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ABSTRACT OF DISSERTATION 

 

 

 

VASCULAR COGNITIVE IMPAIRMENT AND DEMENTIA: THE IMPORTANCE 

OF MIXED PATHOLOGIES FROM MOUSE MODELS TO HUMANS 

 

 Age-related neurologic disease is a significant and growing burden on our 

society. Although the largest share of research effort has typically been devoted to the 

common neurodegenerative illnesses (such as Alzheimer’s disease, or AD), the reality is 

that nearly all cases of neurodegenerative disease possess elements of mixed pathology. 

Vascular contributions to cognitive impairment and dementia (VCID) is a complex form 

of dementia, combining aspects of vascular disease and other forms of dementia, such as 

Alzheimer’s disease. This pathology is heterogeneous and can include cerebral amyloid 

angiopathy (CAA), hemorrhages, white matter infarcts, and changes to the neurovascular 

unit. Given the heterogeneous nature of VCID, we hypothesized that we could further 

elucidate mechanisms that drive dementia in VCID by examining pathology in mouse 

models and use this data to guide the study of human autopsy cases. Using a mouse model 

of VCID, we identified NHE1, a sodium hydrogen exchanger that was upregulated in these 

mice, as a possible candidate for a factor involved in cerebrovascular disease in humans. 

We saw a significant age effect of NHE1 in cases with Down syndrome (DS), leading us 

to further examine cerebrovascular pathology in individuals with DS. People with DS are 

at a high risk of developing cognitive impairment and dementia after the age of 50.  In fact, 

virtually all adults with DS develop the neuropathology for an AD (beta-amyloid (Aß) 

senile plaques and tau neurofibrillary tangles) diagnosis by the age of 40 due to a 

triplication of chromosome 21. We found that these individuals develop CAA and 

microhemorrhages as a function of age, and that these rates are as severe as sporadic AD, 

despite an age difference of ~30 years. We also found that individuals with DS have 

different microglial morphologies than controls or individuals with AD. This data indicates 

that people with DS develop significant cerebrovascular and AD pathology, indicative of 

VCID. Overall, we found that mixed pathologies, specifically VCID, is an important 

contributor to the development of dementia and should be studied further to better 

understand how this pathology drives cognitive impairment. Further, it is clear that mouse 

models map imperfectly onto complex human diseases, and that significant work remains 

to be done towards achieving an adequate model of VCID.  
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Chapter 1: Introduction 

Portions of this chapter are reprinted with permission from: 

Helman, A. M. and M. P. Murphy (2016). "Vascular cognitive impairment: 

Modeling a critical neurologic disease in vitro and in vivo." Biochim Biophys Acta 

1862(5): 975-982. 

Age-related dementias are rapidly becoming one of the largest public health 

problems of our time. As baby boomers age - with more access to healthcare than ever 

before - Americans face a demographically larger population of elderly individuals. 

Alzheimer’s disease (AD) is the seventh leading cause of death in the United States, with 

numbers rising each year. In the absence of effective therapeutics, the population affected 

by AD is projected to triple, from 5.1 million today to 13.8 million people by 2050, with 

an estimated healthcare cost of more than $1 trillion (Alzheimer's Association 2015). 

Despite considerable efforts, the mechanism behind neurodegeneration remains unknown, 

driving a need to better understand not only AD, but all forms of dementia.  

The first detailed description of dementia in the literature was at the end of the 19th 

century, as biological and medical knowledge was expanding (Beach 1987). It was 

originally thought that arteriosclerosis and chronic cerebral ischemia caused dementia 

(Hershey, Modic et al. 1986). This view changed with the discovery that infarcts, not 

chronic ischemia, were causing what eventually became known as multi-infarct dementia 

(Bowler 2007). This evolved into the term vascular dementia, as multiple other 

pathological features of the disease became known, such as white matter hyperintensities, 
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single infarcts, hemorrhages, and others. However, vascular dementia became 

overshadowed by the discovery of AD in 1898. 

1.1 What is AD? 

 AD, the most common form of dementia in the elderly, affects 5.7 million people 

in the USA (Alzheimer's Association 2018) and is currently the 6th leading cause of death 

in the USA.  It is anticipated that by 2050, the number affected by AD will increase to 14 

million. The risk of AD rises with age such that 2% of people 71-79 have AD, 18% of 

those 80-89 years of age may be affected and 28% of people over 90 years have AD 

(Plassman, Langa et al. 2007). Dementia is a term used to describe changes in cognition 

that affect daily function.  There are many causes of dementia (i.e. – the pathology that 

causes the dementia can vary) including vascular dementia, frontotemporal dementia, 

Lewy body disease, and AD (Plassman, Langa et al. 2007).  Currently, there is discussion 

of modifying the criteria for a diagnosis of AD to primarily depend on the pathological 

accumulation of senile plaques and neurofibrillary tangles (NFT) in the brain measured by 

cerebrospinal fluid (CSF) protein levels and/or neuroimaging using positron emission 

tomography (PET) but not clinical criteria (Jack, Bennett et al. 2018). AD is confirmed at 

autopsy; neuropathological evidence of AD requires the presence of NFT, senile plaques, 

and neuron loss (Jack, Bennett et al. 2018).  

NFTs are made up of abnormally hyperphosphorylated tau protein.  Tau protein is 

a normal protein used by neurons to support their structure, form a cytoskeleton and assist 

in the transport of proteins and organelles within the cell body and axons (Gao, Wang et 

al. 2018).  When tau becomes abnormally hyperphosphorylated, it forms paired helical 
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filaments that disrupt normal neuronal function (Gendron and Petrucelli 2009).  These 

filaments fill the neuron and form NFT and neuropil threads (Figure 1.1A).   

Senile plaques are deposits of a toxic protein, beta-amyloid (Aβ), which aggregate 

outside and between neurons (Selkoe 2001) (Figure 1.1B).  The Aβ protein can be of 

various lengths but typically is 40-42 amino acids long, and is cut from a longer beta-

amyloid precursor protein (APP – will be discussed in more detail shortly).  The gene for 

APP is on chromosome 21, which leads to overexpression in people with full trisomy 21 

and is thought to be the underlying mechanism for early onset AD in DS (Prasher, Farrer 

et al. 1998, Doran, Keator et al. 2017). Senile plaques can vary in size and appearance.  

Typically plaques first form as diffuse fibrils that can be large and amorphous (Figure 

1.1C).  Senile plaques can also take on a more compact form with some having a dense 

core and associated NFT pathology; these are called neuritic plaques or cored plaques 

(Figure 1.1D).  These smaller, denser plaques are typically observed in more severe stages 

of AD in DS.   When sufficient numbers of NFTs and senile plaques are observed affecting 

the hippocampus, underlying entorhinal cortex and neocortex, a diagnosis of AD can be 

made. 

It is helpful for research purposes and for diagnosis to capture how extensive AD 

pathology is in the brain to allow comparison with the severity of dementia a person 

exhibits prior to death. This helps researchers test hypotheses about what types of brain 

pathology might underlie specific cognitive deficits in DS with age. The most commonly 

used scoring system, Braak staging, describes the extent and location of NFT and senile 

plaques (Braak and Braak 1991), with higher “stages” being associated with more severe 

pathology. NFT pathology is scored on a scale of I-VI and senile plaques are scored as A, 
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B or C. Thal and colleagues have expanded the staging system for describing the extent 

and severity of senile plaques to 5 categories (Phases 1-5)(Thal, Rub et al. 2002).  Thus, a 

typical report from a neuropathologist will include information regarding the final 

diagnosis as well as the extent of senile plaques and NFTs. 

1.2 What is VCID? 

Currently, AD is the most common form of dementia, followed closely by vascular 

dementia. Vascular dementia, when it is thought of as a somewhat distinct entity, accounts 

for about 20% of all age-related dementias. A diagnosis of vascular dementia is commonly 

associated with certain risk factors such as obesity, hypertension, cardiac disease, and type 

2 diabetes mellitus (T2DM). Over 40 million Americans aged 70 years or older have at 

least one of these risk factors, yet we know relatively little about how these factors 

contribute to cognitive decline (Roger, Go et al. 2011). Recent debate has centered on the 

role of cerebrovascular disease in dementia, both as a primary cause of cognitive 

impairment, and also as a contributing factor to dementia in combination with other 

pathologies. This has led to the adoption of a range of new terminologies in the field of 

dementia research, one of which is the umbrella term of vascular contributions to cognitive 

impairment and dementia (VCID).  

VCID is ambiguous in that it can describe any clinical cognitive disorder of 

cerebrovascular origin. VCID therefore does not denote a specific disease, but rather a 

heterogeneous disease state under the larger umbrella of cerebrovascular disease 

(Hachinski, Iadecola et al. 2006, Jiwa, Garrard et al. 2010). Past definitions of VCID 

(which has also been called VCI) used multi-infarct dementia or vascular dementia 

constructs to define a tentative diagnostic threshold (Gorelick, Scuteri et al. 2011). Recent 
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definitions have expanded to cover a continuum of the interactions, from “pure” AD 

pathology all the way to “pure” vascular dementia (O'Brien, Wiseman et al. 2002) (Figure 

1.2).  

The wide umbrella of definitions combined with the multiple dimensions of 

vascular injury leaves a large amount of ambiguity for what does and does not constitute 

VCID. For example, there is a controversy in the field over which types of vascular lesions 

contribute to cognitive impairment, including large cortical infarcts, lacunar infarcts, 

subcortical white matter disease, subcortical infarcts, or any combination of these 

(Gorelick, Scuteri et al. 2011). This is further complicated by the presence of AD 

pathology, which is thought to lead to dementia more quickly in the presence of certain 

types of strokes (Snowdon, Greiner et al. 1997). In fact, it is very rare for an aged subject 

to not have any AD or cerebrovascular pathology. The two main pathological hallmarks of 

AD, amyloid plaques and neurofibrillary tangles, are present with overlapping 

cerebrovascular lesions in up to 50% of dementia cases (Jellinger 2013). However, the 

balance between the pathology of these diseases may be the determining factor for 

displaying clinical symptoms (Petrovitch, Ross et al. 2005).  

The inherent heterogeneity of VCID makes it difficult to develop representative 

models. VCID is not a complication of AD nor simply a form of stroke, but may encompass 

these etiologies as well as others. At our current level of knowledge, VCID is the best term 

we have to represent how vascular issues contribute to dementia. However, as the field 

expands, the term VCID may become too vague and could evolve into more specific 

definitions of particular disease states. This introduction will give an overview of the 

strengths and weaknesses of current models of VCID, including an overdue discussion on 
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models of mixed dementias. While there is no current model that encompasses all aspects 

of VCID, there are ways to examine aspects of the disease separately, or in combination 

with different facets of neuropathology. These approaches encompass a range of strategies, 

from cell culture systems to a number of animal models with varying degrees of 

complexity. 

1.3 - The Neurovascular Unit and Cell Culture Models 

Within the past few years, we have gained a larger understanding of the synergistic 

roles of the cell types encompassing the blood brain barrier (BBB) (Iadecola 2010, 

Quaegebeur, Lange et al. 2011). This interaction, known as the neurovascular unit, 

provides an entirely different framework for examining how cerebrovascular disease 

contributes to cognitive impairment.  

The neurovascular unit is composed of endothelial cells, myocytes, neurons and 

their processes, astrocytes, perivascular cells, and other supporting cells (microglia and 

oligodendroglia) (del Zoppo 2010, Popa-Wagner, Buga et al. 2013). These cells work 

together to coordinate cerebral blood flow and exchange across the BBB. A functioning 

neurovascular unit is important for mediating blood flow in order to meet the metabolic 

demands of the brain (Iadecola 2010). Astrocytes, which line the outer walls of cerebral 

microvessels, are responsible for regulating blood flow to an area of high activity in the 

brain (Lo and Rosenberg 2009). If there is insufficient blood flow to an area of metabolic 

demand, a cascade of rapid responses to the hypoxia stimulates angiogenesis, resulting in 

increased blood flow to the area of need (Moeller, Cao et al. 2004). Most models of the 

neurovascular unit use in vitro tissue culture with rodent cells to better understand all of 

the interacting components. However, there is a general lack of microvascular models 
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using human cells.  

Many in vitro BBB models rely on using endothelial cells, as they are the principal 

cellular component of the BBB. Primary endothelial cells isolated from rat, pig, or cow 

(Franke, Galla et al. 2000, Kido, Tamai et al. 2002), or human endothelial cell lines that 

are not of cerebral origin, such as human umbilical vein endothelial cells (HUVECs) are 

often used for BBB studies (Gomez-Gaviro, Scott et al. 2012). However, there is a large 

amount of heterogeneity within endothelial cells from different vascular origins which 

should be taken into consideration when using these cells as a model of the BBB 

(O'Donnell, Mille-Baker et al. 2000). To examine interacting cell types, endothelial cells 

are grown alongside astrocytes, pericytes, or a combination of the two using a co-culture 

system (Dehouck, Meresse et al. 1990, Nakagawa, Deli et al. 2007). Co-culture systems 

have high transendothelial electrical resistance and low permeability coefficients, 

indicating the presence of a tight barrier similar to the BBB (Fricker, Nobmann et al. 2002, 

Kido, Tamai et al. 2002, Freese, Reinhardt et al. 2014). However, these systems do not 

examine all aspects of the neurovascular unit simultaneously and are therefore better for 

understanding the role of a specific factor rather than the interacting cell types that work 

together to coordinate blood flow. 

One of the newer BBB models uses synthetic microvessels for an in vitro model of 

the microvasculature. This model involves growing endothelial cells in collagen channels 

to form a microstructure. The endothelial cells form continuous junctions between cells 

and eventually form complex adherence junctions accompanied by slight re-structuring of 

channels (Lopez and Zheng 2013). Additionally, the collagen matrix can be remodeled to 

promote cell growth and angiogenesis. Vessel wall conditions and blood flow can be 
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mimicked by seeding the endothelial cells in the matrix with pericytes and platelets (Zheng, 

Chen et al. 2014). Synthetic microvessels are currently limited to growth within a single 

plane, but three dimensional models using 3D printing of carbohydrate-glass lattices may 

be able to solve this problem. This 3D structure encourages endothelial growth in all 

directions and is a promising model of the microvasculature (Miller, Stevens et al. 2012).  

Information on the microvasculature has often lagged behind the wealth of 

information on large vessels despite the growing knowledge on its contribution to disease. 

In vitro models of the microvasculature are new and exciting tools to study its role in 

disease states such as VCID. Co-culture systems have taught us a lot about the BBB, from 

permeability studies of drugs (Booth and Kim 2014, Roda, Nion et al. 2014) to how Aβ 

crosses the BBB (Candela, Saint-Pol et al. 2015). Little has been published thus far on the 

applications of synthetic microvessels, as it is a relatively new technique but the potential 

applications of the model are broad and range from better understanding the BBB, to 

having a more clear understanding the roles of individual cell types in the neurovascular 

unit, and eventually understanding the specific role of the microvasculature in certain 

diseases. However, these models are limited by the fact that they do not involve a 

physiological system to study the complex interactions of VCID. Therefore, while tissue 

culture models are useful tools, animal models are needed for studying the interacting 

players of VCID. 

1.4 - Animal Models of Altered Blood Flow 

Cerebrovascular changes alter the macro and microvasculature, leading to both 

structural and functional brain damage. The development of new neuroimaging techniques 

has revolutionized our ability to examine these cerebrovascular changes (Petrovitch, Ross 
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et al. 2005). One of the most important neuropathological markers of cognitive decline due 

to cerebrovascular dysfunction is cerebral infarcts (Gorelick, Scuteri et al. 2011). There is 

a strong association between increased number of macroscopic infarcts and increased 

likelihood of dementia, but the relationship is not a simple one, and there is currently no 

defined volume or number necessary for a diagnosis of VCID (White, Small et al. 2005). 

One of the reasons for this is that infarct severity has varied effects on cognition, depending 

on the individual. Infarct location may determine the impact on dementia, with infarcts in 

regions such as the thalamus, angular gyrus, and basal ganglia more likely to lead to 

dementia (Vinters, Ellis et al. 2000, Jellinger 2008). In other words, a single strategically 

placed infarct can be just as cognitively devastating as many smaller ones scattered 

throughout the brain. 

Animal models have helped us understand how infarcts contribute to VCID. 

Chronic cerebral hypoperfusion (CCH) surgery is a good way to study infarcts in rodent 

models. CCH is one of the major causes of vascular - related dementia and is a result of 

various diseases, such as obstructive sleep apnea, congestive heart failure, and cardiac 

arrhythmias, that cause reduced blood flow to the brain (Meyer, Rauch et al. 2000, Roman 

2002). CCH typically develops as a result of vascular lesions caused by artery stenosis or 

occlusion, cerebral hemodynamic changes such as prolonged hypotension and reduced 

cardiac output, or by a change in blood viscosity, commonly associated with 

hyperlipidemia or elevated homocysteine levels (Zhao and Gong 2015). Over time, these 

changes can decrease blood flow to the brain, causing increased neuroinflammation and 

oxidative stress, neuronal energy failure, and white matter lesions, all of which lead to 

cognitive impairment. 
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One of the more common CCH surgeries performed is the occlusion of the bilateral 

common carotid arteries (CCA). In rats, both the left and right CCAs are occluded, causing 

hippocampal and neuronal damage, striatal infarcts, white matter lesions, increased 

neuroinflammation, increased oxidative stress, and BBB disruption (Nanri and Watanabe 

1999, Soria, Tudela et al. 2013). Additionally, these rats perform poorly on several tests of 

cognition, suggesting cognitive impairment. However, this model is strictly feasible in 

animals with a complete circle of Willis (this excludes mice), which allows for continued, 

decreased blood flow to the brain via the basilar artery (Farkas, Luiten et al. 2007). 

Additionally, there is a high amount of variability in the number of infarcts the rats develop 

and amount of hippocampal damage among animals from different vendors (Marosi, Rakos 

et al. 2006, Soria, Tudela et al. 2013). Similar to the bilateral CCA occlusion model, the 

four vessel occlusion (4VO) model involves blockages of both vertebral arteries in addition 

to the CCAs. These animals have a low incidence of seizures and develop predictable 

ischemic neuronal damage (Pulsinelli and Brierley 1979). However, many of the same 

drawbacks from the bilateral CCA model are present in the 4VO, with high variability 

among species and differences in CCA occlusion times reported in the literature (Pulsinelli 

and Brierley 1979, Neto, Paganelli et al. 2005). 

Bilateral CCA stenosis (BCAS) may be a more disease-relevant variant of the CCH 

models, as there is simply a reduction of blood flow rather than a total occlusion. BCAS is 

done by placing micro-coils consecutively around the CCAs, causing around an 80% 

decrease in cerebral blood flow (Shibata, Ohtani et al. 2004). BCAS works well in mice, 

causing a decrease in brain metabolism, increased neuroinflammation, and cognitive 

impairments such as decreased working and reference memory (Nishio, Ihara et al. 2010). 
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However, due to the small size of the coils, BCAS is a technically challenging procedure 

and very few labs have been successful in performing the surgery. Therefore, despite its 

efficacy as a rodent model to study CCH, there is currently little published literature on the 

technique. 

1.5 - Animal Models of Small Vessel Disease 

Small vessel disease (SVD) causes nearly a fourth of all ischemic strokes and is a 

leading cause of vascular dementia. People with SVD often have cerebral amyloid 

angiopathy (CAA) and display deficits in information processing and motor function 

(Kalaria 2012). These cognitive impairments are often due to cerebral white matter lesions 

and subcortical lacunar infarcts (Wardlaw, Allerhand et al. 2014). Cerebral autosomal 

dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a 

form of SVD and the most common hereditary cause of vascular dementia (Chabriat, Joutel 

et al. 2009). CADASIL causes progressive white matter degeneration and ischemic strokes 

and can be exacerbated by vascular risk factors, such as high cholesterol, smoking, and 

hypertension (Singhal, Bevan et al. 2004). Nearly all CADASIL cases are caused by 

mutations in Notch homolog 3 (NOTCH3). NOTCH3 is required for the maturation and 

function of small vessels and is primarily found in vascular smooth muscle cells (Domenga, 

Fardoux et al. 2004). The mutations in NOTCH3 cause accumulation of granular 

osmiophilic material (GOM) and a NOTCH3 ectodomain on vascular smooth muscle cell 

membranes. These vascular smooth muscle cells eventually die, causing enlarged 

perivascular spaces. This in turn causes stenosis of penetrating arteries, leading to strokes 

and white matter degeneration (Okeda, Arima et al. 2002, Miao, Paloneva et al. 2004).  
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We have learned a lot about the role of NOTCH3 in cerebrovascular disease from 

NOTCH3 knockout mice. These mice are viable and develop impaired cerebrovascular 

reactivity, reduced myogenic tone, and structural arterial defects (Domenga, Fardoux et al. 

2004, Belin de Chantemele, Retailleau et al. 2008). Interestingly, NOTCH3 knockout mice 

have more than two-fold larger infarcts when compared to controls after middle cerebral 

artery occlusion. Restoring NOTCH3 expression using a ROSA NOTCH3 mouse crossed 

to an appropriate Cre line (SM22-Cre) restored the stroke phenotype by reducing infarct 

volume (Arboleda-Velasquez, Zhou et al. 2008). However, NOTCH3 knockouts do not 

develop CADASIL pathology such as white matter degeneration and lacunar strokes 

(Domenga, Fardoux et al. 2004). Additionally, these mice do not develop GOM or 

NOTCH3 accumulation. Interestingly, a knock-in mouse model using the C455R mutation 

from a large Colombian CADASIL family causes a CADASIL phenotype with more severe 

stroke pathology than the NOTCH3 knockout mice (Arboleda-Velasquez, Manent et al. 

2011). This tells us that loss-of-function NOTCH3 mutations do not solely cause 

CADASIL, but may play a larger role in stroke pathology. 

CADASIL transgenics, such as the R90C mouse, express a human NOTCH3 

mutation which causes early CADASIL onset. These mice show age-associated vascular 

smooth muscle cell loss, as seen in humans, and accumulation of the NOTCH3 ectodomain 

occurs around 10 months (Ruchoux, Domenga et al. 2003). Additionally, R90C mice 

develop diffuse white matter degeneration and subcortical infarcts in the basal ganglia and 

white matter (Utku, Celik et al. 2002). However, these mice display vascular smooth 

muscle cell changes prior to any NOTCH3 accumulation, suggesting that NOTCH3 

accumulation triggers but does not cause vascular dysfunction (Ruchoux, Domenga et al. 
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2003, Lacombe, Oligo et al. 2005). Although these models are helpful in understanding 

how vascular dysfunction occurs in people with CADASIL, and may have some role in 

elucidating broader mechanisms involved in other SVDs, they are somewhat limited in 

scope. This is a common problem with mouse models based on rare familial mutations, a 

point which we will return to below. 

1.6 - Animal Models of CAA 

CAA is an important contributor to age-related cognitive decline. The main 

hallmark of CAA is the buildup of Aβ deposits in the penetrating arterioles and capillaries 

of the leptomeninges and cortex. APP gets cleaved into Aβ peptides of differing length, 

with senile plaques primarily composed of Aβ42 and cerebrovascular Aβ mainly consisting 

of Aβ40 (Prelli, Castano et al. 1988, Suzuki, Iwatsubo et al. 1994). When neurons release 

Aβ, it is thought that Aβ42 sticks together and aggregates, while Aβ40 is flushed out of the 

brain via interstitial fluid drainage pathways (Weller, Massey et al. 1998). While further 

discussion of Aβ is outside the scope of this review, there are many outstanding reviews of 

Aβ production and clearance (Sun, Bromley-Brits et al. 2012, Zhang and Song 2013, 

Muresan and Ladescu Muresan 2015, Tarasoff-Conway, Carare et al. 2015). Over time, 

Aβ intravessel accumulation can lead to necrosis, perivascular leakage of red blood cells, 

and eventually intracerebral hemorrhages and microbleeds (Mandybur 1986, Vonsattel, 

Myers et al. 1991, Cordonnier and van der Flier 2011). Additionally, CAA contributes to 

cognitive decline and is the most common vascular pathology associated with AD, present 

in up to 90% of AD cases (Vinters 1987, Jellinger 2002). CAA is most commonly seen as 

an underlying cause of intracerebral hemorrhages, but studies show that it also plays a 

major role in age-related cognitive decline, even when subsequent AD pathology is not 
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present (2001). However, this mechanism is not well understood. CAA has been studied in 

several model systems over the years, and there are many excellent animal models of this 

disease pathology. 

Canines provide a unique resource for studying aging and dementia. Dogs show 

age-associated cognitive decline with many similarities to humans. Canines accumulate Aβ 

in both plaques and the cerebral vasculature and develop neurodegeneration from oxidative 

stress, much like humans. Additionally, they are a good model for studying possible 

therapeutics for dementia, as they share similar pharmacokinetic and pharmacodynamic 

profiles with humans. One of the largest advantages to using a canine model is that, unlike 

most animal models, they often share a common environment and diet with humans (Head 

2013). In 1956, Anton von Braunmuhl first observed that canines develop CAA (Von 

Braunmuhl 1956) and several studies have since confirmed this finding (Cummings, Su et 

al. 1993, Borras, Ferrer et al. 1999). Cognitive dysfunction and incidence of intracerebral 

hemorrhage correlates strongly with severity of CAA in both canines and humans (Uchida, 

Nakayama et al. 1991, Colle, Hauw et al. 2000). Furthermore, amyloid deposits in canines 

are primarily found in the intracellular spaces of the tunica media, similar to human CAA 

(Yamaguchi, Yamazaki et al. 1992, Walker 1997). Though canines are good models of 

CAA, there is considerable individual variability in the extent of pathology. Canines 

develop CAA by about the age of 13, but the severity of CAA varies largely, much like 

humans. Therefore, it is important to have large groups of subjects when using canine 

models (Wegiel, Wisniewski et al. 1995, Walker 1997). 

Cerebrovascular β-amyloidosis is also commonly found in non-human primates 

(NHPs), particularly in rhesus and squirrel monkeys. Rhesus monkeys commonly develop 
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amyloid deposits in the neural parenchyma at around 25 years old (Uno and Walker 1993) 

with some developing moderate CAA. This variability is similar to human CAA, though it 

is probably true that rhesus monkeys develop sporadic CAA more frequently than humans 

(Walker 1997). Squirrel monkeys, on the other hand, develop CAA by age 15. These 

monkeys more reliably develop CAA than rhesus monkeys, but unlike humans, the CAA 

is usually found in capillaries. NHPs are physiologically relevant models of human disease, 

as we are closely related and they mimic complex behaviors seen in humans. However, 

along with this close relation comes increased ethical consideration for the care and use of 

NHPs (Coleman 2011), requiring additional levels of scrutiny and justification for  

approval to ensure that their use is necessary, beneficial, and humane. Additionally, NHPs 

are costly to breed and house, particularly in aging studies, where animals require housing 

for nearly their entire lifetime (Capitanio and Emborg 2008).  

There are several transgenic mouse lines that are valid models of CAA (for a 

comprehensive review, see (Klohs, Rudin et al. 2014)). Transgenic mice with artificial 

promoters to drive APP overexpression commonly show CAA pathology, with vascular 

Aβ deposition developing at different ages depending on the mutation. Transgenic mouse 

models of CAA have taught us a lot about the role of Aβ in the progression of CAA. For 

example, APPDutch mice, which bears an APP E693Q mutation causing CAA, strokes, 

and dementia, and APP23xAPPDutch mice, which have an APP KM670/6771NL mutation 

causing a 7-fold overexpression of mutant human APP, both have a high Aβ40/42 ratio and 

develop severe CAA, indicating that Aβ40 is the form most found deposited in the 

vasculature (Herzig, Winkler et al. 2004). 
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One of the most common CAA mouse models is the Tg-SwDI mouse, which has 

the APP KM670/671NL Swedish mutation, the APP E693Q Dutch mutation, and the APP 

D694N Iowa mutation, and develops extensive amyloid deposition in the 

cerebrovasculature. These mice start displaying CAA at around 6 months and this 

pathology increases with age, eventually causing oxidative stress, neuroinflammation, 

activated astrocytes and microglia, and impairments in learning and memory (Fan, Xu et 

al. 2007, Xu, Grande et al. 2007). However, the Tg-SwDI mice largely display pathology 

in the microvessels, which is rarely the case in humans with sporadic CAA.  

Animal models of CAA are excellent models to study VCID. These studies give us 

a better understanding of how Aβ in the vasculature contributes to cognitive impairment 

and cerebrovascular disease. Further, the larger animal models, such as canines and NHPs, 

allow us to study the disease in mammals more closely related to humans than rodents. 

These animals not only share more complex physiological systems, but also have similar 

lifestyles to humans. This interaction sheds some light into how environmental factors 

contribute to CAA and VCID. However, these large animal models cannot easily undergo 

genetic modification, and require increased ethical and financial concerns. 

1.7 - Animal Models of Mixed Dementia: Interacting Disease States 

Mixed dementia describes the comorbidity of two or more dementias, the most 

common being the overlap of AD and vascular dementia (Kammoun, Gold et al. 2000). 

There are several risk factors that contribute to this mixed disease state, such as obesity, 

hypertension, and T2DM (Gorelick, Scuteri et al. 2011). Over 40 million Americans aged 

70 years or older have at least one of these risk factors, yet we know relatively little about 

how these factors contribute to cognitive decline (Roger, Go et al. 2011).  
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Cognitive impairment strongly correlates with obesity and T2DM in both rodents 

and humans. This risk is exacerbated with the presence of AD, forming a unique type of 

dementia with vascular pathology, small strokes and AD related neuropathology. 

Interestingly, people with this disease state often have lower plaque and tangle counts. It 

is thought that the presence of vascular pathology in these cases (mainly subcortical and/or 

lacunar infarcts) lowers the threshold of AD pathology required for development of 

dementia (Snowdon, Greiner et al. 1997, Schneider, Boyle et al. 2007). The presence of 

diabetes, therefore, does not change the amount of AD pathology, but rather increases 

cerebrovascular pathology leading to dementia (Ahtiluoto, Polvikoski et al. 2010, Nelson, 

Head et al. 2011). 

One of the main models for studying these interacting disease states is through 

treatment with streptozotocin (STZ), a pancreatic islet toxin. STZ damages pancreatic β 

cells, causing hypoinsulinemia and hyperglycemia (Lenzen 2008). However, STZ is 

mostly used as a model for type 1 diabetes and does not address the issue of obesity 

(Salkovic-Petrisic, Knezovic et al. 2013). Transgenic mice are a common tool for studying 

diabetes, but are limited in scope. When ob/ob mice (which are leptin deficient) are crossed 

with APP23 mice (which overexpress APP KM670/6771NL under a Thy1 promoter), the 

mice show early cognitive deficits (2-3 months) independent of amyloid pathology 

(Takeda, Sato et al. 2010). While the oldest animals (12 months) did not show any plaque 

pathology, a small number (n=3) showed significant levels of Aβ in the blood vessels. It is 

important to note, however, that in a separate study in CRND8 mice (which contain both 

the APP double Swedish mutation and the Indiana mutation), short-term leptin 

administration caused a reduction in Aβ deposition and improvements in cognitive function 
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and it is unclear how to reconcile these results with the ob/ob cross study (Greco, Bryan et 

al. 2010). The db/AD mouse, a cross between the obese and diabetic db/db mouse and the 

APP Swedish x PSEN1 L1660 knock-in mouse model of AD, is one such model of a mixed 

dementia state (Niedowicz, Reeves et al. 2014). These mice are diabetic, develop amyloid 

deposits with increasing age, have ischemic strokes and increased neuroinflammation, and 

display profound cognitive impairments at a much younger age (12 months) than the APP 

Swedish x PSEN1 L1660 knock-in mice alone. However, these mice show no signs of CAA 

or hypertension, which is unlikely in a human with mixed dementia, although this may also 

suggest that CAA and hypertension are not necessary for strokes to occur in an aging brain 

with AD pathology.  

Neuroinflammation is thought to contribute largely to AD progression and 

cognitive decline. There is an established link between activated microglia and AD (Colton 

and Wilcock 2010). This is further complicated by the presence of proinflammatory 

cytokines, which are known to contribute to neuronal loss (McGeer and McGeer 1998). 

Increased inflammation is thought to accelerate cognitive decline and is often used as a 

hallmark of neurodegeneration. A/T transgenic mice, a cross between an APP 

overproducing mouse (APP Swedish, Indiana) and the constitutively-active TGF-β1 mouse 

(TGF mice, line T64), is a mouse line that combines AD and cerebrovascular pathology. 

These mice have increased cerebral and cerebrovascular Aβ deposition, reduced 

neurovascular and neurometabolic coupling, astrocyte activation, and display cognitive 

impairment by decreased water maze performance (Papadopoulos, Rosa-Neto et al. 2013). 

However, these mice show delays in cognitive decline compared to the APP 

overexpressing mice alone, indicating that TGF-β may play some sort of neuroprotective 
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role. Additionally, these mice develop cerebrovascular pathology that is unique to the 

increased activity of TGF-β and the mechanism behind this is not fully understood (Ongali, 

Nicolakakis et al. 2010). 

It is now widely accepted that there is a link between high fat diets and cognitive 

decline in the elderly population. The Rotterdam study, a population-based cohort recruited 

to study diseases in the elderly, showed a strong link between dementia with a vascular 

component and total and saturated fat levels, also confirmed in rodent models (Kalmijn, 

Launer et al. 1997). Mice fed high fat diets have expected metabolic issues in addition to 

high oxidative stress, impaired cognition, increased inflammation, and decreased BDNF 

levels (Morrison, Pistell et al. 2010, Pistell, Morrison et al. 2010). Rats fed diets high in 

saturated fats and sugar showed cognitive deficits accompanied by increased BBB 

permeability (Davidson, Monnot et al. 2012).  

Studies show changes in the cerebrovasculature of animals fed a high fat diet 

(Freeman, Haley-Zitlin et al. 2014). However, there is a discrepancy in the field for the 

percentage of lard used in a high fat diet. The typical western diet consists of 40% lard, but 

studies have shown that cerebrovascular changes only occur when a 60% lard diet is used 

(Morrison, Pistell et al. 2010, Pistell, Morrison et al. 2010). Additionally, these models are 

independent of amyloid pathology and only account for a specific lifestyle risk of dementia. 

While there is a large amount of literature on obesity and diabetes in the context of high 

fat diets, there is little available on the effect of high fat diets on brain aging (Uranga, 

Bruce-Keller et al. 2010). The literature contains conflicting reports on whether high fat 

diets actually promote or accelerate brain aging and there are currently no comprehensive 

studies on what metabolic parameters promote brain aging. 
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Homocysteine (Hcy) is a methionine-derived amino acid that is linked with 

cardiovascular disease. Methionine synthase maintains normal Hcy levels and uses vitamin 

B12 and folate as cofactors to remethylate Hcy back to methionine (Ansari, Mahta et al. 

2014). Elevated levels of Hcy, known as hyperhomocysteinemia, are strongly associated 

with cardiovascular and various neurologic diseases (Farkas, Keskitalo et al. 2013). Studies 

suggest that these elevated levels are toxic to endothelial cells and cause other disruptions, 

such as platelet adhesion, suppression of heparin sulfate expression, and several others  

(Selhub 1999). Dietary intake of methionine, folate, and vitamin B12 determine levels of 

Hcy, so hyperhomocysteinemia is modifiable by diet (Huang, Chang et al. 2003). 

Deficiencies in folate and vitamin B12 are known to be a cause of stroke and data shows 

that dietary folate fortification reduced levels of stroke in the United States and Canada 

(Yang, Botto et al. 2006). 

 Mice that are put on a hyperhomocysteinemic diet (folate and B12 deficient with 

excess methionine) show cognitive decline, high microhemorrhage counts, increased 

neuroinflammation, and elevated matrix metalloproteinase levels, indicative of BBB 

breakdown (Sudduth, Powell et al. 2013). However, B-vitamin deficiencies can cause 

cognitive impairment, so it is unclear whether the B-vitamin deficiency or the 

hyperhomocysteinemia itself causes the cognitive decline shown in these animals (Moore, 

Mander et al. 2012). Additionally, although hyperhomocysteinemia is a known risk factor 

of stroke (Kelly and Furie 2002) and correlates strongly with AD (Seshadri, Beiser et al. 

2002, Ravaglia, Forti et al. 2005), this is an independent risk factor for disease and by no 

means represents the majority of VCID cases. Further, hyperhomocysteinemia is toxic to 
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neurons (Parsons, Waring et al. 1998, Sachdev 2005), which may argue that rodents put on 

the diet show cognitive decline from toxicity effects and not from VCID. 

Although risk of developing both hypertension and dementia increases with age, 

hypertension is a major risk factor for dementia independent of age. The Honolulu Asia 

Aging Study examined 3703 men starting midlife and followed up with them for the next 

26 years (Launer, Ross et al. 2000). This study showed a strong correlation between middle 

aged men with untreated hypertension and both AD and vascular dementia. Several other 

longitudinal studies show correlations between high blood pressure and dementia (Kuller, 

Lopez et al. 2003, Qiu, von Strauss et al. 2003, Li, Rhew et al. 2007). It is thought that 

chronic high blood pressure causes vessel wall thickening and reduction in microvessel 

diameter (Kennelly, Lawlor et al. 2009). Additionally, plaques in the larger cerebral 

arteries can rupture, causing complete blockage of arteries and infarcts in the surrounding 

tissue (Swales 1994).  

The most popular model for studying hypertension is the stroke prone 

spontaneously hypertensive rat (SHRSP). These rats are normal at birth and develop high 

blood pressure as they age. This eventually leads to ischemic lesions in the cortex and basal 

ganglia (Yamori, Horie et al. 1976). Additionally, these hypertensive rats perform poorly 

on learning and memory tests and worsen post-stroke. Vessel occlusion surgery in SHRSP 

has been shown to cause an even more exaggerated vascular phenotype, with white matter 

lesions, hardening of vessel walls, BBB breakdown, and increased neuroinflammation 

(Fredriksson, Auer et al. 1985, Henning, Warach et al. 2010) It is very important to 

carefully observe SHRSP, as they often develop paralysis due to the ischemic strokes 

which is easily misinterpreted as muscle weakness or cognitive decline (Venkat, Chopp et 
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al.). Overall, these rats are important for studying the influence of hypertension on vascular 

pathology, a known risk factor of VCID in humans. 

1.8 - Conclusions 

As people in the developing world are living longer, our aging population is 

increasing. Given that cognitive impairment is a common condition in the elderly, the 

incident rates of dementia will increase drastically within the next 50 years. Understanding 

of the common causes of dementia, such as AD and VCID, has come a long way in the last 

10 years. However, there is still a great deal that we do not know about different types of 

cognitive impairments. This review has focused on VCID and the current models that we 

have for understanding this heterogeneous disease state.  

Currently, there are no definitive guidelines for diagnosing VCID. While there are 

several recommendations for physicians, there is a general lack of consistency in stroke 

counts and type, location of vascular injury, along with several other thresholds to 

determine if VCID is present. The molecular and cellular basis for how lifestyle factors 

influence vascular injury, particularly in white matter, remains unknown. Understanding 

how risk factors influence disease would be helpful for developing potential therapeutics 

to treat different aspects of VCID. We have a general understanding of the roles that 

hypoperfusion, the neurovascular unit, and inflammation play in cerebrovascular injury in 

animal models. Yet this understanding has not yet led to any viable therapeutic targets. As 

we develop better models of VCID, we will have a more complete understanding of the 

disease state and the best way to treat it. 
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While we have several useful animal models to model certain aspects of VCID, 

none of them are able to fully model VCID, which encompasses several spectrums of 

pathological markers. This gap in the literature stalls the development of therapeutics and 

hinders our understanding of VCID. However, the broad definition of VCID will likely 

mean that there will never be an all-encompassing model of the disease state. Current and 

future VCID models will likely tackle different aspects independently, resulting in slow 

pathways to VCID treatments..  

The goal of this dissertation is to examine cerebrovascular contributions to aging 

in an animal model of VCID. We hypothesize that by investigating gene expression 

patterns in animal models of VCID, we be able to better understand the factors involved in 

VCID and eventually create more specific definitions and models for each individual 

disease state. This would create an opportunity for the development of therapeutics and 

treatments for VCID in an aging population. 
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Figure 1.1. AD senile plaques and neurofibrillary tangles in DS.   

 

Neurofibrillary tangles (arrows – PHF-1 immunostaining) and neuropil threads 

(arrowheads) can be observed in the frontal cortex of a 46-year old female with DS (A).  

Aβ plaques (brown deposits – immunohistochemistry using an anti-Aβ42 antibody- 

arrowheads) are present in the space between neurons and neurofibrillary tangle bearing 

neurons (blue using anti-PHF-1 immunohistochemistry– arrows) in the frontal cortex of a 

46-year old female with DS (B). Diffuse plaques are large amorphous deposits of Aβ that 

can show “holes” where intact neurons can be found in a 48-year old female with DS  

(arrow – immunohistochemistry with anti-Aβ42 antibody)(C).  Compact or dense core 
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(arrow) Aβ plaques are observed in the frontal cortex of a 54-year old female with DS (anti-

Aβ42 antibody) (D). 

 

 

Figure 1.2: Elements of VCID Pathology 

 

A large majority of cases of dementia can be attributed to AD, cerebrovascular 

pathology, or a combination of the two. Although the relative importance and placement 

of different aspects of pathology along this continuum are debatable, it is clear that cases 

of both pure AD and vascular dementia are relatively rare, and that most cases of 

dementia will display elements of both. 
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Chapter 2: Sodium Hydrogen Exchanger 1 (NHE1) Increases in Response to 

Injury and in a Mouse Model of Alzheimer’s Disease with Vascular Complications 

2.1 - Introduction 

While the AD field has largely focused on plaque and tangle pathology over the 

years, there is a growing interest in the impact of cerebrovascular pathology on 

Alzheimer’s disease, known as vascular contributions to cognitive impairment and 

dementia, or VCID (Gorelick, Scuteri et al. 2011). Our lab developed a novel animal 

model of VCID, which are morbidly obese, glucose intolerant, insulin resistant, and 

develop amyloid and tau pathology (Niedowicz, Reeves et al. 2014, Platt, Beckett et al. 

2016). These mice were derived following the observation made by our lab (Niedowicz, 

Studzinski et al. 2013) and others (Fewlass, Noboa et al. 2004, Lieb, Beiser et al. 2009) 

that leptin signaling may be connected to the development of late-life dementia. For 

instance, it is possible that the well-known link between obesity, T2DM, and dementia 

(Luchsinger and Gustafson 2009) is connected to this phenomenon. We created this 

mouse line, which we call db/AD, by crossing the diabetic db/db mice (Chen, Charlat et 

al. 1996), which have a deficient leptin receptor, and the APPΔNL/ΔNL × 

PS1P264L/P264L knock-in model of AD (Reaume, Howland et al. 1996, Siman, Reaume et 

al. 2000, Murphy, Beckett et al. 2007, Niedowicz, Studzinski et al. 2013). The db/AD 

mice also display profound cognitive impairment and develop cerebrovascular pathology, 

including aneurysms, and microhemorrhages (Niedowicz, Reeves et al. 2014). We 

hypothesize that the cerebrovascular pathology is the primary driver of cognitive 

impairment in these mice. 
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As mentioned in the overall introduction, animal models of VCID are uncommon, 

and have substantial limitations. Nonetheless, we reasoned that we could use such a model 

to elucidate the underlying mechanism(s) that might connect some of these processes. We 

identified the SLC9A1 gene (which encodes the Na+/H+ exchanger, NHE1 (Hendus-

Altenburger, Kragelund et al. 2014)), as a possible candidate molecule, and one that has 

legitimate therapeutic potential. NHE1 is the most abundant isoform of the NHE family in 

the central nervous system (Ma and Haddad 1997, Douglas, Schmitt et al. 2001) and is 

crucial in maintaining intracellular pH. NHE1 is a transmembrane, cell surface protein 

regulated by sensing the internal environment and is activated by various stimuli, such as 

acidification of the cell, osmotic shrinkage, growth factors, hypoxia, and mechanical stress 

(Luo and Sun 2007). While the main function of NHE1 is as a pH regulator, NHE1 has 

several other functions, including maintaining cell volume and cell motility (Valles, 

Bocanegra et al. 2015). NHE1 has been primarily explored as a target in myocardial 

infarction (Karmazyn 2013), although there has been a recent body of research exploring 

its role in ischemic damage, including that from stroke (Leng, Shi et al. 2014, Uria-

Avellanal and Robertson 2014). 

2.2 – Materials And Methods 

2.2.1 - Mice 

All animal work was approved by the University of Kentucky Institutional Animal 

Care and Use Committee (IACUC), and was performed in accordance with PHS 

guidelines. All procedures were performed under conditions designed to minimize pain and 

distress. The University of Kentucky is an Association for Assessment and Accreditation 

of Laboratory Animal Care (AAALAC) approved institution, and follows the current 
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version of the Guide for the Care and Use of Laboratory Animals (8th Edition), as adopted 

by the Office of Laboratory Animal Welfare (OLAW). Animals were maintained in a 

temperature controlled facility, under standard 12:12 light:dark conditions. A subset of 

animals, including C57BL/6 mice and db/AD and WT mice, obtained from Adam 

Bachstetter, were subjected to a single closed head injury (CHI), as described (Webster, 

Van Eldik et al. 2015, Bachstetter, Zhou et al. 2016). Briefly, mice were anesthetized with 

5% isoflurane and isoflourane was continuously delivered during surgey via nosecone. A 

midline craniotomy was performed via trephination midway between bregma and lambda. 

An injury hub with a modified Luer-Lock hob (BD Biosciences) was affixed using 

cyanoacrylate gel and dental acrylic (Hygenic Corp., Akron, OH). Mice were recovered 

for 12-14 hours and re-anesthetized with isoflurane. The injury hub was attached to the 

male end of the fluid percussion device (Custom Design and Fabrication, Virginia 

Commonwealth University, Richmond, VA). The pendulum was released onto the fluid 

filled piston, resulting in an injury of moderate severity (1.2±0.05 atm). Sham mice were 

subjected to the exact same experimental design described above, except the pendulum was 

not released onto the piston. 

2.2.2 - Microarray 

Frozen hemi-brains from young WT (n=2 M/ 3 F; age=3 months), db (n=3 M / 2 F; 

age=3 months), AD (n=1 M / 4 F; age=3 months), and db/AD mice (n=3 M / 2 F; age= 3 

months) were homogenized in 1 mL of TRIzol Reagent (Invitrogen) followed by 

phenol/chloroform extraction and ethanol precipitation, as per the manufacturer’s 

instructions. RNeasy cleanup columns (Qiagen, Valencia, CA) were run for each sample. 

RNA was quantified using the Biospec nano spectrophotometer and 100 ng of RNA in 5 
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ul RNase-free water were sent to the Microarray Core Facility at the University of 

Kentucky, where RNA was run on Affymetric Mouse Gene 2.0 array cards. Data was 

corrected for FDR using Hochberg’s step-up procedure and genes were associated with 

annotated information on the Patrick Genomics Suite Program. 

2.2.3 - Quantitative RT-PCR 

We used quantitative RT-PCR to verify some of the gene changes we saw in the 

microarray. We used RNA from young WT (n=2 M / 3 F; age=3 months), db (n=3 M / 2 

F; age=3 months), AD (n=1 M / 4 F; age=3 months), and db/AD mice (n=3 M / 2 F; age= 

3 months) and older WT (n=4 M / 4 F; age=12 months), db (n=2 M / 2 F; age=12 months), 

AD (n=2 M / 2 F; age=12 months), and db/AD mice (n=6 M / 7 F; age=12 months).  RNA 

was converted to cDNA using the cDNA High Capacity Kit (ThermoFisher) according to 

the manufacturer’s instructions. Taqman probes (ThermoFisher) were used for six gene 

targets: Serpina3n, Slc38a6, Cntnap2, CYP4X1, Slc9a1, Chga. RT-PCR was performed 

using the Fast TaqMan Gene Expression assay (ThermoFisher). In each well of a 96-well 

plate, 0.5 µl cDNA (100 ng, based on the RNA concentrations) was diluted with 6.5 µl 

RNase-free water. One microliter of the appropriate gene probe was added along with 10 

µl of Fast Taqman to each well. Target amplification was performed using the ViiA7 

(Applied Biosystems). All genes were normalized to 18s rRNA, and the fold change was 

determined using the -∆∆Ct method (Livak and Schmittgen 2001).  

2.2.4 - Western Blot Analysis 

Frozen hemibrains were homogenized using a PowerMax Advanced 

Homogenizing System 200 (VWR, Batavia, IL) in RIPA buffer supplemented with 

protease inhibitor cocktail with EDTA (PIC; Amresco, Solon, OH). Whole tissue 
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homogenate was centrifuged at 200 x g for 15 minutes to pellet insoluble material, followed 

by an additional spin at 20,8-00 x g for 30 minutes at 4 °C. The protein concentrations of 

the supernatants were determined by bicinchoninic acid assay (Pierce, Rockford, IL). 

Twenty µg of protein was loaded onto 4-12% Bis-Tris Criteron gels (Bio-Rad; Hercules, 

CA) and separated via SDS-PAGE in MOPS running buffer (Bio-Rad; Hercules, CA). The 

gels were then transferred to a 0.2 µm nitrocellulose membrane (BioRad; Hercules, CA) 

and blocked overnight in PBS with 1% bovine serum albumin and 2% BlockAce (AbD 

Serotec, Raleigh, NC). Blots were probed with mouse NHE-1 antibody (BD Transduction 

Laboratores, 1:1000), NHE1 (Abcam, 1:1000), Actin (AC15, Sigma, 1:500), β-tubulin 

(Abcam, 1:1000), and pTau (AT8, Pierce, 1:500) and then probed with HRP-conjugated 

goat anti-mouse  secondary antibody (ThermoFisher, 1:15,000). Membranes were then 

incubated with SuperSignal West Dura chemiluminescent substrate  (Pierce) and exposed 

to film. Films were developed and densitometric analysis was performed using Image J 

software (NIH, www.imagej.net), using actin and tubulin as covariates. 

2.2.5 - Mouse NHE-1 ELISA  

NHE-1 levels in mice were measured quantitatively by sandwich ELISA using a 

commercially available kit (Cloud-Clone Corp.; Houston, TX) following manufacturer’s 

instructions. RIPA extracts (see above for extraction protocol) from young (2-4 months) 

and older (9-14 months) WT (n=3 M / 9 F young, n=7 M / 4 F old), db (n=5 M / 8 F young, 

n=4 M / 4 F old), AD (n=7 M / 9 F young, n=4 M / 4 F old), and db/AD (n=8 M / 7 F 

young, n=4 M / 4 F old) mice were diluted 1:1000 to load 13 mg/mL in each well. 

Absorbance was measured at 450 nm using a multiwall plate reader (BioTek, Winooski, 

VT).  

http://www.imagej.net/
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2.2.6 - Immunohistochemistry 

Formalin fixed db/AD mice hemibrains, WT mice hemibrains, and frontal cortex 

(FC) tissue from human AD cases were sectioned at 50 microns on a Vibrating Blade 

Microtome (Leica Biosciences; Buffalo Grove, IL) and stored in PBS with 0.05% NaN3. 

Immunohistochemistry was performed using NHE-1 (BD Transduction Laboratories, 

1:5000), 6E10 (Sigma-Aldrich, 1:1000) to stain for Aβ, and PHF-1 (courtesy of Dr. Peter 

Davies, 1:100) to stain for NFTs/tau pathology, with 3,3’diaminobenzidine (DAB; Vector 

Laboratories, Burlingame, CA). Slides were coverslipped with DPX Mountant (Sigma-

Aldrich). 

2.2.7 - Spot Blot Analysis 

RIPA extracts (see above for extraction protocol) from young (2-4 months) and old 

(9-14 months) WT (n=3 M / 9 F young, n=8 M / 6 F old), db (n= 5 M / 9 F young, n=6 M 

/ 4 F old), AD (n=7 M / 9 F young, n=5 M / 5 F old), and db/AD (n=8 M / 7 F young, n=4 

M / 4 F old) mice were diluted in PBS to 10 µg/mL. 100 µl of extract was loaded for a total 

of 1 µg of protein per spot on spot blot apparatus. Protein was vacuumed onto a 

nitrocellulose membrane and blocked in PBS with 1% bovine serum albumin and 2% 

BlockAce (AbD Serotec, Raleigh, NC) overnight. Spot blots were probed for NHE-1 (BD 

Transduction Laboratories, 1:1000), AT8 [26-29] for pSer202/pThr205 tau (Pierce, 

Rockland, Illinois, 1:1000), β-tubulin (Abcam, 1:1000) and then with HRP-conjugated 

rabbit anti-mouse (Rockland, 1:15,000) and donkey anti-rabbit (1:15,000), respectively.  

2.2.8 - Cell Culture 

Chinese hamster ovary (CHO) cells stably transfected with human βAPP 695WT, 

CHO2B7 (Murphy, Uljon et al. 2000, Haugabook, Yager et al. 2001) (Mayo Clinic) were 
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cultured in Ham’s F-12 medium (Life Technologies, Inc) with 10% fetal bovine serum, 1% 

penicillin/streptomycin, and maintained with 200µg/mL Zeocin (Invitrogen, Carlsbad, 

CA). H4 neuroglioma cells over-expressing Swedish mutant APP (APPΔNL695), H4 15x 

APP (Kukar, Murphy et al. 2005) (Mayo Clinic), were cultured in OptiMEM (Invitrogen, 

Carlsbad, CA) with 10 % fetal bovine serum, 1% penicillin/streptomycin, and maintained 

with Hydromycin (Life Technologies, Inc).  Both cell types were treated with the NHE1 

inhibitor Amiloride (Sigma-Aldrich) and Chloroquine (Sigma-Aldrich), which disrupts 

lysosomal pH, as a positive control (Chu, Tran et al. 1998). We treated cells with 10 µM 

Amiloride, 1 µM Amiloride, and 10 µg Chloroquine, and ddH20 (as a negative control) for 

24 hours. Separately, we tested the effect of a more specific inhibitor of NHE1, Cariporide 

(Sigma-Aldrich)(Masereel, Pochet et al. 2003), along with Amiloride and Chloroquine, on 

the CHO2B7 cells to evaluate if one drug altered Aβ levels more than the other. We treated 

the CHO2B7 cells with 1, 10, and 100 µM of Amiloride, 0.1, 1, and 10 µM of Cariporide, 

and 10mg µg of Chloroquine.  After treatment, conditioned media was collected, and 

EDTA was added to a final concentration of 5mM to inhibit Aβ degradation (Beckett, 

Niedowicz et al. 2010). Secreted Aβ40, Aβ42, and total Aβ was measured by ELISA, as 

previously described (Kukar, Murphy et al. 2005, McGowan, Pickford et al. 2005).  

2.2.9 - ELISA on Human Cases 

We obtained frozen tissue samples with different types of neurodegenerative 

pathology from the superior and middle temporal gyri (SMTG) and the FC. SMTG cases 

were kindly provided by the University of Kentucky Alzheimer’s Disease Center and FC 

cases were provided by Dr. Elizabeth Head. Tissue was homogenized using a PowerMax 

Advanced Homogenizing System 200 (VWR, Batavia, IL) in RIPA buffer supplemented 



33 

 

with protease inhibitor cocktail with EDTA (PIC; Amresco, Solon, OH). Whole tissue 

homogenate was centrifuged at 200 x g for 15 minutes to pellet insoluble material, followed 

by an additional spin at 20,8000 x g for 30 minutes at 4 °C. Samples were diluted 1:1000 

to load 13 mg/mL in each well of a commercially available kit (Cloud-Clone Corp.; 

Houston, TX) following manufacturer’s instructions. We also measured Aβ40 and Aβ42 in 

these cases using an ELISA, as previously published (Beckett, Niedowicz et al. 2010). 

Briefly, monoclonal antibody Ab9 (human sequence Aβ1-16) was used for capture. 

Antigen detection was performed using biotinylated antibodies 13.1.1 (for Aβ40) and 12F4 

for Aβ42, followed by Neurtravid-HRP (Pierce Biotechnologies, Rockford, IL). Absorbance 

for all ELISAs were read at 450 nm using a multiwell plate reader (BioTek, Winooski, 

VT). 

2.3 - Results 

2.3.1 - Microarray and Quantitative RT-PCR 

To measure gene expression changes in our db/AD mice, we performed an 

Affymetrix 2.0 microarray, which measures changes in more than 35,000 transcripts. We 

identified over 200 genes that were significantly different across genotypes, but did not 

find any major differences in pathways using the Patrick Genomics Suite Program. 

However, using the annotated information in the software package, we identified a subset 

of genes that we found particularly interesting, given their role in neurodegeneration and 

vascular abnormalities (Table 2.1). We performed qRT-PCR follow-up on a subset of 

these: Serpina3n, Slc38a6, Cntnap2, CYP4X1, Slc9a1, and Chga. We chose these six 

because of their novelty, therapeutic potential, and connection to cerebrovascular 

pathology, which may provide explanation to the pathology and cognitive decline we 
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examine in our db/AD mice. We used tissue from both 3 month and 12 month old mice, to 

evaluate potential age differences in the selected genes (Figure 2.1). We ran a multivariate 

ANOVA for age, gender, AD genotype (animals with APPxPS1 knock-in), and db 

genotype (leptin receptor-deficient mice) for all genes tested. We found a significant 

overall effect of AD on Serpina3n expression (F(1,42)=9.983, p<0.004) (Figure 2.1A). We 

also found a significant AD interaction in Slc38a6 expression (F(1,42)=11.662, p<0.002), 

along with an overall difference in expression driven by age (F(1,42)=21.484, p<0.001) 

(Figure 2.1B). While we didn’t find any significant genotype differences in Chga 

expression, we did see an overall effect of age (F(1,42)=78.481, p<0.001), showing a 

significant increase in Chga expression in the older animals (Figure 2.1C). For Cntnap2 

expression, we saw an overall effect of age (F(1,42=40.378, p<0.001), with an increase in 

expression occurring with age (Figure 2.1D). We saw an overall significant decrease in 

CYP4X1 expression with age (F(1,42)=34.571, p<0.001) and a significant db by AD by 

age interaction (F(1,42)=4.772, p<0.04) (Figure 2.1E). While many genes were potentially 

interesting, we chose to focus on SLC9A1 (encoding the Na+/H+ exchanger, NHE1 

(Hendus-Altenburger, Kragelund et al. 2014)). The qRT-PCR f showed an increase in 

SLC9A1 expression attributed to both the db (F(1,42)=5.280, p<0.03) and AD 

(F(1,42)=21.564, p<0.001) genotypes, as well as a db by AD by age interaction 

(F(1,42)=19.294, p<0.0001) (Figure 2.1F).  

2.3.2 - NHE1 Expression in Mice 

To determine whether NHE1 changed at the protein level, we ran an ELISA on a 

large group of younger and older mice (n=89), including all genotypes. We ran an 

ANOVA examining the interactions between age and animals with an AD genotype 
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(animals with APPxPS1 knock-in) and db genotype (leptin receptor-deficient mice). We 

found a significant age effect (F(1,87)=9.154, p<0.003)(Figure 2.2), with NHE1 levels 

decreasing with age. We did not find any significant genotype differences. However, 

when we ran an ANOVA to examine differences between all four genotypes on only the 

old mice, we saw a modest, yet significant (F(3,34)=2.849 p<0.05), increase in NHE1 

protein levels in the db/AD mice compared to wild type mice. We did not find any 

significant group differences in the younger mice (F(3,54)=0.654, p=0.584). These data 

suggest that genotype differences may either develop or become more pronounced with 

increasing age. 

2.3.3 - NHE1 and Amyloid Beta 

As a regulator of intracellular pH (Chesler 2003), we chose to focus on the 

potential impact of NHE1 on APP processing. β-Site APP-cleaving enzyme (BACE), is 

the rate-limiting enzyme involved in Aβ production (Vassar, Kovacs et al. 2009). BACE 

is a pH sensitive enzyme, operating optimally at an acidic pH. Therefore, BACE is 

primarily found in acidic compartments, such as endosomes and trans-Golgi. Although 

we initially thought that this mechanism was unlikely given the cellular localization of 

NHE1, a previous publication found that Amiloride, an inexpensive potassium-sparing 

diuretic and NHE1 antagonist, is a potent inhibitor of Aβ (Wang, Ho et al. 2007). We 

hypothesized that NHE1 may plays a role in cognitive impairment through APP 

processing by modulating AD-related enzymes, β-secretase and γ-secretase. However, we 

did not see any significant differences in the levels of Aβ42, Aβ40, nor total Aβ with either 

concentration of Amiloride used in either cell line (Figure 2.3A). Interestingly, we also 

did not see any significant differences in Aβ with the Chloroquine treated cells, indicating 
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that Chloroquine does not work as a positive control in these cells lines. We did not find 

any significant differences in the levels of Aβ42 with either the Amiloride (Chi-

square=4.834, p=0.184) (Figure 2.3B) or Cariporide (Chi-square=0.567, p=0.904) (Figure 

2.3C) treatment on the CHO2B7 cells.  

We followed this up with immunohistochemistry (IHC) with an NHE1 antibody 

and a double label with NHE1 and Aβ in human AD tissue. The NHE1 antibody showed 

labeling of both the cerebrovasculature and neurons. The no primary control did not show 

any positive labeling and our western blots probed with this antibody were clean, 

indicating specificity of our NHE1 antibody (e.g. Figure 2.2A). The co-label showed 

some co-localization of NHE1 with Aβ in some CAA affected vessels (Figure 2.3D), 

although this was inconsistently observed.  

2.3.4 - NHE1 and Tau 

In the db/AD mice, we consistently observe a modest, but significant increase in 

tau phosphorylation at several epitopes (Niedowicz et al, 2014; Platt et al, 2016). 

Additionally, when mice are injected with adeno-associated virus (AAV) mutant tauP301L, 

we detect a significant increase in tau pathology (Platt, Beckett et al. 2016). Given that 

NHE1 is tethered to the cytoskeleton and has a major role in regulating cell shape  

(Denker, Huang et al. 2000, Hendus-Altenburger, Kragelund et al. 2014, Valles, 

Bocanegra et al. 2015), we hypothesized that might be an underlying connection between 

an increase in NHE1 and the microtubule associated protein, tau. We performed a spot 

blot in a large sample of our mice to test this hypothesis, and found a strong positive 

correlation between NHE1 and phosphorylated tau (R2=0.27, p<0.0001) (Figure 2.4A). 
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Additionally, a double label IHC shows neurofibrillary tangles in some NHE1-positive 

neurons, although there did not appear to be an obvious pattern (Figure 2.4B). 

Interestingly, NHE1 has been reported to be unregulated following traumatic 

axonal injury (Yang, Xie et al. 2006), a well-known and accepted basis for the 

development of tau pathology in both humans and in animal models (McKee, Stein et al. 

2015, Ojo, Mouzon et al. 2016). We performed two studies to address this, using head 

trauma mice courtesy of Adam Bachstetter. WT mice that had been subjected to a single 

CHI, and allowed to survive out to two months, showed significant increases in NHE1 

(F(1,12)=100.888, p<0.001) and pTau (F(1,12)=12.201, p<0.01) expression (Figure 

2.4C). Next, in an attempt to better understand the time course of these changes and to 

observe any genotype differences, we evaluated a set of WT versus db/AD mice at just 

one day post-injury. We ran an ANOVA with β-tubulin as a covariate and observed an 

increase in NHE1 expression following head injury in both the WT and db/AD mice 

(F(1,19)=5.139, p=0.039) (Figure 2.4D-E). Further, the db/AD mice had consistently 

higher levels of NHE1 compared to WT mice, both before and after injury 

(F(1,10)=7.608, p=0.015).  

2.3.5 - NHE1 Expression in Human Cases 

In order to understand how NHE1 relates to neurodegenerative diseases in 

humans, we ran a large number of human cases from the SMTG and FC regions (Table 

2.2). We were able to correlate NHE1 levels with several measures of pathology that 

were taken at autopsy in the SMTG cases. In both regions, we were able to correlate 

NHE1 levels to Aβ levels.  
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In the SMTG, we did not find any significant group differences in NHE1 levels 

(Table 2.2). We also did not find a significant correlation between NHE1 and total 

infarcts (p=0.681) (Figure 2.5A), CAA (p=0.189) (Figure 5B), arteriosclerosis (p=0.629), 

microinfarcts (p=0.684) (Figure 2.5C), nor mini mental score exam (MMSE) to measure 

cognition (p=0.834) (Figure 2.5D). We did find a marginally significant correlation 

between NHE1 and Aβ42 levels (p=0.048), but did not find a significant correlation with 

Aβ40 (p=0.572) (Figure 2.5E). 

We did not find any significant group differences in NHE1 levels in the FC cases. 

We also did not find any significant correlation between NHE1 and Aβ40 or Aβ42 in the 

control nor DS cases. However, we did find that NHE1 decreases significantly with age 

in individuals with DS (p=0.033) (Figure 2.5F).  

2.4 - Discussion 

We have shown through various methodologies that NHE1 expression, both at the 

mRNA and protein level, increases in our db/AD mice. This increase is modest, but 

consistently significant. We found this to be a novel target to follow, given that NHE1 is 

thought to be a mediator of post-ischemic damage, and might therefore be related to the 

development of CVD in both this mouse line, and in humans. 

Neuron health depends on efficient H+ efflux mechanisms, as intracellular 

acidosis impacts neuron excitability. Therefore, over-stimulation of NHE1 has been 

implicated as a major cause of cell death following an ischemic event. Under non-

ischemic conditions, NHE1 opens as the H+ concentration increases in the cytosol, 

allowing Na+ to flow into the cell, reversing the acidity of the cell. However, when there 

is a reduction in blood flow (such as during ischemia), oxygen levels are not sufficient to 
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maintain ATP levels. As ATP stores are depleted, lactate, pyruvate, and protons 

accumulate within the cell, causing hyperacidfication of the cells. This causes NHE1 to 

become over-activated and Na+ to rapidly rushing into the cell. The high concentration of 

Na+ then causes a reversal of Na+ / Ca+2 exchange, leading to excess Ca+2 buildup in the 

cell. The excess Ca+2 accumulation causes a cascade of cell-damaging actions that 

eventually results in cell death (Siesjo 1992).   

Not surprisingly, both the genetic (Luo, Chen et al. 2005, Wang, Luo et al. 2008) 

and pharmacologic (Hwang, Yoo et al. 2008) reduction of NHE1 has been shown to be 

neuroprotective following ischemic stroke.  Additionally, an NHE1 inhibitor, Amiloride, 

is a potassium-sparing diuretic used in the management of hypertension in congestive 

heart failure since 1967. Amiloride is on the “WHO list of Essential Medicines”, and is 

both widely available and inexpensive. Therefore, if NHE1 really is implicated in 

neurologic disease, the implications for the treatment of dementia in both the developed 

and developing world are incredibly significant. 

Initially, we hypothesized that this increase in NHE1 is due to increases in Aβ, 

since NHE1 is regulates intracellular pH (Chesler 2003) and Aβ production is linked to 

pH through BACE (Vassar, Kovacs et al. 2009). However, the cell culture experiments 

did not show a significant change in Aβ production when cells were treated with two 

different types of NHE1 inhibitors (Figure 2.3A-C). Additionally, we only saw a 

marginally significant correlation between Aβ42 and NHE1 in the SMTG region in human 

cases, but did not find any correlation with Aβ40 or any significant correlations in the 

frontal cortex (Figure 2.5E). Therefore, the weight of the available evidence indicates that 
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there is no reason to believe that NHE1 is related to amyloid pathology, or Aβ 

production. 

Despite not finding a connecting with Aβ, we have gathered some significant 

evidence to indicate a possible link between levels of tau phosphorylation and NHE1. We 

consistently see NHE1 and phosphorylated tau levels highly correlated in our db/AD 

mice (Figure 2.4A). This is further supported by evidence showing an increase in both 

NHE1 and phosphotau following head injury in the db/AD animals (Figure 2.4E). It is 

possible that NHE1 and phosphotau increase together when there is a change in cell size 

or shape due to injury. This change in membrane curvature causes NHE1 to interact with 

the cytoskeleton. Because tau’s primary function is to serve as a microtubule stabilizing 

protein, NHE1 and tau are likely coordinated through this cytoskeletal interaction.  

However, at this time we are unsure of the significance of a coordinated increase in 

NHE1 and tau phosphorylation. Our immunohistochemistry data shows that there are tau 

neurons that are NHE1 positive, but this is not a consistent feature in human AD tissue 

(Figure 2.4B). However, it is possible that because we are only looking at a small section 

of cortex, that we are missing a possible interaction. It is also possible that what we are 

seeing in the db/AD and WT mice is different from what we observe in the human cases. 

For instance, the increase in phosphotau in the mice is not the same form of tau that is 

found in NFTs in human brain, which represents a different pool of pathologic (insoluble) 

tau.  

The role of NHE1 in VCID, if any, remains unknown. We did not see any 

correlation between NHE1 levels and markers of cerebrovascular pathology in our human 

cases. However, it is possible that there is a localized upregulation in NHE1 following 



41 

 

injury, which perhaps is getting lost in our tissue homogenate. A review of several human 

trials involving NHE1 inhibitors to treat cardiac ischemia and recovery shows 

disappointing outcomes (Avkiran, Cook et al. 2008). However, it is unclear if this is 

because the inhibitors are not being given at the proper time (during ischemia or 

reperfusion) or if NHE1 inhibitors are not as effective in humans as they have been in 

animal models (Murphy and Allen 2009). A recent study in canines found that an NHE1 

inhibitor did not reduce infarct size, nor protect against ischemia-reperfusion injury 

(Kingma 2018), so it is possible that NHE1 inhibitors are not a viable treatment option 

for ischemia-reperfusion in larger mammalian systems, like canines and humans.  

However, our own studies are largely correlative. Experiments in either NHE1 knockout 

mice, or through the administration of an NHE1 inhibitor to db/AD mice, will be 

necessary in order to determine if there may yet be a viable connection between NHE1 

and neuropathology. 

However, as we attempted to extend these studies into human cases, it became 

abundantly clear that there was no established form of VCID pathology that we should be 

using in order to evaluate the relationship between NHE1 and cerebrovascular disease. 

One of the possibilities we considered when evaluating our large amount of negative data 

in the human cases was simply whether or not this might be because we did not know 

what, exactly, it was that we were looking for. One of the only modestly significant 

pathology related effects was the small decrease in NHE1 in the DS cases with age 

(Figure 2.5F). Since individuals with DS develop a marked amount of CVD with age, we 

therefore wondered if we could further investigate these cases to establish which forms of 

vascular neuropathology might be better predictors of VCID. 
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Table 2.1: A Microarray Identified Several Possible Targets 

We identified a subset of genes from our microarray that we found particularly interesting 

given their role in neurodegeneration and vascular pathology. 

Gene 

Symbol 

p-value 

(genotype) 
*corrected for 

FDR using 

Hochberg's 

step-up 

Function 

Serpina3n 0.0000 

Serine protease inhibitor (Dickson and Alper 1974) highly 

expressed in the brain. Serpina3n has been found in amyloid 

plaques(Abraham, Selkoe et al. 1988) and has been associated with 

the progression of AD(Kamboh, Sanghera et al. 1995), likely 

because levels increase during an inflammatory response (Abraham 

2001).  

Slc38a6 0.0000 

Selective expression in excitatory neurons with high expression in 

synapses-function unknown (Bagchi, Baomar et al. 2014). 

Nova1 0.0006 

Encodes a neuron-specific RNA-binding protein that regulates 

alternative splicing (Buckanovich, Yang et al. 1996, Lewis, Chen 

et al. 1999, Ule, Stefani et al. 2006). Knockout studies provide 

evidence that Nova1 is important for synapse formation and 

function and in neuronal migration (Jensen, Dredge et al. 2000, 

Huang, Shi et al. 2005, Ruggiu, Herbst et al. 2009, Yano, 

Hayakawa-Yano et al. 2010). Nova1 is upregulated in neurons after 

ischemia, and may place a role in neural repair after an ischemic 

event (Li, Sun et al. 2013). 

ECSIT 0.0009 

An adapter protein of the Toll-like and IL-1 receptor signaling 

pathway (Kopp, Medzhitov et al. 1999). ECSIT has been 

hypothesized to play a role in AD by integrating oxidative stress, 

inflammation, and mitochondrial dysfunction (Kopp, Medzhitov et 

al. 1999). 

Tbc1d23 0.0014 

General inhibitor of innate immunity signaling, strongly inhibiting 

multiple TLR and dectin-signaling pathways (De Arras, Yang et al. 

2012). 

Cntnap2 0.0027 

Encodes a neuronal transmembrane protein member of the 

neurexin superfamily involved in neuron-glia interactions and 

clustering of K+ channels in myelinated axons (Poliak, Gollan et 

al. 1999). Knockout mice have defects in the migration of cortical 

projection neurons and a reduction in the number of GABAergic 

interneurons, as well as accompanying neurophysiological 

alterations (Rodenas-Cuadrado, Ho et al. 2014, Scott, Sanchez-

Aguilera et al. 2017). 

CYP4X1 0.0042 

Expressed in the cytoplasm of neurons in the cerebellum and in the 

vascular endothelium (Bylund, Zhang et al. 2002). In humans, it 

metabolizes arachidonic acid to form epoxyeicosatrieinoic acids, 

which are released from astrocytes, neurons, and vascular 
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endothelial cells to act as potent vasodilators, increasing blood 

flow (Carver, Lourim et al. 2014). 

Slc9a1 0.0059 

Slc9a1 encodes a Na+/H+ exchanger, known as NHE-1 that 

regulates intracellular pH, Na+ concentration, and cell volume 

(Wakabayashi, Shigekawa et al. 1997). NHE-1 knockout mice have 

hypotrophy of vascular smooth muscle cells, reduced artery tension 

and lower blood pressure (Boedtkjer, Damkier et al. 2012). NHE-1 

protein is abundantly expressed in activated microglia and 

astrocytes and inhibition reduced microglial proinflammatory 

activation following ischemia (Wakabayashi, Hisamitsu et al. 

2013). 

Chga 0.0081 

Chga encodes the protein chromogranin A (CgA), a neurosecretory 

acidic glycoprotein with many functions, including regulation of 

metabolism, innate immunity, cardiovascular system, vascular 

contractility, and endothelial barrier function (Helle, Corti et al. 

2007, Loh, Cheng et al. 2012). CgA has been found in senile 

plaques of AD (Yasuhara, Kawamata et al. 1994, Rangon, Haïk et 

al. 2003, Lechner, Adlassnig et al. 2004) and can strongly activate 

microglia to induce the production and secretion of IL-1β (Kayo, 

Jun et al. 2010, Sun, Wu et al. 2012) 

 

  



44 

 

 

Table 2.2: NHE1 was measured in frozen tissue from humans with different 

neurodegenerative diseases.  

NHE1 levels were measured via ELISA in human samples from the SMTG and FC regions. 

NHE1 values are reported as mean±SEM. 

Group Brain Region 
Number of 

Cases 

Average 

Age (years) 

Average 

PMI 

(hours) 

NHE1 (AU) 

Controls SMTG 9 84.33 2.75 32.04±12.21 

Preclinical AD 

(PCAD) 
SMTG 10 85.60 2.57 15.88±5.31 

Mild Cognitive 

Impairment (MCI) 
SMTG 7 89.00 2.81 19.94±7.24 

Frontotemporal 

Dementia (FTD) 
SMTG 6 61.00 4.83 15.79±4.68 

AD SMTG 10 83.40 3.08 26.54±11.47 

AD FC 11 80.91 8.55 35.05±10.39 

Down Syndrome (DS) FC 9 17.11 18.00 44.21±12.71 

Down Syndrome with 

AD (DSAD) 
FC 35 51.66 8.33 26.91±3.63 

Young Controls (YC) FC 24 19.58 17.66 27.44±4.77 

Middle-Aged Controls 

(MC) 
FC 21 51.33 11.91 25.44±5.84 

Old Controls (OC) FC 8 81.25 3.44 42.93±6.77 
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Figure 2.1: Gene Expression by RT-PCR in db/AD Mice (Taqman).  

Chosen based on possible involvement in vascular disease; Polr1a, Ppia, and Prl30 were 

used as housekeeping genes. (A) Serpina3n, a serine protease inhibitor with high brain 

expression; (B) Slc38a6, a gene that is highly expressed in excitatory neurons with a 

relatively unknown function; (C) Chga, an acidic glycoprotein involved in 

neuroinflammation; (D) Cntnap2, a transmembrane protein involved in neuron-glia 

interaction;  (E) CYP4X1, a cytoplasmic enzyme involved in arachidonic acid metabolism, 

and linked to regulating cerebral blood flow; (F) Slc9a1 (encoding NHE1), Na+/H+ 

exchanger involved in ischemia and neurodegeneration. NHE1 was the most promising, 

showing significant differences in diabetes, AD, and a db/AD by age interaction. 

  



46 

 

 

 

 

Figure 2.2: NHE1 levels are increased in the db/AD animals.  

We ran an ELISA using a large sample size of younger and older mice (n=89) and saw a 

significant age effect (p<0.003), with NHE1 levels decreasing with age. We also saw a 

significant increase in NHE1 in the db/AD mice in our older mice (p<0.05). 



47 

 

 

Figure 2.3: Aβ levels do not change when NHE1 is inhibited.  

(A)We treated H4 APP 15x cells and CHO2B7 cells with two different concentrations of 

the NHE1 inhibitor, Amiloride, and measured Aβ levels with an ELISA. We used 

chloroquine as a positive control and ddH20 as a negative control. We did not find any 

significant differences in Aβ after treatment with Amiloride. We followed this up with a 

higher concentration of amiloride (B) and a more potent NHE1 inhibitor, Cariporide (C), 

in CHO2B7 cells and did not find any significant differences in Aβ. (D) We also did a 

double label IHC in human AD tissue for Aβ (6E10-blue) and NHE1 (brown), which 

shows some co-localization  in some CAA affected vessels. 
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Figure 2.4: NHE1 increases along with pTau in the db/AD mice and after head injury 

in db/AD mice.  

Slot blot densitometry (N = 91, run in triplicate, standardized to βTubulin) from db/AD 

line (mixed genotypes) probed for NHE1 (BD Biosciences) and pTau (AT8, Pierce), 

showing a correlation between NHE1 and pTau. (B) NHE1 (Brown) and NFT 

(Blue/Black; PHF1, provided by Peter Davies) co-localization (arrows) in human AD 

tissue. (C) Normal C57BL/6 mice were subjected to a single CHI and allowed to survive 

for up to 2 months; NHE1 (p<0.01) and pTau (p<0.05) were both increased; CHI causes 

NFT pathology in both humans and in animal models. (D) WT and diabetic mice were 

subjected to CHI, and evaluated one day later for NHE1 (Abcam) and pTau (AT8); 

βTubulin (Abcam) is shown as a loading control. (E) As expected from our earlier data, 

NHE1 expression was higher in diabetic mice as compared to WT controls; even at one 

day post-injury, NHE1 levels were increased, consistent with its role in both swelling and 

cellular injury. We saw higher pTau in diabetic mice, and an increase following CHI. 
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This suggests that NHE1 and pTau are connected, and that NHE1 activation may be an 

early event in the development of cytoskeletal pathology. * = p<0.05 
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Figure 2.5: NHE1 is not associated with markers of cerebrovascular pathology in 

human cases with dementia, but decreases with age in individuals with DS. 

In the SMTG region, we did not find any significant correlation between NHE1 and (A) 

total infarcts (p=0.681), (B) CAA (p=0.189), (C) microinfarcts (p=0.684), or (D) MMSE 

(p=0.834). (E) In the FC, we found a marginally significant correlation between NHE1 

and Aβ42 (p=0.048), but did not find a significant correlation with Aβ40. (F) We did found 
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that NHE1 significantly decreases with age in the FC of individuals with DS (p=0.033), 

mirroring what we saw in our db/AD animals. 
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Chapter 3: Microbleeds and Cerebral Amyloid Angiopathy in the Brains of 

People with Down Syndrome with Alzheimer’s Disease 

3.1 - Introduction 

Down syndrome (DS) is a genetic disorder whereby an individual has an extra full 

or partial copy of chromosome 21 (Lejeune, Gautier et al. 1959). DS is one of the most 

common causes of intellectual disability with 5,429 annual DS births (Centers for Disease 

and Prevention 2006) and an estimated 250,000 individuals with DS in the USA (World 

Health Organization 2018).  As improvements in medical technology continue, the life 

expectancy of people with DS continues to increase. In 1929, a diagnosis of DS was 

associated with a life expectancy of around 9 years. However, people with DS are now 

living longer lives, with an average life span of about 60 years of age (Bittles and Glasson 

2004). As with the general population, the risk of developing health-related problems 

increases as people with DS get older (Bayen, Possin et al. 2018). In particular, people with 

DS are at a high risk of developing cognitive impairment and dementia associated with AD 

after the age of 50 years (Zigman, Schupf et al. 1996, Zigman 2013).   

3.1.1 - Genes Associated with AD on Chromosome 21 

There are a number of genes on chromosome 21 that are thought to play a role in 

the development of AD in DS. Although we will not provide an exhaustive discussion of 

all possible genes, those genes that have been studied in DS and have strong links to AD 

are highlighted. 
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3.1.1.1 - Aβ and DS: APP and BACE2 

There are several genes associated with an increased risk of AD development 

located on chromosome 21. The most well-studied of these is APP, which is the precursor 

to the Aβ peptide, implicated as a possible cause of AD (Hardy 2006). In AD, mutations 

in APP and one of its processing enzymes, γ-secretase, discussed below, can cause an 

accumulation of Aβ similar to that seen in DS. Mutations in the catalytic component of the 

γ-secretase complex, known as presenilin, and discussed thoroughly in Strooper et al. 

(2012) (De Strooper, Iwatsubo et al. 2012), is one of the main causes of familial AD (Levy-

Lahad, Wasco et al. 1995, Rogaev, Sherrington et al. 1995, Sherrington, Rogaev et al. 1995, 

1995). These genetic mutations are the driving force behind familial forms of AD, which 

often have a much earlier age of onset than sporadic AD (Levy-Lahad, Wasco et al. 1995, 

Rogaev, Sherrington et al. 1995, Sherrington, Rogaev et al. 1995). In cases of familial AD 

and in DS, Aβ accumulates throughout affected individuals’ lifetimes, which causes AD 

pathology to develop earlier than in the sporadic AD population. However, in DS the 

accumulation of Aβ is caused by an overexpression of APP rather than a mutation in the 

gene itself. 

There are numerous ways that APP is processed in neurons, but the crucial 

processing step for development of AD occurs at the cell surface. It is here that APP is 

either proteolyzed by enzymes, preventing the production of the Aβ fragment (Sisodia 

1992), or is cleaved to form Aβ.  The amyloidogenic pathway of APP involves an initial 

cleavage by β-secretase, or BACE1. This is followed by an additional cleavage by γ-

secretase, generating an amyloid precursor protein intracellular domain (AICD) fragment 

along with Aβ. In DS, the overexpression of APP at the cell surface causes an increase in 
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levels of Aβ, which overwhelms clearance mechanisms, leading to accumulation of Aβ in 

the brain (Mann and Esiri 1989). 

The initial cleavage by BACE1 is thought to be the rate-limiting step in Aβ 

production. In sporadic AD, both BACE1 levels and enzymatic activity increase in regions 

where Aβ deposition occurs (Fukumoto, Cheung et al. 2002, Yang, Lindholm et al. 2003). 

BACE1 activity increases with age in DS along with increased production of β-C terminal 

fragments of APP (Nistor, Don et al. 2007). Relevant to DS is BACE2, a protein 

homologous to BACE1, which is located on chromosome 21. BACE2 can cleave APP 

(Farzan 2000) and studies have shown that BACE1 and BACE2 levels are highly correlated 

in the brain (Holler, Webb et al. 2012). Despite this, the function of BACE2 in the 

development of dementia remains elusive. Studies show that despite an increase in BACE2 

mRNA levels in DS (Holler, Webb et al. 2012), post-transcriptional modifications either 

cause an increase in degradation of BACE2 protein or block translation to prevent 

overexpression of BACE2 protein (Barbiero 2003, Cheon, Dierssen et al. 2008). 

Additionally, several groups have reported that BACE2 cleaves in the middle of the Aβ 

domain, causing a reduction in the amount of Aβ produced following cleavage (Fluhrer, 

Capell et al. 2002, Sun, He et al. 2006). Therefore, it is unlikely that BACE2 contributes 

to Aβ deposition in DS, although further mechanistic studies on BACE2 and APP are 

needed. Indeed, evidence from partial trisomy cases suggest that overexpression of APP is 

critical to the development of AD neuropathology in DS (Prasher, Farrer et al. 1998, Doran, 

Keator et al. 2017). 
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3.1.1.2 - Tau and DS: DYRK1A and RCAN 

Studies in partial trisomy 21 cases suggest that there is a critical region on 

chromosome 21 that when triplicated is sufficient for developing DS features (Olson, 

Roper et al. 2007, Korbel, Tirosh-Wagner et al. 2009). This region, known as the Down 

syndrome critical region (DSCR, 21q22.1-22.3), contains more than 30 presumed genes 

including the dual-specificity tyrosine-(Y)-regulated kinase 1A gene (Dyrk1A) and 

regulator of calcineurin 1 (RCAN1) (Rahmani, Blouin et al. 1989, Korenberg, Kawashima 

et al. 1990, Guimera, Casas et al. 1996, Shindoh, Kudoh et al. 1996, Song, Sternberg et al. 

1996, Jung, Park et al. 2011). Dyrk1A is a highly conserved serine-threonine kinase that 

regulates a wide variety of neurodevelopmental processes (Tejedor and Hammerle 2011). 

Dyrk1A is expressed in neurons across an individual’s lifetime, including fetal 

development, suggesting that it plays an important role in neuron development, maturation, 

and aging (Wegiel, Kuchna et al. 2004). RCAN1 is an endogenous regulator of calcineurin 

(Caln), a calcium and calmodulin dependent serine/threonine protein phosphatase (Rusnak 

and Mertz 2000). Overexpression of RCAN1 in cell and animal models results in inhibition 

of pathways that are controlled by the transcription factor nuclear factor of activated T-

cells (NFAT) (Davies, Ermak et al. 2007) and knockdown or overexpression of the 

Drosophila melanogaster RCAN1 homolog causes severe intellectual disability, indicating 

that RCAN1 plays a role in the learning deficits seen in DS (Chang, Shi et al. 2003). 

In DS, Dyrk1A is expressed at 1.5-fold higher protein and activity levels in the 

brain (Guimera, Casas et al. 1999, Ferrer, Barrachina et al. 2005, Kimura, Kamino et al. 

2007). This overexpression and increased activity has significant implications for brain 

development in individuals with DS, including dysregulation in the differentiation of 
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neuronal progenitor cells (Tejedor and Hammerle 2011). Dyrk1A acts in synergy with 

another gene on chromosome 21, RCAN1, to impact some phenotypic characteristics of 

DS, including the development of AD pathology (Jung, Park et al. 2011). Dyrka1A 

interacts and phosphorylates RCAN1, which primes RCAN1 to inhibit Caln, leading to 

inhibition of NFAT, a nuclear transcription factor that is crucial for mammalian 

development (Arron, Winslow et al. 2006). Inhibition by Caln causes NFAT to leave the 

cytoplasm, inactivating its transcriptional activity (Gwack, Sharma et al. 2006). This, in 

turn, results in learning and cognitive deficits and motor skill impairments that are often 

associated with individuals with DS, as exemplified by both DYRK1A overexpressing 

mice and NFAT knockout mice (Altafaj, Dierssen et al. 2001, Martinez de Lagran, Altafaj 

et al. 2004, Ahn, Jeong et al. 2006, Arron, Winslow et al. 2006, Altafaj, Ortiz-Abalia et al. 

2008).   

Dyrk1A also plays a key role in aging in people with DS through phosphorylation 

of tau. The role of tau in AD is discussed further below, but briefly, the 

hyperphosphorylation of tau is a major contributor to neurofibrillary pathology that may 

lead to neurodegeneration and dementia (Gong, Liu et al. 2006). Dyrk1A phosphorylates 

tau at Thr212 and several other sites, which promotes tau to be further phosphorylated by 

GSK-3β (Liu, Liang et al. 2008). This leads to a hyperphosphorylated form of tau, which 

causes the loss of tau’s biological function and stimulates the formation of neurotoxic 

paired helical filaments indicative of neurofibrillary tangles.  

Additionally, studies show that overexpression of Dyrk1A regulates alternative 

splicing of endogenous tau exon 10. This alternative splicing of exon 10 leads to two 

different tau isoforms: one with three microtubule-binding repeats (3R) and one with four 
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microtubule binding repeats (4R) (Goedert, Spillantini et al. 1989). In a non-diseased adult 

brain, there are equal expression levels of 3R-tau and 4R-tau. However, imbalances in the 

3R:4R ratio are associated with several tauopathies, including frontotemporal dementia 

with Parkinsonism, frontotemporal lobar degeneration, progressive supranuclear palsy, and 

cortico-basal degeneration (Ishizawa, Ko et al. 2002). In T65Dn mice, a common mouse 

model of DS, Dyrk1A overexpression causes dysregulation of tau exon 10 splicing, causing 

an increase in 3R tau and a decrease in 4R tau, possibly contributing to the cognitive decline 

seen in individuals with DS (Wegiel, Kaczmarski et al. 2011).  

3.1.1.3 - Inflammation and DS: S100β 

S100β is a small astrocyte-derived protein implicated in the growth of neurons and 

proliferation and differentiation of glia (Selinfreund, Barger et al. 1990). This gene for this 

cytokine is located on chromosome 21 and is elevated throughout the lives of individuals 

with DS (Royston, McKenzie et al. 1999), with twice the number of astrocytes expressing 

S100β in DS patients at all ages compared to controls. While S100β is vital for growth and 

development of the central nervous system, elevated levels have significant consequences. 

Overexpression of S100β causes abnormal growth of neuronal processes (Kligman and 

Marshak 1985, Reeves, Yao et al. 1994) and is commonly found in astrocytes associated 

with Aβ plaques (Griffin 1989, Mrak, Sheng et al. 1996). Transgenic mice that overexpress 

S100β have increased dendritic density in the hippocampus when young, but density of the 

dendrites was drastically lower at one year of age (Whitaker-Azmitia, Wingate et al. 1997). 

Similarly, human fetuses with DS have initially normal dendritic morphology, but dendritic 

development becomes stunted in infants with DS (Takashima, Becker et al. 1981, 

Takashima, Iida et al. 1994). In a stem cell model of DS, S100β staining is more extensive 
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than controls and astrocytes exhibited an activated morphology, with more branching and 

thicker branches (Chen, Jiang et al. 2014). S100β causes astroglial dysfunction and 

oxidative stress in induced pluripotent stem cells (iPSCs) derived from DS patients (Chen, 

Jiang et al. 2014). This decrease in dendrites corresponds well with learning and memory 

deficits, showing that S100β may play a significant role in the progression of cognitive 

decline in aging individuals with DS.  

In addition to S100β, there are several other genes on chromosome 21 associated 

with inflammation including: CXADR, ADAMTS1, ADAMTS5, TIAM1, IFNAR1, 

IFNAR2, IFNGR2, RIPK4, CBS and PRMT2 (Wilcock and Griffin 2013). In a review of 

the potential role of these genes in the development of AD in people with DS, Wilcock and 

Griffin (2013) suggest that cytokines may drive some of the AD pathogenesis. Further, the 

triplication of inflammatory genes overexpressed due to trisomy 21 may lead to a complex 

immune profile in DS that can lead to accelerated AD (Wilcock 2012). Indeed, as will be 

discussed later, there appears to be a neuroinflammatory profile that is unique to DS 

individuals as they age. 

3.1.1.4 - Other Genes Associated with AD in DS 

Although we have focused on only a few genes thought to be important for AD in 

DS, there are other researchers who have discussed genes associated with oxidative stress 

and mitochondrial dysfunction (Lott, Head et al. 2006, Pagano and Castello 2012), 

compensatory genes (Head, Lott et al. 2007) and additional genes that may underlie 

cognitive deficits at younger ages (Sturgeon, Le et al. 2012) all present on chromosome 21. 

It is clear that there are multiple possible mechanisms and pathways that either singly or in 

combination may lead to early onset AD in people with DS. 
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3.1.2 - AD Pathology in DS 

As mentioned in the introduction, people with DS develop AD neuropathology at 

an earlier age than that observed in sporadic AD.  The key features of AD in DS, senile 

plaques, neurofibrillary tangles and neuron loss will be described.  There is also a 

comprehensive recent review of the neuropathological hallmarks of AD in DS (Head, Lott 

et al. 2016). 

3.1.2.1 - Aβ and Senile Plaques 

Due to the triplication of APP, individuals with DS produce Aβ throughout the 

course of their lives. Similar to sporadic AD, Aβ42 is the most prevalent form of Aβ and 

appears in the cortex before Aβ40 (Iwatsubo, Mann et al. 1995). In fact, the first marker of 

AD pathology in individuals with DS is the presence of senile plaques, which usually 

develop over the age of 30 years (Mann and Esiri 1989) (Figure 3.1A-B), although some 

diffuse pathology is found in younger individuals. In an autopsy study of 29 people with 

DS ranging in age from 3 to 73 years old, Aβ42 appeared earliest at age 12 years in temporal 

cortex and was present in about half of cases under the age of 30 years (Lemere, Blusztajn 

et al. 1996). Interestingly, no Aβ40 was found in subjects under 29 years old. The precise 

pattern of Aβ deposition is not fully understood, although there is evidence in people with 

DS that Aβ accumulates in clusters, starting in the superficial layers of the entorhinal and 

frontal cortices. As an individual ages and the disease progresses, Aβ then spreads into 

deeper cortical layers (Azizeh, Head et al. 2000). Another study found that Aβ appears as 

early as 8 years in the hippocampal and parahippocampal region, which then causes 
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seeding and progressive Aβ deposition with age (Lemere, Blusztajn et al. 1996, Leverenz 

and Raskind 1998).  

With the exciting development of positron emission tomography using ligands that 

bind to Aβ in vivo, more has been learned about the age of onset and clinical correlations 

of Aβ in DS. The first of these ligands, Pittsburgh Compound B (PiB), was a breakthrough 

in the AD field (Cohen and Klunk 2014). Studies using PiB binding show a similar Aβ 

deposition pattern as that observed at autopsy. PiB binding, representing Aβ accumulation, 

becomes evident around age 40 years (notably much later than seen in 

immunohistochemistry studies), usually beginning in the striatum (Handen, Cohen et al. 

2012, Hartley, Handen et al. 2014, Lao, Betthauser et al. 2016, Lao, Handen et al. 2017). 

Following PIB binding in the striatum, PiB binding begins to appear in the rostral 

prefrontal-cingulo-parietal regions, then caudal frontal, rostral temporal, primary 

sensorimotor and occipital, and finally mediotemporal regions and the rest of the basal 

ganglia (Annus, Wilson et al. 2016). Interestingly, this initial pattern of striatal PiB binding 

replicates what is seen in familial AD (Koivunen, Verkkoniemi et al. 2008), but once Aβ 

pathology is present, it follows similar patterns of deposition to sporadic AD (Klunk, 

Engler et al. 2004). PiB binding is observed in people with DS who are not demented, 

suggesting a preclinical phase of the disease (Hartley, Handen et al. 2014, Lao, Betthauser 

et al. 2016). Autopsy studies of PiB binding reveal an affinity for both senile plaques and 

for CAA (LeVine, Spielmann et al. 2017). Additionally, peripheral changes in plasma Aβ 

may reflect the presence of plaques in AD (Mayeux, Honig et al. 2003). Individuals with 

sporadic AD have significantly higher Aβ42, not Aβ40, levels in plasma during early stages 

of AD, but these levels decline thereafter as amyloid plaque pathology increases (Mayeux, 
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Honig et al. 2003). In DS, both Aβ40 and Aβ42 are elevated in the plasma (Mehta 1998), 

but these levels are even higher in those individuals who develop dementia (Cavani, 

Tamaoka et al. 2000, Schupf, Patel et al. 2001) 

3.1.2.2 - Post translationally modified Aβ 

Full-length Aβ peptides are more commonly associated with disease, but 

heterogeneity in the N-terminus of Aβ plaques has been known since the initial purification 

of an amyloid plaque core (Masters 1985). Post-translational modifications result in 

truncated forms of Aβ that are commonly found in both AD and DS. The most common 

APP cleavage site for Aβ species is Asp 1, although 13 other N-terminal starting points 

have been described (Haass, Schlossmacher et al. 1992, Busciglio, Gabuzda et al. 1993, 

Haass, Hung et al. 1994). It is thought that the most toxic form of Aβ is pyroglutamate 3, 

which seeds oligomerization and further deposition of Aβ (Piccini, Russo et al. 2005, 

Schlenzig, Manhart et al. 2009, Nussbaum, Schilling et al. 2012). Pyroglutamate 3 Aβ is 

formed by an initial truncation of the first two amino acids of Aβ, followed by a cyclization 

of glutamate residues 3 or 11 by glutaminyl cyclase (Saido 1995, Lemere, Blusztajn et al. 

1996, Schilling, Hoffmann et al. 2004). At this time, it is unknown whether other N-

terminal Aβ species have any pathological relevance, although it has been hypothesized 

that these differences could play a role in AD pathogenesis through destabilization of the 

cytoskeleton in neuronal processes (Larner 1999). In DS, Aβ peptides starting at 

pyroglutamate 3 or aspartate 1 have been detected as early as age 29, but not in younger 

cases. Once these isoforms were present, pyroglutamate 3 was detected in much larger 

quantities than aspartate 1, a pattern than appeared to increase with age (Saido 1995, 

Lemere, Blusztajn et al. 1996). In addition to pyroglutamate modifications, racemized, 
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isomerized and oxidized Aβ are also found in DS brain (Fonseca, Head et al. 1999, Azizeh, 

Head et al. 2000, Head, Garzon-Rodriguez et al. 2001) and increase in age, providing 

insights into the earliest sites of deposition. 

3.1.2.3 - Neurofibrillary Tangles 

Similar to sporadic AD, individuals with DS develop NFTs in addition to Aβ 

deposition (Burger and Vogel 1973)(Figure 3.1C-D). NFTs accumulate in a similar pattern 

to that seen in AD, with pathology appearing after plaques and the majority of NFT 

deposition occurring in the hippocampus, entorhinal cortex, and neocortex (Hof, Bouras et 

al. 1995, Hyman 1995). Given that NFTs develop after the deposition of Aβ suggests that 

Aβ may drive this pathology (Oddo, Caccamo et al. 2008). NFTs are composed primarily 

of the hyperphosphorylated microtubule-associated tau protein, which forms bundles of 

paired helical filaments and straight filaments in diseased neurons (Selkoe 1991, Azizeh, 

Head et al. 2000). The presence of hyperphosphorylated tau is thought to cause NFTs to 

form, which eventually leads to neuronal death. 

Several studies suggest that the DYRK1A gene, located on chromosome 21, 

discussed earlier in this chapter, plays a major role in driving NFT pathogenesis in DS 

(Ryoo, Jeong et al. 2007, Wegiel, Dowjat et al. 2008, Wegiel, Kaczmarski et al. 2011). 

DYRK1A phosphorylates tau, which “primes” tau for further phosphorylation by making 

it a better substrate for GSK3β (Liu, Liang et al. 2008). As described previously, DYRK1A 

regulates alternative splicing of tau, causing an increase in the ratio of 3R:4R tau, which is 

known to cause neurodegeneration, memory deficits, and anxiety (Wegiel, Kaczmarski et 

al. 2011, Yin, Jin et al. 2017). Another possible cause for the early presence of NFTs in DS 

is the overexpression of RCAN1, which is located on chromosome 21. RCAN1 levels are 
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already higher in individuals with AD and levels increase in the brain with normal aging. 

RCAN1 has been shown to both inhibit and activate Caln expression (Rothermel, Vega et 

al. 2000, Liu, Busby et al. 2009), although its role appears to be inhibitory in AD. RCAN1 

inhibits Caln phosphatase activity, increasing GSK3β levels, which enhances tau 

phosphorylation (Cardenas, Ardiles et al. 2012, Wong, Levenga et al. 2015). Interestingly, 

both RCAN1 and DYRK1A are upregulated by Aβ42 and it is therefore likely that all three 

of these overexpressed genes interact in some way to contribute to neurodegeneration 

(Kimura, Kamino et al. 2007, Lloret, Badia et al. 2011). 

3.1.2.4 - Braak Staging of AD neuropathology in DS 

Assessment of AD neuropathology at autopsy involves protocols that characterize 

the severity and distribution of senile plaque and NFT pathology. The most commonly used 

scoring system, Braak staging, describes the extent and location of Aβ and NFT at autopsy 

(Braak and Braak 1991). NFT pathology is scored on a scale of I-VI. As an aside, new 

developments in the neuroimaging field include tau ligands for PET that will allow 

researchers to determine Braak stage NFTs in vivo(Schwarz, Yu et al. 2016). Recently, 

Scholl et al. published their research on in vivo Braak staging using a PET ligand with high 

affinity for paired-helical filaments, or insoluble fibers composed of hyperphosphorylated 

tau (Scholl, Lockhart et al. 2016). Although this is a still ongoing study, this paper showed 

that patterns of tau PET tracer retention corresponded well with Braak staging. This 

provides a promising future for evaluating AD severity in vivo, including individuals with 

DS. There is currently only one on-going clinical trial, according to ClinicalTrials.gov, 

using tau PET imaging in individuals with DS and AD. This study, out of St. Joseph’s 

Hospital and Medical Center in Phoenix, AZ, is intended to examine progression of AD 
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pathology in aging individuals with DS. Another pilot study recently completed out of the 

University of California, San Diego, examined tau PET as part of an AD in DS biomarker 

study (Rafii et al., AAIC meeting, July 2017, Abstract#F4-02-02). There is one additional 

study located at NIA that examined tau PET imaging in DS participants, but the status of 

this trial is unknown and there has been no update posted since 2009. 

As important as Braak staging of Aβ and NFTS is in evaluating disease severity 

and progression, Braak staging has not been systematically conducted in brains from 

people with DS. This makes post-mortem evaluation difficult, as pathology may develop 

and progresses differently in individuals with DS compared to sporadic AD. Therefore, it 

is our belief that this represents a significant gap of knowledge in the field of aging in DS 

and needs to be addressed. However, in vivo imaging of Aβ and tau will significantly 

advance our understanding of AD progression and clinical correlations in people with DS. 

3.1.2.5 - Neuron Loss 

Aging and disease associated neuronal loss in DS occurs in a similar pattern to that 

of AD. Magnetic resonance imaging (MRI) studies in DS have consistently reported 

significant atrophy with age (Teipel and Hampel 2006). As individuals with DS age, 

neuronal loss occurs in the temporal cortex, hippocampus, and entorhinal cortex (Ball and 

Nuttall 1980, Hyman 1995). One particular area with a large amount of neuron loss both 

in AD and DS is the locus coeruleus (LC). The LC is a small nucleus in the pons, containing 

neurons with extensive projections, including the spinal cord, cerebellum, hypothalamus, 

the thalamic relay nuclei, the amygdala, the basal telencephalon, and the cortex. Neuron 

loss in this region follows an identical pattern to that of AD, with the largest burden of cell 
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loss located rostrally in LC, with full topography of LC cell loss described in Marcyniuk 

et. al, 1986 (Marcyniuk, Mann et al

The nucleus basalis of Meynert (nbM) is another common area of neuron loss in 

both AD and DS. Individuals with DS have lower neuronal counts in the nbM than controls 

across all ages, as individuals with DS and AD having even lower counts than subjects 

with sporadic AD (Casanova, Walker et al. 1985). This may be because individuals with 

DS have fewer neurons to begin with, therefore they have less “neuronal reserve” to lose. 

However, brain weight has is not statistically significantly correlated to number of neurons 

in the nbM. Therefore, it is likely that there is a reduction in the number of nbM neurons 

in individuals with DS, and that this burden impacts elderly individuals with DS more 

severely. 

3.1.2.6 - Cerebrovascular Pathology 

VCID is widely considered the second most common form of dementia after AD 

and VCID is estimated to be co-morbid in as many as 40-50% of AD cases(Bowler, Munoz 

et al. 1998, Kammoun, Gold et al. 2000, Langa, Foster et al. 2004). The most obvious 

hallmark of VCID is stroke, but the majority of people with VCID have much more subtle 

pathophysiologies including multiple small strokes, chronic cerebral hypoperfusion, 

cerebrovascular occlusions, cerebral microhemorrhages, and CAA (Levine and Langa 

2011, Wilcock, Schmitt et al. 2016). Vascular factors likely lower the age of onset of 

dementia and accelerate the progression of neurodegenerative diseases, but it is still 

unknown how AD and VCID mechanisms interact. 
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Although VCID is a major contributing factor to dementia, particularly in sporadic 

AD, it is relatively unexplored in DS. Individuals with DS represent a unique group to 

study the cerebrovascular features of aging and AD in a setting of more limited systemic 

vascular risk factors. In a previous study of adults with DS ranging from 40-66 years, there 

was an absence of atheroma and DS individuals had lower blood pressure than age matched 

controls (Murdoch 1977). Lower blood pressure is consistently found in children 

(Rodrigues, Coelho et al. 2011) and younger adults with DS (Draheim, McCubbin et al. 

2002, Draheim, Geijer et al. 2010). Additionally, unlike the general population, blood 

pressure does not increase with age in DS. The lower risk of atheroma in people with DS 

compared to controls has been reported in other studies as well (Brattstrom 1987, Yla-

Herttuala 1989).  

As discussed previously, individuals with DS develop significant AD pathology, 

including NFTs and Aβ plaques. In addition to the formation of amyloid plaques, people 

with DS often have a buildup of amyloid in medium to smaller size arteries, known as CAA 

(Reijmer, van Veluw et al. 2016). CAA causes changes to the microvasculature and is a 

major risk factor for both micro and macrohemorrhages (Vinters 1987). CAA in DS is 

consistently reported in the literature (Belza and Urich 1986, Donahue and Steinfeld 1998, 

Naito, Sekijima et al. 2008, Mendel, Bertrand et al. 2010)(Figure 3.1B, Figure 3.2B), and 

a recently published study shows that individuals with DS have more severe CAA observed 

by MRI than people with both sporadic and autosomal dominant AD (Carmona-Iragui, 

Balasa et al. 2017). Carriers of the APOE 4 allele are known to be at a higher risk for 

CAA in the general population and in individuals with AD (Greenberg, Briggs et al. 1996, 

Rannikmae, Samarasekera et al. 2013). However, there does not appear to be a similar risk 
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in individuals with DS (Carmona-Iragui, Balasa et al. 2017). It has also been recently 

reported that there is a 38.5% frequency for lobar microbleeds in symptomatic DS and a 

15.4% frequency for intracerebral hemorrhage. This is higher than the number of 

microbleeds found in late-onset AD, which ranged from 20%-30% (Carmona-Iragui, 

Balasa et al. 2017). We have also observed microhemorrhages in aged DS brain that may 

correspond to CAA (Figure 3.2C-D). Thus, adults with DS represent an important cohort 

to study cerebrovascular co-morbidities because of their unique characteristics: atheroma-

free model and lower blood pressure but with significant CAA.  

Another important contributor to cerebrovascular pathology in DS is Moyamoya 

disease. Moyamoya disease is a chronic cerebrovascular occlusion disorder, where arties 

in the basal ganglia become blocked, often causing strokes and re-occurring transient 

ischemic attacks (Suzuki and Takaku 1969). Children with DS are thought to be 

predisposed to develop Moyamoya disease, and there is a 26-fold greater prevalence of DS 

in children with co-existing Moyamoya disease than prevalence of DS among all births 

(Kainth, Chaudhry et al. 2013). The connection between Moyamoya disease and aging in 

DS is currently unknown, although it has been suggested that genes on chromosome 21 

dealing with arterial physiology may play a role (Cramer, Robertson et al. 1996). Thus, the 

contribution of vascular factors to AD pathogenesis in DS is an area that requires further 

attention and resources.  

3.1.2.7 - White Matter Degeneration 
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Cerebrovascular neuropathology may lead to abnormalities in white matter of the 

brain (Back, Kroenke et al. 2011, Chao, Decarli et al. 2013, Erten-Lyons, Woltjer et al. 

2013). In addition to AD and the cerebrovascular pathology discussed above, there is 

evidence that individuals with DS have increased white matter degeneration. 

Neuroanatomical MRI studies show that adults with DS have lower white matter volumes 

than non-DS controls, as measured by voxel-based morphometry (White, Alkire et al. 

2003). Two recent publications have examined white matter integrity using diffusion tensor 

imaging (DTI) in individuals with DS. DTI measures the diffusion of water molecules in 

neural tissue to give a microstructural read on the integrity of the white matter (Basser, 

Pajevic et al. 2000). Both of these imaging studies found that individuals with DS have 

impaired white matter tract integrity compared to age-matched non-DS controls even in 

younger individuals (35 years) (Powell, Caban-Holt et al. 2014, Fenoll, Pujol et al. 2017). 

Additionally, one of these groups found that white matter integrity losses were more 

exaggerated in those DS individuals with dementia, compared to non-demented persons 

with DS (Powell, Caban-Holt et al. 2014). There was no significant difference in white 

matter degeneration with age in the more recent study of nondemented individuals with DS 

(Fenoll, Pujol et al. 2017). This suggests that early changes in white matter integrity in 

individuals with DS may be due in part to developmental differences and that these changes 

become more severe with the development of AD neuropathology.  

Interestingly, both DTI studies showed white matter impairments in the frontal 

cortex, indicating that this region may be vulnerable to structural changes as AD develops 

in DS. This is consistent with a prior structural MRI study, which showed lower frontal 

volume with age in individuals with DS (Teipel, Alexander et al. 2004). To our knowledge, 
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however, there have been no longitudinal studies to describe decline in white matter 

integrity with aging or with the development of dementia in DS and this represents a gap 

in our knowledge. 

3.1.2.8 - Neuroinflammation 

There have been two recent reviews that describe the role of neuroinflammation in 

DS (Wilcock 2012, Wilcock and Griffin 2013). As mentioned briefly, there are several 

genes on chromosome 21 that are associated with immune system function. In autopsy 

studies of DS brains, neuroinflammation appears in association with AD neuropathology. 

For example, C1q, the first protein in the classical compliment pathway, a cascade pathway 

leading to inflammation, is increased in DS brains with AD neuropathology (Stoltzner 

2000, Head, Azizeh et al. 2001). In addition, IL-1β, a key pro-inflammatory cytokine, is 

increased in DS brain along with increased S100β (Griffin 1989). Microglial cells, key 

mediators of inflammation in the brain, show interesting morphological changes in DS 

suggesting degeneration of these cells in association with increase NFT accumulation (Xue 

and Streit 2011). 

In a study by Wilcock and colleagues of DS autopsy cases with a range of ages, 

RNA levels of several key neuroinflammatory proteins were quantified and revealed a 

distinct neuroinflammatory profile in the DS brain with AD neuropathology (Wilcock, 

Hurban et al. 2015). CD86 and FCGR1β were unique increased only in the DS with AD 

cases, indicating that there may be immune complexes forming in the brains of individuals 

with DS that can activate microglial cells and toll-like receptors. Increased CD86 and 

FCGR1β  RNA expression has been observed only rarely in sporadic AD. The implications 

of this study may indicate a novel treatment target for clinical trials in AD in DS. 
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It is interesting to note that not only central nervous system inflammation may be 

important for DS but also systemic inflammation. For example, periodontal disease is a 

frequent peripheral inflammatory condition in people with DS that may also contribute to 

the development of AD, and may be a modifiable risk factor for this vulnerable cohort 

(Kamer, Fortea et al. 2016). 

3.1.3 - Future Directions 

Our understanding of factors involved with AD progression in DS is growing 

rapidly, and has been significantly accelerated by PET imaging using AD neuropathology-

specific ligands. There are fewer autopsy studies in this cohort primarily due to challenges 

in acquiring tissue and particularly tissue from clinically characterized people. It will be a 

benefit to better understanding how genes on chromosome 21 contribute to the 

development of dementia, particularly those involved in neuroinflammation and 

cerebrovascular disease. As more molecular pathways are identified that are pathologically 

activated (or suppressed) in DS, we can identify novel targets for interventions. Given the 

unique and strong age-dependency of AD neuropathology in DS, we also have an exciting 

opportunity to prevent AD in DS once we identify the pathways that are critical at different 

age epochs. Indeed, Figure 3.3 shows a summary of our current understanding of various 

biomarker changes in DS as a function of age.  There are currently few clinical trials for 

AD in DS (Table 3.1)(Ballard, Mobley et al. 2016) emphasizing the need to continue to 

enroll volunteers into longitudinal aging studies that involve clinical measures, 

neuroimaging, plasma or cerebrospinal fluid biomarkers and autopsy.  

In this study, we hypothesize that individuals with DS will have more MBs relative 

to sporadic AD and controls and that CAA and MBs are linked in two regions of interest: 
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the FC and the occipital cortex (OCC). To this end, we initially examined the FC because 

this region is associated with the earliest signs of dementia in DS as manifested by changes 

in personality, behavior, and communication (Ball, Holland et al. 2008). An additional 

rationale for focusing on the frontal lobe is reinforced by our published data showing that 

adults with DS have decreased white matter integrity and a reduced number of tracts in the 

FC, all associated with poorer cognition (Powell, Caban-Holt et al. 2014). We also 

examined the pathology in the OCC because it is a common location of CAA in AD 

(Jellinger 2002, Nelson, Pious et al. 2013).  

3.2 – Materials and Methods 

The goal of this study was to quantify the extent of CAA and MBs in an autopsy 

series. Fixed brain tissue was examined in individuals with DS prior to the development of 

AD neuropathology as compared to individuals with DS and documented AD 

neuropathology and brain tissue samples from patients with sporadic AD.  

3.2.1 - Tissue Samples 

We obtained FC specimens from several sources including the University of 

California, Irvine, Alzheimer’s Disease Research Center, the NIH NeuroBioBank, and the 

University of Kentucky Alzheimer’s Disease Center. We obtained all autopsy tissue from 

the OCC from the NIH NeuroBioBank. Human tissue collection and handling adhered to 

the University of Kentucky and/or University of California, Irvine Institutional Review 

Board guidelines.  

Six autopsy groups were included in the study: young controls (YC; age matched 

to young DS group; OCC: n=10; FC: n=6), middle-aged controls (MC; age matched to 
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DSAD group; OCC: n=10; FC: n=12), old controls (OC; age-matched to sporadic AD 

group; OCC: n=6 FC: n=11), DS (OCC: n=11 FC: n=11), DSAD (OCC: n=14 FC: n=9), 

and sporadic AD (also assessed clinically as being demented) (OCC: n=12 FC: n=10). 

Since individuals with DSAD come to autopsy at younger ages than those with sporadic 

AD, we were not able to match for age between these two groups. All control cases were 

selected to match for post mortem interval (PMI) to the DS, DSAD and AD cases (Tables 

3.2 and 3.3). Our groups contained both males and females, but due to the limited 

availability of cases, we were not able to match for sex across groups. Although the 

majority of cases from UCI were clinically assessed as being demented, we do not have 

clinical data for the remaining cases. Thus, the relationship between CAA, MBs and 

dementia/cognitive status could not be evaluated systematically.   

3.2.2 - Immunohistochemical Methods 

Fixed tissue was sectioned on a vibratome (Leica Biosystems, Buffalo Grove, IL) 

at 50 m. Sequential sections were collected and stored in PBS with 0.02% NaN3 until 

used. CAA was visualized by immunohistochemistry for A1-40 (Invitrogen, Camarillo, 

CA, 1:5000) as described previously(Sarsoza, Saing et al. 2009). Briefly, free-floating 

sections were pretreated with 90% formic acid for 4 min and then incubated overnight with 

the primary antibody, incubated with anti-rabbit secondary antibody (Vector Laboratories, 

Burlingame, CA).  The signal was amplified and visualized with an avidin-biotin complex 

peroxidase kit (Vector Laboratories, Burlingame, CA), and 3,3’ diaminobenzidine 

substrate kit (Vector Laboratories, Burlingame, CA). Sections were mounted on glass 

slides and coverslipped with Depex mounting media. 
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3.2.3 - Prussian blue staining 

Tissue sections adjacent to the section stained for CAA were selected for Prussian 

blue staining to visualize MBs as described in previous studies (Wilcock, Rojiani et al. 

2004).  

3.2.4 - Image analysis for CAA staining 

For CAA assessment, we expanded on a previously established method in order to 

categorize CAA in thick tissue sections (Biffi and Greenberg 2011, Boyle, Yu et al. 2015). 

For both the FC and OCC, meningeal and parenchymal vessels were scored on a scale from 

0 to 4, where 0=no deposition, 1=scattered segmental deposition of amyloid, 

2=circumferential deposition in up to 10 vessels, 3=widespread, strong, circumferential 

deposition in up to 75% of vessels (may include dyshoric changes) 4= deposition in over 

75% of region (includes dyshoric changes) (Figure 3.4). 

3.2.5 - Image analysis for Prussian blue staining 

Ten 6 x 6 micron boxes were drawn in the white and grey matter of images captured 

using the Aperio ImageScope (v11.1.2.752) software. Positive Prussian blue labeling 2 cell 

diameters away or less from a blood vessel was counted as a MB, as described in previously 

published literature (Wilcock, Rojiani et al. 2004, Wilcock, Rojiani et al. 2004, Davis, 

Giannini et al. 2017). MB counts were totaled across all boxes for each case and averaged 

across groups.  

3.2.6 - Statistical Analysis 

Overall group differences in CAA scores were assessed with Fisher’s Exact test, 

while group differences in frequency of MBs was assessed with the Wilcoxon Rank-Sum 



74 

 

test. Five hypotheses were tested: (1) CAA scores are more severe in DS and DSAD vs. 

control, (2) CAA scores are more severe in DSAD vs. AD, (3) MBs are more frequent in 

DS and DSAD vs. control, (4) MBs are more frequent in DSAD vs. AD, and (5) severity 

of CAA is correlated with MB frequency. In general, hypotheses (1) and (2) were tested 

using ordinal logistic regression, hypotheses (3) and (4) were tested using the Wilcoxon 

Rank-Sum test, and hypothesis (5) was tested using a binomial negative regression. Since 

groups were age-matched, analyses were not adjusted for age, except for analyses for 

hypothesis (5), which was not based on the age-matched groups. CAA was specified as a 

categorical variable in these analyses. Model fit was assessed based on Deviance/DF; 

results close to 1.00 were taken to support the adequacy of the negative binomial 

distribution to model the MB counts. Where sparse or empty cells prevented the ordinal 

regression model from converging, the CAA score was dichotomized into none vs. any, 

and exact binary logistic regression was used. For the ordinal regression models, the 

proportional odds assumption was assessed with the Score test. Statistical significance was 

set at 0.05.  To test hypotheses regarding the association between the extent of MBs and 

age in DS and in controls, we used a Spearman rank correlation test. 

3.3 - Results  

3.3.1 - CAA Pathology 

In the FC, distribution of the CAA score differed across groups (p<.0001) (Figure 

3.5E).  Using an unadjusted ordinal regression model, DS (DS and DSAD) autopsy cases 

overall were 11.5 times more likely to have more severe CAA (95% CI 2.0-64.9, p=0.006) 

than specimens from YC and MC, respectively. Similarly, DSAD cases were also 4.5 times 

more likely (95% CI 0.8-26.5 p=0.097) to have more severe CAA than sporadic AD cases.  
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Likewise, in the OCC, the 6 groups showed significant differences in CAA scores 

(p<.0001) (Figure 3.5F).  Since all YC and MC cases had an OCC CAA score of 0, exact 

binary logistic regression was used to estimate the odds of any CAA in DS overall (DS and 

DSAD) vs. control (YC and MC); DS cases showed 51 times the odds of any CAA vs. 

control (lower bound of the 95% CI = 9.7, p<0.0001). DSAD cases had a 1.8 times the 

odds of more severe CAA score than sporadic AD, but this result was not significant (95% 

CI 0.45, 7.4, p=0.4).  

3.3.2 - Microhemorrhages 

Using the FC section adjacent to that used for CAA quantification, Prussian blue 

was used to identify MBs. The frequency of MBs varied across groups (p<0.0001) (Figure 

3.6G). A Wilcoxon Rank-Sum test revealed a significantly higher number of MBs in the 

FC of DS (DS, DSAD) cases relative to controls (YC, MC) (p=0.03) (Figure 3.6G) . 

However, the number of MBs was similar in DSAD cases relative to sporadic AD (p=0.82, 

Wilcoxon rank test). In the OCC, there were significantly more MBs in DS (DS, DSAD) 

compared to their age-matched controls (p=0.02) (Figure 3.6H). However, we did not find 

a significant difference in the number of MBs in the DSAD group compared to the AD 

group (p=0.43), similar to the CAA outcomes.  

In the FC, there was a significant increase in MBs in DS, and the individual 

variability of older controls showing MBs increased after 80 years of age (Figure 3.7A). 

MB in the OCC increased as a function of age in DS cases (Spearman r=0.83 p<.0005) and 

also in the control cases (Spearman r=0.44 p=0.02) (Figure 3.7B). 
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3.3.3 - Correlation between CAA and MB 

In the OCC, the presence of CAA was associated with higher MB counts 

(p=0.0004), however cases with CAA had similar MB counts regardless of the level of 

CAA. For example, cases with no CAA had an average of 4.5±1.0 MBs, while cases with 

a CAA level 1 had mean MB = 31.5±13.8 and CAA level 4 had mean MB = 20.0±10.1. 

This association persisted after adjustment for age and sex (p<0.0001). In the FC, this 

association was characterized by a quasi-linear dose-response relationship (p=0.0044), 

such that predicted mean MBs were lowest in the absence of CAA (2.57±0.94) and 

increased monotonically until CAA level 3 (mean MB=58.0±85.5). MBs for level 4 CAA 

were the same as level 3 (56.3±67.8). This association also persisted after adjustment for 

age and sex (p<0.0001). 

3.4 - Discussion 

CAA was more severe in people with DS (combined DS and DSAD) relative to 

their aged matched controls, both in the OCC and FC. Further, we found that all individuals 

with DS, regardless of age, have more severe CAA scores than controls, confirming and 

extending our previous report (Head, Phelan et al. 2017). Our data indicates that individuals 

with DSAD have CAA scores that are equally severe in the FC and OC as those in older 

individuals with sporadic AD, despite an average age difference of 27 years. These results 

appear to differ from a recent publication on CAA in DS, which indicates that individuals 

with DSAD have more severe CAA scores than individuals with sporadic AD (Head, 

Phelan et al. 2017) but this is likely due to quantification techniques. In the current study, 

only 2 brain regions were considered whereas in the previous study, multiple brain regions 

were included in the analysis, thus our estimates are likely to be more conservative.  
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To our knowledge, there have been no systematic studies of the extent of MB in 

DS as a function of age and AD. Based on our data from the Prussian blue stain, we 

observed MBs in DSAD cases with a similar frequency with AD cases in both FC and 

OCC.  In both regions, DS cases overall (DS and DSAD) had significantly more frequent 

MBs than similarly aged controls. MBs are likely driven by the increased severity in CAA 

scores in both regions as more severe CAA was associated with higher MB counts. 

When we plotted the number of MBs in all individuals with DS (DS and DSAD) 

against age, we found that in both the FC and OCC, the number of MBs increased 

significantly with age. However, MBs appear earlier in the OCC of DS individuals (during 

their 30s), than in the FC (during their 40s). This indicates that the OCC is perhaps more 

vulnerable to CAA and MBs at earlier ages than the FC. 

Additionally, we found that our control cases develop MBs with advancing age. 

This indicates that the DSAD and AD groups having similar numbers of MBs and CAA 

levels despite a 27 year age difference is worth examining further. The CAA frequency in 

our DSAD group and AD groups indicate that with the added age difference, the DSAD 

individuals would likely have much more cerebrovascular pathology. This is something 

that needs to be taken into consideration, as individuals with DS are now living longer 

lives.  

Our data on autopsy cerebral MBs confirms and extends those of recently published 

imaging studies, showing that cerebral MBs are common in DSAD using neuroimaging 

approaches than previously reported (Carmona-Iragui, Balasa et al. 2017). The increase of 

cerebrovascular burden is notable in DS because this accumulation of pathology is usually 
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thought to occur in the presence of risk factors from which people with DS are protected. 

Therefore, the increase in cerebrovascular pathology is independent of hypertension, 

atherosclerosis, and hyperhomocysteinemia, suggesting CAA may be the underlying cause. 

It remains unclear exactly how this cerebrovascular pathology contributes to cognitive 

impairment in individuals with DS. However, the presence of MBs is known to cause 

impaired executive functioning and contribute to mild cognitive impairment through white 

matter damage in individuals without DS (Van der Flier and Cordonnier 2012, Akoudad, 

de Groot et al. 2013).   

There are several possible additional consequences of the presence of MBs in DS.  

Extensive CAA is associated with microhemorrhages and strokes in the general population 

(Arvanitakis, Capuano et al. 2017, Banerjee, Carare et al. 2017). Intracerebral hemorrhages 

driven by CAA have been reported in families with APP duplication(Cabrejo, Guyant-

Marechal et al. 2006, Rovelet-Lecrux, Hannequin et al. 2006). However, stroke is relatively 

rare in DS, suggesting possible protective factors in the DS brain (Buss, Fisher et al. 2016).  

Further, CAA may affect blood vessel function and can lead to impaired cerebrovascular 

regulation (Grinberg, Korczyn et al. 2012), which in turn would lead to reduced blood flow.  

Reduced blood flow could impair perivascular clearance of Aβ and additional 

accumulation of Aβ (Banerjee, Carare et al. 2017).  Given that we observe a dramatic rise 

in MBs after age 30 or 40 years in DS, and that AD neuropathology typically accelerates 

during this period of the lifespan, we speculate that cerebrovascular pathology contributes 

to AD pathogenesis (Head, Lott et al. 2016).   Serum proteins can leak into the brain 

parenchyma as a consequence of MBs in DS.  Indeed, in an autopsy study by Wilcock and 

colleagues, the neuroinflammatory phenotype of the DSAD brain reflects that of immune 
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complexes forming in the brain that can lead to inflammation (Wilcock, Hurban et al. 

2015). Thus, CAA and associated MBs in DS may have consequences for brain function 

in the absence of overt infarcts or strokes.   

Moving forward, our data suggests that we need to strongly consider 

cerebrovascular pathologies when studying adults with DS. It is particularly important as 

we think about designing clinical trials in this population, especially with all of the anti-

Aβ immunotherapy trials that are ongoing or have already concluded (van Dyck 2017). We 

also need to further examine how cerebrovascular pathologies, such as MBs and CAA, 

contribute to the development of dementia in individuals with DS. MRI studies will likely 

play a key role in helping us understand this connection and the clinical significance of 

these pathologies (Haller, Vernooij et al. 2018). 
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Table 3.1: Ongoing Clinical Trials for Aging adults with Down syndrome (queried 

from ClinTrials.Gov). 
 

Study Title Purpose of Study Cohort 

A Phase Ib Multi-Center, Double-Blind, 

Randomized, Placebo-Controlled Dose 

Escalation Study of the Safety, 

Tolerability and Immunogenicity of ACI-

24 in Adults With Down Syndrome 

To examine the safety, 

tolerability, and 

immunogenicity of the 

ACI-24 vaccine 

Adults 

with DS, 

ages 25-45 

Nicotinic Treatment of Age-Related 

Cognitive Decline in Down Syndrome: 

An Open Label Pilot Trial 

To ascertain the safety and 

tolerabilty of nicotine in 

DS patients and look for 

evidence of enhancements 

in cognitive function. 

DS adults 

with mild 

cognitive 

impairment 

Phase II Multicenter 16-Week 

Randomized Double Blind Placebo-

Controlled Evaluation of the Efficacy, 

Tolerability and Safety of Memantine 

Hydrochloride on Enhancing the 

Cognitive Abilities of Adolescents and 

Young Adults With Down Syndrome 

To learn if Memantine 

Hydrochloride can help 

adolescents and young 

adults with Down 

syndrome 

Children 

and Adults 

with DS, 

ages 15-32 
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Table 3.2:  Case characteristics for FC tissue obtained from brain banks (N=59). 
 

Characteristic 
YC 

(n=6) 

MC 

(n=12) 

OC 

(n=11) 

DS 

(n=11) 

DSAD 

(n=9) 

AD 

(n=10) 

Age at death, y  

17.5 

(16.1) 

52.7 

(10.4) 

84.5 

(5.0) 

20.1 

(18.7) 53.9 (7.4) 80.6 (8.2) 

Male/Female 

(n/n) 2/4 8/4 4/7 6/5 4/5 8/2 

Post Mortem 

Interval (PMI), h  

14.0 

 (7.4) 14.6 (7.1) 3.9 (3.1) 18.7 (9.3) 

8.  

(7.4) 

5.8 

 (2.9) 

Microhemorrhag

e counts  0 

3.3  

(6.2) 2.5 (4.0) 

2.7  

(8.4) 

38.4 

(45.5) 

33.0 

(49.1) 

CAA Score (n)       

    0 – No 

deposition 6 10 9 9 0 1 

    1 – Scattered, 

segmental 0 2 1 1 2 4 

    2 – 

Circumferential, 

≤ 10 vessels 0 0 1 1 3 4 

    3 – 

Widespread, ≤ 

75% vessels 0 0 0 0 2 0 

    4 – Over 75% 0 0 0 0 2 1 
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Table 3.3:  Case characteristics for OCC tissue obtained from brain banks (N=63) 
 

Characteristic 
YC 

(n=10) 

MC 

(n=10) 
OC (n=6) 

DS 

(n=11

) 

DSAD 

(n=14) 

AD 

(n=12) 

Age at death, y  

17.2 

(12.4) 

53.5 

(6.7) 

78.7  

(2.2) 

19.9  

(14.8) 53.3 (4.5) 79.7 (1.6) 

Male/Female 

(n/n) 8/2 6/4 3/3 8/3 4/10 6/6 

Post Mortem 

Interval (PMI), 

h  

21.5  

(3.9) 

16.2 

(6.8) 

9.0  

(6.5) 

19.7  

(6.0) 

9.8 

 (8.6) 

7.9  

(8.6) 

Microhemorrhag

e counts  

1.8  

(2.2) 

2.9  

(3.2) 

13.0 

(11.0) 

2.8  

(5.8) 

24.1 

(22.3) 

28.3 

(19.3) 

CAA Score (n)       

    0 – No 

deposition 10 10 5 8 0 1 

    1 – Scattered, 

segmental 0 0 1 3 1 4 

    2 – 

Circumferential, 

≤ 10 vessels 0 0 0 0 3 1 

    3 – 

Widespread, ≤ 

75% vessels 0 0 0 0 7 2 

    4 – Over 75% 0 0 0 0 3 4 
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Figure 3.1: AD pathology is present in the brains of elderly individuals with DS.  
Immunoreactivity for Aβ (6E10) in the posterior cingulate cortex of (A) a young individual 

with DS (age=39) with diffuse amyloid plaques (arrows) and (B) an individual with DSAD 

(age=51) with amyloid plaques (arrows) and CAA (arrowheads). Tau pathology (AT8) also 

increases with age, as shown in the posterior cingulate cortex of (C) a young individual 

with DS (age=25) and (D) an individual with DSAD (age=51) with neuronal AT8 labeling 

(arrows) and neuropil AT8 labeling (arrowheads).  
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Figure 3.2: Individuals with DSAD have CAA develop microhemorrhages.  

Aβ1-40 stain shows that CAA pathology increases in the occipital cortex from a (A) young 

individual with DS (age=25) to (B) a person with DSAD (age=51). This increase in CAA 

correlates with an increase in microhemorrhages, shown with Prussian blue staining, from 

(C) a young subject with DS (age=39) to (D) an older subject with DSAD (age=57). 
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Figure 3.3: Hypothetical sequence of neuropathological events as a function of age in 

DS.  

 

Reprinted from European Journal of Neurodegenerative Diseases, Vol. 1, number 3, 

Head, E., Powell, D., Gold, B.T., Schmitt, F.A., Alzheimer’s Disease in Down syndrome, 

353-363, 2012, with permission from Biolife. 
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Figure 3.4: Scoring of CAA. 

CAA was scored on a scale of 0-4 in the FC and OCC, where 0=no deposition (not 

pictured), 1=scattered segmental deposition of amyloid (A), 2=circumferential deposition 

in up to 10 vessels (B), 3=widespread, strong, circumferential deposition in up to 75% of 

vessels (C) 4= deposition in over 75% of region (includes dyshoric changes) (D). 
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Figure 3.5: DSAD and AD individuals have more severe CAA than age-matched 

controls.  

(A-D) Aβ1-40 (1:500) immunohistochemistry stain; all images taken at 20x 

magnification and in the OCC (A) MC (age=51), (B) DSAD (age=51), (C) OC (age=78), 

(D) AD (age=78). In the FC (E), The DSAD group did not have significantly higher CAA 

scores than the AD group (p=0.097), all individuals with DS (DS+DSAD) had higher CAA 

scores than age matched controls. In the OCC (F), individuals in the DSAD and AD groups 

had high counts of CAA, although these groups were not significantly different from each 

other (OR = 9.0, 95% CI 2.3-35.4). Overall, we found that based on an unadjusted ordinal 
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regression model, people with DS across all ages have more severe CAA scores than their 

age-matched controls in the OCC (OR=57.5, 95% CI 6.5-509.7). 

  



89 

 

 

Figure 3.6: Microbleeds increase with age in the FC and OCC. 

Prussian blue staining in our control (A-C) and non-control (D-F) groups, with positive 

MB labeling marked with arrowheads; all images taken at a 20x magnification. (A) YC 

(Age=39), (B) MC (age=56), (C) OC (age=76), (D) DS (age=2), (E) DSAD (age=57), (F) 

AD (age=76). MB counts were highest in the AD and DSAD group for both the FC (G) 

and OCC (H). 
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Figure 3.7: Microbleeds increase with age in individuals with Down syndrome.  
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In the FC (A), the number of MB increases with age, starting around 40 years old, whereas 

the number of MB in control cases stays fairly consistent. In the OCC (B), MB start 

increasing in individuals with DS in their 30s, which is about a decade earlier than in the 

FC. In addition, control cases also appear to have a slight increase in number of MB with 

age, although not as severely and at a much later age.  
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Chapter 4: Microglial Phenotypes in the Occipital and Posterior Cingulate Cortex 

in the Brains of People with Down syndrome with Alzheimer’s Disease 

4.1 - Introduction 

There is growing recognition that microglia, as the primary immune cells in the 

brain, play a key role in maintaining normal brain function, and concurrently, play a role 

in disease pathogenesis. Differences in microglial morphology, which are thought to reflect 

their function, were first described in 1928 (Rio-Hortega and Penfield 1932), when it was 

noted that ramified microglia were abundant throughout the brain and that their 

morphology changed in response to injury to take on an amoeboid morphology 

(Kettenmann, Hanisch et al. 2011). Since this early description, it has become well 

established that microglial morphology changes in response to disease or injury, and this 

has been extensively studied in AD (Aguzzi, Barres et al. 2013, Prokop, Miller et al. 2013, 

Biber, Owens et al. 2014, Derecki, Katzmarski et al. 2014, Mosher and Wyss-Coray 2014).  

However, there are few studies describing microglial morphology in DS, 

particularly in people with DSAD. Griffen et al. were the first to describe differences in 

microglial morphology in DS, finding significantly more IL-1 activated microglia in brain 

tissue from young people with DS relative to age-matched controls (Griffin, Stanley et al. 

1989). More recent work has confirmed and extended this initial report, showing activated 

microglia along with other neuroinflammatory markers in the brains of people with DS 

(Mann, Iwatsubo et al. 1995, Xue and Streit 2011). While activated microglial may suggest 

an inflammatory cascade similar to that seen in AD (Mann, Iwatsubo et al. 1995, Stoltzner, 

Grenfell et al. 2000), we have reported a neuroinflammatory phenotype in DSAD that is 

distinct from sporadic AD (Wilcock, Hurban et al. 2015).  Thus, the goal of the current 
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study was to further characterize microglial morphology as a function of age and AD 

neuropathology in DS.  

4.2 - Methods 

4.2.1 - Human Tissue Samples 

Fixed tissue samples were acquired from the OCC and the posterior cingulate 

cortex (PCC) from the University of California, Irvine, Alzheimer’s disease Research 

Center, the NIH NeuroBioBank, and the University of Kentucky Alzheimer’s Disease 

Center. Human tissue collection and handling adhered to the University of Kentucky and/or 

University of California, Irvine Institutional Review Board guidelines. 

Six autopsy groups were included in this study (Tables 4.1 and 4.2): young controls 

(YC; age-matched to young DS group; PCC:n=10; OCC: n=10), middle-aged controls 

(MC; age-matched to DSAD group; PCC: n=10; OCC: n=10), old controls (OC; age-

matched to AD group; PCC: n=6, OCC=6), DS (PCC: n=10; OCC: n=10), DSAD (PCC: 

n=17, OCC: n=14), and sporadic AD (PCC: n=6, OCC: n=11). Since people with DSAD 

come to autopsy at younger ages than those with sporadic AD, we were not able to match 

for age between these two groups. All control cases were selected to match for PMI to the 

DS, DSAD and AD cases. Our groups contained both males and females, but due to the 

limited availability of cases, we were not able to match for sex across groups. 

4.2.2 - Immunohistochemistry 

Tissue was sectioned on a vibratome (Leica Biosystems, Buffalo Grove, IL) at 50 m. 

Sequential 

sections were collected and stored in PBS with 0.02% sodium azide until used. 

Following standard immunohistochemistry protocols and using Iba-1 antibody (Abcam, 
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Cambridge, MA, 1:800) the sections were incubated in the primary antibody overnight and 

followed by incubation in an anti-rabbit secondary antibody (Vector Laboratories, 

Burlingame, CA). This was followed by amplification of the signal using an avidin-biotin 

complex peroxidase kit (Vector Laboratories, Burlingame, CA), and 3,3’ 

diaminobenzidine substrate kit (Vector Laboratories, Burlingame, CA). Following 

immunohistochemistry, each tissue section was mounted on a glass slide and coverslipped 

with Depex mounting media.  

4.2.3 - Image Analysis  

The Aperio ScanScope XT digital slidescanner was used to scan the entire slide at 

20x magnification. The Aperio ImageScope (v11.1.2.752) software was used to draw five 

random 250 x 250 micron boxes in the white matter (WM) and five random 250 x 250 

micron boxes in the gray matter (GM) for each tissue section. Five microglia 

morphological types were assessed, as defined in previous work (Boche, Perry et al. 2013, 

Bachstetter, Van Eldik et al. 2015): 1) ramified microglia, which have thin, branched 

processes to actively “survey” changes in their environments (Kettenmann, Hanisch et al. 

2011, Boche, Perry et al. 2013, Bachstetter, Van Eldik et al. 2015); 2) hypertrophic 

microglia (also known as activated microglia), which may have enlarged, short processes 

and thicker bodies (Streit, Xue et al. 2014, Bachstetter, Van Eldik et al. 2015); 3) dystrophic 

microglia that have fragmented or “beaded” processes possibly due to microglial 

dysfunction due to ageing (Streit, Sammons et al. 2004, Streit 2006, Boche, Perry et al. 

2013, Bachstetter, Van Eldik et al. 2015); 4) rod-shaped microglia that have elongated 

nuclei, few processes, and are most notable in chronic disorders (Boche, Perry et al. 2013, 

Bachstetter, Van Eldik et al. 2015); and 5) amoeboid microglia which have a round body, 
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lack processes, and appear in response to acute destruction of central nervous system tissue 

(Boche, Perry et al. 2013, Bachstetter, Van Eldik et al. 2015).  

The number of ramified, hypertrophic, dystrophic, rod-shaped, and amoeboid 

microglia in each box was counted by hand and averaged for each case, separating WM 

and GM (Figure 4.1). The categorical analysis used to quantify the microglia expanded 

upon previously established guidelines and figures (Bachstetter, Norris et al. 2012, 

Bachstetter, Rowe et al. 2013, Bachstetter, Van Eldik et al. 2015). Counts were made while 

blind to all samples groups and case histories.  

4.2.4 - Statistics 

IBM SPSS Statistics Software (Version 24) was used for statistical analysis. 

Overall group differences were assessed for the GM and WM separately using a 2-way 

ANOVA on these groups to examine interactions between age group (young vs middle 

aged) and genotype (DS vs non-DS). We directly compared OC and AD groups by t-tests 

made a-priori. Individual microglial phenotype counts are provided in Tables 4.1 and 4.2 

(Means ± SD).  

4.3 - Results 

4.3.1 - DS vs Controls 

4.3.1.1 - Ramified Microglia 

A 2-way ANOVA comparing ramified microglial counts in the GM of the  PCC 

suggests a main effect of age independent of genotype (DS vs CTL) (F(1,46)=5.827, 

p=0.020).  Figure 4.2A shows that the number of ramified microglial cells is lower overall 

with age (MC, DSAD) relative to younger cases (YC, DS).  Figure 4.2A also shows that 
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the number of ramified microglial cells is lower overall in DS (DS and DSAD) relative to 

age-matched controls (YC, MC). Additionally, the DSAD group had significantly fewer 

ramified microglia in the PCC GM than MC (p=0.037) and significantly less than the DS 

group (p=0.014). In contrast, a 2-way ANOVA suggests an overall genotype effect 

(F(1,44)=9.095, p=0.004) but not a significant age effect for ramified microglial cell counts 

in the OCC GM.  In the OCC GM, DS cases had fewer ramified microglial cells than YC 

(p=0.011), but we did not find any significant differences in ramified microglia between 

DSAD cases and MC, nor DS and DSAD. In the WM, DSAD cases had the fewest ramified 

microglial cells relative to all other groups.  No differences were observed for the PCC 

WM counts. Note that the number of ramified microglial cells in the WM in both the PCC 

and OCC was lower than that observed in the GM for both regions  

4.3.1.2 - Hypertrophic Microglia 

We did not see any significant differences in the average number of hypertrophic 

microglia in the GM of either the PCC or OCC with age or genotype (Figure 4.2C).A 2-

way ANOVA in the WM of both the PCC (F(1,46)=6.239, p=0.016) and OCC 

(F(1,44)=4.907, p=0.032) suggests a main effect overall of age. We also see an overall 

effect of genotype in the OCC (F(1.44)=10.574, p=0.002), although no significant 

interaction between age and genotype (Figure 4.2D). The DSAD group had significantly 

higher numbers of hypertrophic microglial cells in the OCC WM relative to MC (p=0.005) 

and DS (P<.0005). The number of hypertrophic microglial cells appeared similar in the 

WM of the PCC across groups although the DS and DSAD groups were higher overall than 

their age-matched controls.  
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4.3.1.3 - Dystrophic Microglia 

A 2-way ANOVA of the dystrophic microglial cell counts in the GM of the PCC 

suggests an overall effect of age (F(1,46)=4.488, p=0.04), but not a significant genotype 

effect. As shown in Figure 4.3A, these differences are largely driven by an increase in the 

number of dystrophic microglia in the DSAD cases relative to MC (p=0.019) and to DS 

cases (p=0.007). In contrast, there were no significant differences in the number of 

dystrophic microglial cells in the GM of the OCC nor in the WM of either brain region.  

4.3.1.4 - Rod-shaped Microglia 

As consistent with the literature, few rod-shaped microglia were found in either the 

PCC (Table 4.1) or OCC (Table 4.2), thus the average counts for rod-shaped microglia are 

relatively low (Bachstetter, Van Eldik et al. 2015, Bachstetter, Ighodaro et al. 2017). 

However, we decided to run an analysis on this data because there are few descriptions of 

this cell type. We did not see any statistically significant group differences in the number 

of rod-shaped microglia in the GM or WM of either region.  

4.3.1.5 - Amoeboid Microglia 

Our counts for amoeboid microglia were consistently very low across all of our 

groups. However, we did find several amoeboid microglia in a subset of our DSAD cases. 

A 2-way ANOVA in the GM of the PCC suggests a main effect of genotype overall 

(F(1,46)=5.645, p=0.022) and an effect of age that is trending towards significance 

(F(1,46)=3.868, p=0.056). We also saw a significant interaction between age and genotype 

(F(1,46)=6.449, p=0.015). This was driven primarily by the higher average number of 

amoeboid microglia in the PCC GM of DSAD cases compared to the other groups. No 

significant differences in the number of amoeboid microglial cells were observed in the 
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GM of the OCC.  Although no significant differences in the number of amoeboid microglial 

cells were observed in the WM of PCC, the WM of the OCC showed a significant genotype 

effect (F(1,44)=5.906, p=0.02) with a 2-way ANOVA, indicating that the number of 

amoeboid microglial cells is increased overall in DS (DS and DSAD) relative to YC and 

MC.  

4.3.2 - AD vs Controls 

Additionally, we see fewer microglia in our cases with AD pathology. However, 

we did not see many differences in microglia morphology between sporadic AD cases and 

age-matched controls. In the GM of the OCC, sporadic AD cases had significantly less 

amoeboid microglia than age-matched controls (p=0.024). Conversely, the WM of the 

same region, sporadic AD cases had significantly more amoeboid microglia than controls 

(p=0.024). We did not see any significant differences in ramified or hypertrophic microglia, 

as seen in the DSAD cases. 

4.3 - Discussion 

The aim of this study was to characterize  the distribution of several microglial 

phenotypes in the brains of people with DS.  We used autopsy tissue from the PCC, as 

these are regions where we have seen neurodegenerative changes in DSAD cases (Lin, 

Powell et al. 2016). Using IBA1 (ionized calcium binding adaptor molecule 1) that labels 

both resting and activated microglia we were able to identify and quantify different 

microglia morphologies in our tissue samples. DS and DSAD is associated with a 

microglial phenotype that distinguishes them from non-DS control cases in the PCC and 

OCC.  Microglial phenotypes vary as a function of brain region, differ between GM and 

WM of these regions, as well as age and genotype.  Consequently, differences in the 
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phenotype of microglial cells in DS may be due to gene overexpression (lower number of 

ramified microglial cells in the GM of PCC, higher numbers of hypertrophied microglia in 

the WM of OCC, higher numbers of amoeboid microglia in the GM of PCC and WM of 

OCC) or the presence of AD neuropathology, or synergy between both. 

The number of ramified microglial cells was significantly lower in the GM of both 

the PCC and OCC in older people with DS who have AD neuropathology.   Further, in the 

OCC, we see individuals with DS (including both DS and DSAD groups) have fewer 

ramified microglia than controls in the GM, which supports a previous small study on 

microglia in DS that showed fewer ramified microglia in individuals with DS than age-

matched controls (Xue and Streit 2011). This study independently supports that of a recent 

paper, which found fewer ramified microglia in individuals with dementia (including AD, 

hippocampal sclerosis of aging, hippocampal sclerosis of aging with AD, and dementia 

with lewy bodies) than age matched controls without dementia (Bachstetter, Van Eldik et 

al. 2015). Interestingly, we did not observe statistically significant lower numbers of 

ramified microglia in the WM, this may be due to lower numbers overall, leading to a floor 

effect.  Ramified microglia, which have thin, branched processes are thought to be actively 

“surveying” changes in their environments (Kettenmann, Hanisch et al. 2011, Boche, Perry 

et al. 2013, Bachstetter, Van Eldik et al. 2015).   

We observed significant differences in the number of hypertrophic microglia, in the 

WM of our DS cases. In the WM of both the PCC and OCC, individuals with DS had 

significantly more hypertrophic microglia than age matched controls.. We hypothesize that 

increased numbers of hypertrophied microglial cells in the OCC may be associated with 

vascular pathology with age in individuals with DS, and the microglia in this region may 
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be activated in a response to this pathology (Jellinger 2002, Nelson, Pious et al. 2013). This 

increase in hypertrophic microglia contrasts with other published findings on microglia in 

DS, which show individuals with DS having fewer hypertrophic microglia than controls 

(Streit, Sammons et al. 2004, Xue and Streit 2011). However, these studies looked only at 

the GM in the temporal cortex, a trend, which interestingly, we also observed in the OCC, 

albeit non-significant. Our findings highlight the importance of examining both the WM 

and the GM. Hypertrophic microglia (also known as activated microglia), which have 

enlarged, short processes and thicker bodies are thought to be actively responding to injury 

(Streit, Xue et al. 2014, Bachstetter, Van Eldik et al. 2015); 

It has previously been reported that there is an increase in the number of dystrophic 

microglia in the temporal cortex of individuals with DS compared to controls (Xue and 

Streit 2011). Therefore, we hypothesized that we would see more dystrophic microglia in 

our DS subjects compared to controls. We found higher numbers of dystrophic microglia 

in our DSAD cases than age-matched controls or young individuals with DS in the GM of 

the PCC, but not in the GM of OCC or in the WM of either region. Observing the highest 

numbers of dystrophic microglial cells in the GM of the PCC in DSAD is consistent with  

a previous report showing an increase in the number of dystrophic microglia in the 

hippocampus of three different type of dementia: AD, hippocampal sclerosis of aging, and 

dementia with lewey bodies (Bachstetter, Van Eldik et al. 2015). We found this to be true 

in the GM of the PCC, but not in the OCC. We also did not find any significant difference 

in the number of dystrophic microglia in the WM of either region. Dystrophic microglia 

that have fragmented or “beaded” processes may be due to microglial dysfunction or 
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senescence due to ageing or exposure to AD neuropathology (Streit, Sammons et al. 2004, 

Streit 2006, Boche, Perry et al. 2013, Bachstetter, Van Eldik et al. 2015). 

Descriptions of rod-shaped microglia are sparse in the literature. While the 

relationship between AD pathology and rod-shaped microglia is still unknown, the 

presence of rod-shaped microglia following traumatic brain injury has been suggested to 

serve a role in neuronal survival (Ziebell, Taylor et al. 2012). Further, rod-shaped microglia 

have shown strong immunoreacitivty to tau in a small subset of AD patients (Odawara, 

Iseki et al. 1995). Therefore, it is possible that aggregates of hyperphosphorylated tau, 

known as neurofibrillary tangles, initiate the formation of neuroprotective rod-shaped 

microglia in AD. Based on previous studies showing an increase in rod-shaped microglia 

with age (Bachstetter, Van Eldik et al. 2015, Bachstetter, Ighodaro et al. 2017), we 

hypothesized that we would see an increase in rod-shaped microglia with age in our 

controls and DS autopsy cases. However, we did not see any significant age-related 

increases in rod-shaped microglia. Additionally, we hypothesized that we would see a 

significant increase in the number of rod-shaped microglia with the presence of AD 

pathology, based on previous literature (Wierzba-Bobrowicz, Gwiazda et al. 2002, 

Bachstetter, Van Eldik et al. 2015). In DS and DSAD, we did not find any significant 

differences in rod-shaped microglia with the presence of AD pathology. Rod-shaped 

microglia that have elongated nuclei, few processes, and are most notable in chronic 

disorders (Boche, Perry et al. 2013, Bachstetter, Van Eldik et al. 2015).  Thus, although 

rod-shaped microglia are present in individuals with DS, their role in aging and AD in DS 

remains unclear.   
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Very little is known about the function of amoeboid microglia, as they are present 

in the brain at birth, before transforming into ramified microglia (Kettenmann, Hanisch et 

al. 2011). They are phenotypically very similar to macrophages found in the rest of the 

body and it is still unknown whether these microglia are senescing microglia found in the 

brain, or if they originate from monocytes entering the brain in response to injury (Boche, 

Perry et al. 2013). We found that our DSAD cases had significantly more amoeboid 

microglia than age-matched controls and individuals with young DS. We found increased 

numbers of  amoeboid microglia to be a feature of DS, as we saw an overall significant 

genotype effect in both the GM of the PCC and the WM of the OCC. While further work 

needs to be done to explore the clinical significance of amoeboid microglia, this is the first 

description, to or knowledge, of amoeboid microglia as a feature of DS. It is possible that 

monocytes from the blood are entering the brains of people with DS as vascular 

neuropathology (Scott, Collins et al. 1994) may lead to small microhemorrhages in the 

brain leading to the presence of more amoeboid microglial cells.  

Overall, individuals with DS, particularly those with DSAD, have different 

microglial phenotypes than age-matched controls (MC) (Figure 4.4).  In DSAD, there 

appears to be a shift towards the presence of higher numbers of dystrophic microglial cells 

and fewer ramified microglial cells suggesting fewer resting state microglia and more 

damage to microglia. Further, individuals with DS appear to have microglial changes that 

are independent of AD pathology, including increases in both hypertrophic and dystrophic 

microglia. These data reinforce the differences in neuroinflammation seen in individuals 

with DS. Previous work from our group showed that individuals with DSAD have a 

different neuroinflammatory phenotype than sporadic AD or age-matched controls, which 
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is shifted towards an M2b profile (Wilcock, Hurban et al. 2015). Further, given that there 

are a variety of inflammatory genes located on chromosome 21, these different gene 

expression profiles may be affecting the morphology of the microglia. 

The microglial changes also appear to be region dependent, with different 

microglial morphologies in at least the two cortical regions described here: the OCC and 

PCC. It is also notable that we see more changes in microglia morphology in the GM rather 

than the WM overall. This regional variability has been shown previously in the protein 

expression profile of microglia, which differed greatly by WM index, indicating that the 

myelin environment requires a microglial environment that is different than that of the GM 

(de Haas, Boddeke et al. 2008). These findings are notable for future studies, as they 

suggest that we should be focusing more on comparing microglia across brain regions and 

that we need to examine the GM and WM separately.  

It is interesting to note that magnetic resonance spectroscopy (MRS) studies in the 

PCC of DS indicate an age-dependent increase in myoinositol, thought to partially reflect 

neuroinflammation (Lin, Powell et al. 2016).  Also in MRS studies, levels of N-

aceytlaspartate decline with age in DS and indicate increasing levels of neuronal 

dysfunction.  Thus, the functional consequences of fewer ramified microglia and higher 

numbers of dystrophic microglia at autopsy may be observable in vivo.  Interventions that 

may reduce neuroinflammation in DS and may lead to fewer hypertrophied microglia, may 

be a valuable target to prevent AD pathogenesis in DS.  

 

  



104 

 

Table 4.1: Case characteristics for PCC tissue obtained from brain banks (n=60).  

Results presented are mean (SD). YC= young control (control for DS), MC=middle-age 

control (control for DSAD), OC=old control (control for AD), DS=Down syndrome, 

DSAD=Down syndrome with neuropathological Alzheimer’s disease, AD=sporadic 

Alzheimer’s disease; GM=grey matter; WM=white matter. F and p values are reported for 

a one-way ANOVA followed by a Fisher’s LSD test to compare differences between four 

groups: YC, DS, MC, and DSAD. 

 

PC

C 

Microgl

ial 

Phenoty

pe 

YC 

(n=11) 

DS 

(n=10) 

MC 

(n=10) 

DSAD 

(n=17) 
F p 

OC 

(n=6) 

AD 

(n=6) 

  

Age at 

death, y 

17.89 

(11.83) 

19.5 

(15.54) 

53.5 

(6.65) 

57.00 

(8.28) 

n/a 

78.67 

(2.16) 

78.83 

(1.83) 

Male/Fe

male 

(n/n) 

9/2 7/3 6/4 8/9 3/3 4/2 

Post 

Mortem 

Interval 

(PMI), h 

20.45 

(5.05) 

19.3 

(6.15) 

16.2 

(6.78) 

5.98 

(6.41) 

9.00 

(6.54) 

12.86 

(10.13) 

G

M 

Ramifie

d 

8.84 

(5.80) 

7.50 

(6.76) 

6.68 

(5.08) 

2.32 

(3.19) 

4.

33 

0.

01 

5.30 

(2.98) 

1.13 

(1.34) 

Hypertr

ophic 

3.84 

(2.60) 

5.62 

(3.63) 

4.64 

(3.76) 

4.69 

(4.11) 

0.

40 

0.

76 

5.27 

(3.09) 

5.53 

(3.42) 

Dystrop

hic 

6.50 

(5.50) 

6.52 

(2.97) 

7.42 

(3.29) 

13.41 

(8.15) 

4.
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Table 4.2: Case characteristics for OCC tissue obtained from brain banks (n=63).  

Results presented are mean (SD). YC= young control (control for DS), MC=middle-age 

control (control for DSAD), OC=old control (control for AD), DS=Down syndrome, 

DSAD=Down syndrome with neuropathological Alzheimer’s disease, AD=sporadic 

Alzheimer’s disease; GM=grey matter; WM=white matter. F and p values are reported for 

a one-way ANOVA followed by a Fisher’s LSD test to compare differences between four 

groups: YC, DS, MC, and DSAD. 
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Figure 4.1: Different microglia morphologies were evaluated in the PCC and OCC.  

In order to further understand the role of microglia in DS, we examined 5 microglia 

morphologies: A) ramified microglia, which have thin, branched processes to actively 

“survey” changes in their environment; B) hypertrophic microglia (also known as activated 

microglia), which may have enlarged, short processes and thicker bodies; C) dystrophic 

microglia that have fragmented or “beaded” processes possibly due to microglial 

dysfunction due to ageing; D) rod-shaped microglia that have elongated nuclei, few 

processes, and are most notable in chronic disorders; and E) amoeboid microglia which 

have a round body, lack processes, and appear in response to acute destruction of central 

nervous system tissue. 
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Figure 4.2: Fewer ramified microglia are present in the GM and more hypertrophic 

microglia are in the white matter of DSAD cases.  

(A) There are significant group differences in the number of ramified microglia in the GM 

of the PCC (F(3,46)=4.331, p=0.009) and OCC (F(3,43)=4.27, p=0.01). Specifically, the 

DSAD group had significantly less ramified microglia than age-matched controls 

(p=0.037) and significantly less than the young DS group (p=0.014). (B) We did not see 

any significant group differences in the number of ramified microglia in the WM of either 

region. (C) We did not see any significant group differences in the number of hypertrophic 

microglia in the GM of the OCC or PCC. (D) In the WM of the OCC, we saw significant 
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group differences in the number of hypertrophic microglia (F(3,43)=6.09, p=0.00). In this 

region, we found individuals with DSAD had significantly more ramified microglia than 

age-matched controls (p=0.005) and young individuals with DS (p=0.000). While not 

statistically significant, we saw similar trends in the PCC. 
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Figure 4.3: DSAD cases have significantly more dystrophic and amoeboid microglia 

than age-matched controls.  

(A) There were significant group differences in the GM of the PCC (F(3,46)=4.20, p=0.01) 

and found that there were significantly more dystrophic microglia in our DSAD cases than 

age-matched controls (p=0.019) and young DS cases (p=0.007). (B) We did not see any 

significant group differences in the WM of the PCC or OCC. (C) We saw statistically 

significant group differences in the GM of the PCC (F(3,46)=6.88, p=0.00) and the (D) 

WM of the OCC (F(3,43)=4.19, p=0.01). In both of these regions, we saw significantly 
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more amoeboid microglia in our DSAD cases compared to age-matched controls (PCC: 

p=0.001; OCC: p=0.009) and young individuals with DS (PCC: p=0.002; OCC: p=0.029).  
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Figure 4.4: DSAD cases have different microglia phenotypes than age-matched 

controls.  

The graphs above represent microglia phenotypes in the PCC of the GM and WM of MC 

and DSAD groups. In both the GM and WM we see an increase in dystrophic microglia in 

DSAD cases. In the GM of DSAD cases, we see fewer ramified microglia and more 

amoeboid microglia than age-matched controls. In the WM of DSAD cases, we see more 
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hypertrophic microglia than age-matched controls. We see similar changes occurring in the 

OCC. 
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Chapter 5: Conclusions and Future Directions 

5.1 – NHE1 Discussion 

5.1.1 - Summary 

In chapter two, we evaluated the possible role of NHE1 in VCID. We started 

looking at NHE1 because gene that encodes it, SLC9a1, was highly upregulated in a 

microarray and follow-up RT-PCR study performed on our db/AD mice (Figure 2.1F). 

When we followed this up with protein studies, we consistently saw moderate, but 

significant group effects with NHE1 levels increasing, particularly in our db/AD mice.   

Despite the extensive data we have collected on NHE1 and its role in VCID, we 

have yet to elucidate a mechanism for the role of NHE1 in cerebrovascular disease or 

cognitive impairment. While we do consistently see a modest, but significant increase in 

NHE1 in the db/AD mice, it has proven difficult to establish what this means for the 

development of pathology.  

When we attempted to expand our NHE1 studies into human cases, we were not 

able to find a connection between NHE1 and VCID pathology. This could be because we 

were not entirely sure what kind of pathology we were looking for in connection to NHE1. 

We did see NHE1 levels decrease with age in individuals with DS, but it is possible that 

the observed decrease is due to neurodegeneration and that the older DS subjects have less 

NHE1 because they have less brain matter.  

Given our data showing that NHE1 and pTau are correlated in the db/AD animals 

and that these proteins increase together following injury (Figure 2.4C-E), it is possible 

that NHE1 links to aspects of AD-related pathology through tau. However, we did not see 
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any increases in NHE1 levels our human AD or DS cases, which would both have high 

levels of pTau (Table 2.1). It is likely we will not understand this connection until further 

studies are done.  

5.1.2 - Future Directions 

To understand how NHE1 and tau pathology may be related, we could measure tau 

pathology and cognitive dysfunction in NHE1 knockdown mice. This would involve 

crossing commercially available NHE1+/- and NHE1+/+ mice (Hwang, Yoo et al. 2008) to 

generate knock-down and WT mice (NHE1-/- mice are not viable) and giving pups an 

intracerebroventricular injection of adeno-associated virus- TauP301L (AAV-TauP301L), 

following previously published methods (Chakrabarty, Rosario et al. 2013). If NHE1 

function or activity is at least partly responsible for the development of tau pathology, we 

should see less tau pathology and cognitive dysfunction in the NHE1+/- mice.  

To better understand whether NHE1 is at least partly responsible for 

cerebrovascular pathology in a mouse model of VCID, we could use an NHE1 inhibitor, 

such as Cariporide, which is well tolerated for chronic dosing in mice (Kilic, Velic et al. 

2005, Luo, Chen et al. 2005, Ferrazzano, Shi et al. 2011, Shi, Chanana et al. 2011, Leng, 

Shi et al. 2014), to pharmacologically suppress NHE1. We could treat  db/AD mice, which 

are known to develop stroke pathology around 10 months of age (Niedowicz, Reeves et al. 

2014), with Cariporide. We could then measure cognition in these mice using Morris Water 

Maze and evaluate cerebrovascular pathology in post-mortem tissue. If NHE1 is involved 

in VCID, then vascular pathology will be less pronounced in the Cariporide treated animals 

than control animals. 
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5.1.3 - Conclusions 

NHE1 is a highly abundant protein throughout the entire body, including the brain. 

It is nearly ubiquitous in the plasma membrane of virtually all mammalian cell types 

(Fliegel 2001) and serves a wide-variety of physiologically important functions, including 

maintaining intracellular pH (Pouyssegur, Sardet et al. 1984, Grinstein, Rotin et al. 1989), 

cell volume after osmotic shrinkage (Grinstein, Rotin et al. 1989, Shrode 1996), cell growth 

(Grinstein, Rotin et al. 1989, Hoffmann and Simonsen 1989), cell differentiation (Rao, de 

Roux et al. 1991), and acts as a structural anchor that helps determine cell shape and 

membrane integrity (Denker and Barber 2002). Given that NHE1 serves an array of 

functions that are critical for survival (Bell, Schreiner et al. 1999), it is difficult to 

mechanistically explain why these levels increase in our db/AD animals. However, it is 

possible that NHE1 levels vary widely in the brain, which is why we see NHE1 both 

increase and decrease with age and why we only see a marginally significant increase in 

the db/AD animals. With all of the data we have gathered and the failed clinical trials 

targeting NHE1 (Avkiran, Cook et al. 2008), I do not see reason to pursue NHE1 as a 

therapeutic target in VCID. While it is possible that there is a connection with tau or with 

other cerebrovascular pathologies, we have little significant data to stand on to ask non-

speculative, hypothesis-driven questions that could determine NHE1’s role in VCID.  

We did a microarray in a mouse model of VCID and hoped to take this to human 

cases, which ultimately was not successful. Mouse models are one of the most important 

tools for studying diseases, but it is difficult to make the leap from animal models to 

humans. This challenge is apparent given the difficulties of developing therapeutics in the 

AD field (Hall and Roberson 2012). As discussed in chapter one, the heterogeneity of 
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VCID makes it a difficult disease state to model. Therefore, we decided to move from mice 

to studying as cerebrovascular pathology in humans. 

One of the only significant pathology related effects we saw in the human cases 

from the NHE1 project was a decrease in NHE1 in the DS cases with age (Figure 2.5F). 

Since individuals with DS develop a marked amount of cerebrovascular pathology with 

age, we wondered if we could further investigate which forms of vascular pathology are 

better predictors of VCID.  

5.2. – Cerebrovascular Pathology in Individuals with Down Syndrome 

5.2.1 – Summary 

In chapter 3, we studied the extent of MBs in DS as a function of age and AD in 

the FC and OCC. Using a Prussian blue stain to identify MBs, we observed MBs in our 

DSAD cases with similar frequency with AD cases in both the FC and OCC (Figure 3.6). 

Additionally, individuals with DS (DS and DSAD) had significantly more frequent MBs 

than similarly aged controls in both regions examined. When we plotted MBs in individuals 

with DS against age, we found that the number of MBs increased significantly with age in 

both the FC and OCC (Figure 3.7). However, MBs appear earlier in the OCC of individuals 

with DS (in their 30s), than in the FC (during their 40s), indicating that the OCC is perhaps 

more vulnerable to early cerebrovascular changes than the FC.  

We also scored CAA in these cases on a scale of 0-4 (Figure 3.4) with the 

hypothesis that the presence of CAA and MBs are linked. We found CAA to be more severe 

in individuals with DS (combined DS and DSAD) relative to their aged matched controls 

in both regions (Figure 3.5). Further, we found that all individuals with DS, regardless of 
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age, have more severe CAA scores than controls, which confirms previous data published 

in our lab, showing more severe CAA in individuals with DS (Head, Phelan et al. 2017). 

The data in chapter 3 indicates that individuals with DSAD have CAA scores that are 

equally as severe as people with sporadic AD, despite a 27 year age difference. 

Additionally, We found CAA to be associated with MBs, indicating that MBs and CAA 

appear to be significant contributors to the development of dementia. 

5.2.2 – Future Directions 

Autopsy cases that we were working with were not cognitively characterized prior 

to death. Therefore, we were not able to evaluate how the presence of MBs and CAA 

contributes to cognitive impairment in individuals with DS. This would be an interesting 

next step for this work and one that we have already begun working on with the University 

of Kentucky’s Down Syndrome and Aging Study. The goal of this study is to follow people 

with DS over the age of 25 as they get older. Every year, participants come in for cognitive 

testing, where we measure learning and memory, blood draws, and MRI. Participants 

currently undergo a series of MRI scans, including T2* imaging, which show low signals 

due to disruptions to the main magnetic field. This includes iron from de-oxygenated 

hemoglobin, which allows us to detect hemorrhages in vivo (Greenberg, Vernooij et al. 

2009, Charidimou, Jäger et al. 2012, Van der Flier and Cordonnier 2012). We hypothesize 

that given the number of MBs we see in our autopsy cases, that we would see more MBs 

present in our older participants and that this would be correlated with cognitive 

impairment.   
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5.2.2.1 – Methods 

5.2.2.1.1 – Subjects 

T2* images were collected from visits for an ongoing longitudinal study evaluating 

cognitive decline in adults with DS (Powell, Caban-Holt et al. 2014, Lin, Powell et al. 

2016). Participants over the age of 25 were recruited through local DS support groups and 

residential facilities in Kentucky and southern Ohio since 2010. All participants completed 

informed written consent or assent with guardian consent. The study and research 

procedures were approved by the University of Kentucky Institutional Review Board. Only 

participants with usable T2* scans (images acquired without too much movement) were 

included in this analysis. This included 47 participants, 25 without dementia and 22 with a 

dementia diagnosis at consensus.  

5.2.2.1.2 – Imaging Acquisition 

MRI was performed on a 3T TIM Siemens scanner at the Magnetic Resonance 

Imaging Spectroscopy Center at the University of Kentucky. 2D GRE images were used 

to acquire T2* weighed images rather than SWI images to minimize time and motion 

artifacts, using a 20 channel head coil. The T2* imaging parameters were: TR 620ms, TE 

20ms, TA 2:06, BW 200Hz, 25 slices, 4mm thick/1.2mm gap, FOV 220x220 mm2, matrix 

205 x 256, Flip 20 degrees, axial. MPRAGE T1 weighted images were acquired for high 

resolution anatomical comparison with parameters: TR 2530ms, TI 1260ms, TE 2.9ms, TA 

4:39, BW 235Hz, 1mm isotropic resolution, FOV, 241 x 281 mm2 , sagittal. 

5.2.2.1.3 – Image Analysis 

All MRI scans were evaluated by myself, and any that were questionable were 

discussed with Dr. Powell and a consensus decision was made. MBs were defined as round 
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lesions, of less than 10 mm in diameter. Using the Microbleed Anatomical Rating Scale 

(MARS), we characterized the presence, number, and anatomical distribution of MB across 

MRI sequences for 47 participants (Gregoire, Chaudhary et al. 2009). We decided to use 

the MARS system because it has good reliability and gave information on number of MB 

as well as location. MBs were counted in the lobar region (frontal, temporal, parietal, 

occipital, and insular cortices) and deep region (brainstem, cerebellum, basal ganglia, 

thalamus, internal capsule, external capsule, corpus callosum, and deep periventricular 

white matter).  

Due to the severity of hemorrhaging in select DS cases, we followed up the MARS 

system with our own preliminary rating system of cerebrovascular pathology. In this rating 

system, we evaluated all hemorrhaging, including macrohemorrhages, superficial siderosis 

(hemosiderin deposition on the pial surface of the brain (Yamawaki and Sakurai 2013)), 

and MBs. First, we determined whether or not there was any hemosiderin present in the 

scan. If there was pathology, we evaluated it as mild, moderate, or severe. A classification 

of mild was made if there was bleeding present in 1-3 slices per brain (Figure 5.1 A), a 

moderate classification was made if bleeding was present in 3-6 slices per brain (Figure 

5.1 B), and a severe classification was made if bleeding was extensive (i.e. it was not 

possible to count the number of bleeds) (Figure 5.1 C). This methodology has not been 

published, nor has it been verified by independent evaluation. However, it was meant to 

serve as a preliminary analysis of the T2* images. 

5.2.2.2 – Results 

Initially, we evaluated all subjects on the MARS rating system. However, due to 

the severity of hemorrhaging in several of our cases (Figure 5.1 C), we found it difficult to 
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count and determine the distribution of bleeds. Therefore, the analysis from the MARS 

system was inconclusive (data not shown). 

The preliminary data analysis from our own rating system, which evaluated images 

based on a severity of mild, moderate, or severe cerebrovascular pathology, showed that 

the majority (64%) of participants without dementia had no vascular pathology present in 

their images (Figure 5.1 D). However, 24% of participants without dementia had mild 

vascular changes, and 12% had moderate cerebrovascular pathology. This indicates that 

hemorrhaging on a T2* scan is not a direct indicator of dementia. Further, of those 

participants with dementia, 36% had no cerebrovascular pathology, indicating that at least 

some individuals with DS develop dementia without any hemorrhaging, or at least 

hemorrhaging that is detectable by T2*. All of the participants with a score of severe 

cerebrovascular pathology had dementia. 

Unrelated to the bleeding, we found a significant amount of flow voids present in 

our people with DS. Often, it was difficult to determine if these flow voids were MBs or 

flow voids because they appear so large. This was an unexpected finding, but one that we 

found unusual. 

5.2.2.3 - Discussion 

The MARS system was unable to be applied in a subset of cases. However, we feel 

that it is an important finding that MARS is not an appropriate scoring mechanism for 

individuals with DS. We have several cases where we see multiple bleeds in a single slice, 

often overlapping each other. In these cases, it is difficult to determine whether this is a 

single bleed that continues to hemorrhage, leading to a distorted signal loss in the MRI, or 
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whether these are multiple bleeds from separate blood vessels. Additionally, we found that 

many of our participants have more severe hemorrhaging than just MBs, a finding that thus 

far has only been published in case reports (Donahue, Khurana et al. 1998, McCarron, 

Nicoll et al. 1998, Naito, Sekijima et al. 2008, Jastrzebski, Kacperska et al. 2015). These 

data give a more extensive examination of hemorrhaging in this population and provides 

important clinical information for treating individuals with DS as they age. 

We debated doing a load analysis on these subjects, which would give us a percent 

of signal loss in the brain. However, this process would be labor intensive, as there are 

several mimics of bleeds in T2*-weighted images. These include calcifications, iron 

deposits, flow voids in pial vessels, and others (Greenberg, Vernooij et al. 2009). These 

mimics are easily detectable by the human eye, but would be difficult to differentiate from 

a bleed by a computer. For example, a flow void often has the appearance of a MB, until 

you track the vessel and flow through multiple slices (Figure 5.1E). Occasionally this 

involves referring back to the structural three dimensional magnetization prepared rapid 

acquisition GRE (MPRAGE) sequence to determine whether a vessel of that size could 

structurally fit in that exact location.  Additionally, a load analysis would tell us the percent 

area with signal loss, but would still not give us a count on the amount of hemorrhages that 

are present. In this case, we would need to evaluate which is more important: the number 

of hemorrhages or the volume of the brain that is hemorrhaging. At this time, we do not 

know which is more important, but would make an interesting and important follow-up 

study. 

An additional follow-up to this study would be to further characterize the large 

volume of flow voids present in our DS cases (Figure 5.1E). These flow voids are 
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occasionally so large that we suspect there may be some structural vascular issues 

occurring in our DS participants. Time permitting, it would be interesting to start collecting 

magnetic resonance venography’s (MRV) to image the blood vessels in the brain. This 

would allow us to determine whether there are abnormalities in the vasculature in 

individuals with DS.  

5.2.3 – Conclusions 

Based on the autopsy and MRI data we have collected on MBs and CAA in DS, it 

is clear that MBs are a consistent feature in older individuals with DS. This is an important 

finding in that it highlights the need to consider cerebrovascular pathologies when studying 

adults with DS. Taking into consideration cerebrovascular neuropathology is especially 

important as we think about designing clinical trials in this population, particularly trials 

that involve immunotherapies (van Dyck 2017). Further, we need to continue the 

preliminary work described above to elucidate the role that cerebrovascular pathology 

plays in the onset of dementia in this population. 

5.3 – Microglia Morphology in DS Discussion 

5.3.1 – Summary 

Using autopsy cases from the PCC and OCC of individuals with DS, we 

characterized the distribution of several microglial phenotypes in these regions. We used 

IBA1 to label both resting and activated microglia and counted ramified, hypertrophic, 

dystrophic, rod-shaped, and amoeboid microglia in our cases. We separately examined the 

GM and WM in young individuals with DS, DSAD, AD, and age-matched controls for 

each of these groups.  
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Overall, we found that individuals with DS, particularly those with DSAD, have a 

different microglial phenotype than age-matched controls. In individuals with DSAD, we 

saw higher numbers of dystrophic microglia and fewer ramified microglia. This suggests 

that the surveying microglial cells are likely senescing and becoming dystrophic, which 

may contribute to some of the neuroinflammatory changes we see in this population 

(Abraham 2001).  

We also found the makeup of microglia morphology to be region dependent, with 

significant differences in the morphology of microglia in the PCC and OCC. Additionally, 

we overall saw more changes in microglial morphologies in the GM rather than the WM.  

5.3.2 – Future Directions 

Describing microglial changes in individuals with DS as they age is important for 

understanding neuroinflammatory changes in this population. We were only able to 

examine two regions of interest, the OCC and PCC, in this study. However, it would be 

interesting to be able to understand the regional heterogeneity across the brain. The 

complexity of a study of this size is noted, given the regional variability across both brain 

regions and GM and WM. Additionally, microglial changes in humans over the course of 

the lifespan has yet to be fully defined, so doing so in DS would certainly be a challenge. 

However, this information would help us to understand the microglial response to various 

types of neuropathology. 

In chapter 4, we found that our DSAD cases had significantly more amoeboid 

microglia than age matched controls and higher numbers than younger individuals with 

DS. However, very little is known about amoeboid microglia and their clinical significance. 
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Further studies to examine the role of amoeboid microglia as a function of aging and 

cognitive impairment would be important in understanding neuroinflammatory changes in 

DS. 

It would also be interesting to be able to create a pathological cascade model of 

dementia in AD, similar to the one made by Jack et. al in 2010 for AD (Jack, Knopman et 

al. 2010). In order to do so, we would need to complete similar studies with other markers 

of neurodegeneration, such as Aβ and tau, and including in vivo techniques, such as MRI. 

This would allow us to better understand changes in pathology over the lifespan for 

individuals with DS, which is important as we think about designing interventions for this 

population. Understanding when pathology appears in this population will allow us to 

design better and more effective clinical trials. 

5.3.3 – Conclusions 

In chapter 4, we found that individuals with DS, particularly those with DSAD, 

have different microglia morphologies than age-matched control in the OCC and PCC. 

This work supports previous data from our lab, showing that individuals with DSAD have 

a different inflammatory profile than controls or individuals with sporadic AD (Wilcock, 

Hurban et al. 2015). Overall, this work highlights the importance of examining regional 

differences and including data on both the GM and WM when examining microglia.  

5.4 - Conclusions 

VCID is a complex, heterogeneous form dementia, involving aspects of several 

different neurodegenerative diseases to cause cerebrovascular-driven cognitive 

impairment. This heterogeneity makes VCID difficult to model, given that it encompasses 
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a number of combinations of pathology. While there are a variety of animal and cell culture 

models than can aid in our understanding of VCID, there is currently no model that 

accurately reflects this condition in humans.  

This dissertation has examined several cerebrovascular contributions to aging, 

initially, in an animal model of VCID. However, the data gathered from these animals did 

not necessarily reflect what we observed in the human cases. Therefore, we moved into 

examining autopsy cases from individuals with DS. Given that individuals with DS develop 

cerebrovascular pathology with age, independent of certain risk factors for vascular 

pathology (Vis, Duffels et al. 2009), this population provides a unique way to study VCID.  

As the field of VCID becomes more widely recognized, we must start to specify 

different neuropathological and cognitive aspects of this condition. This will allow us to 

better model, and therefore develop better treatments, for individuals with VCID. Further, 

we must examine how different aspects of VCID drive cognitive impairment in aging 

populations. Understanding how different pathologies contribute to cognitive decline will 

be critical in order to develop early interventions to dementia. By building on these 

findings, we may be able provide critical information about aging in DS and help tease 

apart some of the complexities of VCID.  
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Figure 5.1: T2*-weighted images detect hemorrhages in individuals with DS.  

We evaluated our images based on the rating scale of mild, moderate, and severe. A mild 

diagnosis (A) was made if there was bleeding present in 1-3 slices per brain, a moderate 

diagnosis (B) was made if bleeding was present in 3-6 slices per brain, and a severe 

diagnosis (C) was made if bleeding was so extensive, that it was not possible to count the 

number of bleeds. Dementia status was used to categorize the ratings of the scans (D), and 

as hypothesized, we saw more severe pathology in our participants with dementia. Rating 

of cases was done by hand to ensure mimics, such as flow voids (arrows) or iron deposition 

seen in the ventricles, were not counted as bleeds (E). 

  



129 

 

Appendix 1: List of Abbreviations 

4VO Four vessel occlusion 

AAALAC Association for Assessment and Accreditation of Laboratory 

Animal Care 

AAV Adeno-associated virus 

Aβ Amyloid-beta 

AD Alzheimer’s disease 

AICD Amyloid precursor protein intracellular domain 

APP Amyloid precursor protein 

BACE β-Site APP-cleaving enzyme 

BBB Blood brain barrier 

BCAS Bilateral common carotid artery stenosis 

CAA Cerebral amyloid angiopathy 

CADASIL Cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy 

Caln Calcineurin 

CCA Common carotid artery 

CCH Chronic cerebral hypoperfusion 

CHI Closed head injury 

CHO Chinese hamster ovary 

CSF Cerebrospinal fluid 

DS Down syndrome 

DSAD Down syndrome with AD 

DSCR Down syndrome critical region 

DTI Diffusion tensor imaging 

Dyrk1a Dual-specificity tyrosine-(y)-regulated kinase 1a 

FC Frontal cortex 

FTD Frontotemporal dementia 
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GM Gray matter 

GOM Granular osmiophilic material 

Hcy Homocysteine 

HUVECs Human umbilical vein endothelial cells 

IACUC Institutional Animal Care and Use Committee 

IHC Immunohistochemistry 

IPSCs Induced pluripotent stem cells 

LC Locus coeruleus 

MARS Microbleed Anatomical Rating Scale 

MC Middle-aged controls 

MCI Mild cognitive impairment 

MMSE Mini mental score exam 

MPRAGE Magnetization prepared rapid acquisition GRE 

MRI Magnetic resonance imaging 

MRS Magnetic resonance spectroscopy 

MRV Magnetic resonance venography 

NbM nucleus basalis of Meynert 

NHE1 Sodium-hydrogen exchanger 1 

NHP Non-human primates 

NFAT Nuclear factor of activated T-cells 

NFTs Neurofibrillary tangles 

NOTCH3 Notch homolog 3 

OC Old controls 

OLAC Office of Laboratory Animal Welfare 

PCAD Preclinical AD 

PET Positron emission tomography 

PiB Pittsburgh Compound B 

PMI Post mortem interval 
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RCAN1 Regulator of calcineurin 1 

SHRSP Spontaneously hypertensive rat 

SMTG Superior middle temporal gyri 

STZ Streptozotocin 

SVD Small vessel disease 

T2DM Type 2 diabetes mellitus 

VCID Vascular contributions to cognitive impairment and dementia 

WM White matter 

YC Young controls 
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