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ABSTRACT OF DISSERTATION 

INVESTIGATIONS INTO THE GENETICS OF MIXED PATHOLOGIES IN 
DEMENTIA 

Alzheimer’s disease (AD) is an irreversible, progressive brain disorder that leads 

to a loss of memory and thinking skills. While tremendous progress has been made in our 

understanding of the genetics underlying AD, currently known genetic variants explain 

only approximately 30% of the heritable risk of developing AD. One hurdle to AD research 

is that it can only be definitively diagnosed at autopsy, making cruder, clinic-based 

diagnoses more common. In recent years, several brain pathologies that mimic AD’s 

clinical presentation have been identified including brain arteriolosclerosis, hippocampal 

sclerosis (HS), and, most recently, limbic-predominant age-related TDP-43 

encephalopathy (LATE). It has become increasingly clear that “pure AD” is rare and mixed 

pathologies (i.e., having two or more concomitant pathologies) are very prevalent. In this 

dissertation, I will present two investigations into the genetics of mixed pathologies based 

on autopsy-confirmed neuropathological phenotypes along with a new statistical method 

with an application to the genetics of mixed pathologies. The first investigation looks at a 

recently identified clinical AD risk locus and finds novel associations with two AD mimics 

and, importantly, no associations with AD-related pathologies, which suggests that the 

locus may be preferentially associated with non-AD dementia. The second investigation 

looks at the shared genetics of two related AD mimics, HS and LATE, and replicates earlier 

findings while also identifying several novel functional variants for both HS and LATE. 

The new statistical method leverages models from the branch of statistics known as 

functional data analysis to create a gene-level genetic pleiotropy test statistic. An extensive 

simulation study found that the test statistic outperforms competing methods in small 

sample, modest effect size scenarios and when applied to real-world data identified a novel 

joint association between HS and LATE and the GRN gene. All investigations were able 

to leverage neuropathologically-confirmed endophenotypes to identify novel genetic 

associations with several AD mimics, adding to the growing body of literature on the 

complex genetics underling neurodegenerative disease and the statistical methods available 

for such studies. 
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CHAPTER 1.  INTRODUCTION 

1.1 Alzheimer’s Disease 

Dementia is a clinical state characterized by a chronic, acquired loss of cognitive 

abilities which affects 47 million people worldwide [1]. While several neurodegenerative 

diseases can cause a dementia-like syndrome, Alzheimer’s disease (AD) is the most 

common cause and accounts for up to 56% of dementia cases at autopsy [2]. While the 

hallmarks of the AD brain are pathologic build-ups of the amyloid- (A) and tau proteins, 

the exact cause of AD is still unknown [3].  

The gold standard for diagnosing AD is via neuropathological examination where 

both A and tau must both be present, though this can only be conducted at autopsy [4]. 

AD can also be diagnosed while a person is alive through clinical examination with or 

without biomarker evidence [5]. Clinical diagnosis of AD has been shown to be inaccurate, 

especially in the absence of additional biomarker data [6, 7].  

It has become increasingly clear that most dementia cases are afflicted by more than 

one neurodegenerative disease [8, 9]. A recent study recent community-based cohort study 

looking at the prevalence of multiple proteinopathies in older adults found that all 

individuals had the presence of at least one of tau, amyloid-β (Aβ), α-synuclein, or TAR-

DNA binding protein 43 (TDP-43) pathologies at autopsy and only 6.4% of individuals 

presented with only a single proteinopathy [10]. 

1.2 Other Neurodegenerative Diseases 

Several non-AD neuropathologies – including hippocampal sclerosis (HS), limbic 

predominant age-related TDP-43 encephalopathy (LATE), and brain arteriolosclerosis (B-
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ASC) – are difficult to clinically distinguish from AD which has led some researchers to 

refer to them as “AD mimics” [9, 11, 12]. LATE is disease entity characterized by TDP-

43 proteinopathy and cognitive impairment in aged populations that is separate from 

frontotemporal lobar degeneration with TDP-43 inclusions [9, 13-15]. HS is a pathologic 

finding that commonly co-occurs with LATE that is characterized by selective neuronal 

loss and gliosis of the hippocampal formation out of proportion of any AD pathology [16, 

17].  B-ASC is a common subtype of cerebral small vessel disease that is associated with 

substantial cognitive impairment [12]. 

Unlike AD, which becomes less prevalent in the oldest old, all of the AD mimics 

become increasingly prevalent in individuals of advanced age. Among individuals beyond 

age 80, HS and LATE pathologies have been observed in ~30% of individuals [9] and B-

ASC has been identified in over 80% of individuals [12]. Since these AD mimics are highly 

prevalent and difficult to detect clinically, it increases the likelihood of misclassification 

when relying solely on clinical diagnoses of AD especially when the goal is to study the 

etiology of AD. 

1.3 Genetics 

Genome-wide association studies (GWAS) with large sample sizes have successfully 

identified dozens of genes and single nucleotide polymorphisms (SNP) associated with 

clinical AD [18-21]. Additionally, through the use of proxy AD cases which are defined 

via self-reports of familial AD, AD GWAS sample sizes have increased even more and are 

able to detect SNPs with much smaller effect sizes [22-24]. While many of the earlier 
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identified AD genes and SNPs have been corroborated in follow-up studies and external 

cohorts, several AD-associated genetic loci remain largely uncharacterized. 

Risk genes and SNPs have also been identified for HS [9, 25-38], LATE [9, 26, 29, 

32, 39-41], and B-ASC [12, 42-44]. Notably, there are several risk genes that are shared 

either among the mimics or with AD including APOE, ABCC9, GRN, and TMEM106B. 

While genetic pleiotropy has been observed in neurodegeneration [39, 45-49], it is still 

unclear if these genes actually cause more than one neuropathology or if their apparent 

associations are due misclassification of clinical phenotypes. 

1.4 Dissertation Outline 

This dissertation presents studies on the associations of several neurodegenerative 

pathologies and the WWOX gene, the gene-based associations of previously identified HS 

risk genes and LATE-NC, and the development of a new statistical method for testing gene-

based, multi-phenotype associations. In Chapter 2, variants in a recently identified clinical 

AD risk locus encompassing the WWOX and MAF genes are tested for associations with 

AD-specific pathologies along with HS, LATE-NC, and B-ASC. The major findings from 

this study included significant associations with HS, LATE-NC, and B-ASC and, notably, 

no significant associations with AD-related pathologies. This suggests that the original 

clinical AD findings for the WWOX/MAF locus were driven by non-AD pathologies. In 

Chapter 3, never-before-analyzed HS and LATE-NC data are used to reevaluate previously 

identified HS risk genes and risk SNPs. The major findings from this study include both 

HS and LATE-NC being associated with the APOE and TMEM106B genes and only HS 

being associated with the ABCC9 and GRN genes. Additionally, several novel SNPs in the 

TMEM106B, ABCC9, and APOE genes were identified and showed biological plausibility. 
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In Chapter 4, we use the framework of function-on-scalar regression models from the 

branch of statistics known as functional data analysis to development a new statistical test 

for gene-based, multi-phenotype associations. Our newly derived test performs similarly 

to another test based on function-on-scalar regression models and outperforms competing 

methods, especially when the sample sizes are smaller and the genetic associations weaker. 

The conclusion of the dissertation is discussed in Chapter 5. 
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CHAPTER 2. ASSOCIATION BETWEEN WWOX/MAF VARIANTS AND DEMENTIA-RELATED

NEUROPATHOLOGIC ENDOPHENOTYPES

2.1 Abstract 

The genetic locus containing the WWOX and MAF genes was implicated as a clinical 

Alzheimer’s disease (AD) risk locus in two recent large meta-analytic genome wide 

association studies (GWAS). In a prior GWAS, we identified a variant in WWOX as a 

suggestive risk allele for hippocampal sclerosis (HS). We hypothesized that the 

WWOX/MAF locus may be preferentially associated with non-plaque- and non-tau-related 

neuropathological changes (NC). Data from research participants with GWAS and autopsy 

measures from the National Alzheimer’s Coordinating Center (NACC) and the Religious 

Orders Study and Memory and the Rush Aging Project (ROSMAP) were meta-analyzed. 

Notably, no variants in the locus were significantly associated with AD-related NC. 

However, several WWOX/MAF variants had significant adjusted associations with limbic-

predominant age-related TDP-43 encephalopathy NC (LATE-NC) and HS. The LATE-NC 

and HS associations remained unchanged after adjustment for AD-associated 

neurofibrillary pathology and, separately, for neuritic amyloid plaques, suggesting that 

these associations are independent of the presence or severity of AD pathology. 

2.2 Introduction 

The human WW domain-containing oxidoreductase (WWOX) and MAF bZIP 

transcription factor (MAF) genes are situated close to each other on chromosome 16q23. 

The normal functions of these genes are incompletely characterized. WWOX protein plays 

roles in transcription regulation, glucose metabolism, and central nervous system 
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development [50], while the protein encoded by the MAF gene is a transcription factor that 

regulates cellular processes including T-cell susceptibility to apoptosis.  

This locus has been implicated in human disease. WWOX has been hypothesized to 

play a rolea in neurodegenerative disease, particularly AD [51-53]. A large genome-wide 

association study (GWAS) of clinical AD suggested that WWOX confers AD risk in non-

Hispanic White individuals [18] and a follow-up GWAS in African American individuals 

nominally replicated this association [19]. More recently, the largest AD GWAS to date 

also found an association between AD and MAF, the gene just downstream of WWOX [54]. 

In addition to AD, WWOX has also shown suggestive linkage with autism and 

schizophrenia [55, 56] and MAF has been associated with thyroid-related diseases, such as 

Graves’ disease and Hashimoto’s disease [57]. Nonetheless, the neurochemistry of WWOX 

and MAF in the human brain, and in human disease, is still poorly understood. 

It has become increasingly clear that AD and related dementias (ADRD) are highly 

complex at both the individual level (multiple pathologies per person) and in a population 

(many different combinations of mixed pathologies).  Thus, multiple neuropathological 

changes are associated with the AD clinical syndrome and these neurodegenerative 

diseases often co-occur, especially in older age [8, 9]. A recent community-based cohort 

study looking at the prevalence of multiple proteinopathies in older adults found that all 

individuals had the presence of at least one of tau, amyloid-β (Aβ), α-synuclein, or TAR-

DNA binding protein 43 (TDP-43) pathologies at autopsy and only 6.4% of individuals 

presented with only a single proteinopathy [10]. 

A previous GWAS found WWOX to be a gene suggestive for association with 

hippocampal sclerosis (HS) pathology [28]. The brain conditions which were previously 
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referred to as “HS-Aging” and “HS dementia” are now subsumed under a broader disease 

category, and are characterized by the presence of comorbid TDP-43 proteinopathy, which 

is a more sensitive and specific feature.  The condition was recently classified with the term 

limbic-predominant age-related TDP-43 encephalopathy (LATE) [9].  The presence of the 

neuropathological changes underlying LATE (LATE-NC) is associated with a dementia 

syndrome similar to AD [9]. 

Given that we had found a suggestive link between WWOX variants and HS, and 

others found an association between the WWOX/MAF locus and clinical AD, we 

hypothesized that a more definitive conclusion could be reached via a pathology-based 

study of separate cohorts with both genetics and pathologic information (including TDP-

43 proteinopathy) available.  We investigated whether the WWOX/MAF AD association 

could be due to neuropathological changes other than AD-type pathological hallmarks, 

amyloid plaques and neurofibrillary tangles. GWAS data and autopsy-confirmed 

neuropathological endophenotypes were gathered from the National Alzheimer’s 

Coordinating Center (NACC) and from the Religious Orders Study and the Rush Memory 

and Aging Project (ROSMAP), to resolve novel associations between pathological findings 

and WWOX/MAF genetic variation. 

2.3  Materials and Methods 

2.3.1 Study Participants 

Phenotypic data from NACC were linked with genotype data from the Alzheimer’s 

Disease Genetics Consortium (ADGC). Individuals who died at age 65 years or older were 

included in this study. Similar to other studies using NACC data [58], individuals were 
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excluded from the NACC cohort if at least one of 19 rare brain diseases were diagnosed 

(Supplemental Table 2.1) or if they were missing any adjustment variables or all of the 

endophenotypes under study.  

The ROSMAP study has been described in detail elsewhere [59]. Briefly, data were 

acquired from two well-characterized cohort studies of aging and dementia. The Religious 

Orders Study (ROS), begun in 1994, and the Rush Memory and Aging Project (MAP), 

begun in 1997, involve older adults who enrolled without dementia, agreed to annual 

clinical evaluations and organ donation at death, and signed an Anatomical Gift Act for 

brain donation. Written informed consent was obtained from participants, and research was 

carried out in accordance with Institutional Review Board (IRB)-approved protocols. 

ROSMAP data are available online at the Rush Alzheimer’s Disease Center Resource 

Sharing Hub (https://www.radc.rush.edu/), as well as on the Accelerating Medicines 

Partnership-Alzheimer’s Disease (AMP-AD) Knowledge Portal (syn3219045). 

2.3.2 Neuropathological Endophenotype Definitions 

In the NACC Neuropathology (NP) dataset, LATE-NC was defined as either 

present or absent using the “distribution of TDP-43 immunoreactive inclusions” variables 

indicating if TDP-43 proteinopathy was observed in either the hippocampus (NPTDPC 

NACC field), entorhinal/inferior temporal cortex (NPTDPD), or neocortex (NPTDPE) in 

a case lacking overall diagnosis of frontotemporal lobar degeneration (FTLD)-TDP. HS 

was defined as either present or absent based on the “hippocampal sclerosis of CA1 and/or 

subiculum” (NPHIPSCL) variable using the “unilateral,” “bilateral,” and “present but 

laterality not assessed” response categories. Arteriolosclerosis was defined similarly using 
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the “arteriolosclerosis” (NACCARTE) variable and collapsing the “moderate” and 

“severe” response categories. Presence of neurofibrillary tangles was also defined 

dichotomously using the “Braak stage for neurofibrillary degeneration (B score)” 

(NACCBRAA) variable and collapsing the “stage V (B3)” and “stage VI (B3)” response 

categories. Presence of neuritic plaques was defined dichotomously using the “frequent 

neuritic plaques (C3)” response category of the “density of neocortical neuritic plaques 

(CERAD score) (C score)” (NACCNEUR) variable.  

In ROSMAP, LATE-NC was defined dichotomously using the “TDP-43 stage” 

(tdp_st4) variable and collapsing the 2nd and 3rd stages in cases lacking FTLD-TDP. HS 

was defined dichotomously by the “hippocampal sclerosis was rated as definitely present 

with CA1 region affected” response category of the “definite presence of typical 

hippocampal sclerosis” (hspath_typ) variable. Arteriolosclerosis was defined 

dichotomously using the “arteriolosclerosis” (arteriol_scler) variable and collapsing the 

“moderate” and “severe” response categories. Presence of neurofibrillary tangles was 

defined dichotomously using the “semiquantitative measure of neurofibrillary tangles” 

(braaksc) variable and collapsing the “V” and “VI” response categories. Presence of 

neuritic plaques was defined dichotomously by the “definite” response category of the 

“semiquantitative measure of neuritic plaques” (ceradsc) variable. 

2.3.3 Quality Control of Genotype Data 

For NACC participants, genomic data from the ADGC imputed using the 

Haplotype Reference Consortium (ADGC-HRC) were used [60]. The genetic data for 

ROSMAP was also imputed using the HRC and the methods have been described in detail 
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elsewhere [61]. Standard GWAS quality control (QC) procedures were performed 

separately on the ADGC and ROSMAP genotype data using PLINK1.9 [62, 63].  Variants 

were excluded if they were missing in more than 5% of samples, if they had a minor allele 

frequency less than 1%, or if they had Hardy-Weinberg Equilibrium (HWE) p-values < 

1x10-6. Individuals were excluded if they were missing more than 5% of genotypes. Two 

individuals were considered related if they had an identity by descent measure of at least 

0.25, which indicates that they are second-degree relatives. For related pairs, the individual 

with the lowest call rate was excluded.  

NACC and ROSMAP genotype data were separately merged with 1000 Genomes 

data Phase 3. Principal components (PCs) were calculated for the merged data sets using 

the “pca” procedure in PLINK1.9, and the first two PCs were plotted. Using the known 

ancestries from the 1000 Genomes data, individuals of European ancestry in the ADGC-

HRC and ROSMAP data sets were identified and all other individuals were excluded from 

the analysis. 

2.3.4 Variant-Level Associations 

The gene boundaries of WWOX and MAF were defined based on the canonical 

transcripts (WWOX: 78,133,309 – 79,246,564; MAF: 79,627,744 – 79,634,622) using the 

GRCh37/hg19 gene range list from PLINK (https://www.cog-

genomics.org/plink/1.9/resources). Since both of the genome-wide significant 

WWOX/MAF AD variants (rs62039712 from Kunkle et al. and rs450674 from Bellenguez 

et al.) were in the intergenic region between the WWOX and MAF genes, we defined the 

WWOX/MAF locus to be from 78,133,309 to 79,634,622 +/- 250kb of flanking. 
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Associations between each endophenotype and each variant were tested separately 

in the NACC and ROSMAP datasets using binary logistic regression models assuming 

each of the three most commonly used modes of inheritance (MOI): additive, dominant, 

and recessive. Variants were excluded from the analyses if they were multiallelic or if there 

were fewer than 15 minor alleles present across all participants. All regression models were 

fit in R programming language [64], version 4.0.4, using the glm function and adjusted for 

age at death, sex, ADGC data selection round (for NACC data) or ROS/MAP study (for 

ROSMAP data), and the first three PCs. Odds ratios (OR) were calculated for each variant 

by exponentiating the variant’s beta estimate. Since some endophenotypes were only 

available in a subset of participants, PCs were calculated separately for each 

endophenotype using the “pca” procedure in PLINK1.9. NACC and ROSMAP variant-

level results were meta-analyzed using a fixed-effect, inverse-variance meta-analysis via 

the metagen function from the meta R package, version 4.18-0 [65]. Plots of cohort-specific 

and meta-analyzed variant-level p-values were created using LocusZoom Standalone, 

version 1.4 (https://genome.sph.umich.edu/wiki/LocusZoom_Standalone) [66]. Linkage 

disequilibrium estimates were computed using LDlink assuming a CEU population 

(https://ldlink.nci.nih.gov/) [67]. 

2.3.5 Variant Prioritization and Downstream Analyses 

Statistically significant variants were identified using a Bonferroni-corrected 

threshold for significance that accounts for the effective number of independent tests in the 

region. The effective number of independent tests in the region was calculated for each 

endophenotype using the method of Gao et al. [68]. Briefly, Pearson’s correlation 

https://genome.sph.umich.edu/wiki/LocusZoom_Standalone
https://ldlink.nci.nih.gov/
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coefficient was calculated for all pairs of variants and these coefficients were placed in a 

square matrix. The eigenvalues of the matrix were then computed and ordered from largest 

to smallest and the effective number of independent tests was defined to be the smallest 

number of ordered eigenvalues that account for 99.5% of the sum of all eigenvalues. The 

Bonferroni-corrected threshold for identifying prioritized variants for an endophenotype 

was defined as a variant-level p-value less than 0.05 divided by the effective number of 

independent tests in the region for the endophenotype. 

Prioritized variants were investigated for expression quantitative trait loci (eQTL) 

and splicing quantitative trait loci (sQTL) associations using the Genotype-Tissue 

Expression (GTEx) Project’s V8 public data [69] and the BRAINEAC Brain eQTL 

Almanac (http://braineac.org/) [70]. Prioritized variants were also investigated for 

associations with other molecular mechanisms using INFERNO software [71]. 

2.3.6 Sensitivity Analyses 

The dependency of the study’s results on several analytic choices were investigated. 

In addition to including 250kb of flanking on both sides of the WWOX/MAF locus, all 

analyses were conducted assuming no flanking and 25kb of flanking. Since some 

neurodegenerative diseases are more pronounced at later ages and some variant effects may 

be age-dependent or only affect the age of onset, all analyses were also conducted on the 

subset of individuals with ages of death of 75 years or older. Finally, to determine if 

significant variant-level results were independent of ADNC, all analyses were also 

conducted while adjusting for the presence of neurofibrillary tangles and, separately, for 

the presence of neuritic plaques. 

http://braineac.org/
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2.4 Results 

In the NACC data set, n=3,749 individuals had available data for at least one of the 

endophenotypes along with GWAS data. In ROSMAP, a total of n=1,390 individuals had 

available data for at least one of the endophenotypes along with GWAS data. Table 2.1 

shows a summary of individual characteristics and endophenotypes for both NACC and 

ROSMAP participants. NACC participants with neurofibrillary tangles (p<0.001), neuritic 

plaques (p<0.001), and arteriolosclerosis (p<0.001) tended to be younger at death. 

Conversely, ROSMAP participants with an endophenotype present tended to be older at 

death and were less likely to be male (all p<0.05). 

2.4.1 Variant-Level Associations 

A total of 9,492 genetic variants in the WWOX/MAF locus passed QC in NACC 

and 8,953 variants passed QC in ROSMAP. A total of 8,256 variants were shared between 

NACC and ROSMAP and were included in the meta-analysis. Notably, rs62039712, the 

top WWOX/MAF variant from the Kunkle et al. clinical AD GWAS [5], did not pass QC 

in either data set because it was missing in greater than 5% of individuals. No variants were 

in high enough linkage disequilibrium with rs62039712 in a CEU populations in LDlink to 

serve as proxies (no variants with R2 >0.4 within 500kb of rs62039712). 

The WWOX variant previously found to be genome-wide suggestive for HS with a 

recessive MOI, rs55751884 [14], had nominally significant adjusted associations with HS 

(p=0.01133) in NACC and neurofibrillary tangles in both NACC and ROSMAP (NACC: 

p=0.00330; ROSMAP: p=0.03416) assuming a recessive MOI (Table 2.2). However, 
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while the NACC and ROSMAP odds ratios for rs55751884 on neurofibrillary tangles were 

of similar magnitude, they did not point in the same direction despite having the same 

minor allele (NACC: OR=2.38; ROSMAP: OR=0.32) and the adjusted meta-analytic p-

value did not reach nominal significance (p=0.10566). Notably, the adjusted association 

between rs55751884 and HS remained nominally significant when restricted to participants 

not included in the 2014 HS GWAS (meta-analysis p=0.02568) representing a nominal 

replication of that HS association (Supplemental Table 2.2). When additive and dominant 

MOIs were assumed, additional adjusted associations reached nominal statistical 

significance including brain arteriolosclerosis in NACC (dominant MOI p=0.03008) 

(Supplemental Table 2.2). 

The recently identified genome-wide significant clinical AD risk variant near the 

MAF gene, rs450674 which is between WWOX and MAF approximately 53kb away from 

MAF’s 3’ end [7], had a nominally significant adjusted association with neurofibrillary 

tangles in NACC (p=0.00637) and in the meta-analysis of NACC and ROSMAP 

(p=0.03227) assuming an additive MOI (Table 2.2). No additional adjusted associations 

were found to be nominally significant when assuming a recessive or dominant MOI 

(Supplemental Table 2.2). 

2.4.2 Variant Prioritization and Downstream Analyses 

The largest estimate of the effective number of independent tests for the 

WWOX/MAF locus ± 250kb was 1,364 in NACC and 804 in ROSMAP. The larger of these 

two estimates was used to compute the Bonferroni-corrected threshold for the 
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WWOX/MAF locus +/- 250kb of 3.67x10-5 (0.05/1,364). Variants with p-values less than 

this threshold were prioritized for further investigation. 

Associations with ADNC endophenotypes were notably absent for the recently 

identified clinical AD loci of rs62039712 and rs450674 (Figure 2.1). However, a locus 

centered around the rs11640136 variant near the CLEC3A gene contained several variants 

that surpassed the Bonferroni-corrected threshold for significance for the WWOX/MAF 

locus ± 250kb in NACC for neuritic plaques (Supplemental Figure 1). This trend is absent 

in the ROSMAP cohort. There is a similar trend in the same locus for neurofibrillary tangles 

in NACC, but no variants surpass the Bonferroni-corrected threshold for significance for 

the WWOX/MAF locus ± 250kb. The two top variants for the neuritic plaques (rs11640136) 

and neurofibrillary tangles (rs12922846) loci in NACC are not in linkage disequilibrium 

with one another (R2=0.015 in a CEU population) nor are they in linkage disequilibrium 

with the previously identified HS locus nearby (both R2 < 0.015 in a CEU population). The 

association of the variants near the CLEC3A gene and neuritic plaques are not significant 

in a meta-analysis of NACC and ROSMAP (Figure 2.1). 

In NACC, 32 unique variants met the Bonferroni-corrected significance threshold 

for the WWOX/MAF region ± 250kb for at least one endophenotype and one MOI. Ten of 

those variants were associated with LATE-NC, 10 were associated with HS, and 12 were 

associated with neuritic plaques. None of the variants were associated with neurofibrillary 

tangles or brain arteriolosclerosis. LATE-NC was most strongly associated with the 

rs8052915 locus (recessive MOI p=4.02x10-6), HS was most strongly associated with the 

rs10438625 locus (additive MOI p=7.56x10-6), and neuritic plaques were most strongly 

associated with the rs112959604 locus (dominant MOI p=8.63x10-6). The HS locus, 
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centered around rs10438625, is located approximately 85kb downstream of an earlier 

identified WWOX HS risk variant, rs55751884 [14], though the two variants are not in 

linkage disequilibrium (R2 < 0.001 in a CEU population). Interestingly, the neuritic plaques 

locus, rs112959604, is located in the intergenic region between CLEC3A and the 5’ end of 

WWOX and is in linkage disequilibrium with variants within the CLEC3A gene (Figure 

2.1). See Supplemental Table 2.3 for additional details on the prioritized variants. 

In ROSMAP, 20 unique variants met the Bonferroni-corrected significance 

threshold for the WWOX/MAF region ± 250kb for at least one endophenotype and one 

MOI. Unlike NACC, all of these variants were associated with brain arteriolosclerosis and 

were centered around the rs79815901 locus (p=3.00x10-8). The rs79815901 variant is 

located approximately 90kb upstream of the earlier identified WWOX HS variant, 

rs55751884 [14], though these two variants are not in linkage disequilibrium (R2 < 0.001 

in a CEU population). Additionally, rs79815901 is approximately 5kb downstream of the 

HS locus identified in NACC centered around rs11150053, but these two variants are also 

not in linkage disequilibrium (R2 = 0.055 in a CEU population). See Supplemental Table 

2.3 for additional details on the prioritized variants. 

Eight thousand two hundred and fifty-six variants were shared between NACC and 

ROSMAP in the WWOX/MAF locus ± 250kb and were meta-analyzed across NACC and 

ROSMAP. Five variants had meta-analytic p-values that met the Bonferroni-corrected 

significance threshold for the WWOX/MAF region ± 250kb for at least one endophenotype 

and one MOI. Two of these variants, rs6564590 and rs7404901, were associated with 

LATE-NC assuming an additive MOI (p=1.07x10-5 and p=1.56x10-5, respectively). Both 

variants are located in the same region of WWOX as the LATE-NC locus identified in the 
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NACC-only analysis centered around rs8052915 and are in relatively high linkage 

disequilibrium with rs8052915 (rs6564590: R2 = 0.765; rs7404901: R2 = 0.551). Two 

additional variants, rs9925100 and rs9930659, were associated with HS while assuming a 

recessive MOI (p=1.34x10-5 and p=1.82x10-5, respectively). These two variants are in 

linkage disequilibrium with one another (R2 = 0.726 in a CEU population) and are located 

approximately 856kb downstream from the HS locus identified in the NACC-only analysis 

centered around rs11150053. The remaining variant, rs4435266, was associated with brain 

arteriolosclerosis while assuming a dominant MOI (p=2.02x10-5) (Table 2.3 and Figure 

2.2). While the other endophenotypes were associated with variants in either the NACC-

only or the ROSMAP-only analyses, they did not have any associations with meta-analytic 

p-values that met the Bonferroni-corrected significance threshold (Supplemental Figure 2).

None of the prioritized meta-analytic variants were found to be associated with 

eQTLs or sQTLs for WWOX, MAF, or any other proximal genes in GTEx. However, all 

three variants were found to have notable associations in BRAINEAC. The two HS 

variants, rs9925100 and rs9930659, had nominally significant eQTL associations for 

WWOX (both brain tissue-wide p-values < 3.9x10-3) with the hippocampus and putamen 

regions having the strongest single-tissue associations. Both of the LATE-NC variants, 

rs6564590 and rs7404901, had nominally significant eQTL associations with MAF (brain 

tissue-wide p=0.040 and p=0.012, respectively), with the thalmus region having the 

strongest single-tissue association for rs6564590 (p=0.0096) and the frontal cortex region 

having the strongest single-tissue association for rs7404901 (p=0.0036). The brain 

arteriolosclerosis variant, rs4435266, also had a nominally significant eQTL association 

with MAF (brain tissue-wide p=0.019) with the cerebellum region having the strongest 
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single-tissue association (p=0.0088). Additionally, in INFERNO the LATE-NC variants 

were found to be eQTLs for Roadmap enhancers in the blood and immune organ tissues, 

the brain arteriolosclerosis variant was found to be an eQTL for Roadmap enhancers in 

blood and skeletal muscle tissues,and the HS variants were found to be eQTLs for both 

Roadmap and FANTOM5 enhancers in the blood and Roadmap enhancers in immune 

organ and skeletal muscle tissues. 

2.4.3 Sensitivity Analyses 

2.4.3.1 Varying WWOX/MAF Flanking 

The Bonferroni-corrected threshold for the WWOX/MAF locus was estimated to be 

3.12x10-5 (0.05/1,214) with 25kb of flanking and 4.19x10-5 (0.05/1,194) with 0kb of 

flanking. Not surprisingly, all five of the prioritized meta-analytic variants along with the 

majority of the NACC-only and ROSMAP-only variants identified in the primary analysis 

with 250kb of flanking were also identified when the flanking was reduced. The exception 

to this were the variants associated with neuritic plaques in the NACC-only analysis which 

were located just upstream of WWOX near the CLEC3A gene. Of the 12 variants found to 

be associated with neuritic plaques when the WWOX/MAF locus was flanked by 250kb, 

only one variant (rs79416778) remained with no flanking. This result highlights the 

specificity of the neuritic plaques association with the CLEC3A gene over the WWOX gene. 

See Supplemental Table 2.4 for the complete results. 

2.4.3.2  Age of Death 75+ 
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The odds ratio estimates for all three of the prioritized meta-analytic variants 

remained largely unchanged when the analyses were restricted to only those individuals 

with an age of death of 75 years of age or older. Additionally, the meta-analytic p-values 

for the associations between rs6564590 and LATE-NC (p=2.85x10-5) and rs4435266 and 

brain arteriolosclerosis (p=3.07x10-5) and remained below the Bonferroni-corrected 

threshold. The remaining associations were all nominally significant, but did not quite meet 

the Bonferroni-corrected threshold (all remaining p-values ≤ 6.12x10-5). These findings 

suggest that age of death does not meaningfully impact the associations between the 

prioritized variants and the endophenotypes. See Supplemental Table 2.5 for the complete 

results. 

2.4.3.3 Adjusting for ADNC 

The odds ratio estimates for all five of the prioritized meta-analytic variants 

remained largely unchanged when the analyses were adjusted for neurofibrillary tangles 

and, separately, neuritic plaques. Additionally, all of the meta-analytic p-values remained 

below the Bonferroni-corrected threshold when adjusted for neuritic plaques and all but 

one remained below the threshold when adjusted neurofibrillary tangles (the exception was 

rs7404901 where p=5.46x10-5). These findings suggest that the associations of the 

prioritized variants are independent of ADNC. See Supplemental Table 2.6 for the 

complete results. 
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2.5 Discussion 

Using autopsy-confirmed neuropathologic endophenotypes, we evaluated the 

genetic associations between the WWOX/MAF locus and several neurodegenerative 

diseases using neuropathological changes to operationalize the presence and severity of the 

diseases. We found significant adjusted meta-analytic associations between WWOX 

variants and LATE-NC, HS, and brain arteriolosclerosis. While previous GWASs linked 

variants in the WWOX/MAF locus with HS and clinical AD, the associations with LATE-

NC and brain arteriolosclerosis have never been reported. Furthermore, since these 

associations remained significant after adjustment for AD-related neuropathological 

changes, it suggests that the LATE, HS, and brain arteriolosclerosis neuropathological 

changes associated with WWOX/MAF are independent of ADNC. 

The novel neuritic plaque signal found in NACC near the CLEC3A gene is intriguing 

since other CLEC family genes have been linked to AD and inflammation [72-74]. 

Additionally, a recent genome-wide interaction analysis found evidence of variant-by-

variant interactions for neurofibrillary tangles involving variants near CLEC3A and WWOX 

[75]. Further investigations into the influence of CLEC3A on neurodegenerative disease 

are warranted. 

The previously identified AD-associated WWOX/MAF variant, rs62039712, did not 

pass QC in either dataset and did not have any proxy variants, and was only available in 

two of the 12 Stage 1 GWAS cohorts from Kunkle et al. These factors indicate that 

rs62039712 was difficult to impute. The recently identified AD-associated MAF variant, 

rs450674 [54], which is located approximately 362kb downstream of WWOX and is not in 

linkage disequilibrium with rs62039712, was found to have a nominally significant 
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adjusted association with neurofibrillary tangles in NACC (p=0.00637) and in the meta-

analysis of NACC and ROSMAP (p=0.03620). However, since Kunkle et al., Bellenguez 

et al., and the present study have all utilized data from the ADGC – albeit using different, 

more specific phenotypes in the case of the current study – this region of the genome should 

be investigated further in other datasets to better understand its influence on AD risk. 

We examined the associations of the genome-wide suggestive HS WWOX variant, 

rs55751884, with neuropathological endophenotypes. The rs55751884 variant was 

nominally significant in adjusted association tests for neurofibrillary tangles in both NACC 

and ROSMAP (NACC: p=0.00330; ROSMAP: p=0.03416), HS in NACC (p=0.01133), 

and borderline significant for neuritic plaques in NACC (p=0.08202). Even though the 

meta-analytic association between HS and rs55751884 did not reach the Bonferroni-

corrected threshold for significance in our current study, that same region of WWOX had 

the strongest association with arteriolosclerosis in ROSMAP, which also merits additional 

investigation.  

Given the abundant evidence that mixed pathologies are highly prevalent in elderly 

populations, the hypothesis that WWOX is associated with several neuropathological 

endophenotypes fits in with recent studies looking at genetic pleiotropy in neurological 

conditions [39]. Pleiotropic effects have been found between AD and Parkinson’s disease 

[45], AD and amyotrophic lateral sclerosis [46], early-onset AD and frontotemporal 

dementia [47], AD-related psychosis and schizophrenia [48], and LATE-NC and FTLD-

TDP [9].  A specific example is the MAPT gene which is a risk allele for many tauopathies, 

and also for Parkinson’s disease (not a condition linked to tau pathology) [49]. Pleiotropic 

effects have also been found between AD-related neuropathological changes like neuritic 
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plaques, neurofibrillary tangles, and cerebral amyloid angiopathy [76].  Further, it has been 

shown that brain arteriolosclerosis is linked to HS and LATE-NC [12, 77]. Our data 

indicate that the associations between the WWOX/MAF locus and LATE-NC, HS, and brain 

arteriolosclerosis were independent of ADNC. Thus, WWOX is apparently associated with 

more than one clinico-pathologic entity. Since WWOX is also known to play a role in 

molecular functions [78], autism spectrum disorder [55], multiple sclerosis [79], 

schizophrenia [56], and brain volume [80], it is a good target for additional follow-up 

studies. 

There are limitations to our study. Because data come from studies employing 

variable study designs and are highly homogeneous, the degree to which findings are 

generalizable is unknown, especially with respect to individuals of non-Caucasian 

ancestries. These suggestive findings extend prior research in the field that linked the 

WWOX/MAF locus with neurodegenerative phenotypes. Yet these findings need 

corroborative evaluations in additional data sets to evaluate the relationships between 

genetics and neuropathologic data. 

2.6 Conclusion 

In conclusion, we showed using large genetic datasets and autopsy-derived 

endophenotypes that neuropathological endophenotypes related to LATE, HS, and brain 

arteriolsclerosis were associated with WWOX/MAF gene variants. While clinical diagnoses 

of AD may be helpful for discovering dementia-related genetic variation, our study adds 

to the growing body of literature highlighting the complexity of dementia phenotypes, and 

the benefit of leveraging autopsy-derived data for studies of aging-related brain disease. 
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Table 2.1. Individual characteristics stratified by endophenotype status for National 

Alzheimer's Coordinating Center (NACC) and Religious Orders Study and Rush Memory 

and Aging Project (ROSMAP) participants. 

Endophenotype Status 

NACC ROSMAP 

Number of 

Participants 

(%) 

Age at 

Death, 

Mean (SD) 

Female, N 

(%) 

Number of 

Participants 

(%) 

Age at 

Death, 

Mean (SD) 

Female, N 

(%) 

Hippocampal Sclerosis 
N=631 85.90 

(8.30) 

319 (50.6) 
N=1200 89.55 (6.47) 812 (67.7) 

Absent 
542 (85.9) 85.89 

(8.43) 

270 (49.8) 
1091 (90.9) 89.27 (6.45) 729 (66.8) 

Present 
89 (14.1) 85.99 

(7.50) 

49 (55.1) 
109 (9.1) 92.38 (6.03) 83 (76.1) 

LATE-NC 
N=412 85.08 

(7.86) 

207 (50.2) 
N=1130 89.83 (6.43) 775 (68.6) 

Absent 
291 (70.6) 84.93 

(8.08) 

138 (47.4) 
733 (64.9) 88.75 (6.57) 471 (64.3) 

Present 
121 (29.4) 85.44 

(7.33) 

69 (57.0) 
397 (35.1) 91.81 (5.64) 304 (76.6) 

Neurofibrillary Tangles 
N=3760 82.46 

(8.23) 

1939 (51.6) 
N=1390 89.43 (6.54) 944 (67.9) 

Braak Stage 0 to IV 
1236 (32.9) 84.97 

(8.39) 

639 (51.7) 
1046 (75.3) 88.91 (6.73) 679 (64.9) 

Braak Stage V or VI 
2524 (67.1) 81.24 

(7.87) 

1300 (51.5) 
344 (24.7) 91.00 (5.63) 265 (77.0) 

Neuritic Plaques 
N=3764 82.48 

(8.23) 

1940 (51.5) 
N=1222 89.54 (6.51) 825 (67.5) 

None/Sparse/Moderate 
1269 (33.7) 85.91 

(8.28) 

612 (48.2) 
810 (66.3) 89.23 (6.80) 510 (63.0) 

Frequent 
2495 (66.3) 80.73 

(7.64) 

1328 (53.2) 
412 (33.7) 90.15 (5.84) 315 (76.5) 

Brain Arteriolosclerosis 
N=2999 82.94 

(8.30) 

1514 (50.5) 
N=1390 89.43 (6.54) 944 (67.9) 

None/Mild 
1720 (57.4) 81.93 

(8.38) 

832 (48.4) 
1013 (72.9) 88.99 (6.43) 666 (65.7) 

Moderate/Severe 
1279 (42.6) 84.30 

(8.00) 

682 (53.3) 
377 (27.1) 90.62 (6.67) 278 (73.7) 

NACC = National Alzheimer's Coordinating Center; ROSMAP = Religious Orders Study 

and Rush Memory and Aging Project; SD = standard deviation; LATE-NC = limbic-

predominant age-related TDP-43 encephalopathy neuropathological changes. 
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Table 2.2. Adjusted results for previously published HS and clinical AD variants in the 

WWOX/MAF locus. All analyses adjusted for age at death, sex, Alzheimer's Disease 

Genetics Consortium (ADGC) cohort or Religious Orders Study and Memory and Aging 

Project (ROSMAP) study, and the first three genetic principal components. The 

rs55751884 results are reported assuming a recessive mode of inheritance (MOI) as that 

was the MOI with the strongest association in Nelson et al., 2014. The rs450674 results are 

reported assuming an additive MOI as that was the MOI reported in Bellenguez et al., 2020. 

Variant MOI Endophenotype 

NACC ROSMAP Meta-Analysis 

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

rs55751884 Rec. 

Hippocampal Sclerosis 5.53 1.51-19.51 0.01133 1.88 0.53-5.21 0.29671 3.04 1.32-6.97 0.00878 

LATE-NC 3.69 0.75-20.26 0.10571 1.21 0.48-2.92 0.67826 1.58 0.73-3.44 0.24823 

Neurofibrillary Tangles 1.66 0.94-3.07 0.08202 0.57 0.21-1.38 0.22405 1.23 0.75-2.02 0.41942 

Neuritic Plaques 2.38 1.32-4.57 0.00330 0.32 0.07-0.93 0.03506 1.58 0.91-2.74 0.10566 

Brain Arteriolosclerosis 1.24 0.73-2.08 0.42069 1.48 0.63-3.32 0.35418 1.30 0.84-2.02 0.23621 

rs450674 Add. 

Hippocampal Sclerosis 0.77 0.48-1.23 0.26429 1.29 0.85-2.00 0.23481 1.02 0.74-1.39 0.91268 

LATE-NC 1.05 0.76-1.46 0.75143 0.97 0.81-1.17 0.75133 0.99 0.84-1.16 0.90518 

Neurofibrillary Tangles 0.93 0.83-1.04 0.20840 0.95 0.79-1.13 0.56609 0.94 0.85-1.03 0.16999 

Neuritic Plaques 0.86 0.78-0.96 0.00637 1.05 0.87-1.27 0.62292 0.90 0.82-0.99 0.03227 

Brain Arteriolosclerosis 0.93 0.84-1.04 0.22636 1.04 0.87-1.25 0.66185 0.96 0.87-1.06 0.41977 

NACC = National Alzheimer's Coordinating Center; ROSMAP = Religious Orders Study 

and Rush Memory and Aging Project; LATE-NC = limbic-predominant age-related TDP-

43 encephalopathy neuropathological changes; MOI = mode of inheritance; Rec. = 

recessive MOI; Add. = additive MOI; OR = odds ratio; and CI = confidence interval. 
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Table 2.3. Variant-level results for variants with uncorrected meta-analytic p-values that 

met the Bonferroni-corrected threshold for significance for the WWOX/MAF locus ± 

250kb. All analyses adjusted for age at death, sex, Alzheimer's Disease Genetics 

Consortium (ADGC) cohort or Religious Orders Study and Memory and Aging Project 

(ROSMAP) study, and the first three genetic principal components. 

Endo-

phenotype 
Variant MOI 

NACC ROSMAP Meta-Analysis 

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

LATE-

NC 

rs6564590 Add. 2.09 1.50-2.94 8.65x10-6 1.28 1.07-1.54 0.00783 1.43 1.22-1.68 1.07x10-5 

rs7404901 Add. 1.94 1.38-2.74 0.00011 1.31 1.09-1.58 0.00435 1.44 1.22-1.69 1.56x10-5 

HS 
rs9925100 Rec. 2.32 1.19-4.35 0.01481 2.49 1.48-4.07 0.00087 2.44 1.63-3.61 1.34x10-5 

rs9930659 Rec. 2.87 1.54-5.20 0.00112 1.98 1.20-3.17 0.00829 2.29 1.57-3.34 1.82x10-5 

B-ASC rs4435266 Dom. 0.75 0.64-0.88 0.00041 0.71 0.54-0.94 0.01447 0.74 0.64-0.85 2.02x10-5 

NACC = National Alzheimer's Coordinating Center; ROSMAP = Religious Orders Study 

and Rush Memory and Aging Project; HS = hippocampal sclerosis; LATE-NC = limbic-

predominant age-related TDP-43 encephalopathy neuropathological changes; B-ASC = 

brain arteriolosclerosis; MOI = mode of inheritance; Rec. = recessive MOI; Add. = 

additive MOI; Dom. = dominant MOI; OR = odds ratio; and CI = confidence interval. 
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Figure 2.1. LocusZoom plots of the WWOX/MAF region ± 250kb for A neuritic plaques 

and B neurofibrillary tangles, both assuming an additive MOI. Meta-analytic variant-level 

p-values were adjusted for age at death, sex, Alzheimer's Disease Genetics Consortium

(ADGC) cohort or Religious Orders Study and Memory and Aging Project (ROSMAP)

study, and first three genetic principal components and meta-analyzed across the NACC

and ROSMAP cohorts. The horizontal line at 4.44 represents the Bonferroni-corrected

threshold for significance for the WWOX/MAF locus ± 250kb. The blue region on the gene

window highlights the location of rs55751884, the variant previously found to be genome-

wide suggestive for HS; the green region on the gene window highlights the location of

rs62039712, the variant previously found to be genome-wide significant for clinical AD;

and the red region on the gene window highlights the location of rs450674, an MAF variant

recently found to be associated with clinical AD.
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Figure 2.2. LocusZoom plots of the WWOX/MAF region +/- 250kb for A hippocampal 

sclerosis (HS) assuming a recessive mode of inheritance (MOI), B limbic-predominant 

age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) assuming an 

additive MOI, and C brain arteriolosclerosis assuming a dominant MOI. Variant-level p-

values were adjusted for age at death, sex, Alzheimer's Disease Genetics Consortium 

(ADGC) cohort or Religious Orders Study and Memory and Aging Project (ROSMAP) 

study, and first three genetic principal components. The horizontal line at 4.44 represents 

the Bonferroni-corrected threshold for significance for the WWOX/MAF locus ± 250kb. 

The blue region on the gene window highlights the location of rs55751884, the variant 

previously found to be genome-wide suggestive for HS; the green region on the gene 

window highlights the location of rs62039712, the variant previously found to be genome-

wide significant for clinical AD; and the red region on the gene window highlights the 

location of rs450674, an MAF variant recently found to be associated with clinical AD. 
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CHAPTER 3. ANALYSIS OF GENES (TMEM106B, GRN, ABCC9, KCNMB2, AND APOE)

IMPLICATED IN RISK FOR LATE-NC AND HIPPOCAMPAL SCLEROSIS PROVIDES

PATHOGENETIC INSIGHTS

3.1 Abstract 

Transactive response DNA binding protein 43kDa (TDP-43) proteinopathy is 

commonly found in aged brains at autopsy and is associated with cognitive impairment. 

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-

NC) is the most prevalent subtype of TDP-43 proteinopathy, affecting ~1/3rd of aged 

persons.  LATE-NC often co-occurs with hippocampal sclerosis (HS) pathology. It is 

currently unknown why some individuals with LATE-NC develop HS while others do not, 

but genetics may play a role. Previous studies found associations between LATE-NC 

phenotypes and specific genes: TMEM106B, GRN, ABCC9, KCNMB2, and APOE. Data 

from research participants with genomic and autopsy measures from the National 

Alzheimer’s Coordinating Center (NACC; total n=631 subjects included) and the Religious 

Orders Study and Memory and the Rush Aging Project (ROSMAP; total n=780 included) 

were analyzed in the current study. Our goals were to reevaluate disease-associated genetic 

variants using newly collected data and to query whether the specific genotype/phenotype 

associations could provide new insights into disease-driving pathways. Research subjects 

included in prior LATE/HS genome-wide association studies (GWAS) were excluded. 

Single nucleotide variants (SNVs) within 10kb of TMEM106B, GRN, ABCC9, KCNMB2, 

and APOE were tested for association with HS and LATE-NC. Significantly associated 

SNVs were identified. When results were meta-analyzed, TMEM106B, GRN, and APOE 

had significant gene-based associations with both LATE and HS, whereas ABCC9 had 

significant associations with HS only.  In a sensitivity analysis limited to LATE-NC+ cases, 
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ABCC9 variants were again associated with HS.  By contrast, the associations of 

TMEM106B, GRN, and APOE with HS were attenuated when adjusting for TDP-43 

proteinopathy, indicating that these genes may be associated primarily with TDP-43 

proteinopathy.  In summary, using data not included in prior studies of LATE or HS 

genomics, we replicated several previously reported gene-based associations and found 

novel evidence that specific risk alleles can differentially affect LATE-NC and HS. 

3.2 Introduction 

The present study focused on genetic contributions to transactive response DNA 

binding protein 43kDa (TDP-43) proteinopathy and hippocampal sclerosis (HS).  One or 

both of these pathologic features are observed in ~30% of brains among persons >80 years 

at death [9].  The TDP-43 protein serves multiple functions in gene expression regulation 

at the levels of both transcription and translation [9, 81-83]. TDP-43 proteinopathy 

(aberrantly misfolded and mislocalized TDP-43 protein) is strongly associated with 

cognitive impairment [11, 13].  This pathologic hallmark was discovered in diseases that 

are now considered to be a clinical-pathologic spectrum that includes amyotrophic lateral 

sclerosis (ALS) and frontotemporal lobe degeneration with TDP-43 (FTLD-TDP) [84].   

HS is a pathologic finding characterized by selective neuronal loss and gliosis of the 

hippocampal formation [16, 17].  First described in epilepsy, HS is a descriptive and 

relatively nonspecific term used in both neuropathologic and neuroradiographic practice.  

However, in a subset of cases with HS, TDP-43 proteinopathy is also present [11, 16, 17, 

85].   
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Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a highly 

prevalent disease entity characterized by TDP-43 proteinopathy and cognitive impairment 

in aged populations [9].  LATE is not a subtype of FTLD-TDP because the associated 

disease(s) is not the frontotemporal dementia (FTD) clinical syndrome; rather, the presence 

of the neuropathologic changes underlying LATE (LATE-NC) is an amnestic dementia 

syndrome [9, 13-15]. HS pathology commonly co-occurs with LATE-NC and was the first 

neuropathologic change associated with the condition [86, 87]. In one autopsy cohort, the 

odds of TDP-43 proteinopathy was >80 times higher in HS cases relative to controls [16].  

However, some persons with LATE-NC have no HS, segmental/patchy HS, or unilateral 

HS [88]. It is currently unknown why some individuals with LATE-NC develop HS 

pathology while others do not, but genetics may contribute to the pathogenesis. 

Several genes and single nucleotide variants (SNVs) have been linked with LATE-

NC phenotypes [9]. Risk for HS was previously associated with SNVs that are also known 

FTLD-TDP risk alleles, including rs5848 from the GRN gene on chromosome 17 and 

rs1990622 near the TMEM106B gene on chromosome 7 [25, 33-36, 89]. In a genome-wide 

association study (GWAS), a SNV in the ABCC9 gene (rs704178/rs704180) on 

chromosome 12 was associated with HS risk [28]. A separate GWAS found that rs9637454, 

an SNV in the KCNMB2 gene on chromosome 3, was associated with HS risk [37]. 

Additional evidence exists linking the APOE 4 allele, a strong risk factor for Alzheimer’s 

disease (AD), with increased HS and LATE-NC risk [32, 38, 41]. A study analyzing gene-

based associations between the GRN, TMEM106B, ABCC9, and KCNMB2 genes and HS 

found Bonferroni-corrected significant associations for ABCC9 assuming a recessive mode 

of inheritance (MOI) and nominally significant associations with GRN, TMEM106B, and 
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KCNMB2 [27].  However, a separate study replicated the associations between GRN and 

TMEM106B SNVs with LATE-NC, but did not find an association between an ABCC9 

variant and LATE-NC or HS pathologies [26]. To the best of our knowledge, there has not 

been a prior study that found genomic associations with LATE-NC but not HS or vice 

versa. 

In the current study, we analyzed genomic data from the Alzheimer’s Disease 

Genetics Consortium (ADGC) along with clinical and pathological data from the National 

Alzheimer’s Coordinating Center (NACC) and the Rush University Religious Orders 

Study and Memory and Aging Project (ROSMAP) to investigate the associations between 

prior identified putative risk genes – KCNMB2, TMEM106B, ABCC9, GRN, and APOE – 

and LATE-NC. By only analyzing participants not included in our prior studies [27, 28], 

we sought to test whether or not previously reported LATE-NC risk genes can be replicated 

for LATE-NC neuropathologic phenotypes (specifically, TDP-43 proteinopathy and HS) 

while also identifying novel risk SNVs. 

3.3 Material and Methods 

3.3.1 Study Participants 

Representative photomicrographs were taken, showing results from research 

participants with LATE-NC and LATE-NC+HS, in the University of Kentucky AD 

Research Center Autopsy cohort, using methods as previously described [29]. 

Phenotypic data from NACC (March 2021 data freeze) were linked with genotype data 

from the ADGC. Individuals who died at age 65 years or older were included. Similar to 

other studies using NACC data [58], individuals were excluded from the NACC cohort if 
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at least one of 19 rare brain diseases were diagnosed (Supplemental Table 3.1) or if they 

were missing any adjustment variables or both endophenotypes under study.  

The ROSMAP study has been described in detail elsewhere [59]. Briefly, data were 

acquired from two well-characterized cohort studies of aging and dementia. The Religious 

Orders Study (ROS), begun in 1994, and the Rush Memory and Aging Project (MAP), 

begun in 1997, involve older adults who enrolled without dementia, agreed to annual 

clinical evaluations and organ donation at death, and signed an Anatomical Gift Act for 

brain donation. Written informed consent was obtained from participants, and research was 

carried out in accordance with Institutional Review Board (IRB)-approved protocols. 

ROSMAP data are available online at the Rush Alzheimer’s Disease Center Resource 

Sharing Hub (https://www.radc.rush.edu/), as well as on the Accelerating Medicines 

Partnership-Alzheimer’s Disease (AMP-AD) Knowledge Portal (syn3219045). 

For both the NACC and ROSMAP datasets, individuals were excluded from the 

analyses if they were included in either of two previous studies of HS genomics [27, 28]. 

In ROSMAP, participants were excluded based on IID if they were included in the Nelson 

et al. HS GWAS from 2014. In NACC, HS and TDP-43 were defined using variables from 

the v10 NACC Neuropathology (NP) dataset which were not available for the participants 

included in the previous studies. Thus, the NACC and ROSMAP participants included in 

the current study are a true replication cohort for these earlier HS genomics studies. 

3.3.2 Neuropathological Endophenotype Definitions 

In the NACC NP dataset, LATE-NC was defined as either present or absent using 

the “distribution of TDP-43 immunoreactive inclusions” variables indicating if TDP-43 
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proteinopathy was observed in either the hippocampus (NPTDPC NACC field), 

entorhinal/inferior temporal cortex (NPTDPD), or neocortex (NPTDPE) in a case lacking 

overall diagnosis of FTLD-TDP. A LATE-NC case was defined as definitely having TDP-

43 in the hippocampus, entorhinal/inferior temporal cortex, or neocortex. LATE-NC was 

considered unknown if TDP-43 data were unavailable in all three regions. HS was defined 

as either present or absent based on the “hippocampal sclerosis of CA1 and/or subiculum” 

(NPHIPSCL) variable using the “unilateral,” “bilateral,” and “present but laterality not 

assessed” response categories.  

In the ROSMAP data set, LATE-NC was defined dichotomously using the “TDP-

43 stage” (tdp_st4) variable and collapsing the 2nd and 3rd stages in cases lacking FTLD-

TDP. HS was defined dichotomously by the “hippocampal sclerosis was rated as definitely 

present with CA1 region affected” response category of the “definite presence of typical 

hippocampal sclerosis” (hspath_typ) variable. 

3.3.3 Quality Control of Genotype Data 

For NACC participants, genomic data from the ADGC imputed using the 

Haplotype Reference Consortium (ADGC-HRC) were used [60]. The genetic data for 

ROSMAP were also imputed using the HRC and the methods have been described in detail 

elsewhere [61]. Standard GWAS quality control (QC) procedures were performed 

separately on the ADGC and ROSMAP genotype data using PLINK1.9 [62, 63].  SNVs 

were excluded if they were missing in more than 5% of samples, if they had a minor allele 

frequency less than 1%, or if they had Hardy-Weinberg Equilibrium (HWE) p-values < 

1x10-6 among AD controls. Individuals were excluded if they were missing more than 5% 
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of genotypes. Two individuals were considered related if they had an identity by descent 

measure of at least 0.25, which indicates that they are second-degree relatives. For related 

pairs, the individual with the lowest call rate was excluded.  

NACC and ROSMAP genotype data were separately merged with 1000 Genomes 

Project Phase 3 data. Principal components (PCs) were calculated for the merged data sets 

using the “pca” procedure in PLINK1.9, and the first two PCs were plotted. The ADGC-

HRC and ROSMAP individuals with first and second PCs that overlapped with those of 

the 1000 Genomes individuals of known European ancestry were identified and all other 

individuals were excluded from the analysis. 

3.3.4 Variant-Level Associations 

All statistical analyses were conducted in R programming language [64], version 

4.0.4. Associations between each endophenotype and each SNV were conducted separately 

in the NACC and ROSMAP datasets using binary logistic regression models assuming 

each of the three most common MOI: additive, dominant, and recessive. SNVs were 

excluded from the analyses if they were multiallelic or if there were fewer than 15 minor 

alleles present across all participants. All regression models were fit using the glm function 

in R assuming a binomial distribution and a logit link function and were adjusted for age 

at death, sex, ADGC data selection round (for NACC data) or ROS/MAP study (for 

ROSMAP data), and the first three genetic PCs. Odds ratios (OR) were calculated for each 

SNV. Since some endophenotypes were only available in a subset of participants, PCs were 

calculated separately for each endophenotype. NACC and ROSMAP SNV-level results 

were meta-analyzed using a fixed-effect, inverse-variance meta-analysis via the metagen 
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function from the meta R package, version 4.18-0 [65]. For targeted analyses of previously 

reported SNVs, an additive MOI was assumed unless there existed previous evidence of 

association with another MOI. Additionally, LATE-NC-by-SNV interaction terms were 

tests for models of HS and were removed if they failed to reach statistical significance 

(p<0.05). Plots of cohort-specific and meta-analyzed SNV-level p-values were created 

using LocusZoom Standalone, version 1.4 

(https://genome.sph.umich.edu/wiki/LocusZoom_Standalone) [66], and the ggplot2 R 

package, version 3.3.3 [90]. Linkage disequilibrium estimates were computed using 

LDlink with the CEU population (https://ldlink.nci.nih.gov/) [67]. Jaccard similarity 

coefficients were used to estimate the similarity between binary variables and were 

calculated by dividing the size of their intersection by the size of their union via the 

clusteval R package, version 0.1 [91]. 

3.3.5 Gene-Based Associations 

Gene boundaries for KCNMB2, TMEM106B, ABCC9, GRN, and APOE were 

defined based on their canonical transcripts using the Genome Reference Consortium 

Human Build 37 (GRCh37/hg19) gene range list from PLINK (https://www.cog-

genomics.org/plink/1.9/resources). All genes were flanked by an additional 10kb to include 

potential regulatory regions. See Supplemental Table 3.2 for the positions used to define 

the gene boundaries. 

For each gene, endophenotype, and MOI, all SNV-level p-values were combined 

using the aggregated Cauchy association test (ACAT) [92]. All ACAT analyses were run 

using R functions provided by the authors (https://github.com/yaowuliu/ACAT). Equal 

https://genome.sph.umich.edu/wiki/LocusZoom_Standalone
https://ldlink.nci.nih.gov/


36 

weights were assumed for all SNVs in the ACAT analyses and statistical significance was 

defined as a p-value < 0.05. 

3.3.6 SNV Prioritization and Follow-Up Analyses 

Prioritized SNVs were identified using a Bonferroni-corrected threshold for 

significance that accounts for the effective number of independent tests in a given genetic 

region. The effective number of independent tests in a region was calculated for each 

endophenotype using the method of Gao et al. [68]. Briefly, Pearson’s correlation 

coefficient was calculated for all pairs of SNVs and these coefficients were placed in a 

square matrix. The eigenvalues of the matrix were then computed and ordered from largest 

to smallest and the effective number of independent tests was defined to be the smallest 

number of ordered eigenvalues that account for 99.5% of the sum of all eigenvalues. The 

Bonferroni-corrected threshold for identifying prioritized SNVs in a given genetic region 

was defined as 0.05 divided by the largest estimated number of independent tests in the 

region. 

Prioritized SNVs were investigated for expression quantitative trait loci (eQTL) 

associations using the Genotype-Tissue Expression (GTEx) Project’s V8 public data [69], 

the BRAINEAC Brain eQTL Almanac (http://braineac.org/) [70], and Functional 

Annotation of Human Long Noncoding RNAs via Molecular Mapping (FANTOM5) 

database (data accessed via: https://www.ebi.ac.uk/gxa/experiments/E-MTAB-

3358/Results). Prioritized SNVs were also investigated for associations with other 

molecular mechanisms using the INFERring the molecular mechanisms of NOncoding 

http://braineac.org/
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genetic variants (INFERNO) software assuming a threshold on r2 of 0.5 and a threshold on 

LD block size of 500kb (http://inferno.lisanwanglab.org/index.php) [71]. 

3.3.7 Sensitivity Analyses 

The dependency of the study’s results on several analytic choices were investigated. 

All gene-based analyses were also conducted assuming 0kb and 25kb of flanking around 

each gene. All APOE SNV analyses were also adjusted for the number of APOE 4 alleles 

to determine if associations were independent of 4 risk. 

3.4 Results 

The phenotypes of interest in the current study are autopsy-confirmed LATE-NC and 

HS.  Specific examples of those pathologies are depicted in Figure 3.1. Some brains have 

LATE-NC without HS (Figure 3.1B). However, individuals with LATE-NC are at 

increased risk of having comorbid HS (Figure 3.1C). 

In the ROSMAP data set, a total of n=795 individuals had available data for at least 

one of the endophenotypes along with GWAS data and were not included in earlier studies 

of HS [27, 28]. In the NACC data set, n=633 individuals had available data for at least one 

of the endophenotypes along with GWAS data and were not included in the earlier studies 

of HS [27, 28]. Table 3.1 shows a summary of individual characteristics and 

endophenotypes for both NACC and ROSMAP participants. ROSMAP participants tended 

to be older at death (p<0.001), were more likely to be female (p<0.001), and were less 

likely to be an HS case (p=0.007) than NACC participants. HS was less prevalent than 

LATE-NC in both cohorts (NACC: HS 14.1%, LATE-NC 29.4%; ROSMAP: HS 9.4%, 

http://inferno.lisanwanglab.org/index.php
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LATE-NC 33.2%). HS and LATE-NC cases in ROSMAP tended to be older at death (both 

p<0.001) and were less likely to be male (p=0.054 and p<0.001, respectively) than controls. 

There were no identified statistically significant differences in basic demographic 

characteristics between HS and/or LATE-NC cases and controls in NACC.  

Persons with HS tended to also have LATE-NC and the reverse was also true among 

individuals in both datasets (Jaccard coefficients of 0.589 and 0.575 in NACC and 

ROSMAP, respectively); see Figure 3.2. Of the 732 ROSMAP participants with available 

case data for both LATE-NC and HS, 93% of HS cases were also LATE-NC cases. Of the 

410 NACC participants with available case data for both LATE-NC and HS, 73% of HS 

cases were also LATE-NC cases. 

Across the KCNMB2, TMEM106B, ABCC9, GRN, and APOE genes, each flanked 

by 10kb, a total of 1,580 SNVs passed QC in NACC while 1,532 SNVs passed QC in 

ROSMAP. A total of 1,438 SNVs were shared between NACC and ROSMAP and were 

included in the meta-analysis (Supplemental Table 3.2). 

3.4.1 Gene-Based Associations 

The adjusted meta-analyzed, SNV-level results were combined within genes via 

ACAT to obtain gene-based p-values. At the gene level, TMEM106B and APOE were 

significantly associated with both HS and LATE-NC while ABCC9 and GRN were 

significantly associated with HS only (Table 3.2). Neither HS nor LATE-NC were 

significantly associated with KCNMB2. The meta-analyzed gene-based results were largely 

similar to when they were conducted separately in the NACC and ROSMAP datasets. 
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Additionally, these results were largely unchanged when 0kb and 25kb of flanking were 

added to each gene. 

3.4.2 Prioritized SNVs and Follow-Up Analyses 

The effective number of independent tests for TMEM106B ± 10kb was estimated 

to be 25, GRN ± 10kb was estimated to be 16, KCNMB2 ± 10kb was estimated to be 104, 

APOE ± 10kb was estimated to be 14, and ABCC9 ± 10kb was estimated to be 71. The 

Bonferroni-corrected thresholds for a genetic region was calculated by dividing 0.05 by the 

corresponding estimated effective number of independent tests in the region. 

One hundred and ten SNVs in the TMEM106B ± 10kb locus had adjusted meta-

analytic associations with HS or LATE-NC less than the Bonferroni-corrected threshold 

(Figure 3.3A). At the TMEM106B ± 10kb locus, rs7781670 had the smallest adjusted 

meta-analytic p-value for LATE-NC assuming an additive MOI (p=2.97x10-5). rs7781670 

also met the Bonferroni-corrected threshold for the TMEM106B ± 10kb locus for HS when 

assuming a recessive MOI (p=1.63x10-3) and was a significant eQTL in GTEx for 

TMEM106B in the cerebellum (p=4.7x10-7) and the cortex (p=2.6x10-5). In INFERNO, 

these prioritized SNVs were associated with both eQTLs and Roadmap enhancers in blood, 

connective, and epithelial tissues and just Roadmap enhancers in brain, heart, immune 

organ, liver, and skeletal tissues, among others. 

Fourteen SNVs in the GRN ± 10kb locus had adjusted meta-analytic associations 

with HS or LATE-NC less than the Bonferroni-corrected threshold (Figure 3.3B). rs5848 

had the smallest adjusted meta-analytic p-value in the GRN ± 10kb locus and met the 

Bonferroni-corrected threshold for HS (additive MOI p=2.16x10-4; recessive MOI 
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p=1.91x10-4). rs5848 also had the smallest adjusted meta-analytic p-value for LATE-NC 

in the GRN ± 10kb locus, but it did not meet the Bonferroni-corrected threshold. In GTEx, 

rs5848 was a significant eQTL for GRN expression in numerous tissues including thyroid 

(p=2.2x10-16), caudate (p=2.0x10-12), cortex (p=2.0x10-9), and frontal cortex (p=4.4x10-9). 

In INFERNO, these prioritized SNVs were associated with both eQTLs and Roadmap 

enhancers in adipose, connective, endocrine, heart, and nervous tissues, with just eQTLs 

in blood vessel tissue, and with just Roadmap enhancers in brain, blood, immune organ, 

liver, and skeletal muscle tissues, among others. 

No SNVs in the KCNMB2 ± 10kb locus had adjusted meta-analytic associations 

with HS or LATE-NC that met the Bonferroni-corrected threshold (Supplemental Figure 

3.1).  

The APOE ± 10kb locus was strongly associated with LATE-NC. Four SNVs 

(rs429358, rs769449, rs10414043, and rs7256200), all in high linkage disequilibrium with 

one another (all r2 > 0.95), had adjusted meta-analytic associations with LATE-NC that 

met the Bonferroni-corrected threshold assuming an additive MOI (all p-values ≤ 2.56x10-

8) (Figure 3.4). While none of the APOE SNVs were associated with APOE expression

levels in the evaluated data sets, rs769449 and rs10414043 were significant sQTLs in 

GTEx for TOMM40 in cerebellar hemisphere tissue (p=4.0x10-10 and p=1.4x10-5, 

respectively). In INFERNO, these prioritized SNVs were associated with both Roadmap 

and FANTOM5 enhancers in adipose, blood, brain, connective, epithelial, liver, nervous, 

skeletal muscle, smooth muscle, and stem cell tissues and with just Roadmap enhancers in 

endocrine, heart, and immune organ tissues, among others. 
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The ABCC9 ± 10kb locus was most strongly associated with HS and contained 13 

SNVs with adjusted meta-analytic p-values for HS less than the Bonferroni-corrected 

threshold (Figure 3.5). rs1914361 had the smallest adjusted meta-analytic p-value with HS 

assuming a recessive MOI (p=1.70x10-4). In prior studies with cohorts of research subjects 

that did not overlap with the current study, the ABCC9/HS association was strongest for 

the recessive MOI models [27, 28, 31].  All other SNVs that also met the Bonferroni-

corrected threshold when assuming a recessive MOI were in high linkage disequilibrium 

with rs1914361 (all r2 > 0.75). rs1914361 was a significant eQTL in the GTEx data set for 

the expression of ABCC9 in several tissues, including brain (nucleus accumbens, caudate, 

cortex, and putamen) and artery tissues (tibial and aorta) (Figure 3.6A). Notably, 

rs1914361 minor alleles were positively correlated with ABCC9 expression in brain tissues 

(Figure 3.6B) and negatively correlated with ABCC9 expression in artery tissues (Figure 

3.6C). Furthermore, relative to rs704178, a previously identified ABCC9 HS SNV, 

rs1914361 had a similarly strong association with ABCC9 gene expression in GTEx 

(rs704178: p=4.00x10-13; rs1914361: p=7.10x10-12) and a stronger association with ABCC9 

gene expression in BRAINEAC (rs704178: p=6.80x10-4; rs1914361: p=2.10x10-7) (Table 

3.3). In INFERNO, these prioritized SNVs were associated with Roadmap enhancers in 

adipose, blood vessel, connective, heart, live, skeletal muscle, and smooth muscle tissues, 

among others. 

3.4.3 SNV-Level Regression Analyses 

In their respective regression models, the GRN SNV rs5848 (p=0.010), the APOE 

SNV rs769449 (p<0.001), and APOE 4 carrier status (p<0.001) all had nominally 
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significant adjusted meta-analytic associations with LATE-NC and the TMEM106B SNV 

rs7781670 had a borderline-significant adjusted meta-analytic association with LATE-NC 

(p=0.057) (Table 3.4). All odds ratio estimates were consistent across NACC and 

ROSMAP with the exception of the ABCC9 SNV rs1914361 when assuming a recessive 

MOI (NACC: OR=0.98; ROSMAP: OR=1.40). Notably, the odds ratio estimates for 

LATE-NC were very similar between the APOE SNV rs769449 (meta-analytic OR=1.95) 

and APOE 4 carrier status (meta-analytic OR=2.05), which likely reflects the fact that 

rs769449 minor allele counts are strongly correlated with APOE 4 counts (NACC: 

r2=0.746; ROSMAP: r2=0.712). 

No LATE-NC-by-SNV interactions were significant in the adjusted HS models, so 

the interaction terms were removed. The TMEM106B SNVs (rs1990622 and rs7781670), 

the GRN SNV (rs5848), one of the ABCC9 SNVs (rs1914361), the APOE SNV (rs769449), 

and APOE 4 carrier status all had nominally significant, adjusted meta-analytic 

associations with HS (Table 3.5). When these models were adjusted for LATE-NC, all 

models had nominally significant adjusted meta-analytic associations with HS with the 

exception of the APOE SNV (rs769449) and APOE 4 carrier status (Table 3.5, Figure 

3.7), suggesting that the association between APOE status and HS is related to a more direct 

interaction between APOE and LATE-NC (i.e., TDP-43 proteinopathy). Additionally, the 

association between HS and the ABCC9 SNV rs704178 becomes nominally significant 

with larger odds ratio estimates when adjusted for LATE-NC.   

An issue raised by the ABCC9/HS association results was whether this correlation 

was driven by cases lacking LATE-NC, i.e. the minority of cases with HS pathology that 

lacked TDP-43 proteinopathy. A separate sensitivity analysis was performed that excluded 
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just the cases with HS pathology that lacked LATE-NC. Results are shown in 

Supplemental Table 3.3, which may be compared with Table 3.5. The odds ratio 

estimates for the association between ABCC9 risk variants and HS pathology was 

essentially unchanged by removing the LATE-NC-HS+ cases. 

3.5 Discussion 

Using large genetic data sets and autopsy-derived data, we demonstrated that the 

neuropathological endophenotypes of LATE-NC and HS showed replication for 

associations between TMEM106B, GRN, APOE, and/or ABCC9.  Interestingly, ABCC9 

was not associated with LATE-NC but was with HS pathology.  Our study adds to the 

growing body of literature on the overlapping genetics of HS and LATE-NC while also 

highlighting several genetic loci unique to each disease entity.  

We replicated significant gene-based associations between HS and the TMEM106B, 

ABCC9, GRN, and APOE genes along with the rs7781670 (TMEM106B) and rs5848 (GRN) 

SNVs. Furthermore, we identified novel SNV-level associations between LATE-NC and 

rs7781670 and rs769449. The association of LATE-NC and rs7781670 is intriguing since 

it was also recently associated with clinical AD in a large AD GWAS [54].  We found no 

evidence to support the hypothesis that KCNMB2 is a risk gene for either LATE-NC or HS 

pathologies.  However, we note that the sample size of the present study was suitable to 

detect only relatively large genotype/phenotype associations.  

There is an emerging consensus that mixed pathologies are highly prevalent in 

elderly populations, and there are complex relationships between genotypes and 

phenotypes. The finding that variants in GRN, TMEM106B, and APOE genes are associated 
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with several neuropathological endophenotypes fits in with recent studies looking at 

genetic pleiotropy in neurological conditions [39]. Pleiotropic effects have been observed 

among AD-related neuropathological changes like neuritic plaques, neurofibrillary tangles, 

and cerebral amyloid angiopathy [76] as well as between LATE-NC and FTLD-TDP [9].  

Since the large majority of HS cases were also LATE-NC cases in the current study 

(Figure 3.2), it was striking that some risk genes and SNVs were found to only be 

associated with HS and not LATE-NC—and vice versa, when statistical models were 

applied. We did identify several genes that are associated with both neuropathologic 

endophenotypes. Specifically, the TMEM106B, GRN, and APOE SNVs appear to 

predispose individuals to LATE-NC (Figure 3.9A). Our data indicate that the associations 

between HS and SNVs in the TMEM106B, GRN, and ABCC9 genes remain statistically 

significant in a model that adjusts for the presence of LATE-NC (Table 3.5).  However, 

the impact of TMEM106B and GRN on HS appeared to be attenuated in a statistical model 

that included TDP-43 proteinopathy, suggesting that their impact on HS may be mediated 

by their role in LATE-NC.  How these genetic SNVs can impact HS secondarily or 

independently of LATE-NC is not currently known.  

While several ABCC9 SNVs have been found to be associated with HS, including 

rs704178 and rs704180, this is the first study to report an association between the ABCC9 

SNV rs1914361 and HS. Notably, rs1914361 was found to be associated with HS in two 

of the three included cohorts of the original HS GWAS [28], but it was not included in the 

downstream analyses since its association with HS wasn’t nominally significant in all three 

cohorts (data not published). It is important to note that prior study involved a completely 

different set of study participants but the “direction” of the effect in all cohorts studied was 
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the same.  Since rs1914361 was found to also be significantly associated with the 

expression of ABCC9 (Table 3.3) and is not in strong linkage disequilibrium with 

rs704178 (r2=0.176), the two loci may represent independent ABCC9 HS risk SNVs.    

We also identified divergent patterns in the tissue-level gene expressions of ABCC9 

and its homologous gene, ABCC8.  Similar results were observable in both the GTEx and 

FANTOM5 databases (Figure 3.8). While ABCC9 appears to be highly expressed in 

vascular and smooth muscle tissues (Figure 3.6A) and modestly expressed in CNS tissues, 

the paralogous ABCC8 gene tends to be more highly expressed in CNS tissue and less 

abundantly expressed in vascular and smooth tissues. The proteins encoded by these genes 

both serve to regulate the “KATP” potassium channels [93], but their divergent expression 

patterns suggest that ABCC9-related disease risk may act via vascular pathogenetic 

mechanisms [30]. 

The current study adds to a growing body of literature suggesting that LATE-NC is 

a potential precursor to HS [9]. It is yet to be seen how exactly the APOE gene and AD-

type changes interact with other pathologies, but one hypothesis is that APOE and AD 

predispose an individual to LATE-NC, which then drives an individual towards severe 

LATE-NC and HS (Figure 3.9B). It has been found that TDP-43 proteinopathy localizes 

to tangle-like structures in many cases with ADNC [40].  Further autopsy-based studies 

with larger sample sizes are needed.  We note that studies that focus on the LATE-NC 

phenotype with HS should optimally include relatively large numbers of individuals who 

died past 85 years of age.  

There are both limitations and strengths to the present study. Because of the 

characteristics of the sample (largely Caucasian, drawn from a number of different research 



46 

centers), the degree to which findings are generalizable is unknown, especially with respect 

to individuals of other ancestries. While this work aims to replicate previous associations, 

there are many models considered which can inflate false positive rates. Additionally, it is 

difficult to know if the associations identified in the current study are independent of 

ADNC, especially the significant associations between APOE and LATE-NC. However, 

this association likely still highlights the strong associations that exist between AD and 

other neurodegenerative diseases, which is interesting in itself.  We also note that all the 

included subjects had high-quality neuropathologic workup for TDP-43 proteinopathy and 

HS, and all the ADGC subjects were autopsied during 2014 and later. These study design 

elements constitute strengths of the current study. 
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Table 3.1. Participant characteristics stratified by hippocampal sclerosis (HS) and limbic-

predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) 

case status. 

NACC ROSMAP 

Number of 

Participants 

(%) 

Age at 

Death, 

Mean (SD) 

Female, N 

(%) 

Number of 

Participants 

(%) 

Age at 

Death, 

Mean (SD) 

Female, N 

(%) 

HS 

Overall N=631 85.9 (8.3) 319 (50.6) N=780 88.7 (7.2) 525 (67.3) 

No 542 (85.9) 85.9 (8.4) 270 (49.8) 707 (90.6) 88.3 (7.2) 468 (66.2) 

Yes 89 (14.1) 86.0 (7.5) 49 (55.1) 73 (9.4) 92.0 (6.4) 57 (78.1) 

LATE-NC 

Overall N=512 85.1 (7.9) 207 (50.2) N=747 89.1 (7.1) 506 (67.7) 

No 291 (70.6) 84.9 (8.1) 138 (47.4) 499 (66.8) 87.9 (7.3) 315 (63.1) 

Yes 121 (29.4) 85.4 (7.3) 66 (57.0) 248 (33.2) 91.5 (6.1) 191 (77.0) 

NACC = National Alzheimer's Coordinating Center; ROSMAP = Religious Orders Study 

and Rush Memory and Aging Project; SD = standard deviation; HS = hippocampal 

sclerosis; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy 

neuropathological changes. 
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Table 3.2. Aggregated Cauchy association test (ACAT) gene-based p-values for 

hippocampal sclerosis (HS) and limbic-predominant age-related TDP-43 encephalopathy 

neuropathological changes (LATE-NC). Each gene is flanked by 10kb. All SNV-level 

analyses were adjusted for sex, age at death, cohort/study, and the first three genetic 

principal components and meta-analyzed across National Alzheimer's Coordinating Center 

(NACC) and Religious Orders Study and Rush Memory and Aging Project (ROSMAP) 

participants. 

Chr. Gene Endophenotype 
MOI 

Additive Dominant Recessive 

3 KCNMB2 
HS 0.718 0.632 0.478 

LATE-NC 0.980 0.995 0.473 

7 TMEM106B 
HS 0.006 0.052 0.005 

LATE-NC <0.001 0.004 <0.001 

12 ABCC9 
HS 0.036 0.072 0.006 

LATE-NC 0.901 0.440 0.912 

17 GRN 
HS 0.004 0.348 0.003 

LATE-NC 0.164 0.628 0.069 

19 APOE 
HS 0.014 0.017 0.333 

LATE-NC <0.001 <0.001 0.064 

Chr. = chromosome; HS = hippocampal sclerosis; LATE-NC = limbic-predominant age-

related TDP-43 encephalopathy neuropathological changes; MOI = mode of inheritance. 
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Table 3.3. Most significant expression quantitative trait loci (eQTL) p-values for ABCC9 

in BRAINEAC and GTEx databases. 

Gene SNV 
Most Significant eQTL P-value 

BRAINEAC GTEx 

ABCC9 
rs704178 6.80E-04 4.00E-13 

rs1914361 2.10E-07 7.10E-12 

eQTL = expression quantitative trait loci; GTEx = Genotype-Tissue Expression; SNV = 

single-nucleotide variant. 
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Table 3.4. Adjusted effects of single nucleotide variants (SNV) on limbic-predominant 

age-related TDP-43 encephalopathy neuropathological change (LATE-NC). All models 

adjust for sex, age at death, first three principal components and cohort/study. For 

rs1990622, rs7781670, and rs704178, the effect alleles are the risk-associated alleles and 

not the minor alleles. 

Gene MOI SNV 
Effect 

Allele 

NACC ROSMAP Meta-Analysis 

OR 
P-

value 
OR 

P-

value 
OR 95% CI 

P-

value 

TMEM106B Additive rs1990622 A 1.39 0.051 1.08 0.484 1.16 (0.97, 1.39) 0.099 

TMEM106B Additive rs7781670 C 1.47 0.024 1.09 0.415 1.19 (1.00, 1.43) 0.057 

GRN Additive rs5848 T 1.40 0.042 1.23 0.089 1.29 (1.06, 1.56) 0.010 

ABCC9 Additive rs1914361 G 1.16 0.354 1.16 0.171 1.16 (0.97, 1.39) 0.098 

ABCC9 Recessive rs1914361 G 0.98 0.933 1.40 0.077 1.25 (0.92, 1.71) 0.151 

ABCC9 Additive rs704178 G 0.95 0.764 1.07 0.536 1.03 (0.86, 1.24) 0.732 

ABCC9 Recessive rs704178 G 0.80 0.433 1.16 0.394 1.05 (0.78, 1.40) 0.759 

APOE Additive rs769449 A 1.70 0.004 2.22 <0.001 1.95 (1.51, 2.52) <0.001 

APOE N/A e4 Carrier N/A 1.88 0.010 2.16 <0.001 2.05 (1.54, 2.74) <0.001 

NACC = National Alzheimer's Coordinating Center; ROSMAP = Religious Orders Study 

and Rush Memory and Aging Project; MOI = mode of inheritance; SNV = single-

nucleotide variant; OR = odds ratio; CI = confidence interval. 
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Table 3.5. Adjusted effects of single nucleotide variants (SNV) on hippocampal sclerosis 

(HS). A separate regression model was fit for each variant, mode of inheritance (MOI), and 

limbic-predominant age-related TDP-43 encephalopathy neuropathological change 

(LATE-NC) adjustment. All models also adjust for sex, age at death, first three principal 

components and cohort/study. For rs1990622, rs7781670, and rs704178, the effect alleles 

are the risk-associated alleles and not the minor alleles. 

Gene MOI SNV 
Effect 

Allele 

LATE-NC 

Adjusted 

NACC ROSMAP Meta-Analysis 

OR P-value OR P-value OR 95% CI P-value

TMEM106B Additive rs1990622 A 

Yes 1.23 0.396 1.61 0.017 1.44 (1.07, 1.95) 0.017 

No 1.43 0.044 1.55 0.019 1.49 (1.15, 1.91) 0.002 

TMEM106B Additive rs7781670 C 

Yes 1.20 0.456 1.53 0.029 1.39 (1.03, 1.88) 0.030 

No 1.47 0.034 1.50 0.028 1.48 (1.15, 1.91) 0.002 

GRN Additive rs5848 T 

Yes 1.37 0.168 1.37 0.123 1.37 (1.02, 1.84) 0.039 

No 1.67 0.004 1.43 0.057 1.56 (1.21, 2.00) <0.001 

ABCC9 Additive rs1914361 G 

Yes 1.92 0.005 1.31 0.152 1.52 (1.14, 2.03) 0.004 

No 1.64 0.004 1.35 0.092 1.49 (1.17, 1.90) 0.001 

ABCC9 Recessive rs1914361 G 

Yes 3.87 <0.001 1.58 0.124 2.23 (1.42, 3.51) <0.001 

No 2.69 <0.001 1.64 0.075 2.12 (1.45, 3.09) <0.001 

ABCC9 Additive rs704178 G 

Yes 1.51 0.079 1.52 0.034 1.52 (1.13, 2.04) 0.006 

No 1.09 0.618 1.42 0.059 1.23 (0.96, 1.57) 0.099 

ABCC9 Recessive rs704178 G 

Yes 1.77 0.121 1.48 0.171 1.58 (1.02, 2.47) 0.042 

No 1.33 0.292 1.43 0.180 1.38 (0.95, 2.01) 0.090 

APOE Additive rs769449 A 

Yes 1.15 0.589 1.54 0.094 1.33 (0.93, 1.90) 0.118 

No 1.30 0.188 2.02 0.004 1.54 (1.14, 2.09) 0.005 

APOE N/A e4 Carrier N/A 

Yes 1.74 0.114 1.34 0.318 1.49 (0.96, 2.31) 0.075 

No 1.79 0.024 1.91 0.018 1.84 (1.28, 2.66) 0.001 

NACC = National Alzheimer's Coordinating Center; ROSMAP = Religious Orders Study 

and Rush Memory and Aging Project; MOI = mode of inheritance; SNV = single-

nucleotide variant; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy 

neuropathological change; OR = odds ratio; CI = confidence interval. 
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Figure 3.1. Photomicrographs of human hippocampi depict the main neuropathologic 

endophenotypes analyzed in the current study.  Hippocampal sclerosis (HS) is evaluated 

with H&E stain (panels A,C,E), whereas LATE-NC is operationalized with phospho-TDP-

43 immunohistochemistry (IHC; panels B, D, and F).  All photomicrographs depict mid-

level hippocampal sections dissected in the coronal plane.  Panels A and B show stained 

brain sections from a woman (APOE e3/e4) who died at age 83; autopsy revealed neither 

LATE-NC nor HS.  Panels C and D are from a man (APOE e3/e4) who died at age 93 with 

LATE-NC Stage 2.  Panels E and F are from a woman (APOE e3/e3) who died at age 95 

with LATE-NC Stage 2 and comorbid HS.  Note the relatively atrophic hippocampal 

profile in Panel E in comparison to A or C (same scale bar); the HS+ profile in panel E also 

demonstrates parenchymal rarefaction which can be appreciated even at low magnification.  

Phospho-TDP-43 immunoreactive intraneuronal inclusions are highlighted with arrows in 

panels D and F.  The representative photomicrographs were from research participants of 

the University of Kentucky AD Research Center.  Scale bar = 2mm in A, C, and E, 75 

microns in B, D, and F. 
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Figure 3.2. Venn diagrams of the overlap between limbic-predominant age-related TDP-

43 encephalopathy neuropathological change (LATE-NC) and hippocampal sclerosis (HS) 

cases in A. National Alzheimer's Coordinating Center (NACC) and B. Religious Orders 

Study and Rush Memory and Aging Project (ROSMAP). Only participants with non-

missing case data for both LATE-NC and HS are included. LATE-NC = limbic-

predominant age-related TDP-43 encephalopathy neuropathological change; HS = 

hippocampal sclerosis; NACC = National Alzheimer's Coordinating Center; ROSMAP = 

Religious Orders Study and Rush Memory and Aging Project. 
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Figure 3.3. Adjusted, meta-analytic, single nucleotide variant (SNV)-level p-values for 

hippocampal sclerosis (HS) and limbic-predominant age-related TDP-43 encephalopathy 

neuropathological change (LATE-NC) across A. TMEM106B ± 10kb and B. GRN ± 10kb. 

All analyses were adjusted for sex, age at death, cohort/study, and the first three genetic 

principal components. Horizontal dashed lines represent the Bonferroni-corrected 

thresholds for significance that account for the number of independent tests in each 

genomic region. A diamond represents the SNV with the smallest p-value. The previously 

identified TMEM106B SNV (Rutherford et al., 2012) is labeled and identified with an 

arrow. MOI = mode of inheritance; LATE-NC = limbic-predominant age-related TDP-43 

encephalopathy neuropathological change; HS = hippocampal sclerosis. 
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Figure 3.4. Adjusted, meta-analytic, single nucleotide variant (SNV)-level p-values for 

hippocampal sclerosis (HS) and limbic-predominant age-related TDP-43 encephalopathy 

neuropathological change (LATE-NC) across APOE ± 10kb. All analyses were adjusted 

for sex, age at death, cohort/study, and the first three genetic principal components. The 

horizontal dashed line represents the Bonferroni-corrected threshold for significance that 

accounts for the number of independent tests in the APOE ± 10kb region. A diamond 

represents the SNV with the smallest p-value. MOI = mode of inheritance; LATE-NC = 

limbic-predominant age-related TDP-43 encephalopathy neuropathological change; HS = 

hippocampal sclerosis. 
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Figure 3.5. Adjusted, meta-analytic, single nucleotide variant (SNV)-level p-values for 

hippocampal sclerosis (HS) and limbic-predominant age-related TDP-43 encephalopathy 

neuropathological change (LATE-NC) across ABCC9 ± 10kb assuming a recessive mode 

of inheritance (MOI). A recessive MOI was assumed for ABCC9 since it has consistently 

been the MOI with the strongest HS association for ABCC9 (Nelson et al., 2014; Nelson 

et al., 2015; Katsumata et al., 2017). All analyses were for sex, age at death, cohort/study, 

and the first three genetic principal components. The horizontal dashed line represents the 

Bonferroni-corrected threshold for significance that accounts for the number of 

independent tests in the ABCC9 ± 10kb region. A diamond represents the SNV with the 

smallest p-value. The previously identified ABCC9 SNV (Nelson et al., 2014) is labeled 

and identified with an arrow. MOI = mode of inheritance; LATE-NC = limbic-predominant 

age-related TDP-43 encephalopathy neuropathological change; HS = hippocampal 

sclerosis. 
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Figure 3.6. Expression quantitative trait loci (eQTL) analyses for rs1914361 and ABCC9 

gene expression across human tissues in the Genotype-Tissue Expression (GTEx) 

database. A. Multi-tissue eQTL plot of rs1914361 and ABCC9 gene expression; B. ABCC9 

normalized gene expression stratified by rs1914361 minor alleles in the nucleus acumbens 

region of the brain; and C. ABCC9 normalized gene expression stratified by rs1914361 

minor alleles in the aorta region of the artery. GTEx = Genotype-Tissue Expression; NES 

= normalize effect size; eQTL = expression quantitative trait loci. 
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Figure 3.7. Adjusted odds ratio estimates and 95% confidence intervals for genetic single 

nucleotide variants (SNV) and APOE 4 carrier status from separate regression models of 

hippocampal sclerosis (HS) fit using data from the National Alzheimer's Coordinating 

Center (NACC), the Religious Orders Study and Rush Memory and Aging Project 

(ROSMAP), and the meta-analysis of NACC and ROSMAP. All regression models were 

adjusted for sex, age at death, cohort/study, and the first three genetic principal 

components. Some regression models were also adjusted for limbic-predominant age-

related TDP-43 encephalopathy neuropathological change (LATE-NC) case status. 

LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathological 

change; NACC = National Alzheimer's Coordinating Center; ROSMAP = Religious 

Orders Study and Rush Memory and Aging Project. 
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Figure 3.8. ABCC8 and ABCC9 gene expression in various human tissues in the A. 

Genotype-Tissue Expression (GTEx) and B. Functional Annotation of Human Long 

Noncoding RNAs via Molecular Mapping (FANTOM5) databases. In GTEx, central 

nervous system (CNS) tissues included Brodmann (1909) area 24, Brodmann (1909) area 

9, C1 segment of cervical spinal cord, amygdala, caudate nucleus, cerebellar hemisphere, 

cerebellum, cerebral cortex, hippocampus proper, hypothalamus, nucleus accumbens, 

pituitary gland, and substantia nigra; vascular/smooth muscle tissues included aorta, atrium 

auricular region, coronary artery, tibial artery, endocervix, esophagus muscularis mucosa, 

urinary bladder, and uterus; and other tissues included all other tissue types. In FANTOM5, 

CNS tissues included amygdala, brain, caudate nucleus, cerebellum, diencephalon, dorsal 

thalamus, globus pallidus, hippocampal formation, locus ceruleus, medulla oblongata, 

middle frontal gyrus, middle temporal gyrus, occipital cortex, occipital lobe, olfactory 

apparatus, parietal lobe, pituitary gland, putamen, spinal cord, and substantia nigra; 

vascular/smooth muscle tissue included artery, heart, heart left ventricle, left cardiac 

atrium, mitral valve, smooth muscle, tricuspid valve, and  uterus; and other tissues included 

all other tissue types. GTEx = Genotype-Tissue Expression; FANTOM5 = Functional 

Annotation of Human Long Noncoding RNAs via Molecular Mapping; TPM = transcripts 

per million; CNS = central nervous system. 
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Figure 3.9. Diagrams depicting potential causal relationships between the genes under 

study with positive findings (TMEM106B, ABCC9, GRN, and APOE) and TDP-43 

proteinopathy/limbic-predominant age-related TDP-43 encephalopathy (LATE), 

hippocampal sclerosis (HS), and Alzheimer’s disease (AD). A. The candidate genes and 

their corresponding colors in the diagrams, B. a diagram of the current study’s prima facie 

results, and C. a diagram showing hypothetical mechanistic pathways that are compatible 

with the findings of the current study, including how AD neuropathologic changes (often 

linked to the APOE risk allele) may fit in with the current study’s results. LATE = limbic-

predominant age-related TDP-43 encephalopathy; HS = hippocampal sclerosis; AD = 

Alzheimer’s disease. 
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CHAPTER 4. A NEW FUNCTIONAL F-STATISTIC FOR GENE-BASED INFERENCE INVOLVING

MULTIPLE PHENOTYPES

4.1 Abstract 

Genetic pleiotropy is the phenomenon where a single gene or genetic variant 

influences multiple traits. Numerous statistical methods exist for testing for genetic 

pleiotropy at the variant level, but fewer methods are available for testing genetic 

pleiotropy at the gene-level. In the current study, we derive an exact alternative to the Shen 

and Faraway functional F-statistic for functional-on-scalar regression models. Through 

extensive simulation studies, we show that this exact alternative performs similarly to the 

Shen and Faraway F-statistic in gene-based, multi-phenotype analyses and both F-statistics 

perform better than existing methods in small sample, modest effect size situations. We 

then apply all methods to real-world, neurodegenerative disease data and identify novel 

associations. 

4.2 Introduction 

Genetic pleiotropy is the phenomenon where a single gene or genetic variant 

influences multiple traits [94]. A recent study estimated that more than half of the human 

genome contains trait-associated loci and that nearly 90% of those loci are shared by more 

than one trait [95]. A specific example of pleiotropy in neurodegenerative disease is the 

MAPT gene which is a known to contribute risk for several tauopathies and also 

Parkinson’s disease (which is a condition not linked to tau pathology) [49]. Evidence of 

pleiotropy has also been found across multiple Alzheimer's disease and related dementias 

(ADRD) traits: AD and Parkinson’s disease [45], AD and amyotrophic lateral sclerosis 

[46], early-onset AD and frontotemporal dementia (FTLD) [47], AD-related psychosis and 
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schizophrenia [48], and limbic-predominant age-related TDP-43 encephalopathy (LATE) 

and FTLD-TDP [9]. 

Simulation studies have found that statistical methods designed to test for 

associations between a single variant and several phenotypes have higher power than 

single-phenotype analyses, even when only one of the phenotypes is associated with the 

variant [96, 97]. Examples of single-variant, multi-phenotype methods include multivariate 

analysis of variance (MANOVA), TATES [98],  mv-BIMBAM [99], SCOPA [100], and 

MultiPhen [101]. Additionally, gene- and region-based methods have also been shown to 

have improved power over single-variant approaches [102]. Examples of region-based 

methods include VEGAS [103], GATES [104], SKAT-O [105], and ACAT [92]. 

Few statistical methods exist for jointly analyzing multiple phenotypes over genomic 

regions, though some researchers have tried combining single-variant multiple-phenotype 

methods with multiple-variant single-phenotype methods with some success [106]. In the 

current study, we develop a novel test statistic for performing multi-phenotype, gene-based 

tests by leveraging methods from the branch of statistics known as functional data analysis 

(FDA). We then compare the performance of the novel test statistic to a similar FDA-based 

test statistic along with two other methods capable of testing for multi-phenotype, gene-

based associations. Finally, we apply the methods to investigate potential pleotropic effects 

for several genes and two related but under-studied neurodegenerative diseases, 

hippocampal sclerosis (HS) and LATE. 
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4.3 Methods 

4.3.1 Functional F-Statistics 

4.3.1.1 The Function-on-Scalar Regression Model 

In order to utilize methods from functional data analysis (FDA), and the function-

on-scalar regression (FoSR) model in particular, a reverse regression approach was used 

where  phenotypes of interest are treated as scalar predictor variables (along with any other 

adjustors) and  genetic information is treated as a functional outcome. Before creating  

functional outcomes, 𝑔 minor allele counts were first flipped using the approach of 

Vsevolozhskaya et al. to remove spurious noise [107]. Then the flipped minor allele counts 

were smoothed for each of the 𝑛 individuals to create 𝑛 smooth, individual-level genotype 

functions, 𝐺𝑖(𝑡), 𝑖 ∈ [1, … , 𝑛]. The FoSR model will have the following form: 

Equation 1 

𝐺𝑖(𝑡) = 𝛽0(𝑡) + 𝛽1(𝑡)𝑋𝑖1 + ⋯ + 𝛽𝑞−1(𝑡)𝑋𝑖(𝑞−1)

+ 𝛽𝑞(𝑡)𝑌̃𝑖1 + ⋯ + 𝛽𝑝−1(𝑡)𝑌̃𝑖(𝑝−𝑞) + 𝜖𝑖(𝑡)

where 𝑌̃1, … , 𝑌̃(𝑝−𝑞) are (𝑝 − 𝑞) potentially correlated phenotypes, 𝑋1, … , 𝑋(𝑞−1) are (𝑞 −

1) adjustment covariates, and 𝛽𝑗(𝑡) is the association function between the genetic region

and the 𝑗𝑡ℎ scalar predictor variable. To test the association between the genotype

functions, 𝐺(𝑡), and the phenotypes, 𝑌̃1, … , 𝑌̃(𝑝−𝑞), we can compare the full model from 

Equation 1 to the following reduced model: 

Equation 2 

𝐺𝑖(𝑡) = 𝛽0(𝑡) + 𝛽1(𝑡)𝑋𝑖1 + ⋯ + 𝛽𝑞−1(𝑡)𝑋𝑖(𝑞−1) + 𝜖𝑖(𝑡).
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4.3.1.2 The Shen and Faraway Functional F-Statistic 

A functional F-statistic for FoSR models has been proposed by Shen and Faraway 

[108] with the following form:

𝐹 =
(𝑅𝑆𝑆𝐹𝑢𝑙𝑙 − 𝑅𝑆𝑆𝑅𝑒𝑑𝑢𝑐𝑒𝑑)/(𝑝 − 𝑞)

𝑅𝑆𝑆𝐹𝑢𝑙𝑙/(𝑛 − 𝑝)

where 𝑛 is the number of observed genotype functions, 𝑝 is the total number of parameters 

in the full model from Equation 1, 𝑞 is the number of parameters in the reduced model 

from Equation 2, and 𝑅𝑆𝑆 are the residual sums of squares of a FoSR model and are defined 

as follows: 

𝑅𝑆𝑆 = ∑ ∫ (𝐺𝑖(𝑡) − 𝐺̂𝑖(𝑡))2

𝜏

𝑑𝑡

𝑛

𝑖=1

= ∑ ∑(𝐺𝑖𝑘 − 𝐺̂𝑖𝑘)2.

∞

𝑘=1

𝑛

𝑖=1

Under the null hypothesis, this F-statistic has the following distribution: 

Equation 3 

𝐹 ∼
∑ 𝑟𝑘𝜒𝑝−𝑞

2∞
𝑘=1 /(𝑝 − 𝑞)

∑ 𝑟𝑘𝜒𝑛−𝑝
2∞

𝑘=1 /(𝑛 − 𝑝)

where 𝑟𝑘 is the 𝑘𝑡ℎ decreasingly ordered eigenvalue of the variance-covariance matrix of

the genotype functions, 𝐺(𝑡). By applying Satterthwaite's approximation, the infinite sums 

of weighted 𝜒2 random variables can be approximated by individual 𝜒2 random variables

and the overall distribution can then be approximated by: 

𝐹 ∼
𝜒𝑓1

2 /𝑓1

𝜒𝑓2

2 /𝑓2

= 𝐹(𝑓1, 𝑓2) 

where 𝑓1 = 𝑐(𝑝 − 𝑞), 𝑓2 = 𝑐(𝑛 − 𝑝), and 𝑐 =
∑ 𝑟𝑘

2∞
𝑘=1

∑ 𝑟𝑘
∞
𝑘=1

. 

4.3.1.3 Newly Proposed Functional F-Statistic 
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Since we expect Satterthwaite's approximation to be imprecise especially for small 

p-values which are common in genetic association studies, we proposed an alternative

derivation. Instead of using Satterthwaite's approximation to simplify the distribution of 

the functional F-statistic from the ratio of two infinite weighted sums of non-independent 

𝜒2 random variables to the ratio of two independent 𝜒2 random variables, we propose using

known properties of the distributions of quadratic forms to directly evaluate the infinite 

sums. Specifically, we apply Davies exact method [109, 110] via the davies() function from 

the CompQuadForm R package [110] to compute the cumulative distribution function 

(CDF) values of the infinite sums in the numerator and denominator of Equation 3: 

(𝑅𝑆𝑆𝐹𝑢𝑙𝑙 − 𝑅𝑆𝑆𝑅𝑒𝑑𝑢𝑐𝑒𝑑) ∼ ∑ 𝑟𝑘
∗

∞

𝑘=1

𝜒𝑝−𝑞
2 = 𝐶𝐷𝐹𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 

𝑅𝑆𝑆𝐹𝑢𝑙𝑙 ∼ ∑ 𝑟𝑘
∗

∞

𝑘=1

𝜒𝑛−𝑝
2 = 𝐶𝐷𝐹𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 

where 𝑟𝑘
∗ is the 𝑘𝑡ℎ decreasingly ordered eigenvalue of the correlation matrix of the

genotype functions, 𝐺(𝑡). Correlation matrices were computed from variance-covariance 

matrices via the cov2cor() function in R. 

The computed CDF values will be independent and uniformly distributed under the 

null hypothesis and, thus, can be transformed to follow any distribution. To reflect the 

traditional F-statistic from multiple linear regression, we transform the numerator and 

denominator CDF values to 𝜒𝑝−𝑞
2 and 𝜒𝑛−𝑝

2  random variables, respectively. Following this 

approach, the Shen and Faraway functional F-statistic from Equation 3 will be distributed 

as 𝐹(𝑝 − 𝑞, 𝑛 − 𝑝) under the null hypothesis. 
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4.3.1.4 Fitting FoSR Models 

Prior to analyzing genomic data with the functional F-statistics, the 𝑔 minor allele 

counts were first flipped using the approach of Vsevolozhskaya et al. to remove spurious 

noise [107]. Then, generalized additive models were used to fit penalized cubic regression 

splines to the flipped minor alleles via the gam() function from the mgcv R package [111]. 

See Figure 4.1 for a comparison of raw and flipped smooth genotype functions, 𝐺𝑖(𝑡), for 

a region of chromosome 17. Note that the flipped observations no longer necessarily reflect 

minor allele counts, but the underlying associations will be preserved regardless since the 

choice of effect allele is arbitrary from a statistical standpoint. To reduce the dimensionality 

of the FoSR models, the individual-level genotype functions, 𝐺𝑖(𝑡), were then evaluated at 

𝑔/2 equally spaced points and these values were subsequently analyzed. This step isn't 

necessary when dealing with small sample sizes or smaller genetic regions as other 

simulations we conducted found it to have little effect on statistical power. 

FoSR models were fit to the 𝑔/2 equally spaced 𝐺(𝑡) values using linear mixed 

effects models via the nlme R package [112, 113]. The residual sums of squares were then 

calculated for both the reduced, intercept-only model and the full model with all 

phenotypes included as predictors. The empirical variance-covariance matrix of the 

genotype functions, 𝐺(𝑡), were calculated using the var.fd() function from the fda R 

package [114]. Functional F-statistics were then computed as described earlier. 

4.3.2 The Gene Association with Multiple Traits Test 

The Gene Association with Multiple Traits (GAMuT) test is a statistical method for 

cross-phenotype analysis using a nonparametric distance-covariance approach that 
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compares similarity in multivariate phenotypes to similarity in genotypes across a gene 

[115]. Briefly, separate similarity matrices are constructed for the phenotypes and 

genotypes - 𝒀 and 𝑿, respectively - either by projection or through the use of kernel 

functions. For our simulations and applied analyses, we construct similarity matrices via 

the projection approach for phenotypes and the linear kernel approach for genotypes. Each 

similarity matrix is centered to form 𝒀𝑐 and 𝑿𝑐 and the GAMuT test statistic, 𝑇𝐺𝐴𝑀𝑢𝑇, is 

constructed as follows: 

𝑇𝐺𝐴𝑀𝑢𝑇 =
1

𝑁
trace(𝒀𝑐𝑿𝑐) 

where 𝑁 is the number of individuals included in the analysis. Under the null hypothesis 

where the two matrices, 𝒀𝑐 and 𝑿𝑐, are independent, 𝑇𝐺𝐴𝑀𝑢𝑇 follows the same asymptotic 

distribution as 

1

𝑁
∑ 𝜆𝑋,𝑖𝜆𝑌,𝑖𝑧𝑖𝑗

2

𝑖,𝑗

where 𝜆𝑋,𝑖 is the 𝑖𝑡ℎ ordered non-zero eigenvalue of 𝑿𝑐, 𝜆𝑌,𝑖 is the 𝑖𝑡ℎ ordered non-zero

eigenvalue of 𝒀𝑐, and 𝑧𝑖𝑗
2  are independent and identically distributed 𝜒1

2 random variables.

P-values are then derived using Davies' exact method [109].

All GAMuT analyses were run in R using functions provided by the authors 

(https://github.com/epstein-software/GAMuT) along with their recommended analytic 

steps (http://genetics.emory.edu/labs/epstein/software/gamut/GAMuT-example-

analysis.html). Phenotype similarity matrices, 𝒀, were constructed such that 𝒀 =

𝑷(𝑷𝑇𝑷)−1𝑷𝑇, where 𝑷 is a matrix of phenotypes. The raw (i.e., un-flipped and un-

smoothed) minor allele counts were used in these analyses. In the applied analyses where 
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some genotype values were missing for some individuals, variants with any missing values 

were excluded from the GAMuT analyses. 

4.3.3 The Aggregated Cauchy Association Test 

The aggregated Cauchy association test (ACAT) is a method that works by 

converting SNP-level p-values into Cauchy-distributed random variables [92]. Since the 

sum of dependent Cauchy random variables is identical to the sum of independent Cauchy 

random variables, no additional information on the linkage disequilibrium or correlation of 

the SNPs is needed making the method extremely fast [116]. While ACAT was originally 

developed for the purposes of testing rare variant associations, the authors state that the 

method can also be applied to common variants.  

The ACAT test statistic, 𝑇𝐴𝐶𝐴𝑇, has the following form: 

𝑇𝐴𝐶𝐴𝑇 = ∑ 𝑤𝑖 tan((0.5 − 𝑝𝑖)𝜋)

𝑘

𝑖=1

where 𝑘 is the number of SNP-level p-values, 𝑝𝑖 is the 𝑖𝑡ℎ SNP-level p-value, and 𝑤𝑖 is the

non-negative weight for the 𝑖𝑡ℎ p-value. Note that under the null hypothesis 𝑝𝑖 will be

uniformly distributed and tan{(0.5 − 𝑝𝑖)𝜋} will be Cauchy distributed [116]. Then, based

on the cumulative density function of the Cauchy distribution, the overall ACAT p-value 

can be approximated by 

p − value ≈
1

2
− {arctan(0.5 − 𝑝𝑖)}

where 𝑤 = ∑ 𝑤𝑖
𝑘
𝑖=1  [92]. 
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In our analyses, we first fit regression models to each SNP and phenotype using 

linear regression models assuming an additive mode of inheritance via the lm() function in 

R. The raw (i.e., un-flipped and un-smoothed) minor allele counts were used. Then, we

applied ACAT with equal weights to combine SNP-level p-values into a single gene-level 

p-value for each phenotype. The phenotype-level ACAT p-values were then combined via

the minimum-p method [117] to obtain a single, multi-phenotype, gene-level p-value. In 

the context of Equation 1, the smallest gene-level, phenotype-specific p-value would be 

multiplied by the number of phenotypes analyzed, (𝑝 − 𝑞), to obtain the final p-value. 

While this approach is expected to be conservative since it fails to take into account the 

correlation that may exist among phenotypes, it is computationally efficient and provides 

an analytic baseline for comparing the performance of other statistical methods. All ACAT 

analyses were run in R using functions provided by the authors 

(https://github.com/yaowuliu/ACAT). 

4.3.4 Simulations 

Similar to other simulation studies [118], we utilized realistic linkage 

disequilibrium patterns by using data from the 1000 Genomes Project [119] for a 100 kb 

region of chromosome 17 which included 12,735 SNPs spanning from the FGF11 gene to 

the NDEL1 gene. The selection of this region of the genome was arbitrary, but we expect 

the linkage disequilibrium structure of this region to be representative of, and generalizable 

to, other regions of the genome.  

For each simulation, we randomly selected a window of width 𝑚 Kb (where 𝑚 ∈

{10, 25, 50}) containing 𝑔 consecutive SNPs for 𝑛 individuals sampled with replacement 

https://github.com/yaowuliu/ACAT
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from the 1,092 available individuals (where 𝑛 ∈ {100, 250, 500}). The resulting matrix 

was defined to be 𝑮𝑛×𝑔 and standard quality control procedures were then applied such as 

removing SNPs with minor allele frequencies less than 0.01 and near perfect linkage 

disequilibrium (𝑟2 > 0.99).

Within each window, we then selected 𝑐 SNPs (where 𝑐 ∈ {1, 5, 10}) to be causally 

associated with all five phenotypes. Causal effects, 𝛽𝑔×5, were simulated for all SNPs from 

a normal distribution with 𝜇 = 0 and  

𝜎 = {
𝜎𝑐𝑎𝑢𝑠𝑎𝑙 for all causal SNPs
0 for all noncausal SNPs

 

where 𝜎𝑐𝑎𝑢𝑠𝑎𝑙 ∈ {0.05, 0.10, 0.15, 0.25, 0.50, 1.00}. Continuous phenotypes, 𝒀̃𝑛×5, were

then generated using the following model: 

𝒀̃𝑛×5 = 𝑮𝑛×𝑔 × 𝛽𝑔×5 + 𝑬𝑛×5 

where 𝑬𝑛×5 is a matrix of errors that follows a multivariate normal distribution with 𝝁 = 0 

and 𝚺 = 𝜎𝑒𝑟𝑟𝑜𝑟𝑹, 𝜎𝑒𝑟𝑟𝑜𝑟 = 1, and 𝑹 is a 5 × 5 matrix of the correlations among the five 

continuous phenotypes. Multivariate normal observations were generated using the 

mvrnorm() function from the MASS R package [120]. 

Phenotypes were simulated assuming an underlying equicorrelation structure where 

all off-diagonal values of 𝑹 were equal to 𝜌, where 𝜌 ∈ {0, 0.5}. Disturbance was also 

added to the underlying correlation matrix, 𝑹, for some simulations so that the methods 

could be systematically tested in situations with unstructured correlation structures. To 

create a disturbed correlation matrix, a vector was created consisting of five random values 

from a continuous Uniform(−𝑏, 𝑏), where 𝑏 ∈ {0, 5}. Then, this vector was multiplied by 

its transpose to create a 5 × 5 square matrix, 𝑩, of rank 1. Finally, 𝑩 was added to 𝑹 and 
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the resulting matrix was converted to a correlation matrix to create a disturbed underlying 

correlation matrix, 𝑹∗, for simulating phenotypes.

For Type-I error simulations where 𝜎𝑐𝑎𝑢𝑠𝑎𝑙 = 0 for all SNPs, a total of 10,000 

simulations were run for each scenario. For all power simulations, a total of 1,000 

simulations were run for each scenario. 

The performance of the functional F-statistics were compared to two other multi-

phenotype, gene-based methods: ACAT and GAMuT. For all of the comparison methods, 

the raw (i.e., not flipped and not smoothed) genetic data were used. SNP-level analyses for 

ACAT were performed separately for each phenotype assuming an additive mode of 

inheritance using linear regression models via the lm() function in R. 

4.4 Results 

4.4.1 Simulations 

4.4.1.1 Type I Error 

All methods had relatively conservative Type I error rates across the simulation 

scenarios, though they all tended to become more accurate as the sample size, 𝑛, and gene 

size, 𝑚, increased. See Table 4.1 for Type-I error rates at 𝛼 = 0.05 for each method 

stratified by gene size, number of observations, correlation among phenotypes, and 

correlation disturbance. 

Under simulation scenarios with no correlation disturbance, ACAT tended to have 

the best control of Type I error especially for smaller sample sizes. However, as the sample 

size increased and as disturbance was added to the correlation, the functional F-statistics 
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tended to perform better. Interestingly, whenever disturbance was added, ACAT's Type I 

error tended to suffer while GAMuT and the functional F-statistics tended to be either 

unaffected or become more accurate. Notably, the Type I error rate of the newly derived 

functional F-statistic was consistently lower than that of the Shen and Faraway functional 

F-statistic which made it more conservative in all but one scenario (with a gene size of

25,000 bases, sample size of 500, no correlation among phenotypes, and correlation 

disturbance). 

4.4.1.2 Power 

No single method had the highest power across all simulation scenarios, but some 

general trends were apparent. Overall, power increased for all methods as the sample size, 

gene size, number of causal variants, and causal effect size increased. Additionally, all 

methods tended to achieve their lowest power in scenarios where the phenotypes were 

independent (𝜌 = 0 and 𝑏 = 0) while they tended to achieve their highest power in 

scenarios with high amounts of correlation (𝜌 = 0.5 and 𝑏 = 5). Differences between the 

methods were observed based on causal effect sizes and correlation structures. 

For modest causal effect sizes (𝜎𝑐𝑎𝑢𝑠𝑎𝑙 < 0.25), the functional F-statistics were the 

most powerful methods regardless of gene size, number of causal variants, and correlation 

structure (Figure 4.2). The performance of the functional F-statistics were similar to one 

another, though the Shen and Faraway F-statistic tended to have slightly higher power for 

the smallest causal effect sizes. While ACAT and GAMuT performed worse than the 

functional F-statistics for modest effect sizes, especially at smaller sample sizes, their 

performance relative to one another differed substantially based on the underlying 
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correlation structure. ACAT was far more powerful than GAMuT when the phenotypes 

were independent (𝜌 = 0 and 𝑏 = 0) and GAMuT was far more powerful than ACAT 

when there were high amounts of correlation among the phenotypes (𝜌 − 0.5 and 𝑏 = 5). 

Under their respective most powerful correlation structures, ACAT and GAMuT were able 

to match the performance of the functional F-statistics at the largest sample size (𝑁 =

500). 

As the the causal effects increased (𝜎𝑐𝑎𝑢𝑠𝑎𝑙 ≥ 0.25), ACAT and GAMuT began 

outperforming the functional F-statistics especially at larger sample sizes (Figure 4.3). 

Similar to the modest effect size scenarios, ACAT tended to be more powerful than 

GAMuT when the phenotypes were independent (𝜌 = 0 and 𝑏 = 0) and GAMuT tended 

to be more powerful than ACAT when there were high amounts of correlation among the 

phenotypes (𝜌 = 0 and 𝑏 = 5). Notably, even with stronger causal effects, the functional 

F-statistics still tended to be perform similar to, or sometimes even better than, the most

powerful method at the smallest sample size. Furthermore, while the relative performances 

of ACAT and GAMuT varied based on the underlying correlation structure, the functional 

F-statistics were more stable and tended to be the second and third most powerful methods

at larger sample sizes. 

4.4.2 Application to Neurodegenerative Disease Data 

Several genes have been implicated for hippocampal sclerosis (HS), a 

neurodegenerative disease characterized by severe neuronal cell loss and gliosis in the 

hippocampus, including: KCNMB2, TMEM106B, ABCC9, WWOX, GRN, and APOE. Our 

understanding of HS has evolved in recent years and what was once considered "HS" is 
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now understood to include several distinct yet related neuropathological diseases, 

including limbic-predominant age-related TDP-43 encephalopathy (LATE). While 

genetics are known to play a role in the development of neurodegenerative disorders, the 

autopsy-based data necessary to definitively diagnose neuropathological changes 

associated with these conditions is scarce. Using GWAS data from the Alzheimer’s Disease 

Genetics Consortium along with autopsy-derived phenotypes from the National 

Alzheimer’s Coordinating Center (NACC), we tested for joint associations between HS 

and LATE and the previously identified risk genes [60, 121, 122]. Similar to other studies 

of NACC participants [58], individuals were excluded if they died prior to age 65, had at 

least one of 19 rare brain diseases were diagnosed, or if they were missing any adjustment 

variables or all of the neuropathological endophenotypes being analyzed. Each gene was 

defined based on the canonical transcripts using the hg19 gene range list from PLINK 

(https://www.cog-genomics.org/plink/1.9/resources) and was flanked by an additional 

10kb on both ends to capture potential regulatory variants. ACAT, GAMuT, the Shen-

Faraway functional F-statistic, and our newly derived functional F-statistic were applied to 

the data to test for joint associations between HS and LATE and each gene. Statistical 

significance was defined to be 𝑝 < 0.05. Note that variants with any missing values were 

excluded from the GAMuT analyses since it requires the genetic data to have no 

missingness. 

Several genes were found to have a joint association with both HS and LATE, 

including TMEM106B, GRN, and APOE. The complete results may be found in Table 4.2. 

GAMuT failed to detect any gene-based associations, while both functional F-statistic 

methods and ACAT were able to detect gene-based associations of HS and LATE with the 
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TMEM106B and APOE genes. Notably, the only method to detect a gene-based association 

between HS and LATE and GRN was the newly derived functional F-statistic. 

4.5 Discussion 

By leveraging known properties of quadratic forms, we were able to develop an 

alternative derivation for the distribution of the functional F-statistic for FoSR models. 

Through simulation studies, we showed that this functional F-statistic performs similarly 

to the existing Shen and Faraway F-statistic and both F-statistics can outperform other 

statistical methods designed for testing gene-level pleiotropy. While ACAT and GAMuT 

tended to be more powerful in situations with stronger causal effects, the functional F-

statistics performed better in situations with more modest effect sizes which are more 

common for complex human diseases.  

While the performance of the F-statistics were similar in the current simulation study, 

it will be important to compare the functional F-statistics in other functional data 

applications. We expect our newly derived F-statistic to result in more accurate tail 

probabilities than the Shen and Faraway F-statistic since circumvents a degree of freedom 

approximation with an exact derivation. This property is important in the context of genetic 

association studies where small p-values are common. Further simulation studies are 

needed to determine if their performances are comparable in other contexts. 

By applying the newly-derived functional F-statistic to neurodegenerative disease 

data, we were able to detect a gene-based association between HS and LATE and the GRN 

gene. While GRN has previously been shown to be associated with HS and, separately, 

other AD-related phenotypes, this is the first analysis to find a joint association between 
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both HS and LATE and the GRN gene. Given that sample sizes tend be relatively small in 

cohorts with autopsy-derived phenotypes like NACC, the functional F-statistics should be 

favored for gene-based, multi-phenotype tests in these situations going forward. 

The original GAMuT paper compared GAMuT to a multivariate functional 

regression model and found GAMuT to have superior performance [115]. The approach 

taken to fitting the functional regression models in that study differ from ours in three 

important ways [123]. First, they did not use a reverse regression approach, meaning the 

phenotypes were modeled as a multivariate outcome. Since most clinical phenotypes tend 

to be correlated and typical multivariate methods assume that outcome vectors are 

independent of one another, we would expect a multivariate modeling approach to be sub-

optimal in the presence of correlated phenotypes. Second, since a multivariate regression 

approach was used, there is no easy way to include mixtures of continuous and categorical 

phenotypes in the same analysis. Third, while the minor allele counts were smoothed before 

modeling, they were not flipped prior to smoothing and so there may have been some 

residual noise in the genotype functions thus obscuring the genomic signals. Given these 

deficiencies, we are not surprised that the functional regression approach performed so 

poorly in the context of correlated phenotypes. 

The functional F-statistic approaches have several benefits over the other gene-

based, multi-phenotype methods. First, since the genomic data are smoothed prior to 

analyzing, missing genomic data are implicitly imputed and so more genetic variants can 

included in the analyses. While ACAT can partially circumvent this issue by taking a 

complete case approach to each of the single-variant, single-phenotype analyses, GAMuT 

requires all missing genomic observations to be imputed prior to analyzing. Second, once 
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the genomic data have been smoothed, the resulting genotype functions, 𝐺(𝑡), can be 

evaluated at a smaller number of points to effectively reduce the dimensionality to the 

subsequent analyses (specifically, when the number of evaluation points is less than the 

number of genomic variants). Simulations showed only a marginal reduction in statistical 

power when the number of evaluation points was half the number of genomic variants. 

Third, since a reverse regression approach is used for the functional F-statistics, they can 

easily test for associations with phenotypes of varying types (numeric, categorical, ordinal, 

splines, etc.). Fourth, by analyzing a gene-based, multi-phenotype association with a single 

regression model, no multiplicity corrections are needed for single-gene analyses. Thus, 

the functional F-statistic methods provide a flexible and scalable framework for conducting 

gene-based, multi-phenotype analyses. 

In the derivation of our new F-statistic, we chose to transform the CDF values to F 

distributions with (𝑝 − 𝑞) and (𝑛 − 𝑝) degrees of freedom so that it would align with the 

F-statistic from multiple linear regression. That choice of degrees of freedom, along with

the choice to transform the CDF values to F distributions, was arbitrary. While some 

limited simulations (not published) found that (𝑝 − 𝑞) and (𝑛 − 𝑝) degrees of freedom 

performed as well as, if not better than, other alternatives, there likely exists more optimal 

degree of freedom parameters for this F-statistic. Additionally, there may exist more 

optimal distributions for transforming the CDF values. Further research is needed. 

While running the simulations, we came across two novel properties of ACAT [92]. 

First, the gene-level ACAT p-value will never exceed the lowest SNP-level p-value. So, 

unlike a p-value combination test like Fisher's method which can produce a gene-level p-

value that's smaller than the minimum SNP-level p-value, ACAT acts more like a 
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multiplicity correction in that the gene-level p-value is closer to geometric mean of the 

SNP-level p-values. Second, combining several ACAT p-values via ACAT without 

weights does not always give the same overall p-value as just combining all of the original 

p-values via ACAT in one pass. Notably, this only occurs when the first-level ACAT p-

values consist of varying numbers of p-values and the issue can be mitigated by modifying 

the weights of the ACAT analyses. 

In conclusion, we derived an alternative to the Shen and Faraway F-statistic for FoSR 

models. In the context of gene-based, multi-phenotype analyses, our newly derived 

functional F-statistic performed similarly to the Shen and Faraway F-statistic and both F-

statistics outperformed other gene-based, multi-phenotype methods specifically in the 

small sample, modest effect size scenarios which are common in genetic association studies 

of autopsy-confirmed complex disease phenotypes like dementia. By applying the newly-

derived functional F-statistic to real-world data, we were able to identify a novel 

association between two Alzheimer disease mimics (HS and LATE) and the GRN gene. 

Since our newly derived functional F-statistic is expected to perform better than the Shen 

and Faraway functional F-statistic with small p-values, it is a promising method for studies 

of gene-based genetic pleiotropy. 
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Table 4.1. Type 1 error at α = 0.05 for each method stratified by gene size, number of 

observations, correlation among phenotypes, and correlation disturbance. 

Gene 

Size 

No. of 

Observations 

Correlation 

Among 

Phenotypes 

Correlation 

Disturbance 
ACAT GAMuT SF F New F 

10,000 

100 

0.0 
0 0.052 0.034 0.030 0.022 

5 0.034 0.038 0.028 0.019 

0.5 
0 0.048 0.035 0.031 0.021 

5 0.037 0.034 0.032 0.024 

250 

0.0 
0 0.049 0.047 0.038 0.030 

5 0.040 0.041 0.039 0.031 

0.5 
0 0.050 0.042 0.036 0.027 

5 0.037 0.043 0.040 0.030 

500 

0.0 
0 0.054 0.049 0.044 0.036 

5 0.037 0.046 0.040 0.034 

0.5 
0 0.051 0.046 0.040 0.034 

5 0.035 0.050 0.041 0.035 

25,000 

100 

0.0 
0 0.051 0.032 0.045 0.035 

5 0.041 0.027 0.045 0.038 

0.5 
0 0.047 0.028 0.040 0.035 

5 0.037 0.029 0.045 0.038 

250 

0.0 
0 0.053 0.041 0.044 0.037 

5 0.041 0.043 0.047 0.040 

0.5 
0 0.050 0.039 0.049 0.043 

5 0.037 0.040 0.044 0.039 

500 

0.0 
0 0.053 0.045 0.048 0.044 

5 0.039 0.045 0.054 0.051 

0.5 
0 0.050 0.044 0.048 0.042 

5 0.034 0.045 0.048 0.045 

50,000 

100 

0.0 
0 0.054 0.023 0.049 0.042 

5 0.038 0.022 0.047 0.041 

0.5 
0 0.048 0.026 0.047 0.039 

5 0.036 0.026 0.050 0.043 

250 

0.0 
0 0.053 0.037 0.050 0.046 

5 0.037 0.034 0.053 0.048 

0.5 
0 0.051 0.035 0.051 0.045 

5 0.037 0.035 0.049 0.045 

500 

0.0 
0 0.049 0.042 0.050 0.048 

5 0.037 0.038 0.048 0.042 

0.5 
0 0.048 0.041 0.050 0.045 

5 0.040 0.040 0.052 0.046 

No. = number; ACAT = aggregated Cauchy association test; GAMuT = gene association 

with multiple traits test; SF F = Shen and Faraway functional F-statistic. 
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Table 4.2. Gene-based results from the applied analysis looking at the pleiotropic effects 

of several genes on HS and LATE. P-values < 0.05 are in bold. 

Chr. 
Gene 

Comparison Methods Functional Analyses 

No. 

of 

SNPs 

P-values No. of 

Eval. 

Points 

Shen-Faraway F New F 

GAMuT ACAT F D.F.
P-

value 
F D.F.

P-

value 

3 KCNMB2 955 0.372 1.000 478 0.370 
5.9, 

1168.4 
0.896 0.115 

2.0, 

396.0 
0.892 

7 TMEM106B 255 0.657 0.025 255 3.591 
2.6, 

510.3 
0.018 3.938 

2.0, 

396.0 
0.020 

12 ABCC9 293 0.688 0.160 293 1.446 
6.3, 

1245.5 
0.191 2.391 

2.0, 

396.0 
0.093 

17 GRN 40 0.903 1.000 40 1.394 
4.4, 

872.3 
0.230 1.221 

2.0, 

396.0 
0.296 

19 APOE 38 0.982 0.075 38 1.122 
4.4, 

868.9 
0.346 0.908 

2.0, 

396.0 
0.404 

Chr. = chromosome; No. = number; SNP = single nucleotide polymorphism; ACAT = 

aggregated Cauchy association test; GAMuT = gene association with multiple traits test; 

Eval. = evaluation; D.F = degrees of freedom. 
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Figure 4.1. The effect of the minor allele flipping algorithm on the resulting smoothed, 

individual-level genotype functions, 𝐺𝑖(𝑡). 
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Figure 4.2. Statistical power for simulations assuming 5 continuous phenotypes, 5 causal 

variants, and causal effect sizes simulated from a normal distribution with 𝜇 = 0 and 

𝜎𝑐𝑎𝑢𝑠𝑎𝑙 = 0.15. 

A. 𝜌 = 0, 𝑏 = 0

B. 𝜌 = 0, 𝑏 = 5
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C. 𝜌 = 0.5, 𝑏 = 0

D. 𝜌 = 0.5, 𝑏 = 5



84 

Figure 4.3. Statistical power for simulations assuming 5 continuous phenotypes, 5 causal 

variants, and causal effect sizes simulated from a normal distribution with = 0 and 

𝜎𝑐𝑎𝑢𝑠𝑎𝑙 = 0.25. 

A. 𝜌 = 0, 𝑏 = 0

B. 𝜌 = 0, 𝑏 = 5
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C. 𝜌 = 0.5, 𝑏 = 0

D. 𝜌 = 0.5, 𝑏 = 5
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CHAPTER 5. CONCLUSION 

5.1 Summary 

Dementia is a complex, multifaceted clinical condition that can be caused by 

several distinct underlying brain pathologies. While AD is the most common and best-

researched cause of dementia, it can only be definitively diagnosed after death via 

autopsy. Diagnosing AD prior to death via clinical examination has been shown to be 

inaccurate [124, 125], with one study estimating the sensitivity of clinical diagnoses to 

range from 70.9% to 87.3% and specificity to range from 44.3% to 70.8% [6]. Despite 

this, clinically diagnosed AD has been the primary outcome in AD GWASs [18, 19, 21, 

22] due to its greater availability in research databases. Since clinical AD diagnoses will

almost assuredly contain some false positives and the other AD mimics tend to co-occur, 

it can be beneficial to investigate clinical AD genetic loci for associations with autopsy-

derived neurodegenerative endophenotypes as doing so can help refine our understanding 

of the genetic associations.  

The purpose of this dissertation research was two-fold: 1) to leverage the more 

specific, autopsy-derived data to better understand the genetics of dementia and 2) 

develop statistical methodology well suited to these difficult-to-collect, co-occurring 

phenotypes. The major findings from each of these studies are summarized below. 

In the first study, we examined associations between single nucleotide 

polymorphisms (SNPs) in the WWOX/MAF locus and neurofibrillary tangles, neuritic 

plaques, HS, LATE-NC, and B-ASC. While three recent studies have identified this as an 

AD risk locus [18, 19, 22], an earlier GWAS identified this same region as an HS risk 

locus [28] which led us to suspect that this region may be preferentially associated with 
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non-AD dementia. We found significant associations with HS, LATE-NC, and B-ASC 

and no significant associations with the AD pathologies (neurofibrillary tangles and 

neuritic plaques), which suggests that our hunch was not wrong. The associations with 

LATE-NC and B-ASC have never been reported before and the specific HS SNPs we 

identified were novel. Additional eQTL analyses found a nominally significant 

association between the HS SNPs and WWOX expression and nominally significant 

associations between the LATE-NC and B-ASC SNPs and MAF expression.  

The second study used newly collected data to examine associations between 

several previously identified HS risk genes (GRN, TMEM106B, ABCC9, KCNMB2, and 

APOE) and LATE-NC. LATE-NC was found to have significant gene-based associations 

with TMEM106B and APOE. HS was also found to have statistically significant gene-

based associations with TMEM106B and APOE, but the LATE-NC associations were 

stronger suggesting that those genes may favor LATE-NC over HS. The gene-based 

associations between HS and the GRN and ABCC9 genes were also significant, with the 

ABCC9 association being drive by a novel locus within the ABCC9 gene centered around 

rs1914361. Importantly, the associations between the ABCC9 SNPs and HS remained 

significant and actually produced stronger odds ratio estimates when adjusted for LATE-

NC. This observation taken together with the non-significant gene-based association of 

LATE-NC with ABCC9 suggests that the association between HS and ABCC9 is 

independent of LATE-NC – a surprising finding given how strongly the two pathologies 

seem to co-occur. 

The third study leveraged function-on-scalar regression (FoSR) models from the 

branch of statistics known as functional data analysis to derive a statistical test for gene-
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based, multi-phenotype associations. By treating an individual’s allele counts over a 

genetic region as a “functional” observation and taking a reverse regression approach 

where the outcome and a predictor are swapped in a regression equation, we were able to 

apply the FoSR model and setup a gene-based, multi-phenotype test as one would an F-

test in traditional linear regression. The existing F-statistic for FoSR models [108] relies 

on Satterthwaite's approximation to derive the distribution of the statistic under the null 

hypothesis which we expected to perform suboptimally for small p-values which are 

common in genetic association studies. With our approach, we instead used Davies’ 

method to directly derive the distribution of the statistic under the null hypothesis. We 

then compared the two functional F-statistics to competing methods and found that they 

had superior performance in situations with smaller sample sizes and weaker genetic 

effects – situations very common for studies investigating genetic associations with 

autopsy-derived neuropathological data. We then applied the methods to test for joint 

associations between HS and LATE-NC and the genes investigated in the first two 

studies (WWOX, GRN, TMEM106B, ABCC9, KCNMB2, and APOE) and identified a 

significant association with the TMEM106B gene. 
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