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Abstract
Background: Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-
organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular
basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass
spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post
amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs.

Results: We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10
biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5)
cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In
all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell
cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special
interest because its fold change was exceptionally high throughout blastema formation.

Conclusion: Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+

signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In
addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced
metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein
response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5
function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated
under the wound epidermis and enter mitosis in response to neural and epidermal factors. Our findings indicate the
general value of quantitative proteomic analysis in understanding the regeneration of complex structures.
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Background
With the exception of cervid antlers [1,2], terminal
phalanges of humans and rodents [3-5], and ear tissue of
certain strains of mice and rabbits, [6,7], mammalian
appendages do not regenerate after amputation. By con-
trast, urodele salamanders have the unique natural ability
to regenerate appendages from any level of amputation by
the formation of a blastema that subsequently self-organ-
izes into the amputated limb parts [8-10]. After amputa-
tion, proteolysis of extracellular matrix (ECM) liberates
muscle, skeletal, connective tissue, and peripheral nerve
Schwann cells from their tissue organization [11]. The lib-
erated cells dedifferentiate and migrate under the wound
epidermis to form an avascular accumulation (also called
early bud) blastema [12-14]. In addition, satellite cells
contribute to muscle formation in the blastema [15,16],
and it would not be surprising if mesenchymal stem cells
of the periosteum and endosteum contributed to the
blastema as well. Blastema cells morphologically resem-
ble mesenchymal stem-like cells, although their surface
antigens and other biomarkers are incompletely charac-
terized. Once formed, the accumulation blastema is
enlarged to the medium bud stage and beyond by a
marked increase in mitosis [17-23]. Sustained mitosis of
blastema cells, but not dedifferentiation, is dependent on
factors from the wound epidermis [21] and regenerating
nerves [24]. Histological [17,18], cell marking [25,26]
and genetic marking [27] studies indicate that blastema
cells derived from each tissue redifferentiate into the same
tissue, although some cells derived from the dermis differ-
entiate into cartilage as well.

Analysis of the molecular mechanisms of blastema forma-
tion in the urodele limb is useful for understanding how
we might achieve the goal of mammalian regeneration in
situ by chemical induction [28]. The traditional approach
to molecular research on amphibian limb regeneration
has been to characterize the expression patterns and func-
tional roles of single genes expressed during embryonic
limb development. A large number of genes have been
studied in this way, particularly genes involved in pattern
formation [10,29,30]. Less biased and more global analy-
ses have recently been conducted using subtractive
hybridization and microarrays to compare transcriptional
profiles of regenerating versus intact limb tissues, or to
compare blastemas of regeneration-competent versus
regeneration-deficient limbs [31-35].

A number of studies have been carried out on protein syn-
thesis and separation in regenerating urodele limbs. Auto-
radiographic studies of C14 methionine, S35 thioamino
acids or C14 leucine incorporation revealed intense pro-
tein synthesis throughout regeneration [36-41]. Several
protein separation analyses have been carried out using

one-dimensional or two-dimensional gel electrophoresis
[42-45]. These resolved up to 800 individual proteins [44]
and revealed differences in protein composition at suc-
ceeding stages of regeneration in normal [43,44] and den-
ervated limbs [42], although few proteins were identified.

Protein separation and identification technology has
evolved rapidly in the past 5 years with the introduction
of label-free liquid chromatography/mass spectrometry
methods that can more accurately identify and quantify
peptide species. Also, with the development of expressed
sequence tag (EST) databases [46,47], it is possible to
annotate short peptide sequences to protein models.
Here, we report the application of this technology to ana-
lyze the formation of the accumulation blastema in regen-
erating axolotl hind limbs. Our results confirm a number
of earlier studies on signaling, cytoskeletal and ECM
changes, and metabolism. They also suggest that the
amputated urodele limb uses a combination of mecha-
nisms to regulate apoptosis during blastema formation
that might be essential for dedifferentiation. Lastly, we
have identified a highly upregulated centrosomal cell
cycle-related oncoprotein, ecotropic viral integrative fac-
tor 5 (EVI5), that may play a key role in preventing dedif-
ferentiated cells from entering mitosis until an
accumulation blastema has formed.

Results
Histology
Figure 1 shows the histological appearance of regenerat-
ing limbs in longitudinal section at 1, 4 and 7 dpa. At 1
dpa, the wound epidermis, including gland cells, has
migrated to cover the wound. Clotted plasma, muscle
fragments, cellular debris and lymphocytes are present
under the wound epidermis, which is 3 to 4 cells thick. At
4 dpa, histolysis is liberating cells from their tissue organ-
ization and blastema cells have begun to accumulate
under the wound epidermis. Osteoclasts can be seen erod-
ing the matrix of the periosteal bone shell that surrounds
the cartilage. The basement membrane under the wound
epidermis is absent and the wound epidermis is in direct
contact with the underlying tissues. By 7 dpa, further his-
tolysis and distal migration of dedifferentiated cells has
produced an avascular accumulation blastema with a cell
density distinctly higher than that of the more proximal
tissue. Examination of serial sections revealed few mitotic
figures from 1 to 7 dpa. Some pyknotic nuclei were
observed at 1 dpa, but not at 4 and 7 dpa, suggesting a
minimum of cell death during the latter time frame.

Proteomic analysis
A total of 1,624 peptides were separated in the samples. In
all, 138 from priority 1 and 285 peptides from priority 2
were statistically significant (Additional file 1). Of these
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423 statistically significant peptides, 114 peptides were
not analyzed further for the reasons outlined in Methods.
A total of 309 proteins (Additional file 2) were analyzed
for their role in biological processes. A comparison of
non-redundant peptide sequences (N = 405) with the
axolotl EST database identified 149 perfect-match pep-
tides (36.8%) that were 100% identical to a translated EST
contig from either Ambystoma mexicanum or the closely
related Ambystoma tigrinum. These proteins are shown in
bold in Additional file 1.

Figure 2 stratifies the proteins according to biological
process, molecular function and cellular location. Figure 3
is a global intensity map of fold changes at 1, 4 and 7 dpa.
The peptides were grouped into 10 biological process cat-
egories (see Additional file 2): (1) signaling, (2) Ca2+

binding and translocation, (3) transcription, (4) transla-
tion, (5) cytoskeleton, (6) ECM, (7) metabolism, (8) cell
protection, (9) degradation, and (10) cell cycle. Table 1
summarizes the ratios of the numbers of proteins upregu-
lated (U) to downregulated (D) relative to controls (U/D
ratios) at 1, 4, and 7 dpa for each category of biological
process. Table 2 lists those proteins with positive or nega-
tive fold changes greater than two with respect to controls,
and which may thus have special biological significance.
Below, we describe the results for each of the 10 biological
categories in order, with those proteins upregulated or
downregulated by a factor of 2.0 or more at any time point
shown in bold type.

Signaling
A key intracellular signaling pathway is the inositol tri-
phosphate/diacylglycerol (IP3/DAG) pathway. IP3 and
DAG are cleavage products of phosphatidylinositol-4, 5-
bisphosphate (PIP2). A precursor to PIP2 is myoinositol
(inositol). Inositol-3-phosphate synthase 1 (ISYNA1) is a
key enzyme in the synthesis of inositol from glucose-6-
phosphate, and it was upregulated on all dpa. Two regula-
tors of Rho-type guanosine triphosphatases (GTPases)
were detected. SYDE2, a GTPase activator, was upregu-
lated at 4 dpa, but downregulated at 1 and 7 dpa, while
NET1, a guanine nucleotide exchange factor, was upregu-
lated on all dpa.

Several proteins involved in endocytotic trafficking were
identified. CLTCL1, the major protein of the coat of
coated pits and vesicles, was downregulated on all dpa. By
contrast, ITSN2, which may regulate the formation of
clathrin-coated vesicles, was upregulated on all dpa. Sev-
eral Rab GTPases and associated factors exhibited differ-
ential regulation. The Rab family is involved in vesicular
trafficking and signaling. RAB6B was upregulated on all
dpa and ARL1 and XG28K were downregulated at 1 dpa
and upregulated at 7 dpa. A Rab GTPase activator, TBCK,
was upregulated at 4 and 7 dpa, while another, TBC1D17,
was downregulated on all dpa. GDI2, which regulates the
exchange reaction of most Rab proteins by inhibiting the
dissociation of guanidine dihydrogen phosphate (GDP)
from them, was downregulated at 1 dpa, then returned to
control value at 4 and 7 dpa.

Histology of axolotl hindlimbsFigure 1
Histology of axolotl hindlimbs. Longitudinal sections of axolotl hindlimbs regenerating from the mid-tibia/fibula, stained 
with Weigert's iron hematoxylin and light green SF: (a) Sections at 1 day post amputation (dpa). The amputation surface is cov-
ered with several layers of wound epidermal (WE) cells, including gland cells. The basal layer of the wound epidermis is in 
direct contact with underlying tissues. Some cell debris, red blood cells and lymphocytes are present under the wound epithe-
lium. C = cartilage, M = muscle. (b) Sections at 4 dpa. The cartilage (C), muscle (M), and dermal tissue organization is breaking 
down, releasing cells that dedifferentiate (DC) and migrate toward the wound epithelium (WE). (c) Sections at 7 dpa. Blastema 
cells have accumulated under a thickened apical epidermal cap (AEC) to form an accumulation blastema (AB). C = cartilage. 
The arrows indicate the junction between the accumulation blastema and tissues still undergoing dedifferentiation. Magnifica-
tion = 10 ×.
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Other signaling-related proteins that were upregulated on
all three or two of three dpa were: (1) EZR, a peripheral
membrane protein that may act to organize transmem-
brane receptors and binds to signal transduction mole-
cules such as phosphoinositol 3 (PI3) kinase, (2) the
receptor for nicotinic acid GPR109B, (3) IRS4, which
interfaces between many growth factors and intracellular
signaling molecules, (4) TYK2, which phosphorylates
receptors of the Janus kinase (JAK)/signal transducer and
activator of transcription (STAT) pathway to transduce

cytokine signals, (5) guanine nucleotide binding protein
β polypeptide 2-like 1 (GNB2L1), which anchors protein
kinase C to the cytoskeleton, (6) EPHA7, the receptor for
the A1 to 5 members of the ephrin A family of ligands,
and (7) neuronal nitric oxide synthase (NOS1), the
enzyme that synthesizes nitric oxide (NO), a gas with a
wide variety of signaling functions. Of all the proteins
detected, NOS1 exhibited the highest upregulation at 1
dpa (4.93), after which the level of upregulation declined
below 2.0 at 4 and 7 dpa. PPP2CB, the catalytic subunit

Functional and cellular categorization of proteinsFigure 2
Functional and cellular categorization of proteins. Pie charts showing categories of 309 proteins according to (a) bio-
logical process, (b) molecular function, and (c) cellular location. Only the categories with at least five proteins have been 
included in the molecular function pie chart. Since a large number of categories were obtained from the Human Protein Refer-
ence Database (HPRD) for cellular localizations, they were classified into five major categories: cytoplasm (actin cytoskeleton, 
cytosol, and clathrin-coated vesicle), nucleus (centrosome, chromosome, and nucleolus), other intracellular organelles (ribos-
ome, sarcoplasmic reticulum, sarcoplasm, mitochondrial matrix, mitochondrial membrane, mitochondrion, endoplasmic reticu-
lum, golgi apparatus, lysosome and peroxisome), plasma membrane (integral to membrane) and extracellular (cell junction, 
extracellular matrix).
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Global Expression intensity mapFigure 3
Global Expression intensity map. HeatMap showing upregulation (red) and downregulation (green) of priority 1 and 2 
proteins identified as having significant fold changes relative to control. Numbers at bottom of each column indicate days post 
amputation (dpa). Left column: proteins upregulated on all dpa, or 1 dpa. Middle column: proteins downregulated on 1 and 4 
dpa, and upregulated at 7 dpa; proteins upregulated at 1 and 4 dpa and downregulated at 7 dpa; and proteins downregulated at 
1 dpa and upregulated at 4 and 7 dpa. Right column: proteins downregulated on all dpa or two of three dpa. Color intensity 
reflects fold change.
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for phosphatase 2A, a major serine/threonine phos-
phatase implicated in the negative control of cell growth
and division, was downregulated at 1 and 4 dpa, and
upregulated at 7 dpa. YWHAZ, an adaptor protein that
mediates signal transduction by binding to phosphoser-
ine-containing proteins, was also downregulated at 1 and
4 dpa, with no change at 7 dpa. Another adaptor protein,
YWHAE, as well as IRF6.2 and tyrosine-protein kinase 6
(PTK6), were downregulated at all dpa. PTK6 is a cytoplas-
mic protein kinase that may function as an intracellular
signal transducer in epithelia.

Five proteins associated with Wnt signaling were detected.
Wnt8a, a ligand for the canonical Wnt pathway, was
upregulated on all three dpa. Adenomatous polyposis coli
(APC), part of the complex that destabilizes β-catenin in
the canonical pathway was upregulated at 4 and 7 dpa.
CCDC88C, a Disheveled-binding protein that negatively
regulates the canonical pathway, was upregulated on all
dpa, while DIXDC1, a positive effector of the canonical
pathway, was downregulated on all dpa. Inversin (INVS),
which acts to switch Wnt signaling from the canonical to
the non-canonical pathway by targeting the Disheveled
protein for degradation by the ubiquitin proteasome, was
upregulated at 4 and 7 dpa.

Two olfactory receptors were detected, with opposite fold
change. OR2AT4 was upregulated on all dpa, whereas
OR4D10 was downregulated on all dpa. Follicle stimulat-
ing hormone receptor (FSHB) was also upregulated on all
days. The potential functions of these proteins in limb
regeneration are unknown. The latent transforming
growth factor (TGF)β-binding protein was upregulated at
7 dpa, and ectodermin (ECTO), a SMAD4 ubiquitin ligase
that attenuates the TGFβ response was downregulated on
all dpa.

Ca2+ binding and translocation proteins
The cell maintains cytosolic calcium homeostasis by chan-
nels that translocate Ca2+ between the cytosol and the
endoplasmic reticulum (ER) or sarcoplasmic reticulum
(SR), and between the inside and outside of the cell. Over-
all, the patterns of fold change for Ca2+-binding proteins
suggest a significant increase in cytosolic Ca2+ during
blastema formation. Channel proteins in the plasma
membrane that mediate extracellular Ca2+ influx into the
cytosol were upregulated on all dpa (CACNA1A, ATP11A)
or at 7 days (CACNA2D3), while proteins that translocate
Ca2+ from the cytosol to the ER/SR (ATP2A3, SRL, ASPH),
or buffer cytosolic Ca2+ during muscle contraction
(PVALB) were downregulated on all dpa. CAMK2D, a
kinase that regulates transport of Ca2+ into and out of
cells, was downregulated at 4 and 7 dpa. Another kinase
that is covalently linked to ion channels and regulates
Ca2+ influx is heart α-protein kinase (HAK), which was

Table 1: Upregulation/downregulation ratios

Biological process 1 day 4 days 7 days

Signaling associated (34) 0.72 1.72 2.75

Ca2+ binding and translocation (17) 0.36 0.63 1.29

Transcription and translation (78) 0.79 1.52 2.04

Transcription (58) 0.66 1.08 1.65

Chromatin associated (14) 1.60 1.60 1.40

Transcription factors (21) 0.9 1.57 2.00

mRNA processing (23) 0.24 0.62 1.50

Translation (20) 1.50 7.00 4.00

Ribosomal proteins (13) 2.33 9.00 3.33

Translation factors (7) 0.67 5.00 6.00

Cytoskeleton (68) 0.42 0.31 0.42

Muscle (23) 0.18 0.00 0.04

Non-muscle proteins (45) 0.58 0.60 0.85

Motility, shape, structural integrity (25) 0.28 1.00 1.44

Intracellular Movement (10) 1.00 0.11 0.33

Adhesion (5) 1.50 1.50 1.50

Other (5) 3.00 0.66 0.66

Extracellular matrix (19) 2.00 1.83 1.29

Metabolism (33) 0.35 0.29 0.45

Oxidative phosphorylation (8) 0.33 0.17 0.14

Glycolysis (8) 0.33 0.14 0.33

Glycogen (2) 0.00 0.00 0.00

Other (15) 0.44 0.75 1.00

Cell protection (35) 0.47 1.00 2.30

Inflammation related (7) 1.00 2.50 2.50

Apoptosis related (13) 0.25 0.71 1.40

Chaperones (15) 0.50 0.88 3.70

Degradation (11) 0.86 1.00 2.00

Cell cycle (14) 1.00 0.86 1.20

Ratio of proteins upregulated and downregulated for biological process categories at 
1, 4, and 7 days post amputation (dpa). Numbers in parentheses represent numbers 
of proteins in each category.
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downregulated at 1 and 4 dpa, but strongly upregulated at
7 dpa. MYLC2PL, a mitochondrial Ca2+ binding myosin
light chain, was downregulated on all dpa. By contrast,
CASQ1, which complexes to Ca2+ for storage in the ER/SR
and mitochondria, was upregulated on all dpa. Another
protein upregulated at 4 and 7 dpa was the Ca2+ binding
mitochondrial solute carrier (SLC25A24), which shuttles
metabolites, nucleotides and cofactors through the mito-
chondrial inner membrane.

An interesting group of calcium/phospholipid-binding
proteins was the annexins. ANXA1, which is thought to
reduce inflammation and promote fibrinolysis, was
downregulated at 1 and 4 dpa. ANXA2 was upregulated at
1 and 4 dpa and ANXA4 and 6 were upregulated at 7 dpa.
ANXA2 is an autocrine factor that promotes osteoclast for-
mation and bone resorption, and ANXA4 and 6 promote
exocytosis in epithelial cells.

Transcription
A total of 58 proteins were associated with transcription.
Changes in 14 chromatin-associated proteins were
detected. In all, 10 of these were H1 and H2 histones, with
four being upregulated on all dpa and two downregulated
at all dpa. Another was upregulated at 1 dpa, returning to
control level at 7 dpa. Of the remaining three histones,
one was upregulated at 1 and 4 dpa before returning to
control level at 7 dpa, another was downregulated at 1
and 4 dpa, but was upregulated at 7 dpa and the other
showed no change at 1 dpa, then was downregulated at 4
and 7 dpa. Two proteins that regulate gene expression by
covalent modification of histone proteins (MTA1) and
nucleosome assembly (NAP1L1-A) were upregulated on
all dpa and at 4 and 7 dpa, respectively. JMJD1B (Jumonji
domain), a lysine-specific histone demethylase, was
downregulated at all dpa (over sixfold at 7 dpa). Hairless
(HR), a Jumonji domain-containing transcription factor
that recruits histone acetylases to repress transcription,
was upregulated at 1 and 4 dpa, and downregulated at 7
dpa.

Of the transcription-associated proteins, 21 were tran-
scription factors. The majority of these were upregulated
at all three or two of three dpa, particularly at 4 and 7 dpa.
Of six factors expected to act in a general fashion,
CBTF122, a subunit of the Xenopus laevis CCAAT box tran-
scription factor, was the only one upregulated on all dpa.
SND1 and TRIM29 were downregulated at 1 dpa but
upregulated at 7 dpa while E4F1 and TAF4 were downreg-
ulated at 1 and 4 dpa and upregulated at 7 dpa. ATF1 was
downregulated on all dpa. FUBP1, an ATP-dependent
DNA helicase that stimulates c-myc expression in undiffer-
entiated cells was upregulated at 7 dpa. MNT, an E-box
(CANNTG) binding transcriptional repressor of c-myc was
upregulated at 1 dpa, but downregulated at 4 and 7 dpa.

Six zinc finger transcription factors designated by number
were noted, four of which were upregulated at all, or two
of three dpa. Of the other two, ZNF777 was downregu-
lated on all dpa, and ZNF559 was downregulated at 1 and
4 dpa, and then upregulated at 7 dpa. The Kruppel-like
factor 6 is a ubiquitously expressed zinc finger tumor sup-
pressor that was upregulated at 1 and 4 dpa, and then
downregulated at 7 dpa. Several factors (AHCTF1, nuclear
receptor subfamily 2, group C member 2 (NR2C2),
nuclear factor of activated T-cells cytoplasmic 4
(NFATC4), sex determining region Y box 6 (SOX6), and
LIN28 that were upregulated on all, or two of three dpa,
induce transcription of specific sets of genes. For example,
NR2C2 is a nuclear receptor for mineralocorticoids and
glucocorticoids, NFATC4 plays a role in inducing cytokine
gene expression in T cells, and SOX6 is required for neu-
rogenic and skeletal differentiation. LIN28 is a transcrip-
tion factor active in embryonic stem cells [48].
NEUROD2, a neuronal differentiation factor, was down-
regulated on all dpa.

In all, 23 of the transcriptional proteins were associated
with mRNA processing. At 1 and 4 dpa, downregulation
predominated over upregulation. By 7 dpa, however, the
U/D ratio was 1.5. The majority of the processing proteins
were heterogeneous nuclear ribonucleoproteins, small
nuclear riboproteins, and splicing factors. One of these
proteins, CWC15, was downregulated over threefold at 7
dpa. Two DEAD box helicases, which unwind RNA struc-
ture for accessibility by splicing enzymes, were detected.
DEAD box polypeptide 10 (DDX10) was upregulated on
all dpa, while DDX46 was upregulated at 1 dpa and
downregulated at 4 and 7 dpa. MATR3 anchors mRNA to
the nuclear matrix, and was upregulated on all dpa. RBM,
a RNA-binding protein of unknown function, was upreg-
ulated at 4 and 7 dpa.

Translation
Many of the 20 proteins involved in translation, particu-
larly ribosome structural proteins, were upregulated. We
detected 13 ribosome structural proteins, about evenly
divided between the 60S and 40S subunits. Two of these,
RPL7L1 and RPS20, were upregulated at all the time
points. Factors for initiation (PABPC1), binding of mRNA
to the ribosome (E1F4B), and translocation of nascent
protein from the A site to the B site of the ribosome
(EEF2) were downregulated or unchanged at 1 dpa, but
were upregulated at 4 and 7 dpa. Another initiation factor,
E1F4A1, was downregulated at 1 dpa, returned to control
level at 4 dpa, and was upregulated at 7 dpa. The elonga-
tion factor EEF1A2 was upregulated on all dpa. TARSL2,
which is involved in tRNA aminoacylation, was upregu-
lated at 1 dpa, and downregulated at 4 and 7 dpa. Lastly,
a translation termination factor, ETF1, was upregulated at
4 and 7 dpa.



BMC Biology 2009, 7:83 http://www.biomedcentral.com/1741-7007/7/83

Page 8 of 25
(page number not for citation purposes)

Table 2: Highly regulated proteins

Biological process Protein 1 day 4 days 7 days

Signaling associated CCDC88C 1.52 2.03 2.37

GPR109B 2.38 1.61 2.65

INVS -1.71 1.32 2.57

IRS4 2.06 2.09 2.56

ISYNA1 2.20 1.64 2.59

ITSN2 2.86 1.96 2.32

NET1 2.06 1.61 2.76

NOS1 4.93* 1.91 1.16

OR2AT4 1.67 138 2.01

WNT8A 1.74 1.65 2.43

Ca2+ binding and translocation ATP11A 1.21 196 2.72

HAK -1.43 -1.06 2.37

PVALB -1.16 -1.35 -2.56

SLC25A24 -1.71 1.32 2.57

Transcription and translation CWC15 -1.26 -1.74 -3.33*

DDX46 1.18 -1.23 -2.22

JMJD1B -1.05 -1.67 -6.82

MNT 1.11 -1.26 -2.39

NR2C2 2.32 2.06 2.05

RPL7L1 2.47 1.54 1.17

RPS20 1.63 1.80 3.61*

ZNF777 -2.58 -2.23 -1.43

Cytoskeleton FHDC1 -1.22 -1.45 -2.06

MYL3 -1.49 -1.62 -2.06

MYL5 -1.45 -1.69 -2.04

MYO1e 2.44 -1.05 NC

MYO9A 2.21 NC NC

NAV1 1.42 1.45 2.11
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Cytoskeleton
About one-third of the cytoskeletal proteins were sarcom-
eric proteins of skeletal muscle, and these were heavily
downregulated. Many, such as TNNT3A, TM7, myosin
light chain 3 (MYL3) and MYL5, were downregulated at
all the time points.

Of the 40 non-sarcomeric proteins, 25 had functions
related to cell motility and maintenance of cell shape and
structural integrity. The U/D ratio of these proteins
strongly favored downregulation at 1 dpa, but the ratio
shifted in favor of upregulation at 4 and 7 dpa. Proteins
that were downregulated on all dpa were ACTN1 and 4,
GOLGA1, PLS3, XAK-B, and cytokeratin type II. Proteins
downregulated at 1 and 4 dpa were desmoplakin isoform
II, KRT 12 and KRT5.5. NAV1 was upregulated at all dpa.
Seven proteins, FLNB, SYNE2, TUBA, TUBA4B, KRT 19,
ACTR2-A and TUBB2C, were downregulated or showed
no change at 1 dpa, then were upregulated at 4 and 7 dpa.
The remaining proteins MYO9A, MYH9, ACTG1, TUBB4,
desmoplakin (DSP), XAK-C and EPPK1, showed a mix-
ture of fold change patterns.

In all, 10 proteins are involved in intracellular movement.
MYO1C and MYO5A were downregulated at 1 and 4 dpa,
but upregulated at 7 dpa. DYNC1LI2 was upregulated at 1
and 4 dpa, but downregulated at 7 dpa, DNAH3 was
downregulated at 4 and 7 dpa, and DYNLL1 was downreg-
ulated on all dpa. MYH1 was upregulated at 1, then down-
regulated at 4 and 7 dpa. MYO1E was upregulated at 1
dpa, downregulated at 4 dpa, and returned to control level
at 7 dpa. Two proteins that move or anchor kinases to the
cytoskeleton (PDLIM1, PALM2) were downregulated at 4
and 7 dpa. The major vault protein (MVP), which may act
as a scaffold for kinases involved in signal transduction
and may also play a role in nucleocytoplasmic transport,
was downregulated at 1 and 4 dpa, returning to control
level at 7 dpa.

There were five adhesion proteins. CDH5 (vascular
endothelial cadherin), SCARF2, and ST3GAL5, a type II
membrane protein that also maintains fibroblast mor-
phology, were upregulated at all dpa, while CNTNAP4
and FHDC1were downregulated at all dpa.

PMFBP1 2.86 1.96 2.32

SORBS1 -1.22 -1.57 -2.20

ST3GAL5 2.07 1.87 1.96

SYNE2 -1.68 1.20 2.67

TM7 -1.17 -1.45 -2.10

TNNT3A -1.17 -1.71 -2.01

Extracellular matrix COL13A1 1.41 1.49 2.66

FGB 3.39* 1.63 1.14

FGG 4.64* 2.17 1.14

TINAG -1.68 -2.01 -2.77

Metabolism DAGLB 3.88* 1.26 1.49

DHRS4 4.45* 3.93* 4.21*

Cell protection CYP2F1 -1.24 -1.55 -2.42

Degradation TMPRSS9 -1.07 -1.70 -6.95*

Cell cycle EVI5 4.00* 3.29* 3.85*

Priority 1 and 2 proteins upregulated or downregulated by a value of 2.00 or more on one or more days post amputation (dpa). Asterisks indicate 
exceptionally high values (over 3.00) on one or more dpa.

Table 2: Highly regulated proteins (Continued)
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Of the remaining five non-sarcomeric proteins, KPNA2,
which is involved in the import of nuclear proteins, and
MYOF, a Ca2+/phospholipid-binding protein that pro-
motes rapid resealing of damaged endothelial cell mem-
branes, were downregulated on 4 and 7 dpa. Sorbin
(SORBS1), which plays a role in insulin-stimulated glu-
cose transport, was downregulated on all dpa. By contrast,
piccolo (PCLO), which organizes the cytoskeleton in syn-
aptic zones, and PMFBP1, a general cytoskeletal organiz-
ing protein, were upregulated at all dpa.

ECM
Components of collagen 1 and collagen 13 were upregu-
lated at all or two of three dpa. Collagen 5 was upregu-
lated at 1 and 4 dpa, and then downregulated at 7 dpa.
Components of cartilage matrix (collagen 2) and base-
ment membrane (collagen 4) were downregulated at all
dpa, as was decorin, which interacts with collagen1 fibrils
and may affect the rate of their formation. However, mat-
rilin (MATN) 4, a major component of cartilage matrix,
was upregulated at 1 and 4 dpa, then downregulated at 7
dpa. FBN1, a large glycoprotein that associates with elas-
tin to provide force-bearing support in the ECM, was
upregulated at 1 and 7 dpa, with no change at 4 dpa.
MATN 2, a von Willebrand family member involved in
matrix assembly, was upregulated at 1 and 4 dpa, then
returned to control level at 7 dpa. FGB, FGG, and
fibronectin 1 (FN1) form part of the provisional wound
matrix (clot) and were upregulated at all dpa, whereas
another provisional matrix protein, tenascin, was down-
regulated at 1 dpa, showed no change at 4 dpa, and was
upregulated at 7 dpa. Periostin, an osteoblast specific fac-
tor, was downregulated at 1 and 4 dpa, but upregulated at
7 dpa. EHD4, an endosomal transport protein that pro-
motes assembly and stabilization of collagen 6 filaments,
showed no change at 1 dpa and was downregulated at 4
and 7 dpa. Tubulointerstitial nephritis antigen (TINAG), a
basement membrane glycoprotein that mediates adhe-
sion of proximal tubule epithelial cells via cell surface
integrins, was downregulated on all dpa.

Metabolism
Eight proteins directly or indirectly involved in oxidative
phosphorylation were detected. ATP5B, COX-Va, ECHS1,
GLUD1 and CS function in the citric acid cycle; most were
downregulated at all or two of three dpa. The only mito-
chondrial metabolic protein that was upregulated at all
dpa was SLC25A4, an adenine nucleotide translocator
that catalyzes the exchange of adenosine di- and triphos-
phate (ADP and ATP) across the inner mitochondrial
membrane, but a second translocator, SLC25A13, was
downregulated at all dpa. Eight proteins involved in the
glycolytic pathway were detected, most of which were
downregulated at all or two of three dpa. Two proteins,

PGM1 and PYGM, are involved in glycogen metabolism;
both were downregulated at all dpa.

In all, 15 other metabolic proteins were detected. Most
were downregulated at 1 and 4 dpa, with the U/D ratio ris-
ing to 1.00 at 7 dpa. Three exceptions were DAGLB, which
catalyzes DAG to the endocannabinoid 2-arachidonoyl
glycerol (2-AG), DHRS4, which is involved in retinoid
metabolism, and PAPPA2 a matrix metalloproteinase that
cleaves IGFBP-5. All were upregulated on all dpa.

Cell protection
Seven proteins associated with the post amputation
inflammatory response were antioxidants or antipatho-
gens, proinflammatory enzymes, or detoxicants. The anti-
oxidants PXDN and PRDX1 were upregulated on all dpa,
while antioxidant TLR6 was upregulated at 1 and 4 dpa.
OAS2 and GSTP1, which activate responses to pathogens,
were upregulated at 4 and 7 dpa. The proinflammatory
enzyme AOX1, by contrast, was downregulated at 1 and 4
dpa. CYP2F1, which plays a role in detoxification, was
downregulated on all dpa.

A total of 13 apoptotic pathway-related proteins were
detected. Six of these are involved in proapoptotic path-
ways, and all but one was downregulated on all or two of
three dpa. The four downregulated proapoptotic proteins
were MICB, a stress induced self-antigen that leads to cell
lysis by T cells, VDAC1, a mitochondrial ion channel that
promotes apoptosis when open, FASTKD5, which initi-
ates caspase activity, and AK2, which is located in the
mitochondrial intermembrane space. Exceptions were
microtubule associated serine/threonine kinase 3
(MAST3), which was upregulated at 1 and 4 dpa, and
ABTB1, which was upregulated at 4 and 7 dpa. ABTB1
mediates the phosphatase and tensin homolog (PTEN)
growth-suppressive signaling pathway. Both negatively
regulate the Akt cell survival pathway. Of the seven antia-
poptotic proteins, three were downregulated at all or two
of three dpa (AKT1S1, BIRC6, and PDCD6IP). Antiapop-
totic proteins upregulated at two of three dpa were NEK11
(genotoxic stress reponse), tumor necrosis factor receptor-
associated factor 1 (TRAF1; mediates antiapoptotic signals
from TNF receptors), and PAIRBP1 (mediates the antiap-
optotic action of progesterone in mammalian cells). Inter-
leukin 7 receptor (IL7R), which blocks apoptosis during
the differentiation and activation of T lymphocytes, was
downregulated at 1 dpa and upregulated at 7 dpa.

A total of 15 proteins that promote or stabilize protein
folding in the ER were detected. Four were isomerases.
FKBP10 and P4HB were downregulated at all dpa and
protein disulfide isomerase A3 (PDIA3) at 1 and 4 dpa.
PPIA was upregulated at all dpa and PDIA6 was upregu-
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lated at 4 and 7 dpa. A total of 10 proteins were members
of chaperone families that accelerate protein folding in
the ER. Two of these were upregulated at all dpa (heat
shock protein (HSP)B3, TOR1A), three were upregulated
at 4 and 7 dpa (HSP90B1, HSP90AB2P, CCT2), one was
upregulated at 1 dpa and downregulated at 4 and 7 dpa
(HSP27), and two were downregulated at 1 and 4 dpa, but
upregulated at 7 dpa (PCMT1, HSP90AA1). Two other
chaperones (SSR1 and HSP90AA1) were downregulated
at 1 dpa and upregulated at 7 dpa.

Degradation
Misfolded or damaged proteins that cannot be salvaged
are polyubiquinated in the ER, transferred to the Golgi,
and then to a cytosolic complex of proteins called the 26S
proteasome, where they are degraded [49]. In our sam-
ples, we detected seven proteins of the proteasome path-
way. HACE1 (a ubiquitin protein ligase) was upregulated
at all dpa, and ubiquitin specific protease 3 (USP3), was
upregulated at 1 and 7 dpa. Ubiquitin-like modifier acti-
vating enzyme 1 (UBA1) was upregulated at 1 dpa and
downregulated at 4 and 7 dpa. We detected four proteins
that are part of the proteasome itself. Three of the four
were upregulated only at 7 dpa (PSMB8, PSMD 2,7),
whereas PSMC4 was downregulated at 1 and 4 dpa before
returning to control level at 7 dpa.

Cell debris produced by histolysis, necrosis or apoptosis,
is degraded by cytosolic proteases and lysosomal
enzymes, and removed by exocytotic pathways. EXOC7, a
component of the exocyst, a protein complex essential for
docking exocytotic vesicles to the plasma membrane, was
upregulated at all three dpa, suggesting the removal of
degraded material by this pathway. Other degradative
enzymes were TMPRSS9 (a serine protease) and mem-
brane metalloendopeptidase (MME), both of which
degrade small peptides. The former was downregulated at
all dpa (by nearly sevenfold at 7 days), while the latter was
upregulated at 1 and 4 dpa.

Cell cycle
NME1, a kinase involved in the synthesis of nucleoside tri-
phosphates other than ATP was upregulated at all dpa.
MMCM3 (required for DNA replication) was downregu-
lated at all dpa and FUS (a heterogeneous nuclear protein
that promotes annealing of complementary DNA strands)
was downregulated at 1 and 4 dpa, but upregulated at 7
dpa. Five cell cycle progression proteins were identified.
WDR36 and MARK4 were downregulated on all dpa,
whereas ULA1 was upregulated on all dpa. LOH11CR2A,
a von Willebrand family member, acts as a tumor suppres-
sor and a negative regulator of the cell cycle. It was down-
regulated at 1 and 4 dpa, returning to control level at 7
dpa. PPP1C, a protein phosphatase required for chroma-
tin condensation and maintenance of histone H3 phos-
phorylation during mouse oocyte meiosis [50], showed

no change at 1 dpa, and then was downregulated at 4 and
7 dpa.

Several proteins implicated in mitotic spindle formation
were detected. CROCC, which contributes to centrosome
cohesion before mitosis and NDEL1, which anchors
microtubules to the centrosome during interphase and
localizes to mitotic spindles during mitosis were upregu-
lated on all dpa. However, XMAP215 and Ras-related
nuclear protein (RAN), which regulate microtubule
assembly during the cell cycle, were downregulated on all
dpa and on 1 and 4 dpa, respectively. RAN has other func-
tions as well, including translocation of RNA and proteins
through the nuclear pore complex, DNA synthesis, and
cell cycle progression. Titin (TTN), which in skeletal mus-
cle serves as an adhesion template for the assembly of con-
tractile machinery, and may play a role in chromosome
condensation and segregation in non-muscle cells, was
upregulated at 1 and 4 dpa. EVI5, a centrosomal oncopro-
tein implicated in the prevention of premature entry of
cells into mitosis, and in the completion of cytokinesis,
was upregulated at 1 dpa nearly to the level attained by
NOS1, but unlike NOS1 its level remained exceptionally
high at 4 and 7 dpa as well.

Validation of proteomic methods
Antibodies to axolotl proteins are not available. Most
commercially available antibodies are directed against
human and mouse antigens. We therefore tested antibod-
ies to a variety of mammalian proteins that were upregu-
lated in our study on control and regenerating limb tissue.
Antibodies to three of these, NOS1, FN, and α-actinin,
reacted strongly enough on longitudinal sections of axol-
otl limb tissue for direct validation by immunohisto-
chemistry. We therefore tested the expression of these
proteins at 1 and 7 dpa relative to control tissue (Figure
4). NOS1 and fibronectin were upregulated at 1 and 7
dpa, whereas α-actinin was downregulated. Table 3 shows
the densitometric quantification of these proteins in
immunostained sections. The fold changes determined by
liquid chromatography/mass spectrometry/mass spec-
trometry (LC-MS/MS) were congruent with the densito-
metric measurements, indicating that quantitative LC-MS/
MS data accurately reflect the levels of specific proteins.
Indirect validation from the literature provides further
support for this conclusion. For example, the upregula-
tion of retinoids and chaperones observed in regenerating
urodele limbs [51-53] matches a similar upregulation of
DHRS4 and multiple chaperones in our study, as does the
downregulation of citric acid cycle enzymes observed by
Schmidt [54].

Discussion
Confidence in the methodology
We did not detect proteins such as Fgf-8, Hox a-d, sonic
hedgehog, retinoic acid receptors, and matrix metallopro-
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teinases whose transcripts are expressed during limb
regeneration [10]. This could be due to an inability of cur-
rent LC-MS/MS technology to confidently detect low
abundance proteins, most of which [except for matrix
metalloproteinases (MMPs)] are strongly expressed only
at stages of regeneration beyond accumulation blastema
(see [10] for review). However, the advantages of the
method far outweigh this limitation. Firstly, proteomic
analysis has the general advantage over genomic analysis
of detecting the end products of gene activity, thus ignor-
ing transcripts that may never be translated. Secondly, the

LC-MS/MS-based label-free protein quantification tech-
nology used here has proven itself a powerful tool to
resolve and identify thousands of proteins from complex
biological samples [55,56]. It is a relative method that
compares the expression level of the same protein under
different conditions. The method is rapid and more sensi-
tive than many other proteomic methods, and increases
the protein dynamic range of threefold to fourfold com-
pared to two-dimensional gel electrophoresis. During
development of the method, chicken lysozyme was used
as the quality assurance/quality control and the method

Immunostained sections of axolotl hindlimbsFigure 4
Immunostained sections of axolotl hindlimbs. Longitudinal sections of control (a, d, g) versus 1 day post amputation 
(dpa) (b, e, h) and 7 dpa (c, f, i) axolotl hindlimbs stained with primary antibodies to nitric oxide synthase 1 (NOS1) (a-c), 
fibronectin 1 (FN1) (d-f), α-actinin (ACTN) (g-i). Conjugated secondary antibodies were alexa-568 for fibronectin and NOS1, 
and alexa-488 for α-actinin. Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI). As expected from the pro-
teomic data, fluorescence intensity of NOS1 showed a significant increase compared to control at 1 dpa, then decreased to a 
level slightly above control at 7 dpa. Fibronectin staining (red) at 1 and 7 dpa showed significant increases compared to con-
trols, while α-actinin staining intensity (green) showed significant decreases.
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has since been robustly tested on many different types of
samples [56]. Automation allows it to be applied for large-
scale proteomic analysis; thus it has become a tool of
choice for biomarker discovery [57,58]. The inclusion of
statistics in both experimental design and data analysis
allows for the detection of small but significant changes
not offered by other methods. We are thus confident in
the qualitative and quantitative data produced in our
study.

Significance of results
Signaling and Ca2+ binding and translocation
Myoinositol is a precursor to PIP2, which is cleaved into
IP3 and DAG. IP3 stimulates a rise in cytosolic Ca2+ that
causes protein kinase C to translocate to the plasma mem-
brane, where it is activated by DAG and regulates tran-
scription [49]. Our data support the idea that an increase
in myoinositol after amputation initiates signals that
result in a major increase in cytosolic Ca2+ by influx from
extracellular sources or release from ER/SR stores. First, we
found that ISYNA1, a key enzyme in the synthesis of
myoinositol, is strongly upregulated. Second, we saw a
general downregulation of proteins involved in Ca2+

homeostasis, which would lead to a rise in cytosolic Ca2+

that in turn would activate or suppress many different sig-
naling pathways. One such downregulated protein was
CAMK2D, which has also been implicated in the activa-
tion of enzymes such as NOS1 [59], regeneration of mus-

cle fibers [60], and tissue repair [61]. Our data are
consonant with the results of other studies indicating that
inositol phosphates are generated from PIP2 within 30 s
after amputation of the newt limb and that inhibiting
their formation by beryllium prevents blastema forma-
tion [62,63]. They are also in harmony with studies show-
ing that (1) intracellular Ca2+ release in response to
mitogenic signals is essential for mitosis in the newt limb
blastema, [64-66], (2) protein kinase C (PKC) activity
rises to a plateau at accumulation blastema to medium
bud [67], (3) planarian regeneration is dependent on Ca2+

[68], and (4) higher levels of several S100 family Ca2+-
binding proteins are observed in the regenerating ear tis-
sue of MRL/MpJ-Fas mice versus non-regenerating ear tis-
sue of C57BL/6J mice, as determined by laser capture
proteomics [69,70].

In addition to Ca2+, the translocation of other ions is
essential for blastema formation in amputated amphibian
limbs and tails. Ionic currents leave the newt limb imme-
diately upon amputation, driven by Na+ influx [71]. Pro-
ton efflux across the wound epidermis of the amputated
Xenopus tadpole tail is driven by a vacuolar ATPase pump
[72]. Vacuolar ATPases are expressed in the intracellular
membranes (for example, lysosomes) of all eukaryotic
cells [73], where they pump H+ ions inward to maintain
an acidic pH. The tadpole tail pump, however, is a plasma
membrane v-ATPase [72]. Drug-induced inhibition of
either Na+ or H+ movements results in failure of blastema
formation [72,74]. A v-ATPase did not appear in our pri-
ority 1 or 2 sets of proteins, but was present in the priority
4 set. Furthermore, a protein subunit of a v-ATPase was
detected in the stage 53 hind limb bud of Xenopus at 3 dpa,
using methods identical to ours [75], and a gene encoding
a v-ATPase was the most abundant clone in a suppressive
subtraction cDNA library made from 4 dpa axolotl regen-
erating limb tissue [34]. Whether these are the same v-
ATPases as the plasma v-ATPase of Adams et al. [72] is not
known.

The annexins are phospholipid-binding signaling pro-
teins that have been implicated in a variety of biological
processes. Annexin 1 has been postulated to reduce
inflammation in regenerating fish [76,77] appendages
and in stage 53 regeneration-competent Xenopus laevis
limb buds [75]. However, annexin 1 was upregulated only
at 7 dpa in our samples. This expression pattern might
reflect differences in the onset and/or persistence of the
inflammatory phase of amputated axolotl limbs and
Xenopus tadpole limb buds, differences in the immune
systems of these species [78], or annexin 1 might have
some other function in the accumulation blastema.
Annexin 2 was upregulated at 1 and 4 dpa, and may be
important for histolysis, since it has been shown to pro-
mote osteoclast formation and bone resorption [79]. This

Table 3: Liquid chromatography/mass spectrometry/mass 
spectrometry (LC/MS/MS) versus densitometry measurements

Protein Comparison Fold change

LC-MS/MS Densitometry

NOS1 0 dpa vs 1 dpa 4.93 2.0*

0 dpa vs 7 dpa 1.16 1.2***

Fibronectin 0 dpa vs 1 dpa 1.39 1.51**

0 dpa vs 7 dpa 1.46 3.17*

α-Actinin 0 dpa vs 1 dpa -1.16 -0.62***

0 dpa vs 7 dpa -1.58 -0.83

Comparison of fold changes for NOS1, fibronectin and α-actinin with 
densitometry measurements on immunostained sections. Six images 
were collected for each immunostained section. Mean pixel intensities 
were calculated for each image by sampling 20 randomly-distributed 
regions of each image using the measurement package of the 
Axiovision software (Zeiss). Statistical comparisons were performed 
using ANOVA. A P value < 0.05 was considered statistically 
significant.
*P < 0.001; **P < 0.01; ***P < 0.05.
ANOVA = analysis of variance; dpa = days post amputation; NOS1 = 
nitric oxide synthase 1.
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function correlates with the destruction of the periosteal
bone shell by osteoclasts during blastema formation.
Annexins 4 and 6 also were upregulated only at 7 dpa.
These two proteins promote exocytosis in epithelial cells,
consistent with the phagocytosis and elimination of
debris by wound epithelial cells observed during early
blastema formation [80].

NOS1 was the most strongly upregulated protein (4.93) at
1 dpa and was still upregulated relative to control at 4 and
7 dpa, although the fold change declined on each of these
days. NOS1 catalyzes the synthesis of NO, which has a
wide variety of signaling functions [81]. NO displays
many properties of a neurotransmitter in the nervous sys-
tem. It is produced by macrophages and neutrophils as a
bactericidal agent, and has a role in activating proteases
that are known to be important effectors of histolysis in
regenerating limbs [82-85]. Immunostaining showed
NOS1 to be expressed only in the epidermis over the
period of blastema formation (Figure 4). This localization
suggests that NO diffusing inward from the epidermis
may be important to signaling pathways that regulate
blastema formation. Grow et al. [31] found that the NOS1
gene was strongly upregulated in amputated stage 53
regeneration-competent Xenopus limb buds versus regen-
eration-deficient stage 57 limbs, suggesting that loss of
NOS1 production is associated with loss of regenerative
competence in Xenopus limb buds.

In addition to NOS1, other important signaling molecules
and receptors, such as the nicotinic acid receptor, the insu-
lin receptor, the ephrin receptor, tyrosine kinase 2, and
GNB2L1, an anchor of PKC to the cytoskeleton, were
upregulated on all or two of three dpa. Several Rab family
GTPases and their activators and exchangers were differ-
entially regulated. This family plays a critical role in regu-
lating vesicle trafficking of proteins, including recycling of
receptors, from one membrane compartment to another
[86].

Five proteins involved in canonical or non-canonical Wnt
signaling were detected. Wnt8 is considered a ligand for
the canonical pathway, whereas other Wnt ligands seem
to signal through the non-canonical pathway. These
include Wnt3a and 4 in wound repair [87] and bone for-
mation [88,89], and Wnt5a in Xenopus embryo conver-
gent extension movements [90], and mouse embryo
midgut elongation [91]. In our study, Wnt8 and APC were
upregulated at 4 and 7 dpa. These are components of the
canonical pathway that stabilizes β-catenin. Inversin
switches the canonical pathway to the non-canonical
pathway, by targeting the Disheveled protein for degrada-
tion by the proteasome or by the activation of the c-jun N-
terminal kinase (JNK) pathway by DVL2 and axin [92].
Our results are consistent with the finding that Wnt genes

for both pathways are expressed in the regenerating axol-
otl limb [93]. However, the fact that the DVL-binding pro-
tein CCDC88c, a negative regulator of the canonical
pathway is upregulated on all dpa, and DIXDC1, a posi-
tive effector of the canonical pathway is downregulated
on all dpa while inversin is upregulated over twofold by 7
dpa would suggest that regeneration in the axolotl limb
might be promoted by the non-canonical Wnt pathway.
By contrast, the canonical pathway (via Wnt8) was found
to promote zebrafish fin regeneration whereas the non-
canonical pathway inhibited it [94]. The canonical Wnt
pathway has also been implicated in deer antler regenera-
tion [95] and Xenopus tadpole tail regeneration [96]. Fur-
ther studies will be required to understand the details of
how Wnt signaling pathways regulate appendage regener-
ation in different species.

Transcription and translation
Previous studies of RNA and protein synthesis have
shown that both increase during blastema formation, but
do not reach maximum until differentiation of the new
limb elements is initiated [36,37,39,41,97,98]. The U/D
ratios for our data suggest that proteins involved in the
transcriptional and translational machinery are generally
upregulated, insuring that this machinery is available for
whatever protein synthesis is required. However, the
mRNA processing proteins appeared to be an exception,
since their U/D ratio was quite low at 1 day, and did not
rise above 1.0 until 7 dpa. This might mean that mRNA
processing is a critical level of control for protein synthesis
in general during blastema formation.

In addition, there were quantitative changes in chromatin
proteins that suggest transcriptional changes by chroma-
tin modification. The transcription factor hairless was
upregulated at 1 and 4 dpa, possibly functioning to recruit
histone deacetylases, and the histone lysine demethylase
JMJD1B was downregulated sixfold at 7 dpa. Both of these
patterns suggest transcriptional repression [99,100].

Cytoskeleton and ECM
The downregulation of sarcomeric proteins on all or two
of three dpa, many over twofold, is consistent with cellu-
larization of myofibers into mononucleate cells that
undergo dedifferentiation [11,14,63,97]. The gradual rise
in U/D ratio for motility, shape and structural integrity
proteins at 4 and 7 dpa and the high U/D ratio for adhe-
sion proteins such as SCARF2 and ST3GAL5, particularly
at 1 and 4 dpa, is consistent with the migration of epider-
mal cells to close the wound, and the migration of dedif-
ferentiating cells to accumulate under the wound
epidermis. CDH5, a cadherin that mediates junctional
adhesion of endothelial cells was upregulated at all dpa,
perhaps reflecting the sealing of blood vessels and the ini-
tiation of new vessel formation.
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The major vault protein (MVP) is the main component of
vaults, large ribonucleoprotein particles that have been
implicated in regulating cytoskeletal-associated kinase sig-
naling [101-103]. The gene for this protein was upregu-
lated in the established blastema of the regenerating
zebrafish fin [104]. We found that the MVP was downreg-
ulated in amputated axolotl limbs at 1 and 4 dpa, but
returned to control level at 7 dpa after an accumulation
blastema was established. This fact, and the downregula-
tion of another cytoskeleton-associated kinase, PDLIM1,
may suggest less intracellular signaling by cytoskeletal-
associated kinases during blastema formation.

With regard to ECM proteins, the upregulation of fibrino-
gen reflects formation of the fibrin clot. The upregulation
of fibronectin and collagen 1, the downregulation of col-
lagens 2 and 4, and the downregulation of EHD4, an
endosomal trafficking regulatory protein [105] present in
the matrix of differentiating cartilage and fibroblastic con-
nective tissue during rat limb development [106], is con-
sistent with other observations indicating that the
differentiated tissue matrix is replaced by an ECM that is
more similar to the limb bud matrix, and more favorable
to the migration of dedifferentiated cells to form the blast-
ema under the wound epidermis [107].

Metabolism and cell protection mechanisms
Amputation results in tremendous systemic and cellular
stress. We found that DAGLB, which catalyzes the conver-
sion of DAG to 2-AG, was highly upregulated on all dpa.
2-AG is required for axonal growth during development,
and thus may play a role in nerve regeneration into the
blastema, but it is also the most abundant endocannabi-
noid in adult tissues, suggesting its involvement in pain
control during blastema formation. Our data are thus
consistent with previous studies indicating that endor-
phins are upregulated after newt limb amputation
[108,109]. The evolution of such painkilling mechanisms
in urodele salamanders can be interpreted in terms of an
adaptive response to the frequent cannibalization of
limbs in the wild that occurs under conditions of crowd-
ing or inadequate food.

A major result of cell stress is apoptosis. Our data suggest
that stress caused by amputation activates mechanisms to
protect cells from apoptosis in regenerating axolotl limbs.
The blastema forms under largely avascular, and thus
hypoxic conditions [14,110] that could lead to apoptosis.
Mammalian cells deal with hypoxia by upregulating
hypoxia induced factor 1A (HIF1a), which regulates
numerous downstream genes, including the PI3 kinase-
dependent cell survival gene Akt and glycolytic enzymes
to maintain ATP production [111-113]. Mammalian cells
that fail to maintain ATP synthesis under hypoxic condi-
tions are subject to apoptosis [114].

Naviaux et al. [115] compared metabolism in fibroblasts
of the MRL/lpj mouse, which regenerates ear and heart tis-
sue [7] versus the non-regenerating B6 mouse. They found
that MRL fibroblasts exhibited the Warburg effect [116], a
major feature of embryonic cell metabolism shared by
cancer cells and cells involved in adult wound healing
[117,118]. The Warburg effect is the increased reliance on
glycolytic metabolism while maintaining normal O2 con-
sumption. In spite of reduced energy production by oxida-
tive phosphorylation, the number of mitochondria was
higher in MRL than B6 cells, suggesting an under utilized
functional reserve capacity [115]. Gorsic et al. [34]
detected significant upregulation of the genes for cyto-
chromes b and c and intense antibody staining to these
cytochromes in the epidermis and underlying tissue of 4
dpa regenerating axolotl limbs, suggesting a similarity
between axolotl and MRL cells in terms of mitochondrial
enhancement.

Our data indicated that citric acid cycle and electron trans-
port enzymes are downregulated on all or two of three
dpa, consistent with previous studies showing a marked
decrease in O2 usage during blastema formation in regen-
erating urodele limbs [119] and the histochemical
absence of citric acid cycle enzymes [54,120]. Schmidt
[54] proposed that the early blastema relies on anaerobic
glycolysis or alternate pathways such as the pentose phos-
phate shunt and lipid metabolism to maintain ATP pro-
duction. However, in our samples most of the glycolytic
enzymes detected were downregulated throughout blast-
ema formation. NO inhibits glycolysis and electron trans-
port in skeletal muscle [121]. Thus the upregulation of
NOS1, particularly at 1 dpa, might play a significant role
in metabolic depression. A decrease in muscle metabo-
lism during myofiber fragmentation and cellularization
would account for much of this depression. Enough ATP
production would remain, however, to synthesize the pro-
teins necessary for epidermal wound healing, histolysis,
and dedifferentiation. Lastly, one of the more strongly
upregulated proteins on all dpa was DHRS4, which is
involved in the reversible reduction of all-trans and 9-cis
retinal. This upregulation is consistent with the important
roles retinoids play, not only in metabolism, but also in
the patterning of the blastema [51,122]. The role of spe-
cific metabolic changes in blastema formation merits
revisitation.

Our histological observations indicated little cell apopto-
sis on 4 and 7 dpa, consistent with the results of terminal
deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) assays [123,124]. We propose that apoptosis is
minimized by reducing metabolism and engaging protec-
tive mechanisms that include the upregulation of antimi-
crobial and antioxidant proteins, the differential
regulation of proapoptotic and antiapoptotic proteins,
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and the unfolded protein response (UPR). The UPR is a
response to cell stress caused by the accumulation of
unfolded proteins within the ER/SR due to loss of Ca2+

homeostasis, inadequate disulfide bond formation of nas-
cent proteins by isomerases, or deficient protein glyco-
sylation [49,125,126]. The UPR counters this stress in
several ways: reducing the amount of protein translocated
into the lumen, increasing protein degradation by protea-
somes and exocytotic mechanisms, and increasing the
capacity to accelerate protein folding in the ER by upregu-
lating isomerases and chaperones. Failure to refold mis-
folded proteins or remove them from the ER results in
apoptosis.

Our evidence for this idea is as follows. Firstly, antimicro-
bial and antioxidant proteins were consistently upregu-
lated, and proinflammatory enzymes downregulated on
most dpa. Secondly, four of five proapototic proteins were
downregulated on all or two of three dpa. Conversely,
four of seven antiapoptotic proteins were upregulated in
the same pattern, although the AKTS1 protein, a substrate
for the Akt survival enzyme, was downregulated on all
dpa. Thirdly, the upregulation of two isomerases and sev-
eral chaperones on all or two of three dpa suggests that the
regenerating limb mounts an UPR. The upregulation of
chaperone genes has been reported in other studies of
regenerating newt and axolotl limbs [35,52,53], Xenopus
stage 52 hindlimbs [33], and zebrafish fins [76,104].
Interestingly, in Xenopus limb buds rendered regeneration
deficient by heat shock induced expression of transgenic
noggin, chaperone gene expression is not maintained as it
is in wild-type buds [33]. Gorsic et al. [34] reported the
upregulation of two genes associated with combating cell
stress in regenerating axolotl limbs at 4 dpa. These were
Sara1b, a Ras-related gene whose product is involved in
protein transport from the ER to the Golgi, and Hmox-1,
which increases tolerance to hypoxia and protects against
apoptosis [127]. This enzyme is also upregulated during
liver regeneration [128].

Dedifferentiation
Dedifferentiation occurs in conjunction with the libera-
tion of cells from their tissue matrix by protease-induced
histolysis. Dedifferentiated cells express a number of
genes associated with the dedifferentiated state, such as
msx1 [129], Nrad [130], rfrng and notch [131]. Nuclear
transplantation studies [132] and ectopic grafting experi-
ments [133] have shown that blastema cells are not repro-
grammed to pluripotency. However, three of the four
transcription factor genes (Klf4, Sox2, c-myc) used to
reprogram mammalian adult somatic cells to pluripo-
tency [48,134] are upregulated during blastema forma-
tion in regenerating newt limbs, and also during lens
regeneration [135]. Beyond this, little is known about the
molecular mechanism of dedifferentiation in the regener-

ating urodele limb. Interestingly, we found that LIN28, a
fourth transcription factor used to reprogram mammalian
somatic cells to pluripotency [48], was upregulated on all
dpa. Thus it is possible that LIN28 might play a role in the
transcriptional regulation of nuclear reprogramming dur-
ing limb cell dedifferentiation. The molecular characteri-
zation of blastema cell surface antigens and study of the
regulation of dedifferentiation by transcription factors,
microRNAs, polycomb proteins and chromatin-modify-
ing enzymes will be crucial for understanding the mecha-
nism of dedifferentiation in regenerating amphibian
limbs.

In a recent meeting review, Tanaka and Galliot [136]
described data presented by Andras Simon indicating that
activation of apoptotic pathways in cultured newt myo-
tubes resulted in their cellularization, suggesting that
these pathways might play a role in dedifferentiation. Our
data suggest both positive and negative regulation of
apoptotic pathway proteins. We suggest that some apop-
totic pathways involved in eliminating internal structure
(dedifferentiation) are selectively activated, while others
that would destroy nuclei and plasma membranes are
selectively downregulated. Evidence from other systems is
consistent with this idea. Firstly, treatment of cultured
insulin-producing INS-1E cells with the reversible ER
stress inducer cyclopiazonic acid (CPA) upregulated genes
related to ER stress while simultaneously downregulating
genes related to differentiated β-cell functions [137]. Sec-
ondly, NO signaling inhibits apoptosis and induces ded-
ifferentiation of chondrocytes in vitro via p38 kinase and
calveolin 1 [138,139]. The UPR is induced in mice trans-
genic for a mutation that leads to accumulation of mis-
folded collagen 10 α1 (X) chains in the hypertrophic
chondrocytes of developing endochondral bones [140].
However, instead of undergoing apoptosis, the chondro-
cytes undergo dedifferentiation, with re-expression of
genes characteristic of a prehypertrophic state and re-entry
into the cell cycle. Thirdly, paraquat treatment causes oxi-
dative stress that induces the apoptosis of retinal photore-
ceptors and amacrine neurons in vitro, but promotes
dedifferentiation of Muller glial cells, which have been
proposed as a source of retinal stem cells [141]. Further-
more, coculturing retinal neurons with glial cells pre-
vented paraquat-induced apoptosis. These results suggest
that oxidative stress may activate Muller glia to both pro-
tect and replenish retinal neurons. Fourthly, newt and
chick embryo retinal pigmented epithelial (RPE) cells can
dedifferentiate and then become neurons or lens cells
[142-144]. Dedifferentiation of chick embryo RPE cells is
dependent on a rise in intracellular Ca2+ [145] and neuro-
nal Na+ and Ca2+ channels have been detected in cultured
newt RPE cells [146]. Lastly, cell stress induces dedifferen-
tiation and an epithelial to mesenchymal (EMT)-like phe-
notype in cultured PC C13 thyroid cells [147]. The
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relationship between apoptosis and dedifferentiation is
thus another potentially exciting avenue of regeneration
research.

Cell cycle proteins and blastema formation
In all, 14 proteins associated with the cell cycle were
detected. Of these, EVI5, the ecotropic viral integration
site 5, was of interest because it was the most strongly
upregulated protein over all dpa. EVI5 is a centrosomal
oncoprotein that has several forms that interact directly
with several other proteins in the cell cycle [148] (Figure
5). The 110-kDa form of EVI5 accumulates in the nucleus
during early G1. It prevents cells from prematurely enter-
ing mitosis by stabilizing Emi1, a protein that accumu-
lates in late G1 and inhibits cyclin A degradation by the
anaphase-promoting complex/cyclosome (APC/C),
allowing the cells to traverse S [149]. Emi1 and EVI5 are
then targeted for ubiquitin-driven degradation after being
phosphorylated by Polo-like kinase 1 (PLK1), allowing
the cell to enter mitosis. The 110-kDa form of EVI5 may
be degraded into 90-kDa and 20-kDa forms that at ana-
phase become associated with the chromosomal passen-
ger complex (CPC) consisting of aurora B kinase, inner
centromere proteins (INCENP), and survivin [148]. At
late telophase and cytokinesis, EVI5 dissociates from the
CPC and localizes in the region between the two daughter
cells. Knockdown of EVI5 inhibits cytokinesis and results
in the formation of binucleate cells [148]. EVI5 also
renders the vesicle trafficking protein Rab 11 inactive,
which would help restrain cells from entering mitosis by
inhibiting the vesicular recycling of growth factor recep-
tors that would otherwise promote the transduction of
mitotic signals [150,151].

An interesting role for EVI5 in blastema formation can be
postulated based on its functions in the mammalian cell
cycle. Histological [17-19,152,153], electron microscopic
[97] and genetic marking [154] studies indicate that cells
located within the histolytic region of amputated urodele
limbs begin to dedifferentiate within 2 dpa. Chalkley
[17,18] showed that cell number during histolysis in this
region is highest just proximal to the amputation plane.
However, the mitotic index during histolysis is very low
(0.1% to 0.5%) [17,20,21]. Coincident with the appear-
ance of the blastema, the high point in cell number moves
distal to the amputation plane, indicating that the blast-
ema forms primarily by the distal migration and accumu-
lation of dedifferentiated cells under the wound
epidermis [17]. The mitotic index of blastema cells rises
significantly only after the accumulation blastema has
formed.

The cycle time of axolotl blastema cells at stages later than
accumulation blastema is 40 h, with 39 h (approximately

1.5 days) spent in G1/S/G2 [22]. The high level of EVI5
during blastema formation suggests that it extends (by sta-
bilizing Emi1) the premitotic portion of the cell cycle
beyond 39 h for whatever period of time is required to
form an accumulation blastema (in our case, 7 days).
EVI5 would then be cleaved, the cells would traverse M
and continue to cycle on the neural and epidermal-
dependent 40 h time scale. This hypothesis makes two
predictions. Firstly, only the 110-kDa form of EVI5 would
be detected in blastema cells during formation of the
accumulation blastema, but that the 90-kDa and 20-kDa
forms would also be detected, in association with CPC
proteins, as normal cycling began. Secondly, denervation
or blocking contact of blastema cells with the wound epi-
dermis, either of which inhibits blastema cell mitosis at
any stage of regeneration [23], would cause cell cycle
arrest, most likely in S or G2 phases, due to maintenance
of high levels of EVI5. The role of neural and epidermal
factors in mitosis, such as nAG [24] and Fgf-8 [155] would
then be to signal for the cleavage of EVI5.

Interestingly, the CPC protein aurora B kinase appears to
dissociate HP1 proteins from methylated histone H3 at
the onset of mitosis [156-158], and is required for chro-
matin remodeling during postmitotic differentiation of
mesenchymal stem cells and B cells [159]. Aurora B kinase
maintains C2C12 cells in a differentiated state by phos-
phorylating serine 10 of histone 3 [160]. The small syn-
thetic molecules reversine and hesparadin inhibit this
phosphorylation, silencing muscle regulatory factor genes
and inducing the inhibitor of differentiation gene, an
induction that involves decreasing the methylation of his-
tone H3 lysine 9 and increasing overall H3 acetylation.
Treated C2C12 cells are then able to differentiate into adi-
pocytes and osteoblasts [160].

The role of EVI5 and CPC proteins in the cell cycle and
their relation to chromatin structure, dedifferentiation,
and differentiation during regeneration will be an inter-
esting avenue to explore.

Conclusion
Figure 6 depicts a model of regeneration based on inte-
grating our findings with those of others. We recognize
that many of the proteins detected in this analysis have
multiple functions, and that their roles can therefore be
subject to more than one interpretation. Thus we are pur-
suing a systems biology approach to use the high-abun-
dance proteins revealed in our analyses as bait to retrieve
associated low-abundance proteins from the literature
and construct all possible protein networks and pathways
involved in successful limb regeneration. Which of these
pathways are correct, and their precise roles, can then be
tested by loss and gain of function experiments.
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We have also analyzed the fold changes of proteins during
pseudoblastema formation in the amputated Xenopus
froglet hindlimb, which regenerates only a muscle-less
spike of cartilage [161]. The findings of this analysis will
be compared to those reported here on the axolotl in
order to gain insights into why the anuran limb bud loses
the capacity for regeneration as it differentiates. This infor-
mation will be useful in devising chemical induction strat-
egies to reprogram mammalian somatic cells or activate

resident stem cells directly at the site of injury to regener-
ate damaged tissues and appendages [28].

Methods
Animal surgery and tissue collection
All surgical procedures and animal care were carried out
according to the Association for Assessment and Accredi-
tation of Laboratory Animal Care (AALAC) standards fol-
lowed at Indiana University-Purdue University

Ecotropic viral integrative factor 5 (EVI5) networkFigure 5
Ecotropic viral integrative factor 5 (EVI5) network. Network of direct interactions of six proteins with EVI5. Green = 
positive regulation; orange = negative regulation. The 110-kDa form of EVI5 stabilizes Emi1 to prevent premature entry into 
mitosis. At the same time, EVI5 inhibits the vesicle trafficking function of Rab 11a and b. Polo-like kinase 1 (PLK1) is then acti-
vated by inner centromere protein (INCENP) to degrade both EVI5 and Emi1, allowing progression into mitosis (M). During M, 
90-kDA and 20-kDa forms of EVI5 interact with the chromosomal passenger complex (CPC) proteins aurora B kinase, 
INCENP, and survivin, where EVI5 is necessary for cytokinesis.
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Indianapolis (IUPUI), Purdue, IN, USA. Ambystoma mexi-
canum (axolotls) were obtained either by in-house breed-
ing, or from the axolotl colony, University of Kentucky,
Lexington, KY, USA. Animals 8 to 11 cm in length were
anaesthetized in 0.02% to 0.05% MS-222 (Argent Chem-
ical Laboratories, Redmond, WA, USA) and hind limbs
were amputated bilaterally at mid-tibia/fibula. The tissue
removed distal to the amputation site (what would be
regenerated) served as the 0-day control. The regenerating
tissue, along with a sliver (approximately 1 mm) of stump
tissue, was collected at 1 day (epidermal wound healing),
4 days (histolysis and dedifferentiation) and 7 days (accu-
mulation blastema) post amputation (dpa). The tissues
were rinsed in sterile phosphate buffered saline (PBS) and
flash frozen for proteomic analysis, which was conducted
by Monarch Life Sciences (Indianapolis, IN, USA).

Histology, immunostaining and image analysis
For histology, control and regenerating limb tissues at 1,
4, and 7 dpa were fixed in Bouin's solution for 48 h. Fixed
tissues were then washed in 50% alcohol to remove the
picric acid and stored in 70% alcohol. The tissues were

dehydrated in a graded series of alcohols to 100%, fol-
lowed by two changes of xylene for 45 min to 1 h each,
after which they were infiltrated overnight with Parara-
plast (Fisher Healthcare, A Fisher Scientific Company,
Houston, TX, USA). The tissues were then embedded in
fresh Paraplast and sectioned at 10 μm. Sections were
stained with Weigert's iron hematoxylin and light green
SF yellow and photographed at 10 × magnification on a
Nikon Eclipse E800 microscope (Nikon Instruments Inc,
Melvlle, NY, USA).

For immunostaining, control and regenerating limb tis-
sues were collected at 1 and 7 dpa and fixed overnight in
2% paraformaldehyde in 0.8 × PBS. The samples were
then rinsed with 1.0 × PBS and decalcified for 30 min
using immunoclear decalcifying agent (Calci-Clear Rapid,
National Diagnostics, Atlanta, GA, USA). After decalcifica-
tion, the samples were cryoprotected by sequential over-
night incubation in 10%, 20% and 30% sucrose in 1 ×
PBS, then embedded in a 50:50 mixture of 30% sucrose
and Neg 50 frozen section medium (Thermo-Fisher Scien-
tific, Waltham, MA, USA). Sections were cut at 10 μm on

Summary diagram of regeneration processesFigure 6
Summary diagram of regeneration processes. (a) Amputation generates signals that result in histolysis and liberation of 
cells from their tissue matrix. At the same time, these cells are under hypoxic and endoplasmic reticulum (ER) stress, and use 
a variety of mechanisms to counter this stress and prevent apoptosis, including upregulation of antiapoptotic pathways that 
protect cell membranes and nuclei. Some proapoptotic pathways are upregulated but are co-opted to remodel or eliminate 
internal cell structure. Along with changes in transcription factors, chromatin modifying enzymes, microRNAs and polycomb 
proteins, these mechanisms lead to dedifferentiation. (b) Throughout histolysis, dedifferentiation and accumulation of blastema 
cells under the wound epidermis, ecotropic viral integrative factor 5 (EVI5) is highly upregulated, preventing blastema cells 
from undergoing mitosis until after the accumulation blastema has formed.
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a Leica CM1900 cryostat (Leica, Wetzlar, Germany) and
incubated in 1 × PBS to remove excess embedding
medium, then blocked for 30 min in a solution of 0.01%
Tween-20 and 5% milk in tris(hydroxymethyl)ami-
nomethane (Tris)-buffered saline. Sections were then
incubated over night with polyclonal anti-rabbit NOS1
(Biomol International LP, Plymouth Meeting, PA, USA) at
1:70 dilution, polyclonal anti-human fibronectin (Sigma,
St Louis, MO, USA) at 1:400 dilution or monoclonal anti-
α-actinin (Sigma) at 1:200 dilution, washed with block-
ing solution, incubated in the appropriate secondary anti-
body (goat anti-mouse AF488 or goat anti-rabbit AF568,
Invitrogen, Carlsbad, CA, USA) for 40 min, washed with
1 × PBS and mounted with Vectashield mounting
medium containing 4',6-diamidino-2-phenylindole
(DAPI; Vector Laboratories, Burlingame, CA, USA).

Immunostained sections were observed using the 20 ×
objective lens on a Zeiss Axiovert 200 M microscope (Carl
Zeiss Microimaging, Thornwood, NY, USA) equipped
with an apotome for optical sectioning, and images were
captured with an Axiocam MRM high-resolution camera.
Sections were obtained from two hindlimbs of three ani-
mals for each time point. Six images were collected for
each section, from regions located at the tip of the ampu-
tated limb to just proximal to the plane of amputation for
1 and 7 dpa samples and across the putative amputation
plane in control sections. Mean pixel intensities were cal-
culated for each image by sampling 20 randomly distrib-
uted regions of each image using the measurement
package of the Axiovision software. Regions of sections
containing bone were omitted from analysis, as some
bone tissue displayed autofluorescence. Statistical com-
parisons were performed using analysis of variance
(ANOVA). A P value < 0.05 was considered statistically
significant.

Proteomic analysis
Sample preparation
A total of five pools of tissue each from control, 1 dpa, 4
dpa and 7 dpa limbs were collected. Each pool contained
six tissues (from two hindlimbs of three animals). The
samples were processed as described previously [57].
Briefly, flash-frozen tissues were homogenized in lysis
buffer containing 8 M urea and 10 mM dithiothreitol
(DTT). The resulting cell lysates were denatured by urea,
reduced by triethylphosphine, alkylated by iododethanol
and digested by trypsin. The BCA Protein Assay (Bio-Rad,
Hercules, CA, USA) was used to determine the peptide
concentration in each pool.

LC-MS/MS analysis
Tryptic digested peptides were analyzed as previously
described [57]. Samples were run on a Surveyor high per-
formance liquid chromatography (HPLC) system

(Thermo-Fisher Scientific) with a zorbax 300SB-C18
reverse column (1 mm × 5 cm). Each peptide pool (20 μg)
was injected twice onto the column in a random order. All
injections were performed using the identical equipment
configuration. Peptides were eluted with a gradient from
5% to 45% acetonitrile developed over 120 min at a flow
rate of 50 μl/min, and effluent was electrosprayed into the
LTQ mass spectrometer (Thermo-Fisher Scientific). Data
were collected in the 'TriplePlay' mode (MS scan, zoom
scan, and MS/MS scan). The resulting data were filtered
(to increase the signal to noise ratio) and analyzed by a
proprietary algorithm developed by Higgs et al. [162].

Protein identification
Using SEQUEST (Thermo Fisher Scentific, Waltham, MA,
USA) and X! Tandem (an open source algorithm provided
by The Global Proteome Machine Organization http://
www.thegpm.org database search algorithms, database
searches against non-redundant (NR) National Center for
Biotechnology Information (NCBI) or International Pro-
tein Index (IPI) databases were performed for peptide
sequence identification. A confidence score was assigned
to each peptide by q value (false discovery rate) [162]. The
score was based on a random forest recursive partition
supervised learning algorithm. The percentage ID confi-
dence score was calibrated so that approximately X% of
the peptides with percentage ID confidence >X% were cor-
rectly identified [162].

Proteins were classified according to identification quality
(priority). This priority system is based on the quality of
the amino acid sequence identification (peptide ID confi-
dence) and whether one or more unique peptide
sequences were identified (multiple sequences). The pep-
tide id confidence assigned a protein into 'high' or 'mod-
erate' categories based on the peptide with the highest
peptide ID confidence (the best peptide). Proteins with
'best peptide' having a confidence between 90% to 100%
were assigned to the 'high' category while proteins with
best peptide having a confidence between 75% to 89%
were assigned to the 'moderate' category. All peptides with
confidence less than 75% were discarded. To increase the
confidence in protein identification, the proteins were fur-
ther classified based on the number of distinct amino acid
sequences identified. A protein was classified as 'yes' if it
had at least two distinct amino acid sequences with the
required ID confidence; otherwise it was classified as 'no'.
Thus, the proteins with 'high' peptide ID confidence and
with more than one identified peptide sequence were
termed priority 1. Proteins with 'high' peptide confidence
but with only one identified peptide sequence were
termed priority 2. Priority 3 and 4 proteins were those
with 'moderate' peptide confidence with more than one
and only one peptide sequence identified, respectively.
Thus, priority 1 proteins had the highest likelihood of cor-

http://www.thegpm.org
http://www.thegpm.org
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rect identification and priority 4 proteins the lowest like-
lihood of correct identification.

Protein quantification and statistical analysis
Protein quantification was carried out using non-gel
based and label-free proprietary protein quantification
technology described previously [57,162]. All measure-
ments on experimental samples reflect up or downregula-
tion, or no change, relative to control samples. Every
peptide quantified had an intensity measurement for
every sample. This measurement is a relative quantity giv-
ing the area under the curve (AUC) from the extracted ion
chromatogram (XIC) after background noise removal.
The AUC was measured at the same retention time win-
dow (1 min) for each sample after the sample chromato-
grams had been aligned [162]. The intensities were then
transformed to the log base 2 scale (commonly used for
genomic data), which served several purposes. First, rela-
tive changes in protein expression are best described by
simple ratios. However ratios are difficult to model statis-
tically, so log transformation converts ratios to fold differ-
ences. Second, the transformed data better approximate a
normal distribution on a log scale [163], which is impor-
tant because normality is an assumption of the ANOVA
models used to analyze this data. Third, log base 2 is easy
to understand because a twofold change (or doubling, or
100% increase) yielding an expression ratio of 2 is trans-
formed to 1 (that is, a twofold change is a unit change on
the log base 2 scale). After log transformation the data
were then quantile normalized [164]. This normalization
removed trends introduced by sample handling, sample
preparation, HPLC, mass spectrometry, and possible total
protein differences.

If multiple peptides had the same protein identification,
their quantile normalized log base 2 intensities were
weight averaged proportionally to their relative peptide
ID confidences. Then, the log base 2 protein intensities
were fitted by a separate ANOVA statistical model for each
protein. Finally, the inverse log base 2 of each sample
mean was calculated to determine the fold change (FC)
between samples. The maximum observed absolute FC
was also given for each priority level. FC was computed as
mean regeneration group/mean control group. A FC of 1
means no change.

The number of proteins with significant changes for each
priority was calculated. The threshold for significance was
set to control the false discovery rate (FDR) for each two-
group comparison at 5% [165]. The FDR was estimated by
the q value, as stated previously. Thus protein fold
changes with a q value less than or equal to 0.05 were
declared to be significant, leaving 5% of the determined
changes assumed to be false positives.

We calculated the median percentage coefficient of vari-
ance (%CV) for each priority group. Percentage CV values
were derived from the standard deviation divided by the
mean on a percentage scale. The percentage CV was calcu-
lated for replicate variation (technical variation) and the
combined replicate plus sample variation.

In constructing biological process categories, only pro-
teins having peptide confidence levels of 90% and above
and with FDR < 0.05 were included. Many proteins were
identified either by the same sequences or different
sequences in priority 1 or 2 or both. To avoid redundancy,
the fold changes of priority 1 were used if a protein was
present in both the priorities, and average fold change was
calculated if it belonged to same priority. If a protein had
conflicting expression patterns (upregulated in one case,
but downregulated in the other) then it was not consid-
ered.

Bioinformatic analysis
Proteins not recognized by the algorithm were manually
curated. NCBI blastp (basic local alignment search tool
for proteins) [166] was used to match the sequences of
hypothetical/novel/unknown/unnamed/Locus (LOC)/
NIH Mammalian Gene Collection (MGC) proteins
against the 'vertebrata' category in blast (taxid: 7742) to
identify their closest neighbors. Only the proteins having
90% peptide ID confidence and above and with FDR <
0.05 were chosen. Accession numbers, gene names and
names of the proteins were obtained from Uniprot [167]
or NCBI [168] using the protein IDs obtained in the raw
data. GeneCards [169] and Uniprot were used to deter-
mine their biological processes. The Human Protein Ref-
erence Database (HPRD) [170] was used to determine
molecular function and primary cellular localization. The
EVI5 network was generated using MetaCore analytical
suite version 5.3 (GeneGo, St Joseph, MI, USA). Cluster
3.0 [171] and Java Treeview software [172] available from
Stanford University were used to generate the global
intensity expression map.

All non-redundant peptides having a peptide ID confi-
dence of 90% and above were compared against expressed
sequence tag (EST) contigs from the Ambystoma ESTdb (SR
Voss) using tBLASTn.
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