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ABSTRACT OF DISSERTATION 

DIVERGENCE IN NEURONAL CALCIUM DYSREGULATION IN BRAIN AGING 

AND ANIMAL MODELS OF AD 

Neuronal calcium dysregulation first garnered attention during the mid-1980’s as a 

key factor in brain aging, which led to the formulation of the Ca2+ hypothesis of brain aging 

and dementia. Indeed, many Ca2+-dependent cellular processes that change with age, 

including an increase in the afterhyperpolarization, a decrease in long-term potentiation, 

an increased susceptibility to long-term depression, and a reduction in short-term synaptic 

plasticity, have been identified. It was later determined that increased intracellular Ca2+ 

with age was due to increased Ca2+ channel density, elevated release from intracellular 

Ca2+ stores, and decreased Ca2+ buffering or clearance. Further, changes in intra- and 

intercellular Ca2+-dependent processes can lead to poor learning and spatial mapping in 

aged animals. As these are clear deficits in hippocampal function, many early studies 

assumed Ca2+ dysregulation phenotypes in animal models of aging were similar to the 

dysregulated cellular mechanisms seen in Alzheimer’s disease (AD) and other types of 

dementia. However, with the development of transgenic models to recapitulate hallmark 

AD phenotypes over the past 20 years, it has become apparent that the mishandling of Ca2+ 

is notably different across models.  

Importantly, many of these results were obtained while measuring Ca2+ indirectly 

and at limited ages. Thus, the once generalizable phenotypes associated with Ca2+ 

dysregulation, including increased intracellular Ca2+ and reduced synaptic communication, 

appear to diverge in normal brain aging and AD. The following dissertation investigates 

direct and indirect Ca2+ measures across the widely used 5xFAD familial AD mouse, as 

well as the less common Aldh2-/- sporadic AD mouse model. Based on previous evidence, 

it was hypothesized that a decrease in intracellular Ca2+ and associated processes would 

manifest in both models across age. Key results showed a reduction in resting Ca2+ in the 

5xFAD mice, while in the Aldh2-/- model only minor Ca2+-dependent processes showed a 

genotype effect. These results highlight the non-generalizable nature of the Ca2+ hypothesis 

of brain aging to AD phenotypes and emphasize the importance of genetic background 

characterization, as well as underscore the complexity of cellular alterations in the 

divergence of aging and neurodegeneration.  
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CHAPTER 1.  NEURONAL CALCIUM HANDLING IN AGING AND AD 

1.1 The Calcium Hypothesis of Brain Aging and Dementia  

In the mid-1980’s, a novel proposal revolutionized modern Alzheimer’s disease 

(AD) research. This was the recognition of Ca2+ dysregulation as a variable involved in 

brain aging and dementia which was subsequently coined the “Calcium Hypothesis of 

Brain Aging and Dementia” [1-6]. In the initial proposal it was postulated that increased 

neuronal intracellular Ca2+, with age, warrants excitotoxicity and subsequent cell death. 

Since this early hypothesis, it has been shown that rather than an excitotoxicity phenotype, 

neuronal hyperexcitability due to sustained intracellular Ca2+ levels and reduced clearance 

are more accurate biomarkers of Ca2+ dysregulation. Some of this early work in rat and 

rabbit animal models of brain aging showed aged neurons exhibiting enhanced influx of 

Ca2+ through voltage-gated channels which led to both a larger Ca2+-dependent 

afterhyperpolarization (AHP) and reduced short-term synaptic plasticity [2, 7-11]. Further, 

alterations to mitochondrial and endoplasmic reticulum (ER) cytosolic Ca2+ buffering [12-

16], decreased release from intracellular stores [17], and reduced cytosolic clearance [18-

21] are recognized as important hallmarks of perturbed Ca2+ homeostasis in neurons.  

Detection of these markers of dysregulated Ca2+ have led to advances in 

understanding the complex regulatory mechanisms involved in neuronal network 

communication, memory encoding, and cognition. Despite these encouraging insights, 

there have been therapeutic limitations and misalignments of outcome measures between 

normal brain aging and AD. Chapter 1 of this dissertation aims to address the current 

status of Ca2+ homeostasis literature in normal brain aging and how it diverges during AD 

progression. Chapters 2 and 4 are studies that measured Ca2+ in two different mouse 
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models of amyloidogenesis across age, while Chapter 3 highlights the differences 

between the animals and the utility of using various models. Chapter 5 will conclude the 

dissertation by summarizing and discussing results, addressing limitations of the studies, 

and suggesting future directions.  

 

1.2 Ca2+ Handling in Neuronal Physiology 

 Ca2+ is a versatile second-messenger signaling ion that has a fundamental role in 

many cellular processes such as apoptosis, neurotransmitter release, mitochondrial 

bioenergetics and free radical species formation, gene regulation, cell proliferation and 

growth, membrane excitability, synaptic transmission, and plasticity [22-24]. Its functional 

role in a neuron is carefully regulated, so much so that the concentration of intracellular 

Ca2+ (50-200 nM) is 10,000 times less than in the extracellular space (1-2 mM) [25-28]. 

To maintain this sheer difference in concentration gradient, many protein complexes are 

involved at the plasma membrane, cytosol, mitochondria, and ER [29].  

At the plasma membrane, voltage-gated Ca2+ channels (VGCCs), ligand-gated Ca2+ 

channels (LGCCs) such as N-methyl-D-asparate (NMDA) and α-amino-3-hydroxy-5-

methylisoxazole-4- propionate (AMPA) receptors, and store-operated Ca2+ entry (SOCE) 

channels regulate Ca2+ influx, while plasma membrane Ca2+ ATPase (PMCA) and Na+/ 

Ca2+ exchangers (NCX) are prominent regulators of Ca2+ efflux [24, 30-34]. NCX flux 

Ca2+ into the extracellular space with low affinity, but high capacity during the recovery 

phase of an action potential (AP) firing [35], while the PMCA has high affinity for Ca2+, 

yet slow transportation in the extracellular matrix, positioning the PMCA channels to be 

better equipped for maintaining resting state levels of Ca2+ [36, 37]. Within the intracellular 
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space, the ER’s ryanodine (RyR) and inositol (1, 4, 5)-trisphosphate (IP3) receptors and the 

mitochondrial transport system play a critical role in maintaining intracellular Ca2+ store 

homeostasis through release and clearance mechanisms [38-44]. It is through calcium-

induced calcium release (CICR) and RyR/IP3R activation that cytosolic Ca2+ levels can rise 

to 1-5 μM and trigger Ca2+-dependent signaling pathways. Intracellular Ca2+ stores in the 

ER are then replenished via Ca2+ uptake through the sarco-endoplasmic reticulum Ca2+-

ATPase (SERCA) pumps. Further, through a mechanism called capacitive Ca2+ entry 

(CCE) or store operated Ca2+ entry (SOCE), crosstalk between ORAI subunits at the 

plasma membrane and STIM proteins at the ER aid in the regulation of ER Ca2+ levels [45-

47]. The following sections will describe in greater detail the cellular physiology of Ca2+ 

handling, alterations during aging, and changes to these processes in AD. 

 

1.3 Membrane-bound Ca2+ Channels 

1.3.1 NMDA Receptors  

At the post-synapse are the hetero-tetrameric protein complex NMDA receptors. A 

type of ligand-gated Ca2+ channel (LGCC), NMDARs are ionotropic glutamate receptors 

that regulate the passing of Na+, K+, and Ca2+ ions into the intracellular space. Because 

neurons have a negative resting membrane potential and the reversal potential of NMDARs 

is ~0 mV, receptor activation is always an excitatory response. These excitatory responses 

(i.e. excitatory postsynaptic potentials or EPSPs) grow in amplitude as the receptor is 

activated, which influxes extracellular Ca2+ into the post-synaptic neuron. Importantly, the 

inclusion of Ca2+ influx into the cytosolic space activates a signaling cascade of CICR. 

Additionally, through nonspecific activation involving glutamate and glycine co-agonist 
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binding, as well as the depolarization of the plasma membrane to remove a Mg2+ that 

occludes the NMDA channel, NMDARs facilitate long-term potentiation (LTP) and long-

term depression (LTD) processes [48, 49]. It is through repetitive, synchronous stimulation 

of the pre- and post-synapse at high and low frequencies that LTP and LTD are elicited, 

respectively. These synaptic plasticity processes are believed to be largely associated with 

memory encoding and erasure [50-54]. Moreover, Ca2+ influx via NMDA receptors at the 

postsynaptic dendritic spines is necessary for LTP to be induced [55]. Conversely, when 

NMDA receptors are either inhibited or quantitatively in deficit, depression of the synapse 

may ensue [56]. With ties to memory and attention, it has been of interest to investigate 

NMDA receptors and their function in brain aging research. 

In aging, it has been shown that NMDA proteins and function are altered; however, 

this has been relatively region specific, as such changes were noted in the hippocampus, 

but not in cortical tissue. More specifically, reduced expression of NMDA protein localized 

to region Cornu Ammonis-1 (CA1) has been observed in aged mice, rats, and rhesus 

monkeys [57-67]. This observation is coupled with decreased NMDAR-mediated synaptic 

response in aging, as electrophysiological studies have shown reduced EPSP amplitude by 

50% [68, 69]. Various theories have been postulated to explain the overall reduction in 

NMDAR density, such as decreased subunit expression, altered posttranslational 

modification via kinase/phosphatase activity states, and decreases in local supporting cells 

that are the source of essential amino acids [64, 67, 69-83]. However, due to inconsistencies 

and contrasting outcomes in age-related loss of NMDARs, an explanation has remained 

elusive. With the crucial role NMDARs have in synaptic communication, reductions in 
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NMDA proteins and function are expected in memory impairment and cognitive decline. 

Thus, NMDA alterations are a robust marker of neuronal aging and deficits. 

1.3.2 Voltage-gated Ca2+ Channels 

Another source of neuronal Ca2+ influx from the extracellular space is through the 

voltage-gated Ca2+ channels (VGCCs). These hetero-multimer protein channels are 

embedded within the plasma membrane and are activated upon depolarization of the 

membrane. Two classes of VGCCs have been identified: high-voltage-gated and low-

voltage-gated. As their names imply, high-voltage is dependent on a strong membrane 

depolarization while low-voltage relies on a weak depolarization. High-voltage VGCCs 

have been further classified as the L (Cav 1.1-3), P/Q (Cav 2.1), and N (Cav 2.2) type 

channels, while low-voltage VGCCs are classified as either T (Cav 3.1) or R (Cav 2.3) type 

based on their respective biophysical and pharmacological properties [84-94]. There has 

been a wealth of evidence suggesting VGCCs are affected during brain aging as well. In 

CA1 hippocampal neurons of aged rats, increased L-type voltage-gated calcium channel 

(L-VGCC) density, Ca2+ currents, mRNA protein expression levels, and post-translational 

phosphorylation state have been well characterized [80, 95-102]. That being said, the 

application of Ca2+ channel blockers to reverse the effect of aging on L-VGCCs has 

generated a lot of research interest.  

Many previous studies have applied L-VGCC blockers such as nifedipine and 

nimodipine to hippocampal slices to investigate Ca2+-mediated processes like the AHP and 

long and short-term plasticity. Importantly, by inhibiting L-VGCC activity with blockers, 

age-related deficits to synaptic strength and behavioral learning have been rescued [80, 

103, 104]. Further, it has been observed that through blocking L-VGCCs, the amplitude of 
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the age-enhanced AHP is reduced and, notably, LTP induction is facilitated at lower 

frequency stimulation while LTD induction is inhibited in aged animals [80, 105]. The 

translatability of these findings is apparent too, as a multitude of studies have shown robust 

improvements in hippocampal learning and memory through the blockade of L-VGCCs in 

both aged animals and humans [8, 100, 106-119]. Surprisingly, L-VGCC alterations seem 

to only be related to hippocampal-dependent memory, as expression patterns and function 

of L-VGCCs in cortical neurons are not altered with age [120, 121]. Of interest, there is 

also crosstalk between estrogen and L-VGCC expression, as they are negatively correlated; 

L-VGCC density increases with age as estrogen decreases, perhaps underscoring a sex 

difference that may be present in memory decline [122]. Thus, it comes with little surprise 

that the use of L-VGCC blockers in studies of aging and cognitive impairment has been 

widely explored. The clinical application of L-VGCCs is discussed in greater detail in 

Chapter 1.8. 

 

1.4 Intracellular Calcium Stores (ICS) 

1.4.1 Endoplasmic Reticulum 

CICR is a physiologic phenomenon to amplify the release of Ca2+ at the ER. 

Through Ca2+ influx at the plasma membrane and activation of IP3Rs at the ER, Ca2+ is 

released into the cytosol and further activates RyRs at the ER for even greater Ca2+ release. 

Age-related decreases in IP3 receptor density have been reported in cerebellum and cortex. 

Interestingly, however, these reductions do not seem to correlate with reduced IP3-induced 

Ca2+ release [123-127]. Similarly, it should be noted that increased RyR responsiveness to 

CICR has been observed in the presence of age-mediated increases in oxidative stress, 
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which incidentally has been suggested to increase IP3 receptor function, perhaps 

highlighting the complexity of compensatory effects, especially when IP3 receptor function 

is modified [128-132]. Further, in aged F344 rats, it has been shown that inhibiting the age-

dependent enhancement of CICR in hippocampal neurons reduces the AHP amplitude, 

enhances LTP, inhibits LTD, and promotes NMDAR-mediated synaptic plasticity, 

underscoring the widespread physiologic implications that dysregulated Ca2+ handling can 

have on synaptic communication [133, 134]. Moreover, direct Ca2+ measures show 

increased somatic Ca2+ and slow release (decreased rise time) from intracellular stores in 

aged F344 rats [135]. These age-related differences are attenuated when the CICR 

antagonist ryanodine is administered, further emphasizing the global effect that 

dysregulated Ca2+ homeostasis has on a neuron. 

1.4.2 Mitochondrial Ca2+ Handling 

 Mitochondria have a prominent role in maintenance of bioenergetics necessary for 

cell survival and programmed death through the production of adenosine triphosphate 

(ATP) and caspase activators/proteins needed for apoptosis [136, 137]. Of interest, 

mitochondria also function as regulators of intracellular Ca2+ transients through uptake via 

the mitochondrial Ca2+ uniporter (MCU), which in turn regulates mitochondrial 

metabolism [38, 138-140]. Ca2+ is also transported back to the cytosol via the 

mitochondrial NCX (mNCX) [141]. In aged cortical tissue of F344 rats, reduced 

mitochondrial uptake of Ca2+ has been observed in comparison to younger aged animals 

[142]. However, when elevated levels of Ca2+ enter the mitochondria, reactive oxygen 

species (ROS) production increases, ATP synthesis is inhibited, and apoptosis is initiated, 

highlighting a delicate threshold of mitochondrial Ca2+ regulation [143, 144]. In addition 
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to decreased Ca2+ uptake in aging, mitochondrial regulation of free oxygen radicals has 

been observed to decline with age [145]; thus, it is perhaps unsurprising that the 

relationship between Ca2+ dysregulation and ROS has garnered attention in brain aging and 

dementia literature. Both Ca2+ dysregulation and ROS have been implicated in the genesis 

of amyloid beta plaques and all three are believed promote one another. Chapter 1.10 goes 

into greater detail on these phenotypes.  

1.4.3 Cytosolic Ca2+ Transportation 

To regulate the dynamic increases in cytosolic Ca2+ during depolarization and keep 

intracellular concentrations of the cation low during resting state, neurons have robust Ca2+ 

signaling mechanisms to clear excess Ca2+ ions from the cytosolic space [146]. Ca2+ 

transport is achieved through the signaling of over 200 Ca2+ binding proteins (CBPs) that 

are key modulators of Ca2+ signaling pathways [147]. CBPs can be subdivided into Ca2+ 

buffers (e.g. calbindin, parvalbumin, and calretinin) and Ca2+ sensors (e.g. calmodulin and 

protein kinase C) [147, 148]. The CBPs help facilitate the flux of Ca2+ back into the ER 

and mitochondria (sequestration), as well as the exchange of Ca2+ back into the 

extracellular milieu (extrusion). The involvement of CBPs in aging has been unique to 

CBP-type, as well as to tissue region specificity.  

Many studies have examined different types of CBPs across age, yet findings have 

been notably widespread. For example, decreased levels of CBPs such as calbindin and 

calretinin have been observed in the hippocampus of aged rats [149, 150], while their levels 

remained unchanged in the cerebellum [149]. Similarly, when calbindin immunoreactivity 

was measured across age in rats and rabbits, significant decreases were detected in both the 

dentate gyrus and subregion CA1 of the hippocampus in aged rats, but only in the dentate 
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gyrus of aged rabbits [151]. In contrast to calbindin, interneurons containing parvalbumin 

in the hippocampus had no changes in aged rats [150], but reduced levels of parvalbumin 

in the medial septum-diagonal band that leads to the hippocampus have been noted [152]. 

Others have also suggested that a reduction in CBPs during aging may lead to decreased 

function of the embedded proteins involved in sequestration and extrusion transport 

systems, hence heightened intracellular Ca2+ levels [153-158]. Reductions of CBPs during 

aging is not generalizable though, as the Ca2+ and Ca2+/calmodulin binding protein 

phosphatase, calcineurin, has been demonstrated to play a direct role in increasing L-

VGCC function in aging [101, 159]. Further, it is important to note that decreased Ca2+ 

binding may be region or cell specific, as increased Ca2+ binding has been identified in 

basal forebrain neurons during aging, perhaps suggesting the presence of an underlying 

compensatory mechanism to regulate Ca2+ ion concentrations [16, 160, 161]. Irrespective 

of irregular CBP results, there is clearly an important role that CBPs have in neuronal Ca2+ 

regulation that should continue to be explored. 

 

1.5 Synaptic Plasticity 

As highlighted in previous sections, age-dependent NMDAR loss and L-VGCC 

functional increases (coupled with alterations to ICS signaling) impact both the excitability 

and overall neural activity of hippocampal neurons. A classic measure of the association 

between synaptic plasticity and memory is sustained synaptic strength using LTP outcome 

measures [162]. A well-characterized phenotype of synaptic plasticity in aging is the 

elevated activation threshold for LTP induction and reduced LTP duration [51, 52, 163], 

perhaps meaning greater difficulty to encode memories. It is curious, however, that the 
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larger AHP and enhanced Ca2+ levels during stimulation that are observed in aging do not 

contribute to a lower activation threshold in LTP. Importantly though, the AHP is a post-

synaptic potential, which likely explains the lack of effect it may impose on the synaptic 

LTP activation threshold. Reduced LTD threshold, increased susceptibility to activating 

LTD, and depotentiation (reduction in synaptic strength after it was initially potentiated) 

have been illustrated as markers of poor synaptic plasticity in aging as well [18, 52, 164, 

165]. Moreover, aging phenotypes of synaptic strength have not been exclusive to long-

term synaptic plasticity. Another phenotype of impaired synaptic plasticity in aging has 

been observed during repetitive synaptic stimulation (frequency facilitation), a form of 

short-term synaptic plasticity, where failure to elicit growth of EPSPs is seen in aged F344 

rats [10]. This finding has been coupled with the elevation of both postsynaptic intracellular 

Ca2+ as well as L-VGCC activity in aged CA1 pyramidal neurons, a testament to the global 

impact of dysregulated Ca2+ on network communication [11]. 

 

1.6 Afterhyperpolarization (AHP) 

 The communication between neurons is profoundly unique, incredibly complex, 

and, importantly, well-regulated. In a sense, an AP can be thought of as the language used 

to facilitate communication between neurons. Through repeated firing of APs, neurons 

release neurotransmitters at their synapses to communicate with one another. It is through 

specific patterns and frequencies that memories are encoded or forgotten. As a regulator of 

repetitive AP firing, the post-burst afterhyperpolarization (AHP) is a neuronal mechanism 

that prevents overexcitation [166] and its amplitude is dependent on the number and 

frequency of APs during stimulation [167, 168]. In addition to the number and frequency 
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of APs affecting AHP amplitude, the AHP of hippocampal pyramidal neurons has two sub-

components, medium and slow afterhyperpolarizations, that are Ca2+-dependent  [169, 

170]. The amplitude and duration of the AHP correlates with intracellular Ca2+ 

concentrations. Moreover, the AHP has been shown to be directly associated with learning, 

as reductions in its amplitude have been previously described in rat and rabbit models 

undergoing hippocampal-dependent tasks such as eyeblink conditioning [171-173], 

context-fear conditioning [174], olfactory-discrimination [175, 176], and the Morris water 

maze [177].  

Conversely, when learning is impaired in aged animals, the post-burst AHP 

amplitude is enhanced [171]. Though learning tasks ameliorate the amplitude of the Ca2+-

sensitive AHP, pharmacological treatments are effective in truncating the AHP magnitude 

too. L-VGCC blockers nifedipine and nimodipine have been historically used to reduce 

Ca2+ influx and decrease the AHP [80, 103, 104, 178-180], while 1,25VitD treatment on 

cultured neurons has been proven effective as well [181]. Importantly, it has been widely 

demonstrated that CA1 pyramidal neurons of aged animals have AHPs of significantly 

greater amplitude compared to young counterparts [2, 9, 182]. This increase in AHP 

amplitude of aged animals is due in part to higher concentrations of intracellular Ca2+ and 

reflects perturbed Ca2+ regulatory mechanisms such as channel density at the plasma 

membrane and clearance, buffering, and extrusion processes [133, 135, 165, 170, 183, 

184]. Because the AHP relies so heavily on other Ca2+ regulating biophysical mechanisms, 

it is considered a reliable indirect measure of neuronal Ca2+ handling.  
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1.7 Sex Differences in Ca2+ and Ca2+-dependent Processes of Aged Neurons 

Notably, sex hormones have been described to impact Ca2+ homeostasis as well, 

and this is of considerable interest in aging research, as sex is considered a predisposing 

feature of AD development [185]. For example, treatment with estrogen has been shown 

to increase NMDA receptor density in aged animals [186], as well as elevate dendritic 

spines of CA1 neurons in young rats [187], but alterations were only present in those 

specific age groups. However, estrogen treatments in ovariectomized primates elicit greater 

hippocampal spines and performance of hippocampus-dependent cognitive tasks in both 

young and aged animals, highlighting a clear role estrogen plays in learning and memory 

[188, 189]. Why there is a disconnect between estrogen effects across species remains to 

be determined. As estrogen has demonstrated an effect on learning and memory, its use in 

synaptic plasticity is of interest as well. 

 Through whole cell electrophysiological recordings, application of 17beta-

estradiol (a potent estrogen) to medial vestibular nucleus neurons of rat brainstem slices 

induces synaptic LTP and inhibits LTD induction, while dihydrotestosterone induces 

synaptic LTD, which was corroborated by an abundance of estrogen and androgen 

receptors in MVN neurons [190]. Further, high doses of 17beta-estradiol have been shown 

to inhibit intracellular Ca2+ release in gerbil CA1 pyramidal neurons [191]. This work has 

been corroborated through the identification of an enhanced AHP in aged ovariectomized 

F344 rats and the reduction in amplitude upon direct application of 17beta-estradiol 

benzoate to hippocampal slices [102], as well as an estradiol-mediated increase in the slow 

afterdepolarization amplitude of mice [192]. Interestingly, 17beta-estradiol benzoate bath 

occludes the attenuation of the AHP with the L-channel blocker nifedipine, suggesting 
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estrogen derivatives modulate the AHP through a different mechanism other than L-VGCC 

blockade. Through and through, it is evident that the crosstalk between estrogen and Ca2+ 

is essential to neuronal homeostasis and supports the importance of including sex 

difference investigation in studies of aging. 

 

1.8 Ca2+ and Cognition 

 Arguably the most forthright phenotype of brain aging, cognitive decline has been 

long thought to be the result of neuronal loss with age in contemporary culture. However, 

many studies have illustrated a non-significant reduction in neurons across human, 

monkey, and rodent models, questioning the validity of this theory [193-198]. Rather, 

decline in cognition has been suggested to depend on synaptic alterations and 

neurotransmission limitations [199]. These changes with age, however, are more-subtle 

than reductions in synaptic density and have been mostly absent in hippocampal tissue 

during aging [199, 200]. Instead, alterations in synaptic communication during aging have 

manifested in Ca2+-dependent processes like a reduced excitatory postsynaptic potential 

[10, 18, 201] and an increased AHP current (reduces neuronal excitability), as previously 

noted in Chapters 1.1 and 1.3.1 [165, 202]. Thus, it has been of interest in clinical trials to 

test the effect of Ca2+ blockers on cognitive deficits in aging human populations, especially 

AD. 

 As the purpose of basic research is the hopeful translatability for clinical use in 

humans, the identification of perturbed neuronal Ca2+ handling in AD led to the exploration 

of Ca2+ channel blockers as a form of treatment. Nimodipine has been a commonly used 

drug in clinical trials due to its ability to readily traverse the blood-brain barrier, yet these 
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results have been controversial. Indeed, improved memory and attention from nimodipine 

treatment was observed in patients of age-related dementia in early trials [117, 203, 204]. 

However, because nimodipine is an antihypertensive drug used in the prevention of 

subarachnoid hemorrhaging as a vasodilator, it has been speculated that its effectiveness in 

AD pertains specifically to treating vascular-related symptoms of vascular dementia [205, 

206]. Moreover, meta-analyses suggest VGCCs have a limited role in vascular dementia 

progression [205]. Nevertheless, the use of other Ca2+ channel blockers in the treatment of 

dementia prevention have also been tested, but yielded similarly inconsistent results. 

Antihypertensive Ca2+ channel blockers like nitrendipine and nilvadipine have been shown 

to temporarily reduce mild cognitive impairment progression, while nifedipine, diltiazem, 

verapamil, and amlodipine were found to be ineffective [207-209]. Thus, while Ca2+ 

channel blockers may play a potential role in treating AD, they clearly are not enough to 

effectively address the multi-faceted cellular alterations that drive disease progression. 

 

1.9 Alzheimer’s Disease 

 AD is a devastating neurodegenerative disease state first described by Alois 

Alzheimer in 1906, that is characterized by beta amyloid (Aβ) deposits, 

hyperphosphorylated tau protein tangles, dysregulated Ca2+ homeostasis, elevated 

oxidative stress, and altered neuroinflammatory markers. The global impact of each of 

these hallmarks can promote impaired cognitive function, memory deficits, and behavioral 

problems, leading to reduced quality of living and need for assisted care. To elucidate the 

underlying mechanisms that drive AD progression, multiple hypotheses have been 

proposed to pinpoint an initiating marker that propagates other pervasive cellular 
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alterations and, ultimately, poor cognition and behavior. However, though there is 

substantial evidence suggesting that amyloid, tau, dysregulated Ca2+, inflammation, 

oxidative stress, and even metal ion dysregulation each participate in the pathogenesis of 

AD, no singular biomarker accounts for the extensive cascade of detrimental cellular events 

that promote AD [210, 211].  

Despite the lack of a single AD hypothesis to explain phenotype progression, this 

should not detract from the importance of the data that has been collected within each 

respective hypothesis’ field of research. The paucity of identifying an AD treatment that 

addresses each hallmark speaks to the complexity of the disease and likely suggests 

multiple initiating events are intertwined and occur much earlier than the manifestation of 

amyloid and tau, synaptic loss, and cognitive decline. Thus, the interplay of early AD 

phenotypes such as Ca2+ dysregulation and oxidative stress may be important to further 

investigate. Because normal brain aging is devoid of amyloid plaque deposits and 

phosphorylated tau and there is a prevalence of altered Ca2+ handling in both aging proper 

and AD, an assumption that AD may be an advanced form of aging has been suggested. 

However, a growing body of evidence detailing a misalignment of outcome measures 

between aging and AD suggests a potential divergence at the neuronal level. Further, these 

misaligned phenotypes may even suggest that the Calcium Hypothesis of Brain Aging and 

Dementia is not as generalizable as previously thought. The following sections highlight 

deviations in Ca2+-dependent processes in AD models of aging and segue into two studies 

that investigate Ca2+ outcome measures across age in mouse models of AD. 
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1.10 Aβ and Ca2+ in Culture and Animal Models of AD 

The amyloid precursor protein (APP) is a type I membrane protein that is 

proteolytically processed to generate toxic Aβ species in AD [212]. Though APP is 

expressed in many tissue types, its expression and improper splicing in AD gives rise to 

insoluble extracellular Aβ monomers and oligomers in the brain. It is through the 

processing via β and γ secretases and aggregation of insoluble Aβ peptides that amyloid 

deposits accumulate in the AD brain, which led to the synthesis of the amyloid hypothesis 

[213-217]. Early evidence has suggested Aβ as an influencing factor in dysregulated Ca2+ 

homeostasis in AD, such that Aβ oligomers may create Ca2+-permeable channels in the cell 

membrane [218, 219]. In initial cell culture studies, the addition of Aβ to cultured neurons 

was shown to elevate intracellular Ca2+ concentrations [220, 221]. Further, Aβ has also 

been shown to elicit ROS production and subsequent membrane lipid peroxidation, leading 

to impairments of Ca2+ transporters at the plasma membrane and elevating intracellular 

Ca2+ concentrations [222, 223]. With clear detrimental impact to neuronal health, studies 

have also measured the influence Aβ has on cell-to-cell neuronal communication such as 

synaptic plasticity. 

Reduced synaptic strength and synaptic loss are key markers of AD progression. 

As such, studies have investigated the impact of Aβ oligomers on synaptic plasticity. Not 

only have decreased surface NMDA receptors in APP mutated transgenic models [224] 

been identified, but an inhibition of LTP induction in both in vivo and in vitro models has 

been observed as well, although this was not present with LTD [225-228]. The latter result 

is especially surprising, considering both mechanisms are widely thought to be involved in 

memory encoding and erasure. Interestingly, Aβ oligomers have also been shown to induce 
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the production of ROS through NMDAR-dependent activation in hippocampal cultures 

[229]. In pyramidal neurons of Sprague-Dawley rats, Aβ reduces dendritic spine density, 

impairs electrophysiologically active synapses [230], and facilitates NMDA-mediated 

excitotoxicity [229, 231], which may underscore why such pronounced synaptic deficits 

are present in AD. It is important to note, however, that while Aβ increases intracellular 

Ca2+, elevated intracellular Ca2+ can also promote Aβ production, which suggests a cyclic 

relationship between the two events and further complicates detection of the initiating 

factor(s) that begin the AD cascade [232-235]. 

 

1.11 Plasma Membrane Ca2+ Handling in AD Models 

1.11.1 Ca2+ Influx Via VGCCs at the Plasma Membrane in AD Models 

In an attempt to gain a greater understanding of Aβ’s effect on Ca2+-mediated 

processes at the plasma membrane such as Ca2+ influx via VGCCs, studies have looked at 

VGCC density and function in culture and animal models of amyloidogenesis. Growing 

evidence has shown Aβ impacts neuronal health through increased L-type VGCC influx of 

current, increased intracellular Ca2+, and impaired synaptic plasticity [236]. In studies of 

cultured rat neurons, Aβ treatment increases free radical production and subsequently 

elevates Ca2+ influx through L- and N-VGCCs [237], while also elevating N- and P-type 

VGCC current amplitude [238]. Similarly, L-type Cav1.2 and 1.3 subunit surface proteins 

and channel activity have been observed to increase in the presence of acute Aβ oligomer 

exposure in culture [239, 240], although chronic exposure evoked decreased L-type Cav1.2 

surface proteins [239]. Though many cell culture studies have provided evidence of a 
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negative impact of Aβ on VGCCs, it has been of interest to investigate VGCCs in AD 

animal models to uncover physiologic alterations in the progression of AD. 

A limited number of studies have investigated L-VGCCs in models of AD with the 

inclusion of aging. Of these, an age-dependent increase in L-VGCC density specific to 

CA1 neurons of 3xTg mice has been observed, but not in neurons of subfield CA3 or the 

dentate gyrus [241]. Strangely, in a similar study conducted by our group using a double 

knock-in mouse model and the same patch-clamp electrophysiological technique, 

reductions in L-VGCC channel activity was observed in mice of the same age (12-14 mo.) 

[242]. Further, a reduction in Cav1.2 protein expression has been seen in 2xTg mice of 9 

months compared to WT littermates using a similar biochemical approach [243]. Perhaps 

such drastic differences in phenotypes between the similar mouse models can be attributed 

to the inclusion of the MAPT (tau) gene mutation in the 3xTg design, although many other 

factors may be influencing the generation of the phenotype as well. Nevertheless, these 

deviations from the early findings of increased L-VGCC density and activity in aged F344 

rats by Thibault and Landfield highlight a clear misalignment between normal brain aging 

and brain aging in AD [97]. Considering the growing body of literature linking L-VGCC 

alterations to cognitive and spatial memory deficits [244, 245] and the controversial 

evidence of L-VGCC blocker effectiveness in clinical trials [246-250], it is of interest to 

continue efforts to elucidate the role of these channels in AD progression. 

1.11.2 Synaptic Dysfunction and Tau in AD Models 

Studies exposing NMDAR to concentrations of Aβ in vitro, ex vivo, and in vivo 

have illustrated a direct negative impact on synaptic connectivity. Some of the markers of 

synaptic dysfunction include the reduction of activity to the NMDA subunit GluN2A and 
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downregulation of synaptic proteins PSD-95 and synaptophysin [251], subunit GluN2B-

mediated LTP impairment [252], and even rescuing learning and memory through the 

enhancement of GluN2B NMDAR surface trafficking [253]. There have also been studies 

linking synaptic dysfunction in AD to the hyperphosphorylation of tau, which adds to the 

complexity of cellular changes as they transpire. As tau protein is normally localized to 

neuronal axons, it is indeed problematic that in the AD brain, tau is aberrantly translocated 

to the somatodendritic region of cells [254, 255]. Of particular interest, recent evidence has 

suggested that this mislocalization of tau protein and subsequent hyperphosphorylation 

may be due, in part, to overexcitation of NMDA and AMPA receptors resulting from 

excess glutamate stimulation [256], which aligns with epilepsy phenotypes that have been 

observed in AD [257-260]. However, as tau mislocalization to dendritic spines has been 

implicated in the degeneration of synaptic activity [261], it is clear that a better 

establishment of a time orientation between the manifestation of synaptic dysfunction and 

somatodendritic tau accumulation is necessary to more carefully link the coupled 

phenotypes [262]. 

1.11.3 Ca2+ Efflux at the Plasma Membrane in AD Models 

Given the direct impact that Aβ has on NMDA receptors [224], it is unsurprising 

that Aβ oligomers impact NCX and PMCA as well. Existing as three different isoforms 

with varying tissue-specific expression patterns [263], increased NCX activity has been 

observed in post-mortem cerebral brain tissue of AD patients [264]. This very well may be 

a compensatory mechanism to reduce increased levels of cytosolic Ca2+ caused by Aβ load. 

When co-localized with Aβ, NCX isoforms are increased in synaptosomes [265], and 

overproduction of Aβ promotes calpain-mediated cleavage of isoform NCX3, a regulator 
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protein of Ca2+ current during synaptic activation [266, 267]. Despite this, contradictory 

findings have revealed a downregulation of protein and mRNA levels of NCX2 and NCX3 

isoforms in hippocampal CA1 neurons of APP transgenic mice [268]. It is unclear whether 

there is a brain region-specific difference in NCX expression or if Aβ oligomers affect this 

Ca2+ transporter differently across human and rodent tissue preparations. Treatment with 

Aβ oligomers, tau, and H2O2 have been shown to inhibit the functional activity of PMCAs 

as well [269, 270]. 

 

1.12 ICS in AD Models 

1.12.1 Endoplasmic Reticulum and Presenilin Mutations 

In addition to the substrate APP, ER presenilin (PS) mutations are commonly 

incorporated into the genetic makeup of mouse models of familial AD [271]. The inclusion 

of the PS mutation in these models has been crucial to the progression of Ca2+ 

dyshomeostasis research in AD since a link between PS and Ca2+ was first identified in 

fibroblasts of patients with familial AD (fAD) [272, 273]. This discovery launched many 

subsequent studies showing PS mutations are linked to increased Ca2+ release through 

‘leaky channels’ of the ER in human fibroblast samples, cell culture, and animal models  

[127, 272, 274-281]. Resting cytosolic Ca2+ is elevated in the 3xTg and APP(SWE) 

transgenic models compared to WT controls; however, this difference is partially 

attenuated with the application of either an IP3R blocker or VGCC blocker, but not with a 

RyR antagonist [282]. One hypothesis to explain increased ER Ca2+ release has been that 

ER Ca2+ stores are simply overloaded, hence greater expulsion [277, 283, 284].  
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Despite findings showing enhanced ER Ca2+ stores, many studies have also 

observed either no changes or even reductions in ER Ca2+ [285-288]. Nevertheless, 

previous studies investigating neuronal Ca2+ either directly or indirectly in transgenic AD 

models have often reported increased resting or stimulated cytosolic Ca2+ levels compared 

to WT littermates [281, 289-300]. This, perhaps, implicates PS mutations as participating 

in perturbed cytosolic Ca2+ levels. However, with so many inconsistent outcome measures 

and the lack of PS mutations in the more common form of AD, sporadic AD (sAD), PS-

dependent Ca2+ measures cannot be generalized to all AD models. Further, it is important 

to note that most direct measures of Ca2+ in these models were acquired at single time-

points, which precludes observing associations between Ca2+ and aging. Thus, there is a 

complication as to whether increased intracellular Ca2+ is merely the product of failed ER 

Ca2+ channels, aging, or both.  

1.12.2 Endoplasmic Reticulum and IP3R 

In an attempt to better understand ER Ca2+ release in models of AD, it has been of 

interest to look at IP3R changes as well. Compared to reductions of IP3R primarily observed 

in cerebellar and cortical rodent samples, it has been shown that in autopsied human AD 

patients, IP3R density is significantly reduced in both hippocampus and parietal lobe tissue, 

while no significant decreases are present in the frontal, occipital, or temporal lobes [301]. 

Interestingly, in a transgenic model that overexpresses the IP3 receptor regulatory protein 

IP3K-A three-fold in excitatory hippocampal neurons, presynaptic release probability of 

evoked responses and miniature excitatory postsynaptic current amplitudes were increased 

and LTD was inhibited, while novel object recognition and radial arm maze tasks were 

partially impaired, indicating overcorrections are not always beneficial [302]. This is 
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surprising, considering previous evidence has indicated IP3K-A is highly involved in 

synaptic plasticity, as it accumulates in dendritic spines and has critical dual roles in 

developing and mature synapses [127, 303]. That being said, an increase in resting Ca2+ of 

pyramidal cortical neuron spines and dendrites has been reported in AD transgenic animals 

[282, 304], suggesting deficits in IP3R may be contributing to synaptic impairments in AD. 

More evidence is needed to better define the relationship between IP3R and synaptic loss 

in AD. 

1.12.3 CBPs in AD Models 

 Similar to what has been observed in aging, decreases in calbindin gene expression 

have been seen in both hippocampus and nucleus basalis of AD human brain samples, 

suggesting a failed Ca2+ buffering mechanism may contribute to dysregulated Ca2+ levels 

as well [305]. Conversely, when either calbindin or calsenilin CBPs are overexpressed in 

culture, Aβ-induced intracellular Ca2+ level elevations are significantly reduced [306-308]. 

Perhaps reminiscent of early CBP studies, calbindin and parvalbumin proteins in the 

hippocampus of young (3 mo.) knock-in APPswe/PS1dE9 mice have increased 

immunoreactivity compared to WT counterparts, suggesting an underlying mechanism to 

regulate Ca2+ and synaptic plasticity in early disease-state [309]. Comparatively, by 12 

months of age, calbindin immunoreactivity is significantly reduced, illustrating a threshold 

for compensation being met and failing, which could contribute to the increased resting 

Ca2+ phenotype commonly observed in APP/PS1 transgenic models. Importantly, in a 

novel study comparing the classic 5xFAD AD mouse model to a calbindin KO 5xFAD 

crossbreed (CBKO.5XFAD), the calbindin KO model has significantly greater neuronal 

loss, reduced NMDA receptor density, and decreased synaptophysin in the subiculum, 
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further highlighting the need for a robust Ca2+ buffering system in maintenance of synaptic 

strength [310]. Failure of neuronal Ca2+ buffering in AD likely enhances widespread 

impact to overall cell health and network communication. 

1.12.4 Mitochondrial Changes in AD 

 Considering the dire nature of regulated mitochondrial function in providing 

optimal bioenergetics for cell health, it comes with little surprise that impaired 

mitochondrial function in AD results in a cascade of cellular deficiencies and even cell 

death. With mitochondrial impairment during the progression of AD, the generation of 

ROS becomes less regulated, and damage to lipid membranes of both internal organelles 

and the plasma membrane ensues [311]. In fact, in a delicate study examining APP 

transgenic mice gene profiles before, during, and after the development of amyloid plaque 

deposits, a compensatory upregulation of mitochondria-specific genes was detected as 

amyloid plaque deposits progressed [312]. Surely, this can be interpreted as an internal 

defense mechanism in order to preserve mitochondrial integrity. However, in a disease 

state like AD, the magnitude of Aβ and tau-induced cellular impairments is likely too great 

for compensatory mechanisms to override in an attempt to maintain cell integrity.  

In models of overexpressed tau protein, decreases in mitochondrial complex I (the 

largest and most complex enzyme of the electron transport chain), ATP, morphology, 

fusion/fission proteins, and oxidative stress protection have been noted [313, 314], while 

increases in free oxygen radicals, synaptic deficits, and cognitive decline are propagated 

[314, 315]. In fact, point-mutations to induce phosphorylation on various sites of tau has 

been shown to be impactful to the gravity of mitochondrial damage, further highlighting 

the extent of biological variability in animal models that genetic mutations influence [315]. 
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Additionally, because AD is a complicated disease saturated with etiologies of both Aβ 

and tau tangles, in a study looking at AD-related protein mutations in aged 3xTg transgenic 

mice, 24 APP and tau-dependent mutations were detected and 1/3 were linked to 

dysregulated complexes of the oxidative phosphorylation system, synthesis of ATP, and 

regulation of ROS [316]. Thus, changes in mitochondrial Ca2+, though seemingly minor, 

can have a devastating impact on many downstream signaling pathways. 

 

1.13 Synaptic Plasticity and Oxidative Stress in Models of AD 

As neuronal connectivity and synaptic plasticity impairments are closely linked to 

cognitive decline, modeling physiologic changes of synaptic deficits in the context of AD 

pathologies demonstrates the fragility of regulatory cellular mechanisms. Many studies 

have demonstrated a profound correlation between elevated Aβ and memory impairment 

[317-320]. However, while decline in synaptic connectivity, rather than neuronal loss, has 

been suggested to more closely bode cognitive reduction in AD [321], it is interesting to 

note that in several AD models with overexpressed APP, impaired LTP precedes synaptic 

loss and neuronal death [322-324]. Moreover, in triple transgenic mice with both tau and 

amyloid mutations, drastic synaptic deficits (including reduced LTP) have been observed 

in an age-dependent manner prior to tau and amyloid manifestation [325]. Of interest, while 

similar results are observed in a double transgenic model of APP and PS1 overexpression, 

short-term memory is impaired first, followed by long-term months later as amyloid burden 

worsened [326]. However, in a unique model of only tauopathy (devoid of amyloid or APP 

mutations), severe impairment in LTP maintenance are observed with aging, which 
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underscores how tau-like pathologies alone are enough to drastically inhibit synaptic 

plasticity in AD [327].  

While the impact of amyloid and tau on synaptic plasticity is certainly a relevant 

association to be studied in AD, the link between mitochondrial damage/oxidative stress 

and synaptic loss is of importance too, as increased ROS is a common hallmark of the AD 

brain. Strangely, the results of observing the relationship between oxidative stress and 

synaptic plasticity have been unexpected. Studies have shown that in young transgenic 

mice with overexpressed intracellular and extracellular superoxide dismutase 1 (SOD-1), 

an enzyme that reduces oxidative stress, an LTP impairment and memory deficit is 

observed [328-330]. However, in older mice these phenotypic impairments were not only 

rescued, but actually improved compared to older WT counterparts and young transgenic 

mice [331, 332]. Similarly, in a transgenic model of Aβ-induced LTP impairment, both the 

overexpression of mitochondrial SOD-2 and administration of antioxidant ROS scavenger 

MitoQ are able to rescue synaptic deficits [319, 333]. Together, this evidence supports 

previous work suggesting physiologic concentrations of ROS are necessary in synaptic 

events (such as LTP induction) in both adolescence and aging [334]. It has become a 

paradox, however, as aging studies have found hydrogen peroxide inhibits LTP in both 

young and aged animals [331].  

Given the growing body of evidence that Aβ proximity to neurons increases 

neuronal hyperexcitability [335-340] and impairs glutamatergic neurotransmission [341-

343], perhaps increased resting Ca2+ in AD is to be expected. It is important to note that in 

addition to studies illustrating an increase in neuronal hyperexcitability when in close 

proximity to Aβ plaques, others have also shown that soluble Aβ will not only reduce 
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glutamate reuptake, but promote LTD [344]. Reduction of glutamate reuptake and excess 

glutamate remaining in the synaptic cleft, aligns well with the promotion of 

hyperexcitability. Bezprozvanny and colleagues have even posited changes in ER Ca2+ 

stores and handling may be a compensatory mechanism to counterbalance increased 

neuronal hyperexcitability and impaired neuronal network activity previously observed in 

AD mouse models [257, 304, 335, 345-347]. Given synaptic impairment and loss are so 

devastating to functional cognition, maintaining neuronal health integrity during 

deleterious conditions caused by Aβ is likely a high priority of many organelles. 

 

1.14 Afterhyperpolarization in AD 

 As the post-synaptic AHP has historically been shown to be enhanced with aging, 

it has been of interest to measure this Ca2+-dependent phenotype in the context of AD as 

well, especially considering the observation of elevated Ca2+ in response to Aβ load. The 

evidence implicating an enhanced AHP alongside increased cytosolic Ca2+ in models of 

AD have been inconsistent, however, as measuring patch clamp recordings of Wistar rat 

cortical tissue sections exposed to low and high concentrations of Aβ has provided 

counterintuitive results [347]. Low concentrations of Aβ elevates the amplitude of the AHP 

as well as expectedly reduces neuronal excitability. Surprisingly, however, the 

administration of high Aβ concentration reduced the AHP amplitude of these neurons and 

increased their excitability. Importantly, as the authors speculate, Aβ could be acting on 

ion channels in both a time- and concentration-dependent manner, such that internalization 

or expression patterns of channels on the plasma membrane are affected. Given AD is a 
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disease of progressive worsening phenotypes, the inclusion of aging in a physiologic 

system may offer a broader scope of characterizing the AHP in AD. 

Indeed, measures of the AHP over a time course in animal models of AD offers a 

physiologically relevant modality that single-timepoint studies lack. Similarly, an elevated 

AHP and reduced neuronal excitability have been characterized in the 5xFAD mouse by 8 

months of age compared to WT littermates using the whole-cell patch clamp technique 

[294]. However, measuring the AHP in non-Tg, PS1KI, 3xTg, and APPSweTauP301L 

models at 1.5, 6, and 18 months using the same approach has shown an increased AHP by 

18 months and only within each respective model, not across genotype [127]. Interestingly, 

in a recent study by our group looking at the AHP in young (2 mo.) genetically modified 

5xFAD mice with slower-developing phenotypes and using the sharp electrode technique, 

a reduction in the AHP amplitude was observed in comparison to WT littermates [348]. 

Unfortunately, due to a limited number of studies measuring the AHP across aging in 

models of amyloidogenesis, variance in the genetic makeup, and use of different 

electrophysiological techniques, more data is needed to sufficiently address the lack of 

consistencies in prior work. 

 

1.15 Estrogen and Ca2+ in AD 

Women are more than 1.5-3 times as likely as men to develop Alzheimer’s disease 

[185]. This could be due to the large shift in endogenous hormones that women experience 

during post-menopause, which downregulates the neuroprotective effect of sex steroids in 

the brain and their involvement in Aβ accumulation [349-352]. Of interest, estrogen 

replacement therapy has been shown not only to reduce the incidence of AD in post-



28 

 

menopausal women [96, 353-357], but also improve cognition in women AD patients as 

well [358-361]. Thus, the inclusion of sex and estrogen therapies in neuronal Ca2+ research 

is an important consideration that should not be overlooked. 

As estrogen therapies have been long thought to possess neuroprotective properties, 

the accumulating evidence of their effect on Ca2+ therapies comes with little surprise. A 

recent study examined the magnitude of injury that cultured PC12 cells exposed to Aβ 

endure when treated with the genistein, a phytoestrogen compound. Down-regulation of 

CaM-CaMKIV signaling pathway protein expression is observed in the genistein treated 

cells, as well as improved cell rate survival and decreased cell damage [362]. Similarly, 

genistein has also been shown to prevent Aβ-mediated reductions in Ca2+-dependent 

protein complexes like PKC pathway activity for neuronal plasticity, generation of ROS, 

synaptic markers synaptophysin and PSD-95, and NMDAR subunits NR1 and NR2B [363-

365]. These findings are not exclusive to one estrogen derivative, however, as the use 

alpha-ZAL phytoestrogen not only ameliorates Aβ-induced apoptosis, but also prevents 

the increase of calpain2, a marker indicative of intracellular Ca2+ overload [366]. 

Additionally, the estrogen receptor agonist hesperetin protects against hydrogen peroxide 

induced oxidative stress and the subsequent rise in cytosolic Ca2+ and caspase-3 activity 

[367]. Beta-estradiol can also mitigate C31-, an APP derivative, mediated increases in 

VGCC current activity as well [368]. Though the clear link between estrogen and Ca2+ 

processes is robust, the inclusion of an aging component in rodent models would bolster 

the understanding of their relationship in the progression of AD.  
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1.16 Divergence between Normal Aging and AD 

Undoubtedly, the last 40 years of investigating the role of Ca2+ in AD research has 

been invaluable to understanding the underlying mechanisms of the disease state. As Ca2+ 

is an essential secondary messenger in neuronal function, it comes without surprise that an 

innumerable amount of evidence has illustrated a role of Ca2+ in both normal brain aging 

and in the pathogenic AD brain. Indeed, altered Ca2+ signaling and levels are present in 

both states. However, a misalignment of outcome measures, as well as inconsistent 

findings, warrant the question of whether Ca2+ dysregulation is the byproduct of aging or 

a precipitating factor that promotes AD progression.  

As aging is the top risk factor for AD development [369-375], perhaps the 

misalignment of Ca2+ dysregulation phenotypes in normal brain aging and AD suggest 

perturbed Ca2+ homeostasis results from a common mechanism that, when altered, diverges 

normal brain aging and AD. The presence of intra- and extracellular alterations like 

hyperphosphorylated tau and Aβ in AD may exacerbate Ca2+-dependent alterations through 

bi-directional interplay, hence the capacity of phenotypes such as Aβ and Ca2+ 

dysregulation to cyclically promote one another. Without the presence of Aβ deposits 

ubiquitously targeting Ca2+ channels, signaling elements, and synaptic plasticity proteins 

in the normal aged brain, it could be that Ca2+ dysregulation is a more linear process that 

aligns better with aging. However, because AD phenotypes are obviously not present in 

normal brain aging, it is challenging to accurately characterize the presence and 

relationship of Ca2+ dysregulation in aging proper and AD.  

Unfortunately, there have been a limited number of studies that have carefully 

measured neuronal Ca2+ handling progression in alignment with aging. Many of the early 
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studies investigating the relationship between Ca2+ and Aβ were conducted in culture, 

which may have hindered the consideration of aging on physiological variables. In in vivo 

work (where in-tact physiologic connections are considered), these animal models often 

have aggressive phenotypes at young ages and subtle underlying phenotypes like neuronal 

Ca2+ handling are veiled by more severe cellular alterations. Clearly there is a relationship 

between the regulation of Ca2+ and Aβ, yet culture preparations do not reflect the impact 

of synaptic deficits on cognitive impairment that is demonstrated in in vivo models of 

aging. Considering synaptic loss and reductions in LTP have been observed prior to Aβ 

and tau burden, along with the essential role Ca2+ plays in synaptic plasticity, it appears 

that initial and progressive neuronal Ca2+ changes require greater attention. 

With respect to a paucity of studies exploring neuronal Ca2+ handling ex vivo across 

age, the following two studies aimed to accomplish 1) measuring direct and indirect Ca2+ 

before, during, and after amyloidogenesis timepoints, 2) comparing these outcome 

measures between models of fAD and sAD, and 3) aligning these results with previous 

evidence of Ca2+ dysregulation in normal brain aging and transgenic AD animal models. 

Because fAD only represents a fraction of total AD cases, the first study looked at Ca2+ 

and Ca2+-dependent processes in an alternative sporadic model of AD that generates 

unregulated quantities of lipid peroxidation byproduct HNE at a young age to elicit AD-

like phenotypes. The second study focused on acquiring the same direct and indirect 

measures of Ca2+ in a genetically altered 5xFAD mouse model that generates AD 

phenotypes more slowly to better align with aging. Additionally, sex differences were 

assessed in the latter study. With the inclusion of distinct age time-points in the acquisition 

of electrophysiological and direct Ca2+ imaging measures, a linear relationship between 
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Ca2+ dysregulation, oxidative stress, Aβ, and cognitive impairment could be derived. It was 

hypothesized that Ca2+ dysregulation would be present in each model before the 

development of Aβ deposit or oxidative stress phenotypes, and progressively worsen with 

age as Aβ load and ROS increased.  
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The following manuscript was published in the Journal of Alzheimer’s Disease: J 

Alzheimers Dis. 2020 Sep 5. pii: JAD200617. doi: 10.3233/JAD-200617. Aldh2-/- mouse 

colonies were maintained at Queen’s University via the lab of B.M. Bennett and shipped 

to the University of Kentucky in several cohorts. All electrophysiological recordings and 

Ca2+ imaging experiments were performed by A.O. Ghoweri through the guidance of O. 

Thibault and J.C. Gant. LTP electrophysiological recordings and analyses were conducted 

by P. Gagolewicz under the guidance of R.D. Andrew and B.M. Bennett. Manuscript 

writing and editing was established by A.O. Ghoweri, O. Thibault, H.N. Frazier, and B.M. 

Bennett. The purpose of the following study was to identify a relationship between Ca2+ 

dysregulation and oxidative stress in a mouse model of increased free oxygen radical 

burden through the knock down of the ALDH2 gene. In this model of sporadic Alzheimer’s 

disease, early-life elevated levels of oxidative stress lead to severe synaptic deficits, the 

presence of amyloid deposits, and cognitive decline in a progressive age-dependent manner 

[376-378]. Oxidative stress is a neuronal marker with the capacity to elicit Ca2+ 

dysregulation, and vice versa, however, while both are present in AD, their relationship 

during the initiating stage of disease development is poorly understood. As homeostatic 

Ca2+ is necessary for important neuronal processes like action potential signaling and 

synaptic plasticity, it was of interest to measure Ca2+ handling across age in the context of 

heightened oxidative stress via ALDH2 knockout. We hope that the novelty of this sporadic 

AD mouse model helps to broaden the understanding of disease progression beyond the 

scope of APP and PSEN1 gene mutations that are commonly featured in familial AD 

models. 
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2.1 Abstract 

Dysregulated signaling in neurons and astrocytes participates in pathophysiological 

alterations seen in the Alzheimer’s disease brain, including increases in amyloid-β, 

hyperphosphorylated tau, inflammation, Ca2+ dysregulation, and oxidative stress. These 

are often noted prior to the development of behavioral, cognitive, and non-cognitive 

deficits. However, the extent to which these pathological changes function together or 

independently is unclear. Little is known about the temporal relationship between Ca2+ 

dysregulation and oxidative stress, as some reports suggest that dysregulated Ca2+ 

promotes increased formation of ROS, while others support the opposite. Prior work has 

quantified several key outcome measures associated with oxidative stress in aldehyde 

dehydrogenase 2 knockout (Aldh2-/-) mice, a non-transgenic model of sporadic 

Alzheimer’s disease. Here, we tested the hypothesis that early oxidative stress can promote 

Ca2+ dysregulation across aging by measuring Ca2+-dependent processes using 

electrophysiological and imaging methods and focusing on the afterhyperpolarization 

(AHP), synaptic activation, somatic Ca2+, and long-term potentiation in the Aldh2-/- mouse. 

Our results show a significant age-related decrease in the AHP along with an increase in 

the slow AHP amplitude in Aldh2-/- animals. Measures of synaptic excitability were 

unaltered, although significant reductions in long-term potentiation maintenance were 

noted in the Aldh2-/- animals compared to wild-type. With so few changes in Ca2+ and Ca2+-

dependent processes in an animal model that shows significant increases in HNE adducts, 

Aβ, p-tau, and activated caspases across age, the current findings do not support a direct 

link between neuronal Ca2+ dysregulation and uncontrolled oxidative stress. 
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2.2 Introduction 

Alzheimer’s disease (AD) is a devastating condition underscored by progressive 

memory loss and profound reductions in quality of life. Currently, there are no effective 

disease-modifying pharmaceutical interventions, and those that are available provide only 

symptomatic relief. It is estimated that 5.4 million Americans currently suffer from AD 

and this number is projected to grow to 13.8 million individuals by the year 2050 [185]. 

Moreover, the cost of patient care is cumbersome to society, healthcare providers, and, 

importantly, the families involved. Although much progress has been made in identifying 

underlying causes and mechanisms, a treatment for AD, much less a cure, remains elusive.  

Several dysregulated intracellular signaling pathways that participate in the 

development of cognitive, as well as non-cognitive, declines have been described for 

dementias, including frontotemporal, vascular cognitive impairment, and AD [379-382]. 

AD has been characterized by several pathological markers including amyloid-β (Aβ) 

plaque deposition, neurofibrillary tangles, impaired glutamatergic and cholinergic 

neurotransmission, increased production of inflammatory cytokines and oxidative stress, 

as well as neuronal Ca2+ dysregulation. A number of transgenic animal models have been 

developed in an attempt to recapitulate these pathological events, with the goal of 

identifying how they manifest and promote disease progression [383-389]. Perhaps not 

surprisingly given the complexity and etiology of the disease, few studies have provided 

clarity regarding the onset of changes and the temporal associations between these 

pathological events. For example, while there is strong evidence that neuronal Ca2+ 

dysregulation can drive oxidative stress, there is also ample evidence to support the 

contrary; that is, that oxidative stress can dysregulate Ca2+ homeostasis [23, 348, 390-395]. 
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To address this, it is advantageous to determine the exact temporal associations between 

these markers in an attempt to highlight their role in disease progression [396-400].  

Oxidative stress-induced damage is critical in the pathogenesis of AD [401-403]. 

While this damage also occurs as part of normal aging, it appears significantly increased 

in the brains of AD patients compared to age-matched elderly controls, suggesting the 

involvement of additional oxidative factors in AD [404-407]. Oxidative damage can be 

mediated through lipid peroxidation (LPx), protein and DNA oxidation, decreases in 

mitochondrial metabolism, and increases in advanced glycation end products [408]. For 

example, 4-hydroxynonenal (HNE) is a reactive aldehydic byproduct of oxidative stress-

induced LPx, and increases in free HNE and HNE protein adducts have been observed in 

both the brain and cerebral spinal fluid of AD patients [406, 407, 409-412]. Studies have 

shown that overproduction of HNE can inhibit dephosphorylation of tau, target key 

mitochondrial enzymes, alter Aβ peptide deposition, mediate cell death, reduce synaptic 

processes/communication, and impair cognition [376, 413-416]. These findings squarely 

position HNE as a mediator of cellular damage in oxidative stress, and perhaps also as an 

initiating factor in AD pathogenesis. Early and widespread manifestation of oxidative 

stress byproducts in AD patients and in AD animal models precede the development of Aβ 

plaques, NFTs, and cognitive decline [417-423]. These temporal associations lead to the 

formulation of the oxidative stress hypothesis of AD [401-403]. While electrophysiological 

and synaptic structure/function relationships linked to oxidative stress can impact cellular 

communication and throughput [333, 424-426], the onset of these changes with respect to 

the manifestation of the phenotype has not been carefully characterized.  



37 

 

While some studies have investigated the association between Ca2+ dysregulation 

and oxidative stress, few labs have directly measured neuronal Ca2+ in the presence of 

rising oxidative stress loads with aging. In the current study, we used an oxidative stress-

induced model of age-related cognitive impairment with a gene deletion of ALDH2, an 

enzyme important for the detoxification of endogenous aldehydes arising from LPx [376-

378]. This model presents with marked increases in LPx byproducts (i.e. HNE protein 

adducts) from as early as 3 months of age, followed by age-related increases in Aβ, 

phosphorylated tau protein (p-tau), and activated caspases, as well as by decreases in 

synaptic proteins [376]. Moreover, deficits in hippocampus-dependent working and spatial 

memory tasks, together with reductions in dorsal CA1 dendritic arborization and spine 

density, are also present in this animal model [376, 377]. The slow, age-driven progression 

of LPx byproduct accumulation highlights the model’s utility and uniqueness in 

recapitulating AD phenotypes in the context of aging, and therefore represents a valuable 

model of sporadic AD. Here, we sought to characterize the relationship between neuronal 

Ca2+ dysregulation and oxidative stress in an animal model that overproduces HNE adducts 

at an early age. We chose specific ages to frame the onset of the histopathology in the 

model before (1.5 months), soon-after (4 months), and well-after (10 months) AD 

pathology manifestation. Oregon Green Bapta-1 (OGB-1)-based neuronal Ca2+ 

fluorescence, synaptic and post-synaptic excitability, and long-term potentiation (LTP) 

changes were characterized to test the hypothesis that early oxidative stress drives Ca2+ 

dysregulation. Only mild alterations in physiological parameters were seen. This result, 

combined with small changes in Ca2+-dependent processes and LTP, do not support the 
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proposal that oxidative stress in this model leads to Ca2+ dysregulation within CA1 neurons 

undergoing AD-like dysfunction. 

 

2.3 Methods 

2.3.1 Animals 

Aldehyde dehydrogenase 2 knockout (Aldh2-/-) mice, derived from a C57BL/6J 

background and generated by a gene-targeting knockout (KO) as previously described 

[427], were kindly provided by Dr. T. Kawamoto (University of Occupational and 

Environmental Health, Kitakyushu, Japan). The wild-type (WT) and Aldh2-/- cohorts used 

in the current study were generated by the mating of heterozygotes (obtained by 

backcrossing Aldh2-/- mice with WT C57BL/6J mice for more than 10 generations) and 

genotyping of the progeny using PCR analysis of genomic DNA (extracted from ear 

punches) utilizing primers previously reported [428]. This process allowed the generation 

of age- and gender-matched WT and Aldh2-/- littermates.  Experimenters were blinded to 

the genotype of the animals during all data acquisition and throughout analyses. 

LTP experiments were conducted on 8-month old animals derived and maintained at 

Queen’s University (Kingston, Ontario, Canada). Young-adult (1.5 months), adult (4 

months), and mid-age (10 months) mice were shipped to the University of Kentucky in 

several cohorts. Each cohort represented animals (male and female Aldh2-/- mice and their 

WT littermates) at a particular age (e.g. 4.5 weeks, 3.5 months, and 9.5 months). As only 

one animal could be recorded per day, recording for each cohort was staggered across 3-5 

weeks. The average age of each cohort was 1.5, 4, and 10 months. Male mice were housed 

individually while females were paired together. All animals were maintained on a 12 h 
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on/12 h off light cycle and were fed Teklad Global 18% protein rodent diet ad libitum. 

Routine assessment of animal health was performed by a veterinarian and animals 

exhibiting signs of morbidity were excluded from the study. Treatment and handling of all 

animals was in accordance with both university’s Institutional Animal Care and Use 

Committee guidelines.  

2.3.2 Intracellular Recordings and Ca2+ Imaging 

2.3.2.1 Slice Preparation 

Mice were anesthetized using inhalable isoflurane (5%) followed by decapitation. Brains 

were quickly removed and incubated in ice-cold low Ca2+, high magnesium artificial 

cerebral spinal fluid (ACSF): (in mM) 114 NaCl, 3 KCl, 10 glucose, 1.25 KH2PO4, 26 

NaHCO3, 0.096 CaCl2 anhydrous, and 7.98 MgCl2 anhydrous. Slices (350 µm thick) from 

the dorsal hippocampus were sectioned using a Vibratome® 3000 (TPI; St. Louis, MO) 

and incubated for at least 2 hours at 32°C in a humidified (95% O2 – 5% CO2) interface-

type chamber in normal Ca2+ ACSF: (in mM) 114 NaCl, 3 KCl, 10 glucose, 1.25 KH2PO4, 

26 NaHCO3, 2 CaCl2 anhydrous, and 2 MgCl2 anhydrous. Slices were then placed on a net 

in a heated recording chamber (RC-22C; Warner Instruments, Co., Hamden, CT) at 32°C 

with a TC2Bip/HPRE2 in-line heating system (Cell Micro Controls; Norfolk, VA) and 

perfused (above and below the slice) with a continuous flow of oxygenated normal Ca2+ 

ACSF at the rate of 1.5 mL/min. Slices were visualized under a Nikon Eclipse E600FN 

microscope. 
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2.3.2.2 Current Clamp Electrophysiology 

Sharp electrodes (~80 – 120 MΩ) were pulled from 1.0 mm diameter borosilicate 

glass capillaries (World Precision Instruments, Inc.; Sarasota, FL) on a Sutter Instruments 

P80 pipette puller (Novato, CA). Tips were initially backfilled with a bolus of 1.25 mM 

OGB-1, pH 7.4 (ThermoFisher Scientific, Catalog number: O6806; Waltham, MA). The 

rest of the electrode was filled with 1 M potassium methyl sulfate (KMeSO4) in 10 mM 

HEPES. A bipolar stimulating electrode was placed on the Schaffer collaterals (SC) for 

stimulation (0.1 ms duration) and the sharp electrode was slowly advanced through stratum 

pyramidale of field CA1 to record primary neurons. A stimulator (SD9K, Astro Med Inc., 

Grass Instruments; Warwick, RI) was used for synaptic activation. Responses were 

recorded through an AxoClamp-2B amplifier (Molecular Devices LLC.; San Jose, CA) and 

digitized at ~ 5-10 KHz with a Digidata® 1550B (Molecular Devices LLC.). Data were 

processed through pClamp (v10.7, Molecular Devices LLC.). While other cell types, 

including interneurons and astrocytes, are present in field CA1, compactness of the 

pyramidal layer, morphology of the cell imaged, and spiking properties of the cell were 

used to limit our recordings to only primary pyramidal neurons. 

2.3.2.3 Afterhyperpolarization (AHP) 

For measures of post-synaptic excitability, cells were held at -65 mV and action 

potential (AP) threshold was set to -55 mV. Four AP bursts were evoked (depolarizing 150 

ms current injection) to generate the Ca2+-dependent AHP every 30 s for 5 min. Three 

measures of the AHP were quantified: the medium AHP (mAHP), the slow AHP (sAHP), 

and the AHP duration. The mAHP was defined as the peak hyperpolarization observed 

immediately after the end of current injection. The sAHP was measured as the change in 
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amplitude at 800 ms post-current injection compared to baseline. Quantification of the 

AHP duration was defined as the time between peak amplitude of the AHP and the return 

to baseline. We report data on 12 neurons/8 mice (1.5 months), 11 neurons/8 mice (4 

months), and 11 neurons/7 mice (10 months) in the WT dataset, and on 17 neurons/15 mice 

(1.5 months), 9 neurons/7 mice (4 months), and 13 neurons/6 mice (10 months) in the 

Aldh2-/- dataset. 

2.3.2.4 Input/Output (I/O) Curves 

For measures of synaptic excitability, cells were held at -70 mV and stimulated 

every 10 s. Excitatory post-synaptic potential (EPSP) amplitudes were measured from an 

increasing series of activation voltages. Amplitudes were used to determine the threshold 

for an AP and then plotted to generate I/O curves and their slopes. We report on data from 

10 neurons/7 mice (1.5 months), 10 neurons/8 mice (4 months), and 11 neurons/7 mice (10 

months) in the WT dataset, and 16 neurons/15 mice (1.5 months), 8 neurons/6 mice (4 

months), and 11 neurons/6 mice (10 months) in the Aldh2-/- dataset. 

2.3.2.5 Repeated Synaptic Stimulation 

Synaptic stimulation intensity during repeated synaptic stimulation (RSS; 10 s, 7 

Hz) was set at the threshold for an AP.  Outcome measures included synaptic 

hyperpolarization and EPSP facilitation in relation to the first EPSP (baseline) in the train. 

Synaptic hyperpolarization was measured as the mean peak hyperpolarization amplitudes 

following the 6th through 9th EPSPs. The growth of the EPSP during the train was measured 

early (EPSPs 6 through 9) and late (last four EPSPs) during RSS. We report on data from 

10 neurons/7 mice (1.5 months), 10 neurons/8 mice (4 months), and 11 neurons/7 mice (10 
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months) in the WT dataset, and 15 neurons/14 mice (1.5 months), 8 neurons/6 mice (4 

months), and 11 neurons/6 mice (10 months) in the Aldh2-/- dataset. 

2.3.2.6 Ca2+ Imaging 

Cells were visualized under a 40x objective using a filter cube (Ex: 470/40 nm; Em: 

525/50; Dichroic 495 nm; Chroma Technology Corp.; Bellows Falls, VT). Imaging 

Workbench (INDEC BioSystems; Los Altos, CA) was used to quantify signals. A Lambda 

DG-4 (Sutter Instruments; Novato, CA) was used as a source to activate the fluorophore 

with exposures in the range of 250-800 ms, depending on the depth of the cell imaged. 

OGB-1 dye was allowed to diffuse from the tip of the recording electrode for 10-15 min 

prior to initiation of Ca2+ imaging experiments. A photometrics camera (Teledyne 

Photometrics; Tucson, AZ) was used to image Ca2+ fluorescence and kinetics. Two regions 

of interest (ROI) were created: one around the cell body and another of similar size in tissue 

adjacent to the imaged cell. Background subtraction and normalization to baseline (ΔF/F%) 

were used during analysis of OGB-1 signal. For quantification of resting fluorescence, 

values were averaged before RSS and normalized to the depth of the recorded cell. 

Outcome measures included rise time, peak amplitude, decay time, and area-under-the-

curve (AUC) (ΔF/F %*s) during RSS and were derived using ClampFit (Molecular 

Devices LLC.; San Jose, CA) and SigmaPlot (Systat Software, Inc.; San Jose, CA). Data 

reported here were taken from 8 neurons/7 mice (1.5 months), 7 neurons/5 mice (4 months), 

and 9 neurons/6 mice (10 months) for the WT dataset, and 8 neurons/8 mice (1.5 months), 

6 neurons/5 mice (4 months), and 11 neurons/6 mice (10 months) for the Aldh2-/- dataset. 

 

 



43 

 

2.3.2.7 Cell Health and Exclusion Criteria 

Only neurons that fit the following criteria were included in this study: input 

resistance ≥ 30 MΩ, holding current ≤ than -350 pA, and AP peak ≥ 0 mV. If the number 

of APs during RSS was greater than two standard deviations (SD) from the mean, the cell 

was deemed an outlier and removed from the analysis. A summary of these values is 

reported in Table 1.  

2.3.3 LTP Induction and Measures 

2.3.3.1 Slice Preparation 

Hemi-brain slices from the dorsal hippocampus were obtained from male KO and 

WT mice at 8 months of age. Animals were sacrificed by decapitation, and the brain was 

rapidly extracted and transferred into a slicing chamber containing ice-cold ACSF ([in 

mM] 124 NaCl, 26.2 NaHCO3, 4.4 KCl, 1.3 MgSO4, 1 NaH2PO4, 2.5 CaCl2, 10 glucose, 

and 19.7 mannitol; pH 7.3-7.4) saturated with carbogen (95% O2/ 5% CO2). The brain was 

split into two hemispheres using a scalpel and sectioned into 400 μm transverse slices using 

a vibratome (Leica VT1200s; Leica Microsystems, Concord, ON). Slices were then 

transferred into a submerged incubation chamber filled with ACSF, continuously bubbled 

with carbogen, maintained at 33.5°C, and allowed to recover for 2 hours prior to recording. 

2.3.3.2 Extracellular Recordings 

Following incubation, each slice was transferred into a submersion-type recording 

chamber maintained at 32°C and continuously perfused with carbogen-saturated ACSF at 

a rate of 2-3 mL/min. A concentric bipolar stimulating electrode (Rhodes Medical 

instruments, Catalog Number SNE-100X; Tujunga, CA) was placed in the SC fibers, while 

a glass recording electrode (tip resistance 1-2 MΩ) containing ACSF was placed within the 
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stratum radiatum of area CA1 of the dorsal hippocampus. Stimulation (0.1 ms duration) 

was delivered by an electrode connected to a stimulus isolation unit (FE180 Stimulus 

Isolator; AD Instruments, Colorado Springs, CO, USA) providing a constant current 

output. The field postsynaptic potentials (fPSPs) in CA1 were recorded with glass 

electrodes referenced against an Ag/AgCl pellet in the recording chamber bath. The 

recording electrode was connected to an Axopatch-200A amplifier (Molecular Devices 

LLC.) and A/D converter (PowerLab 4/35 running v8 LabChart; AD Instruments), 

allowing the signal to be filtered (low pass at 1 kHZ), digitized (10 kHz), and stored for 

offline analysis. The signal was additionally conditioned online using the Hum Bug (Quest 

Scientific, Vancouver, BC).  

2.3.3.3 I/O Curves 

I/O curves were established by stimulating the SC at increasing intensities (0.5-

2.0mA in 0.1mA increments). Data reported here were taken from 15 WT and 10 Aldh2-/- 

mice (an error was made saving the data resulting in the loss of one observation point). 

Based on these curves, a stimulation intensity yielding ~50-60% of the maximal fPSP 

amplitude was used for baseline and LTP induction recording. 

2.3.3.4 LTP Induction 

Data reported here were taken from 15 WT and 11 Aldh2-/- mice. Hippocampal 

fPSPs (every 30 s) were recorded until 30 min of stable baseline was achieved (≤ 10% 

difference between successive data points for fPSPs, averaged over 5 min epochs). 

Subsequently, high frequency stimulation (HFS) consisting of 100 single pulses (0.1 ms at 

100 Hz) per burst (pulse intensity as determined above) was delivered to the SC fibers. 
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Two trains of HFS were delivered in total, with 30 s between trains. Hippocampal fPSPs 

were recorded for 60 min following the second HFS episode. 

2.3.3.5 Statistical Analyses 

Electrophysiological and imaging data were tested for significance on main effects 

of age and genotype using two-way ANOVAs (SigmaPlot; Systat Software, Inc.; San Jose, 

CA). Sex differences using three-way ANOVAs (SigmaPlot; Systat Software, Inc.; San 

Jose, CA) were also investigated, but are not reported here (see results). Two-way repeated 

measures mixed ANOVAs (GraphPad Prism 8) were used to determine differences in the 

extent of LTP in WT and Aldh2-/- mice. Greenhouse-Geisser corrections were applied 

where appropriate. Student’s t-tests (unpaired) were used to investigate LTP maintenance 

40-60 min after induction. For all LTP experiments, only one recording was obtained per 

animal. A p value of < 0.05 was considered to be significant for all measures. All data are 

reported as means ± standard error of the mean (SEM). 

 

 

2.4 Results 

Previous work using Aldh2-/- mice has shown little evidence of sex differences in this 

KO model [376, 429]. Because statistical significance was quantitatively consistent across 

the variables measured irrespective of the inclusion of sex, and because of the low number 

of recorded/imaged cells in some groups, sexes were combined for measures of Ca2+ and 

both pre- and post-synaptic excitability (Figures 2.1-4). Nevertheless, we present ANOVA 

results on key outcome measures either with sex combined or separated by sex. LTP 

measures were only conducted in male WT and KO mice (Figure 2.5). 
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2.4.1 Neuronal Health Measures 

Table 2.1 shows outcome measures describing neuronal health during 

electrophysiological recordings and Ca2+ imaging experiments. Resting fluorescence 

normalized to cell depth showed no differences across age or genotype (p > 0.05). Input 

resistance and AP amplitude were unaltered across aging and genotype (p > 0.05). A 

significant main effect of aging was observed on holding current measures (F (2,74) = 5.288, 

p < 0.01; two-way ANOVA), however, post hoc analysis revealed this was only present in 

the WT group (WT p = 0.025, Aldh2-/- p > 0.05). Additionally, a significant main effect of 

aging was present in the number of APs elicited during imaging across both genotypes (F 

(2,48) = 17.756, p < 0.001; two-way ANOVA). While the number of APs at 4 months was 

significantly higher (stimulation setting error), this had no noticeable impact on Ca2+ levels 

(Figures 4E and 4F). In fact, normalization of AUC data to the number of action potentials 

triggered during activation did not alter outcomes (i.e. no significant change in Ca2+ with 

age or genotype; data not shown).  
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Table 2.1. Measures of Neuronal Health and Resting Fluorescence. 

 

 

 

 

 

 

 

Genotype 
Age 

(months) 

Holding 

Current (pA) 

Input 

Resistance 

(MΩ) 

Action 

Potential 

Amplitude 

(mV) 

# of Action 

Potentials  

Resting 

Fluorescence  

(ΔF/F) 

WT 

1.5 -83.3 ± 25.4 67.0 ± 5.4 12.8 ± 1.7 69.9 ± 0.1 68.6 ± 20.2 

4 -182.5 ± 21.3 63.0 ± 3.3 7.3 ± 1.6 75.6 ± 0.4 51.0 ± 17.5 

10 -152.7 ± 36.2 55.8 ± 4.7 11.4 ± 1.6 70.2 ± 1.3 79.2 ± 19.7 

Aldh2-/- 

1.5 -105.6 ± 21.2 65.3 ± 4.6 11.3 ± 1.4 70.0 ± 0 73.3 ± 27.9 

4 -167.8 ± 29.6 55.2 ± 4.4 9.9 ± 1.5 76.0 ± 0 63.9 ± 23.6 

10 -143.8 ± 20.1 68.1 ± 4.3 7.5 ± 1.1 70.5 ± 1.5 105.8 ± 24.0 

Significance - *p < 0.01 n.s. n.s. *p < 0.001 n.s. 
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Table 2.1. Measures of Neuronal Health and Resting Fluorescence. Properties of 

neuronal health were compared across age and genotype. Holding current and input 

resistance measures reflect plasma membrane integrity and “leakiness.” Additionally, 

action potential amplitude during AHP data acquisition and the number of action potentials 

during Ca2+ imaging are reported. Resting fluorescence was normalized to the depth of 

each cell imaged. While a significant aging effect on holding current was seen from 1.5 to 

4 months (p < 0.01), this was only present within the WT group. A main effect of age on 

the number of action potentials triggered during imaging was seen (p < 0.001), however 

this did not have an impact on Ca2+ (see results). Asterisks (*) represent significant main 

effect of age. Numbers represent means ± SEM and “n.s.” indicates non-significance. 
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2.4.2 Post-Synaptic Excitability Changes (AHP) 

We characterized the Ca2+-dependent AHP in WT and Aldh2-/- animals across age 

(Figure 2.1A) and identified a significant age-dependent reduction in the amplitude of both 

the mAHP (Figure 2.1B; F (2,74) = 4.391, p < 0.02; two-way ANOVA) and sAHP (Figure 

2.1C; F (2,74) = 5.050, p < 0.01; two-way ANOVA). A slightly larger sAHP was also present 

in the Aldh2-/- group, highlighted by a main genotype effect (F (2,74) = 4.765, p < 0.04; two-

way ANOVA). Despite these observations, the AHP duration remained unaltered (Figure 

2.1D; p > 0.05). Of interest, a main effect of sex was also observed in the mAHP (F (2,74) = 

4.141, p < 0.05; three-way ANOVA) in which female mice displayed an overall reduction 

in AHP amplitude irrespective of genotype (data not shown). No significant sex differences 

were present in the sAHP or AHP duration (p > 0.05). These findings suggest that a 

reduction in the AHP seems to develop with age in this animal model irrespective of 

genotype. Interestingly, our lab has previously shown that in 14 month old APP/PS1 mice, 

a reduction in L-VGCC density is seen in CA1 neurons when compared to WT [242]. These 

results differ from those seen in aging rats and rabbits where significant increases in Ca2+-

mediated processes (including the AHP) are typically observed [2, 8, 9]. Perhaps this 

divergence is reflective of the particular genetic background in the Aldh2-/- model, and 

highlights the nongeneralizable nature of the Ca2+ hypothesis of brain aging and dementia.  

 



50 

 

 

Figure 2.1. AHP in WT and Aldh2-/- Mice Across Age. 

A. Representative AHP following post-synaptic depolarization with 4 action potentials. B.-

C. A main effect of aging (p < 0.02) on the mAHP and sAHP was observed within each 

genotype. A main effect of genotype was also present on the sAHP (p < 0.04). D. Measures 

of the AHP duration were unaltered across aging or genotypes. We report data on 12 

neurons (1.5 months), 11 neurons (4 months), and 11 neurons (10 months) in the WT 

dataset, and on 17 neurons (1.5 months), 9 neurons (4 months), and 13 neurons (10 months) 

in the Aldh2-/- dataset. Asterisks (*) represent significance across aging (above left and right 

bars) and genotype (top horizontal bar separated by an ampersand) at p < 0.05. 
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2.4.3 Synaptic Excitability 

Neuronal synaptic excitability was derived from measures of I/O curves (Figure 2.2), 

as well as from EPSP amplitudes during RSS (Figure 2.3). Given prior work showing 

significant decreases in synaptophysin (an integral membrane protein of synaptic terminals 

[376]), and reports of altered dendritic morphology in the Aldh2-/- mouse, including 

reduced dendritic length and spine density [377], it is surprising that measures of neuronal 

excitability (Figure 2.2B) and short-term potentiation (Figures 2.3C-E) were not 

significantly different across age or genotype (p > 0.05). This could reflect the resilience 

of this mouse model to significant alterations in dendritic morphology, highlight the 

presence of a successful compensatory mechanism, or provide evidence that physiological 

activation under relatively low frequencies is spared. Sex differences were also 

investigated, but no significant differences were detected on either I/O or RSS measures (p 

> 0.05; data not shown). 

2.4.4 Ca2+ Imaging 

Somatic Ca2+ kinetics before, during, and after RSS were compared across genotype 

and age (Figures 2.4A and 2.4B). No significant alterations in Ca2+ handling were seen 

(Figures 2.4C-F; p > 0.05). Given that minor, if any, changes in the AHP were present, 

these results are perhaps not surprising. Indeed, larger AHPs are often associated with 

increases in direct/indirect Ca2+ measures [11, 97, 106]. Sex differences were not seen on 

any of the Ca2+ measures quantified (p > 0.05; data not shown). 
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Figure 2.2. Extracellular Synaptic Activation. 

A. Example of EPSPs recorded below and at threshold of an action potential. Inset shows 

I/O plot fit from EPSP amplitudes with increasing stimulation intensity. B. Synaptic 

excitability derived from I/O measures (slopes). Black dot represents the time at which 

synaptic stimulation was initiated. We report on data from 10 neurons (1.5 months), 10 

neurons (4 months), and 11 neurons (10 months) in the WT dataset, and 16 neurons (1.5 

months), 8 neurons (4 months), and 11 neurons (10 months) in the Aldh2-/- dataset. Results 

showed no differences across genotype or age (p > 0.05). 
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Figure 2.3. Repeated Synaptic Stimulation (RSS).  

A. Example of RSS showing EPSP potentiation and synaptic hyperpolarization. B. Upward 

arrows illustrate growth in EPSP amplitude during repeated activation (7 Hz for 10 s), 

while downward arrows show increased amplitude in the synaptic hyperpolarization. 

Action potentials were truncated for illustration. C.-E. Synaptic hyperpolarization 

measured during RSS and EPSP facilitation taken during the first (early) and last (late) 

periods of RSS. Black dots represent the time at which synaptic stimulation was initiated. 

We report on data from 10 neurons (1.5 months), 10 neurons (4 months), and 11 neurons 

(10 months) in the WT dataset, and 15 neurons (1.5 months), 8 neurons (4 months), and 11 

neurons (10 months) in the Aldh2-/- dataset.  No differences in synaptic hyperpolarization, 

early EPSP facilitation, or late EPSP facilitation were detected across age or genotype (p > 

0.05).  
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Figure 2.4. Changes in OGB-1 Fluorescence During 10 s RSS. 

A. Example of an imaged neuron loaded with OGB-1. B. Normalized fluorescence change 

across time (% ΔF/F) before, during, and after synaptic stimulation in the cellular 

compartment (dark line) and in the extracellular space adjacent to the cell (gray line).  C.-

F. Measures of Ca2+ kinetics (rise and decay time) and somatic Ca2+ levels (peak amplitude 

and AUC). Data reported here were taken from 8 neurons (1.5 months), 7 neurons (4 

months), and 9 neurons (10 months) for the WT dataset, and 8 neurons (1.5 months), 6 

neurons (4 months), and 11 neurons (10 months) for the Aldh2-/- dataset. No significant 

differences across age or genotype were detected (p > 0.05).  
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2.4.5 Long-term Synaptic Plasticity Changes 

The slope of fPSPs recorded in dorsal CA1 of WT and Aldh2-/- mice increased with 

higher stimulation intensities (F(1.827, 42.02) = 166.2, p < 0.0001; two-way repeated measures 

mixed ANOVA); however, no significant effects were noted (Figure 2.5A; p > 0.05), 

highlighting a lack of difference in excitability between the two groups. LTP changes were 

measured following a robust LTP induction protocol in a subset of mid-age (8 months) 

male mice. While no main effect of genotype was detected on measures of fPSP slopes 

across the multiple phases of LTP induction and maintenance (Figure 2.5B; p > 0.05), 

analysis of the data during the maintenance phase of LTP (the last 20 min) revealed a 

significant genotype effect with greater fPSP slopes in WT (201 ± 5%) compared to Aldh2-

/- mice (180 ± 5%; t = 16.84, p < 0.0001; unpaired t-test). Perhaps the use of a strong 

protocol for LTP induction (2X 100 Hz) masked differences in the initial phases of the 

potentiation. 
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Figure 2.5. LTP Outcomes. 

A. I/O curves for fPSP slopes (mV/ms; mean ± SEM) elicited in CA1 by single pulse 

stimulation of the SC in WT and Aldh2-/- mice. The fPSP slope increased with higher 

stimulation intensities, but no statistical differences between the two groups were detected 

(p > 0.05). B. fPSP slope (mV/ms; mean ± SEM; normalized to baseline) before and after 

HFS (arrow) in WT and Aldh2-/- mice. Delivery of HFS reliably increased the fPSP slope, 

however no main effect of genotype was detected (p > 0.05). Data reported here were taken 

from 15 WT and 11 Aldh2-/- mice for LTP induction and 15 WT and 10 Aldh2-/- mice for 

I/O curves. Analysis of the maintenance phase of LTP (the last 20 min) revealed a 

significant genotype effect with somewhat reduced potentiation in the Aldh2-/- animals (t = 

16.84, p < 0.0001; unpaired t-test). Asterisks (*) represent significant group fPSP slope 

differences at specific time points (t-test) at p < 0.05. Insets depict typical fPSP before 

(smaller downward deflection) and after (larger downward deflection) HFS in WT (top) 

and Aldh2-/- mice (bottom; calibration is 0.5 mV and 5 ms). 
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2.5 Discussion 

Measures of Ca2+-dependent potentials in single neurons are a historically-reliable 

method of indirectly detecting alterations to Ca2+ homeostasis. Indeed, changes in the AHP 

with aging reflect Ca2+ channel density and function, as well as Ca2+ buffering and 

signaling [80, 97, 103, 161, 430]. In this study, we measured Ca2+-related processes in 

Aldh2-/- and WT mice at different ages in order to draw temporal associations between 

dysregulated Ca2+ and age-mediated increases in oxidative stress byproducts. Based on 

previous literature thoroughly characterizing the onset of both behavioral and cellular 

biomarkers, we hypothesized that in this sporadic model of AD with uncontrolled oxidative 

stress, early oxidative stress could promote Ca2+ dysregulation. To our surprise, however, 

Ca2+-dependent processes were largely unaltered. Further, while age-dependent reductions 

in the mAHP and sAHP were present, alterations in synaptic processes (both short-term 

and long-term), as well as Ca2+ kinetics, remained relatively unchanged. However, we did 

note the presence of a small, albeit significant, reduction in LTP maintenance in the Aldh2-

/- animals compared to WT. 

In this animal model, behavioral deficits are present as early as 3.5 (novel object 

recognition and Y-maze) or 6 months of age (Morris water maze) [376]. Aβ and p-tau 

accumulation is significant by 6 months, while HNE adducts and several caspases are 

clearly elevated by 3 months when compared to controls. Our analysis of Ca2+-dependent 

processes at early time-points (1.5-4 months) does demonstrate a significant reduction in 

the mAHP and sAHP. However, given that the mAHP and sAHP were reduced in both the 

WT and the Aldh2-/- groups with age, we cannot dissociate the effect of aging from that of 

the genetic manipulation. While there has been some evidence of genotype-mediated 
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reductions in Ca2+ processes in animal models of AD [242, 348], it is surprising that a 

significant age-dependent reduction in the AHP was present here. Given the importance of 

the genetic backgrounds in animal models and their impact on physiological processes 

[431-435], it is likely that this particular mouse model, irrespective of the ALDH2 

manipulation, presents with a reduction in the AHP across age, thus reflecting on the non-

generalizable nature of neuronal Ca2+ dysregulation with age across AD models. Previous 

work from different labs has reported no loss of hippocampal neurons as well as similar 

levels of synaptic proteins in behaviorally-impaired aged animals compared to young 

counterparts [432, 433, 436]. Perhaps the mechanism underlying the age-dependent 

reduction in the AHP presented here in both the WT and Aldh2-/- groups is dependent on 

the genetic background of the animals, and may highlight an increase in the resilience of 

the animal to the impact of elevated HNE adducts. Overall, however, it does not appear 

that the presence of a greater LPx burden specifically induces Ca2+ dysregulation. While 

the electrophysiological phenotype and outcome measures were only minimally affected, 

several potential mechanisms are discussed.   

Firstly, in the current study, animals may not have been exposed to sufficient 

cumulative oxidative stress to alter neurophysiological properties. No electrophysiological 

studies investigating the Aldh2-/- mouse at more mature ages (i.e., 18 months) have been 

published. Nevertheless, evidence from other models of AD does suggest a worsening of 

the phenotype with age. Indeed, while there is a paucity of aging studies characterizing 

Ca2+-mediated AD phenotypes at much later ages, a significant age-dependent increase in 

hippocampal L-VGCC density and AHP amplitude has been reported in transgenic AD 

mouse models at 12-18 months of age [127, 241]. Given that our work specifically 
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addresses alterations in Ca2+ homeostasis in a sporadic model of AD, it is not clear how 

these changes align with prior literature that has commonly used transgenic models of 

familial AD. Thus, it is possible that the Aldh2-/- mouse presents with mild 

electrophysiological alterations during early to mid-life that worsen with more advanced 

age. Alternatively, the use of a ‘2-hit’ model could unmask more robust changes at a 

younger age in this particular model, as previous evidence has demonstrated the 

effectiveness of using a secondary insult in models of traumatic brain injury (TBI), 

Parkinson’s disease, and even schizophrenia to detect complex or less-sensitive processes 

[437-440]. In fact, a previous study using this animal model in combination with mild 

(TBI) recently reported significant increases in inflammatory cytokines, as well as 

sustained cognitive deficits, when compared to sham controls [441]. In this work, 

administration of anti-inflammatory agents post-TBI ameliorated both inflammatory and 

cognitive impairments of the Aldh2-/- mice.  

Moreover, reports conducted in the dorsal hippocampus of Aldh2-/- mice have 

highlighted morphological changes in this area only, with no alterations detected in the 

ventral hippocampus or primary sensory cortex [377], suggesting that the impact of 

oxidative stress may be region-selective. In this animal model, the dissociation between 

the poor behavioral phenotype and the paucity of Ca2+-mediated electrophysiological 

changes in the hippocampus support the notion that brain regions other than the 

hippocampus can also participate in the encoding, storing, and recalling of memory 

processes [442-446]. Further, the location of the KCa AHP channels is important to 

consider. KCa channels, which are critical to neuronal repolarization and the AHP, have 

been mostly identified in the somatodendritic region of pyramidal neurons [447-451]. 
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Thus, it is possible that recordings of mostly somatic potentials using the sharp electrode 

technique did not permit identification of synaptic changes in dendritic spines or finer 

processes negatively impacted in the Aldh2-/- model [377]. Finally, the possibility that the 

genetic manipulation may have induced a series of compensatory cellular events including 

increases in Ca2+ buffering, mitochondrial metabolism, or changes in the location and 

density of Ca2+ or K+ channels, should be considered. Future studies investigating these 

potential mechanisms are clearly needed. 

With respect to the small, albeit significant, reduction in LTP in the Aldh2-/- mouse, 

it is possible that the robust induction protocol used here may have thwarted more subtle 

differences in synaptic plasticity. Previous evidence has shown that age-related deficits in 

LTP induction were only seen when less robust (perithreshold) stimulation protocols were 

used [51, 452-455]. Future studies investigating Ca2+ dysregulation across different cell 

types and brain regions at more advanced ages in this animal model should be initiated to 

better characterize the potential impact of oxidative stress on behavioral outcomes. In 

summary, with so few changes in Ca2+ and Ca2+-dependent processes detected in an animal 

model with significant increases in HNE adducts, Aβ, p-tau, and activated caspases across 

age, the current findings do not support a direct link between neuronal Ca2+ dysregulation 

and uncontrolled oxidative stress.  
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CHAPTER 3. THE SPORADIC AND FAMILIAL AD MOUSE MODELS 

3.1 Aldh2-/- Study Results  

The work in Chapter 2 explored the utility of a nontraditional model of sporadic 

AD (sAD), the Aldh2-/- mouse, as a way of further characterizing the relationship between 

oxidative stress and Ca2+ dysregulation with aging. Previous evidence has shown that in 

the Aldh2-/- mouse model, knockdown of the ALDH2 gene elicits a significant 

accumulation of lipid peroxidation byproduct 4-hydroxynonenal (HNE) by 3 months of 

age and remains elevated throughout life [376]. This early elevation of HNE warrants a 

progressive increase in phosphorylated tau, Aβ, and caspases 3 and 6, while concurrently 

reducing synaptic strength markers synaptophysin, total CREB, and PSD-95. Additionally, 

considering the wealth of literature supporting the proposal that HNE has a role as an 

initiating factor in AD pathogenesis [406, 407, 410, 411, 456-459], as well as the 

observation of an impaired performance in learning and memory tasks by 6 months of age 

[376], the Aldh2-/- mouse is positioned as a unique model for studying AD-like pathology 

without the genetic manipulation of APP or PSEN genes. Despite a wide range of 

phenotypes characterized in the Aldh2-/- mouse model, a lack of reporting on direct and 

indirect neuronal Ca2+ markers was apparent. Thus, in collaboration with Queen’s 

University, we sought to characterize measures of neuronal Ca2+ handling in alignment 

with similar ages previously studied.  

The relationship between Ca2+ dysregulation and oxidative stress in aging and AD 

is complicated, as each have been proposed as initiating elements in AD pathogenesis while 

also having been shown to promote one another when one is increased [460-466]. Indeed, 

if oxidative stress propagates the dysregulation of Ca2+ then the knockdown of the 
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regulatory ALDH2 gene from birth would ideally result in changes pertaining to Ca2+ and 

Ca2+-mediated processes. However, much to our surprise, few changes in Ca2+ handling 

were detected as the animals aged. Given both Aβ and phosphorylated tau are present in 

Aldh2-/- mice [376] and that a recent morphometric characterization of this model has 

shown deleterious alterations to the dendritic morphology of dorsal and ventral CA1 

pyramidal neurons [376, 377], it is difficult to address the lack of Ca2+ changes here. Even 

if this was evidence to disprove a relationship between oxidative stress and Ca2+ 

dysregulation, surely the well-documented ties between Ca2+ and Aβ [218, 220, 221], Ca2+ 

and phosphorylated tau [467-469], and Ca2+ and synaptic dysfunction [55, 56, 165] would 

have manifested into a Ca2+-related alteration of some capacity. Perhaps a compensatory 

alteration of Ca2+ binding proteins or plasma membrane/ER Ca2+ channel density or 

function could explain the lack of Ca2+ changes, but only additional experimentation can 

truly address this. Additional insights regarding the lack of Ca2+ alterations are discussed 

in Chapter 2.5. Nevertheless, these findings underscore a lack of consistency in aging and 

AD models’ phenotypic expression as mentioned in Chapter 1, highlight the complexity 

of AD progression, and emphasize the necessity of using a wide range of models to 

elucidate underlying mechanisms of AD development and pathogenesis. 

 

3.2 Mouse Models of AD 

3.2.1 The Utility of Mouse Models 

Since the synthesis of the first transgenic mouse model by virologist Rudolph 

Jaenisch in 1974 [470], the use of genetically modified animals in basic research has 
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radically changed how scientists study disease states. Transgenic mouse models are 

typically developed through the introduction of complementary DNA with a transgene to 

the pronucleus of a zygote and then subsequently implanted into a pseudopregnant dam for 

gestation [471, 472]. Animal research models provide investigators with high throughput 

information on physiologic measures in controlled environments. Such data is invaluable 

to identifying biological nuances at molecular, cellular, histological, and behavioral levels. 

Further, as these are living organisms, intrinsic biological variables such as aging, sex, and 

circadian rhythm can be measured and accounted for when genetically modifying mice. 

Homologous genes between rodents and humans can lead to translatability of data that 

bolster advancements in novel therapeutics. It has been through the utilization of 

genetically modified mice of AD that researchers have learned more about the precipitation 

of AD hallmarks during aging and in alignment with physiology. Moreover, the 

identification of the APP and PSEN genes and their involvement in AD progression has 

been instrumental to developing better models that adequately recapitulate AD-like 

pathology [473-477]. 

3.2.2 AD-like Pathology in Mouse Models 

With over 100 models of AD-like pathology available for commercial use [478], 

the decision of selecting the right one for experiments can be challenging. Adding to this 

cumbersome endeavor is the lack of a perfect AD surrogate amongst many established 

models (i.e. it is incredibly difficult and complex to produce rodent offspring with desired 

genetic modifications that mimic all AD neuropathology) [471, 478]. Thus, generally a 

mouse model will not exhibit all of the classic hallmarks of AD pathogenesis (Aβ, tau, 

neurodegeneration such as atrophy and neuronal loss, etc.). Since the development of the 
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first successful mouse of amyloidogenesis [479], dozens of subsequent models have been 

designed to mutate the APP gene at various sites that recapitulate APP processing through 

the β- and γ-secretase pathway in a time- and concentration-dependent manner that mimics 

human AD. Despite this, while low concentrations of hyperphosphorylated tau have been 

detected in some of these models, characteristic neurofibrillary tangles of human AD are 

seldom present, if at all [480]. The same can be said for many other models exhibiting 

tauopathies or neurodegeneration, but other hallmarks like Aβ amyloidosis or neuronal loss 

may not be present [478]. This has led researchers to investigate alternative methods to 

recapitulate AD pathology such as viral vector transgenesis through lentivirus and adeno-

associated virus techniques [471, 478, 481-483].  

3.2.3 Viral Gene Delivery for Modelling AD 

Viral gene delivery or transgenesis is an effective tool for eliciting region-specific 

long-term transgene expression. In AD, amyloid and tau pathologies have been 

recapitulated in both rat and mouse models using these techniques, although APP mutations 

have yielded considerably less success in amyloidogenesis [478]. The use of viral 

transgenesis can be advantageous as it is cheaper than germline modifications, allows for 

neuronal projection analysis of specific brain regions, and can be used in young or aged 

animals. However, like using genetic modification, virus gene therapy has drawbacks that 

limit its application. Limitations such as brain injury from stereotaxic injection, the finite 

packaging size of a viral vector, and occasional difficulty with genomic integration require 

important consideration when planning experiments [471, 478]. Nevertheless, the growing 

optimization of these techniques will surely cultivate novel and safer application methods 

that promote AD-like pathological progression in animal models in future studies. 
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3.2.4 Sporadic and Familial AD Mouse Models 

As previously mentioned in Chapter 3.2.2, the development of many AD mouse 

models stems from the identification of the APP and PSEN genes, and the ability to 

promote amyloidogenesis in a mouse [479]. Importantly, APP and PSEN are two genes 

known to promote familial AD (fAD), which represents only 5% of total AD cases, while 

the remaining 95% are sporadic cases [185]. However, despite this disproportion within 

total cases, sAD mouse models are less frequently used in research. As environmental, 

lifestyle, and genetic modifying factors are key components that define sAD, it is important 

that these aspects are included into a sAD model design. Naturally, these are difficult to 

recapitulate into a model using a reproducible design that also elicits AD pathology. 

Though the Aldh2-/- model in Chapter 2 may not rely on environmental or lifestyle 

alterations to warrant AD development and progression, the early generation of lipid 

peroxidation byproduct HNE and subsequent AD hallmarks without influencing the APP 

or PSEN genes positioned the model as being amenable to study. 

Despite selecting the Aldh2-/- mouse for experimentation, it is important to once 

again note that the perfect AD surrogate has yet to be identified. While a great host of 

information can be acquired by studying AD through the lens of the Aldh2-/- model, it too 

has limitations. For example, like many models, the Aldh2-/- mouse does not form 

neurofibrillary tangles, but only concentrations of phosphorylated tau [376]. Considering 

the well-established evidence that increased neurofibrillary tangle density correlates with 

reduced cognition in human AD [484-489], a model devoid of true neurofibrillary tangles 

could be perceived as a shortcoming. Further, Aβ peptides both monomerize and 

oligomerize in Aldh2-/- mice, but do not form amyloid deposits [376]. With consideration 
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of the immense amount of literature highlighted in Chapter 1 showing Ca2+ changes with 

aging and AD, and the few Ca2+ changes observed here, this may be a limitation as well. 

Nevertheless, alongside increases in HNE, Aβ, and p-tau, the presence of irregularities in 

synaptic proteins and cognitive impairment support use of this model to study sAD. 

Irrespective of the Aldh2-/- mouse’s utility to study sAD, we decided it was of interest to 

make a direct comparison of our findings to a model of fAD. As many fAD models possess 

pathological features that are useful markers for studying age-dependent changes in both 

neuronal and behavioral aspects, we decided to look at similar outcome measures of Ca2+ 

dysregulation in the 5xFAD mouse.  

 

3.3 The 5xFAD Familial Model of AD 

The decision to use the 5xFAD mouse in our second study was due to the model’s 

reliable manifestation of many AD-like pathologies in an age-dependent manner. Through 

genetic manipulation of 3 APP and 2 PSEN1 mutations, 5xFAD mice on a C57BL6 genetic 

background exhibit extracellular amyloid deposits by 2 months [490], synaptic deficits at 

2-3 months [491], and spatial working memory impairment between 3 and 6 months of age 

[492]. Like many other transgenic fAD models, 5xFAD mice do not develop any 

neurofibrillary tau tangles during aging. Importantly, only a few studies have reported 

indirect Ca2+-related changes in the 5xFAD mouse [294, 348, 493, 494]. An increased 

afterhyperpolarization was noted in 8-month old 5xFAD mice compared to WT using the 

whole-cell patch clamp technique and a strong (25 action potentials) post-burst stimulation 

protocol [294]. However, a reduction in the AHP and L-VGCC function has also been 

observed in 2-month old 5xFAD mice compared to WT littermates [348]. Additionally, a 
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reduction in calretinin and parvalbumin-positive interneurons has been noted in the 

hippocampi of 12-month old 5xFAD mice [493], while 8-month old 5xFAD mice had 

elevated expression of calcineurin-dependent transcription factor nuclear factor of 

activated T cells 4 compared to WT [494]. Despite these inconsistent observations, no 

direct measures of neuronal Ca2+ have been measured in the 5xFAD model. In 

collaboration with the University of Michigan, we sought to characterize Ca2+ and Ca2+-

mediated processes during aging in a re-established design of the 5xFAD mouse model 

using sharp electrode electrophysiological and Ca2+ imaging techniques. 
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The following manuscript was accepted for publication at the Journal of Alzheimer’s 

Disease. 5xFAD mouse colonies were maintained at the University of Michigan via the lab 

of G.G. Murphy and managed by R. Parent. Mice were shipped to the University of 

Kentucky in several cohorts. All electrophysiological recordings and Ca2+ imaging 

experiments were performed by A.O. Ghoweri through the guidance of O. Thibault and 

J.C. Gant. Morris water maze behavior experiments were done by L. Ouillette under the 

guidance of G.G. Murphy. Amyloid plaque staining and quantification was performed by 

S. Moore. Manuscript writing and editing was established by A.O. Ghoweri, O. Thibault, 

H.N. Frazier, S. Moore, and G.G. Murphy. The purpose of the following study was to 

characterize neuronal Ca2+ dysregulation before, during, and after the generation of 

amyloid plaques in a re-established design of the 5xFAD mouse. The classic 5xFAD mouse 

model of familial AD was first derived by Oakley and colleagues in 2006 to recapitulate 

Alzheimer’s disease-like phenotypes through 5 genetic mutations of the APP, PS1, and 

PS2 genes [495]. Though this model has provided valuable insights to the understanding 

of intracellular mechanisms involved with Aβ plaque generation, the fast-paced nature of 

amyloidogenesis by 2 months of age in the original 5xFAD design may have masked the 

characterization of important phenotypes preceding plaque development. Thus, our 

collaborators at the University of Michigan crossed hemizygous 5xFAD mice with WT 

C57BL/6Tac mice to generate 5xFAD mice that exhibit AD-related pathology and 

cognitive deficits 2-4 months later than the original design. We hoped that by measuring 

neuronal Ca2+ handling across age, sex, and genotype in this new 5xFAD design with 

slower amyloidogenesis, we could potentially elucidate subtle Ca2+-mediated markers that 

participate in AD pathology progression. 



72 

 

 

CHAPTER 4. ELECTROPHYSIOLOGICAL AND IMAGING CALCIUM 

BIOMARKERS OF AGING IN MALE AND FEMALE 5XFAD MICE 

 

Adam O Ghoweri a, Lara Ouillette b, Hilaree N Frazier a, Katie L Anderson a, Ruei-Lung 

Lin a, John C Gant a, Rachel Parent b, Shannon Moore b, Geoffrey G Murphy b, Olivier 

Thibault a 

 

UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, 800 

Rose St., Lexington, KY 40536 a 

5037 BSRB, Molecular and Integrative Physiology, University of Michigan, 109 Zina 

Pitcher Place, Ann Arbor, MI 48109 b 

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

4.1 Abstract 

In animal models and tissue preparations, Ca2+ dyshomeostasis is a biomarker of 

aging and Alzheimer’s disease that is associated with synaptic dysfunction, neuritic 

pruning, and dysregulated cellular processes. It is unclear, however, whether the onset of 

Ca2+ dysregulation precedes, is concurrent with, or is the product of pathological cellular 

events (e.g. oxidation, amyloid-β production, and neuroinflammation). Further, neuronal 

Ca2+ dysregulation is not always present in animal models of amyloidogenesis, questioning 

its reliability as a disease biomarker. Here, we directly tested for the presence of Ca2+ 

dysregulation in dorsal hippocampal neurons in male and female 5xFAD mice on a 

C57BL/6 genetic background using sharp electrodes coupled with Oregon-green Bapta-1 

imaging. We focused on 3 ages that coincide with the course of amyloid deposition: 1.5, 

4, and 10 months old. Outcome variables included measures of the afterhyperpolarization, 

short-term synaptic plasticity, and Ca2+ kinetics during synaptic activation. Quantitative 

analyses of spatial learning and memory were also conducted using the Morris water maze. 

Main effects of sex, age, and genotype were identified on measures of electrophysiology 

and Ca2+ imaging. Additionally, measures of resting Oregon-green Bapta-1 fluorescence 

showed significant reductions in the 5xFAD group compared to controls. Deficits in spatial 

memory, along with increases in Aβ load, were detectable at older ages, allowing us to test 

for temporal associations with the onset of Ca2+ dysregulation. Our results provide 

evidence that reduced, rather than elevated, neuronal Ca2+ is identified in this 5xFAD 

model and suggests that this surprising result may be a novel biomarker of AD. 



74 

 

4.2 Introduction 

The rise in Alzheimer’s disease (AD) cases is predicted to reach exponential numbers 

by the year 2050, yet few, if any, new effective therapeutic drugs are currently available. 

Further, the cost of care is burdensome for families and healthcare providers [185], 

resulting in an urgent need for the development of new treatment strategies. While several 

cellular alterations have been identified as key contributors to the onset and progression of 

AD, including amyloid-β (Aβ) deposits, apolipoprotein E status, tau tangles, oxidative 

stress, neuroinflammation, and synaptic loss [496-502], it is imperative to look beyond 

these for new biomarkers. One target that has received considerable interest is neuronal 

Ca2+ dysregulation. 

The hypothesis of brain aging and AD has provided evidence that neuronal Ca2+ is 

dysregulated and can negatively impact neuronal health, network communication, and 

synaptic plasticity [1-4, 503-506]. In the hippocampus, a structure necessary for spatial 

mapping and short-term memory, an altered network fraught with reduced synaptic 

plasticity [18, 507, 508], increased pruning [509-512], and recent evidence of hyperactivity 

[336, 513] is likely to mediate cognitive and memory impairments [338, 514-523]. The 

role that neuronal Ca2+ assumes with respect to these processes is unclear, as Ca2+ 

dysregulation may occur when Ca2+ is elevated or decreased, during states of rest or during 

synaptic activation, or as the consequence of alterations in synaptic communication. Given 

the variability in Ca2+ homeostasis measures in normal aging, it is important to measure 

Ca2+ in models of AD as well. 

 Critical mechanistic insights regarding Ca2+ dysregulation have been gained in AD 

animal models [183, 274, 345, 393, 502, 524-527]; however, few studies have investigated 
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this AD-associated Ca2+ dysregulation alongside aging. Initial studies of the associations 

between Aβ and Ca2+ homeostasis, including the impact of Ca2+ on Aβ production, were 

mostly conducted in vitro (i.e. human cell lines or animal cell culture) [reviewed in 284]. 

With the exception of a few culture studies conducted in adult tissues [275, 282, 528-530], 

most of this early work used primary neuronal cultures derived from neonatal pups, which 

prevented the inclusion of the aging component. When investigating Ca2+ dysregulation 

and its physiological impact either directly (using Ca2+ imaging techniques) or indirectly 

(using electrophysiological techniques), nearly all measures were obtained from AD 

animals at single timepoints between the ages of 4 weeks and 12 months [281, 289-300, 

512]. Although these studies highlighted increases in resting or stimulated Ca2+ levels, 

triggered either synaptically or via the activation of inositol 1,4,5-trisphosphate or 

ryanodine receptors, few have specifically investigated the impact of AD-associated Ca2+ 

dysregulation during the progress of aging [127, 241].  

Stutzmann and colleagues examined Ca2+ changes across age (1.5, 6, and 18 

months) in three transgenic mouse models (PS1KI, 3xTg, and APPSweTauP301L). While 

enhanced endoplasmic reticulum (ER) Ca2+ signaling was observed in the PS1KI and 3xTg 

models, presumably due to the PS1 mutation, this effect was not found to be age-dependent 

[127]. However, similar to early aging studies [2, 9, 182], the Ca2+-mediated 

afterhyperpolarization (AHP) was larger with aging, but remained unaltered across 

genotype. In another study, L-type voltage-gated Ca2+ channel (L-VGCC) density was 

measured across age (1, 6-9, and 12-16 months) in wild-type (WT) and 3xTg mice [241]. 

L-VGCC density was significantly increased at 12-16 months in the transgenic mice 

compared to WT littermates. Surprisingly, however, no significant increase in these 
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measures were found across age in WT animals at 12-16 months. This contradicts  previous 

findings in the F344 rat model of aging, which showed elevations at 23-26 months of age 

[97].  

The paucity of direct Ca2+ measures in aged AD animal models is partly due to the 

identification of human amyloid β precursor protein and presenilin (PS) mutations, which 

increase production of amyloidogenic proteins from birth, resulting in the development of 

a very aggressive phenotype, precluding studies in older animals. Further, besides humans 

and dogs, other animal models do not develop AD phenotypes (e.g. Aβ deposition, tau 

tangles). Additionally, it has been difficult to draw comparisons between pathological 

aging and AD, as the former lacks clear biomarkers (i.e. Aβ plaques, tau tangles, “leaky 

channels” of the ER, and enhanced neuronal death) that differentiate the disease from 

normal brain aging. Furthermore, recapitulating these phenotypes in transgenic animals 

does not necessarily clarify whether Ca2+ dysregulation impacts AD pathology or vice 

versa. 

These difficulties, together with recent evidence that Ca2+ signals appear to 

decrease in two animal models of AD [242, 348], highlight the possibility that 

methodological differences may mediate these discrepancies. Interestingly, previous work 

by our group has shown a significant reduction in L-VGCC density in 14-month-old 2xTg 

mice compared to WT using the dissociated “zipper” hippocampal slice technique [242]. 

Using the same methods, however, a two-fold increase in L-VGCC density was found in 

aged F344 rats compared to young animals [97]. In a more recent study, we identified a 

significant decrease in the AHP of 2-month-old 5xFAD mice on a C57BL/6 genetic 

background compared to WT [348]. Further, in a 2008 comprehensive review of Ca2+ 
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dysregulation in AD across 32 studies performed in both cell lines and mouse models with 

PS mutations [525], over 100 measures of Ca2+ were identified. Of these, 24 showed 

enhanced Ca2+ release from the ER while 21 exhibited decreased release. Moreover, 17 

measures of plasma membrane Ca2+ influx were downregulated, two were upregulated, and 

five showed no change across genotypes. Thus, while the field has argued that Ca2+ 

dysregulation may be a unifying mechanism that impacts aging and AD in similar ways, 

this over-simplification may have hindered, rather than helped, the advancements made on 

this topic. 

To better characterize these processes in AD animal models in the context of aging, 

we tested for the presence of Ca2+ dysregulation in the 5xFAD mice on a C57BL/6 genetic 

background at three distinct ages using two techniques that have reliably identified key 

biomarkers of aging across labs [2, 531, 532]. This approach allowed us to address the 

onset of the Ca2+ dysregulation using both direct (Ca2+ imaging) and indirect 

(electrophysiology) measures. Given that aging is the number one risk factor for AD, we 

chose to utilize this 5xFAD mouse model on a congenic C57BL/L genetic background, as 

these animals display a slower development of the AD phenotype [490, 533], allowing the 

aging processes to participate in disease progression. Sharp electrode electrophysiology 

and Oregon-green Bapta-1 (OGB-1) Ca2+ imaging were used to measure neuronal 

physiology and corresponding Ca2+ changes. Behavioral characterization using the Morris 

water maze (MWM) and Aβ deposition (BTA-1) was quantified to characterize phenotypic 

progression. Based on our prior results, we hypothesized that contrary to what is seen in 

normal aging, somatic Ca2+ would be reduced over time in this 5xFAD transgenic model 

of amyloidogenesis. 
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4.3 Methods 

4.3.1 Animals 

 Young-adult (1.5 months), adult (4 months), and mid-age (10 months) male and 

female 5xFAD mice and their WT littermates were derived at the University of Michigan 

(Ann Arbor, MI) and shipped to the University of Kentucky (Lexington, KY) in several 

cohorts of 10-20 animals. The 5xFAD mice [495] were originally obtained from the Mutant 

Mouse Regional Resource Facility (MMRC) on a C57BL/6J background (stock # 034848-

JAX). Hemizygous 5xFAD mice were crossed with WT C57BL/6Tac mice and maintained 

at the University of Michigan on this background since late 2012 (20+ generations). A 

recent report suggests that 5xFAD mice on a C57BL/6 background exhibit AD-related 

pathology and cognitive impairments approximately 2-4 months later than the mice 

originally described by Oakley and colleagues, which utilized mice on a hybrid B6/SJL 

genetic background [495, 533]. Typically, a cohort represented animals at a particular age 

(e.g. 4.5 weeks, 3.5 months, and 9.5 months). Because only one animal could be 

electrophysiologically recorded per day, data acquisition for each cohort was staggered 

across 3-5 weeks; thus, the average age of each cohort was 1.5, 4, and 10 months.  

4.3.2 Housing 

While at the University of Michigan, the mice were same-sex housed in groups of 

three to five, with a 14 h on/10 h off light/dark cycle, an ambient temperature of 20–22°C, 

and ad libitum access to food and water. Upon transfer to the University of Kentucky, mice 

were housed in a quarantined facility for a minimum of one week prior to experimentation. 

Male mice were housed individually while females were paired. All animals were 
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maintained on a 12 h on/12 h off light/dark cycle and fed a Teklad Global 18% protein 

rodent diet ad libitum. Routine assessment of animal health was performed by a 

veterinarian at both institutions and animals exhibiting signs of morbidity were excluded 

from the study. Treatment and handling of all animals were performed in accordance with 

each university’s Institutional Animal Care and Use Committee guidelines.  

4.3.3 Slice Preparation 

 Mice were anesthetized using aerosolized isoflurane (5%) followed by rapid 

decapitation. Brains were quickly removed and incubated in ice cold low Ca2+, high 

magnesium artificial cerebrospinal fluid (ACSF) [in mM]: 114 NaCl, 3 KCl, 10 Glucose, 

1.25 KH2PO4, 26 NaHCO3, 0.096 CaCl2 anhydrous, and 7.98 MgCl2 anhydrous. Three-

hundred and fifty µm thick slices from the dorsal hippocampus were obtained using a 

Vibratome® 3000 (TPI; St. Louis, MO) and incubated for at least 2 h at 32°C in a 

humidified (95% O2 – 5% CO2) interface-type chamber in normal Ca2+ ACSF [in mM]: 

114 NaCl, 3 KCl, 10 Glucose, 1.25 KH2PO4, 26 NaHCO3, 2 CaCl2 anhydrous, and 2 MgCl2 

anhydrous. Slices were then placed in a recording chamber (RC-22C; Warner Instruments, 

Co., Hamden, CT) heated to 32°C with a TC2Bip/HPRE2 in-line heating system (Cell 

Micro Controls; Norfolk, VA) and perfused with a continuous flow of oxygenated, normal 

ACSF at a rate of 1.5 mL/min. Slices were then visualized under a Nikon Eclipse E600FN 

microscope. 

 



80 

 

4.3.4 Electrophysiology 

 Sharp electrodes (~80 – 120 MΩ) were pulled from 1.0 mm diameter borosilicate 

glass capillaries (World Precision Instruments, Inc.; Sarasota, FL) on a Sutter Instruments 

P80 pipette puller (Novato, CA). Electrode tips were first backfilled with a bolus of 1.25 

mM OGB-1, pH 7.4 (ThermoFisher Scientific, Catalog number: O6806; Waltham, MA), 

while the rest of the electrode was filled with a 1 M potassium methyl sulfate (KMeSO4) 

in 10 mM HEPES. A bipolar stimulating electrode was placed on the Shaffer collaterals 

and the recording electrode was slowly guided through stratum pyramidale of area CA1. 

An SD9K stimulator (Astro Med Inc., Grass Instruments; Warwick, RI) was used to 

synaptically stimulate the tissue slice. Responses were obtained through an AxoClamp-2B 

amplifier (Molecular Devices LLC.; San Jose, CA) and digitized at ~ 5-10 KHz using a 

Digidata® 1550B (Molecular Devices LLC.; San Jose, CA). Data was processed using 

pClamp 10.7 software (Molecular Devices LLC.; San Jose, CA). 

4.3.4.1 Afterhyperpolarization 

For measures of post-synaptic activation, cells were held at -65 mV. Action 

potential (AP) threshold was set to -55 mV, and 4 AP bursts were evoked (depolarizing 

150 ms current injection) to generate the Ca2+-dependent AHP every 30 s for five min. 

Three measures of the AHP were quantified including the medium AHP (mAHP), slow 

AHP (sAHP), and AHP duration. The mAHP was defined as the peak hyperpolarization 

observed immediately after the end of the current injection. The sAHP was measured as 

the change in amplitude (compared to baseline) 800 ms post-current injection. 

Quantification of the AHP duration was defined as the time between peak amplitude of the 

AHP and the return to baseline. Here, we report data from 11 neurons (♂=6, ♀=5)/7 mice 
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(♂=4, ♀=3) (1.5 months), 14 neurons (♂=6, ♀=8)/10 mice (♂=5, ♀=5) (4 months), and 13 

neurons (♂=9, ♀=4)/9 mice (♂=7, ♀=2) (10 months) in the WT dataset, and 21 neurons 

(♂=14, ♀=7)/11 mice (♂=6, ♀=5) (1.5 months), 19 neurons (♂=12, ♀=7)/13 mice (♂=8, 

♀=5) (4 months), and 15 neurons (♂=8, ♀=7) /10 mice (♂=5, ♀=5) (10 months) in the 

5xFAD dataset.  

4.3.4.2 Input/Output 

For measures obtained during synaptic activation, cells were held at -70 mV and 

stimulated every 10 s. Data reported were derived from 11 neurons (♂=6, ♀=5)/7 mice 

(♂=4, ♀=3) (1.5 months), 13 neurons (♂=5, ♀=8)/10 mice (♂=5, ♀=5) (4 months), and 10 

neurons (♂=7, ♀=3)/7 mice (♂=5, ♀=2) (10 months) for the WT dataset, and 19 neurons 

(♂=13, ♀=6) /11 mice (♂=6, ♀=5) (1.5 months), 16 neurons (♂=10, ♀=6)/12 mice (♂=8, 

♀=4) (4 months), and 12 neurons (♂=8, ♀=4)/9 mice (♂=5, ♀=4) (10 months) in the 

5xFAD dataset. Excitatory post-synaptic potential (EPSP) amplitudes determined from an 

increasing series of activation voltages were plotted to generate I/O curves and used to 

determine the threshold for an AP. 

4.3.4.3 Repeated Synaptic Stimulation 

Stimulation intensity during repeated synaptic stimulation (RSS; 10 s, 7 Hz) was 

set at the threshold for an AP.  Outcome measures included synaptic hyperpolarization and 

potentiation of EPSPs in relation to measures of the first EPSP (baseline) in the train. 

Synaptic hyperpolarization was tabulated as the mean peak hyperpolarization amplitudes 

following the 6th through 9th EPSPs. The growth of the EPSP during the train was measured 

early (EPSPs 6 through 9) and late (last 4 EPSPs).  
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4.3.5 Ca2+ Imaging 

All cells were imaged after measures of input resistance, AHP, and I/O slopes were 

taken. Data reported were taken from 8 neurons (♂=5, ♀=3)/5 mice (♂=3, ♀=2) (1.5 

months), 7 neurons (♂=3, ♀=4)/6 mice (♂=3, ♀=3) (4 months), and 7 neurons (♂=5, 

♀=2)/5 mice (♂=4, ♀=1) (10 months) for the WT dataset, and 13 neurons (♂=8, ♀=5)/10 

mice (♂=6, ♀=4) (1.5 months), 9 neurons (♂=6, ♀=3)/8 mice (♂=5, ♀=3) (4 months), and 

8 neurons (♂=5, ♀=3)/6 mice (♂=3, ♀=3) (10 months) were included for the 5xFAD 

dataset. Cells were visualized under a 40x objective using a filter cube (Ex: 470/40 nm; 

Em: 525/50; Dichroic 495 nm; Chroma Technology Corp.; Bellows Falls, VT). Imaging 

Workbench (INDEC BioSystems; Los Altos, CA) was used to quantify outcome measures. 

A Lambda DG-4 (Sutter Instruments; Novato, CA) was used as a source to activate the 

fluorophore with exposures in the range of 250-800 ms depending on the depth of the cell 

imaged. A photometrics camera (Teledyne Photometrics; Tucson, AZ) was used to image 

Ca2+ fluorescence and kinetics. Two regions of interest (ROI) were created: one around the 

cell body and another of similar size in tissue adjacent to the imaged cell. Background 

subtraction and normalization to baseline were used to quantify changes in fluorescence 

(% ΔF/F). For quantification of resting fluorescence, values were averaged before RSS and 

normalized to the depth of the recorded cell. Outcome measures also included rise time, 

peak amplitude, decay time, and area-under-the-curve (AUC) during RSS, and were 

derived using Clampfit (Molecular Devices LLC.; San Jose, CA) and SigmaPlot software 

(Systat Software, Inc.; San Jose, CA). 
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4.3.6 Morris Water Maze 

Water maze experiments were performed at the University of Michigan as 

previously described [534-536] utilizing male and female 5xFAD mice and non-carrier 

littermates (WT) as controls. Three age groups were examined; 1.5 month (5xFAD: ♂=5, 

♀=2; WT: ♂=2, ♀=5), 4 month (5xFAD: ♂=4, ♀=4; WT: ♂=4, ♀=3) and 10 month 

(5xFAD: ♂=17, ♀=19; WT: ♂=28, ♀=11). A larger cohort of 10-month animals was used 

to provide sufficient power to detect differences that we anticipated would be modest 

between genotypes at this time point. The MWM was composed of a round white acrylic 

pool that was 1.2 m in diameter. The pool was filled with water that was made opaque 

using nontoxic, white tempera paint and heated to 28°C. A round platform made of clear 

acrylic (10 cm in diameter) was submerged just below the surface of the water, ~ 20 cm 

from the edge of the pool in the northeast quadrant. Mice were tracked using a digital 

camera mounted above the pool in combination with Actimetrics Water Maze (V4) 

software. Mice were trained to find the hidden platform during 4 trials a day. Before each 

trial, mice were individually placed on the platform for 10 s. At the start of the trial, mice 

were released into the maze, facing the wall at predefined pseudo-random locations, and 

the time taken to reach the platform was recorded. For all trials, mice were given 60 s to 

find the platform, and, if unsuccessful, were then guided to the platform. Previous 

experience indicated that older mice (regardless of genotype) require additional training to 

perform above chance. Therefore, young mice (1.5-month and 4-month) received 9 days 

of training and the older mice (10-month) received a total of 12 days of training. Mice were 

tested for their long-term memory for platform location during several probe tests 

throughout training. All mice received probe trials on days 4, 7 and 10 (24 hrs after the last 
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training trial). Aged mice (10-month) received an additional probe trial on day 13 (24 hrs 

after the last training trial). For the probe trials, the platform was removed from the pool, 

and each mouse was allowed to swim for 60 s, starting at a point directly opposite to the 

trained platform location. To control for motivation, swimming ability, and sensory 

perception (elements required for spatial recognition), mice were run in the visible-

platform version of the water maze on the day following the final probe trial. In this version, 

a distinct local cue (a flag) was fixed to the center of the hidden platform. Mice were given 

four visible-platform trials with a maximum of 60 s per trial. 

4.3.7 Tissue Section for β-amyloid and BTA-1 Staining 

Male and female 5xFAD mouse brains were harvested for β-amyloid plaque 

staining at 3 time points; 1.5-month (n =15 sections from 3 mice; ♂=5, ♀=10), 4-month 

(n = 16 sections from 3 mice; ♂=16, ♀=0) and 10-month (n = 11 sections from 2 mice; 

♂=5, ♀=6). Mice were anesthetized using aerosolized isoflurane, then cardiac-perfused 

with 1x PBS followed by 4% paraformaldehyde. Brains were removed, further fixed in 4% 

paraformaldehyde overnight at 4oC, and then placed in a 30% sucrose solution at 4oC until 

they sank (2-3 days). Brains were then embedded in optimal cutting temperature (OCT) 

compound (Fisher; Maltham, MA) and frozen at -80°C. Once frozen, the embedded brains 

were sliced coronally at 40 μm on a cryostat (Leica; Buffalo Grove, IL) and immediately 

mounted on Superfrost Plus slides (Fisher). Once mounted, sections were washed three 

times with 1x PBS to remove any residual OCT followed by incubation in 10 μM BTA-1 

(Sigma-Aldrich; St. Louis, MO) for 30 min. Sections were then washed for an additional 

three times with 1x PBS before being cover-slipped using VectaMount® Aqueous 

Mounting Media (Vector Laboratories; Burlingame, CA). 
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4.3.8 β-amyloid Imaging 

Images were collected from two subregions of the hippocampus: the CA1 and 

dentate gyrus (DG) subfields. Images were obtained using an upright laser scanning 

confocal microscope (Olympus; Center Valley, PA) equipped with 4x and 20x air 

objectives. For each region, single images (1024 x 1024 pixels) were captured every 5 µm 

for a total of 15 um total depth. BTA-1 staining was visualized using a 405 nm laser. 

Imaging acquisition settings (voltage (HV), gain, and offset) in the Olympus FluoView 

software were consistent across samples to allow for comparison. β-amyloid images were 

processed using ImageJ software (FIJI) and quantified using maximum projections of 

images at a depth of 15 µm. The images were then background subtracted with a 50-pixel 

rolling-ball radius, manually thresholded, and converted into binary masks of BTA-1 

positive ROIs. ROIs were then used to count individual Aβ plaques in the raw image. This 

value was then divided by the volume of the image to give a result of plaque density in 

number/μm3. Images are presented in grayscale. 

4.3.9 Cell Health and Exclusion Criteria 

Only neurons that fit the following criteria were included in the 

electrophysiological and Ca2+ imaging analyses: input resistance ≥ 30 MΩ, holding current 

≤ -350 pA, and AP peak ≥ -2 mV. These values are reported in Table 4.1. Additionally, if 

the number of APs during RSS were > 2 SD from the mean, the cell was considered an 

outlier and removed from the analysis.  
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4.3.10 Data Quantification and Statistics 

The statistical significance of electrophysiological and imaging measures was 

calculated using SigmaPlot. Using three-way ANOVA, we report on main effects of age, 

sex, or genotype, as well as interaction terms using the Holm-Sidak multiple comparisons 

test. For behavioral analysis, significance was tested using a 2-factor repeated measures 

ANOVA, unpaired t-tests, and single factor t-tests. Sex differences were not investigated 

for behavior. All β-amyloid imaging data was analyzed and displayed using GraphPad 

Prism 8 and Aβ deposition between 4-month and 10-month mice was compared using a 2-

tailed unpaired t-test. The 1.5-month mice were excluded from analysis due to the absence 

of any observable plaques. Significance for all data was set at p < 0.05. Data are represented 

as means ± standard error of the mean (SEM). 
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Table 4.1. Measures of Neuronal Health and Cellular Activation. 

 

 

 

 

  

Genotype Age 

(months) 

Holding 

Current (pA) 

Input 

Resistance 

(MΩ) 

AP 

Amplitude 

(mV) 

# of APs 

During 

Imaging 

WT Male 1.5 -125 ± 65.1 91.3 ± 15.2 4.5 ± 2.3 70.2 ± 3.0 

4 -241.7 ± 16.6 48.7 ± 2.6 7.7 ± 1.5 70 ± 0.6 

10 -143.3 ± 31.6 63.3 ± 3.9 8.7 ± 1.8 66.8 ± 4.5 

5xFAD Male 1.5 -76.4 ± 27.5 71.4 ± 4.8 9.2 ± 1.6 68.1 ± 2.2 

4 -208.3 ± 22.8 43.3 ± 2.1 8.8 ± 1.3 70 ± 0.7 

10 -156.3 ± 36.1 61.0 ± 4.7 7.8 ± 1.9 73.8 ± 1.2 

WT Female 1.5 -120 ± 48.1 76.5 ± 10.7 10 ± 2.1 68.7 ± 0.3 

4 -120 ± 27.6 54.6 ± 4.6 9.1 ± 1.8 66.8 ± 4.3 

10 -105 ± 33.8 85.1 ± 12.2 8.8 ± 1.9 70.0 ± 0 

5xFAD Female 1.5 -201.4 ± 28.1 61.5 ± 7.7 5.6 ± 2.5 68.2 ± 3.2 

4 -185.7 ± 17.6 58.7 ± 6.0 2.9 ± 2.2 70.3 ± 0.3 

10 -84.3 ± 40.1 80.0 ± 4.9 6.5 ± 1.6 70.7 ± 0.3 

Significance - p < 0.02 p < 0.001 n.s. n.s. 
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Table 4.1. Measures of Neuronal Health and Cellular Activation. Neuronal 

health was compared across genotype, sex, and age. The amplitude of APs during AHP 

data acquisition and the number of APs during RSS while imaging were recorded. Holding 

current and input resistance reflect cell membrane “leakiness” and integrity. Holding 

current and input resistance at 4 months were both significantly elevated (p < 0.05). No 

changes were detected between groups on measures of AP amplitude or number of APs 

during imaging (p > 0.05). 
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4.4 Results 

The following results were derived from 93 cells recorded in 61 animals and from 52 

imaged cells. We compared several measures of neuronal health and numbers of APs 

triggered during imaging protocols to confirm that the results reported here were all derived 

from healthy dorsal CA1 pyramidal neurons (Table 4.1). For behavioral analysis, 55 WT 

and 51 5xFAD mice were used. Tissue sections from eight 5xFAD mice were stained and 

analyzed for β-amyloid deposits. Table 4.2 illustrates the impact of training as compared 

to genotype on MWM outcome measures. 

4.4.1 Afterhyperpolarization 

To determine if an age, sex, or genotype effect on the Ca2+-dependent AHP was 

present, we measured the mAHP and the sAHP amplitude, as well as the AHP duration 

(Figure 4.1). These measures revealed that the amplitude of the mAHP (F2,92 = 9.99, p < 

0.001; three-way ANOVA; Fig. 4.1B) was significantly reduced in both WT and 5xFAD 

mice from 6 weeks to 4 months of age. Interestingly, from 4 to 10 months, the mAHP 

significantly increased to levels indistinguishable from those seen at 6 weeks. Similar 

results were seen on measures of the sAHP amplitude (F2,92 = 11.00, p < 0.001; three-way 

ANOVA) and the AHP duration (F2,92 = 10.70, p < 0.001; three-way ANOVA; Fig. 4.1C). 

The “U” shaped aging effect seen in Fig. 4.1 is intriguing, and may reflect on the inclusion 

of the 1.5-month age group. In fact, most studies of aging use 3-4 months old animals as 

the “young” age group. Still, one prior study using patch electrodes describes a significant 

increase between 1.5 months and 1.5 years in similar WT and transgenic animals, but no 

significant genotype effect was reported at any ages [127]. Of interest, analysis of the sAHP 

amplitude here revealed a significant sex by genotype interaction term (F1,92 = 5.47, p = 
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0.02), where a reduction was noted in female 5xFAD compared to WT (p < 0.05), but not 

in males. Further, when analyzing the AHP duration (Fig. 4.1D), an age by sex interaction 

term was noted (F2,92 = 3.30, p = 0.04); again, this aging effect was only significant in 

females (p < 0.05). These results highlight the importance of investigating sex differences 

in animal models of AD. 
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Table 4.2. Results and Statistical Analyses of Behavioral Data. 

Measure Age (months) F-value p-value Significance 

Latency to 

Platform 

 

Effect of 

Training 

1.5 F(8, 88) = 11.26 P < 0.0001 Yes 

4 F(8, 96) = 4.896 P < 0.0001 Yes 

10 F(12, 876) = 68.14 P < 0.0001 Yes 

 

Effect of 

Genotype 

1.5 F(1, 11) = 2.395 P = 0.15 No 

4 F(1, 12) = 0.008 P = 0.929 No 

10 F(1, 73) = 10.53 P = 0.0018 Yes 

Time spent in 

target 

quadrant 

 

 

Effect of 

Training 

1.5 F(2, 22) = 12.21 P = 0.0003 Yes 

4 F(2, 24) = 0.666 P = 0.523 No 

10 F(3, 228) = 24.33 P < 0.0001 Yes 

 

Effect of 

Genotype 

1.5 F(1, 11) = 0.006 P = 0.938 No 

4 F(1, 12) = 0.198 P = 0.663 No 

10 F(1, 76) = 12.03 P = 0.0009 Yes 

Swim Speed  

Effect of 

Genotype 

1.5 F(5, 6) = 1.179 P = 0.022 Yes 

4 F(6, 7) = 4.374 P = 0.404 No 

10 F(36, 36) = 2.266 P = 0.8725 No 
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Table 4.2. Results and Statistical Analyses of Behavioral Data. Latency to 

platform, time spent in the target quadrant, and swim speed were compared across genotype 

and age. Training significantly reduced the latency to platform across age (p < 0.0001); 

however, on measures of time spent in target quadrant, this was only seen in 1.5- and 10-

month old animals (p < 0.001). Compared to WT littermates, 5xFAD mice showed 

significant behavioral deficits by 10 months of age (p < 0.0018) and spent significantly less 

time in the target quadrant (p = 0.0009). Genotype significantly influenced swim speed at 

1.5 months (p = 0.022), but not at 4 or 10 months. 
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Figure 4.1. AHP Measures in WT and 5xFAD Mice Across Age and Sex.  

A. Example of an AHP following post-synaptic depolarization with 4 APs. B. A 

main effect of aging (p < 0.05) on the mAHP was observed within each genotype and across 

sex. C-D. Similar findings were observed on the sAHP (800 ms) amplitude measures, as 

well as on the AHP duration. Hashes (#) represent significance in aging at p < 0.05. 
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4.4.2 Synaptic Activation 

We quantified neuronal excitability during synaptic activation using measures of 

EPSP amplitudes and I/O slopes (Figure 4.2A and B). In alignment with the age-

dependent changes in the AHP presented in Figure 4.1 where a “U” shaped curve was 

noted, analysis of the excitability data (I/O slopes) reveals inverse relationships with age, 

as highlighted by greater excitability at 4 months. Indeed, a main effect of age was detected 

(F2,80 = 8.02, p < 0.001; three-way ANOVA). Further, an age by sex by genotype 

interaction was also identified (F2,80 = 5.13, p < 0.008), albeit only at 1.5 and 4 months of 

age (p < 0.05 for both). Once again, this effect was more pronounced in female 5xFAD 

mice than in males.  

We then obtained measures of RSS at 7 Hz, including synaptic hyperpolarization 

(Figure 4.3A, B, and C) as well as short-term EPSP facilitation (Fig. 4.3A, B, D, and E). 

While synaptic hyperpolarization has been shown to decrease with age in the F344 rats 

model of aging [532], no age or genotype effect was identified in the 5xFAD mice and at 

the ages tested here (Fig. 4.3C). However, while investigating changes in EPSP facilitation 

during RSS (both early and late, Fig. 4.3D and 3E), we noticed a significant increase in the 

late phases of EPSP facilitation as a function of age in the 5xFAD model (F2,76 = 4.11, p = 

0.02; three-way ANOVA). This result is surprising, given prior literature reporting on 

depressed EPSP facilitation with aging [10, 51, 455, 537]. 

 

 

 

 



95 

 

 

 

Figure 4.2. Extracellular Synaptic Activation. 

A. Example of EPSPs recorded below and at threshold of an AP. Inset shows 

input/output (I/O) plot fit from EPSP amplitudes with increasing stimulation intensity. B. 

Synaptic excitability derived from I/O measures (slopes) reveal a significant main effect of 

aging across genotypes and sex. Hashes (#) represent significance in aging at p < 0.05. 
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Figure 4.3. Repeated Synaptic Stimulation (RSS). 

A. Example of RSS showing EPSP potentiation and synaptic hyperpolarization. 

Cells were repeatedly stimulated at 7 Hz for 10 s. B. Upward arrows illustrate growth in 

EPSP amplitude during RSS and downward arrows show increased amplitude in the 

synaptic hyperpolarization. APs are truncated for illustration in A and B. C. Synaptic 

hyperpolarization measured during RSS was not altered across aging or genotypes. D-E. 

EPSP facilitation taken during the first (early) and last (late) periods of RSS. A main effect 

of age was noted on measures of late EPSP facilitation displaying an increase in the older 

group, independent of sex. Hashes (#) represent significance in aging at p < 0.05. 
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4.4.3 Ca2+ Imaging 

Age-, sex-, and genotype-sensitive changes in Ca2+ kinetics and overall somatic 

levels were derived from OGB-1 fluorescence before, during, and after RSS (Figure 4.4). 

Cells were synaptically-stimulated at 7 Hz for 10 s and changes in fluorescence were 

normalized to resting fluorescence (% ΔF/F) just prior to stimulation. Results show that 

neither age, sex, nor genotype altered measures of Ca2+ kinetics based on rise time or decay 

time constants (Fig. 4.4D and 4E). However, measures of peak amplitude and AUC (Fig. 

4.4C and 4.4F) highlighted a significant main effect of age and sex. Measures of peak 

amplitude and AUC revealed a main effect of age highlighted mostly by differences 

between the 1.5- and 4-month-old groups (F1,51 = 3.71, p = 0.03; F1,51 = 3.54, p = 0.04, 

respectively; three-way ANOVA). The same measures also showed an overall main effect 

of sex, as highlighted by reductions in fluorescence intensity during RSS in females 

compared to males (peak: F1,51 = 6.52, p = 0.02; AUC: F1,51 = 6.14, p = 0.02).  

A main effect of genotype on mean resting fluorescence (F1,49 = 8.62, p < 0.01; 

three-way ANOVA) was seen with reductions in Ca2+-dependent fluorescence in the 

5xFAD compared to WT in both sexes (Figure 4.5). Because OGB-1 fluorescence values 

depend on Ca2+ levels, duration of exposure to the indicator, and the depth of the cell 

recorded, we normalized mean resting fluorescence to the depth of each cell. While a 

significant main effect of age on measures of recorded depth (F2,49 = 3.80, p = 0.03; three-

way ANOVA) was noted, this was mostly mediated by an increase in depth in 4-month-

old animals and was independent of genotype, and therefore unlikely to have contributed 

to the overall genotype effect (Fig. 4.5).  
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Figure 4.4. Changes in OGB-1 Fluorescence During 10 s RSS. 

A. Example of an imaged OGB-1 loaded neuron. B. Normalized fluorescence 

change across time (% ΔF/F) before, during, and after RSS. C. Peak amplitude measures 

show both a significant effect of age and sex. D-E. No significant differences were found 

in measures of rise or decay time constants. F. AUC shows  significant effects of both age 

and sex. Hashes (#) represent significance in aging and asterisks (*) represent sex 

differences at p < 0.05. 
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Figure 4.5. Resting Fluorescence Before RSS. 

Mean resting fluorescence was normalized to the depth of each recorded cell. 

Significant genotype effect was detected, highlighting reduced fluorescence in the 5xFAD 

animals compared to WT. Ampersands (&) indicate significance for genotype at p < 0.05. 
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4.4.4 Behavior 

We explored the impact of age on hippocampal-dependent learning and memory 

using  the MWM task [538]. Analysis of latency to find the hidden platform during training 

revealed a significant reduction across training days at 1.5 months (F8, 88 = 11.26, p < 

0.0001; two-way repeated measures ANOVA), 4 months (F8, 96 = 4.896, p < 0.0001; two-

way repeated measures ANOVA), and 10 months (F12, 876 = 68.14, p < 0.0001; two-way 

repeated measures ANOVA). As expected, there were no differences between 5xFAD and 

WT mice in latency to platform in either the 1.5-month or 4-month groups (Figure 4.6A1-

B1). However, there was a significant reduction in latency observed in the 10-month group 

(F1, 73 = 10.53, p = 0.0018; two-way repeated measures ANOVA) (Fig. 4.6C1), indicating 

that the 5xFAD mice have a deficit in their ability to learn the platform location across 

training days.  

By the final probe trial, 5xFAD mice and their WT littermates in all groups had 

spent a significant percentage of time in the target quadrant compared to chance (p < 0.05, 

single factor t-test). As expected, there was no effect of genotype in either the 1.5- or 4-

month groups across probe trials (p = 0.605, p = 0.938, respectively; two-way repeated 

measures ANOVA) (Fig. 4.6A2-B2). However, the 10-month 5xFAD mice spent 

significantly less time across probe trials searching in the quadrant where the platform was 

previously located in comparison to their WT littermates (F1, 76 = 12.03, p = 0.0009; two-

way repeated measures ANOVA) (Fig. 4.6C2), indicating a memory deficit for platform 

location. No significant difference in swim speed between 5xFAD and WT mice (p = 

0.217; unpaired t-test) was noted, establishing that this deficit was not due to alterations in 



103 

 

either motor function or motivation. Additionally, a non-spatial version of the water maze 

was performed in which the escape platform was clearly marked. The 5xFAD and WT 

mice exhibited similar escape latencies (p = 0.7114; unpaired t-test), suggesting that the 

memory deficit we observed in the 10-month 5xFAD mice was not due to a nonspecific 

performance issue. Similarly, no significant differences were observed in performance 

during the visible platform in the 1.5-month and 4-month mice (p = 0.33 and p = 0.054, 

respectively). With respect to potential sex differences across groups, we did not observe 

a statistically significant effect of sex on any of the behavioral performance variables 

analyzed. Finally, we did not observe a correlation between MWM performance, Ca2+ 

dynamics, and sex. Taken together, these data indicate that learning and memory deficits 

are present in 5xFAD mice by 10 months of age. 
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Figure 4.6. Morris Water Maze Data. 

 Mice were trained using 4 trials per day for 9 days (1.5- and 4-month-old animals; 

A1-B1.) or 12 days (10-month-old animals; C1.) days on the hidden platform task. Memory 

performance was assessed using probe trials on days 4, 7, 10 [^] (all age groups; A2-C2.) 

and 13 (10-month; C2.). By the final probe, all groups spent significantly more time (> 

25%) in the target quadrant. 1.5- and 4-month mice exhibited a significant decline in the 

latency to find the hidden platform across training days, but no differences were seen 

between genotypes (A1-B1.). There were no significant differences between genotypes 

during probe trials (A2-B2.). 10-month-old 5xFAD and WT mice exhibited a significant 

decline in latency to find the hidden platform across training days; however, 5xFAD mice 

had a longer latency to reach the platform compared to the WT mice (C1.). During probe 

trials, 5xFAD mice spent significantly less time in the target quadrant than WT littermates 

(C2.), indicating a memory deficit. Asterisks (*), daggers (†), and double daggers (‡) 

represent significant values at p < 0.05. 
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4.4.5 β-amyloid Deposition 

To measure the deposition of Aβ plaques with age, sections from 5xFAD mice at 3 

time points (1.5, 4, and 10 months) were stained with BTA-1 and imaged using confocal 

microscopy. The plaques density (# of plaques/μm3) within two hippocampal regions (CA1 

and DG) was quantified (Figure 4.7). The results show a significant increase in plaque 

density in the 10-month mice compared to the 4-month mice in both the CA1 region (p < 

0.0001; unpaired t-test) and DG (p < 0.0001; unpaired t-test). These data show an age-

dependent progressive increase in β-amyloid plaque deposition in both the CA1 region and 

DG. 
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Figure 4.7. Amyloid-β (Aβ) Plaque Deposits in the Hippocampus of 5xFAD Mice. 

Coronal sections (40 μm) of the dorsal hippocampus (AP, -2.0 bregma) from 1.5, 

4, and 10-month-old 5xFAD mice were stained with the amyloid imaging agent BTA-1. 

A1-C1) Representative images of the hippocampus of 5xFAD mice demonstrating the 

observed age-dependent increase in Aβ plaque accumulation and the regions of interest 

(ROI) in CA1 and dentate gyrus (DG) that were used to quantify Aβ plaque density. A2,3 – 

C2,3) Representative maximum intensity projection images (20x air; 635 µm x 635 µm x 

15 µm, Δz = 5 µm) of Aβ plaque deposits in CA1 and DG from 1.5, 4, and 10-month-old 

5xFAD mice. Arrows in panel C3 point to BTA-1 stained Aβ plaques. D and E) Aβ plaque 

density (plaque #/μm3) was quantified in the CA1 region and DG from 20x images using 

the Analyze Particles plug-in in FIJI. Significant differences in Aβ plaque density were 

found between 4-month-old and 10-month-old 5xFAD mice. Analysis of the 1.5-month-

old mice were not included because no plaques were observed. Hippocampal layers; CA1: 

stratum oriens (SO), stratum pyramidale (SP), stratum radiatum (SR), stratum lacunosum-

moleculare (SLM) and DG: molecular layer (ML), granule cell layer (GCL) and the hilus 

(H). Scale bar: 4x images = 200 μm, 20x images = 50 μm. Asterisks (*) represent 

significance determined by a 2-tailed unpaired t-test with p < 0.05. Dorsal (D) → Ventral 

(V). 
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4.5 Discussion 

This study examined the relationship between neuronal Ca2+-mediated variables 

and aging in a 5xFAD mice on a C57BL/6 genetic background. We conducted this series 

of experiments using electrophysiological and imaging techniques to report on changes in 

Ca2+ measures in brain aging. These experiments were conducted to test the hypothesis 

that, contrary to what is seen in normal aging, measures of Ca2+-mediated processes are 

reduced in the 5xFAD transgenic model of amyloidogenesis. We based this on prior reports 

showing that L-VGCC density and the AHP are reduced in two different models of AD 

[242, 348]. In the current study, we show that changes in Ca2+-mediated potentials and 

levels were identified across early age, sex, and genotype. Briefly, reductions in Ca2+-

mediated processes appear to be more robust in females compared to males in this animal 

model of AD (Fig. 4.4). While surprising, these results underscore a significant lack of 

alignment between normal aging processes and those initiated in pathological aging, 

suggesting that not only is AD not an accelerated form of aging, but that when considering 

Ca2+ dysregulation, these processes may actually diverge. Here, several discrepancies from 

the canonical Ca2+ hypothesis of brain aging and dementia were noted, including 1) the 

presence of a reduced AHP at 4 months compared to 1.5 and 10 months, 2) the presence of 

significant reductions in OGB-1 fluorescence (peak amplitude and AUC) in females 

irrespective of genotype, and 3) reduced resting fluorescence in 5xFAD mice compared to 

WT.  
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4.5.1 Onset of Ca2+ Dysregulation 

The amyloidogenic 5xFAD model mimics human AD at an accelerated pace and 

presents with amyloid deposition by 1.5 to 2 months, cognitive deficits and synaptic 

impairment by 4 months, and neuronal loss by 6 months of age [495]. While this transgenic 

design is extremely well-suited for studies of specific phenotypes (e.g. Aβ deposition, 

behavior, Ca2+ dysregulation, oxidative stress), the aging component is seldom considered 

in the experimental design, likely due to the reduced life-span of these animals. Using 

5xFAD mice on a C57BL/6 genetic background, we sought to incorporate components of 

aging within the context of AD. Compared to the original report [495], 5xFAD mice on a 

C57BL/6 genetic background presents with behavioral deficits starting at 10 months vs. 3 

months of age (Fig. 4.6). With respect to the aging effect identified, our results are 

surprising, as a significant reduction in the AHP at 4 months of age (Fig. 4.1) was combined 

with an increase in excitability (Fig. 4.2) and a lack of change in short-term synaptic 

plasticity (Fig. 4.3) or OGB-1 fluorescence (Fig. 4.4). It should be noted, however, that 

relatively similar results in response to age were previously reported in the F344 rat model 

of aging, where Ca2+ dysregulation (measured through either the AHP or Ca2+ levels) did 

not manifest until 12 months of age [135]. One limitation of our study may be that we did 

not investigate animals at later time points. Also, very few prior studies have investigated 

the Ca2+-dependent AHP at 1.5 months of age ex vivo (i.e. slices), suggesting more analyses 

around this age are warranted [127]. The “U” shape curve (a reduction at 4 months) 

presented in Fig. 4.1 is reminiscent of prior work in the retina measuring L-VGCC Ca2+ 

flux in vivo using manganese-enhanced MRI [539-541]. In disease models with 

progression of the neurodegenerative events ranging from days to weeks and months 
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(ischemic reperfusion, retinitis pigmentosa, or even diabetes, respectively), Berkowitz and 

colleagues find significant prodromal reductions in Ca2+ influx in response to initial 

stressors; over time manganese uptake/ L-type Ca2+ channel function appears to return to 

seemingly normal levels. Whether our “U” shape curve reflects on a combination of 

developmental/maturation processes or aging changes, or on initially competent Ca2+ 

handling processes that ultimately fail at latter stages requires further investigations.  

Based on the increase in the Aβ load (Fig. 4.7) and the time course of progression, 

it seems clear that Ca2+ dysregulation does not parallel Aβ increases. Our current results 

cannot confirm that amyloid deposits in the dorsal hippocampus alter either neuronal 

physiology or Ca2+ kinetics; however, independent of age, a reduction in resting Ca2+ 

fluorescence was seen in the 5xFAD compared to the WT (Fig. 4.5). Therefore, in this 

model, no evidence of enhanced Ca2+ dysregulation was seen using sharp electrode 

recording techniques, and instead, possible reductions in Ca2+ processes were noted.  

4.5.2 Differences in Techniques 

Two prior studies have investigated differences between sharp electrode recording 

techniques and whole-cell recordings using patch electrodes [542, 543]. Aside from clear 

differences in recording stability and duration (AHPs can be recorded for hours in the same 

cell under sharp electrode conditions), input resistance and leak conductance, and the use 

of supplemented nucleotides, Ca2+ buffers, and K+ salts, it is clear that under whole-cell 

recording conditions, a large amount of APs are needed to elicit a significant AHP [9, 127, 

294, 543, 544]. Here, as previously reported in numerous studies of aging, we quantified 

the AHP following a series of 4 APs and observed that the Ca2+-dependent potentials were 

smaller than those recorded from rat neurons [2, 7]. Typically, the mAHP amplitude in 
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young mice is approximately ~1.4 mV [242, 348], while the AHP (recorded with the same 

number of APs) from rat neurons is ~2.8 mV [135, 242, 532, 545]. This difference in 

technique is important when comparing measures of Ca2+ biomarkers across animal models 

of aging and AD and may underlie the current novel results while using sharp electrode 

physiology. Nevertheless, this does not necessarily negate previous work using Ca2+ 

imaging techniques in combination with patch-clamp electrophysiology, where several 

underlying mechanisms have been identified in the context of aging and AD [127, 160, 

241, 281, 290, 292-294, 297, 299, 512, 546]. In fact, recent studies have presented 

compelling evidence that Ca2+-dependent neuronal measures of hyperactivity are present 

in the amyloidogenic brain.  

4.5.3 Alternative Ca2+-Dependent Biomarkers in AD: Hyperactivity 

Several recent studies show that a new Ca2+-dependent biomarker of AD, 

previously unseen in in vitro studies, may be neuronal hyperactivity. Using in vivo 

multiphoton imaging, these studies have shown that, depending on the proximity to Aβ 

plaques, a significant increase in hyperactivity in several neuronal fields in the 

amyloidogenic brain is seen [335-337, 339, 340, 547, 548]. Moreover, hyperactivity in 

astrocytes adjacent to Aβ plaques has also been reported [549, 550], in some cases with 

concomitant increases in spontaneous vasoconstriction [551]. One suggested mechanism 

for increased neuronal hyperactivity in AD may be the reduction in glutamate reuptake via 

a reduction of glutamate transporters in the microenvironments surrounding Aβ plaques 

[340, 547]. Alternatively, this hyperexcitability could develop in response to failing Ca2+ 

buffering mechanisms, similar to those seen in basal forebrain neurons in aged animals [13, 

16, 161]. Together, these alterations highlight the presence of increased hyperactivity in 
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neuronal circuits of AD which would likely translate into altered network communication 

during encoding.  

As one may suspect, this increase in hyperexcitability could reflect on the presence 

of an epileptic-like phenotype in some models of AD [258, 552-556]. Age-dependent 

susceptibility to epilepsy has been well documented in the literature, with marked increases 

of epilepsy development reported in the elderly [557-561]. Epilepsy has long been 

characterized as a disease of neuronal hyperexcitability and abnormal firing with 

dysregulated Ca2+ as a key contributor [259, 562-567]. It is becoming evident that there is 

clear overlap between the profiles of these two diseases. A recent study performed in a rat 

model of epileptogenesis used bioinformatics to identify regulatory proteins in the 

hippocampal and parahippocampal brain regions that overlap in AD and epilepsy [513]. 

Among the shared dysregulated proteins of these diseases, 63 were identified to be 

involved with both mitochondrial function and Ca2+ homeostasis. At the least, these 

alterations certainly highlight AD as a disease of synaptic dysfunction that propagates 

intracellular dysregulation. Thus, it is clear that further characterization of this novel Ca2+-

dependent biomarker of AD is needed. 

While previous work in the field of neuronal excitability in aging has mostly 

remarked on reduced synaptic excitability, especially with respect to the larger AHP, but 

also reduced synaptic connectivity [2, 8, 9, 294, 568-571], our results showing an age-

dependent reduction in the AHP (at 4 months), elevations in I/O slope, and reductions in 

resting Ca2+ align relatively well with a potential phenotype of hyperexcitability. As 

expected, reductions in Ca2+ and Ca2+-mediated cellular events (i.e. AHP) seem likely to 



114 

 

engage hyperactivity processes, increase network communication, and, perhaps, reduce the 

threshold for epileptogenesis in this animal model of AD. 

 

4.6 Conclusions 

While our study does not identify increases in Ca2+ dysregulation in the 5xFAD animals 

compared to WT littermates across age, it does highlight the possibility that Ca2+-related 

processes in aging may be significantly different than those seen in AD. Further, studies 

investigating older animals (i.e. > 12 months of age) are needed to test whether Aβ 

accumulation induces Ca2+ dysregulation. It appears that neuronal hyperactivity may be a 

reliable reporter of Ca2+ dysregulation in AD; as such, further in vivo investigations are 

needed to identify new therapeutic strategies targeting anti-epileptic processes. In fact, both 

basic research studies and clinical trials have already been initiated to explore the efficacy 

of anti-epileptic drugs in the context of AD, with potentially promising results having been 

reported [260, 572-577]. Additional investigations will be needed as we further elucidate 

the precipitating factors involved with these two disease states.  
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CHAPTER 5. DISCUSSION, LIMITATIONS, AND FUTURE DIRECTIONS 

5.1 Discussion 

5.1.1 Recap of Aldh2-/- and 5xFAD Study Results 

Using sharp electrode electrophysiological and Ca2+ imaging techniques, direct and 

indirect Ca2+-dependent processes were characterized in two AD mouse models at 1.5, 4, 

and 10 months of age. These models, the Aldh2-/- and 5xFAD, were specifically chosen to 

represent sporadic and familial Alzheimer’s disease, respectively. Further, these models 

manifest similar AD phenotypes progressively, from birth, that align relatively well with 

the early phases of aging. The Aldh2-/- model develops high quantities of lipid peroxidation 

byproduct HNE through the knockdown of the ALDH2 gene, which promotes elevated 

oxidative stress, morphological and quantitative atrophy to dendritic processes, Aβ 

monomers and oligomers, phosphorylated tau, and cognitive impairment. The 5xFAD 

mouse, however, develops amyloid deposits, synaptic dysfunction, and cognitive deficit 

phenotypes through the genetic manipulation of APP, PSN1, and PSN2 genes. As neuronal 

Ca2+ handling has not been well characterized alongside aging in animal models of AD, it 

was of interest to directly measure Ca2+, as well as Ca2+ signaling in these two very different 

mice. 

The significant findings of these two studies illustrate that Ca2+-mediated 

alterations differ across animal models of AD. In the Aldh2-/- study, very few neuronal 

alterations were observed despite the increasing levels of oxidative stress as the mice aged. 

Of these alterations, only an age-related decrease in the AHP, a genotype-mediated 

elevation in the slow AHP amplitude, and a genotype-driven decrease in LTP maintenance 
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were noted in the Aldh2-/- knockout group. Alternatively, in addition to MWM behavioral 

deficits and increases in amyloid deposits with age, 5xFAD mice showed considerable 

changes in their neuronal physiology. Indeed, while age-related decrease (1.5 to 4 months 

of age) and increase (4 to 10 months) in amplitude were noted across 5xFAD and WT 

genotypes in AHP measures, a robust sex difference was present during Ca2+ imaging 

showing less Ca2+ in neurons of female mice during synaptic stimulation. Further, in 

general, 5xFAD mice had less resting Ca2+ compared to their WT counterparts, irrespective 

to age or sex. Together, these studies showed no evidence of increased neuronal Ca2+ to 

propagate the development of AD-like phenotypes in either model. 
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Table 5.1. Summary of Aldh2-/- and 5xFAD Results. 

 

 

Outcome Measure 5xFAD Male 
5xFAD 

Female 

Aldh2-/- 

Male 

Aldh2-/-

Female 

AHP 

mAHP (mV) sig. age “U” sig. age “U” sig. age ↓ 
sig. age ↓ 

sig. sex ↓ 

sAHP (mV) sig. age “U” sig. age “U” 
sig. age ↓ 

sig. gen. ↓ 

sig. age ↓ 

sig. gen. ↓ 

Duration (s) sig. age “U” sig. age “U” n.s. n.s. 

I/O Slope 

(mV/V) 

Synaptic 

Activation 
sig. age “U” sig. age “U” n.s. n.s. 

RSS 

Synaptic 

Hyperpolarization 

(mV) 

n.s. n.s. n.s. n.s. 

Early EPSP 

(% FF) 
n.s. n.s. n.s. n.s. 

Late EPSP 

(% FF) 
sig. age ↑ sig. age ↑ n.s. n.s. 

Ca2+ Imaging 

(During RSS) 

AUC 

(ΔF/F (%)*s) 
sig. age ↑ 

sig. age ↑ 

sig. sex ↓ 
n.s. n.s. 

Peak Amplitude 

(ΔF/F (%)) 
sig. age ↑ 

sig. age ↑ 

sig. sex ↓ 
n.s. n.s. 

Rise Time (s) n.s. n.s. n.s. n.s. 

Decay Time (s) n.s. n.s. n.s. n.s. 

Normalized Resting Fluorescence 

(F/um) 
sig. gen. ↓ sig. gen. ↓ n.s. n.s. 
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Table 5.1. Summary of Aldh2-/- and 5xFAD Results. Compilation of neuronal 

Ca2+ handling results across age, genotype, and sex in Aldh2-/- and 5xFAD mouse models. 

An age-mediated reduction in the AHP amplitude was observed in the mAHP and sAHP 

outcome measures of the Aldh2-/- mice. Additionally, a main effect of sex was present as a 

reduction in the mAHP, while a genotype-driven decrease in the sAHP was also identified 

in the Aldh2-/- group. In the 5xFAD mice, measures of the mAHP, sAHP, and AHP duration 

showed a decrease from 1.5 to 4 months of age, followed by an increase from 4 to 10 

months. This unique “U” shaped curve is discussed in Chapter 4.5.1. Measures of synaptic 

activation via an I/O curve revealed an increase, then a decrease across age in the 5xFAD 

mice; an expected inverse of the AHP data. While no other significant alterations were 

identified in outcome measures of the Aldh2-/- data, significant age-related increases were 

observed in late EPSP, AUC, and peak amplitude measures of the 5xFAD mice. Further, a 

sex-mediated reduction in the AUC and peak amplitude was noted in female 5xFAD 

animals. A main effect of genotype was also seen in the 5xFAD group as a reduction in 

resting fluorescence. Significance was determined as p < 0.05. A main effect of age is 

highlighted in yellow, sex in blue, and genotype (gen.) in green. No significance is 

represented as “n.s.”. 
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5.1.2 Familial vs. Sporadic AD Model Design 

With inconsistencies of Ca2+ dysregulation (i.e. elevations and reductions) 

observed in both animal and culture models of AD (here and in previous literature), perhaps 

the initial hypothesis that elevated neuronal Ca2+ in AD progression is a gross 

generalization that lacks relevance across all AD models. Considering fAD only accounts 

for a small fraction (~5%) of total human AD cases and sAD (95%) remains more 

prevalent, the primary use of transgenic models with fAD gene mutations in AD research 

may be hindering the growth of the field. Further, it is important to note that in addition to 

fAD cases being less prevalent, symptoms manifest as early as 30 years of age and this 

type of dementia is not only more severe, but progresses faster. With sAD patients 

generally showing symptoms by 65 years of age and progressing more slowly, research 

models have not been effectively recapitulating AD phenotypes to mimic what is observed 

in humans. However, it should be emphasized that the focus on using fAD models in AD 

research is due to the poorly understood nature of sAD development, as the latter is likely 

due to a culmination of genetic, environmental, lifestyle, and metabolic risk factors. That 

being said, the understanding of sAD is still developing. Only recently was an ER and 

plasma membrane channel called calcium homeostasis modulation 1 (CALHM1) identified 

as being linked to a gene polymorphism that increases sAD risk by decreasing Ca2+ 

permeability and increases Aβ production [578, 579]. Nevertheless, as fAD and sAD have 

similar phenotypes, there is value in drawing comparisons between research models of 

each type to better understand AD development and progression as a whole. In addition to 

the incorporation of genetic mutations, careful consideration of an animal’s genetic 

background should be made when selecting a research model to study. 
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5.1.3 Genetic Background of Research Models 

Importantly, an animal’s genetic background can drastically alter phenotypic 

expression, meaning greater emphasis must be placed on comparing animal models of like 

backgrounds. Indeed, early studies assessing the impact of genetic backgrounds on learning 

behavioral tasks and fear conditioning have squarely implicated animal strain as a 

participating factor in both learning enhancements and deficits [580]. In concert with gene 

mutations, genetic background differences can elicit staggering variability to physiological 

phenomena like neuronal excitability and the post-burst AHP as well [431]. Additionally, 

choosing whether to work with an inbred or outbred strain of an animal model is just as 

important. While an enhancement in the AHP has classically been shown in aged inbred 

F344 rats [182], the outbred Long Evans rat model seems to show a reduction in the AHP 

of aged animals [581]. Here, the Aldh2-/- and 5xFAD mouse strains were both of a C57BL/6 

genetic background in the experimental studies. Thus, genetic background variability 

should not have confounded data comparisons between the respective mouse models.  

5.1.4 Neuronal Excitability in the Animals 

In Chapter 4.5.3 it was discussed how in the 5xFAD mice there was an observed 

increase in neuronal excitability accompanied by a reduction in the AHP, decreased levels 

of resting Ca2+, and the early production of Aβ plaques by 4 months of age. As AD and 

epilepsy profiles seem to share many dysregulated proteins [513] and considering the 

growing evidence of neuronal hyperactivity in the amyloidogenic brain [335-337, 339, 340, 

547, 548], we concluded that, perhaps, a reduced threshold of epileptogenesis could be the 

byproduct of dysregulated Ca2+ and Ca2+-mediated processes. It is curious, however, that 

while Aβ promotes oxidative stress [229], synaptic deficits [230], and excitotoxicity [229, 
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231], we should see very little change in hyperactivity in the Aldh2-/- mice. Given the well-

established relationship between ROS promoting neuronal hyperexcitability [582-585], it 

is surprising that no increases in excitability were noted in the Aldh2-/- mice, a model of 

excess oxidative stress. Notably in contrast to the 5xFAD, we saw no changes in resting or 

stimulated Ca2+ levels in neurons of the Aldh2-/- mice. Also, while Aβ has been 

characterized in the Aldh2-/- mice, no histochemical staining of plaques was conducted in 

this study, therefore the severity of plaque deposition in the Aldh2-/- mice may be 

significantly less than in the 5xFAD. It is possible that oxidative stress alone is not enough 

to promote the hyperexcitability phenotype, but rather it is when oxidative stress is coupled 

with pronounced dysregulated Ca2+ or Aβ plaques that chronic excitability persists.  

5.1.5 Animal Sexes 

With a by and large push for sex inclusion as a variable in basic research, we 

decided to acquire data from both male and female mice in each study. To our surprise, sex 

differences were mostly absent across outcome measures. In the 5xFAD data, significant 

reductions in the area-under-the-curve and peak amplitude Ca2+ measures were observed 

in neurons from female mice compared to their male counterparts, regardless of genotype. 

Though sex differences were not shown in the Aldh2-/- study (due to low n) as stated in 

Chapter 2.4.2, a significant sex-mediated reduction in the mAHP of female mice was 

indeed present. Upon combining sexes, an age-driven decrease in the mAHP was present 

in both Aldh2-/- and WT mice. As past work has shown, estrogen plays an important role 

in the mediation of Ca2+-dependent processes. As estrogen levels decrease, L-VGCC 

expression increases [122], while application of estrogen receptor agonists decrease the 

AHP amplitude [102], elevate NMDA receptor density [71], increase dendritic spines and 
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synaptic density [187, 509], mitigate age-mediated L-VGCC current increases [96], and 

reduce intracellular Ca2+ release [191]. Thus, our results of reduced Ca2+ during synaptic 

stimulation in neurons of female mice compared to males may align with previous 

literature. Considering the previously described benefits of estrogen replacement therapy 

to reduce AD incidence [96, 353-357], there is clearly a necessity for further measures 

pertaining to estrogen in future studies. Moreover, as AD prevalence is three times greater 

in women than men likely due to post-menopausal depletions in estrogen levels [185] and 

considering rodent perimenopause typically occurs between 9-12 months of age [586-589], 

it is also possible that our mice were not aged enough to observe estrogen-mediated 

declines in Ca2+ processes. It should be noted, however, that data pertaining to the 

reproductive cycle of 5xFAD and Aldh2-/- mice is limited. 

 

5.2 Study Limitations 

5.2.1 Animal Age 

 As measuring changes in neuronal Ca2+ handling during aging was an important 

aspect of these studies, it should be noted that, perhaps, our animals were not aged enough 

to detect more drastic alterations to the AHP, synaptic plasticity, and Ca2+ levels. The 

selected timelines were indeed favorable to account for recording outcome measures 

before, during, and after amyloidogenesis, however, it is possible that the extent of 

degeneration was not fully realized by 10 months of age. For instance, in previous work 

measuring the AHP in 3xTg and PS1KI mice at 6 weeks, 6 months, and 18 months of age, 

a significant age-driven increase was not identified until 18 months [127]. Similarly, in 
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3xTg mice of 1, 6-9, and 12-16 months of age, age-dependent increases in NMDA and L-

VGCC current were only present by 12-16 months [241]. Even regarding measurements of 

Ca2+ binding proteins, previous work has shown an increase in calbindin immunoreactivity 

of APPSWE/PS1dE9 at 3 months but a decrease by 12 months, suggesting an initial 

compensatory mechanism that is later downregulated [309]. Considering our 5xFAD 

design was curated to induce a slower developing amyloidogenesis, it is possible that dire 

alterations to Ca2+ kinetics are not present until a timepoint beyond 10 months of age. In 

the interest of time and limited resources, the truncated timeline (i.e. 1.5, 4, and 10 months) 

that was used in our studies did serve the purpose of reporting gradual changes in Ca2+ 

processes. Nevertheless, it is of interest to acquire data at later ages in future studies to 

further characterize a comprehensive picture of neuronal Ca2+ handling during aging.  

5.2.2 Shipping of Animals 

 The inter-lab collaborations of these studies cultivated meaningful exchanges of 

knowledge, expertise, and resources. Further, a large component of these collaborations 

was the transportation of cohorts of mice from either Queens U. or the U. of Michigan to 

the U. of Kentucky. In carefully coordinated shipments, 20+ mice were sent to us at a time, 

pending inclement weather conditions were not in the immediate forecast. At times of 

extreme weather, transportation of animals was challenging to navigate and impactful to 

data acquisition. Considering animals were to be utilized at specific timepoints, during 

offset schedules I would have to rearrange my schedule accordingly to accommodate for 

these unexpected delays to assure timelines were met. More recently we had plans to 

measure network Ca2+ handling using a two-photon imaging approach. However, due to 
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the SARS-CoV-2 pandemic of 2020 affecting colony maintenance and shipment of 

animals, we had to forego these plans until a later time. 

5.2.3 Alternative Brain Regions 

 While the experiments in Chapters 2 and 4 were conducted using hippocampal 

sections, it is of interest to explore neuronal Ca2+ handling in alternative brain structures as 

well. As highlighted in Chapter 1, Ca2+ levels, kinetics, and processing seem to vary based 

on brain region, which may be linked to a divergence in normal brain aging and a 

pathogenic AD brain. In fact, early literature has illustrated significant alterations in Ca2+ 

metabolism across brain structures as rodents age [590]. For example, while it has been 

shown that L-VGCC density, Ca2+ currents, mRNA protein expression levels, and their 

post-translational phosphorylation state are increased in hippocampal neurons of aged rats 

[80, 95-102], expression patterns and function of L-VGCCs are not altered in cortical 

neurons [120, 121]. Further, some CBP activity has been notably decreased in hippocampal 

tissue [149-151], but is increased in basal forebrain neurons [16, 160, 161]. These examples 

are not exclusive to just animal models, however. As mentioned in Chapter 1, in autopsied 

human AD patients reductions of ER IP3R density have been noted in hippocampal and 

parietal lobe tissue, but no significant alterations were present in frontal, temporal, or 

occipital lobes [301]. Thus, while this limitation underscores the many permutations of 

conducting neuronal Ca2+ handling research as it pertains to a brain structure of interest, it 

also highlights the vast amount of possibilities for future directions, especially with regard 

to neuronal network communication. 
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5.3 Future Directions 

5.3.1 Imaging of Ca2+ Network  

 Indeed, there are many different future directions that this work can take. First and 

foremost, our lab has plans to shift the focus of recording Ca2+ changes in single neurons 

to two-photon imaging of neuronal and astrocytic networks. Through both adeno-

associated virus injections and genetically modified rodents with Ca2+ indicator encoded 

neurons, we have already generated promising preliminary data. In 5xFAD mice 

genetically modified with GCaMP6, it seems that Ca2+ dysregulation may impact neuronal 

density, firing patterns, and distance of communication. It is of interest to assess how 

gradual amyloidogenesis (5xFAD) or free oxygen radicals (Aldh2-/-) affect these important 

neuronal communication properties. A common concern in single-neuron recordings is that 

only healthy neurons are being measured while degeneration-impacted neurons are not 

healthy enough to be electrophysiologically recorded. While this is accounted for by 

acquiring neuronal health measures (see Chapters 2.4.1 and 4.3.9), field imaging of a 

network of neurons that are simultaneously stimulated provide greater insight to the 

widespread physiologic implications of neurodegeneration. While single-cell recordings 

show a piece of a puzzle, field imaging tells a comprehensive story of how those pieces fit 

together and should be considered for future studies. 

5.3.2 Amyloid Plaques in Aldh2-/- Mice 

Considering that amyloid plaques are widely considered a hallmark of AD and 

though concentrations of Aβ have been identified in the Aldh2-/- model, the extent of Aβ 

accumulation and how it compares with the 5xFAD mice across age requires more 
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attention. In the 5xFAD model, it was clear that by 4 months of age the amyloid deposits 

were starting to accumulate in region CA1 and the DG, and were substantially elevated in 

both of these hippocampal subregions by 10 months (Chapter 4.4.5). This measurement 

elicited valuable comparisons between amyloid load, Ca2+ levels, and pre-/post-synaptic 

events including the observation of a reduced AHP and elevated I/O excitability in concert 

with amyloid generation. As oxidative stress has been long thought to play a robust role in 

APP metabolism [401, 591-595], it is of utmost interest to characterize a timeline of 

amyloid plaque progression as it aligns with increasing oxygen radical load. Further, 

normalization of Aβ concentrations and neuronal Ca2+ levels between the 5xFAD and 

Aldh2-/- models may provide evidence of the magnitude of impact that oxidative stress has 

on global cell health. Lastly, with the characterization of Aβ concentrations across age, this 

future direction may also lead to identifying how changes in Aβ, Ca2+, synaptic 

communication, and oxidative stress affect intracellular regulatory factors like Ca2+ 

binding protein levels. 

5.3.3 Ca2+ Binding Protein Measures 

 Another important measure that can be further investigated is the impact of the age, 

sex, and genotype of these models on the regulation of Ca2+ binding proteins (CBPs). As 

discussed in Chapters 1.4.3 and 1.12.3, CBPs have an invaluable role in Ca2+ ion buffering 

and signaling that can be compromised during aging and in AD progression. Unfortunately, 

measures of CBPs were not conducted in these studies. It would be fascinating to quantitate 

various CBPs such as calbindin or calretinin that have been shown to decrease in the 

hippocampus of aged and AD animals, which has led to reduced synaptic strength [149, 

150, 309, 310]. Further, in the 5xFAD mouse that showed reduced resting Ca2+ compared 
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to WT, as well as a sex-mediated decrease in stimulated Ca2+ in females compared to males, 

CBP quantification may reveal additional sex- or genotype-related alterations to neuron 

physiology in these mice. Also, considering calcineurin has been shown to participate in 

the enhancement of L-VGCC function in aging [101, 159], measuring its level of activation 

in the context of decreased resting or stimulated Ca2+ may be another outcome measure 

worthy of attention. In conjunction with this, the application of Ca2+ agonists or blockers 

would surely help to elucidate if L-VGCCs participate in the decreases of Ca2+ observed 

in the 5xFAD model.  

5.3.4 Ca2+ Blockers and Other Therapeutics 

 The use of Ca2+ channel agonists and blockers has provided the field with a better 

understanding of intra- and extracellular neuronal Ca2+ handling through the 

characterization of Ca2+ sources and their function. Additionally, although controversial, 

the translatability of Ca2+ channel blockers in clinical studies has helped to validate the 

Calcium Hypothesis of Brain Aging and ultimately Ca2+’s role in AD progression. Thus, 

as a future direction of these studies, the inclusion of Ca2+-related drugs and other 

therapeutics might navigate researchers to better identify the chronological order of 

abnormal cellular process as animal models of AD age. For instance, though reduced 

resting Ca2+ in the 5xFAD mice and overall less stimulated Ca2+ in females was observed 

in that study, it is unclear where the source of decreased Ca2+ originates. If the sex-mediated 

reduction in Ca2+ is related to estrogen levels, then perhaps introducing 17beta-estradiol 

benzoate to hippocampal slices during electrophysiological recordings might abolish the 

AHP amplitude [102]. However, if a reduction in L-VGCC current is present as previously 

observed in the 5xFAD mouse [348], as well as the 2xTg model [242], then perhaps 
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application of 17beta-estradiol may further reduce L-VGCC activity [96]. If indeed 

decreased L-VGCC channel activity is a source of reduced resting Ca2+ in this model, then 

it may be of interest to test the effect of L-VGCC agonist Bay K8644 on increasing resting 

Ca2+ in the 5xFAD mice [11]. Regarding the Aldh2-/- study, though few phenotypic 

alterations were observed, the use of antioxidant or photobiomodulation interventions to 

buffer oxidative stress and regulate downstream alterations like Aβ production and 

synaptic deficits could be of interest. Overall, great insights can be made by targeting 

specific organelles involved in Ca2+ events with therapeutics and determining their impact 

in these two models, with respect to age, sex, and genotype.  

 

5.4 Conclusions 

Ca2+ is an essential ion involved in many physiologic events necessary for 

biological homeostasis. In the brain, Ca2+ is utilized by neurons when eliciting action 

potentials in specific patterns and frequencies to communicate neurochemical messages, 

as well as in the encoding and erasure of memories. It is important that Ca2+ is regulated at 

specific concentrations both inside and outside of neurons to maintain normal action 

potential properties. In aging and AD, it has been noted that neuron Ca2+ levels deviate 

from homeostatic concentrations, which leads to widespread physiologic impairment. This 

deviation, coined “calcium dysregulation”, was once widely thought to manifest as 

elevated intracellular Ca2+ levels, as it was historically observed in models of aging. 

However, in addition to the work shown here, a growing body of literature suggests that 

intracellular neuronal Ca2+ concentrations and handling in AD not only deviates from 

normal aging, but may actually be reduced [242, 348, 525]. 



129 

 

Given AD is a neurodegenerative disease that progresses in late-life, it was often 

assumed that 1) AD is an accelerated form of aging and 2) elevated intracellular Ca2+ may 

give rise to disease development. AD development, however, can be subdivided into two 

categories: fAD, which makes up 5% of total cases, and sAD, the other 95%. Basic research 

has implicated mutations of the APP, PSN1, and PSN2 genes as primary promoters of fAD, 

which have been modeled in transgenic animals of AD. Many fAD models have shown 

increased intracellular Ca2+ due to the inclusion of the ER Ca2+ channel-modifying PS 

mutations, despite the lack of this genetic mutation in most human AD cases. In fact, many 

animal models of AD have shown either no changes or reduced neuronal Ca2+. We sought 

to further investigate this by measuring Ca2+ and Ca2+-mediated processes across age in 

both fAD and sAD mouse models.  

Here, we showed that resting Ca2+ levels were reduced in neurons of a model of 

fAD and unaltered in sAD. There were clear AD-related deficits that developed in each 

model as the mice aged, but these impairments were not due to elevated neuronal Ca2+. As 

Ca2+ dysregulation has been shown to have a robust role in disrupting many neuronal 

processes, it is not to say that Ca2+ dyshomeostasis does not warrant downstream cellular 

abnormalities. However, perhaps the dogma of the Calcium Hypothesis of Brain Aging has 

become too generally accepted and its philosophy of increased neuronal Ca2+ with aging 

has somewhat hindered growth of the field. Common factors like genetic background, sex, 

and gene mutations clearly impact phenotypic expression of animal models. Coupled with 

the fact that the AD field lacks a perfect AD surrogate that mimics human pathology 

progression, it is understandable that controversial findings have riddled researchers. 

Indeed, it is difficult to control every experimental variable in a study, however through 
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the careful consideration of intrinsic biological factors and the influence they may have on 

other variables, new doors of discovery will undoubtedly continue to open. 
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APPENDIX 

List of Abbreviations 

Aβ  amyloid-β  

ACSF  artificial cerebral spinal fluid  

AD  Alzheimer’s disease  

AHP  afterhyperpolarization  

Aldh2-/- aldehyde dehydrogenase 2 knockout 

AMPA  α-amino-3-hydroxy-5-methylisoxazole-4- propionate 

AP  action potential  

APP  amyloid precursor protein 

ATP  adenosine triphosphate 

AUC  area-under-the-curve 

CA1  Cornu Ammonis-1 

CBP  Calcium binding proteins 

CCE  capacitive Ca2+ entry 

CICR  calcium-induced calcium release 

DG  dentate gyrus  

EPSP  excitatory post-synaptic potential 
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ER  endoplasmic reticulum  

fPSP  field post-synaptic potentials 

GCL  granule cell layer  

HFS  high frequency stimulation 

H  hilus  

HNE  4-hydroxynonenal 

ICS  intracellular calcium stores 

I/O  input/output  

IP3  inositol (1, 4, 5)-trisphosphate 

KO  knockout  

LGCC  ligand-gated calcium channel 

LPx  lipid peroxidation 

LTD  long-term depression 

LTP  long-term potentiation 

L-VGCC L-type voltage-gated calcium channel  

mAHP  medium afterhyperpolarization 

MCU  mitochondrial Ca2+ uniporter 

mNCX  mitochondrial Na+/ Ca2+ exchangers 
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ML  molecular layer 

MWM  Morris water maze  

NCX  Na+/ Ca2+ exchangers 

NMDA N-methyl-D-asparate 

OGB-1  Oregon Green Bapta-1 

PMCA  plasma membrane Ca2+ ATPase 

PS  presenilin  

p-tau  phosphorylated tau protein 

ROI  region of interest  

ROS  reactive oxygen species 

RSS  repeated synaptic stimulation  

RyR  ryanodine receptor 

sAHP  slow afterhyperpolarization  

SC  Schaffer collaterals  

SEM  standard error of the mean 

SERCA sarco-endoplasmic reticulum Ca2+-ATPase 

SO  stratum oriens 

SOCE  store-operated Ca2+ entry 



134 

 

SLM  stratum lacunosum-moleculare 

SP  stratum pyramidale 

SR  stratum radiatum  

TBI  traumatic brain injury 

VGCC  voltage-gated Ca2+ channels 

WT  wild-type  
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