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ABSTRACT OF DISSERTATION

High Dimensional Multivariate Inference Under General Conditions

In this dissertation, we investigate four distinct and interrelated problems for
high-dimensional inference of mean vectors in multi-groups.

The first problem concerned is the profile analysis of high dimensional repeated
measures. We introduce new test statistics and derive its asymptotic distribution
under normality for equal as well as unequal covariance cases. Our derivations of
the asymptotic distributions mimic that of Central Limit Theorem with some im-
portant peculiarities addressed with sufficient rigor. We also derive consistent and
unbiased estimators of the asymptotic variances for equal and unequal covariance
cases respectively.

The second problem considered is the accurate inference for high-dimensional
repeated measures in factorial designs as well as any comparisons among the cell
means. We derive asymptotic expansion for the null distributions and the quantiles
of a suitable test statistic under normality. We also derive the estimator of parameters
contained in the approximate distribution with second-order consistency. The most
important contribution is high accuracy of the methods, in the sense that p-values
are accurate up to the second order in sample size as well as in dimension.

The third problem pertains to the high-dimensional inference under non-normality.
We relax the commonly imposed dependence conditions which has become a standard
assumption in high dimensional inference. With the relaxed conditions, the scope of
applicability of the results broadens.

The fourth problem investigated pertains to a fully nonparametric rank-based
comparison of high-dimensional populations. To develop the theory in this context,
we prove a novel result for studying the asymptotic behavior of quadratic forms in
ranks.



The simulation studies provide evidence that our methods perform reasonably
well in the high-dimensional situation. Real data from Electroencephalograph (EEG)
study of alcoholic and control subjects is analyzed to illustrate the application of the
results.

KEYWORDS: Profile analysis, MANOVA, High-dimension, Repeated measure, Non-

parametric, Rank transforms.
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Chapter 1 Introduction

Nowadays, more and more big data arise in various research areas due to the invention

of high-throughput data collection technologies. To cope with the growth of data

volume, there is an increasing demand for efficiently (computationally as well as

statistically) analyzing the high-dimensional data. Throughout the dissertation, by

high dimension is meant that both the sample size and dimension are large but one

could be substantially larger relative to the other.

Existing high-dimensional multivariate methods for comparing groups (treatments

or populations) formulate hypothesis in terms of mean or location vectors. Some of

these results assume multivariate normality (Dempster, 1958, 1960; Fujikoshi et al.,

2004; Schott, 2007a; Srivastava and Du, 2008; Yamada and Srivastava, 2012; Dong

et al., 2017), while others assume existence of higher moments and pseudo-independence

in the sense that higher-order mixed moments can be factored into the product of the

corresponding univariate moments (Bai and Saranadasa, 1996; Chen and Qin, 2010;

Srivastava and Kubokawa, 2013; Hu et al., 2017). A few others require a different

form of weaker dependence but they are still parametric methods (Cai et al., 2014;

Cai and Xia, 2014; Feng et al., 2015; Gregory et al., 2015). The nonparametric meth-

ods (Wang et al., 2015; Ghosh and Biswas, 2016) are also essentially mean based and

assume (generalized) elliptically symmetric populations.

This dissertation aims to solve four distinct but interrelated problems. Two of

them pertain to high-dimensional inference about mean profiles, namely parallelism,

flatness and coincidence of the mean vectors; under high dimensional asymptotic

framework but assume multivariate normality. The other two problems consider

high-dimensional group comparisons, but do not need normality assumption. One of

them is designed for metric type data and the other one is rank-based, and hence,

can be used for non-metric data such as ordered categorical data.

The dissertation is organized in six chapters. In Chapter 2, test statistics for high-

dimensional profile analysis in multi-group are introduced and the asymptotic null

1



distributions are derived. Here, multivariate normality is assumed but the covariance

matrices can be unequal and unstructured.

The subject of Chapter 3 is high-dimensional asymptotic expansions for the test

statistics derived in Chapter 2. Here, our approach treats factorial designs in a

unified and succinct manner, especially allowing multiple between-subject and within-

subject factors, which may be crossed or nested. The most important contribution

is the high accuracy of the methods, in the sense that second-order accuracy in

sample size as well as in dimension is achieved by obtaining asymptotic expansion

of the distribution of the test statistics, and the estimation of the parameters of the

approximate distribution with second-order consistency.

Chapter 4 is concerned with high-dimensional inference about equality of mean

vectors under non-normality. As mentioned above, recent results for comparison of

the high-dimensional mean vectors under non-normality make strong assumptions

that require the dependence between the variables to be rather too weak (see Bai and

Saranadasa, 1996; Chen and Qin, 2010; Srivastava and Kubokawa, 2013; Hu et al.,

2017). We relax these commonly imposed dependence conditions and broaden the

scope of applicability of the results. The theory is worked out in detail for the two-

group case and, later, extended to the multi-group situation. The extension of the

results for testing hypotheses in profile analysis and factorial mean structures are

formally illustrated.

A nontrivial application of the theory developed in Chapter 4 is provided in Chap-

ter 5. More precisely, we investigate rank-based method for comparing groups (treat-

ments or populations) in the high-dimensional asymptotic setting. As pointed out

above, existing high-dimensional nonparametric methods are essentially mean-based

and they assume (generalized) elliptically symmetric populations (see Wang et al.,

2015; Ghosh and Biswas, 2016). The rank-based test we construct is a fully non-

parametric method. No assumption is made on the distribution except that the

dependences between the variables are required to satisfy some mild conditions. The

method is applicable for ordered categorical, skewed and heavy tailed variables or a

mixture of them. To develop the theory, we prove a novel result for studying the

2



asymptotic behavior of quadratic forms in ranks.

Appendices containing the proofs and other technical details are included at the

end of each Chapters 2 to 5. Also included in these chapters are simulation stud-

ies to evaluate the numerical performance of the methods; analyses of data from an

Electroencephalogram (EEG) experiment to illustrate the application of the meth-

ods; and possible directions for future research. The findings of the dissertation are

summarized in Chapter 6.

Copyright c© Xiaoli Kong, 2018.

3



Chapter 2 Multivariate Analysis for Repeated Measures in

High-Dimensions with Unequal Covariance Matrices

2.1 Introduction

Consider b measurements taken from n subjects which are classified into a groups.

The a groups may represent naturally existing groups such as gender, geographical

regions or ethnicity. They may also represent between-subject treatment groups as

commonly done in clinical trials. The b repeated measurements could be measure-

ments from b within-subject treatment conditions as in crossover design or from b

different tissues of the body or may simply be repeated measurements over time as

typically arises in time course studies. For the sake of brevity, in the remainder of

this Chapter we will refer to the a groups as the levels of a between-subject factor

(A) and to the b repeated measurements as arising from b levels of a within-subject

factor (B). Research questions (hypotheses) that are typically tested with this type

of data are (i) whether there is interaction effect between the between-subject and

within-subject factors (ii) whether there is a between-subject factor effect and (iii)

whether there is a within-subject factor effect.

Analysis addressing these research questions are also referred to as Profile Analy-

ses in multivariate statistics. Consider a independent b-dimensional normal popula-

tions with mean vectors µ1, . . ., µa and covariance matrices Σ1, . . . ,Σa, respectively.

Graphically, the profile of the mean µi = (µi1, . . . , µib)
> of population Nb(µi,Σi) can

be plotted as a line graph connecting the points (1, µi1), . . ., (b, µib). Profile analysis

is the study of the relationship between these lines. In Figure 2.1 below, the three

hypotheses of interest are shown graphically. In the terminology of profile analyses

the hypotheses (i), (ii) and (iii) are refereed to as parallelism, level and flatness (see,

for example, Rencher and Christensen, 2012; Johnson and Wichern, 2007). The level

hypothesis is, alternatively, referred to as coincidence hypothesis. The level and flat-

ness hypothesis are typically tested if the parallelism hypothesis holds. This scenario

4



is clearly illustrated in the alternative hypotheses in Figure 2.1.

Figure 2.1: Graphical display of null and alternative hypotheses in profile. Each line
plot corresponds to mean vector of one group.
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For i = 1, . . . , a, consider ni independent b-dimensional observations are available

from population Nb(µi,Σi) denoted by Xi1, . . . ,Xini and assume that the a samples

are mutually independent. The total sample size is n =
∑a

i=1 ni. The aim of this

Chapter is to derive tests for the three hypothesis in the repeated measures analysis

(profile analysis) when both the groups sample sizes ni and number of repeated mea-

surements b tend to infinity. The approach followed in this Chapter is multivariate in

the sense that no structure on the covariance matrices are made other than requiring

them to be symmetric positive definite.

Although first analysis of such data dates back to as early as several decades ago,

the methods developed so far assume either fixed and bounded number of repeated

measures or specialized covariance matrices. From mathematical stand point, tests in

profile analysis were first tackled from likelihood ratio point view by Srivastava (1987).

Asymptotic expansions for null distributions of the test statistics in profile analyses

were derived by Okamoto et al. (2006) under elliptical populations and by Maruyama

(2007) under more general populations but both these works focused on the two-group

5



case. Harrar and Xu (2014) considered asymptotic expansion for the null distributions

of the likelihood-ratio tests in Srivastava (1987) for several sample situation. On

the other hand, Harrar (2009) and Bathke et al. (2010) derived tests for repeated

measures analysis for the case when a is large but ni and b are bounded. Recall

that the hypotheses regarding the within-subject and between-subject treatments are

considered under the parameter space constrained by the no-interaction (parallelism)

hypothesis. Without this constraint, the problem of testing for between-subject factor

level effects is the same as in one-way MANOVA. Harrar and Xu (2014) derived

likelihood ratio tests for the hypothesis of no within-subject factor level effects under

the full parameter space.

In the high-dimensional framework with b/n → c ∈ (0, 1), likelihood ratio test

statistics together with null distributions derived for MANOVA, e.g., Tonda and Fu-

jikoshi (2004), can be used to get valid tests for the interaction hypothesis. Since the

exact distribution of the likelihood ratio test for within subject and between subject

factor level effects are known, the same distribution will hold under high-dimensional

case as long as the degrees of freedom for the within-covariance estimator is larger than

the dimension. For the high-dimensional situation where b ≥ n − a, the likelihood-

ratio tests are not well defined because they involve the determinants or inverses of

the estimate of the within covariance matrix which will be singular. This problem

has been tackled by many authors in the MANOVA context. Among others, Schott

(2007a) and Yamada and Srivastava (2012) developed tests under normality whereas

Bai and Saranadasa (1996); Chen and Qin (2010), and Srivastava and Kubokawa

(2013) derived tests under non-normality. In repeated measures or profile analysis

context, Pauly et al. (2015) consider high-dimensional repeated measures analysis for

one sample situation but with the possibility of several within subject factors. The

two-sample situation was considered by Takahashi and Shutoh (2016) assuming equal

covariance matrices for the two populations. Wang and Akritas (2010a) and Wang

and Akritas (2010b) are also high-dimensional asymptotic results applicable for re-

peated measures but assume that the repeated measurements are inherently ordered

and the dependence between the measurements decays as the separation between

6



them increases. The present manuscript provides a complete solution to the analysis

of high-dimensional repeated measures design by allowing for several samples as well

as unequal and unstructured covariance matrices. Furthermore, no assumption is

made about ordering of the observations. It bears some similarity with Pauly et al.

(2015) and Takahashi and Shutoh (2016) in the way the tests are constructed.

This Chapter is organized as follows. Section 2.2 introduces the statistical model,

hypotheses and notations used in the remainder of the Chapter. Tests for interac-

tion and main effects under equal covariance matrices assumption are the subject

of Section 2.3. These tests are again studied in Section 2.4 without assuming equal

covariance matrices. Numerical accuracy of the asymptotic results in Section 2.3 and

2.4 is investigated in Section 2.5 for various choices for the parameters of the model.

Also in Section 2.5, the power of the tests proposed in this Chapter will be compared

against an existing method. The application of the results will be illustrated in Sec-

tion 2.6 with data from an electroencephalograph (EEG) experiment. Section 2.7

contains discussions and conclusions. All proofs and preliminary results are placed

in the Appendix.

2.2 Model and Hypotheses

Let

X = (X>11, . . . ,X
>
1n1
,X>21, . . . ,X

>
2n2
, . . . ,X>a1, . . . ,X

>
ana)

>,

where Xik = (Xi1k, . . . , Xibk)
>. Further let

X = (X11, . . . , X1b, . . . , Xa1, . . . , Xab)
>,

andX i = (X i1, . . . , X ib)
>, where X ij = n−1i

∑ni
k=1Xijk. We assumeXik

iid∼ Nb(µi,Σi)

for k = 1, . . . , ni and the a samples Xi1, . . . ,Xini for i = 1, . . . , a are mutually

independent. The usual setting gives the interpretation that Xijk is the responses

from the kth subject treated with the ith level of factor A and the jth level of factor

B. The interaction effect will be denoted by AB. In this model Xijk and Xi′j′k′ are

assumed to be independent only if i 6= i′ or k 6= k′ . Otherwise the dependence is

completely unspecified.
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Throughout this Chapter, 0 will denote a matrix of all zeros where the dimension

will be clear from the context, and 1k denotes an k-dimensional vector (1, ..., 1)>

consisting of ones. The matrix Ik is the identity matrix, whereas Jk and Pk are

defined as Jk = 1k1
>
k and Pk = Ik − k−1Jk, respectively. We will use extensively the

Kronecker (or direct) productA⊗B of matrices and the direct sumA⊕B of matrices.

The symbol
D−→ stands as an abbreviation for “converges in distribution to”,

P−→ for

“converges in probability to” and acronym CMT for “Continuous Mapping Theorem”.

In estimating a sequence of parameters θb = O(1) by a sequence of estimators Tn,b,

consistency is meant in the sense of E(Tn,b − θb)2 → 0 as (n, b) go to infinity.

Note that from the distributional assumption made above

E[Xik] = µi = (µi1, . . . , µib)
>

and Var(Xik) = Σi where Σi is a b× b positive definite matrix. Let

µ = (µ11, . . . , µ1b, . . . , µa1, . . . , µab)
>

and Σ̃ =
⊕a

i=1 Σi/ni. Then we have E[X] = µ and Var(X) = Σ̃.

The three hypotheses of interest can be expressed as

Hφ
0 : Kφµ = 0,

for φ ∈ {AB,B,A} with

KAB = Pa ⊗ Pb, KB = Ja ⊗ Pb and KA = Da ⊗ b−1Jb,

where Da = diag{n1, . . . , na} − n−1nn>, n = (n1, . . . , na)
> and n = n1 + n2 + · · ·+

na. These null hypotheses correspond to no-interaction effects of levels of factor A

with levels of factor B, no-main effects of factor B, and no-main effects of factor

A, respectively. To see that the hypothesis of no interaction is equivalent to HAB,

notice that no interaction means

C1(µ1 − µa) = · · · = C1(µa−1 − µa) = 0

⇐⇒ C1MC>2 = 0(b−1)×(a−1) ⇐⇒ (C2 ⊗C1)µ = 0,
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where C1 = (Ib−1,−1b−1), C2 = (Ia−1,−1a−1) and M = (µ1, . . . ,µa). The matrix

C = C2⊗C1 is a contrast matrix and is full row rank. Clearly, the hypothesisCµ = 0

is equivalent to C>(CC>)−1Cµ = (Pa ⊗ Pb)µ = 0. The other two hypotheses for

the main effects can also be expressed similarly.

Define,

Si =
1

ni − 1

ni∑
k=1

(Xik −X i)(Xik −X i)
> and S =

1

n− a

a∑
k=1

(ni − 1)Si.

In this Chapter, we introduce test statistics for multi-group high-dimensional repeated

measures analysis. Unlike likelihood ratio tests, our tests do not involve the inverse

of the pooled sample covariance matrix S−1. In the high-dimensional case, more

precisely when b > n− a , the sample covariance matrix S is not invertible, making

the likelihood ratio tests inapplicable. Furthermore, S may not even converge to Σ,

the population covariance matrix (see, for example, Chen and Qin, 2010).

We derive the asymptotic distributions of our test statistics for equal covariance

matrices as well as unequal covariance matrices. It should be noted that the results

for the unequal covariance case do not necessarily reduce to the corresponding results

for the equal covariance case by simply setting Σ1 = · · · = Σa = Σ. There are some

subtleties which warrant separate treatment of the two cases. First, the results for

the equal covariance case are nice and clean. Instructively, it would make the results

accessible if presented from the simpler to the more complex ones. Second, the proofs

for the unequal covariance results build upon those for equal covariance. Third, the

assumptions for the equal covariance case somewhat differ from those needed for the

unequal covariance case. One assumption A3′ , given in Section 2.4 on page 14, which

requires proportional divergence of individual sample sizes with the dimension is not

needed for the equal covariance case. The equal covariance case only requires the total

sample sizes to grow with the dimension. Fourth, the constant c′ (see Theorem 2.4.1)

which contains unknown parameters in the unequal covariance case, will reduce to a

known quantity c (see Theorem 2.3.1) in the equal covariance case. Estimation of c′

is needed whereas no estimation of the analogous constant c, in the equal covariance

case, is needed. In addition, the bounds for c′ given in Theorem 2.4.1 do not quite
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reduce to those for c given in Theorem 2.3.1. The simplicity of the equal covariance

situation affords us a more precise lower bound for c.

2.3 Tests under Equal Covariance Matrices

In this section, we assume that the covariance matrices Σi are equal and denote the

common covariance matrix by Σ. We will construct testing procedures under the

following high-dimensional asymptotic frameworks:

A1: cj := tr{(PbΣ)j}/b = O(1) as b→∞ for j = 1, 2, 3, 4.

A2: n→∞ and b→∞.

Note that βjmax = O(1) for j = 1, 2, 3, 4 is sufficient for assumption A1 to hold where

βmax = max{β1, . . . , βb} and β1, . . . , βb are the eigenvalues of PbΣ. To elaborate on

the significance of assumption A1, consider Σ = (1− ρ)Ib + ρJb for −1/(b− 1) < ρ <

1. This covariance structure is known, in multivariate statistics, as equi-correlation

structure. For this covariance matrix, A1 holds because tr{(PbΣ)j} = (b− 1)(1− ρ)j

for j = 1, 2, 3, 4. On the other hand, we can write Pb = Q>diag{1, . . . , 1, 0}Q

where Q is an orthogonal matrix whose columns are the orthonormal eigenvectors

of Pb. The covariance matrix Σ = Q>diag{1, . . . , b}Q doesn’t satisfy A1 because

tr(PbΣ) = b(b− 1)/2.

2.3.1 Test for interaction effect AB

We note that KABµ = 0 if and only if µ>K>ABKABµ = µ>KABµ = 0, since KAB

is symmetric and idempotent matrix. Thus, the hypotheses for interaction effect AB

is equivalent to

HAB
0 : µ>KABµ = 0 VS HAB

1 : µ>KABµ > 0.

Consider a reasonable estimator of µ>KABµ given by H(AB) = X
>
KABX. In The-

orem 2.3.1 below asymptotic sampling distribution of a scaled and centered version

of H(AB) is given.
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Theorem 2.3.1. If the null hypothesis HAB
0 holds, then

UAB :=
1√
b


(

1− 1

a

)−1( a∑
i=1

1

ni

)−1
H(AB) − tr(PbΣ)

 D−→ N (0, 2cc2),

under the high-dimensional asymptotic frameworks A1 and A2, where

c =
a(a− 2)

(a− 1)2

a∑
i=1

1

n2
i

/(
a∑
i=1

1

ni

)2

+
1

(a− 1)2
∈
[

1

a− 1
, 1

]
.

The bounds given for c in Theorem 2.3.1, besides establishing that c = O(1) as

b, n→∞, provide insight into the influence of the value of a on the variance of UAB.

For example, a = 2 gives the largest possible variance. The variance could potentially

decrease when a gets large. This is somewhat apparent in the simulation study Table

2.1.

The result of Theorem 2.3.1 depends on bc1 = tr(PbΣ) and c2 which are unknown

quantities. For practical applications we need unbiased and consistent estimators of

them. Define

ĉ1 =
tr(PbS)

b
and ĉ2 =

(n− a)2

b(n− a− 1)(n− a+ 2)

{
tr{(PbS)2} − 1

n− a
{tr(PbS)}2

}
.

The next Theorem proves the unbiasedness and consistency of ĉi for i = 1, 2.

Theorem 2.3.2. For i = 1, 2, ĉi is an unbiased and consistent estimator of ci under

the high-dimensional asymptotic frameworks A1 and A2. Moreover, we have
√
b(ĉ1−

c1)
P−→ 0.

Using the results of Theorems 2.3.1 and 2.3.2, we propose a test statistic, namely

T̂AB, for testing HAB
0 and give its asymptotic null distribution in Corollary 2.3.3.

Corollary 2.3.3. If the null hypothesis HAB
0 holds, then

T̂AB :=
1√

2bcĉ2


(

1− 1

a

)−1( a∑
i=1

1

ni

)−1
H(AB) − bĉ1

 D−→ N (0, 1),

under the high-dimensional asymptotic frameworks A1 and A2.
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For a = 2 the test statistic and results in Corollary 2.3.3 reduce to those of

Theorem 2.1 of Takahashi and Shutoh (2016).

We close this section by mentioning that the proofs we provided do not require any

relation in the rates of divergences of n and b. Please note that Var(ĉ2) goes to zero as

long as both b and n tend to infinity even at a differing rate. We must acknowledge,

though, that such an assumption is inevitable for the unequal covariance case.

2.3.2 Test for the main effect of factor B

We note that KBµ = 0 if and only if µ>K>BKBµ = µ>KBµ = 0 since KB is

symmetric and idempotent matrix. The hypotheses for main effect of factor B are

equivalent to

HB
0 : µ>KBµ = 0 VS HB

1 : µ>KBµ > 0.

Here also, a reasonable estimator of µ>KBµ is H(B) = X
>
KBX.

Theorem 2.3.4. If the null hypothesis HB
0 holds, then

UB :=
1√
b


(

a∑
i=1

1

ni

)−1
H(B) − tr(PbΣ)

 D−→ N (0, 2c2),

under the high-dimensional asymptotic frameworks A1 and A2.

Comparing the results in Theorems 2.3.1 and 2.3.4, the quantity UAB is less vari-

able than UB.

A consistent estimator of c1 and c2 are given in Theorem 2.3.2. Corollary 2.3.5

proposes a test for the main effect of factor B and presents the asymptotic null

distribution of the test statistic under the same asymptotic framework as in Corollary

2.3.3.

Corollary 2.3.5. If the null hypothesis HB
0 holds, then

T̂B :=
1√
2bĉ2


(

a∑
i=1

1

ni

)−1
H(B) − bĉ1

 D−→ N (0, 1),

under the high-dimensional asymptotic frameworks A1 and A2.
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The testing problem in this subsection for a = 1 is covered by Pauly et al. (2015)

when the contrast matrix is chosen to be Pb, i.e., when C (in their notation) is replaced

with Pb. However, they use different consistent estimators for bc1 and bc2 but in the

end our limiting distributions agree for the case tr{(PbΣ)4}/tr2{(PbΣ)2} → 0 as b→

∞. It should be noted that assumption A1 implies that tr{(PbΣ)4}/tr2{(PbΣ)2} → 0.

When a = 2, the test for no effect of levels of factor B in Takahashi and Shutoh (2016)

were formulated in terms of the weighted group mean vectors where the weights are

the sample sizes of the groups. Our hypothesis is formulated in terms of the simple

average of the group means as a result of which, as one would naturally expect, the

hypothesis does not depend on sample sizes. This difference resulted in different tests

and asymptotic results.

2.3.3 Test for the main effect of factor A

We begin by establishing the equivalence of the hypotheses for the main effects of

factor A expressed in a linear and quadratic forms.

Proposition 2.3.6. The condition KAµ = 0 is equivalent to µ>KAµ = 0.

According to Proposition 2.3.6, the hypothesis for the main effect of factor A is

equivalent to

HA
0 : µ>KAµ = 0 VS HA

1 : µ>KAµ > 0.

It should also be noted that for any x = (x1, . . . , xa)
> ∈ Ra,

x>Dax =
a∑
i=1

nix
2
i − n−1(

a∑
i=1

nixi)
2 =

a∑
i=1

ni(xi − x)2 ≥ 0,

where x = n−1
∑a

i=1 nixi. Thus, KA = Da ⊗ Jb/b is positive semidefinite.

Once again we will build our test from a reasonable estimator of µ>KAµ, namely

X
>
KAX. It may seem that the hypothesisHA

0 depends on the sample sizes n1, . . . , na.

Nevertheless, one can easily check that the hypothesis of no main effect of factor A is

equivalent to 1>b µ1 = · · · = 1>b µa. This shows that the hypothesis HA
0 does not de-

pend on the sample sizes. Furthermore, it is reasonable to use the between group sum
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of squares for the transformed random variables Yij = 1>b Xij to test this hypothesis.

As it turns out H(A) = X
>
KAX is the between group sum of squares.

It is easy to show that H(A)/b is distributed as d1χ
2
a−1 under the null hypothesis,

where d1 = tr(JbΣ)/b2. Also one can see that (n − a)d̂1 = (n − a)tr(JbS)/b2 is

distributed as d1χ
2
n−a and that H(A) is independent of d̂1. The latter follows because

X is independent of S. Thus, an exact test for HA
0 is

T̂A =
H(A)/b(a− 1)

d̂1
,

which has an exact Fa−1,n−a distribution under the null hypothesis.

For a = 2, Da = (1/n1 + 1/n2)
−1(1,−1)>(1,−1) and

bH(A) = vec(X1,X2)
>(Da ⊗ Jb)vec(X1,X2)

= vec(X1,X2)
>(Da ⊗ 1b)(Ia ⊗ 1>b )vec(X1,X2).

Applying the identity vec(ABC) = (C> ⊗A)vec(B), we get

H(A) =
1

b

(
1

n1

+
1

n2

)−1
[(X1 −X2)

>1b]
2.

Therefore, our test statistic and that of Takahashi and Shutoh (2016) are equivalent.

2.4 Tests under Unequal Covariance Matrices

In this section, we do not assume that the a populations have equal covariances

matrices. Relaxing the equal covariance matrices assumption necessitates adjustment

of the asymptotic conditions. We will need the following assumptions to construct

testing procedures under unequal covariance matrices.

A1′: c′j := (
∑a

i=1 1/ni)
−j

tr{(KBΣ̃)j}/b = O(1) as b→∞ for j = 1, 2, 3.

A2′: d′1 := tr(KAΣ̃)/b = O(1) as b→∞.

A3′: ni →∞, b→∞ and b/ni → ξi ∈ (0,∞) for i = 1, . . . , a.

A4′: c′′3 := (
∑a

i=1 1/ni)
−3

tr{(KABΣ̃)3}/b = O(1) as b→∞.

A5′: tr(PbΣi)
4/b = O(1) as b→∞ for i = 1, . . . , a.
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While assumptionA3′ require proportional divergence of the sample sizes n1, . . . , na

and the dimension b, assumptions A1′, A2′, A4′ and A5′ require regularity conditions

on the covariance matrices. Some remarks are in order.

(i) Stronger but simpler assumptions which together with A3′ are sufficient for A1′

and A4′ are tr(PbΣi)/b = O(1), tr(PbΣiPbΣj)/b = O(1) and

tr(PbΣiPbΣjPbΣk)/b = O(1)

as b→∞ for all i, j, k ∈ {1, . . . , a}.

(ii) It can be seen that

c′1 =
1

b

(
n∑
i=1

1

ni

)−1 a∑
i=1

tr

(
PbΣi

ni

)
=

1

b

(
n∑
i=1

ξi

)−1 a∑
i=1

ξitr(PbΣi).

Therefore, since tr(PbΣi) ≥ 0 and ξi > 0 for i = 1, . . . , a, the condition c′1 =

O(1) and assumption A3′ are sufficient for tr(PbΣi)/b = O(1) for i = 1, . . . , a.

Similarly,

c′2 =

(
a∑
i=1

ξi

)−2 [
1

b

a∑
i=1

ξ2i tr
{

(PbΣi)
2
}

+
1

b

a∑
i 6=j

ξiξjtr(PbΣiPbΣj)

]
.

Since ξi > 0 and tr(PbΣiPbΣj) = tr
{

(Σ
1/2
j PbΣ

1/2
i )(Σ

1/2
j PbΣ

1/2
i )′

}
≥ 0, it

follows that c′2 = O(1) and A3′ imply tr {(PbΣi)
2} /b = O(1) for i = 1, . . . , a.

The manipulations for c′1 and c′2 above make it clear that the proportional-

divergence assumption A3′ can be replaced with

A3′′ : ni →∞, b→∞ and ni/n→ ξ̃i ∈ (0, 1) for i = 1, . . . , a

without affecting the validity of the results.

(iii) As one can imagine, the assumptions needed for unequal covariance case are

much more involved compared to the equal covariance case. For example, one

can easily verify that

tr
{

(KBΣ̃)j
}

=tr


(

a∑
i=1

PbΣi

ni

)j
 ,
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Figure 5.2: Power comparison of the test for the locations when a = 2, for p =
50, 100 or 200, and n1 = 100 and n2 = 150. Data are generated from multivariate
contaminate normal distribution with µi, Σi, ηi and αi for i = 1, 2. In both plots,
µ1 = 0p and µ2 = (µ21, . . . , µ2p)

> where µ2k are iid Uniform(0, δ); η1 = 5 and η2 = 3;
α1 = 0.5 and α2 = 0.1. In the left panel, Σ1 = (0.5|j−j1|) and Σ2 = (0.1|j−j1|) are
used. In the right panel, Σ1 = (0.5|j − j1|−1/2) and Σ2 = (0.1|j − j1|−1/2) are used.

It is clear from Figure 5.1 that the performances of all the three methods (CQ, SK

and rank-based) are comparably well for the lighter tail (multivariate t with df ≥ 6)

distribution, but rank-based method has a slight edge. For the contaminated-normal

distribution (Figure 5.2), SK shows a liberal tendency (see also Table 5.3), but the

other two perform well. Here, rank-method has a more pronounced edge over CQ.

For Cauchy distributions, the rank-based method which does not require existence

of any moments of the population shows an overwhelming power advantage over the

other two methods. For all the three distributions, the faster decaying covariances in

structure l = 2 yield higher power compared to the slower decaying ones in structure

l = 3. Furthermore, for the alternatives considered in this simulation, larger values

of p lead to higher powers than a smaller value of p.
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Figure 5.3: Power comparison of the test for the locations when a = 2, for p = 50, 100
or 200, and n1 = 100 and n2 = 150. Data are generated from multivariate Cauchy
distribution with µi, Σi, for i = 1, 2. In both plots, µ1 = 0p and µ2 = (µ21, . . . , µ2p)

>

where µ2k are iid Uniform(0, δ). In the left panel, Σ1 = (0.5|j−j1|) and Σ2 = (0.1|j−j1|)
are used. In the right panel, Σ1 = (0.5|j − j1|−1/2) and Σ2 = (0.1|j − j1|−1/2) are
used.
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5.6 Real Data Application

The Electroencephalograph (EEG) data1 found at the University of California-Irvine

Machine Learning Repository was from a large study to examine EEG correlates

of genetic predisposition to alcoholism. Sixty-four electrodes were used to measure

Event-Related Potentials (ERP) recorded 256 times for one second. Each channel

(electrode) has name identifying the location of the electrode on the scalp. The

names are made up of a letter identifying the anatomical location of the placement

of the electrode (F–frontal lobe, T–temporal lobe, P–parietal lobe and O–occipital

lobe) and a number identifying the hemisphere of the brain (odd number – the left

hemisphere and even number – the right hemisphere and letter z (zero) is used for

1Web Address: https://archive.ics.uci.edu/ml/datasets/EEG%2BDatabase
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the mid-line). The exception to this naming rule is that, due to their placement and

depending on the individual, the “C” electrodes can exhibit/represent EEG activity

more typical of Frontal, Temporal, and some Parietal-Occipital activity.

ERP reading from an electrode indicates the level of electrical activity (in volts)

in the region of the brain where the electrode is placed. There are two groups of

subjects in the study: alcoholic and control. Each subject was exposed to either a

single stimulus (S1) or to two stimuli (S1 and S2) which were pictures of objects

chosen from a picture set. For a more detailed account of the EEG data, see Harrar

and Kong (2016). In this Chapter, we analyze the data only for the single stimulus

(S1) exposure using CQ and the rank method.

FDR adjusted p-values for channel-by-channel results of CQ test and rank-based

method are displayed in Figure 5.4. In the left panel, bar plot of the FDR adjusted

p-values are shown. The horizontal reference line (black dashed line) marks α = 0.05

level of significance. From panel (a), we note that the rank-based method declares the

brain activity of one more channel to be significantly different compared to the CQ

method. Considering the power advantage the rank-method demonstrated in the sim-

ulation study, its results are more reliable and trustworthy. The minor disagreement

aside, the locations where differences are detected by rank-method are displayed in

panel (b) to put the results in perspective. The picture depicts the scalp of a human

viewed from the top, the triangle marking the nose. The locations of the electrodes

are indicated by bubbles. The color of the bubbles indicates whether the brain ac-

tivity pattern for that channel is significantly dissimilar (red) or not significantly

different (green).

Interestingly, the results show a markedly-distinct patch of significant difference

in brain activity in the central part of the frontal lobe of the brain. This section of

the frontal lobe is responsible for cognitive function, emotion control, self awareness,

judgement and talking – activities known to be affected by alcohol at least temporar-

ily. No significance difference was found in the outer peripheral channels of the frontal

lobe. Significant difference occurs only on some the C channels. No significant differ-

ence was detected on the C channels that are expected to show frontal-type activity
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Figure 5.4: Channel-by-Channel results for EEG data for testing equality in brain
activity between alcoholic and control subjects. (a) Bar plots of FDR adjusted p-
values for CQ and rank-based methods (b) Locations (on the scalp) of significant
results for rank-based method. Green (Red) means that the the difference between
the two groups is statistically significant (insignificant).
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(a) CQ and Rank methods (b) Rank method

except on channels C4 and C6. However, there is always significant difference on

channels where parental or occipital type activity is expected. With the exception

of T7, the other three temporal lobe channels (T8, TP7 and TP8) are showing sig-

nificant difference. The activity levels in all the parietal or occipital lobes channels

are significantly different between the two groups. These two lobes largely control

temperature, taste, touch, movement and vision functions – functions that are likely

to sustain effects from alcohol use. In summary, except in the peripheral areas of

the frontal lobe, alcohol use is associated with change in the electrical activity of the

brain.

5.7 Discussion and Conclusion

A fully nonparametric high-dimensional rank-based method for comparison of treat-

ments or populations is developed. No assumption is made on the distribution of the

population except that the dependence between the variables are required to satisfy
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some mild conditions. The assumptions, for example, hold for linear process type

dependence or dependence that decays polynomially fast. The numerical results have

unequivocally shown that when data has heavy tails to preclude existence of mo-

ments, then the rank-method has a superior power. From data analysis perspective,

the application of this method would be a safe strategy when data is in ordinal scale

or exhibits outliers. From theoretical stand point, when none of the moments can

be assumed to exist, formulation of hypothesis in terms of mean vectors does not

make much sense. This Chapter formulates hypothesis in terms of the nonparametric

measure of effect, which is always well defined whether the moments or densities exist

or not.

The theory is worked out in detail for the two-group (two-sample) situation and

the extension to the multi-group case is outlined. The detail derivation in the later

case essentially follows along the same lines. The formal extension to a factorial

structure is not difficult to envision. The details, with the necessary assumptions,

need to be carefully examined. We defer this topic for a future investigation.

5.8 Appendix: Proofs

For notation simplification, denote X1j as Xj and X2j as Xn1+j. Let

g1(Xik) = H(Xik)− ωik, g2(Xik) = Ĥ(Xik)−H(Xik),

and

G(Xik, Xi1k1) =
1

N

{
c(Xik, Xi1k1)− Fi1k1(Xik)

}
.

It is obvious that

g2(Xik) =
n∑

i1=1

p∑
k1=1

G(Xik, Xi1k1),

g1 and g2 are bounded by 1 and G is bounded by 1/N . The mean of g1(Xik) is 0 and

that of G(Xik, Xi1k1) can be found by considering the following three cases:
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(i) If i 6= i1, then

E{G(Xik, Xi1k1)} =
1

N
E
[
E
{
c(Xik, Xi1k1)− Fi1k1(Xik)|Xik

}]
=

1

N
E
{1

2
P (Xi1k1 = Xik|Xik) + P (Xi1k1 < Xik|Xik)− Fi1k1(Xik)

}
=

1

N
E{Fi1k1(Xik)− Fi1k1(Xik)} = 0

(ii) If i = i1 and k = k1, then G(Xik, Xik) = 1
2
− Fik(Xik), which has mean 0.

(iii) If i = i1 but k 6= k1, then G(Xik, Xik1) is bounded by 1
N

, so is its mean.

Proof of Lemma 5.2.2. Using a decomposition similar to Bathke and Lankowski

(2005) (seel also, Wang and Akritas, 2010b),

TN = Vec(Ŷω)>(Ip ⊗C)Vec(Ŷω)

= Vec(Ŷ − Y + Y − ω)>(Ip ⊗C)Vec(Ŷ − Y + Y − ω)

= VN + 2Vec(Ŷ − Y )>(Ip ⊗C)Vec(Y − ω) + Vec(Ŷ − Y )>(Ip ⊗C)Vec(Ŷ − Y )

= VN + 2tr
{

(Ŷ − Y )>C(Y − ω)
}

+ tr
{

(Ŷ − Y )>C(Ŷ − Y )
}
,

we have

E{(TN − VN)2} ≤ 8E
[
tr2
{

(Ŷ − Y )>C(Y − ω)
}]

+ 2E
[
tr2
{

(Ŷ − Y )>C(Ŷ − Y )
}]
.

Therefore, it will be sufficient to show that

E
[
tr2
{

(Ŷ − Y )>C(Y − ω)
}]

= O(D2
C/n

2) +O(SC/n), (5.6)

and

E
[
tr2
{

(Ŷ − Y )>C(Ŷ − Y )
}]

= O(D2
C/n

2) +O(SC/n). (5.7)

To prove (5.6), observe that

E
[
tr2
{

(Ŷ − Y )>C(Y − ω)
}]

= E
[{ n∑

i 6=j

cij

p∑
k=1

g1(Xik)g2(Xjk)
}2]

≤
n∑

i 6=j,i1 6=j1

|cij| |ci1j1|E
{ p∑
k=1

g1(Xik)g2(Xjk)

p∑
k1=1

g1(Xi1k1)g2(Xj1k1)
}

=
n∑

i 6=j,i1 6=j1

|cij| |ci1j1|
[ p∑
k,k1,k2,k3

n∑
j2,j3

E
{
g1(Xik)g1(Xi1k1)G(Xjk, Xj2k2)G(Xj1k1 , Xj3k3)

}]
.
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Note that the summation of the expectations is zero if the number of different indices

in the set {i, i1, j, j1, j2, j3} is five or six. We consider several cases to evaluate the

term in the square bracket,

p∑
k,k1,k2,k3

∑
j2,j3

E
{
g1(Xik)g1(Xi1k1)G(Xjk, Xj2k2)G(Xj1k1 , Xj3k3)

}
.

Case 1: If j2, j3 are both equal to one of the indices i, i1, j or j1 and i, i1, j, j1 are all

different. The summation of expectations vanishes except when {j2 = i, j3 = i1}

or {j2 = i1, j3 = i}. For each of these situations, the summation is O(1/n2)

because

p∑
k,k1,k2,k3

E
{
g1(Xik)g1(Xi1k1)G(Xjk, Xik2)G(Xj1k1 , Xi1k3)

}
=

p∑
k,k1,k2,k3

E
[
E
{
g1(Xik)G(Xjk, Xik2)g1(Xi1k1)G(Xj1k1 , Xi1k3)|Xjk, Xj1k1

}]
≤ 16

p∑
k,k1,k2,k3

α|k2−k|α|k3−k1|
1

N2
= O(p2/N2) = O(1/n2),

where the last inequality follows from Lemma 2 of Billingsley (2012, Section

27).

Case 2: If j2, j3 are both equal to one of the indices i, i1, j or j1 and there are three differ-

ent numbers in {i, i1, j, j1}. We breakdown this case into two sub-cases: i = i1

or i 6= i1. In any these cases, we can prove that the summation of expectations

(with their respective coefficients cijcij1 , cijci1i or cii1ci1j) is O(p3/N2) = O(1/n).

Case 3: If j2, j3 are both equal to one of the indices i, i1, j or j1 and there are two different

numbers in {i, i1, j, j1}. Itt must be that i = i1 and j = j1, or i = j1 and j = i1

because i 6= j and i1 6= j1 (cij = 0 and ci1j1 = 0). There are four different

possible values for j2 and j3: {j2 = j3 = i}, {j2 = j3 = j}, {j2 = i, j3 = j}, or

{j2 = j, j3 = i}. For each combination, the summation of expectations (with

their corresponding coefficients c2ij or cijcji) is O(p3/N2) = O(1/n) . To see this,

we only prove here the case when i = j1, i1 = j, j2 = j, j3 = i and k, k1, k2, k3 are
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all different. The proofs of the other cases follow along the same lines. Indeed,
p∑

k 6=k1 6=k2 6=k3

g1(Xik)G(Xik1 , Xik3)g1(Xjk1)G(Xjk, Xjk2)

=

p∑
k 6=k1 6=k2 6=k3

E
{
g1(Xik)G(Xik1 , Xik3)

}
E
{
g1(Xjk1)G(Xjk, Xjk2)

}
≤

p∑
k 6=k1 6=k2 6=k3

242

N2
α|k1−k| = O(p3/N2),

while the last inequality follows because

E
{
g1(Xik)G(Xik1 , Xik3)

}
=

1

N
E
[
E
{
g1(Xik)G2(Xik1 , Xik3)|Xik, Xik1

}]
=

1

N
E
[
g1(Xik)

{
FXik3 |Xik,Xik1 (Xik1)− Fik3(Xik1)

}]
≤ 24

N
α
1/2
|k1−k|

by Lemma 3 of Billingsley (2012, Section 27).

Case 4: When j2 equals one of the indices i, i1, j, j1, but j3 is different from all of them,

then Xj3k3 is independent of the others, so the summation of the expectation

vanishes since

E{G(Xj1k1 , Xj3k3)} = 0, for j3 6= j1.

Case 5: When both the indices j2 and j3 are different from i, i1, j and j1, the expectation

vanishes again, except when j2 = j3. In the later case, since g1(Xik) has mean

0, we need to look at the cases {i = i1} or {i 6= i1, i = j1, i1 = j}. In both of

these cases, we have the summation of the expectations to be O(1/n). To see

this, if i = i1,
p∑

k,k1,k2,k3

E
{
g1(Xik)g1(Xik1)

∑
j2 /∈{i,j,j1}

G(Xjk, Xj2k2)G(Xj1k1 , Xj2k3)
}

≤ 4

p∑
k,k1

α|k1−k|
∑

j2 /∈{i,j,j1}

p∑
k2,k3

4

N2
α|k3−k2| = O(np2/N2) = O(1/n).

On the other hand, if i 6= i1, i = j1, i1 = j, then j 6= j1. Therefore, for k2 6= k3,
p∑

k,k1,k2,k3

E
{
g1(Xj1k)g1(Xjk1)

∑
j2 /∈{j,j1}

G(Xjk, Xj2k2)G(Xj1k1 , Xj2k3)
}

≤
p∑

k,k1,k2,k3

∑
j2 /∈{j,j1}

4

N2
α|k3−k2|E

{
g1(Xj1k)g1(Xjk1)

}
= 0,
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and for k2 = k3,

p∑
k,k1,k2

E
{
g1(Xj1k)g1(Xjk1)

∑
j2 /∈{j,j1}

G(Xjk, Xj2k2)G(Xj1k1 , Xj2k2)
}

=

p∑
k,k1,k2

∑
j2 /∈{j,j1}

E
[
E
{
g1(Xj1k)G(Xj1k1 , Xj2k2)|Xj2k2

}
· E
{
g1(Xjk1)G(Xjk, Xj2k2)|Xj2k2

}]
≤

p∑
k,k1,k2

∑
j2 /∈{j,j1}

64(1 + 2/N)2α|k1−k| = O(np2/N2) = O(1/n).

Combining the five cases completes the proof of (5.6)

For the proof of (5.7), we first prove that E{g2(Xik)
4} = O(1/N2). Note that

E{g2(Xik)
4}

=
n∑

i1,i2,i3,i4

p∑
k1,k2,k3,k4

E
{
G(Xik, Xi1k1)G(Xik, Xi2k2)G(Xik, Xi3k3)G(Xik, Xi4k4)

}
=
[ p∑
k1,k2,k3,k4

E
{
G(Xik, Xik1)G(Xik, Xik2)G(Xik, Xik3)G(Xik, Xik4)

}]
+
[ n∑
i1 6=i

p∑
k1,k2,k3,k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi1k3)G(Xik, Xi1k4)

+ 4G(Xik, Xik1)G(Xik, Xi1k2)G(Xik, Xi1k3)G(Xik, Xi1k4)

+ 6G(Xik, Xik1)G(Xik, Xik2)G(Xik, Xi1k3)G(Xik, Xi1k4)
}]

+
[
3

n∑
i1 6=i2 6=i

p∑
k1,k2,k3,k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi2k3)G(Xik, Xi2k4)

}]
= [A] + [B1 +B2 +B3] + [C].

The first summation A is at most O(p4/N4) = O(1/n4) = O(1/N2) since n/p →

η ∈ (0,∞).

The second summation B1 + B2 + B3 is O(np3/N4) = O(1/N2) if the number

of different elements in set {k1, k2, k3, k4} is at most three. If all k1, k2, k3, k4 are
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different, then

B1 =
n∑

i1 6=i

p∑
k1,k2,k3,k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi1k3)G(Xik, Xi1k4)

}
= 24

n∑
i1 6=i

p∑
k1<k2<k3<k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi1k3)G(Xik, Xi1k4)

}
≤ 96

n∑
i1 6=i

p∑
k1<k2<k3<k4

min{αk2−k1 , αk4−k3}
1

N4
= O(np3/N4) = O(1/N2),

B2 = O
{ n∑
i1 6=i

p∑
k1 6=k2<k3<k4

min{αk3−k2 , αk4−k3}
1

N4

}
= O(np3/N4) = O(1/N2),

and

B3 = O
{ n∑
i1 6=i

p∑
k1 6=k2 6=k3<k4

αk4−k3
1

N4

}
= O(np3/N4) = O(1/N2).

The last summation C is O(n2p2/N4) = O(1/N2), if the number of different

elements in set {k1, k2, k3, k4} is at most two. If the number is three, without loss of

generality, we can assume k1 = k2 and

C =
n∑

i1 6=i2 6=i

p∑
k1 6=k3 6=k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k1)G(Xik, Xi2k3)G(Xik, Xi2k4)

}
≤

n∑
i1 6=i2 6=i

p∑
k1 6=k3 6=k4

E
[
E
{
G(Xik, Xi1k1)G(Xik, Xi1k1)G(Xik, Xi2k3)G(Xik, Xi2k4)|Xik

}]
≤ 4

n∑
i1 6=i2 6=i

p∑
k1 6=k3 6=k4

α|k4−k3|
1

N4
= O(n2p2/N4) = O(1/N2).

If all {k1, k2, k3, k4} are different, then

C =
n∑

i1 6=i2 6=i

p∑
k1 6=k2 6=k3 6=k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi2k3)G(Xik, Xi2k4)

}
≤ 4

n∑
i1 6=i2 6=i

p∑
k1<k2 6=k3<k4

E
[
E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)

·G(Xik, Xi2k3)G(Xik, Xi2k4)|Xik

}]
≤ 64

n∑
i1 6=i2 6=i

p∑
k1<k2 6=k3<k4

αk2−k1αk4−k3
1

N4
= O(n2p2/N4) = O(1/N2).
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Finally, the result (5.7) can be easily shown by Cauchy-Schwarz inequality as follows:

E
[
tr2
{

(Ŷ − Y )>C(Ŷ − Y )
}]

= E
[{ n∑

i 6=j

cij

p∑
k=1

g2(Xik)g2(Xjk)
}2]

≤
n∑

i 6=j,i1 6=j1

|cij| |ci1j1|
p∑

k,k1=1

{
E{g2(Xik)

4}E{g2(Xjk)
4}E{g2(Xi1k1)

4}E{g2(Xj1k1)
4}
}1/4

= O(D2
Cp

2/N2) = O(D2
C/n

2).

Proof of Theorem 5.3.1. Since

Tn(Ŷ c)− Tn(Y c) = 2tr
{
H(Ŷ )−G(Ŷ )

}
−
{

(H(Y )−G(Y )
}
,

where G and H are given in equation (5.2). By Lemma 5.2.2, we have

E{Tn(Ŷ c)− Tn(Y c)}2 = O(D2
C/n

2) +O(SC/n),

where

C = 2

[(
2⊕
i=1

1

ni
1ni

)
P2

(
2⊕
i=1

1

ni
1>ni

)]
−

[
2⊕
i=1

1

ni(ni − 1)
Pni

]
.

It is easy to calculate that DC = 6 and SC = 1
n1−1 + 1

n2−1 + 1
n1n2

. Therefore,

1

σ2
n

{O(D2
C/n

2) +O(SC/n)} = O(
1

n2σ2
n

) = o(1),

under assumption D5 and D6. That finishes the proof of

1

σn
{Tn(Ŷ c)− Tn(Y c)} = op(1).

Copyright c© Xiaoli Kong, 2018.
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Chapter 6 Summary

In this dissertation, new high-dimensional methods for profile analysis of mean vectors

of repeated measures were introduced. The tests allow the covariance to be equal

or unequal. The methods have favorable numerical performance especially when

the dimension is large. A more general and flexible test statistic was proposed for

a high-dimensional factorial design setting that can be used to make comparisons

among cell means (including profile analysis). We also derived a second-order accurate

asymptotic null distribution and upper quantiles of it. Simulation results clearly

demonstrated the gain improvement from the second-order asymptotic expansions

compared to the first-order (limiting distribution) approximation. The methods work

well under rather general covariance structures.

By dropping the normality assumption, high-dimensional inferential procedures

were proposed and studied in the parametric (mean-base) as well as non-parametric

paradigms. The high-dimensional methods of testing equality of mean vectors under

non-normality were closely investigated. We relaxed the commonly imposed depen-

dence conditions and broaden the scope of the applicability of the results. The theory

is worked out in detail for the two-group situation and the extension to the multi-

group was shown to follow along the same lines. The results can also be formally

extended to multivariate factorial designs. In fully-nonparametric approach, no as-

sumption is made on the distribution of the population except that the dependence

between the variables are required to satisfy some mild conditions. The methods

are rank-based and can be applied for variables that are binary, ordered categorical,

skewed and heavy tailed. The numerical results have clearly shown that when data

comes from distribution with tails too thick for moments to exist, the rank-method

has a superior power.

Copyright c© Xiaoli Kong, 2018.
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