant transformation and generated cancer stem 

cell (CSC)-like cells. The goal of this study is to investigate the underlying 

mechanism. The long non-coding RNA (lncRNA) microarray analysis showed that 

the expression level of a tumor suppressive lncRNA maternally expressed 3 

(MEG3) is significantly down-regulated in Cd-transformed cells, which is confirmed 

by further q-PCR analysis. Mechanistically, it was found that chronic Cd exposure 

up-regulates the levels of DNA methyltransferases (DNMTs), which increases the 

methylation of the differentially methylated region (DMR) 1.5 kb upstream of MEG3 

transcription start site to reduce MEG3 expression. Functional studies showed that 

stably overexpressing MEG3 in Cd-transformed cells significantly reduces their 

transformed phenotypes. Moreover, stably overexpressing MEG3 in parental non-

transformed human bronchial epithelial cells significantly impaired the capability of 

chronic Cd exposure to induce cell transformation and CSC-like property. Further 

mechanistic studies revealed that the cell cycle inhibitor p21 level is reduced and 
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retinoblastoma protein (Rb) phosphorylation is increased in Cd-transformed cells 

to promote cell cycle progression. In addition, Cd-transformed cells also expressed 

higher levels of Bcl-xL and displayed apoptosis resistance. In contrast, stably 

overexpressing MEG3 increased p21 levels and reduced Rb phosphorylation and 

Bcl-xL levels in Cd-exposed cells and reduced their cell cycle progression and 

apoptosis resistance. Together, these findings suggest that MEG3 down-

regulation may play important roles in Cd-induced cell transformation and CSC-

like property by promoting cell cycle progression and apoptosis resistance. 

Key words: cadmium; carcinogenesis; epigenetics; long non-coding RNA; MEG3 

 

3.2 INTRODUCTION 

Lung cancer is the leading cause of cancer mortality around the world. The 

risk factors contributing to lung cancer could be gene mutations (Kosaka et al., 

2004; Román et al., 2018; Gadepalli et al., 2014) or exposure to environmental 

carcinogens including toxicants in tobacco smoke (Kleinjans et al., 1993; Luo et 

al., 2011). Cadmium (Cd) is a toxic heavy metal and has been widely used in the 

production of paint and batteries. Other than industrial usage, cigarette smoke also 

contains a high level of Cd. Its prevalence in contaminated water, soil, and air 

represents a critical environment health concern. Cd has been listed as one of the 

carcinogens for lung cancer by International Agency for Research on Cancer 

(IARC). However, the exact mechanism of Cd carcinogenesis remains to be clearly 

defined. 
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Cd has been seen as a week mutagen, especially at low doses it is barely 

genotoxic (Misra et al., 1998; Waalkes, 2000). Hence, studies of its oncolytic 

effects have mostly focused on non-genotoxic modifications, such as epigenetic 

alterations. Aberrant DNA methylation caused by DNA methyltransferases 

(DNMTs) is a type of epigenetic dysregulations commonly found in carcinogenesis. 

In lung cancer, elevated DNMT activity has been shown associated with silence of 

tumor suppressors such as p16 and IRX1 (Küster et al., 2020; Liu et al., 2019). 

However, the role of dysregulated DNA methyltransferases (DNMTs) activity 

involved in Cd malignant effects remain ambiguous. Studies have shown that Cd 

exposure leads to an increase of DNMTs expression which results in silencing of 

tumor suppressor genes such as p16 and RASSF1A (Yuan et al., 2013; 

Benbrahim-Tallaa et al., 2007). On the other hand, it has also been shown that Cd 

exposure leads to a decrease of DNMTs expression which resulted in regional or 

global genomic hypomethylation in cancer cells (Ghosh et al., 2020; Iftode et al., 

2021; Doi et al., 2011). Further studies on the role of dysregulated DNA 

methylation in Cd carcinogenesis is needed. 

Long non-coding RNAs (lncRNAs) are a group of non-protein coding 

transcripts exceeding 200 base pairs. Often referred as pseudogenes, this type of 

transcripts are found to have various biological functions, including regulations of 

DNA replication, gene transcription, and post-transcriptional modifications. In 

cancers, lncRNAs could function as either oncogenic or tumor suppressive. 

Abnormal lncRNA expressions and activities have been reported associated with 

cancer development and progression. LncRNA MEG3 (Maternally expressed 3) is 
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an imprinted pseudogene expressed by the maternal allele on human 

chromosome 14q32 (Han et al., 2015; Budkova et al., 2020). In various cancer 

types, MEG3 has been shown to be downregulated, which favors proliferation and 

survival of cancer cells (Zhang et al., 2019; Wu et al., 2019; Dan et al., 2018). In 

metal carcinogenesis, so far nickel is the only one that has been shown to 

decrease the expression of MEG3, in turn leading to cell malignant transformation 

(Zhou et al., 2017). However, it is unknown whether Cd and other metal carcinogen 

exposures downregulate MEG3 expression and whether MEG3 downregulation 

plays an important role in other metal carcinogenesis. 

To investigate the mechanism of Cd carcinogenesis, we continuously 

exposed human bronchial epithelial cells (BEAS-2B) to a low dose of Cd (2.5 M, 

CdCl2) for 9 months, which caused cell malignant transformation and generated 

cancer stem cell (CSC)-like cells. The goal of this study is to investigate the 

underlying mechanism focusing on the role of Cd exposure caused MEG3 

dysregulation.  

 

3.3 MATERIALS AND METHODS 

3.3.1 Cell culture and generation of MEG3 stably expressing cells 

Immortalized human bronchial epithelial BEAS-2B cell line was purchased from 

America Type Culture Collection (ATCC, Manassas, VA). BEAS-2B cells were 

exposed to 2.5 M of CdCl2 (Sigma-Aldrich) or a vehicle control (H2O) for 9 month 

to generate Cd-transformed BEAS-2B cells (Cd-T) and the passage-paired BEAS-
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2B control cells (BEAS-2B). All cells were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM) (Thermo Fisher, MA) supplemented with 5% fetal bovine serum 

(FBS) and 1% Penicillin-Streptomycin (P/S). To generate MEG3 stable expressing 

cells, the lentiviral particles purchased from Transomic Technologies (Huntsville, 

AL) for the vector control and MEG3 overexpression were transduced into the 

parental BEAS-2B cells at early passage or Cd-transformed BEAS-2B cells (Cd-T 

cells). After 48 h of puromycin (1 g/mL) selection following the procedure 

described in our previous study (Humphries et al., 2017), the cells were harvested 

and MEG3 overexpression was confirmed by quantitative PCR (q-PCR).  

 

3.3.2 Cell transformation by chronic exposure of MEG3 stably expressing parental 

BEAS-2B cells to cadmium (CdCl2) 

The chronic cell transformation was performed following our published procedure 

(Wang et al., 2011). Briefly, the generated MEG3 stably overexpressing parental 

BEAS-2B cells (BEAS-2B-MEG3) and the parental BEAS-2B cells with control 

vector (BEAS-2B-vector) were continuously exposed to a vehicle control (H2O) or 

2.5 M of CdCl2 (Sigma-Aldrich). When reaching about 80-90% confluence after 

exposure, cells were sub-cultured. Cd was freshly added to cells each time after 

overnight cell attachment. Soft agar colony formation assay was performed after 

every 4-week Cd exposure to assess cell transformation. This process was 

repeated for 9 months (38 weeks). 
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3.3.3 Anchorage-independent soft agar colony formation 

The soft agar colony formation assay was carried out in 60 mm cell culture dishes 

for each group as previously described (Yang et al., 2005). Briefly, cultured cells 

were collected by trypsinization and suspended in DMEM containing 10% FBS at 

density of 0.25 x 104 cells/mL. Normal melting point agarose (4 mL of 0.6% 

agarose in DMEM containing 10% FBS) was placed into each 60 mm cell culture 

dish as the bottom layer. After solidification, 4 mL of cell mixture consisting of 2 mL 

of cell suspension and 2 mL of 0.8% low melting point agarose in DMEM containing 

10% FBS were poured over the bottom layer agarose. After solidification of the 

upper layer, 3 mL of DMEM containing 10% FBS was added, and dishes were 

incubated at 37℃ in cell incubator with 5% CO2. After 4-week incubation, colonies 

formed in the agarose dishes were stained with 0.003% crystal violet, 

photographed and counted. 

 

3.3.4 Serum-free suspension culture for sphere formation 

The spheroid formation assay was performed following the published protocol 

(Dontu et al., 2003) with minor modifications. Briefly, single cells were plated in 

ultra-low attachment 24-well culture plates (Corning, NY) at a density of 2 x 103 

cells per well suspended in serum-free DMEM containing human recombinant 

basic fibroblast growth factor (bFGF, 20 ng/mL) (R&D, Minneapolis, MN), human 

recombinant epidermal growth factor (EGF, 20 ng/mL) (R&D, Minneapolis, MN), 

B27 (Invitrogen, Carlsbad, CA) and heparin (4 g/mL, Sigma-Aldrich). Plates were 
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incubated at 37℃ in cell incubator with 5% CO2. Spheres > 50 m were viewed, 

photographed and counted under a phase-contrast microscope after 10-day 

culture. 

 

3.3.5 Western blot 

Cells were lysed using lysis buffer following our published protocol (Yang et al., 

2006; Wang et al., 2014). The cell lysates were then applied to the bicinchoninic 

acid assay (Bio-rad) to determine protein concentration, followed by SDS-

polyacrylamide gel electrophoresis (PAGE) (20-30 g of protein/lane). The 

separated proteins were then transferred to polyvinylidene fluoride membrane 

(PVDF, Millipore, MA). Five percent milk in PBS was applied for the blocking step 

before primary antibody incubation. The following primary antibodies were used: 

anti-DNMT1, anti-DNMT3A, anti-DNMT3B, anti-phospho-Rb (S780), anti-

phospho-Rb (S807/811), anti-Rb, anti-E2F1, anti-p21, anti-Mcl-1, anti-Bcl-xL, anti-

Puma, anti-Bim, anti-Bik, anti-Bid, anti-Bax, anti-Bad, anti-cleaved caspase 3, anti-

caspase 3, anti-cleaved PARP, anti-PARP (Cell Signaling Technology, Beverly, 

MA) (dilution 1:1000); and anti--actin (Millipore Sigma, St. Louis, MO) (dilution 

1:8000). After overnight primary antibody incubation at 4 °C, the membranes were 

washed and then incubated with HRP-conjugated antibodies for 1 h at room 

temperature. Images were developed by Amersham Imager 680 (GE Healthcare 

Life Sciences, MA). 
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3.3.6 The lncRNA microarray analysis 

The passage-paired BEAS-2B control and Cd-transformed cells were used for total 

RNA extraction using the TRIzol reagent following the manufacturer’s protocol 

(Invitrogen, CA). The resulted total RNA samples were provided to Arraystar Inc. 

(Rockville, MD) for the lncRNA microarray analysis. The array results were 

deposited to the National Center for Biotechnology Information (NCBI)’s data 

repository (Access ID: GSE175472). 

 

3.3.7 Bisulfite conversion and pyrosequencing for DNA methylation analysis 

Genomic DNA was extracted from cultured cells following the manufacturer’s 

procedure (DNeasy® Blood & Tissue Kit, Qiagen) and digested by HindIII (NEB). 

Bisulfite conversion was then carried out using 1 g of digested DNA according to 

the manufacturer’s instructions (EZ DNA Methylation-Lightning kit, Zymo 

Research). Converted DNA was applied to the following PCR with the primer 

designed on Bisulfite Primer Seeker (http://bpsbackup.zymoresearch.com) 

powered by Zymo Research. PCR was performed using ZymoTaq PreMix with the 

following program: (1) 95°C 10 min; (2) 95°C 30 sec; (3) annealing temperature 

(depending on the primer pair) 40 sec; (4) 72°C 45 sec; (5) repeat steps 2-4 for 40 

cycles; (6) 72°C 7 min. Gel-purified PCR products were applied to blunt-end 

modification using Ent-It-DNA End-Repair kit (Epicentre, Charlote, NC), followed 

by subcloning into pUC19 vector. Primers set 1: (Forward) 

ATGTTTTTGTGGGGTTGTAG; (Reverse) 
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TAACCACAATATTAATAACTAAAAAACA. Primer set 2: (Forward) 

GAATGYGAGTTTTTTGTTAATG; (Reverse) CTTACACAACAAAAACRCCC. Ten 

to fifteen clones from each PCR product were sequenced (University of Chicago 

Comprehensive Cancer Center DNA Sequencing and Genotyping Facility). Raw 

data analysis was performed using BiQ Analyzer to determine the percentage of 

converted cytosine residues at specific CpG sites in the sequence. 

 

3.3.8. MTT assay 

Thiazolyl Blue Tetrazolium Bromide (MTT) was purchased from Sigma-Aldrich (St 

Louis, MO). The assay was performed as described previously (Wang et al., 2014). 

Briefly, cells were seeded into 96-well plates (103 cells/well in 100 L of culture 

medium) for 4 time points: 0, 24, 48, and 72 h. At the end of incubation, 50 L of 

the MTT reagent (5 mg/mL) was added to each well and incubated for 4 h, followed 

by another 1 h incubation with 200 L of dimethyl sulfoxide (DMSO). The plate was 

read using a microplate reader (SpectraMaxi3x, Molecular Devices, Sunnyvale, 

CA) at the wavelength of 570 nm. The inhibition on relative cell growth was 

determined by the following formula: Cell Viability (%) = (Absorbance at 570 nm of 

SOCS3 overexpressing cells)/ (Absorbance at 570 nm of control cells) ×100. 

 

3.3.9 Cell cycle analysis 

Cell cycle synchronization was first carried out by maintaining the cells in serum-

free medium for 24 h. In 24 h, the cells re-enter the cell cycle by resuming normal 
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culture condition with serum. After 24 h of incubation, the cells were harvested and 

suspended in 70% ethanol and placed at 4 °C for 2 h. Then cells were proceeded 

to Propidium iodide (PI) staining (20 g/mL of PI, 200 g/mL of RNase A, 0.1% 

Triton X-100), followed by flow cytometry analysis performed by cytometer BD 

LSRII (Becton Dickinson). The acquired data were further analyzed by ModFit LT 

software. 

 

3.3.10 Quantitative PCR 

Total RNA extraction was performed by TRIzol reagent following the 

manufacturer’s instruction (Invitrogen, CA). Quality and Quantity of extracted RNA 

was determined by NanoDropTM spectrophotometer (Thermo Fisher, MA) before 

applying to TaqMan gene expression assays. Quantitative PCR was performed by 

ABI QuantStudio 3 qPCR System (Applied Biosystems). The 2- ct analysis 

method was utilized to quantify relative RNA expression levels of each gene, with 

human 18S RNA as the internal control. 

 

3.3.11 RNA interference 

Cells were seeded into 6-well plates or 60 mm dishes (Corning) 24 h before 

transfection in DMEM supplemented with 5% FBS and 1% P/S. Before 

transfection, the culture medium was refreshed with serum-free DMEM. siRNA 

was then transfected using Lipofectamine 3000 (Invitrogen) according to the 

manufacturer’s protocol. Four hours after, equal volume of DMEM with 10% FBS 
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and 1% P/S was added to the plates/dishes. The cells would be ready for further 

analysis in 48 h. 

 

3.3.12 Statistical analysis 

The statistical analyses for the significance of differences in presented numerical 

data (mean ± SD) were carried out by testing different treatment effects using 

two-tailed t-tests for comparison of two data sets. A p-value of < 0.05 was 

considered statistically significant. 

 

3.4 RESULTS 

3.4.1 MEG3 is down-regulated and DNMTs are up-regulated in cadmium-

transformed cells and inhibition of DNMTs increases MEG3 expression levels and 

reduces their transformed phenotypes 

To study the mechanism of Cd carcinogenesis, we performed the lncRNA 

microarray analysis in Cd-transformed cells and the passage-matched control 

cells. It was found that the most significantly down-regulated (almost undetectable) 

tumor suppressive lncRNA in Cd-transformed cells is MEG3 which was confirmed 

by further q-PCR analysis (Figure 3.1A). MTT analysis revealed that Cd-

transformed cells (Cd-T cells) grow significantly faster than the passage-pair 

BEAS-2B control cells (Figure 3.1B). Western blot analysis showed that Cd-T cells 

have higher expression levels of DNA methyltransferases (DNMTs), including 
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DNMT1, DNMT3A, and DNMT3B (Figure 3.1C). As shown in others’ studies, 

MEG3 downregulation in cancer cells was often due to hypermethylation of its 

promoter region (Dong et al., 2017; Guo et al., 2017; Ding et al., 2019). Here, as 

we observed elevated levels of the DNMTs, we next treated the Cd-T cells with a 

DNMT inhibitor 5-Aza-2-deoxycytidine (5-Aza). Q-PCR analysis revealed that 5-

Aza treatment significantly increases the expression levels of MEG3 in Cd-

transformed cells (Figure 3.1D). Moreover, MTT analysis showed that inhibition of 

DNMTs by 5-Aza treatment dose-dependently reduces the proliferation of Cd-T 

cells (Figure 3.1E). Treating the cells with 5-Aza also effectively reduced colony 

formation in the anchorage-independent soft agar assay, as the colony number in 

the group dropped almost 90 percent, compared to the vehicle control (DMSO)-

treated group (Figure 3.1F). Furthermore, serum-free suspension culture sphere 

formation assay showed that inhibition of DNMTs also significantly decreases 

sphere formation by Cd-T cells (Figure 3.1G). 

 

3.4.2 The differentially methylated region upstream of MEG3 transcription start site 

is highly methylated in Cd-transformed cells 

To further determine the mechanism that contributes to chronic Cd 

exposure-caused downregulation of MEG3, we next examined methylation status 

of the CpG island containing 30 CpGs about 1.5 kb upstream of MEG3 by 

performing bisulfite-conversion and sequencing (Figure 3.2A). MEG3 is an 

imprinted pseudogene which under normal conditions, the paternal allele is 

methylated to remain off, while the maternal allele is much lower in methylation to 
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allow for the expression of the lncRNA. However, in cancers MEG3 has been found 

to be downregulated from hypermethylation in the promoter. Here We found that 

in the Cd-T cells there is an hypermethylation across the CGI – 98% Cd-T to 65% 

passage-matched BEAS-2B control cells (Figure 3.2B, right). We also highlight 15 

CpG sites that had a significant increase in methylation of at least 18% (p<0.05) 

(Figure 3.2B, left). These sites that are hypermethylated, in combination with the 

DNMT expression, could lead to the downregulation of MEG3 in the Cd-T cells. 

 

3.4.3 Stably overexpressing MEG3 in Cd-transformed cells significantly reduces 

their transformed phenotypes 

While 5-Aza treatment significantly increased MEG3 expression levels in 

Cd-transformed cells and reduced their proliferation, soft agar colony and 

suspension culture sphere numbers, these results only suggest a negative co-

relationship between MEG3 expression levels and the extent of malignant 

behaviors of Cd-transformed cells. To further determine the contribution of MEG3 

down-regulation to the malignant behaviors of Cd-transformed cells, we next used 

a genetic approach to stably overexpress MEG3 in Cd-transformed cells. 

Successful generation of MEG3 overexpression and vector control cells were 

confirmed by q-PCR analysis. Figure 3.3A shows that the lentiviral infection 

increased the MEG3 expression level by 2 folds in Cd-transformed cells. The MTT 

assay showed that enforced expression of MEG3 reduces Cd-T cell proliferation, 

compared to the vector-control cells (Figure 3.3B). Anchorage-independent soft 

agar assay results demonstrated significantly reduced colony formation in Cd-T 
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with MEG3 expression (Figure 3.3C). Moreover, stable expression of MEG3 also 

significantly decreased suspension culture sphere formation in Cd-T cells, 

compared to the Cd-T vector control cells (Figure 3.3D). 

 

3.4.4 Stably overexpressing MEG3 in parental non-transformed BEAS-2B cells 

significantly reduces the capability of chronical low dose of Cd exposure to induce 

cell transformation and CSC-like property 

Next, we would like to further examine whether overexpression of MEG3 in 

parental non-transformed cells could reduce cell transformation induced by chronic 

low dose exposure of Cd. We first stably overexpressed MEG3 in parental BEAS-

2B cells (BEAS-2B-MEG3) and generated vector control BEAS-2B cells (BEAS-

2B-vector) as well. Before initiating chronic exposure of Cd at low dose (2.5 M, 

CdCl2), MEG3 overexpression was confirmed by the q-PCR analysis (Figure 

3.4A). MTT assay showed that MEG3 overexpression does not significantly affect 

cell proliferation before Cd exposure (Figure 3.4B). After 9 months of Cd 

exposure, the expression level of MEG3 was examined again. The q-PCR result 

showed that after the long term Cd exposure process, the level of MEG3 in MEG3 

overexpression cells was decreased, but still maintained at 2.5 fold higher than the 

vector control cell group (Figure 3.4C). In the MTT assay BEAS-2B MEG3 

overexpression cells with Cd exposure (BEAS-2B MEG3-Cd) displayed 

significantly slower cell proliferation, compared to BEAS-2B vector control cells 

with Cd exposure (BEAS-2B vector-Cd cells) (Figure 3.4D). In addition, BEAS-2B 

vector-Cd cells displayed enhanced colony formation capacity like Cd-T cells in 
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soft agar assay, while BEAS-2B MEG3-Cd cells showed only limited colony 

formation (Figure 3.4E). Moreover, we examined the CSC-like property in the Cd-

exposed cells by serum-free suspension culture. BEAS-2B vector-Cd cells were 

found to form around 2 times more spheres than the BEAS-2B MEG3-Cd cells 

(Figure 3.4F). These results suggested the importance of MEG3 to inhibit cell 

transformation and CSC-like property induced by chronic Cd exposure. 

 

3.4.5 LncRNA MEG3 reduces cell cycle progression by regulating the levels of cell 

cycle proteins 

Next, we determined the mechanism of how Cd exposure affect cell 

proliferation. We first analyzed cell cycle progression in control, Cd-transformed 

cells, BEAS-2B vector-Cd and BEAS-2B MEG3-Cd cells by flow cytometry. Figure 

3.5A shows that more Cd-transformed cells stayed in the S phase but less in the 

G1 phase, and vice versa in the passage-matched control BEAS-2B cells, 

indicating that Cd-T cells were actively undergoing cell proliferation. However, this 

trend was reversed by the overexpression of MEG3. After 9 months of Cd 

exposure, while the vector control cells (BEAS-2B vector-Cd) demonstrated active 

cell cycle progression, the MEG3 overexpression cells (BEAS-2B MEG3-Cd) 

displayed halted cell cycle, given that more of its subpopulation stayed in the G1 

phase but less in the S phase (Figure 3.5B). The levels of some cell cycle related 

proteins were further examined. By comparing BEAS-2B control cells and Cd-T 

cells, it was found that phospho-Rb proteins (S780, S807/S811), total Rb protein, 

and E2F1 were upregulated in Cd-T cells, but p21 in Cd-T cells was downregulated 



74 
 

(Figure 3.5C). Such trend of regulations was also found in BEAS-2B vector-Cd 

cells, while in BEAS-2B MEG3-Cd cells, phospho-Rb proteins, total Rb protein, 

and E2F1 were decreased and p21 was elevated (Figure 3.5D). These results 

demonstrated that MEG3 inhibited cell proliferation by regulating the levels of 

important cell cycle-related proteins. 

 

3.4.6 LncRNA MEG3 reverses Cd exposure-induced apoptosis resistance by 

reducing the level of Bcl-xL 

Apoptosis resistance has also been shown to be associated with cancer 

stemness (Kruyt et al., 2010; Safa, 2016). Next, we examined whether Cd-

transformed cells display apoptosis resistance. We first screened the levels of 

proteins related to apoptosis in passage-paired BEAS-2B control cells and Cd-

transformed cells, including anti-apoptotic proteins Mcl-1 and Bcl-xL, and pro-

apoptotic proteins Puma, Bim, Bik, Bid, Bax, and Bad. Among these proteins, the 

anti-apoptotic protein Mcl-1 and Bcl-xL were found upregulated in Cd-transformed 

cells (Figure 3.6A). With MEG3 overexpression, Bcl-xL level was found largely 

suppressed after 9 month of Cd exposure to the cells (Figure 3.6B). Interestingly, 

MEG3 expression had no effect on the level of Mcl-1, given that the protein levels 

in BEAS-2B vector-Cd and BEAS-2B MEG3-Cd remained almost the same 

(Figure 3.6B).  

To determine whether Cd-transformed cells developed apoptosis 

resistance, we treated the passage-paired BEAS-2B control cells and Cd-T cells 
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with a higher concentration of Cd (5 M, CdCl2). Previously, several studies have 

reported that Cd-induced apoptosis could be evidenced by increased levels of 

cleaved caspase 3 and cleaved PARP (Zhao et al., 2015; Liu et al., 2016; Ou et 

al., 2021). While the treatment of this high concentration of Cd increased the levels 

of cleaved caspase 3 and cleaved PARP in the passage-paired BEAS-2B control 

cells, no significant cleavage of these apoptotic proteins was observed in Cd-T 

cells (Figure 3.6C), suggesting that Cd-transformed cells display apoptosis 

resistance. Next, we treated BEAS-2B vector-Cd and BEAS-2B MEG3-Cd cells 

with Cd at 5 M or a pan-Bcl-2 family inhibitor ABT 737 at 1.25 M. For both 

treatments, elevated levels of cleaved caspase 3 and accordingly decreased total 

caspase 3 were observed in BEAS-2B MEG3-Cd cells, while in BEAS-2B vector-

Cd cells only minor cleavage of caspase 3 was shown and accompanied by higher 

levels of total caspase 3 (Figure 3.6D). These results suggest that stably 

overexpressing MEG3 reverses chronic Cd exposure-induced apoptosis 

resistance. Finally, we further determined the role of the anti-apoptotic protein Bcl-

xL in Cd-induced apoptosis resistance. Cd-T cells were first transfected with a 

control siRNA (control si) or the siRNA targeting Bcl-xL (Bcl-xL si), then treated 

with 5M of Cd or 1.25 M of ABT 737. For both treatments, we observed 

increased levels of cleaved caspase 3 in Cd-T cells with Bcl-xL knockdown (Figure 

3.6E). Together, these results suggested that MEG3 overexpression suppresses 

Cd-induced cell transformation and CSC-like property is likely through reducing 

Cd-induced Bcl-xL expression. 
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3.5 DISCUSSION 

Cd has been listed as one of the carcinogens for lung cancer. However, the 

mechanism of Cd carcinogenesis has not been clearly defined. As Cd has been 

shown a weak mutagen, it has been speculated that its oncolytic effect is non-

genotoxic, and studies of Cd carcinogenesis have focused on its non-genotoxic 

effects such as epigenetic modifications. Cd has been shown to induce oxidative 

stress (Kiran Kumar et al., 2016; Al Olayan et al., 2020). It has also been shown 

that Cd-induced oxidative stress leads to aberrant DNA methylation (Wu and Ni, 

2015). Aberrant DNMT activity has been revealed to be associated with Cd toxicity, 

in which DNMT downstream targets include glucose transporter 3 (GLUT3), tumor 

suppressors RASSF1A and p16 (Benbrahim-Tallaa et al., 2007; Yuan et al., 2013; 

Xu et al., 2016). In addition, it has been shown that the elevated DNMT led to 

silencing of several DNA repair genes, such as hOGG1, hMSH2, ERCC1, and 

XRCC1 (Zhou et al., 2012). In the present study, we first determined that elevated 

DNMT activity induced by Cd exposure led to downregulation of tumor suppressive 

lncRNA MEG3, as well as abnormal cell proliferation and the induced CSC-like 

property. Further assays by restoring MEG3 expression demonstrated reversed 

malignant effects, such as reduced cellular anchorage-independent growth and 

the CSC-like property. Further investigations show that MEG3 regulates the levels 

of key cell cycle proteins and apoptotic proteins. Our study presents the first 

evidence demonstrating that DNMT-mediated MEG3 down-regulation plays an 

important role in Cd-induced cell transformation and CSC-like property (Fig. 7A). 
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Previous studies have shown different mechanisms of MEG3 silencing in 

cancers. Han et al. and Qin et al. have reported histone methyltransferase EZH2-

mediated H3K27 enrichment at the MEG3 promoter region, resulting in silencing 

of this lncRNA (Han et al., 2020; Qin et al., 2020). On the other hand, DNA 

hypermethylation of the MEG3 promoter has also been discovered in 

retinoblastoma and myeloma (Benetatos et al., 2008; Gao et al., 2017). In the 

present study, the bisulfite sequencing results revealed that the differentially 

methylated region (DMR) upstream of MEG3 transcription start site was highly 

methylated in Cd-transformed cells, which prevents the transcription of the area 

downstream of the DMR. This finding indicates that the elevated DNMTs in Cd-

transformed cells facilitates the silencing of MEG3 expression.  

Mounting evidence has suggested that MEG3 exerts diverse functions in a 

wide spectrum and regulating stemness is one of those. MEG3 has been reported 

to regulate differentiation of various stem cells/progenitors, including human bone 

marrow stem cells, human adipose derived stem cells, and dental pulp stem cells, 

by interacting with various proteins or miRNAs. In cancer, though with relatively 

less reports, MEG3 has been found downregulated in liver and lung cancer stem 

cells, in which its function is to impede the action of miRNA 650 or to assist the 

action of another tumor suppressor p53 (Hsieh et al., 2021). Interestingly, a study 

with a contrast point of view demonstrated that MEG3 is inessential in 

hematopoietic stem cells (Sommerkamp et al., 2019). Here, we observed that 

restoring MEG3 expression in Cd-transformed cells inhibited the Cd-induced CSC 

property. Moreover, in the study of Yew et al., they provided evidence showing that 
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p21 level is associated with the expression of stemness markers in human 

mesenchymal stem cells (Yew et al., 2011). In our study, we observed increased 

p21 level along with decreased stemness in the cells with MEG3 overexpression. 

Though the underlying mechanism of how MEG3 down-regulation contributes to 

Cd-induced CSC-like property needs to be further investigated, its effect on p21 

expression level might be a critical point. 

While most studies on MEG3 have been performed in cancer cell models, 

or in the cells which have already turned malignant such as our Cd model to 

determine the function(s) of MEG3, it has not been shown that whether 

overexpressing MEG3 could inhibit cell transformation. To assess the effect of 

MEG3 on chronic Cd exposure-induced cell transformation, we overexpressed 

MEG3 in parental non-transformed cells and initiated the chronic exposure of Cd. 

We found that MEG3 could suppress Cd-induced cell transformation by inhibiting 

cell cycle progression and reversing apoptosis resistance. Evidence has shown 

that MEG3 halts cell cycle by regulating cell cycle inhibitor p16 or p21 in various 

cancer cells (Tao et al., 2021; Chak et al., 2017). As an important cyclin dependent 

kinase inhibitor regulating cell cycle phase transition through G1 to S phase, p21 

has been shown to mediate Rb protein dephosphorylation and degradation (Deng 

et al., 1995; Gartel et al., 2005; Broude et al., 2007). Such regulatory axis might 

explain what we found in this study. In the cells with MEG3 expression, the levels 

of p21 was increased, whereas phospho-Rb proteins were shown decreased at 

different serine sites.  Meanwhile, our study presents the first evidence showing 

that MEG3 leads a determinant role for E2F1 level. E2F1, which poses dual 
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characteristics in terms of the role for tumorigenesis, is subjected to various post 

translational modifications for its activity and stability (Johnson, 2000; Shats et al., 

2017; Costa et al., 2013; Wu and Yu, 2009). Binding to Rb protein is one of the 

mechanisms for E2F1 stabilization (Campanero and Flemington, 1997). We thus 

speculate that the reduced level of E2F1 is attributed by MEG3 through 

downregulation of phosphor-Rb proteins. Further studies would need to examine 

this hypothesis. In addition, while the mechanism of Rb phosphorylation has been 

well perceived, another mechanism for Rb protein inactivation is degradation in a 

caspase-dependent manner (Chial, 2008). In our Cd-transformed cells that are 

apoptosis-resistant, this might explain why we observed accumulated total Rb 

protein, even with the increased phospho-Rb. 

At last, accumulated level of Bcl-xL was observed in Cd-transformed cells, 

which was largely decreased in Cd-exposed cells with MEG3 overexpression. It is 

unclear how MEG3 regulate the level of Bcl-xL. However, it has been documented 

that E2F1 contributes to stabilization of Bcl-xL (Vuillier et al., 2018). Given the 

consistent pattern of altered levels of E2F1 and Bcl-xL in our results, it suggests 

that Cd-induced E2F1 leads to accumulation of Bcl-xL, resulting in apoptosis 

resistance of Cd-transformed cells. Moreover, several studies have revealed that 

targeting Bcl-2 family proteins benefits eradicating cancer stem cells and cancer 

therapy. The studies of Lagadinou et al. and Qiu et al. demonstrated that inhibition 

of Bcl-2 resulted in elimination of leukemia and glioblastoma stem cells (Lagadinou 

et al., 2013; Qiu et al., 2012). Zeuner et al. reported that targeting Bcl-xL elicited 

cytotoxicity towards NSCLC stem cells (Zeuner et al., 2014). The study of Yang et 
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al. also presented the critical role of another Bcl-2 family member Mcl-1 for the 

induced CSC-like property of the cells transformed by arsenic and benzo[a]pyrene 

co-exposure (Yang et al., 2020). These results suggest that apoptosis resistance-

mediated by Bcl-2 protein family contributes to cancer stemness. In the present 

study, MEG3 overexpression reduced the level of Bcl-xL, apoptosis resistance and 

inhibited Cd-induced CSC-like property, suggesting an important role of apoptosis 

resistance in Cd-induced CSC-like property. 

In conclusion, chronic exposure to a low dose of Cd up-regulates the 

expressions of DNMTs, which increases the methylation of differentially 

methylated region upstream of the lncRNA MEG3 transcription start site reducing 

MEG3 expression. Cd exposure-caused MEG3 down-regulation leads to 

enhanced cell cycle progression and apoptosis resistance promoting Cd-induced 

cell transformation and CSC-like property. 
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Figure 3.1 MEG3 is down-regulated and DNMTs are up-regulated in Cd-

transformed cells and inhibition of DNMTs increases MEG3 expression levels and 

reduces their transformed phenotypes. (A) Q-PCR analysis of the relative MEG3 

levels in passage-paired control BEAS-2B and Cd-T cells. The MEG3 level in the 

Cd-T is expressed relative to control BEAS-2B cells (means ± SD, n=3), ***p< 

0.001. (B) MTT analysis of passage-paired BEAS-2B control and Cd-T cells. The 

results are presented as means ± SD (n=5), ****p<0.0001. (C) Representative 
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Western blot analysis images of DNMTs levels in passage-paired control BEAS-

2B and Cd-T cells. The assay was repeated, and similar results were obtained. (D) 

Q-PCR analysis of the relative MEG3 levels in Cd-T cells treated with 5-Aza (10 

M). DMSO was used as a vehicle control. The MEG3 level in the Cd-T with 5-Aza 

treatment is expressed relative to the control group (means ± SD, n=3), *p< 0.05. 

(E) MTT analysis of Cd-T cells treated with 5-Aza of 5 and 10 M. DMSO was used 

as a vehicle control. The results are presented as means ± SD (n=5), ****p<0.0001. 

(F) Representative images of soft agar colonies formed from Cd-T treated with 

different concentration of 5-Aza (5 and 10 M) (means ± SD, n=3), ****p<0.0001. 

(G) Representative images of suspension spheres formed from Cd-T cells treated 

with DMSO (vehicle control) or 5-Aza (5 and 10 M), respectively. Scale bar: 100 

m. The bar graph represents the average numbers of the spheres formed in the 

repeated assays (means ± SD, n=3), ***p<0.001. 
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Figure 3.2 Differentially methylated region upstream of MEG3 transcription start 

site is highly methylated in Cd-transformed cells. (A) The CpG island examined at 

the differentially methylated region upstream of MEG3 transcription start site. (B) 

Lollipop presentation of methylation status at the examined differentially 

methylated region upstream of MEG3 transcription start site in passage-paired 

BEAS-2B control and Cd-T cells (open circle: nonmethylated; filled circle: 

methylated). The bar graph represents the percentage of methylation at each CpG 

site (n=16), ****p< 0.0001. 
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Figure 3.3 Stably overexpressing MEG3 in Cd-transformed cells significantly 

reduces their transformed phenotypes. (A) Q-PCR analysis of the relative MEG3 

levels in Cd-T vector control and Cd-T MEG3 overexpressing cells. The MEG3 

level in the Cd-T MEG3 overexpressing cells is expressed relative to the vector 

control cells (means ± SD, n=3), *p< 0.05. (B) MTT analysis of Cd-T vector control 

and Cd-T MEG3 overexpressing cells. The results are presented as means ± SD 

(n=5), ***p< 0.001. (C) Representative images of soft agar colonies formed from 

Cd-T vector control and Cd-T MEG3 overexpressing cells. The bar graph 

represents the average numbers of the soft agar colonies formed in the repeated 

assays (means ± SD, n=3), *p< 0.05. (D) Representative images of suspension 
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spheres formed from Cd-T vector control and Cd-T MEG3 overexpressing cells. 

Scale bar: 100 m. The bar graph represents the average numbers of the spheres 

formed in the repeated assays (means ± SD, n=3), *p<0.05. 
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Figure 3.4 Stably overexpressing MEG3 in parental BEAS-2B cells reduces the 

capability of chronic low dose Cd exposure to induce cell transformation and CSC-

like property. (A) Q-PCR analysis of the relative MEG3 levels in BEAS-2B vector 

control and BEAS-2B MEG3 overexpressing cells. The MEG3 level in the MEG3 

overexpressing cells is expressed relative to the vector control cells (means ± SD, 

n=3), **p< 0.01. (B) MTT analysis of BEAS-2B vector control and BEAS-2B MEG3 

overexpressing cells. The results are presented as means ± SD (n=5). (C) Q-PCR 

analysis of the relative MEG3 levels in BEAS-2B vector-Cd and BEAS-2B MEG3-
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Cd cells. The MEG3 level in the BEAS-2B MEG3-Cd cells is expressed relative to 

BEAS-2B vector-Cd cells (means ± SD, n=3), ****p< 0.0001. (D) MTT analysis of 

BEAS-2B vector-Cd and BEAS-2B MEG3-Cd cells. The results are presented as 

means ± SD (n=5), ****p< 0.0001. (E) Representative images of soft agar colonies 

formed from BEAS-2B vector-Cd and BEAS-2B MEG3-Cd cells. The bar graph 

represents the average numbers of the soft agar colonies formed in the repeated 

assays (means ± SD, n=3), *p< 0.05. (F) Representative images of suspension 

spheres formed from BEAS-2B vector-Cd and BEAS-2B MEG3-Cd cells. Scale 

bar: 100 m. The bar graph represents the average numbers of the spheres 

formed in the repeated assays (means ± SD, n=3), **p<0.01.  
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Figure 3.5 MEG3 overexpression reduces cell cycle progression by regulating the 

levels of cell cycle proteins. (A) Representative image of flow cytometry analysis 

of cell cycles in passage-paired BEAS-2B control cells and Cd-T cells. The bar 

graph shows the average percentage of each population at distinct cell cycle phase 

(means ± SD, n=3), ***p< 0.001. (B) Representative image of flow cytometry 

analysis of cell cycles in BEAS-2B vector-Cd and BEAS-2B MEG3-Cd cells. The 

bar graph shows the average percentage of each population at distinct cell cycle 
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phase (means ± SD, n=3), ****p< 0.0001. (C) Representative Western blot analysis 

images of cell cycle protein levels in passage-paired BEAS-2B control and Cd-T 

cells. The assay was repeated, and similar results were obtained. (D) 

Representative Western blot analysis images of cell cycle protein levels in BEAS-

2B vector-Cd and BEAS-2B MEG3-Cd cells. The assay was repeated, and similar 

results were obtained. 
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Figure 3.6 MEG3 overexpression reverses chronic Cd exposure-induced 

apoptosis resistance by reducing the level of the anti-apoptotic protein Bcl-xL. (A) 

Representative Western blot analysis images of apoptotic protein levels in 

passage-paired BEAS-2B control and Cd-T cells. The assay was repeated, and 

similar results were obtained. (B) Representative Western blot analysis images of 

apoptotic protein levels in BEAS-2B vector-Cd and BEAS-2B MEG3-Cd cells. The 

assay was repeated, and similar results were obtained. (C) Representative 

Western blot analysis images of apoptotic protein levels in passage-paired BEAS-
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2B control and Cd-T cells treated with Cd (5 M). The assay was repeated, and 

similar results were obtained. (D) Representative Western blot analysis images of 

apoptotic protein levels in BEAS-2B vector-Cd and BEAS-2B MEG3-Cd cells 

treated with Cd (5 M) or ABT 737 (1.25 M). The assay was repeated, and similar 

results were obtained. (E) Representative Western blot analysis images of 

apoptotic protein levels in Cd-T cells transfected with control siRNA or Bcl-xL 

siRNA and treated with Cd (5 M) or ABT 737 (1.25 M). The assay was repeated, 

and similar results were obtained. 
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Figure 3.7 A schematic summary of the mechanism of chronic Cd exposure-

caused MEG3 down-regulation and its role in Cd-induced cell transformation and 

CSC-like property. 



93 
 

CHAPTER 4. SOCS3 ACTS AS A TUMOR SUPPRESSOR BY 

DOWNREGULATING YAP AND REVERSING TUMOR IMMUNOSUPPRESSIVE 

MICROENVIRONMENT IN LUNG CANCER WITH EGFR MUTATION 

 

4.1 ABSTRATCT 

Enhanced EGFR signaling contributes to 60% of NSCLC cases. However, 

there is an unmet need to solve acquired resistance to tyrosine kinase inhibitors 

for the lung cancer patients. In recent year, development of immunotherapy has 

been under extensive investigation. However, low objective response rate has 

been observed in the patients with mutant EGFR lung cancer. Uninflamed tumor 

microenvironment has been found a major feature in the lung cancer with mutant 

EGFR. This study was performed to investigate the role of suppressor of cytokine 

signaling 3 (SOCS3) as tumor suppressor and to explore the potential of its 

regulatory axis as therapeutic target for the development of novel approach to lung 

cancer with EGFR mutations. First, in our transgenic mouse model, 

overexpression of SOCS3 significantly inhibited tumor formation with mutant 

EGFR. Further investigation for the underlying mechanism revealed that SOCS3 

downregulates the yes-associated protein (YAP) through increasing the level of 

the large tumor suppressor kinase 1/2 (LATS1/2). Decrease of YAP contributes to 

suppression of Bcl-2 family proteins, which sensitizes the tumor cells to 

conventional chemotherapy reagent. Consistent with the in vitro result, external 

YAP inhibitor was also shown to efficiently inhibit the growth of tumor organoids. 

Furthermore, it was found that SOCS3 downregulating YAP leads to modified 



94 
 

tumor immune microenvironment, evidenced by the decreased levels of the 

immunosuppressive cytokines, including colony stimulatory factor 1 (CSF-1), the 

C-X-C motif chemokine 5 (CXCL5), and the C-C motif chemokine ligand 2 (CCL2). 

In vivo studies further demonstrated the reversed ratio of type I and type II 

macrophages, as well as decreased populations of exhausted T cells and 

regulatory T cells in the mice with SOCS3 overexpression. Lastly, SOCS3 was 

often found to be silenced in various cancer types, including lung cancer. To mimic 

this circumstance, the therapeutic efficacy of utilizing external YAP inhibitor 

combined with anti-PD-L1 showed promising outcomes. These results suggest the 

critical role of SOCS3 as a biomarker for the oncolytic immune environment and 

provide a novel insight for improving lung cancer immunotherapy. 

Key words: immunotherapy; SOCS3; YAP; PD-L1; CSF-1; CXCL5; CCL2 

 

4.2 INTRODUCTION 

Lung cancer is the leading cause of tumor death for both males and females 

in the US. Clinically, lung cancer has two major subtypes: non-small cell lung 

cancer (NSCLC) which accounts for 85% of lung cancer cases, and small cell lung 

cancer (SCLC) which includes 10-15% of the total. Lung cancer has no symptoms 

at the early stages, and it usually already spreads by the time of diagnostics in 

around 70% of the patients, which make it challenging for the treatment and with 

low 5-year survival rate for both SCLC and NSCLC (Blandin Knight et al., 2017; 

Schabath et al., 2019). As lung cancer has been often described as a highly 
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heterogenous disease, common features have been extensively studied for 

identifying therapeutic targets, such as epidermal growth factor receptor (EGFR).  

EGFR is a transmembrane protein and a member of ErbB family proteins. 

Upon binding of its ligands, dimerization of EGFR with its homodimer or other ErbB 

family members activates the downstream signaling cascades, including 

MAPK/ERK pathway and PI3K/AKT pathway, to modulate cell activities such as 

migration, proliferation and adhesion (Li et al., 2015; Freudlsperger et al., 2011; 

Hynes et al., 2009). Aberrant EGFR signaling has been proof oncogenic in many 

cancers and correlated to poor outcomes, including lung cancer (Kanematsu et al., 

2003; Lee et al., 2015; Huang et al., 2019; Liu et al., 2020). Conventional 

chemotherapy and radiation therapy were the two standard methods for the 

treatment. With the discovery of the oncogenic role of EGFR, targeted therapy, 

including tyrosine kinase receptor inhibitors (TKIs) and monoclonal antibody (e.g., 

Cetuximab) have been introduced for improving therapeutic efficacy (Mazzarella 

et al., 2018; Tan et al., 2018). While inhibiting EGFR by targeted therapy displayed 

promising outcomes in patients, however, the built-up resistance and relapse 

tumor progression after a period of treatment have become the major obstacles 

and challenges for the anti-cancer therapy (Ruppert et al., 2009; Nagano et al., 

2018; Kauffmann-Guerrero et al., 2019). Among the mechanisms of the acquired 

resistance, 60% were resulted from the mutation T790M at exon 20 of EGFR 

(Huang et al., 2018). This point mutation appears at the tyrosine kinase activity site 

where ATP binds, which has been seen as the “gate keeper” of the domain and 

prevents the binding of the first and the second generation of TKIs (Yun et al., 
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2008). Though the third generation TKI Osimertinib and other targeted therapy 

have demonstrated improvement in clinical endpoints, patients’ response rate still 

varies depending on heterogeneity of tumor cells and the various EGFR subtypes 

(Kobayashi et al., 2018; Cheng et al., 2014; Passaro et al., 2020; Lim et al., 2019; 

O’Kane et al., 2017). 

In recent years, much effort has been made to establish novel therapeutic 

approach and to investigate the efficacy of combining different types of therapy 

including TKIs, tradition chemotherapy, and immunotherapy. With the discovery of 

immune checkpoint proteins, such as programmed cell death protein-1 (PD-1) and 

its ligand (PD-L1), utilizing immune checkpoint inhibitors have led into a new era 

of cancer therapy (Hamanishi et al., 2016; Gong et al., 2018; Jiang et al., 2019; 

3Wang et al., 2020). So far, four immune checkpoint inhibitors against PD-1/PD-

L1, Durvalumab, Atezolizumab, Nivolumab, and Pembrolizumab, have been 

approved by the US Food and Drug Administration (FDA) for advanced NSCLC. 

However, the data of the clinical trials revealed only 14-19% response rate of 

NSCLC patients with multiple EGFR mutations. On the other hand, higher 

response rate (44.8%) to the immune checkpoint inhibitor was observed in NSCLC 

patients with wild-type EGFR (Hsu et al., 2019). This outcome implied that 

immunotherapy might favor the patients with wild-type EGFR and further pointed 

out the difficulties of NSCLC immunotherapy with EGFR mutation and the unmet 

need for solving immunotherapy resistance. 

Suppressor of cytokine signaling 3 (SOCS3) is a member of the cytokine-

induced negative regulator family which in turn modulates cytokine signaling. It is 
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often found silenced in various diseases, mostly through hypermethylation of its 

promoter (Tao et al., 2021; Dhar et al., Dees et al., 2020). In cancers, silence of 

SOCS3 has been shown to corelate to enhanced proliferation and invasion (Chu 

et al., 2017; Weber et al., 2005). However, studies regarding its tumor suppressing 

function have been rarely linked to its conventional role – overseeing various 

immune response. SOCS3 is critical to fine tune the cytokine signaling to maintain 

immune homeostasis in local tissues. In a disease state, the presence of SOCS3 

tends to create a pro-inflammatory environment which facilitates immune response 

against the micro-invaders. It has been shown that SOCS3 promotes the 

expression of interleukin 17 in human T cells in response to the mycobacteria 

infection (Kleinsteuber et al., 2012). In addition, the presence of SOCS3 promotes 

macrophage polarization towards inflammatory in the local environment of 

pneumonia (Chi et al., 2019). Luckey at al. have also reported that enhanced 

expression of SOCS3 suppressed the generation of regulatory T cells (Luckey et 

al., 2020). In contrast, aberrant expression of SOCS3 is usually associated with 

more immune-tolerant microenvironment. It has been shown that suppression of 

SOCS3 led to macrophage type II polarization after intracerebral hemorrhage (Ji 

et al., 2020). In breast cancer, deficient SOCS3 resulted in IL-6-induced 

proliferation of early stage myeloid-derived suppressor cells (MDSCs) and thus 

create an immunosuppressive tumor microenvironment (1Zhang et al., 2018). With 

the extensive studies in these diseases, however, the functions of SOCS3 in 

modulating the tumor immune microenvironment in lung cancers remains to be 

explored. 
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Uninflamed tumor microenvironment often found to be an important 

characteristic and responsible for the resistance to immunotherapy (Yu et al., 

2018; Soo et al., 2018). The goal of this study was set to revisit the role of SOCS3 

as a tumor suppressor in the tumor microenvironment and to further investigate 

the potential of its regulatory axis against immunotherapy resistance for lung 

cancer with mutant EGFR. The present study is first to report that SOCS3 inhibited 

tumor progression through downregulating oncogenic protein YAP and modulating 

oncolytic immunosuppressive microenvironment. Furthermore, the results provide 

a new insight of SOCS3, not only as a tumor suppressor, but also as a biomarker 

for lung cancer diagnosis and prognosis. 

 

4.3 MATERIALS AND METHODS 

4.3.1 Cell culture and generation of SOCS3 stably overexpressing cells 

Human lung cancer cell lines H1975, PC9GR4, and PC9 were gifts kindly provided 

by Dr. Christine F. Brainson at the University of Kentucky. The cells were cultured 

in Roswell Park Memorial Institute 1640 medium (RPMI 1640, Gibco) 

supplemented with 10% fetal bovine serum (FBS, Sigma) and 1% Penicillin-

Streptomycin (Pen Strep, 10000 U/mL, Gibco). To generate SOCS3 stably 

overexpressing cells, the lentiviral particles (Invitrogen) for the vector control and 

SOCS3 overexpressing were transduced into the parental cell lines H1975, 

PC9GR4, and PC9. After the blasticidin (10 mg/mL) selection based on the 
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procedures described in our published study (Wang et al., 2019), the cells were 

harvested and SOCS3 overexpression was confirmed by Western blot analysis. 

 

4.3.2 Establishment of 3D tumor organoid cultures for drug treatment 

The lungs with tumor burden were collected from the EGFRmut mice. The minced 

lung tissues were then mixed with tumor organoid culture medium [DMEM-Ham's 

12 (Gibco) supplemented with 4 mM L-glutamine, 1 % Pen Strep, 10 % FBS, 10 

mg/mL insulin (Sigma-Aldrich), 5 mg/mL ITS (Sigma-Aldrich), 0.1 mg/mL cholera 

toxin (Sigma-Aldrich), 25 ng/mL EGF, 25 ng/mL bFGF, and 30 mg/mL bovine 

pituitary extract (Invitrogen)], and growth factor reduced Matrigel (Corning), 

followed by seeding into transwell insert (0.4 mm). After the primary tumor 

organoid was observed, 100 mL of dispase was added to each insert liquify the 

Matrigel. After centrifugation, the retrieved organoids were disassociated by 

trypsinization. The disassociated organoids were proceeded to cell counting and 

5000 cells were seeded back to the transwell inserts. After two passages, drug 

treatment was started by adding Verteporfin to the medium at the lower chamber. 

The media were changed every other day. After a week of incubation, the grown 

tumor organoids were counted and photographed. 

 

4.3.3 MTT assay 

Thiazolyl Blue Tetrazolium Bromide (MTT) was purchased from Sigma-Aldrich (St 

Louis, MO). The assay was performed as described previously (1Wang et al., 
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2014). Briefly, cells were seeded in 96-well plates (103 cells/well in 100 μL of 

culture medium) for 4 time points: 0, 24, 48, and 72 hr. At the end of incubation, 

50 μL of the MTT reagent (5 mg/mL) was added to each well and incubated for 4 

hr, followed by another 1 hr incubation with 200 μL of dimethyl sulfoxide (DMSO). 

The plate was read using a microplate reader (SpectraMaxi3x, Molecular Devices, 

Sunnyvale, CA) at the wavelength of 570 nm. The inhibition on relative cell growth 

was determined by the following formula: Cell Viability (%) = (Absorbance at 570 

nm of SOCS3 overexpressing cells)/ (Absorbance at 570 nm of control cells) ×100. 

 

4.3.4 Serum free suspension culture for sphere formation 

The spheroid formation was performed following the published protocol with minor 

modifications (Dontu et al., 2003). Briefly, single cells were plated in ultra-low 

attachment 24-well culture plates (Corning, NY) at a density of 2 x 103 cells per 

well suspended in serum-free DMEM containing human recombinant basic 

fibroblast growth factor (bFGF, 20 ng/mL) (R&D, Minneapolis, MN), human 

recombinant epidermal growth factor (EGF, 20 ng/mL) (R&D, Minneapolis, MN), 

B27 (Invitrogen, Carlsbad, CA) and heparin (4 mg/mL, Sigma-Aldrich). Plates were 

incubated at 37℃ in cell incubator with 5% CO2. Spheres > 50 mM were viewed, 

photographed and counted under a phase-contrast microscope after 10-day 

culture. 
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4.3.5 Western blot analysis 

Cells were lysed using lysis buffer following our published protocol (1Wang et al., 

2014). The cell lysates were then applied to the bicinchoninic acid assay (Bio-rad) 

to determine protein concentration, followed by SDS-polyacrylamide gel 

electrophoresis (PAGE) (20-30 mg of protein/lane). The separated proteins were 

then transferred to polyvinylidene fluoride membrane (PVDF, Millipore, MA). 5% 

milk in PBS was applied for the blocking step before primary antibody incubation. 

The following primary antibodies were used: anti-SOCS3, anti-KLF4, anti-KLF5, 

anti-Phospho-p44/42 MAPK (p-ERK), anti-Phospho-Akt (Ser473), anti-LATS1, 

anti-LATS2, anti-Phospho-YAP (Ser127), anti-YAP, anti-Cleaved Caspase-9, anti-

Cleaved Caspase 3, anti-Cleaved PARP, anti-Bcl-xL, anti-Mcl-1, anti-Bcl-2, anti-

PD-L1 (Cell Signaling Technology, Beverly, MA) (dilution 1:1000); and anti-b-actin 

(Millipore Sigma, St. Louis, MO) (dilution 1:8000). After overnight primary antibody 

incubation at 4 °C, the membranes were washed and then incubated with HRP-

conjugated antibodies for 1 hr at room temperature. Images were developed by 

Amersham Imager 680 (GE Healthcare Life Sciences, MA). 

 

4.3.6 Immunofluorescence (IF) staining, H&E 

For immunofluorescence staining, the cells were seeded on cover-glass placed in 

6-well plate and cultured for 48 hr (including the inhibitor treatment or RNA 

interference) before the antibody staining. For the treatment groups, 24 hr after 

seeding, Rapamycin and Wortmannin (Cayman Chemical, MI) were added to the 
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cells and continued for another 24 hr. For the staining process, the cells were first 

washed first and fixed with 4% paraformaldehyde for 20 min at room temperature. 

Permeabilization was performed using 1% Triton X-100 in PBS and incubated for 

1.5 min at room temperature, followed by blocking with 3% bovine serum albumin 

(BSA) for 30 min. The primary antibody YAP (Cell Signaling Technology) was 

diluted in PBS with 1% BSA at ratio of 1:200. Following the primary antibody 

incubation for overnight at 4°C, the cells were washed before the secondary 

antibody incubation (Alexa 546 goat anti-mouse/rabbit IgG, 1:300, Invitrogen). 

After 1 hr of incubation at room temperature, the cells were washed again and 

stained with nuclear 4’6-diamidino-2-phenylinodole (DAPI) for 10 min before 

mounting. The IF staining pictures taken under a Nikon fluorescent microscope are 

the overlaid images of YAP staining in red fluorescence with nuclear 4’6-diamidino-

2-phenylinodole (DAPI) staining in blue fluorescence. The images were overlaid 

using Nikon NIS-Elements software. The H&E staining of the mouse lung tissue 

sections was carried out following our previous procedures (Zhao et al., 2010). 

 

4.3.7 RAN extraction and quantitative PCR 

Total RNA extraction from cultured cells and the mouse lung tissue were 

performed using the TRIzol reagent (Invitrogen) following the manufacturer’s 

protocol. Quality and Quantity of extracted RNA was determined by NanoDropTM 

spectrophotometer (Thermo Fisher, MA) before applying to TaqMan gene 

expression assays. Quantitative PCR was performed by ABI QuantStudio 3 qPCR 

System (Applied Biosystems). The 2-DD CT analysis method was utilized to quantify 
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relative mRNA expression levels of each gene, with human 18S RNA as internal 

control. 

 

4.3.8 Flow cytometry analysis 

The collected mouse lung tissues were cut into small pieces followed by 

disassociation with collagenase IV (Gibco) and Dispase II (Sigma-Aldrich) at 37°C. 

After 1 hr of incubation, the isolated lung tissue cells were stained washed with 

PBS, followed by the antibody staining. The fluorescence-conjugated antibodies 

used in this study: anti-CD45, anti-CD3, anti-CD8, anti-CD279, anti-CD366, anti-

CD4, anti-CD25, anti-CD11b, anti-Ly6G, anti-CD11c, anti-F4/80, anti-CD86, and 

anti-CD206 (Biolegend, CA). Before anti-FOXP3 (Biolegend, CA) staining, cells 

were fixed and permeabilized with True-NuclearTM Transcription Factor Buffer kit 

following the manufacturer’s manual. Fluorescence-activated cell sorting was 

carried out by the flow cytometer BD LSR II (Becton Dickinson). Raw data was 

analyzed by using Flowjo software (Becton Dickinson). 

 

4.3.9 Preparation of Verteporfin- and Cyanine 7.5 (Cy 7.5)-loaded nanoparticles 

The compound encapsulated nanoparticles were prepared by nanoprecipitation 

method following our published study (1Li et al., 2019).  Briefly, Lecithin (2 mg), 

PEG2000-DSPE (18 mg) and RGD-PEG2000-DSPE (2 mg) were dissolved in 4% 

ethanol and heated to 65°C. Verteporfin (1 mg/mL in acetone) was mixed with 

PLGA (1.875 mg) in 0.6 mL acetone and incubated at 65°C for 1 min, then added 
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into the preheated Lecithin/PEG2000-DSPE/RGD-PEG2000-DSPE mixed solution. 

The self-assembled nanoparticle mixture was placed at room temperature 

overnight, followed by centrifugation using Amicon Ultra-4 centrifugal filter 

(Millipore, MA) to remove acetone, ethanol and DMSO thoroughly. Sterile PBS 

was then used to dilute the remaining supernatant to a final concentration of 10 

mg/mL, which was further sterilized by 0.4 mm syringe-driven filters. The 

nanoparticles loaded with Cyanine 7.5 (Cy 7.5) dye were prepared with the same 

method except replacing Verteporfin with Cy 7.5. Lecithin was obtained from Alfa 

Aesar (Ward Hill, MA). PEG-DSPE [1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-carboxy (polyethylene glycol) 2000] was purchased from 

Jenkem Technology (Allen, TX). RGD peptide was obtained from Peptides 

International (Louisville, KY). PLGA [Poly (d, L-lactide-co-glycolide)] and 

Verteporfin were purchased from Sigma-Aldrich. The fluorescence dye Cyanine 

7.5 (Cy 7.5) was from Lumiprobe Corporation (Hunt Valley, MD). 

 

4.3.10 Cy 7.5-RGD-nanoparticle in vivo distribution study 

The Cy 7.5-RGD-nanoparticle (Cy 7.5-RGD-NP) in vivo distribution was studied to 

evaluate the efficiency of RGD peptide targeting lung tumor cells in the EGFRmut 

mice. This study was performed following the guidelines approved by the 

Institutional Animal Care and Use Committee of University of Kentucky. Briefly, Cy 

7.5-RGD-NP was injected into the mice with or without tumor formation through 

tail vein (2.5 mg of Cy 7.5 per mouse). Time course at the 48, 72, 96 hr post 
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injection, fluorescence imaging (Ex 745 nm/ Em 800 nm) was performed using the 

IVIS live animal imaging system (PerkinElmer, Waltham, MA). 

 

4.3.11 Transgenic mouse models for the tumorigenesis study and therapeutic 

study 

By crossing the mice carrying hetero-EGFRmut (T790M/L858R) with upstream 

floxed STOP structure and the mice carrying hetero-SOCS3 with upstream floxed 

STOP structure, two types of breeds were generated for this study: the ones with 

loxp-STOP-loxp-EGFRmut (T790M/L858R) (abbreviated as EGFRmut mice in the 

following study) and the ones with both loxp-STOP-loxp-EGFRmut and loxp-STOP-

loxp-SOCS3 (abbreviated as SOCS3/EGFRmut mice in the following study). 

Conditional activation of EGFRmut and SOCS3 genes in the transgenic mice was 

performed by administering recombinant adeno-associated virus expressing Cre 

(Ad5CMVCre, University of Iowa) at the age of 6 weeks. For the tumorigenesis 

study, the mice were sacrificed at different time course and the lungs were 

collected for tissue RNA extraction or stained with Bouin’s fixative solution. For the 

therapeutic groups, the mice were treated with anti-mouse PD-L1 antibody (100 

mg per mouse) (Bio X Cell, NH) twice a week, or Verteporfin-RGD-nanoparticles 

(10 mg/kg) three time a week, or the combination of the above two. At the end 

point, the mice were euthanized for collecting the lungs for flow cytometry analysis 

or fixed with Bouin’s solution. 
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4.3.12 Statistical analysis 

The statistical analyses for the significance of differences in presented numerical 

data (mean ± SD) were carried out by testing different treatment effects using two-

tailed t-tests for comparison of two data sets or one-way analysis of variance 

(ANOVA) for multiple data sets. A p-value of < 0.05 was considered statistically 

significant. 

 

4.4. RESULTS 

4.4.1 SOCS3 overexpression suppresses lung cancer cell proliferation, CSC 

properties, and tumor formation 

To study the potential tumor suppressing function of SOCS3, we first 

generated SOCS3 overexpression cells with three lung cancer cell lines bearing 

different EGFR mutation points: H1975 (T790M/L858R), PC9GR4 (del E746-

A750/T790M), and PC9 (del E746-A750). Figure 4.1A shows upregulated SOCS3 

in the three cell lines after transfection (H1975-SOCS3, PC9GR4-SOCS3, PC9-

SOCS3). MTT assay was first performed to study the impact of SOCS3 

overexpression. Decreased cell proliferation was observed in H1975-SOCS3 and 

PC9GR4-SOCS3 (Figure 4.1B) but has no effect on PC9-SOCS3 (data not 

shown). Similarly, overexpressing SOCS3 in H1975 and PC9GR4 inhibited sphere 

formation in serum-free suspension culture, but in PC9, only minor inhibition was 

observed (Figure 4.1C). To further understand the impact of SOCS3 on CSC 

property at the molecular level, expression of pluripotency marker KLF4 and KLF5 
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was evaluated by Western blot. SOCS3 overexpression decreased KLF4 and 

KLF5 in all three cell lines, though the effect on KLF4 in PC9 was less strong as 

on the other two (Figure 4.1D). In addition to the in vitro study, two mice models 

were applied to the present study to determine whether SOCS3 could suppress 

tumorigenesis in the lungs of the mice bearing EGFR mutation (Figure 4.2A). The 

first model is the mice carrying EGFRmut (T790M/L858R) with upstream floxed 

STOP structure (abbreviated as EGFRmut mice in the following study). Another 

model is the mice carrying SOCS3 and EGFRmut (T790M/L858R) with upstream 

floxed STOP structure (abbreviated as SOCS3/EGFRmut mice in the following 

study). Conditional activation was induced by administering recombinant adeno-

associated virus expressing Cre (Ad5CMVCre, University of Iowa). 17 weeks post 

viral induction, SOCS3 overexpression inhibited tumor formation in the lungs of the 

SOCS3/EGFRmut mice by at least 50%, compared to the EGFRmut mice (Figure 

4.2B). Furthermore, time course study revealed that SOCS3 delayed massive 

tumorigenesis in the SOCS3/EGFRmut mice till the 12th week post viral induction, 

while the same number of tumors were already forming in the lungs of the EGFRmut 

mice at the 10th week post viral induction (Figure 4.2C). These results demonstrate 

a critical role of SOCS3 as tumor suppressor for lung cancer, particularly with 

EGFR mutation. 
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4.4.2 SOCS3 downregulates PI3K/MAPK signaling and leads to decreased level 

of oncogenic protein YAP 

Next, we would like to determine the underlying molecular mechanism of 

SOCS3 inhibiting tumorigenesis. Figure 4.3A shows dramatic decreases of 

phospho-Akt (p-Akt) in the three cell lines with SOCS3 overexpression, and 

downregulated phospho-ERK (p-ERK) in H1975-SOCS3 and PC9GR4-SOCS3. 

Xia et al. reported that PI3K and its downstream signaling regulates the activity of 

the Hippo pathway effector YAP (Xia et al., 2018). In addition, the study of 

Mayrhofer et al. demonstrated the association between MAPK signaling and YAP 

activation in a brain tumor model (Mayrhofer et al., 2016). As both AKT and ERK 

signaling were inhibited by the presence of SOCS3, Western blot was performed 

to examine the level of YAP, as well as its phosphorylated form, p-YAP. As a 

transcription factor, nuclear translocation is critical for YAP to exert its biological 

function. However, its nuclear localization could be impaired by phosphorylation. 

While phosphorylation of most proteins represents activation, phosphorylation of 

YAP demonstrates that it is sequestered in the cytoplasm followed by degradation. 

Such YAP phosphorylation could be regulated by the protein kinase LATS1/2 

which’s activity is inhibited by AKT/ERK signaling (Boopathy et al., 2019). It was 

found that both LATS1 and LATS2 were upregulated in the cell lines with SOCS3 

overexpression, although the level of LATS1 in PC9-SOCS3 showed no change. 

Increase of p-YAP and decrease of total YAP were also observed in H1975-

SOCS3, PC9GR4-SOCS3, and PC9-SOCS3, suggesting that SOCS3 

overexpression led to downregulation of this oncogenic protein (Figure 4.3B). 
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Immunofluorescence staining was next performed to determine the cellular 

localization of YAP. In the parental H1975, PC9 cells, YAP accumulated in the 

nuclei stained with DAPI. On the contrary, in H1975-, PC9-SOCS3 cells, YAP was 

clearly sequestered in the cytoplasm (Figure 4.4A), indicating that SOCS3 

prevents YAP from transferring to the nuclei. The treatment of Rapamycin (mTOR 

inhibitor) and Wortmannin (PI3K inhibitor) to H1975 and PC9 cells also showed 

inhibited nuclear translocation of YAP, confirming that YAP signaling is 

upregulated in these lung cancer cells and that such signaling is regulated by PI3K 

signaling (Figure 4.4B). The results mentioned above suggest that SOCS3 

inhibiting ERK and AKT signaling, which leads to downregulation of oncogenic 

YAP through promoted LATS1/2 activity. 

 

4.4.3 Inhibited YAP activity limits the growth of EGFRmut organoids and sensitizes 

lung cancer cells to chemotherapeutic agent 

Next, we set to explore the downstream effect(s) brought by YAP inhibition. 

Tumors in the lungs of the EGFRmut mice were retrieved for establishing 3D 

organoid culture which allows us to examine the response of the tumor cells to 

YAP inhibition in a mimic physiological environment. The derived tumor organoids 

were treated with YAP inhibitor Verteporfin (Sigma-Aldrich) at the concentration of 

2 M. It was found that YAP inhibition significantly reduced growth of the organoids 

by 50% (Figure 4.5). To further determine if inhibiting YAP would benefit traditional 

chemotherapy, H1975 and PC9 were treated with Verteporfin and Cisplatin at 

gradient concentrations. Levels of cleaved-caspase 3, -PAPR, and –caspase 9 
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were examined by Western blot. The combination of Verteporfin and Cisplatin 

displayed synergistic effect on the enhanced apoptosis at dose-dependent 

manner, though minor difference was observed between the two cell lines. H1975 

appeared to be resistant to Cisplatin, evidenced by that single use of Cisplatin 

barely induced apoptosis, even at the highest concentration 20 M. On the 

contrary, increased levels of cleaved-caspase 9, -caspase 3, and -PARP were 

shown in PC9 treated with 20 M of Cisplatin (Figure 4.6A). To delineate the 

underlying mechanism of the combined therapy promoting apoptosis in the H1975 

and PC9, Western blot was performed to screen pro-apoptotic and anti-apoptotic 

proteins in these two cell lines treated with Verteporfin and Cisplatin. We found 

that the therapeutic combination significantly reduced the level of Bcl-xL in PC9, 

and the levels of Mcl-1, Bcl-xL, and Bcl-2 in H1975 (Figure 4.6B). These results 

suggest that inhibited YAP in lung cancer cells leads to downregulation of pro-

survival Bcl-2 family proteins and benefits the downstream apoptotic signaling 

cascade. 

 

4.4.4 SOCS3 downregulating YAP leads to decreased expression of PD-L1 and 

secretion of immunosuppressive and angiogenic cytokines 

Previously, it has been reported that YAP induces the expression of immune 

checkpoint ligand PD-L1 in lung cancer and melanoma (Miao et al., 2017; Kim et 

al., 2018). The role of PD-L1 has been regarded as immunosuppressive in the 

tumor microenvironment (Iwai et al., 2002). For lung cancer with EGFR mutation, 
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however, the correlation between expression level of PD-L1 and immunotherapy 

resistance remain inconclusive. In the present study, we proposed to examine the 

anti-tumor effect of SOCS3 and its downstream regulatory axis applied to 

immunotherapy. First, PD-L1 level was found significantly decreased in H1975-

SOCS3 and PC9R4-SOCS. In PC9, PD-L1 was undetectable in either the parental 

cells or the ones with SOCS3 overexpression (Figure 4.7A). To demonstrate the 

causal relationship between YAP activity and PD-L1 expression, H1975 and 

PC9GR4 cells were then treated with Verteporfin at gradient concentration. PD-L1 

level was reduced at a dose-dependent manner (Figure 4.7B). Furthermore, 

mRNA levels of cytokines involved in tumor microenvironment were measured in 

H1975, PC9GR4, PC9 -parental and -SOCS3 overexpression cells by quantitative 

PCR. Tumor-secreted CSF-1 has been shown to recruit immunosuppressive 

macrophages in pancreatic cancer (Zhu et al., 2014). In H1975-SOCS3, the level 

of CSF-1 was down to undetectable; in PC9GR4-SOCS3, CSF-1 was 

downregulated to 50%. However, in PC9, SOCS3 overexpression has no 

significant effect on CSF-1 expression (Figure 4.8A). Meanwhile, chemoattractant 

for recruiting pro-angiogenic neutrophils CXCL5 and the cytokine for recruiting 

anti-inflammatory monocytes CCL2 were also downregulated to undetectable in 

H1975-SOCS3. Interestingly, both CXCL5 and CCL2 were originally undetectable 

in PC9GR4 and PC9 parental cells (Figure 4.8A). To further demonstrate that 

SOCS3 downregulates these cytokines through inhibition of YAP, H1975, 

PC9GR4, and PC9 were treated with Verteporfin at gradient concentrations 

(Figure 4.8B). Consistently, CSF-1 was reduced at a dose-dependent manner in 
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all three cell lines. Among those, H1975 showed most sensitive to Verteporfin 

treatment. Downregulation of CXCL5 and CCL2 was also observed in H1975 

treated with gradient Verteporfin, though there was no sign of dose-dependent 

shown. The results stated above described the downstream effects of SOCS3 

inhibiting YAP, including decreased PD-L1, CSF-1, CXCL5, and CCL2, and 

suggested the potential role of SOCS3 for immunotherapy. 

 

4.4.5 SOCS3 overexpression inhibits tumorigenesis by modulating tumor immuno-

microenvironment 

Consistent with the tumor formation rate shown in Fig. 1, H&E staining 

results showed significant higher tumor burden in the EGFRmut mice than in 

SOCS3/EGFRmut mice (Figure 4.9). Next, we set to determine if SOCS3 

overexpression exerts impact on the cytokine secretion in vivo. Total RNA was 

extracted from excised mouse lungs bearing tumors and converted to cDNA. 

Quantitative PCR was then performed to determine relative expression of the 

cytokines. Consistent with the in vitro results, we observed significantly lower 

levels of CSF-1 (Figure 4.10A) and CXCL5 (Figure 4.10B) in the mice with 

SOCS3 overexpression. In addition, markers of type I and type II macrophages 

were also examined here. The qPCR results demonstrated that SOCS3 

overexpression increases the level of type I macrophage markers Nos2 and TNF, 

but decreases the levels of markers for type II macrophages, IL-10 and IL-4 

(Figure 4.10C-H). The live cells isolated from the mice lungs were also stained 

with antibodies for immune cells analysis by flow cytometry. In the lungs from the 
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SOCS3/EGFRmut mice, number of type I macrophage (percentage of CD86+ in 

F4/80+ cells) was found higher than type II (percentage of CD206+ in F4/80+ cells), 

and vice versa in the EGFRmut mice (Figure 4.11A). Regulatory T cells (Treg) have 

been seen accountable for immunotherapy failure for cancer patients. In out 

mouse model here, we also found that the number of Treg cells in the 

SOCS3/EGFRmut mice is only a half of the one in the EGFRmut mice (Figure 

4.11B). Furthermore, population of exhausted T cells (PD-1+/TIM3+) was found 

significantly decreased in the SOCS3/EGFRmut mice, compared to the ones in the 

EGFRmut mice which is around 5 times higher (Figure 4.11C).  These results 

suggest that other than an immunosuppressive microenvironment, the presence 

of SOCS3 turned the pathological microenvironment into more pro-inflammatory, 

which could further benefit the anti-cancer therapy. 

 

4.4.6 Targeting YAP sensitizes lung cancer with EGFR mutation to immunotherapy 

The results in the previous figures indicated that SOCS3 suppresses 

tumorigenesis by remodeling tumor microenvironment through YAP inhibition, 

which points out the critical role of YAP for cancer therapy, especially for 

immunotherapy. As mentioned above, hypermethylation at the promoter region 

and thus SOCS3 downregulation was often found in lung cancer patients. Under 

this premise, we would like to examine if inhibiting YAP by external administration 

would produce similar effects as with the presence of SOCS3 and benefit the 

immunotherapy. Verteporfin is an extremely hydrophobic compound. In the 

present study, we package this compound into nanoparticles with specific 
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targeting. Integrin V has been reported highly expressed in the lung cancer cells. 

We detected the expression level of this protein in the three cell lines used in this 

study. Interestingly, only H1975 showed high level of integrin V (Figure 4.12A). 

As the mutation points of EGFR in H1975 are the same as the EGFRmut construct 

of the mouse model here, this result encouraged us to apply this targeting to the 

nanoparticle. Next, luminescent dye cyanine 7.5 (Cy 7.5) was packed into the 

nanoparticle with integrin aV targeting and injected into the control (EGFRmut mice 

without AdCre viral induction) and the tumor bearing mice (EGFRmut mice with viral 

induction) through tail vein. 48 hours after the injection, Cy 7.5 signals accumulated 

at the thoracic area of the tumor bearing mice through 72 hours, and the signal 

reduced with time through 96 hours (Figure 4.12B). This result demonstrated that 

targeting integrin V could increase the specificity of the therapeutic agent. 

According to others’ studies, Verteporfin encapsulated in the targeted 

nanoparticles was administered three times a week at the dosage of 10 mg/kg 

(Fisher et al., 2017). Rat anti-mouse PD-L1 antibody (BE0101, BioXCell) was used 

as the immunotherapeutic agent and administered 100 mg twice a week (Figure 

4.13A). Therapeutic groups included Verteporfin alone, anti-PD-L1 alone, anti-PD-

L1 plus empty nanoparticles, and anti-PD-L1 plus Verteporfin in the nanoparticles 

(n=5). And the last group would be no treatment control. After three weeks of 

therapy, the mice were sacrificed and the lungs were collected for Bouin’s staining 

and FACS analysis, respectively. The combination of Verteporfin and anti-PD-L1 

significantly reduced tumor nodules, as compared to other groups (Figure 4.13B). 

The synergistic effect of the combined therapy was further evidenced by the 
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suppressed level of exhausted T cells (Figure 4.14A) and regulatory T cells 

(Figure 4.14B). For the ratio of type I and type II macrophages, we observed no 

significant difference between the group of Verteporfin alone and Verteporfin 

combined with anti-PD-L1 (Figure 4.14C). To summary, SOCS3 decreases the 

level of YAP by suppressing PI3K/mTOR signaling and promoting LATS1/2 

activity. The reduced YAP signaling results in decreased levels of Bcl-2 family 

proteins which lead to decreased cell survival. The inhibition of YAP signaling also 

results in modulated tumor microenvironment for less immunosuppressive. This 

study describes the critical role of SOCS3 as a tumor suppressor and as a 

biomarker for immunotherapy and provides a novel insight into combination 

therapy for lung cancer particularly with EGFR mutations (Figure 4.15). 

 

4.5 DISCUSSION 

Acquired resistance to tyrosine kinase inhibitors has been a major obstacle 

to effective treatment for lung cancer, particularly with EGFR mutations. Since the 

discovery of immune checkpoint inhibitors, much effort has been made to the 

development of immunotherapy. With promising outcomes for various types of 

cancers, however, objective response is usually low in the patients with mutant 

EGFR lung cancer (Yu et al., 2016; Soo et al., 2018; Passarelli et al., 2020). 

Uninflamed tumor microenvironment often found to be an important characteristic 

and responsible for the resistance to immunotherapy (Dong et al., 2017). Hence, 

there is an unmet need for novel approaches to solve immunotherapy resistance. 

SOCS3 has been shown a major regulator of various immune response during 
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infection and inflammation, such as the signaling induced by IL-6 and IL-17 (Croker 

et al., 2012; Huang et al., 2016; Kleinsteuber et al., 2012). Furthermore, SOCS3 

has been considered a tumor suppressor, given that the presence of this protein 

was found associated with inhibited tumor cell proliferation and invasion in different 

cancer types (Barclay et al., 2009; Liu et al., 2018). Nonetheless, the role of 

SOCS3 in the mutant EGFR lung cancer has not been discussed. In this study, we 

demonstrated that SOCS3 suppresses the level of oncoprotein YAP via promoting 

tumor suppressors LATS1/2, which in turn inhibits tumorigenesis of EGFR-mutant 

lung cancer through inhibition of Bcl-2 family proteins and the immune checkpoint 

protein PD-L1, as well as modifying uninflamed tumor microenvironment towards 

more inflammatory (Fig. 7). 

To date, more than 40 distinct mutations have been reported within EGFR 

(Yeh et al., 2013). Among those, primary or secondary T790M at exon 20 has been 

shown accountable for the resistance to tyrosine kinase inhibitors (Huang et al., 

2015). T790M changes the conformation of EGFR, making this gatekeeper more 

accessible to ATP for constant autophosphorylation and the amplified downstream 

signaling (Godin-Heymann et al., 2007; Yun et al., 2008). Roughly, EGFR 

downstream pathways include MAPK pathway, PI3K pathway, and JAK/STAT 

pathway. As a “master” of various immune activities, the role of SOCS3 in 

JAK/STAT pathway has been under extensive studied for IL-6 –induced signaling 

(Babon et al., 2014; Billing et al., 2019). In cancers, it has been shown directly or 

indirectly that SOCS3 suppresses signaling of PI3K in small cell lung cancer (Wan 

et al., 2015) or MAPK signaling in prostate cancer (Puhr et al., 2010). In addition, 
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it has been only reported in gliomas with mutant EGFR, that the absence of SOCS3 

leads to activation of STAT3 and FAK (Lindemann et al., 2011). However, the 

impact of SOCS3 on MAPK and PI3K pathways in EGFR-mutant lung cancer 

remains unknown. Our study here demonstrates that SOCS3 inhibit signaling of 

both MAPK and PI3K pathways in the EGFR-mutant lung cancer cells, especially 

the ones with T790M. 

The Hippo signaling pathway is a well-studied and classical signaling 

pathway for controlling organ sizes during development through regulating cell 

proliferation and apoptosis. Dysregulation of the Hippo pathway has been shown 

associated with cancer initiation, metastasis, and cancer stem cells (Zygulska et 

al., 2017; Gregorieff et al., 2015; Maugeri-Saccà et al., 2015; Chang et al., 2020). 

LATS1/2 proteins are the core kinases of the Hippo pathway and known for 

regulating cell cycle (Turenchalk et al., 1999; Xia et al., 2002). As a tumor 

suppressor, downregulation of LATS has been discussed in various cancers. In an 

angiogenesis study, it has been shown that both PI3K/MAPK signaling pathways 

downregulate the level of LATS protein and activate the effector of Hippo pathway 

YAP/TAZ in response to vascular endothelial growth factor (VEGF) (Azad et al., 

2018). In the present study, our results showed that the presence of SOCS3 

increased the levels of LATS1/2 with the suppression of PI3K and MAPK signaling, 

which in turn decreased the level of YAP. This is the first study to demonstrate that 

SOCS3 regulates the Hippo pathway. In addition, our results revealed reduced 

stemness proteins and inhibited sphere formations in the cells with SOCS3 

overexpression. This is the first study showing that SOCS3 suppresses cancer 
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stem cells which are often found accountable for metastasis at early stage and the 

hindered therapy for lung cancer. As the altered Hippo signaling shown in the 

present study, it suggests a potential mechanism contributing to the reduced 

cancer stemness and would need further investigations to confirm. 

The Hippo signaling system has been shown to correlated with the 

overexpression of PD-L1 in the tumor microenvironment. Hsu et al. reported that 

the Hippo effector YAP induced the expression of PD-L1 in thoracic cancer (Hsu 

et al., 2018). In addition, it has been demonstrated that mutated EGFR caused 

overexpression of PD-L1, which led to impaired immune checkpoint blockade 

(Dong et al., 2017). Particularly, we observed high level of PD-L1 in the H1975 and 

PC9GR4 cells, but none in the PC9 cells. In fact, several studies specifically linked 

T790M mutation with PD-L1 expression, including the study of Inomata et al. which 

confirmed a positive correlation between T790M and the level of PD-L1 (Inomata 

et al., 2020).  However, if T790M mutation promotes PD-L1 expression, why has 

low immunotherapy response rate been observed? Interestingly, a contradictory 

observation has been reported that T790M is associated with low level of PD-L1 

(Hata et al., 2017). While the correlation between T790M and PD-L1 level remains 

debatable, the nature of lung cancer heterogenicity actually suggests that PD-L1 

alone might not be enough to predict the oncolytic immune environment, given that 

the diverse expressions of various immune markers have been observed in 

NSCLC with T790M mutation which would also need to be taken into account 

(Suda et al., 2017). 
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As the major regulator of the immune system, SOCS3 has been shown to 

oversee the levels of several cytokines and their downstream signaling. It has been 

reported that tumor derived CXCL5 promotes metastasis of colorectal and 

pancreatic cancer (Zhao et al., 2017; Ando et al., 2020). CXCL5 was also found to 

promote lung cancer proliferation and metastasis (Wang et al., 2018). In this study, 

our results provide the first evidence showing that SOCS3 suppresses the level of 

CXCL5. In addition, SOCS3 also inhibited the level of CCL2, which was only found 

in pancreatic model before (Hou et al., 2020). Both cytokines were demonstrated 

to associate with an immunosuppressive tumor microenvironment in melanoma 

and glioma (Forsthuber et al., 2019; Chang 2016). Work of Li et al. further showed 

that the elevated CXCL5 contributes to PD-L1 expression in cancer-associated 

fibroblasts (2Li et al., 2019). Here we have seen that downregulation of YAP led to 

inhibited CXCL5 and PD-L1, but whether there is a hierarchical regulatory axis 

between CXCL5 and PD-L1 would need further study to examine. Moreover, 

SOCS3 has been shown to play an important role of macrophage polarization 

based on physiological context (2Zhang et al., 2018; Chi et al., 2019). Previously, 

it has been reported that dysregulated Hippo signaling in immunosuppressive 

glioblastomas was associated with type II macrophage polarization (Kim et al., 

2020). The present study provided the first evidence to show that SOCS3 

promotes type I macrophage polarization through modulating the Hippo signaling. 

As our results revealed the critical role of SOCS3 in the tumor 

microenvironment, SOCS3, however, has been often found silenced in various 

cancers by our previous and others’ studies (He et al., 2003; Pierconti et al., 2011; 
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Molavi et at., 2013; 2Wang et al., 2014; 4Wang et al., 2020). Hence, we next 

assessed the therapeutic potential of YAP inhibitor to facilitate immunotherapy in 

the EGFRmut mice. As YAP inhibitor verteporfin is extremely hydrophobic and 

cannot be directly administered without considering the toxicity of DMSO, we 

encapsulated the compound into a lipid-polymer hybrid nanoparticle for drug 

delivery, which’s rationale has been described in our previous study (1Li et al., 

2019). Meanwhile, integrins are the transmembrane proteins responsible for cell-

cell and cell-extracellular matrix adhesion, and signal transduction for cell growth 

and survival. Structurally integrins have a subunits and b subunits with different 

combination of the isoforms. Overexpression of integrins is usually associated with 

cancers. It has been revealed that upregulated integrin V3 promotes cell 

proliferation in NSCLC (Fu et al., 2020), which indicated that integrin V3 is a 

suitable target for increasing therapeutic specificity. Cyclic arginine-glycine-

aspartic acid (RGD) peptide is a ligand of V3 and has been utilized for imaging 

of this integrin (Chen et al., 2005). Our study is the first one describing the 

combination of lipid-polymer hybrid nanoparticle and GRD peptide to encapsulate 

YAP inhibitor for increasing targeting specificity against EFGR-mutant lung cancer.  

For lung cancer therapy, particularly the ones with EGFR mutations, 

improving immunotherapy by tackling the uninflamed tumor microenvironment 

remains a big yet unsolved issue. Meanwhile, whether the immunosuppressive 

effects resulted from dysregulated Hippo signaling can be reversed by bringing in 

a single immune regulator has not been discussed. In the present study, we first 

demonstrated that SOCS3 inhibits the Hippo effector YAP by inducing the level of 
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Hippo kinases LATS1/2 which was resulted from the suppressed MAPK/PI3K 

pathway. The modulated Hippo signaling resulted in the decrease of Bcl-2 family 

proteins, PD-L1 and immunosuppressive cytokines, leading to pro-inflamed tumor 

microenvironment which eventually facilitates immunotherapy. 
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Figure 4.1 SOCS3 overexpression decreases lung cancer cell proliferation, CSC-

like properties. (A) Representative Western blot image of SOCS3 level in parental 

cells H1975, PC9GR4, PC9, and these three cell lines with stably expressing 

SOCS3, H1975-SOCS3, PC9GR4-SOCS3, and PC9-SOCS3. The experiment 

was repeated, and similar results were obtained. (B) MTT analysis of the growth 

curve of PC9GR4, PC9GR4-SOCS3, H1975, H1975-SOCS3. The results are 

presented as means ± SD (n=5). (C) Effect of stably expressing SOCS3 in H1975, 

PC9GR4, and PC9 on sphere formation in suspension culture (means ± SD, n=3), 

compared to the parental cells. (D) Representative Western blot images of the 

levels of KLF4 and KLF5 in parental cells H1975, PC9GR4, PC9, and the three 
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cell lines with stably expressing SOCS3, H1975-SOCS3, PC9GR4-SOCS3, and 

PC9-SOCS3.The experiment was repeated, and similar results were obtained.  
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Figure 4.2 SOCS3 overexpression decreases tumor formation. (A) The mouse 

models used in this study. Cre-lox mice with heterogenous SOCS3 knock-in and 



125 
 

heterogenous EGFRmut (T790M/L858R) knock-in were generated respectively. By 

crossing the two breeds, the mice with EGFRmut (T790M/L858R) only or SOCS3/ 

EGFRmut (T790M/L858R) were collected and administered with adenovirus to 

activate the transgenes at the age of 6 weeks. (B) Images of the lungs of the 

EGFRmut mice and the SOCS3/ EGFRmut mice 17 weeks post viral activation. The 

lungs were stained with Bouin solution, and the tumor nodules were counted. The 

results are presented as means ± SD (n=5). (C) Time course study of tumor 

formation. The EGFRmut mice and the SOCS3/ EGFRmut mice were euthanized at 

different time points after viral induction. The lungs were collected and stained with 

Bouin solution. The tumor nodules were counted and shown as means ± SD (n=5). 
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Figure 4.3 SOCS3 overexpression down-regulates PI3K/MAPK signaling and 

leads to decreased level of oncogenic protein YAP through enhanced LATS1/2 

activity. (A) Representative Western blot image of the levels of phospho-AKT (p-

AKT) and phospho-ERK (p-ERK) in parental cells H1975, PC9GR4, PC9, and the 

three cell lines with stably expressing SOCS3, H1975-SOCS3, PC9GR4-SOCS3, 

and PC9-SOCS3.The experiment was repeated, and similar results were obtained. 

(B) Representative Western blot image of the levels of LATS1, LATS2, phospho-

YAP (p-YAP), and YAP in in parental cells H1975, PC9GR4, PC9, and the three 

cell lines with stably expressing SOCS3, H1975-SOCS3, PC9GR4-SOCS3, and 

PC9-SOCS3. The experiment was repeated, and similar results were obtained.  
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Figure 4.4 SOCS3 overexpression inhibits YAP nuclear translocation. (A) 

Representative IF staining overlaid images of YAP in red fluorescence and DAPI 

in blue fluorescence from the parental cells H1975, PC9, and these two cell lines 

with stably SOCS3 expressing, H1975-SOCS3 and PC9-SOCS3. Scale bar 

represents 50 m. (B) Representative IF staining overlaid images of YAP in red 

fluorescence and DAPI in blue fluorescence form H1975 and PC9 cells treated 

with Rapamycin (1nM) and Wortmannin (2 M). Scale bar represents 50 m. 
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Figure 4.5 Inhibited YAP activity limits the growth of the EGFRmut tumor organoids. 

Representative images of the tumor organoids treated with DMSO or verteporfin 

(2 M). At the end point, the organoids were photographed with different 

magnifications (the left two images: 4X; the right two images: 10X). The numbers 

of the organoids were counted and shown as means ± SD (n=3).  
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Figure 4.6 Inhibited YAP activity sensitizes lung cancer cells to chemotherapeutic 

agent. (A) Representative Western blot image of the levels of cleaved-caspase 9, 

cleaved-caspase 3, cleaved-PARP in H1975 and PC9 cells treated with verteporfin 

and cisplatin at different concentrations. The experiment was repeated, and similar 

results were obtained. (B) Representative Western blot image of the levels of Bcl-
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xL, Mcl-1, Bcl-2 in H1975 and PC9 cells treated with verteporfin and cisplatin at 

different concentrations. The experiment was repeated, and similar results were 

obtained. 
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Figure 4.7 SOCS3 downregulating YAP leads to decreased expression of PD-L1. 

(A) Representative Western blot image of the level of PD-L1 in parental cells 

H1975, PC9GR4, PC9, and these three cell lines with stably expressing SOCS3, 

H1975-SOCS3, PC9GR4-SOCS3, and PC9-SOCS3. The experiment was 

repeated, and similar results were obtained. (B) Representative Western blot 

image of the level of PD-L1 in H1975 and PC9GR4 cells treated with verteporfin 

at gradient concentrations. The experiment was repeated, and similar results were 

obtained.  
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Figure 4.8 SOCS3 downregulating YAP leads to reduced secretion of 

immunosuppressive and angiogenic cytokines. (A) Quantitative PCR analysis of 
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the relative mRNA levels of CSF-1, CXCL5, and CCL2 in parental cells H1975, 

PC9GR4, PC9, and these three cell lines with stably expressing SOCS3, H1975-

SOCS3, PC9GR4-SOCS3, and PC9-SOCS3. The mRNA levels are expressed 

relative to the parental cells (means ± SD, n=3). Human 18S was utilized as 

internal control. (B) Quantitative PCR analysis of the relative mRNA levels of CSF-

1, CXCL5, and CCL2 in H1975, PC9GR4, PC9 cells treated with verteporfin at 

gradient concentrations. The mRNA levels are expressed relative to the control 

(non-treated) cells (means ± SD, n=3). Human 18S was utilized as internal control. 
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Figure 4.9 SOCS3 overexpression inhibits tumorigenesis. Representative images 

of mouse lung section H&E staining from the EGFRmut mice and the SOCS3/ 

EGFRmut mice 17 weeks post viral activation. Scale bar: 1 mm. 
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Figure 4.10 SOCS3 overexpression inhibits tumorigenesis by modulating tumor 

microenvironment. (A-H) Quantitative PCR analysis of the relative mRNA levels of 
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CSF-1, CXCL5, NOS2, TNF, IL-1b, Retnla, IL-4, IL-10 in the lungs of the EGFRmut 

mice and the SOCS3/ EGFRmut mice. The samples of the SOCS3/ EGFRmut mice 

were used as the control groups. The mRNA levels of the samples are expressed 

relative to the control (means ± SD, n=4), * p < 0.05, ** p < 0.01. Murine -actin 

was utilized as internal control.  
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Figure 4.11 SOCS3 overexpression inhibits tumorigenesis by modulating tumor 

microenvironment. Representative images of flow cytometry analysis for the cell 

populations within the lungs of the EGFRmut mice and the SOCS3/ EGFRmut mice. 

The cell populations of the interests are expressed as the percentage of F4/80+ 

cells (A), CD4+ (B), and CD8+ (C) cells (means ± SD, n=4), * p < 0.05, ** p < 0.01, 

*** p < 0.001. 
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Figure 4.12 Targeting integrin V increases specificity of the nanoparticles. (A) 

Representative Western blot image of the level of integrin V in H1975, PC9GR4, 

and PC9 cells. The experiment was repeated, and similar results were obtained. 

(B) Representative images showing the accumulation of Cy7.5-labeled GRD-

nanoparticles in the lungs of the EGFRmut mice without viral induction (control) and 

with viral induction (lung cancer developing). The Cy7.5-labeld RGD-nanoparticles 

were injected into the mice through tail veins. Live animal fluorescence imaging 

was carried out at 48, 72, and 96 hr post injection, respectively. The mouse 

abdominal part was covered with a black plastic board for better fluorescence 

imaging. The experiment was repeated, and similar results were obtained.  
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Figure 4.13 Targeting YAP and its downstream signaling decreases tumor 

formation. (A) Therapeutic regimen for the EGFRmut mice with lung cancer 

development in progress. The mice were randomly distributed to the following five 

groups: verteporfin encapsulated in GRD-nanoparticles (VP-NP) alone, anti-PD-

L1 antibody (PD-L1) alone, combination of VP-NP and PD-L1, combination of 

blank GRD-nanoparticles (NP-blank) and PD-L1, and PBS (blank). VP-NP, NP-

blank, and blank were administered 3 times a week through tail vein injection, and 

PD-L1 was administered twice a week through intraperitoneal injection. (B) Images 
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of the Bouin’s stained lungs of the EGFRmut mice from each group. The tumor 

nodules were counted and presented as means ± SD (n=4), ** p < 0.01.  
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Figure 4.14 Targeting YAP and its downstream signaling decreases tumor 

formation. The results of flow cytometry analysis for the cell populations within the 

lungs of the EGFRmut mice from each therapeutic group. The cell populations of 

the interests are expressed as the percentage of CD8+ cells (A), CD4+ cells (B), 

and F4/80+ cells (C) (means ± SD, n=4), * p < 0.05, *** p < 0.001. 
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Figure 4.15 A schematic summary of the mechanism of SOCS3 inhibiting cancer 

cell survival and reversing oncolytic immune environment through YAP 

downregulation. 
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