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Removable singularities in C*-algebras of
real rank zero

Lawrence A. Harris

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027

Abstract

Let A be a C*-algebra with identity and real rank zero. Suppose a complex-
valued function is holomorphic and bounded on the intersection of the open unit
ball of A and the identity component of the set of invertible elements of A. We
give a short transparent proof that the function has a holomorphic extension to
the entire open unit ball of A. The author previously deduced this from a more
general fact about Banach algebras.

Keywords: infinite dimensional holomorphy, weak (FU)
2010 MSC: 46G20, 46L05

1. Preliminary definitions and theorems.

Recall [1] that a C*-algebra is a closed complex subalgebra A of the Banach
algebra B(H) of all bounded linear operators on a Hilbert space with the op-
erator norm such that A contains the adjoints of each of its elements. All our
C*-algebras contain the identity operator I.

To give a basic example, let S be a compact Hausdorff space and let C(S)
be the algebra of all continuous complex-valued functions on S with the sup
norm. Then there exist a Hilbert space H, a C*-algebra A in B(H) and an
isomorphism ρ : C(S) → A that preserves norms and adjoints. To see this, let
H be the Hilbert space having the same dimension as the cardinality of S and
let {es : s ∈ S} be an orthonormal basis for H. Then we may take ρ(f) to
be the multiplication operator defined by ρ(f)(es) = f(s)es for all s ∈ S and
f ∈ C(S).

More generally, one can define a Banach algebra that is an abstraction of
a C*-algebra and show that an isomorphism like the above exists. Specifically,
a B*-algebra is a complex Banach algebra A with an involution * such that
‖x∗x‖ = ‖x‖2 for all x ∈ A. Then a norm and adjoint preserving isomorphism
ρ of A onto a C*-algebra exists by the Gelfand-Naimark theorem [1, p. 209].
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We now turn to some basic facts about complex-valued holomorphic func-
tions defined on a domain D in a complex Banach space X. We say that a
function f : D → C is holomorphic if for each x ∈ D there exists a continuous
complex-linear functional ` ∈ X∗ such that

lim
y→0

f(x+ y)− f(x)− `(y)

‖y‖
= 0.

Clearly, if f is holomorphic in D then the function φ(λ) = f(x + λy) is holo-
morphic (in the usual sense) in a neighborhood of the origin for each x ∈ D
and y ∈ X. It is well known [7, Theorem 3.17.1] that this property also implies
holomorphy when f is locally bounded in D. One can extend many classical
results about holomorphic functions by applying the above property. For ex-
ample, this is true for the following elementary form of the identity theorem [7,
Theorem 3.16.4].

Proposition 1. Let D be a domain in a complex Banach space X and let f :
D → C be holomorphic in D. If f vanishes on a ball in D then f vanishes
everywhere in D.

By definition, a ball is a set of the form

Br(x0) = {x ∈ X : ‖x− x0‖ < r},

where x0 ∈ X and r > 0.
We will need the following elementary version of Taylor’s theorem, which

can be proved as in [7, Theorem 3.17.1], and a simple converse, which can be
obtained from the Weierstrass M-test and [7, Theorem 3.18.1].

Proposition 2. Let X be a complex Banach space and let x0 ∈ X and r > 0.
If f : Br(x0)→ C is a bounded holomorphic function, then for each n there is a
continuous complex-homogeneous polynomial Pn : X → C of degree n such that

f(x) =
∞∑
n=0

Pn(x− x0) for x ∈ Br(x0). (1)

Conversely, if for each n there is a continuous complex-homogeneous polynomial
Pn : X → C of degree n and if

‖Pn‖ ≤
M

rn
, n = 0, 1, . . . (2)

for some positive constants r and M , then the function f given by (1) is holo-
morphic in Br(x0).

For example, if (1) holds then

Pn(y) =
1

n!

dn

dtn
f(x0 + ty)

∣∣∣∣
t=0

, n = 0, 1, . . . (3)
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for all y ∈ X. If f is holomorphic on Br(x0) and M is a bound for f , then (2)
is a consequence of the classical Cauchy estimates. As usual,

‖Pn‖ = sup{|Pn(x)| : ‖x‖ ≤ 1, x ∈ X}.

.

2. Real rank zero.

Definition 1. (See [2].) Let A be a C*-algebra and let S be the set of self-
adjoint elements of A. Then A has real rank zero if the elements of S with finite
spectra are dense in S.

As shown by Brown and Pedersen [2], many interesting C*-algebras have real
rank zero. For example, the C*-algebra B(H) of all bounded linear operators
on a Hilbert space H has real rank zero. More generally, any von Neumann
algebra has real rank zero. The space C(S) of all continuous functions on
a compact Hausdorff space S has real rank zero if and only if S is totally
disconnected. (It is a von Neumann algebra only if S is extremely disconnected.)
Also, any AF-algebra has real rank zero. If BC(H) is the C*-algebra of all
compact operators on H, then CI + BC(H) has real rank zero as does the
Calkin algebra B(H)/BC(H). Note that the set of invertible elements of the
Calkin algebra has a different component for each value of the Fredholm index
and thus is not connected. See [3] for further details and references.

Let A be a C*-algebra with identity, let

A0 = {A ∈ A : ‖A‖ < 1}

be the open unit ball of A and let Aeinv be the identity component of the set of
invertible elements of A. Our main result is the following:

Theorem 1. Suppose A has real rank zero and let f be a complex-valued func-
tion that is holomorphic and bounded on the intersection of the domains A0 and
Aeinv. Then f has a holomorphic extension to A0.

The author does not know even in the commutative case whether the remov-
able singularity property of Theorem 1 characterizes C*-algebras of real rank
zero. However, it is shown in [4] that C(S) does not have this property when S
contains the homeomorphic image of an interval.

The proof given below of the previous theorem depends on two important
facts about the identity component U of the set of unitary operators in A. The
first is a maximum principle that is a special case of [6, Theorem 8] and [5,
Theorem 9] and the second is a density theorem due to Huaxin Lin [8].

Proposition 3. Let f : A0 → C be a holomorphic function having a continuous
extension to the closed unit ball A1 of A. If |f(U)| ≤ 1 for all U ∈ U then
|f(A)| ≤ 1 for all A ∈ A1.
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Proposition 4. If A has real rank zero then the set of unitaries in U with finite
spectrum is dense in U .

Proof of Theorem 1. Given any ε with 0 < ε < 1/2, let r = 1−ε. The set D =
Br(εI)∩Aeinv is open since Aeinv is open and one can deduce that D is connected
from the fact that Br(εI) contains a neighborhood of 0. By Proposition 1,
it suffices to show that there exists a function fε that is holomorphic in the
ball Br(εI) and satisfies fε(A) = f(A) for all A ∈ D. Since the function f is
holomorphic in a ball with center at x0 = εI, it follows from Proposition 2 that

f(A) =

∞∑
n=0

Pn(A− εI) (4)

for all A in this ball. Thus by the converse part of Proposition 2, it suffices to
show that

‖Pn‖ ≤
M

rn
, n = 0, 1, . . . , (5)

where M satisfies |f | ≤M on A0 ∩ Aeinv, since then the function

fε(A) =

∞∑
n=0

Pn(A− εI)

is holomorphic on Br(εI) and agrees with f on D by Proposition 1.
Let B ∈ A with ‖B‖ ≤ 1 and suppose the spectrum σ(B) is finite. Define

φ(λ) = f(εI + λB). If |λ| < r then εI + λB ∈ A0, εI + λB ∈ Aeinv and
|φ(λ)| ≤ M for all but finitely many λ. By the classical Riemann removable
singularity theorem, the function φ has a holomorphic extension to the disc
|λ| < r with |φ| ≤M . Hence |φ(n)(0)| ≤ n!M/rn by the Cauchy estimates so

|Pn(B)| ≤ M

rn
(6)

by (3).
By Proposition 4, inequality (6) holds whenever B is in the identity compo-

nent of the set of unitary elements of A and hence for all B ∈ A with ‖B‖ ≤ 1
by Proposition 3. This establishes (5) and completes the proof.

The proof of Theorem 1 given in [4] does not require Proposition 4 but
the argument is less straightforward. See [4] for further results, examples and
references.
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