University of Kentucky ### **UKnowledge** **Graduate Center for Nutritional Sciences Faculty Patents** **Nutritional Sciences** 1-8-2002 ### Genes Encoding Several Poly (ADP-Ribose) Glycohydrolase (PARG) Enzymes, the Proteins and Fragments Thereof, and **Antibodies Immunoreactive Therewith** Myron Jacobson University of Kentucky Elaine L. Jacobson University of Kentucky Jean-Christoph Amé Winston Lin University of Kentucky, winston.lin@uky.edu Follow this and additional works at: https://uknowledge.uky.edu/nutrisci_patents Part of the Medical Pharmacology Commons Right click to open a feedback form in a new tab to let us know how this document benefits you. ### **Recommended Citation** Jacobson, Myron; Jacobson, Elaine L.; Amé, Jean-Christoph; and Lin, Winston, "Genes Encoding Several Poly (ADP-Ribose) Glycohydrolase (PARG) Enzymes, the Proteins and Fragments Thereof, and Antibodies Immunoreactive Therewith" (2002). Graduate Center for Nutritional Sciences Faculty Patents. 19. https://uknowledge.uky.edu/nutrisci_patents/19 This Patent is brought to you for free and open access by the Nutritional Sciences at UKnowledge. It has been accepted for inclusion in Graduate Center for Nutritional Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. US006337202B1 ### (12) United States Patent Jacobson et al. (10) Patent No.: US 6,337,202 B1 (45) **Date of Patent: Jan. 8, 2002** (54) GENES ENCODING SEVERAL POLY (ADPRIBOSE) GLYCOHYDROLASE (PARG) ENZYMES, THE PROTEINS AND FRAGMENTS THEREOF, AND ANTIBODIES IMMUNOREACTIVE THEREWITH (75) Inventors: Myron K. Jacobson; Elaine L. Jacobson, both of Lexington, KY (US); Jean-Christophe Amé, Obernai (FR); Winston Lin, Lexington, KY (US) (73) Assignee: University of Kentucky Research Foundation, Lexington, KY (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 09/511,477 (22) Filed: Feb. 23, 2000 ### Related U.S. Application Data - (62) Division of application No. 09/302,812, filed on Apr. 30, - (60) Provisional application No. 60/083,768, filed on May 1, 1998 - (51) **Int. Cl.**⁷ **C12N 9/24**; C12N 9/00; C12N 9/14; C07K 1/00; C07K 14/00 ### (56) References Cited ### **PUBLICATIONS** Slama et al. "Specific inhibition of poly(ADP-ribose) glyco hydrolase by adenosine diphosphate (hydroxymethyl) pyrrolidinediol" J. Med. Chem. vol. 38, pp. 389–393, 1995.* Uchida et al. "Preferential degradation of protein-bound (ADP-ribose)n by nuclear poly(ADP-ribose) glycohydrolase from human placenta" The Journal of Biological Chemistry, vol. 268, No. 5, pp. 3194–3200, Feb. 1993.* Aoki et al. "Novel inhibitors of poly(ADP-ribose) glycohydrolase" Biochimica biophysica acta 1158, p 251–256, 1993.* Lin et al. "Isolation and characterization of the cDNA encoding Bovine poly(ADP-ribose) glycohydrolase" JBC, V 272 No. 18, p 11895–11901, May 1997.* * cited by examiner Primary Examiner—John S. Brusca Assistant Examiner—Karen A. Lacourciere (74) Attorney, Agent, or Firm—Fulbright & Jaworski, LLP ### (57) ABSTRACT The isolation and characterization of cDNAs encoding poly (ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described. Antibodies immunoreactive with PARGs and fragments thereof are described. ### 8 Claims, 21 Drawing Sheets Jan. 8, 2002 | DPARG
hPARG
MPARG
CePARG
hPARP
MPARP
aPARP | (422)
(421)
(413)
(29)
(205)
(208)
(208)
(205) | ED KRKEQCEMKHQRTERKIPKYIPPH EDRRKEQCEVRHQRTERKIPKYVPPH POVPTMKRRKLTEHGNTTESLLLKEDPEEPKS EGKRKGD. EVDG. VDEVAKKSKKEKDK EGKRKGD. EVDG. TDEVAKKSKKETDK EGKRKGD. EVDG. TDEVTKKSKKEKDK EGKRKGD. EVDG. IDEVTKKSKKEKDK EGKRKGD. EVDG. IDEVTKKKSKKEKDK | SEQ ID NO: 19 SEQ ID NO: 20 SEQ ID NO: 21 SEQ ID NO: 22 SEQ ID NO: 23 SEQ ID NO: 25 SEQ ID NO: 25 SEQ ID NO: 25 SEQ ID NO: 26 | |--|---|--|---| | XIPARP | (204) | EG KRKAD. EVDG. HSAATKKKIKKEKEK | | | DMPARP | (202) | EELPDTKRAKM. ELSDTNEEGEKKOR | SEQ ID NO: 28 | | SPPARP | (205) | EGVSSAKKAKI. EKIDEEDAASIKELTEKIKK | SEQ ID NO: 29 | Jan. 8, 2002 ### Strategy to Obtain Homologous **PARG Sequences** Jan. 8, 2002 ## FIGURE 16 Multiple Alignment of Amino Acid Sequences of PARG from Different Species Jan. 8, 2002 Jan. 8, 2002 ## GENES ENCODING SEVERAL POLY (ADPRIBOSE) GLYCOHYDROLASE (PARG) ENZYMES, THE PROTEINS AND FRAGMENTS THEREOF, AND ANTIBODIES IMMUNOREACTIVE THEREWITH ### CROSS REFERENCE TO RELATED APPLICATION This application is a divisional of U.S. application Ser. No. 09/302,812, filed Apr. 30, 1999, which claims benefits of U.S. provisional Application No. 60/083,768 filed May 1, 1998. The entire disclosure of U.S. application Ser. No. 09/302,812 and U.S. Provisional Application No. 60/083, 768 is incorporated herein by reference. ### STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT The present invention was supported in part by the National Institutes of Health (Grant CA43894). The United 20 States Government may have certain rights in the invention. ### TECHNICAL FIELD The present invention relates to poly(ADP-ribose) glycohydrolases (PARGs) and peptides having poly(ADP-ribose) glycohydrolase activity. In addition, the invention also relates to antibodies, including monoclonal antibodies and antibody fragments, that have specific interaction with epitopes present on poly(ADP-ribose) glycohydrolases. Methods of treatment and diagnosis using the poly(ADP-ribose) glycohydrolases, and antibodies specific for poly (ADP-ribose) glycohydrolases are disclosed. The present invention has implications for the treatment of neoplastic disorder, reperfusion following ischemia, neurological disorders, and related conditions. ### BACKGROUND OF THE INVENTION Genomic damage, if left unrepaired, can lead to malignant transformation, or cell death by senescence (aging), necrosis or apoptosis. Among the variables that can affect the ultimate biological consequence of DNA damage to a particular cell are (i) the amount, type, and location of the DNA damage and (ii) the efficiency and bioavailability of the cellular DNA repair mechanism. The activation of poly(ADP-ribose) polymerase (PARP) by DNA strand breaks is often one of the first cellular responses to DNA damage. PARP catalyzes the conversion of nicotinamide adenine dinucleotide (NAD) to multibranched polymers containing up to 200 ADP-ribose residues. Increases in polymer levels of more than 100-fold may occur within minutes of DNA damage. Once synthesized, polymers are rapidly turned over, being converted to free ADP-ribose by the action of poly(ADP-ribose) glycohydrolase (PARG) (1). An ADP-ribosyl protein lyase has been proposed to catalyze removal of protein-proximal ADP-ribose monomers (2). FIG. 1 illustrates these processes schematically. The process of activating PARP upon DNA damage can rapidly lead to energy depletion because each ADP-ribose 60 unit transferred by PARP consumes one molecule of NAD, which in turn, requires six molecules of ATP to regenerate NAD. Additionally, NAD is a key carrier of electrons needed to generate ATP via electron transport and oxidative phosphorylation or by glycolysis. The overactivation of PARP 65 due to substantial DNA damage can significantly deplete the cellular pools of NAD and ATP (3). ADP-ribose polymer 2 metabolism, and thus PARP and PARG have been linked to the enhancement of DNA repair (4), limitation of malignant transformation (5), enhancement of necrotic cell death (6), and involvement in programmed cell death (7). To date, studies of the structure and function of the enzymes of ADP-ribose polymer metabolism have been mainly limited to PARP (8). Little is known about the function and regulation of PARG. #### BRIEF SUMMARY OF THE INVENTION As embodied and broadly described herein, the present invention is directed to nucleic acids molecules, peptides, methods, vectors and antibodies that are related to the poly(ADP-ribose) glycohydrolase (PARG) enzyme. One embodiment of the invention is directed to an isolated and purified nucleic acid molecule or nucleic acid molecule analog comprising a sequence that encodes a polypeptide having poly(ADP-ribose) glycohydrolase (PARG) activity. The nucleic acid molecule may encode the complete full-length PARG gene or a fragment of the PARG gene. The nucleic acid molecule may be DNA, RNA or peptide nucleic acid (PNA). The nucleic acid molecule can be linear, such as, for example, an isolated fragment or a linear phage DNA. In addition, the isolated nucleic acid molecule may be circular, such as for example in a plasmid. The
nucleic acid molecule may also be a single stranded DNA or RNA such as the single stranded DNA or RNA in a single stranded DNA virus or single stranded RNA virus. The nucleic acid molecule may be of yeast, insect or mammalian origin. The nucleic acid molecule of the invention, may be of mammalian origin, such as, for example of bovine or murine origin. In a preferred embodiment of the invention, the nucleic acid molecule may be of human origin. While the sequence of the nucleic acid molecule is of mammalian origin, the nucleic acid molecule may be replicated in another organism such as an insert in a viral genome, a plasmid in a bacterium or a 2-micron plasmid in a yeast. Preferably, the nucleic acid molecule has, a high degree of sequence similarity with a sequence shown in SEQ ID NO: 1 (Genbank Accession Number U78975), SEQ ID NO: 3 (Genbank Accession Number AF005043), SEQ ID NO: 5 (Genbank Accession Number AF079557), SEQ ID NO: 45 (Genbank Accession Number AF079556) or SEQ ID NO: 9 (Genbank Accession Number CEF20C5). The high degree of sequence similarity may be, for example, about 70%, preferably about 80%, even more preferably about 90% and most preferably substantially identical such as for example about 100% identity. The nucleic acid molecule that encodes a polypeptide having poly(ADP-ribose) glycohydrolase (PARG) activity may be single or double stranded nucleic acid molecule of any length such as, for example, about 20 bases in length, about 30 bases in length, about 40 bases in length, about 50 bases in length, about 100 bases in length, about 200 bases in length, about 500 bases in length, about 1000 bases in length, about 1500 bases in length, about 2000 bases in length, about 3000 bases in length. It is understood that "bases" in this patent application means "basepairs" when referring to double stranded nucleic acid molecules and bases when referring to single stranded nucleic acid molecules. In a preferred embodiment of the invention, the nucleic acid molecule may be at least about 1000 base or basepairs long and have at least about 80% sequence similarity with a sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9. In one embodiment of the invention, the nucleic acid molecule may have sequence similarity to one region of the PARG sequence. The region may be, for example, from about base residue 2113 to about residue 3105 of SEQ ID NO: 3. Alternatively, the region may be, from residue 1240 to about residue 3105 of SEQ ID NO: 3 or from residue 175 to about residue 3105 of SEQ ID NO: 3. Another embodiment of the invention is directed to the expression and overexpression of PARG in a cell. Expression vectors may mediate the expression of a polypeptide with poly (ADP-ribose) glycohydrolase (PARG) enzyme activity. Expression systems and expression vectors are known in the art. For example, one expression vector may comprise a regulatory sequence which is operatively linked to a nucleotide sequence at least about 1000 base pairs in length, which has at least 70% sequence similarity with a sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9. In a preferred embodiment, the sequence similarity is at least about 80% identity, more preferably at least about 90% identity and 20 most preferably about 100% identity. The expression vector may be any expression vector that is capable of directing expression of a gene in a host cell including, prokaryotic, eukaryotic, mammalian and viral vector. Examples of such vectors include pCMV-Script cytomeglovirus expression 25 vectors for expression in mammalian cells, pESP and pESC vectors for expression in S. pombe and S. cerevesiae, pET vectors for expression in bacteria, pSPUTK vectors for high-level transient expression, and pPbac and pMbac vectors for expression in fall army worm (SF9) cells. Such vectors are available commercially from suppliers such as, for example, Invitrogen (Carlsbad, Calif.) or Stratagene (La Jolla, Calif.) In the use of viral vectors, it is understood that defective viral vectors—vectors that are genetically engineered to deliver a gene or gene product to a host but which cannot replicate in a host is preferred. Procedures for the practice of in vitro and in vivo expression are well known to those of skill in the art and are further available with the specific expression products and cell lines from commercial suppliers. Another embodiment of the invention is directed to a host cell transformed with a vector containing a nucleic acid molecule with a sequence that encodes a polypeptide having poly(ADP-ribose) glycohydrolase (PARG) activity. The host cell may be any eukaryotic or prokaryotic cell such as, for 45 example a human, murine, rattus, bovine, insect, yeast or bacteria. Specific cell lines are well known to those of skill in the art and are available from suppliers such as the American Tissue Type Collection (ATCC, Manassas, Va.) and Stratagene (La Jolla, Calif.) and the like. A preferred 50 embodiment of the invention is directed to cells transformed with the PARG expression vector which shows an elevated level of PARG relative to non-transformed cells. Especially preferred are cells transformed with an inducible PARG PARG levels before induction and have significantly elevated PARG levels after induction. An embodiment of the invention is directed to an isolated protein having poly(ADP-ribose) glycohydrolase (PARG) activity. The protein may comprise an amino acid sequence 60 with at least 70% sequence similarity with a sequence shown in SEQ ID NO: 2 (Genbank Accession Number U78975), SEQ ID NO: 4 (Genbank Accession Number AF005043), SEQ ID NO: 6 (Genbank Accession Number AF079557), SEQ ID NO: 8 (Genbank Accession Number AF079556), or 65 SEQ ID NO: 10 (Genbank Accession Number CEF20C5). The sequence similarity is preferably at least about 80%, more preferably at least about 90% and most preferably substantially identical with a sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, or SEO ID NO: 10. In a preferred embodiment of the invention, the preferred isolated protein having poly(ADP-ribose) glycohydrolase (PARG) activity and has a molecular weight greater than about 100 kDa. Another embodiment of the invention is directed to an oligonucleotide which is greater than about 10 bases in length and less than about 1000 bases in length which is complementary to a sequence shown SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, or SEQ ID NO: 9. The oligonucleotide may be, for example, greater than about 20 bases in length, greater than about 30 bases in length, greater than about 40 bases in length, greater than about 50 bases in length, greater than about 100 bases in length, greater than about 200 bases in length or greater than about 300 bases in length. The oligonucleotide, which may be optionally labeled with a detectable marker, may be DNA, RNA or PNA. A detectable marker may be, for example, a radioactive isotope such as ³²P or ¹²⁵I, an epitope such as FLAG. One preferred oligonucleotide is an antisense oligonucleotide directed to the mRNA of PARG. Antisense oligonucleotide as a method of suppression is well known to those in the art. For example, the phosphorothioate oligonucleotide, ISIS 2922, has been shown to be effective against cytomeglovirus retinitis in AIDS patients (9). It is thus well known that oligonucleotides, when administered to animals and humans, can have a useful therapeutic effect. In a preferred embodiment, the oligonucleotide is at least about 10 nucleotides in length, such as, greater than about 20 bases in length, greater than about 30 bases in length, greater than about 40 bases in length, greater than about 50 bases in length, greater than about 100 bases in length, greater than about 200 bases in length or greater than about 300 bases in length. In another preferred embodiment, the oligonucleotide has a ribozyme activity. Another embodiment of the invention is directed to an isolated polypeptide of at least 6 amino acid residues in length and having a molecular weight less than about 65 kDa, which has at least about 80% sequence similarity with a sequence shown in any one of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 or SEQ ID NO: 10. The polypeptide may be, for example, at least about 10 amino acids in length, at least about 20 amino acids in length, at least about 30 amino acids in length, at least about 40 amino acids in length, at least about 50 amino acids in length, at least about 75 amino acids in length, at least about 100 amino acids in length, at least about 150 amino acids in length, at least about 250 amino acids in length or at least about 500 amino acids in length or more. In a preferred embodiment, the polypeptide has a molecuexpression vector that have normal or slightly elevated 55 lar weight less than about 40 kDa and has at least about 90% sequence similarity with a sequence shown in any one of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 or SEQ ID NO: 10. The polypeptide preferably has poly(ADP-ribose) glycohydrolase (PARG) activity or is immunogenic and elicits antibodies immunoreactive with a poly(ADP-ribose) glycohydrolase (PARG) enzyme. In a more preferred embodiment, the polypeptide comprises an amino acid sequence substantially identical with SEQ ID NO: 4 from about residue 647 to about residue 977. > Another embodiment of the invention is directed to an isolated polypeptide of at least 10 amino acid residues in length and which has at least about 80% sequence similarity with a sequence shown in any one of SEQ ID NO: 2, SEQ ID NO 4, SEQ ID NO: 6, SEQ ID NO: 8 or SEQ ID NO: 10. Preferably, the polypeptide is at least about 20 amino acids in length, such as, for example at least about 30 amino acids, about 40 amino acids, about 50 amino acids, about 100 amino acids, about 200 amino acids and about 500 amino acids in length. Another embodiment of the
invention is directed to an antibody immunoreactive with an isolated polypeptide of at least about 6 amino acid residues in length and having a molecular weight less than about 65 kDa, which has at least about 80% sequence similarity with a sequence shown in any one of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 or SEQ ID NO: 10. In a preferred embodiment, antibody is immunoreactive with a polypeptide with a molecular weight less than about 40 kDa and has at least about 90% sequence similarity with a sequence shown in any one of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 or SEQ ID NO: 10. In another preferred embodiment, the antibody is immunoreactive with $_{20}$ a polypeptide comprising an amino acid sequence substantially identical with SEQ ID NO: 4 from about residue 647 to about residue 977. Another embodiment of the invention is directed to a method of detecting a polypeptide having PARG activity comprising the steps of contacting the polypeptide with an antibody immunoreactive with an isolated polypeptide of at least about 6 amino acid residues in length and having a molecular weight less than about 65 kDa, which has at least about 80% sequence similarity with a sequence shown in 30 any one of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 or SEQ ID NO: 10, and determining whether the antibody immunoreacts with the polypeptide. Another embodiment of the invention is directed to a method of preventing, treating, or ameliorating a disease 35 condition or disorder in an individual comprising the step of administering a therapeutically effective amount of a poly (ADP-ribose) glycohydrolase (PARG) inhibitor or activator to the individual. The disease condition or disorder may be any condition associated with responses to DNA damage, 40 examples of which include a neoplastic disorder, a myocardial infarction, a vascular stroke or a neurodegenerative disorder. The PARG inhibitor or activator may be a small molecule inhibitor or activator of PARG or may be an antisense oligonucleotide that can hybridize in vivo to 45 method of gene therapy comprising the step of delivering an messenger RNA encoded by a PARG gene. PARG based treatment may be directed to new methods for preventing, treating or ameliorating disorders associated with DNA damage. These disorders include neoplastic disorders, inborn genetic errors, myocardial infarctions, vascular 50 strokes, aging, and neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, Parkinson's disease, and neurotoxicity generally. Another embodiment of the invention is directed to the identification of novel PARG modulators which can activate 55 or inhibit DNA repair and/or apoptosis. A PARG modulator is a compound that can activate or inhibit PARG. These modulators are preferably more efficacious and do not have the known side effects of present modulators. One method of identifying an agent that inhibits or activates poly(ADPribose) glycohydrolase (PARG) activity comprise the steps of providing a liquid medium that contains a polypeptide having PARG activity contacting the polypeptide with a candidate agent, in the presence of a reference compound having affinity for the polypeptide, under predetermined 65 assay conditions, and determining the affinity of the candidate agent for the polypeptide relative to the reference compound. Thus, the modulation activity of the candidate agent relative to the reference compound is determined. In this method, the polypeptide may be immobilized on a solid support. Further, the polypeptide may be generated in vitro by culturing a cell transformed with a nucleic acid molecule encoding PARG under conditions effective to express the polypeptide. Another embodiment of the invention is directed to a method of identifying a mutant PARG allele in an individual comprising the step of obtaining genomic material from the individual; digesting the genomic material with a restriction enzyme having a recognition site inclusive of the mutant allele; fractionating the restriction fragments obtained from the digestion; and comparing the fractionation pattern with that obtained for a normal allele, thereby determining the presence or absence of the mutant allele. The fractionating step may be performed with electrophoresis. Another embodiment of the invention is directed to a method of identifying a mutant PARG allele in an individual comprising the steps of hybridizing an oligonucleotide with genomic material from the individual, which oligonucleotide hybridizes under predetermined hybridization conditions to a region immediately 5' of a predetermined mutation site in the PARG alleles with the 3' terminus of the oligonucleotide complementary to an unmutated PARG allele; extending the oligonucleotide using PCR amplification; and determining the degree to which extension occurs, thereby determining the presence or absence of the mutant allele. The PCR extension reaction may be performed at a temperature above about 50° C. The determination may be performed by conducting electrophoresis (using for example, acrylamide at about 4% to about 10% or agarose and low melting temperature agarose from about 0.8% to about 4%) on the products of PCR amplification. Another embodiment of the invention is directed to a method of screening molecules for PARG modulating activity (inhibition or activation) comprising the steps of providing a purified PARG enzyme; assaying the enzyme in the presence of a molecule to be screened; and comparing the activity of the PARG enzyme in the presence of the molecule to the activity of the PARG enzyme in the absence of the molecule. Another embodiment of the invention is directed to a oligonucleotide having a sequence complementary to at least a portion of a polynucleotide encoding a PARG enzyme to a cell to be treated. In the method, the oligonucleotide may have a sequence complementary to a sequence encoding a C-terminal portion of a PARG enzyme. Further, in the gene therapy method, the oligonucleotide may further comprise a ribozyme. Another embodiment of the invention is directed to a method of delivering to a cell surface, an oligonucleotide having a sequence complementary to at least a portion of a polynucleotide encoding a PARG enzyme to a cell to be treated. In the method, the oligonucleotide may have a sequence complementary to a sequence encoding a C-terminal portion of a PARG enzyme. Further, in the method, the oligonucleotide may further comprise a ribozyme. The portion of a polynucleotide encoding a PARG enzyme may be, for example, the polynucleotide encoding the N terminus third of PARG, the middle third of PARG, or the C terminus third of PARG. The portion of a polynucleotide may encode a smaller part of PARG such as the N terminus 10% of PARG, the C terminus 10% of PARG, or any 10% portion in between such as from 10% to 20%, from 20% to 30%, from 30% to 40%, from 40% to 50%, from 50% to 60%, from 60% to 70%, from 70% to 80%, from 80%/ to 90%. The percent value used means a percent of the linear amino acid sequence. Thus, for a 1000 amino acid protein, the N terminus 10 percent is from amino acid 1 to 100; 10% to 20% percent would be from amino acid 100 to 200 and so on. For a 970 amino acid protein, the N terminal 10% would be from amino acid 1 to 97; 10% to 20% would be from amino acids 98 to 194 amino acids. Another embodiment of the invention is directed to a 10 probed with PARG cDNA. method of sensitizing a cell to a chemotherapeutic agent comprising the step of contacting the cell with a molecule that modulates the activity of a PARG enzyme. The molecule may be an oligonucleotide having a sequence complementary to at least a portion of a polynucleotide encoding a PARG enzyme. For example, the oligonucleotide may have a sequence complementary to a sequence encoding a C-terminal portion of a PARG enzyme. The portion of a polynucleotide encoding a PARG enzyme may be, for example, the polynucleotide encoding the N terminus third 20 of PARG, the middle third of PARG, or the C terminus third of PARG. The portion of a polynucleotide may encode a smaller part of PARG such as the N terminus 10% of PARG, the C terminus 10% of PARG, or any 10% portion in between such as from 10% to 20%, from 20% to 30%, from $_{\,25}$ 30% to 40%, from 40% to 50%, from 50% to 60%, from 60% to 70%, from 70% to 80%, from 80% to 90%. The oligonucleotide may further comprise a ribozyme. The method may be used, for example, as a method of treating a diseased cell characterized by the presence of DNA strand breaks. In the treatment, the cell is contacted with a molecule that modulates an enzymatic activity of a PARG enzyme. Another embodiment of the invention is directed to a pharmaceutical composition comprising an oligonucleotide having a sequence complementary to at least a portion of a 35 polynucleotide encoding a PARG enzyme. The produced molecule may be an oligonucleotide having a sequence complementary to at least a portion of a polynucleotide encoding a PARG enzyme. For example, the oligonucleotide may have a sequence complementary to a sequence encoding a C-terminal portion of a PARG enzyme. The oligonucleotide may comprise a ribozyme activity. Another embodiment of the invention is directed to a virus that causes the production of all oligonucleotide having a sequence complementary to a polynucleotide encoding 45 a PARG enzyme. This may be, for example, a viral vector which after the infection of a host cell, causes the production of an antisense RNA of PARG. The molecule may be an oligonucleotide having a sequence complementary to at least a portion of a polynucleotide encoding a PARG enzyme. For example, the oligonucleotide may have a sequence complementary to a sequence encoding a C-terminal portion of a PARG enzyme. The oligonucleotide may further comprise a ribozyme activity. #### BRIEF DESCRIPTION OF THE DRAWINGS - FIG. 1 depicts the cellular biochemical process that occurs
after DNA damage. - FIG. 2 depicts the SDS-PAGE analysis of purified bovine thymus PARG. - FIG. 3 depicts the alignment of the DNA sequences of two 65 PCR products and eight $\lambda gt11$ cDNA clones used to identify the cDNA coding for bovine PARG. 8 - FIG. 4 depicts a northern blot analysis of bovine kidney cells mRNA transcripts. - FIG. 5 depicts an alignment of the putative bipartite NLS of bovine, human, and murine PARG and comparison with the bipartite NLS of PARP from different organisms. - FIG. 6 depicts expression of bPARG enzyme activity in E. coli~(10). - FIG. 7 depicts a Southern blot analysis of bovine DNA probed with PARG cDNA. - FIG. 8 depicts activity gel autoradiogram of *E. coli* expressed bovine PARG. - FIG. 9 depicts the analysis by anion exchange HPLC of material released from ADP-ribose polymers by PARG 15 action. - FIG. **10** depicts the SDS-PAGE analysis of the purification of *E. coli* expressed GST-PARG. - FIG. 11 depicts a schematic representation of the portions of the bovine PARG cDNA expressed as GST fusion constructs - FIG. 12 depicts the cloning of the 1.8 kb PCR EcoRI fragment encoding for the 65 kDa catalytic domain of PARG. - FIG. 13 depicts an autoradiogram of an activity gel of GST-PARG fusion constructs expressed in *E. coli* and PARG expressed in baculovirus. - FIG. 14 depicts a schematic representation of the strategy used to isolate cDNA molecules encoding PARG from 30 various organisms. - FIG.~15 depicts the domain organization of PARGs from different organisms. - FIG. **16** depicts an amino acid sequence alignment of bovine, murine, human, drosophila and *C. elegans* PARG enzymes (SEQ ID No: 2, 4, 6, 8 and 10). - FIG. 17 depicts a western blot of recombinant PARGs. - FIGS. 18(A,B) depicts western blots of natural and recombinant expressed PARG. - FIGS. 19(A,B,C,) depicts the characterization of PARG by Western Blot in mouse cells of different PARP genotypes. - FIG. 20 depicts a partial restriction map of the mouse PARG locus. - FIG. 21 depicts a schematic representation of the strategy used to create PARG knockout mice. ### DETAILED DESCRIPTION OF THE INVENTION Definitions List of Abbreviations ADP aden ADPR ADPR AMP aden ASPCR allele bp base bPARG bovi CePARG C. el dPARG Dros DTT dithi GSH-Sepharose GST gluta hPARG hum HPLC high **IPTG** adenosine diphosphate ADP-ribose adenosine monophosphate allele-specific PCR base pair(s) bovine PARG C. elegans PARG Drosophila melanogaster PARG dithiothreitol Glutathione-Sepharose 4B glutathione-S transferase human PARG high pressure liquid chromatography interleukin-1 b converting enzyme isopropyl-β-D-thiogalactoside #### -continued | kb
MDBK
mPARG
NAD
NLS | kilobase pair(s) Madin-Darby bovine kidney cells murine PARG nicotinamide adenine dinucloetide nuclear location signal | |-----------------------------------|--| | PADPR DHB-Sepharose | poly(ADP-ribose)-dihydroxyboronyl-Sepharose | | PAGE | polyacrylamide-gel electrophoresis | | PARG | poly(ADP-ribose) glycohydrolase | | PARP | poly(ADP-ribose) polymerase [EC 2.4.2.30] | | PCR | polymerase chain reaction | | PEG-6,000 | polyethylene glycol 6,000 | | PEG | polyethylene glycol | | PMSF | phenylmethylsulfonyl fluoride | | PR-AMP | phosphoribosyl-adenosine monophosphate | | RFLP | restriction fragment length polymorphism | | SDS | sodium dodecyl sulfate | | SSCP | single-strand conformation polymorphism | | TPCK | Trypsin: L-1-tosylamido-2-phenylethyl | | | chloromethyl ketone. | An "agonist" as defined herein refers to a molecule which, when bound to PARG, increases or prolongs the effect of PARG. Agonist may include proteins, nucleic acid molecules, carbohydrates, or any other molecules that bind to and modulate the effect of PARG. An "allele" or "allelic sequence", as defined herein refers 25 to an alternative form of PARG. Alleles may result from at least one mutation in the nucleic acid molecule sequence and may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles, are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence. An "ortholog" as defined herein refers to a nucleotide or amino acid sequence that is related to a reference nucleotide or amino acid sequence through speciation, and is therefore identical or structurally similar to the reference sequence. A given nucleotide or amino acid sequence is said to be "substantially identical" with another sequence when the compared sequences have the same residues in the same order, excepting for any degeneracy (nucleotides) and conservative substitutions (amino acids). A"regulatory sequence" of an expression vector is a DNA 45 sequence necessary for inducing transcription of a gene, and includes a functional promoter and/or enhancer sequence. The term "operatively linked" as used herein means that a first nucleotide sequence, such as a regulatory element, is fused in frame with a second nucleotide sequence so as to 50 afford a faithful transcription of the entire nucleotide sequence, which upon translation yields the desired protein. The term "immunoreactivity" and related terms refers to the ability of antibodies and fragments thereof to bind to particular regions (antigens) presented by polypeptides and 55 proteins, presented to the antibodies either as immunogens or targets. Typically, the binding affinity of the antibodies for their antigen is in the range 10⁵ to 10¹¹, with higher affinities being preferred. The term "specific immunoreactivity" refers to the ability of antibodies and fragments thereof to bind to particular regions (antigens) presented by polypeptides and proteins, presented to the antibodies either as immunogens or targets and not to unrelated antigens. For example, an antibody with not bind another protein, such as a polymerase, which do not share epitopes with actin. 10 The term "nucleic acid molecule" refers to DNA, RNA and nucleic acid molecule analogs such as PNA and the like. PNA or "Peptide Nucleic Acid" is a nucleic acid molecule analog that has a neutral "peptide-like" backbone with nucleobases that allow the molecule to hybridize to complementary RNA or DNA with higher affinity and specificity than corresponding oligonucleotides. PNA can be made to be more resistant to normal nucleases and are especially desirable, for example, in gene therapy. PNA is known to 10 one of skill in the art and can be purchased or custom synthesized in numerous commercial laboratories including PerSeptive Biosystems, Inc. (Framingham, Mass.). The term "modulate" means to activate or inhibit. For example, a PARG modulator may activate or inhibit PARG 15 activity. "Modulation activity" means the amount of activation or inhibition. For example, a compound that increase PARG (or any other enzyme) activity by 10% will have a modulation activity of 10%. Conversely, a compound that decreases PARG activity by 10% will have a modulation activity of -10%. As used herein, a given nucleotide or amino acid sequence is said to have a defined percentage of sequence similarity with another sequence when the two sequences differ by no more than the specified sequence similarity, including conservative substitutions, insertions, and deletions. Degenerate codons do not result in a change in amino acid upon translation, therefore, it is appreciated that identical amino acids can be encoded by several equivalent codons. The term "homology" and "sequence similarity" should have the same meaning for the purpose of this patent. Similarity parameters may be any generally acceptable parameter. For the purposes of this patent, percent similarity between two polymers such as nucleic acid molecules and polypeptides is preferably defined by Karlin and Altschul (11). The similarity algo-35 rithms of Karlin and Altschul are well known to those of skill in the art as exemplified by their adoption by the National Center for Biological Information. For nucleic acid molecule sequence searching, one desirable set of parameters would M (score for a pair of matching residues) at 5; N (score for mismatching residues) at -4; W (word length) at 11. For proteins, it is well known that some amino acids are similar and that substitution would be conservative. That is, for example, the replacement of an acidic amino acid with another acidic acid would be consider a conservative mismatch while the replacement of an acidic amino acid with a basic amino acid would be consider a more divergent mismatch. Preferably, the parameters for a desirable protein similarity determination are expressed in the sequence similarity matrix BLOSUM62 as described in Henikoff & Henikoff (12). Other similarity matrixes that are also preferred in the invention are PAM40, PAM120 and PAM250 as described in Altschul (13). The rapid synthesis of ADP-ribose polymers that occurs in response to DNA strand breaks is accompanied by very rapid polymer turnover, indicating that PARP and PARG activities are closely coordinated as cells respond to DNA damage. While PARP has been widely studied, information concerning structure and function relationships of PARG is much more limited. The present invention discloses the isolation of a cDNA encoding the bovine, human, murine and drosophila PARG and their deduced amino acid sequences. The availability of PARP cDNA has allowed a number of molecular genetic approaches to study the function(s) of specific immunoreactivity to actin will bind actin but would 65 ADP-ribose polymer metabolism and the availability of PARG cDNA should allow the design of additional molecular genetic approaches for studying
this metabolism. For example, disruption of the gene encoding PARG in mice containing a normal PARP gene will allow the determination of whether other cellular enzymes can replace PARG in the turnover of ADP-ribose polymers and/or whether development of animals will occur in the absence of PARG. Alternatively, disruption of the PARG gene in mice containing a disrupted PARP gene may provide insights for the coordinated function of PARP and PARG. One embodiment of the invention is directed to a deoxtide having poly(ADP-ribose) glycohydrolase (PARG) activity. Preferably, the molecule is of mammalian origin, such as, for example, of human origin. In a preferred embodiment, a DNA molecule of the invention comprises a nucleotide sequence with at least 15 those of skill in the art. about 70% sequence similarity with a sequence shown in a sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9. Higher degrees of sequence similarity, such as about 80%/, about 90%, and about 100% are preferred. Most preferred is a DNA mol- 20 ecule comprising a nucleotide sequence substantially identical with any one of sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9. It is preferred that a DNA molecule of the present invention comprises at least about 1000 nucleotides and has 25 a nucleotide sequence with at least 80% sequence similarity with a sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9. Most preferably, the DNA molecule consist of a nucleotide sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 30 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9. For a DNA molecule of the present invention based on a human PARG gene it is preferred that the molecule comprises a nucleotide sequence that shows similarity to the sequence shown in SEQ ID NO: 3 from about residue 2113 35 to about residue 3105. More preferably, the sequence similarity is from about residue 1240 to about residue 3105. Still more preferably, the DNA molecule comprises a nucleotide sequence similarity to the coding sequence for the fulllength hPARG as shown in SEQ ID NO: 3 from about 40 residue 175 to about residue 3105. A DNA molecule of the present invention affords probes and primer molecules that can be used in hybridization assays and PCR amplification. An exemplary oligonucleotide is less than about 1000 residues in length and com- 45 prises a nucleotide sequence at least about 10 residues long to ensure hybridization. Preferably, the at least about 10 residue region of the oligonucleotide is complementary to a sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9. Typically, the 50 oligonucleotide will be a DNA molecule, which can be labeled by any method as desired, for example, with a radiolabel, a fluorescence label, or chemi-luminescent label. Another embodiment of the invention is directed to a nucleic acid molecule that hybridizes to in a nucleic acid blot 55 (Southern blot, Northern blot) to a sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, or SEQ ID NO: 9 under stringent hybridization conditions. A nucleic acid blot may be made using techniques defined in Molecular Cloning, Second Edition, Sambrook et al., Cold Spring Harbor Press, Cold Spring Harbor, N.Y. DNA to be analyzed may be separated in agarose or acrylamide gels. The DNA may be transferred to nylon or nitrocellulose membrane using techniques known to those in the art. Stringent hybridization condition may be for example, prehybridizations 42° C. in 50% formamide, 0.25 M sodium phosphate buffer, pH 7.2, 0.25 M NaCl, 7% SDS, 1 mM EDTA for 10 hours, 100 ug denatured salmon sperm DNA, hybridization at 42° C. in 50% formamide, 0.25 M sodium phosphate buffer, 100 ug denatured salmon sperm DNA, pH 7.2, 0.25 M NaCl, 7% SDS, 1 mM EDTA, 1 ng/ml probe with a specific activity of 10° cpm/ug DNA, for 16 hours. The probe may comprise any contiguous sequence from SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, or SEQ ID NO: 9. Preferably, said contiguous sequence is at least about 50 bases long, more preferably, the contiguous sequence is at yribonucleic acid (DNA) molecule that encodes a polypep- 10 least about 75 bases long, such as at least about 100 bases, at least about 200 bases long or at least about 300 bases long. The complete sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, or SEQ ID NO: 9. Methods of labeling probes to with radioactive labels are known to 12 Method of washing after stringent hybridization are known. A stringent washing may comprise, for example, two washes at in 2×SSC, 0.1 % SDS for 15 minutes each at room temperature; two washes in 0.2×SSC, 0.1% SDS for 15 minutes each at room temperature; and a final three washes in 0.2×SSC, 0.1% SDS for 15 minutes each at 60° C. The final wash may be increased in temperature for reduced background. For example, the final wash may be a final three washes in 0.2×SSC, 0.1% SDS for 15 minutes each at 65° C. or a final three washes in 0.2×SSC, 0.1% SDS for 15 minutes each at 68° C. If a radioactive probe is used, hybridization may be monitored using known techniques such as autoradiogram or a two dimensional measurement of radioactivity. An anti-sense oligonucleotide is also afforded by the present invention. The anti-sense molecule is typically less than about 1000 residues in length to ensure ease of synthesis, and hybridizes to an RNA molecule, e.g., messenger RNA, which has at least 70% sequence similarity with a sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9. Preferably, the anti-sense molecule is at least about 10 nucleotides in length to ensure hybridization with mRNA. Even more preferably, the anti-sense molecule may be at least about 15 nucleotides in length such as, for example, at least about 20 nucleotides in length; at least about 30 nucleotides in length; at least about 50 nucleotides in length; at least about 75 nucleotides in length; at least about 100 nucleotides in length; at least about 150 nucleotides in length; at least about 200 nucleotides in length; at least about 500 nucleotides in length; at least about 1000 nucleotides in length; or at least about 1500 nucleotides in length. It is also preferred that the molecule has a ribozyme activity so that it can degrade the mRNA that it binds to. An antisense oligonucleotide may be used therapeutically to inhibit translation of mRNA encoding, PARG. Synthetic antisense oligonucleotides may be produced, for example, in a commercially available oligonucleotide synthesizer. This invention provides a means to therapeutically alter levels of expression of a human or other mammalian PARG by the use of a synthetic antisense oligonucleotide drug that inhibits translation of mRNA encoding PARG. Synthetic antisense oligonucleotides, or other antisense chemical structures designed to recognize and selectively bind to mRNA, are constructed to be complementary to portions of the nucleotide sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 and SEQ ID NO: 9. An antisense oligonucleotide may be designed to be stable in the blood stream for administration to patients by injection, or 65 in laboratory cell culture conditions, for administration to cells removed from the patient. The antisense may be designed to be capable of passing through cell membranes in order to enter the cytoplasm and nucleus of the cell by virtue of physical and chemical properties of the antisense oligonucleotide which render it capable of passing through cell membranes (e.g., by designing small, hydrophobic antisense oligonucleotide chemical structures) or by virtue of specific transport systems in the cell which recognize and transport the antisense oligonucleotide into the cell. In addition, the antisense oligonucleotide can be designed for administration only to certain selected cell populations by targeting the antisense oligonucleotide to be recognized by specific cel- 10 lular uptake mechanisms which bind and take up the antisense oligonucleotide only within certain selected cell populations. For example, the antisense oligonucleotide may be designed to bind to transporter found only in a certain cell type, as discussed above. The antisense oligonucleotide may be designed to inactivate the PARG mRNA by (1) binding to the PARG mRNA and thus inducing degradation of the mRNA by intrinsic cellular mechanisms such as RNase I digestion, (2) by inhibiting translation of the mRNA target by interfering with the binding of translation-regulating 20 factors or of ribosomes, or (3) by inclusion of other chemical structures, such as ribozyme sequences or reactive chemical groups, which either degrade or chemically modify the target mRNA. Synthetic antisense oligonucleotide drugs have been shown to be capable of the properties described above when directed against mRNA targets (14). In addition, coupling of ribozymes to antisense oligonucleotides is a promising strategy for inactivating target mRNA(15). In this manner, an antisense oligonucleotide directed to PARG may serve as a therapy to reduce PARG expression in particular 30 target cells of a patient and in any clinical condition that may benefit from reduced expression of PARG. It is known by those in the art that as a result of the degeneracy of the genetic code, a multitude of nucleotide ogy to the nucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates a nucleic acid molecule that encodes a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8 and SEQ ID NO: 10. The invention contemplates each and every possible variation of nucleotide sequence that could be made by selecting combinations based on possible codon choices that would tions are made in accordance with the
standard triplet genetic code as applied to the nucleotide sequence of naturally occurring PARG and all such variants are to be considered as being specifically disclosed. Although nucleic acid molecules which encode PARG 50 and its variants preferably hybridizes under high stringency conditions to the nucleotide sequence of the naturally occurring PARG gene under appropriate conditions of stringency, it may be advantageous to produce nucleotide sequences encoding PARG or its derivatives possessing a substantially different codon usage. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PARG and its derivatives and variants without altering the produced amino acid sequence include the production of RNA transcripts having more desirable properties, such as greater half-life, than transcripts produced from the naturally occurring sequence. In order to express a biologically active or immunologically active PARG, the nucleic acid molecule encoding 14 PARG or functional equivalents, may be inserted into appropriate expression vector, such as, for example a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Thus, another aspect of the present invention is an expression vector comprising a regulatory sequence operatively linked to nucleic acid molecule comprising a nucleotide sequence disclosed herein. For example, an expression vector can contain a nucleotide sequence at least about 1000 base pairs in length, which has at least about 70%, about 80%, or higher, sequence similarity with a sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEO ID NO: 9. Methods that are known to those skilled in the art may be 15 used to construct expression vectors containing sequences encoding PARG and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. A variety of expression vector/host systems may be utilized to contain and express sequences encoding PARG. These include, for example, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with veast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus), insects infected with virus expression vectors (e.g., fall army worm infected with baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus; TMV) or with bacterial expression vectors (e.g., Ti or bacterial plasmids); or animal cell systems. The invention is not limited by the host cell employed. Prokaryotic expression systems are commercially available from a number of suppliers worldwide. Prokaryotic sequences encoding PARG, some bearing minimal homol- 35 expression vectors provide a convenient system to synthesize proteins. If it is desired to express a protein with characteristics such as immunogenic properties, 3D conformation, and other features exhibited by authentic PARG, the protein may be expressed in an eukaryotic protein expression system. The eukaryotic expression systems are numerous and include mammalian, amphibian, plant, insect, and yeast expression systems. Yeast hosts that can be used for expression include Saccharomyces cerevisiae, Schizosaccharomyces pombe, encode the oligopeptides disclosed herein. These combina- 45 Pichia pastoris, Hansela polymorpha, Kluyveromyces lactis, and Yarrowia lipolytica. Yeast hosts offer the advantages of rapid growth on inexpensive minimal media and ease in large-scale production using bioreactors. Another advantage of yeast is the ability to direct expression to cytoplasmic localization or for extracellular export. Most yeast vectors for protein expression are derivatives of the S. cerevisiae 2µ (two micron) plasmid. Yeast vectors include pYES and pEST from Stratagene (La Jolla, Calif.) Constitutive gene expression by the yeast plasmid cassette can be mediated by well known promoters such as the glyceraldehyde-3-phosphate dehydrogenase promoter (TDH3); the triose phosphate isomerase promoter (TPI1); the phosphoglycerate isomerase promoter (PGK1); the alcohol dehydrogenase isozyme II (ADH2) gene promoter; GAL1 and GAL10 promoters; the metallothionein promoter from the CUP1 gene (induced by copper sulfate); and the PHO5 promoter (induced by phosphate limitation). Proper termination of yeast transcripts is known to those in the art. Termination signals may include the MF-alpha-1, TPI1, CYC1, and PGK1 genes. These termination signals may be spliced onto the 3' end of the insert to provide proper termination. Insect expression systems include baculovirus based vectors designed to express foreign proteins in a number of insect hosts and insect cell line hosts. Insect and insect cell lines may be of *Drosophila melanogaster*, *Aedes albopictus*, Spodoptera frugiperda, and Bombyx mori origin. Numerous expression systems comprising cells, vectors, hosts and the like can be purchased from a variety of commercial sources. The control elements or regulatory sequences necessary for the proper expression of the insert, in this case PARG, may comprises promoters, enhancers (including both proxi- 10 can also be used in a wide variety of assays, e.g., as a mal and distal control elements) which interact with the host proteins to carry out transcription and translation. Such elements may vary in their strength and specificity and are known to those in the art. Depending on the vectors system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, the LacZ promoter may be used in a bacterial cell; the baculovirus polyhedrin promoter may be used in an insect cell; plant promoters such as heat shock promoters, and storage protein promoters, 20 plant virus promoters and the like may be used in a plant cell. In a mammalian cell expression system, an SV40 promoter or EBV promoter may be used. Methods and protocols for both prokaryotic and eukaryotic expression systems are generally known to those in the 25 art. Further, the cells, vectors, growth medium may be purchased from commercial suppliers. The catalogs and product literature of commercial suppliers provide detailed protocols to enable the expression of proteins in prokaryotic and eukaryotic systems including bacterial, yeast, insect, 30 insect cell, and mammalian cell systems. The product literature and catalogs of Clontech (Palo Alto, Calif.), Invitrogen (Carlsbad, Calif.), Life Technologies (Rockville, Md.), Novagen (Madison, Wis.), Pharmigen (San Diego, Canada), and Stratagene (La Jolla, Calif.) are incorporated herein by reference. A further aspect of the invention is isolated proteins and protein fragments having poly(ADP-ribose) glycohydrolase (PARG) activity. Such a protein can comprise an amino acid sequence with sequence similarity of at least about 70%, about 80% or higher to a sequence shown SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, and SEQ ID NO: 10. For example, the full-length bovine PARG has a molecular weight greater than about 100 kDa, thereby 45 distinguishing it from previously known PARGs. The protein may be purified, for example, from cell lysates using the antibodies of the invention. The purification may be through an antibody column. PARG polypeptides are another aspect of the invention. 50 erable. Polypeptides of PARG may be used, for example, to generate antibodies in an immunogenic procedure. To be effective it is preferred that the polypeptides are at least about 6 amino acid residues in length, such as for example, at least about 10 amino acids in length, at least about 20 amino acids in length, at least about 30 amino acids in length, at least about 50 amino acids in length, at least about 75 amino acids in length, at least about 100 amino acids in length, at least about 150 amino acids in length, at least about 200 amino acids in length, or at least about 400 amino acids in length. In one embodiment, the polypeptide has a molecular weight less than about 65 kDa and with at least about 80% sequence similarity with a sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, and SEQ ID NO: 10. The polypeptide may consist of the sequence set forth in 65 dures (16). SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, or SEQ ID NO: 10. 16 The polypeptide of the invention may be conjugated to a larger molecule, such as, for example, keyhole lymphet hemocyanin (KLH), to increase the immunogenicity of the polypeptide. The increased immunogenicity of the polypeptide will, in turn, increase the yield of antibody. Preferably, the polypeptide has a molecular weight less than about 40 kDa and with at least about 90% sequence similarity with a sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, and SEQ ID NO: 10. The polypeptide competitor of antigen in a liquid sample in an antibodybased assay. Therefore, it is preferred that the polypeptide has poly(ADP-ribose) glycohydrolase (PARG) activity. A particularly preferred polypeptide is of human origin and comprises an amino acid sequence substantially identical with SEQ ID NO: 4 from about residue 647 to about residue 977—the C terminus catalytic region of the enzyme. Longer sequences more inclusive of the natural molecule are of course also contemplated. The invention also encompasses PARG variants and alleles. A preferred PARG variant is one having at least 80% and more preferably at least 90% amino acid similarity to the amino acid of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID
NO: 6, SEQ ID NO: 8 and SEQ ID NO: 10 and which retains at least one biological, immunological or other functional characteristic or activity of PARG. A most preferred PARG variant is one having at least 95% amino sequence similarity or identity to human PARG (SEQ ID NO: 3). Antibodies to PARG may be generated using numerous established methods that are well known in the art. One example of such a method is described in the Examples. Generated antibodies may include, for example, polyclonal, monoclonal, chimeric, single chain, Fab fragments, Fab' fragments, Fab' (2) fragments, and fragments produced by a Calif.), Quantum Biotechnologies (Montreal, Quebec, 35 FAB expression library. Humanized antibodies and single chain antibodies may also be produced after the amino acid sequence of effective antibodies are determined. For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others, may be immunized by injection with PARG or any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, for example, Freund's mineral gels such as aluminum hydroxide, and surface-active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. Among adjuvant used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially pref- It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PARG have an amino acid sequence consisting of at least five amino acids and more preferably at least about 10 amino acids, such as for example about 20 amino acids or about 40 amino acids. It is also preferable that they are identical to a portion of the amino acid sequence of the natural PARG. Short stretches of PARG amino acids may be fused with those of another protein such as keyhole limpet hemocyanin and antibodies may be produced against the chimeric molecule. Antibodies may be produced by inducing in vivo production in the lymphocyte population of a living animal or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in published proce- Antibody fragments that contain specific binding sites for PARG may be generated. For example, such fragments include the F(ab'), fragment, Fab fragment, Fab' fragment which can be produced by enzymatic digestion of the antibody molecule. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W. D. (1989) Science 254, 1275–1281). Therapeutic Methods A method of preventing, treating, or ameliorating a disease condition in a patient, which disease state is affected by method entails administering a therapeutically effective amount of a poly(ADP-ribose) glycohydrolase (PARG) inhibitor or activator to the individual. Particularly, implicated disease states are neoplastic disorder, myocardial infarction, vascular stroke and neurodegenerative disorders. In one embodiment, antisense oligonucleotides for PARG may be used alone or in combination with other chemotherapeutic agents to treat neoplastic disorder. The antisense oligo is designed to hybridize in vivo to messenger RNA expressed by the organism. The use of anti-sense molecules in a therapeutic setting is described, for example, by S. Agrawal, Antisense Therapeutics, Humana Press. Currently favored protocols call for the oligo to have ribozyme activity in an effort to degrade the mRNA. These methods are described, for example, in Therapeutic Application of Ribozymes, K. Scanlon, ed., Humana Press. Therefore, in one embodiment, an antagonist of PARG may be administered to a subject to prevent or treat neoplastic disorder. PARG levels may be enhanced to suppress DNA repair 30 and increase a cell's susceptibility to chemotherapy drugs. Therefore, in another embodiment, an PARG enhancer is administered to a subject along with a chemotherapeutic drug as a treatment for neoplastic disorder. Neoplastic disorders that can be treated by PARG eleva- 35 tion and chemotherapy include benign and malignant neoplasm such as, for example, adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, hyperplasia and hypertrophy. Neoplastic disorders may include, in particular, neoplastic disorders of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus. For the purposes of this invention, a neoplastic 45 PARG is known. Some exemplary methods are restriction disorder is any new and abnormal growth; specifically a new growth of tissue in which the growth is uncontrolled and progressive. Malignant cancer is a subset of neoplastic disorders which show a greater degree of anaplasia and have the properties of invasion and metastasis. The synthesis of effective anti-sense inhibitors is known. Numerous approaches have been previously described and generally involve altering the backbone of the polynucleotide to increase its stability in-vivo. Exemplary oligonucleotides and methods of synthesis are described in U.S. Pat. 55 Nos. 5,661,134; 5,635,488; and 5,599,797 (phosphorothioate linkages), U.S. Pat. Nos. 5,587,469 and 5,459,255 (N-2 substituted purines), U.S. Pat. No. 5,539,083 (peptide nucleic acids) and U.S. Pat. Nos. 5,629,152; 5,623, 070; and 5,610,289 (miscellaneous approaches). The disclosures of each of these references are incorporated herein by reference. Significantly, the present invention discloses a method of identifying an agent that inhibits or activates poly(ADPribose) glycohydrolase (PARG) activity. Such method com- 65 prises (i) providing a liquid medium that contains a polypeptide of the present invention; (ii) contacting the polypeptide with a candidate agent, in the presence of a reference compound having affinity for the polypeptide, under predetermined assay conditions; and (iii) determining the affinity of the candidate agent for the polypeptide relative to the reference compound, thereby determining the inhibition or activation activity of the candidate agent relative to the reference compound. These determinations can be facilitated by immobilizing the polypeptide on a solid support. Alternatively, the polypeptide can be generated in vitro by the level of PARG expression is also contemplated. This 10 culturing a cell transformed with a PARG gene under conditions effective to express the polypeptide. 18 Combination therapies are also afforded by the present invention in which a PARG inhibitor or activator is administered in combination with a chemotherapeutic or a "clotbusting" drug. The clot-busting drug may be, for example, tissue plasminogen activator (t-PA) or streptokinase. In some cases it may be desired to overexpress PARG in the cells of an organism in order to achieve the correct PARP/PARG balance. In this context of gene therapy, it is desired to stably transfect target cells with a vector, such as, for example, a viral or a DNA (nucleic acid) vector, so that the desired gene is overexpressed. Gene therapy vector systems and protocols are well known and are described, for example, in the Internet Book of Gene Therapy (17) Antisense and ribozyme approaches to cancer gene therapy are described in chapters 7-9 of the Internet Book of Gene Therapy, and are incorporated herein by reference. Another reference is Gene Therapy Protocols, P. Robbins, ed., Humana Press. Furthermore, gene therapy methods have advanced greatly and are well documented in numerous issued U.S. patents. Gene therapy may be practiced, for example, by substituting a nucleic acid molecule of the invention with the nucleic acid molecule described in the methods referred to in any issued U.S. patents directed to gene therapy (18). Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans. Diagnostic Methods Methods of genotyping an individual for a mutant PARG allele are also afforded by the present invention. A number of protocols are available for identifying a mutant allele as described herein once the nucleotide sequence encoding fragment length polymorphism (RFLP), allele-specific PCR (ASPCR) and single-strand conformation polymorphism (SSCP). Armed with this information, the genetic susceptibility of an individual to an above-mentioned disease con-50 dition can be assessed. An allele-specific method for identifying point mutations by differential PCR amplication is described by (19). A non-electrophoretic method of genotyping with allelespecific PCR employs a dye specific for double-stranded DNA (20). A method of detecting mutations referred to as single-stranded conformation polymorphism (SSCP) is presently widely employed (21). A hybrid of SSCP and Sanger dideoxy sequencing, called dideoxy fingerprinting (ddF) has recently been described (22). Other methods of identifying, allelic mutations are known to the skilled artisan. Probably the most commonly used method of genotyping is restriction fragment length polymorphism (RFLP) (23), which is employs one or more restriction enzymes to identify mutant alleles occurring within a restriction site. This method has been used extensively in forensic applications and is employed commercially by such companies as Helix Biotech, Inc. Reliagene Technologies, Inc. and GenTest Laboratories, Inc. Accordingly, an instant mutant PARG allele can be detected by RFLP methods, optionally by one of these commercial entities. The above methods are most effective in the detection of homozygotes for the defective allele.
An RFLP method of identifying a mutant PARG allele in an individual entails: (i) obtaining genomic material from the individual; (ii) digesting the genomic material with a restriction enzyme having a recognition site inclusive of the mutant allele; (iii) fractionating the restriction fragments 10 obtained from the digestion, e.g., by electrophoresis; and (iv) comparing the fractionation pattern with that obtained for a normal allele, thereby determining the presence or absence of the mutant allele. An ASPCR method of identifying a mutant PARG allele 15 in an individual entails: (i) hybridizing an oligonucleotide with genomic material from the individual; (ii) attempting to extend the oligonucleotide using PCR amplification; and (iii) determining the degree to which extension occurs, thereby determining the presence or absence of the mutant 20 allele. In this method, it is preferred that the oligonucleotide hybridizes under predetermined hybridization conditions to a region immediately 5' of a predetermined mutation site in the PARG allele with the 3' terminus of the oligonucleotide complementary to an unmutated PARG allele. In these protocols, the PCR extension reaction is generally attempted at a temperature above about 50° C., more preferably above about 60° C. A variety of protocols including ELISA, RIA and FACS for measuring PARG levels are known in the art and provide 30 a basis for diagnosing altered or abnormal levels of PARG expression. Normal or standard values for PARG expression may be established by combining body fluids and tissue biopsies from normal mammalian subjects, rupturing the antibody under conditions suitable for complex formation. The amount of standard complex formation may be quantified by various methods but preferably by photometric means. Quantities of PARG expressed in subject, control, determine between normal, reduced or enhanced levels of PARG. A still further aspect of the invention pertains to an antibody immunoreactive with a polypeptide of the present noreactive with the polypeptides of this invention such as, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, and SEQ ID NO: 10. Frequently it is desired to label the antibody, e.g., with a radiolabel, fluorescent or epitope label, noreactive with the PARG of this invention are afforded, which can be used to study features of PARG heterogeneity and possible modes of regulation. The high degree of sequence similarity between bovine PARG, human PARG and murine PARG permits eliciting antibodies to PARG of 55 one species, which are found to be cross-reactive with PARGs from other organisms. These antibodies are valuable in characterizing PARG in-vivo under defined physiological conditions in many different organisms. Accordingly, a method of detecting a polypeptide having 60 PARG activity, for example, a diagnostic assay, entails: (i) contacting the polypeptide with an aforementioned antibody of the invention; and (ii) determining whether the antibody immunoreacts with the polypeptide. Binding can be ascertained in an sandwich assay, as is well known, due to the 65 ability of the antibodies to immunoreact with an epitope of PARG. Preferably, monoclonal antibodies, such as those 20 prepared by the method of Kohler and Milstein (24) and labeled antigens effective in competing with the polypeptide, are employed. Exemplary assays are disclosed in U.S. Pat. No. 4,375,110, the disclosure of which is incorporated herein by reference. The present invention includes immunoreactive fragments of a PARG enzyme. Immunoreactive fragments can be fragments that can elicit an immune response that recognizes a PARG enzyme. Alternatively, immunoreactive fragments can be fragments that are specifically bound by an antibody that specifically binds a PARG enzyme. Any of variety of methods may be employed in order to identify contiguous peptide fragments of a PARG enzyme that comprise immunoreactive sequences. PARG enzymes may be fractionated by proteases, cyanogen bromide, etc. and the resultant fragments assessed for their capacity to specifically bind anti-PARG antibodies. In an alternative embodiment, one or more synthetic peptides may be prepared in order to locate contiguous amino acid sequences that are immunoreactive. The peptides may have a sequence that includes a series of contiguous amino acids that are identical to a series of contiguous amino acids of a PARG enzyme. The peptides may be of about six amino acids to about 500 amino acids in length. The peptide may also include sequences that are not identical to sequences of a PARG so long as it includes at least about six contiguous amino acids that are identical to about six contiguous amino acids of a PARG enzyme. In a preferred embodiment, the peptide will be about 50 amino acids in length. In other preferred embodiments the length of the peptide may be from about six amino acids to about 30 amino acids. The peptides of the present invention may comprise amino acid sequences that elicit antibodies that specifically cells or permeating the cells, combining the cells with 35 bind to the peptide or to a PARG enzyme. Alternatively, the peptides may contain sequences that are specifically bound by anti-PARG antibodies. Peptides that are bound by anti-PARG antibodies may identified through the use of Epitope Scanning™ strategy (Cambridge Research Biochemicals, and disease sample are compared to standard values to 40 Inc.). Thus, the linear sequence of amino acids of a particular PARG enzyme is used to construct a set of peptides of defined length which overlap other members of the set by one or more residues. The peptides may be any length; however, lengths of from about 6 to 25 amino acids are invention. Preferably the antibodies are specifically immu- 45 preferred. In selecting the length, a general consideration is that antibodies that recognize linear native epitopes constitute approximately 60-70% of the anti-protein antibody population (25). The number of overlapping amino acids will generally be to permit visualizing the antibody. Thus, antibodies immu- 50 more than half of the length of the peptides. That is, if the peptides are about 20 amino acids long, the overlap may be 11 or more amino acids long. In preferred embodiments, each peptide will be selected such that the number of overlapping amino acid residues in adjacent peptides is from about (n-1) to (n-3), where "n" is the number of amino acids in the peptide. An overlap of (n-1) is particularly preferred. Thus, in a particularly preferred embodiment, a first peptide may have the amino acid sequence of residues 1-10 of a PARG enzyme, a second peptide may have the amino acid sequence of residues 2-11 of the same PARG enzyme, a third peptide may have the sequence of residues 3-12 of the same PARG enzyme and so on until the entire sequence of the PARG enzyme has been synthesized in The peptides may be synthesized using any means known to those of skill in the art. In a preferred embodiment, the peptide will be synthesized using an automated synthesizer such as a multipin peptide synthesis system. Such systems or peptides synthesis services are commercially available from suitable providers known to those skilled in the art. To identify suitable peptides, each peptide is introduced into a well of a microtiter plate, and assayed for its ability to bind to antibodies elicited by a PARG enzyme. Such assays may be conducted in various ways known to those skilled in the art. One suitable assay is conducted by immobilizing a peptide on the surface of a well and then contacting the peptide with a solution containing an anti- 10 PARG antibody. After washing, the well is contacted with a labeled antibody that specifically binds to the anti-PARG antibody. Thus, the presence of label in the well indicates that the anti-PARG antibody bound to the immobilized peptide. Another preferred method of determining the ability 15 of the peptide to be specifically recognized by anti-PARG antibodies is a competitive ELISA. Once a particular peptide has been found to bind to anti-PARG antibodies, the peptide can be used to elicit monospecific antibodies. By immunizing an experimental 20 animal with a single peptide containing a single antigenic determinant, the antibodies elicited will all specifically bind to the same antigenic determinant even though the antibodies are not monoclonal. Where desired, the peptides can be modified to increase 25 reference. their immunogenicity. Thus, they may be modified to contain an amino-terminal and/or a carboxyl-terminal cysteine or lysine residue with or without spacer arms. The peptides may be conjugated to carriers such as bovine serum albumin, ovalbumin, human serum albumin, KLH (keyhole limpet 30 hemocyanin) or tetanus toxoid. The use of human serum albumin is preferred over ovalbumin or bovine serum. The peptides, alone or conjugated to a carrier, may be themselves capable of eliciting an antibody response when peptides, alone or conjugated to a carrier, may be administered in conjunction with an adjuvant. Those skilled in the art will understand that a variety of materials may function as adjuvants. Examples of possible adjuvants include, but are not limited to, Freund's complete adjuvant, Freund's incomplete adjuvant, lipopolysaccharide (LPS) and the like. Any material that increases the immune response to a fragment of a PARG enzyme may be used as an adjuvant. The ability to produce large amounts of active PARG of chemical libraries for molecules capable of inhibiting or activating PARG enzymatic activity. The screening may be conducted using any assay for PARG known to those skilled in the art. In a preferred embodiment, the screen may be conducted using the TLC based assay described by Ménard, et al. (26). A known amount of PARG will be incubated under standardized conditions with [32P]-poly(ADPR) in the presence of inhibitor or activator. After an appropriate period of time, the reaction will be
stopped and the reaction mixture separated on PEI-F cellulose TLC plates. The TLC plates 55 may be developed in an appropriate solvent system such as methanol followed by 0.3N LiCl. The amount of ADPR released in the reaction will be quantified and the effect of the inhibitor or activator on enzymatic activity will be determined. Typical reaction conditions are 50 mM potassium phosphate (pH 7.5) at 37° C. in the presence of 25 μ M [32P]-poly(ADPR). The concentration of the inhibitor or activator can be varied as necessary to determine the K, value of the inhibitor or activator according to standard procedures. Another embodiment of the invention is directed to a method of altering the response of the cell to a genotoxic stress by modulating the concentration of ADPR polymers. As discussed above, the metabolism of ADPR polymers is critical in determining the fate of cells subjected to genotoxic stress. The modulation can be either an increase or a decrease in the concentration of the polymers. In one embodiment of the present invention, the concentration of ADPR polymers can be decreased by the use of a gene therapy vector expressing(a high level of PARG. In another embodiment of the present invention, the concentration of polymers call be increased by inhibiting the enzymatic activity of the PARG enzyme by the addition of inhibitors or activators identified as described above. Alternatively, the concentration of ADPR polymers can be increased by interfering with the endogenous expression of PARG enzymes using antisense oligonucleotide technology. 22 Knowledge of the nucleotide sequence of the PARG gene permits the preparation of antisense therapeutics containing sequences complimentary to the mRNA of PARG gene. The preparation and delivery of antisense therapeutics is well known to those skilled in the art. For example, antisense therapeutics have been used to treat neoplastic disorder as exemplified by Smith, U.S. Pat. No. 5,248,671, specifically incorporated herein by reference. Additional examples of antisense therapeutics are provided by Miller, U.S. Pat. Nos. 4,511,713 and 4,757,055, specifically incorporated herein by In the present invention, an oligonucleotide having a sequence complimentary to the mRNA of the PARG gene will be prepared. Such an oligonucleotide is said to be an antisense oligonucleotide with respect to the PARG gene. The oligonucleotide may be RNA or DNA or a may contain both RNA and DNA portions. The oligonucleotide may contain modified bonds so as to enhance the stability of the oligonucleotide and render it more resistant to the action of cellular nucleases. For example, the oligonucleotide may be administered to an experimental animal. Alternatively, the 35 constructed with phosphorothioate nucleotides, phosphonate nucleotides and other types of modified nucleotides known to those skilled in the art. The structure of the oligonucleotide may be altered so as to include other types of bonds that do not naturally occur in oligonucleotides. For example, adjacent nucleosides might be joined using linear alkyl chains, peptide bonds or other types of structures. The only limitation is that the resulting oligonucleotide remains capable of hybridizing to the target PARG mRNA. The antisense oligonucleotides may be delivered by any enzyme permits, for the first time, the large scale screening 45 means customarily used in the art. For example, the oligonucleotide may be delivered in neutral liposomes, cationic liposomes or by ballistic high speed injection. Alternatively the DNA sequence encoding the antisense oligonucleotide may be inserted into a gene vector and the vector may be introduced into target cells. The vector may be any type of gene therapy vector known to those skilled in the art. Preferred embodiments include, plasmid vectors and viral vectors. Viral vectors are seen to include those vectors customarily used for gene therapy applications including, but not limited to, retroviral vectors, vaccinia virus vectors, herpes virus vectors, adenovirus vectors and adenoassociated virus vectors. Upon introduction of the vector into target cells, the vector will direct expression of a nucleic acid molecule comprising the appropriate sequence to hybridize with the mRNA encoding a PARG enzyme. In a preferred embodiment, introduction of the vector into the target cell will result in the production of an RNA molecule that hybridizes with the mRNA of a PARG enzyme and also includes one or more additional RNA sequences capable of 65 functioning as a ribozyme. The ribozyme portion of the molecule will cause the cleavage of the mRNA encoding the PARG enzyme thereby preventing the production of PARG. Therapeutics of this type may be used to treat a wide variety of conditions. In one embodiment, an antisense therapeutic will be used to treat neoplastic disorder. In a preferred embodiment, an antisense therapeutic of the present invention will be delivered in combination with a currently known chemotherapeutic agent. In general, chemotherapeutic agents function by disrupting the integrity of DNA in target cells. Since the recovery of a cell from such DNA disruption is highly dependent upon the normal ADPR polymer metabolism, the presence of the antisense thera- 10 peutic will have the effect of chemosensitizing the neoplastic cells by disturbing the ratio PARG and PARP. In another preferred embodiment, the antisense oligonucleotides of the present invention may be used to treat a variety of conditions caused by genotoxic oxidative stress. Examples include cardiac disorders, neuronal disorders, reperfusion injury, neurotoxicity, Alzheimer's disease, Huntington's disease and Parkinson's disease. It has been shown that inhibition of ADPR polymer synthesis provides protection against cellular damage caused by nitric oxide injury. 20 Zhang, et al., U.S. Pat. No. 5,587,384, specifically incorporated herein by reference, teach that decreasing the amount of ADPR polymers formed can result in protection against nitric oxide induced neurotoxicity. As discussed above, decreasing the amount of ADPR polymers in the cell can be 25 accomplished by the introduction of gene therapy vector expressing PARG, thus, the present invention can be used to treat neurodegenerative conditions resulting from oxidative stress ### Conclusion The synthesis and rapid turnover of ADP-ribose polymers is an immediate cellular response to DNA damage. Reported here is the isolation and characterization of cDNAs encoding responsible for ADP-ribose polymer turnover. PARG was isolated from bovine thymus, yielding a protein of approximately 59 kDa. Based on the sequence of oligopeptides derived from the enzyme, polymerase chain reaction products and partial cDNA clones were isolated and used to 40 construct a putative full-length cDNA. The cDNA of approximately 4.1 kb pairs predicts expression of a protein of approximately 111 kDa, nearly twice the size of the isolated protein. A single transcript of approximately 4.3 kb pairs is detected in bovine kidney poly(A)+ RNA, consistent 45 with expression of a protein of 111 kDa. Expression of the cDNA in Escherichia coli results in an enzymatically active protein of 111 kDa and an active fragment of 59 kDa. Analysis of restriction endonuclease fragments from bovine DNA by Southern hybridization indicate that PARG is 50 encoded by a single copy gene. Taken together, the results indicate that previous reports of multiple PARGs can be explained by proteolysis of an 111-kDa enzyme. The deduced amino acid sequence of the bovine PARG shares little or no sequence similarity with differing types of known 55 proteins; however, it contains a putative bipartite nuclear location signal as would be predicted for a nuclear protein. The availability of cDNA clones for PARG should facilitate structure-function studies of the enzyme and its involvement in cellular responses to genomic damage. Other embodiments and advantages of the invention are set forth, in part, in the description that follows and, in part, will be obvious from this description and may be learned from practice of the invention. ### **EXAMPLES** ### Example 1 ### Purification of Bovine PARG PARG was purified from bovine thymus tissue (Pel-Freez, Rogers, AK) by modifications of previously published procedures (27). The enzyme was isolated up to the polyethylene glycol (PEG)-6,000 fractionation step as described previously (28). However, DNA-agarose and heparin-Sepharose chromatographic steps used previously were omitted, and the PEG-6,000 fraction was applied directly to an affinity matrix of poly(ADP-ribose)-dihydroxyboronyl-Sepharose (PADPR DHB-Sepharose). The active fractions eluted from PADPR DHB-Sepharose (25 ml) were pooled, placed in dialysis tubing, concentrated against dry PEG-20, 000 to approximately 12 ml, and dialyzed against 2 liters of 20 mM potassium phosphate buffer, pH 8.0, 0.1% Triton X-100, 5 mM β-mercaptoethanol, 0.1 mM thioglycolic acid, 0.4 M KC1 (buffer A). The sample was loaded onto a 1.0×11-cm Toyopearl AF-Red (Supelco) column, and PARG was eluted with an 80-ml linear gradient of 0.4-2 M KC1 in buffer A. The active fractions, eluting at approximately 1.25 M KC1, were pooled, placed in dialysis tubing, concentrated against solid sucrose to approximately 9 ml, and dialyzed against 20 mM potassium phosphate buffer, pH 7.2, 0.75 M KC1, 0.1% Triton X-100, 10% glycerol, 5 mM β-mercaptoethanol, 0.1 mM thioglycolic acid. PARG activvarious poly(ADP-ribose) glycohydrolase (PARG) enzymes 35 ity was determined as described by Ménard and Poirier (29), and protein content was determined by the method of Bradford (30). The final preparation was quantified by SDS-PAGE (31) and Coomassie Blue staining to compare the intensity of the protein band with a known amount of bovine serum albumin (32). The purification procedure for the bovine thymus PARG summarized in Table 1 is typical for results obtained from six separate preparations
of the enzyme. Purification from 500 g of bovine thymus achieved approximately 50,000-fold purification and yielded approximately 20 µg of purified protein. An aliquot of the purified enzyme was precipitated with trichloroacetic acid, washed with acetone, resuspended in SDS-PAGE sample buffer, separated on a 10% SDS-PAGE gel, and stained with Coomassie Blue. Analysis of the final preparation of SDS-PAGE revealed that more than 95% of the protein migrated at an apparent molecular mass of approximately 59 kDa (FIG. 2). In FIG. 2, an aliquot of the purified enzyme was precipitated by TCA, washed with acetone, resuspended in SDS-PAGE sample buffer, separated on a 10% SDS-PAGE gel and stained with Coomassie blue. The positions of molecular weight marker proteins are TABLE 1 | | Purification of PARG from bovine thymus | | | | | | |-------------------|---|----------------------|------------------------------------|------------|-----------------------|--| | Step | Protein
mg | Total activity units | Specific activity units/mg protein | Yield
% | Purification
-fold | | | Crude extract | 27,800 | 57,400 | 2.06 | 100 | 1.0 | | | Protamine sulfate | 12,500 | 58,000 | 4.64 | 101 | 2.3 | | | Ammonium sulfate | 4,480 | 30,000 | 6.70 | 52 | 3.3 | | TABLE 1-continued | Purification of PARG from bovine thymus | | | | | | |---|---------------------|--------------------------|------------------------------------|----------------|-----------------------| | Step | Protein
mg | Total activity units | Specific activity units/mg protein | Yield
% | Purification
–fold | | CM-Sepharose
PEG 6000
PADPR-DHB-Sepharose | 171
23.0
1.30 | 19,100
7,530
6,730 | 112
327
5,180 | 33
13
12 | 55
160
2,500 | | Toyopearl AF-Red | 0.023 | 2,260 | 98,300 | 4 | 48,000 | ### Example 2 #### Peptide Sequencing Prior to proteolytic fragmentation, the purified bPARG $(40 \,\mu\text{g in } 100 \,\mu\text{l of } 0.4 \,\text{M} \text{ ammonium bicarbonate buffer, pH}$ 8.0, 8 M urea) was incubated in a final concentration of 2.2 mM dithiothreitol at 56° C. for 15 min. Iodoacetamide was 20 Sequenase™ (U.S. Biochemical Corp., Cleveland, Ohio). added to a final concentration of 2.0 mM, and the sample was incubated at 25° C. for 15 min. After dilution with an equal volume of water, 1.5 units of immobolized L-1tosylamido-2phenylethyl chloromethyl ketone-treated trypsin (Pierce Chemical, Rockford, Ill.) was added, and the sample was incubated at 37° C. for 18 h with gentle rotary shaking. Finally, the mixture was subjected to centrifugation at 16,000 ×g for 5 min to separate the tryptic fragments from the immobolized trypsin. The tryptic fragments were adjusted to 0.05% in trifluoroacetic acid and separated oil a 4.6 mm×25 cm, Microsorb MV, C₄ reversed-phase HPLC Column (Rainin) eluted with an 80-min linear gradient from 4 to 44% acetonitrile in 0.05% trifluoroacetic acid. Four oligopeptide fractions, with approximate elution times of 61, 63, 68, and 75 min, were selected for peptide sequence analysis by the Edman degradation method. Amino acid sequence data of four oligopeptides, designated by their approximate HPLC elution times from the reversed-phase column, are shown in Table II. TABLE II | Amino acid sequence of oligopeptides derived from bPARG | | | | | | | |---|------------------|------------------|--------------------|------------|--|--| | 01i | gopeptide | Amino Acid | Sequence | SEQ ID NO: | | | | 68 | 10
LFTEVLDHNE | 20
CLIITGTEQY | 30
SEYTGYAETY R | SEQ ID NO: | | | | 63 | AYCGFLRPGV | SSENLSAVAT | GNXGCGAFG | SEQ ID NO: | | | | 61 | FLINPELIVS | R | | SEQ ID NO: | | | | 75 | IALXLPNIXT | QPIPLL | | SEQ ID NO: | | | ### Example 3 ### cDNA Cloning To obtain cDNA clones encoding bovine PARG, PCR amplification experiments were followed by the screening of two different bovine cDNA libraries. FIG. 3 depicts the alignment of the DNA sequences of two PCR products and eight \(\lambda gt11 \) cDNA clones used to identify the cDNA coding for bovine PARG. The two PCR products and clones 1 and 2 were obtained from the bovine thymus cDNA library. Clones 3-8 were obtained from the bovine kidney cDNA library. The positions of restriction sites used in this study are shown, and the top diagram shows the consensus clone, denoting the relative location of the coding regions for oligopeptides, 75, 61, 68, and 63 as well as the open reading frame and noncoding regions. For each of the cDNA inserts characterized, the sequence of both strands was determined by the dideoxynucleotide chain termination method using The first step leading to the isolation of cDNA clones was to synthesize two multi-degenerate 17-mer primers, GAY-CAYAAYGARTGYYT (SEQ ID NO: 15) and CKRTANG-TYTCNGCRTA (SEQ ID NO: 16) (where Y represents T/C, R is A/G, K is T/G, and N is A/T/C/G), based on two regions of the SEQ ID NO: 11; "DHNECL" (amino acids 7 to 12 of SEQ ID NO: 11) and "YAETYR" (amino acid 26 to amino acid 31 of SEQ ID NO: 11) (Table II). Using the multidegenerate primers and an oligo(dT)-primed bovine thymus cDNA \(\lambda\)gt11 library BL1019b from Clontech (Palo Alto, Calif.), PCR amplification generated a 74-bp DNA fragment with a deduced amino acid sequence identical to the corresponding region of oligopeptide 68. Next, two specific 24-mer oligonucleotide primers, ATCATCACAGGTACT-35 GAGCAGTAC (SEQ ID NO: 17) and GCCTGTGTAT-TCACTGTACTGCTC (SEQ ID NO: 18), based on the sequence of this 74-bp DNA were used in combination with λgt11 forward and reverse primers to amplify PCR products 1 and 2 from the bovine thymus library. PCR product 1 contained 231 bp of sequence including the region encoding the N-terminal region of oligopeptide 68 (SEQ ID NO: 11) and the entire sequence of oligopeptide 61 (SEQ ID NO: 13). PCR product 2 contained 757 bp, which included a sequence encoding the C-terminal region of oligopeptide 68 45 (SEQ ID NO: 11) and the entire sequence of oligopeptide 63 (SEQ ID NO: 12). The sequence information obtained from PCR products 1 and 2 was used to isolate cDNA clones obtained by the screening of bovine thymus and bovine kidney cDNA libraries. A 518-bp EcoRI-HindIII fragment from PCR product 2 was used as a probe to screen approximately 1×10⁶ independent clones from the bovine thymus library. Two positive cDNA clones (clones 1 and 2) were isolated, which overlapped PCR products 1 and 2. However, attempts to obtain clones from the bovine thymus library that contained sequence 5' to clone 2 were unsuccessful. Thus, a 231-bp EcoRI-KpnI fragment from clone 2 was used as a probe to screen approximately 5×10⁵ independent clones of the bovine kidney 5' stretch plus cDNA λgt11 library BL3001b (Clontech, Palo Alto, Calif.) Three positive cDNA clones (clones 3–5) were obtained, all of which contained sequence 5' to clone 2. Each of these clones also contained a sequence encoding oligopeptide 75. Clones 1-5 provided multiple overlapping sequences in the 3'-terminal portion of a consensus cDNA, but additional clones were sought to obtain overlapping sequences for the 5'-terminal region. Thus, a 436-bp EcoRI-KpnI fragment located at the 5' end of clone 3 was used as a probe to screen approximately 6×10^5 independent clones of the bovine kidney library. Clones 6-8 provided overlapping sequences for the 5'-terminal region. The full-length cDNA was constructed by ligating a 3.9-kb XbaI-NsiI fragment from pWL11 (clone I cDNA insert in 5 pTZ18R (33)) and a 3.0-kb NsiI-XbaI fragment from pWL13 (clone 4 cDNA insert in pTZ18R). The resulting plasmid, termed pWL30, contained the 4,070-bp full-length FIG. 3 shows an alignment of the DNA sequences of two 10 PCR products and eight $\lambda gt11$ cDNA clones used to identify the cDNA coding for bovine PARG. The two PCR products and Clones 1 and 2 were obtained from the bovine thymus cDNA library. Clones 3 through 8 were obtained from the bovine kidney cDNA library. The position of restriction sites used in this study is shown and the top diagram shows the consensus clone, denoting the relative location of the coding regions for oligopeptides 75, 61, 68, and 63 as well I as the open reading frame and non coding regions. The nucleotide sequence of cDNA coding for bovine PARG is shown in the sequence listing as SEQ ID NO: 1. The deduced amino acid sequence of the enzyme is shown in the sequence listing as SEQ ID NO: 2. The four oligopeptides sequenced from purified enzyme is within SEQ ID NO: 2. They are IALCLPNICTQPIPLLK (amino acid 601 to 617, SEQ ID NO: 2); LINPELIVSR (amino acid 761 to 770, SEQ ID NO: 2); LFTEVLDHNECLIITGTEQYSEYTGYA-ETYR (amino acid 771 to 801, SEQ ID NO: 2) and AYCGFLRPGV PSENLSAVAT GNWGCGAFGGDAR (amino acid 849 to 880, SEQ ID NO: 2). The combined nucleotide sequence of Clones 1 through 8 predicted a full-length cDNA clone of 4,070 bp containing 257 bp of 5'-non-coding sequence, a single open reading frame of 2,931 bp (beginning at the ATG at position 258 of SEQ ID NO: 1) and a 3'-non-coding region of 882 bp, and the deduced amino acid sequence which predicts a protein of 977 amino acids and a molecular weight of 110.8 kDa. ### Example 4 #### Analysis of the Sequence of Bovine PARG The cDNA clone (SEQ ID NO: 1) has features typical of cDNAs that code for mammalian proteins. These include (i) polyadenylation signal (AATAAA) 12 bp upstream from the oligo A sequence, (iii) a sequence of ATTTA in the 3'-untranslated region thought to play a role in selective mRNA degradation in mammalian cells (34), (iv) a single open reading frame, and (v) a nucleotide sequence around the first start codon commonly found at known sites of initiation of translation (35). The evidence that the cDNA clone constructed represents a full-length or nearly fulllength clone for PARG is shown by the observation that hybridization of poly(A)+RNA from bovine
kidney cells 55 with the cDNA showed a single band of hybridization of approximately the same size as the cDNA under stringent hybridization conditions (set forth above) (FIG. 4). The nucleotide sequence encoding bovine PARG indicates that PARG shares little or no sequence similarity with other known sequences. A search of sequence data banks has failed to reveal significant sequence similarity with any sequences coding for known proteins. A strong sequence similarity has been observed with human and rat cDNA these species. Examination of protein sequence databases such as Genbank and SwissPro also has shown that the deduced amino acid sequence of PARG lacks any sequence similarity with known proteins. However, the amino acid sequence shares a significant similarity with a protein sequence from Caenorhabditis elegans that may represent the PARG protein from this organism (36). The deduced amino acid sequence of PARG has been examined for a number of structural motifs that can be predicted from the primary amino acid sequence. The expressed PARG protein was observed to be able to form dimers stable to SDS-PAGE conditions. In that regard, residues 871-907 show significant homologies to known leucine zipper dimerization sequences (37). Another motif identified is a putative bipartite nuclear location signal (NLS) (38). It is interesting that PARP also contains a bipartite NLS (39). FIG. 5 compares deduced amino acid sequences in the NLS region of the bovine PARG, and regions of putative PARG sequences from human, mouse and C. elegans, with the NLS region of PARP from seven different organisms. Conserved residues are noted in bold and the amino acid distances are from the amino terminal methionine residue. Abbreviations and references for the sequences shown are as follows: bPARG, bovine PARG (SEQ ID NO: 19); hPARG, human PARG (SEQ ID NO: 20); mPARG, murine PARG (SEQ ID NO: 21); CePARG, Caenorhabditis elegans PARG (SEQ ID NO: 22); hPARP, human PARP (SEQ ID NO: 23; 40); mPARP, murine PARP (SEQ ID NO: 24; 41); bPARP, bovine PARP (SEQ ID NO: 25, 42); aPARP, chicken PARP (SEQ ID NO: 26; 43); X1PARP, Xenopus laevis PARP (SEQ ID NO: 27; 44); DmPARP, Drosophila melanogaster PARP (SEQ ID NO: 28; 45); SpPARP, Sarcophaga peregrina PARP (SEQ ID NO: 29; 46). In FIG. 5, conserved residues are noted in boldface type, and the amino acid distances are from the amino-terminal methionine residue. Sequence alignment of putative bipartite nuclear localization signal of bovine, human and murine PARG compared to the nuclear localization signal of PARP from different organisms. The putative NLS of PARG fulfills the criteria for bipartite NLS in that it contains conserved acidic and basic amino acid residues at two different locations each within the region of sequence 40 similarity to the NLS of PARP (47). A surprising finding was that the bovine PARG cDNA clone codes for a protein of approximately 111 kDa, which is nearly twice the size of the PARG protein isolated from bovine thymus (FIG. 2). It indicates that PARG contains a an oligo A (putative poly(A)+) sequence at the 3'-end, (ii) a 45 protease sensitive site that, following proteolysis, yields a protein fragment of approximately 59 kDa that still retains enzymatic activity. Several pieces of evidence favor this possibility. (i) Expression of the carboxyl terminal portion of the cDNA resulted in enzymatic activity (FIG. 6, bar 5). (ii) All of the oligopeptides sequenced were located in the carboxyl terminal half of the protein (FIG. 3, FIG. 6 and Table 2). (iii) The only protein, other than 59 kDa protein detected in the thymus preparation was approximately 111 kD (FIG. 2). (iv) The PARG activity expressed in bacteria was sensitive to proteolysis, yielding a protein of approximately 56 kD (FIG. 6). (v) The cleavage site in PARG is in the region of the putative NLS and the PARP NLS is located in a protease sensitive site (48). Taken together with the data suggesting that bovine PARG appears to be coded for by a single copy gene (FIG. 7), proteolysis seems likely to explain the presence of PARG activity of molecular weight of approximately 74 kDa and 59 kDa in bovine thymus preparations (49). Likewise, a similar mechanism could explain previous reports of a PARG of 74 kDa isolated from clones that likely represent partial clones for PARG from 65 nuclear fractions of guinea pig, liver and human placenta (50) and a PARG of 59 kDa isolated from postnuclear fractions of guinea pig liver (51). 28 While proteolysis of a larger protein to yield smaller proteins retaining PARG activity seems likely to explain the size heterogeneity of PARG previously reported, it remains to be determined if proteolysis normally occurs in vivo or whether it occurs during purification of the enzyme. While the results presented here show that a full-length protein can be expressed containing PARG activity (FIG. 8), the molecular size of PARG in vivo also remains to be determined. If PARG occurs as a larger protein, an interesting possibility is that the amino terminal region may be involved 10 in the regulation of enzymatic activity. #### Example 5 #### Expression of bPARG in Escherichia coli To determine whether the isolated cDNA encoded PARG, bPARG was express using two different bacterial expression systems, the pTrcHis Xpress SystemTM (Invitrogen, Carlsbad, Calif.), in which the expressed protein contains a leader polyhistidine sequence, and the glutathione 20 S-transferasae (GST) gene fusion system (Pharmacia Biotech Inc., Piscataway, N.J.). For expression in the pTrcHis Xpress system, three different DNA fragments were amplified and inserted into the pTrcHis expression plasmid. Constructs A and B contained the entire opening reading frame of 110.8 kDa, which together with the fusion partner predicted a protein of about 115 kDa. Construct B also contained the 3'-untranslated region of the clone. Construct A, containing the cDNA sequence-3 to 2,946, was prepared by subcloning a 2.9 kb XhoI-EcoRI DNA fragment ampli- 30 fied from pWL30 with primers WIN34 (GCTGCGGGTCTCGACGATGAGTGCGGGC) (SEQ ID 30) WIN15 and (GCGTCTAGAATTCACTTGGCTCCTCAGGC) (SEQ ID NO: 31). Construct B, containing the cDNA sequence-3 to 3,813, was prepared by subcloning a 3.8-kb XhoI-EcoRI DNA fragment amplified from pWL30 with primers WIN34 IDNO: 30) (CCGGAATTCGGGTTTTTTGTTAATGAAAATTTATTAAC) (SEQ ID NO: 32). Construct C, containing cDNA sequence 40 964-2,946, was prepared by subcloning a 2.0-kb DNA fragment amplified from pWL13 with primers WIN14 (TCAGAGCAGATGAACTCGAGCAGTCCAGG) (SEQ ID NO: 33) and WIN15 (SEQ ID NO: 31). Since the isolated PARG of approximately 59 kDa contained enzymatic 45 column equilibrated with 7 mM potassium phosphate buffer activity, construct C contained only the 75-kDa carboxylterminal region of the PARG, which predicted a fusion protein of approximately 79 kDa. For expression experiments of bPARG as a GST fusion protein, an insert containing the cDNA sequence from 50 KC1, pH 4.0. position 1138 to 2946 was prepared by subcloning a 1.8-kb EcoRI-EcoRI fragment amplified from pWL30 with the oligonucleotide CCAATTTGAAGGAGGAATTCCCGC-CGCCACCATGAATGATGTGAATGC: CAAACGACCTGGA (SEQ ID NO: 34) and WIN15 (SEQ 55 ID NO: 31) as primers. The resulting DNA fragment was inserted into the EcoRI site of the pGEX-2T expression vector, and the plasmid was used to transform E. coli For expression experiments, bacterial cultures were 60 grown at 37° C. in 1% Bacto-tryptone, 0.5% yeast extract, and 0.5% NaCl to a density of approximately 0.6 A_{600} /ml and were induced with 1 mM isopropyl-β-D-thiogalactoside (IPTG). Cells were collected by centrifugation, and crude extracts were prepared by sonication (10 A₆₀₀/ml) in 10 mM sodium phosphate buffer, pH 7.2, 150 mM NaCl, 0.5 mg/ml lysozyme, 0.1 mg/ml phenylmethylsulfonyl fluoride, 1 mM NM522 cells. **30** EDTA, 0.7 μ g/ml pepstatin A, 0.5 μ g/ml leupeptin, and 1 μ g/ml aprotinin. Cell extracts were subjected to centrifugation, and the supernatant fraction was used for assay. PARG assay conditions were as described previously (52). Following incubations, portions of reaction mixture were analyzed by thin layer chromatography or subjected to anion exchange HPLC. Using a thin layer chromatography assay that measures release of [32P]ADP-ribose from [32P]ADP-ribose polymers (53), PARG activity was detected in extracts from cells transformed by each of the constructs. FIG. 6 shows results obtained with constructs B and C. Reaction mixtures contained approximately 15,000 cpm of [32P]ADP-ribose polymers, and the cpm shown represent ADP-ribose released from the ADP-ribose polymers. Bar 1, a strain transformed by pTrcHis without an insert but induced with 1 mM IPTG for 5 h at 37° C. A strain containing construct B is shown without the addition of IPTG (bar 2) or after the addition of 1 mM IPTG for 1.5 h (bar 3) or 5 h (bar 4). A strain containing construct C 5 h after induction by IPTG is shown in the absence (bar 5) and presence (bar 6) of 167 μ m ADP-hydroxymethylpyrrolidine diol (54). No activity was detected in cells transformed with the empty vector, but activity was detectable without induction by IPTG, indicating a leaky lac promoter. The addition of IPTG resulted in a time-dependent increase of up to approximately 4.5-fold in enzymatic activity. FIG. 6 also shows that the enzymatic activity was strongly inhibited by the presence of ADPhydroxymethylpyrrolidine diol, a specific inhibitor of PARG (55). In FIG. 9, material released from ADP-ribose polymers by anion exchange HPLC was analyzed. Extracts from a strain containing construct B were incubated with [32P]ADPribose polymers (56), and a portion was analyzed by anion exchange HPLC as described. The elution times for AMP, ADPR, and PR-AMP are indicated by arrows. The material analyzed was PARG expressed in E. coli. The results indicated that the material released from ADP-ribose polymers is exclusively ADP-ribose by strong anion
exchange HPLC (FIG. 9), demonstrating that the cell extracts did not contain any other ADP-ribose polymer-degrading enzymes such as phosphodiesterase, which catalyzes the formation of AMP and phosphoribosyl-AMP (57). Anion exchange HPLC utilized a Whatman Partisil SAX pH 4.0, at a flow rate of 1 ml/ml. The sample was diluted in the same buffer, applied to the column, and eluted with a 30-min linear gradient from 7 mM potassium phosphate buffer, pH 4.0 to 250 mM potassium phosphate buffer, 0.5 M To determine the size of the expressed enzymatic activity, an activity gel assay (58) was used. Activity gel assays for bPARG were done by casting polyacrylamide gels with automodified PARP containing [32P]ADP-ribose polymers as described previously (59). Following electrophoresis, PARG was renatured by incubating the gels at 25° C. in 5 volumes of 50 mM sodium phosphate buffer, pH 7.5, 50 mM NaCl, 10% glycerol, 1% Triton X-100, 10 mM β-mercaptoethanol, changing the buffer every 3 h for a total of five changes. After an additional incubation at 37° C. for 3 h, gels were dried, and PARG activity was detected following autoradiography as a clear band on a black background. Cell extracts containing PARG fused to GST were examined for binding to glutathione-Sepharose 4B (GSH-Sepharose) (Pharmacia Biotech Inc.) according to the specifications of the manufacturer. No bands were produced from extracts from the IPTG-induced pTrcHisB vector that did not contain an insert. Extracts from cells transformed with a construct containing a PARG insert showed bands at approximately 115 and 59 kDa (FIG. 8). During storage at 4° C., cell extracts lost activity migrating at the higher molecular weight, while the activity at approximately 59 kDa increased. Expression of bPARG in the pTrcHisB expression vector did not result in detectable amounts of protein by staining the Coomassie Blue. Thus, another, construction was designed to overexpress a 69-kDa carboxyl-terminal region of the PARG as a fusion with GST, which allows convenient protein purification by affinity chromatography on a GSH-Sepharose column. Two hours after induction with IPTG, strong expression of a protein migrating at approximately 90 kDa was observed. This protein bound to GSH-Sepharose and was eluted by GSH. The construct contained a thrombin cleavage site between the GST and the 69-kDa region of PARG, and the treatment of the material bound to GSH-Sepharose with thrombin resulted in the release of a protein that migrated at approximately 59 kDa. This result suggests $_{20}$ that the protein purified from the bovine thymus may be larger than suggested by its migration on SDS-PAGE. The result of this experiment is presented in FIG. 10. Lane 1 shows extract from uninduced cells; lane 2 shows extract from cells induced with 1 mM IPTG for 2 hours; lane 3 shows proteins in extracts from cells shown in lane 2 that bound to GSH-Sepharose; lane 4 shows material released from GSH-Sepharose by treatment with thrombin. In addition to the GST fusion construct described above, several other GST fusion proteins have been made. FIG. 11 shows the portions of the bovine PARG gene that have been expressed. The top line represents the structure of bovine PARG mRNA containing the open reading frame encoding the 111 kDa PARG protein. The different parts of PARG that have been cloned in expression vectors are represented with the size of the resulting expressed recombinant proteins. The expression of the 65 kDa catalytic domain of PARG (starting at the amino acid MNDV) in pGEX-2T as a fusion protein with glutathione-S-transferase (29 kDa) is detailed. Among the constructs, only the clone designed to express a protein of 69 kDa starting at amino acid +380 from the sequence of bovine PARG (bPARG_{MNDV}) allowed high level expression as a fusion protein with glutathione-S transferase (GST). A 1.8 kb PCR EcoRI fragment encoding for the 65 kDa catalytic domain of PARG was cloned into the EcoRI site of pGEX-2T giving pGEX-2T-bPARG $_{\!M\!N\!D\!V}$ This construction results in the expression of a fused polypeptide consisting of the sequence of GST. Amino acids derived from the polylinker and thrombin site and the 65 kDa domain (FIG. 12). In addition to various constructs designed to express PARG in *E. coli*, a recombinant baculovirus expressing a functional PARG has been constructed using the methodology of Summers and Smith as set out in U.S. Pat. No. 4,879,236 which is specifically incorporated herein by reference. 32 vector. The amplification introduced a Kozak consensus sequence (gaattcccgccgccaccATGAA SEQ ID NO: 35) at the start site of translation to enhance expression of the recombinant protein. The resulting recombinant plasmid was cotransfected with linearize Baculogold™ baculovirus DNA (Pharmingen, San Diego, Calif.) into SF9 cells according to the manufacturers instructions. Recombinant viruses isolated using standard techniques. Overexpression of the recombinant protein was confirmed by Western blot and the 10 results displayed in FIG. 13 demonstrate that the 65 kDa domain expressed in E. coli contained enzymatic activity (lane 2) migrating with the same apparent molecular weight as the enzyme purified from bovine thymus (lane 1). Likewise, a construct expressing bPARG_{MNDV} domain in SF9 insect cells infected with recombinant baculovirus showed activity (lane 4) migrating with the same apparent molecular weight. ### Example 6 ### Northern Blot Analysis An surprising feature of the consensus full-length cDNA clone was that it predicted expression of a protein of approximately 111 kDa (FIG. 3, SEQ ID NO: 1, and SEQ ID NO: 2), while the enzymatically active PARG from thymus had a molecular weight of approximately 59 kDa (FIG. 2). To determine the size of the RNA transcript for PARG, total RNA and poly(A)+ RNA were isolated from bovine kidney (MDBK) cells and annealed using Clone 4 as the hybridization probe. Total cytoplasmic RNA and poly(A)+ RNA were isolated from bovine kidney MDBK cells (ATCC #CCL22) using TRIzol reagent (Gibco/BRL) following the manufacturer's recommendations. After the RNA was fractionated, it was then transferred to nylon membranes and hybridized with Clone 4 (FIG. 3) radiolabeled by a random hexamer priming method (21). The results are presented in FIG. 4. Total RNA (5 μ g, lanes 1A and 2B) and poly(A)+ RNA (4 μ g, lanes 2A and 2B) were separated on a denaturing agarose gel (60). Panel A shows the ethidium bromide stained gel and panel B shows the autoradiogram of a Northern blot analysis using a random primed, ³²P-labeled DNA probe constructed from Clone 4 (FIG. 3). A single transcript of approximately 4.3 kb was detected in the poly(A)+ RNA(FIG. 4, lane 2). Thus, the transcript size was consistent with the expression of a 111 kDa PARG protein. ### Example 7 # Southern Blot Analysis of PARG Genomic Complexity Previous studies have reported that PARG isolated from nuclear fractions had a molecular weight of approximately 75 kDa (61), while PARG isolated from whole cell homogenates or postnuclear supernatant fractions had a molecular weight of approximately 59 kDa (62). These results suggest that either two or more genes may code for PARG or that proteolysis generates lower molecular weight forms from higher molecular weight forms. The cDNA isolated encoded a protein considerably larger than any PARG proteins previously described, consistent with the possibility that the different forms of PARG are derived from a single form by proteolytic cleavage. To test the hypothesis that PARG is encoded by a single copy gene, the genomic complexity of the PARG gene was analyzed by a Southern hybridization experiment. Total genomic DNA was prepared from bovine thymus tissue as described previously (63) and DNA (10 μ g) was digested with EcoRI, BgIII, XbaI or PstI, fractionated on a 1% agarose gel, transferred to a nylon membrane (Hybond N+, Amersham), and hybridized using an 828 bp HindIII fragment of Clone 1 radiolabeled as described for clone 4 above (64). Pre-hybridizations and hybridizations were carried out at 42° C. in 50% formamide, 0.25 M sodium phosphate buffer, pH 7.2, 0.25 M NaCl, 7% SDS, 1 mM EDTA. The blot was annealed with a ³²P-labeled DNA probe corresponding to the carboxyl terminal region of the PARG protein. The results of the Southern blot analysis are presented in FIG. 7. Genomic DNA was digested with four different restriction enzymes, EcoRI (lane 1), BgIII (lane 2), XbaI ¹⁵ (lane 3) and PstI (lane 4), none of which cleave within the carboxyl terminal region of the PARG cDNA. Following electrophoresis, the restriction digests were subjected to hybridization with a probe that corresponded to the carboxyl terminal region of the PARG cDNA. The analysis displayed ²⁰ in FIG. 7 shows that, in each restriction digest, the probe hybridized primarily with a single restriction fragment. The fainter signals likely reflect the presence of introns in the PARG gene. This result indicates that PARG is encoded by a single copy gene in the bovine genome. ### Example 8 # Isolation and Characterization of PARGs from Other Species The isolation and characterization of bovine cDNA encoding poly(ADP-ribose) glycohydrolase (PARG) has been described above. Using the information provided by the sequencing of bovine PARG, various tools were used, including public sequence databases searches and screening 35 of cDNA libraries using PARG specific probes, to clone and sequence the cDNA and determine the primary structure of PARG from human, mouse, Drosophila and *Caernorhabditis elegans*. Mammalian sequences newly obtained using this combined strategy show high sequence similarity to 40 bovine PARG (bPARG), whereas the sequences of Drosophila and *C. elegans* only display significant homologies in the region responsible of the catalytic activity of the protein. The strategy followed to obtain cDNAs coding for proteins with sequence similarity to bovine PARG is summa- 45
rized in FIG. 14. dBEST, GenBank, SwissProt and PIR databases were searched for PARG like sequences at the nucleotide or amino acid level using the programs BLASTn, TBLASTn (Altschul et al., 1990) respectively, available at the NIH site on the Worldwide Web, and also included in the 50 sequence analysis package from the Genetic Computer Group, Inc. (GCG) (Madison, Wis.), version 9.1. Both programs perform pair-wise sequence comparisons on multiple nucleotide or amino acid sequences. PARG multiple sequence comparisons obtained with these programs are 55 very similar. Box-shading of the amino acids in the multisequence alignment was obtained using the program BOX-SHADE (K. Hofmann and M. D. Baron). The first step involved extensive searching for sequences with bPARG similarity in various databases. As a result of this search several partial nucleotide sequences sharing extensive homologies with bPARG cDNA were obtained from the dBEST database (65). These sequences were the result of random cloning and sequencing of partial cDNAs clones obtained from mRNAs expressed in various tissues and organisms. Among, them, partial cDNAs coding for PARG from human and mouse were available. One of these human 34 clones was particularly interesting as its sequence (2500 bp long) overlapped the coding sequence of bovine PARG from aa470 to aa977 (Carboxy terminus end) and contained all the 3' untranslated region of the human PARG cDNA. This clone (No. 50859; GenBank accession number: H17209) was requested and freely obtained from the IMAGE Consortium (in collaboration with Washington University School of Medicine in St. Louis, Mo. and Merck & Co., info@image.llnl.gov). The sequence of the clone was then completed. This partial cDNA permitted design of a radiolabeled probe (fragment HindIII-KpnI of 677 bp) specific to human PARG (SEQ ID NO: 36). #### Example 9 ### Cloning and Sequencing The cloning procedures used in this work generally known and are also described in details in the book, Molecular Cloning: A Laboratory Manual (Maniatis et al., 1982). DNA sequencing was performed using the dideoxynucleotide method of Sanger (Sanger et al., 1977). Chemical reagents were purchased from Sigma (St. Louis, Mo.). Restriction enzymes, T4 DNA ligase were from New England Biolabs, Inc. (Beverly, Mass.), T7 DNA polymerase Sequenase from US Biochemical (Cleveland, Ohio), CalfIntestine Phosphatase from Boehringer, Mannheim (Indianapolis, Ind.). The phagemid pTZ18/19R is from Pharmacia (Piscataway, N.J.). The labeled nucleotides $\alpha\text{-}[^{35}S]\text{-}dATP$ and $\alpha\text{-}[^{32}P]\text{-}dCTP$ were purchased from ICN (Costa Mesa, Calif.) Human thymus and murine liver 5'-stretch cDNA libraries cloned in the vector λgt 10 were from Clontech (Palo Alto, Calif.) A single, isolated colony of C600Hfl $E.\ coli$ strain was picked and grown in 5 ml of Luria-Bertani medium (LB) +10 mM MgSO₄+0.2% maltose overnight at 37° C. in a shaker. The bovine library lysate was diluted 1:250,000 and incubated with the C600Hfl bacterial overnight culture and 1× lambda dilution buffer. Next, LB soft top agar+10 mM MgSO₄ was added, and the entire mixture was quickly poured onto 90 mm LB agar+10 mM MgSO₄ plates. The plates were cooled briefly at room temperature to allow the inoculum to soak into the agar before they were incubated at 37° C. for 6–7 hr. The number of clear plaques was counted to determine the titer. Plaques containing the entire library that had been plated were transferred to nitrocellulose or nylon membranes. The filters were then washed in a 1.5 M NaCl/0.5 M NaOH solution to lyse the cells. This was followed by a 5 min wash in neutralizing solution (1.5 M NaCl/1 M Tris buffer pH 8). Finally, the filters were rinsed in)0.2×SSPE (30 mM NaCl/2 mM sodium phosphate buffer pH 7.2/0.2 mM EDTA) (Sambrook et al., 1992). The filters were then dried and baked in a 80° C. oven for 2 hr to fix the lysed plaques onto the filters. Radioactive probes were prepared using a random hexamer priming method. Prehybridizations and hybridizations were carried out at 42° C. in 50% formamide, 0.25 M sodium phosphate buffer, pH 7.2, 0.25 M NaCl, 7% SDS, 1 mM EDTA. #### Example 10 ### Specific Methods Used for Library Screening All the cloning procedures used in obtaining the additional PARG cDNAs and determining their sequences were performed essentially as described for the bovine PARG 36 Example 12 cDNA and sequence. Human thymus and murine liver 5'-stretch cDNA libraries cloned in the vector λgt 10 were from Clontech (Palo Alto, Calif.) Library plating and titering: A single, isolated colony of C600Hfl E. coli strain was picked and grown in 5 ml of 5 Luria-Bertani medium (LB)+10 mM MgSO4+0.2% maltose overnight at 37° C. in a shaker. The library lysate was diluted 1:250000 and incubated with the C600Nfl bacterial overnight culture and 1×lambda dilution buffer. Next, LB soft top agar+10 mM MgSO4 was added, and the entire mixture was 10 quickly poured onto 90 mm LB agar+10 mM MgSO4 plates. The plates were cooled briefly at room temperature to allow the inoculum to soak into the agar before they were incubated at 37° C. for 6–7 hr. The number of clear plaques was counted to determine the titer. Plaque lifts: Plaques containing the entire library that have been plated are transferred to nitrocellulose or nylon membranes. The filters are then washed in a 1.5 M NaCl/0.5 M NaOH solution to lyse the cells. This is followed by a 5 min wash in neutralizing solution (1.5 M NaCl/1 M Tris buffer pH 8). Finally, the filters are rinsed in 0.2×SSPE (30 mM NaCl/2 mM sodium phosphate buffer pH 7.2/0.2 mM EDTA) (66). The filters are then dried and baked in a 80° C. oven for 2 hr to fix the lysed plaques onto the filters. Making a radioactive probe and Hybridizations: Radioactive probes were prepared using a random hexamer priming method. Pre-hybridizations and hybridizations were carried out at 42° C. in 50% formamide, 0.25 M sodium phosphate buffer, pH 7.2, 0.25 M NaCl, 7% SDS, 1 mM EDTA. This partial cDNA allowed to design a radiolabeled probe (fragment HindIII—KpnI of 750 bp long) specific to human PARG. ### Example 11 ### Screening of a Human Thymus 5'-stretch cDNA Libraries Multiple screenings of a human thymus 5'-stretch cDNA library were performed to complete the cloning of human 40 PARG cDNA. For each screening a new probe was designed and used to screen approximately one million recombinants of the library. During each round of screening, overlapping clones were isolated at high stringency conditions and using standard techniques. The different positive clones (J5, C, E1, E2, M, M', M", P', P", Of, 02) were characterized by restriction analysis, subcloned into the appropriate restriction sites of pTZ 18/19R as necessary and sequenced in both strand using the dideoxynucleotide method. The probe used 50 to complete the cloning of the human cDNA library is shown is SEQ ID NO: 37. Finally, a full-length cDNA sequence was assembled which encodes the human PARG. The sequence of the cDNA encoding human PARG is presented sequence of human PARG is presented in the sequence listing as SEQ ID NO: 4. The human PARG sequence shares extensive amino acid sequence homologies with bovine PARG with more than 89% identity. The sequence similarity is also high at the nucleotide level particularly in the region coding for the protein (174ATG-TGA3104). Surprisingly the 5'-untranslated region of the human sequence displays a completely different sequence with an extensive sequence similarity with highly repeated polymorphic DNA 65 sequences found in the human genome such as Alu repetitive elements or variable number of tandem repeats (VNTR). ### Screening of Mouse Liver 5'-stretch cDNA Libraries To isolate a PARG cDNA from the mouse liver cDNA library, a probe was designed from the human cDNA clone coding for PARG. Analysis of the bovine and human sequences revealed that PARG was highly conserved between these two species, suggesting that it might also be conserved in the mouse. Based on the restriction map of the human cDNA clone, a region in the human clone was selected, located where the active site of the protein is encoded, that exhibited near identity to its counterpart in the bovine clone. This region, consisting of approximately 800 bases, was excised from the entire human clone by digestion with the restriction endonuclease, HindIII, then purified by agarose gel separation and radiolabeled by random priming. This probe was used to screen a mouse liver 5'-stretch cDNA library. One clone consistently hybridized with the probe. After two rounds of screening to ensure the purity of the clone the 2.5 kb insert was subcloned into the plasmid pTZ19R and sequenced. Comparison with the sequence of bovine and human PARG showed that this clone had the partial sequence that has extensive similarities to the two other mammalian sequences covering almost entirely the coding region from nucleotide—10 to a few nucleotides from the end of the coding region. A second screen was performed to obtain the missing part of the cDNA using a radioactive probe specifically designed to hybridize with the region the most 3' of the previous clone to increase the chance to get the missing part of the cDNA. With this new probe, the same mouse liver cDNA library was screened to obtain a second clone, containing an insert that was about 3 kb. This clone was purified, subcloned and sequenced. The sequence showed that this second clone starts at amino acids 634, extends toward the stop codon to approximately 900 nucleotides into the 3' non-coding region. A search of the dBEST database turned up one significant match to a 400 bp fragment cloned from mouse muscularis. This fragment had an exact match to the very tail end of the second clone and exceeded it by 34 bases. This extra extension contained the oligo A sequence as well as the subcloned into the EcoRI site of pTZ 18/19R phagemid 45 polyadenylation signal.
Because there was an exact match, the cDNA sequence was completed using this information coming from the database. The complete cDNA sequence of murine PARG is presented in the Sequence Listing as SEQ ID NO: 5 and SEQ ID NO: 6. ### Example 13 ### Obtaining the Drosophila PARG cDNA Among the clones obtained from DNA databases searches in the sequence listing as SEQ ID NO: 3 and the amino acid 55 were several clones from the Drosophila genome sequencing project (European Drosophila Genome Sequencing Consortium) as well as the Drosophila expression sequence TAG sequencing, project (67). The EST clone was requested from the University of California Berkeley and obtained. Because the sequence published in the dBEST database was only partial, its sequence was completed in our laboratory and compared to a genomic sequence, part of the distal X chromosome of Drosophila melanogaster submitted by Murphy et al., August 1997 which presumably contains the gene of Drosophila PARG. The 768 aa shares less homologies with only 40% identity (48% similarity) mainly located in the catalytic domain of the protein. The domain organi- zation of the protein is also very different with an unknown domain of 20 kDa located Carboxy terminus of the highly conserved active domain. (See FIG. 15). The sequence of the cDNA encoding the Drosophila PARG is presented in the Sequence Listing as SEQ ID NO: 7 and the amino acid sequence of the Drosophila PARG is presented in the Sequence Listing as SEQ ID NO:8. #### Example 14 #### Obtaining the C. elegans PARG Sequence This sequence has been obtained by searching the Genbank database with the mammalian PARG protein sequence. A sequence with PARG similarity was found in the cosmid F20C5 (Accession number: Z68161, SEQ ID NO: 38) derived from the C. elegans genomic DNA (68). The overall sequence conservation (726aa, MW 83129 Da) with the other PARG sequences is as follows: 32% similarity and 22% identity with the mammalian PARG and 39% similarity and 30% identity with the Drosophila PARG. The sequence is presented in the Sequence Listing as SEQ ID NO: 38 (Genbank accession number CEF2C5). SEQ ID NO: 38 contains 12 exons as follows: exon 1 from 3591 to 3635; exon 2 from 3681 to 4121; exon 3 from 5065 to 5235; exon 4 from 5930 to 6152; exon 5 from 6200 to 6267; exon 6 from 7246 to 7338; exon 7 from 7386 to 7553; exon 8 from 7738 to 7853; exon 9 from 8153 to 8435; exon 10 from 8487 to: 8610; exon 11 from 8662 to 8952; and exon 12 from 9383 to: 9540. The coding sequence of the CePARG protein, which is publicly available from Accession number: Z68161, is referred to in the Sequence Listing as SEQ ID NO: 9. Its corresponding amino acid sequence is referred to in the Sequence Listing as SEQ ID NO: 10. The amino acid sequence of the C. elegans PARG is presented on the alignment (FIG 16) #### Example 15 ### Cloning and Overproduction of the Carboxylterminus 69 kDa Domain of Bovine PARG (bPARG) in *E. coli* As described, above, bovine PARG is encoded by a messenger of 4 kb predicting a protein of 110 kDa, almost twice the size of the purified enzyme (65 kDa). It is also demonstrated that bPARG can be expressed in *E. coli* as an active enzyme either as a 110 kDa or a 65 kDa protein. This 45 result combined with other evidence implies that the active site of PARG is located in the carboxyl-terminal part of the protein. FIG. 11 is a schematic representation of the different clones we have expressed in bacteria. Among them, only the clone designed to express a protein of 69 kDa starting at the 50 amino acid+380 from the sequence of bovine PARG (bPARG_{MNDV}) allowed high level expression as a fusion protein with glutathione-S transferase (GST). The heterologous expression of bPARG_{MNDV} was conducted as represented in FIG. 12. The 1.8 kb cDNA 55 encoding, the 69 kDa carboxyl-terminal part of bovine PARG was amplified by PCR and cloned in the EcoRI site of pGEX-2T vector (Pharmacia) in fusion with GST giving the pGEX-2T-bPARG_{MNDV} plasmid. E. coli NM522 cells transformed with the pGEX-2T-bPARG_{MNDV} were induced 60 by addition of IPTG, resulting in expression of a 90 kDa fusion protein. The fusion protein can be conveniently purified using Glutathione-Sepharose and the bPARG_{MNDV} can be released by treatment with thrombin while the GST protein remains bound to the beads of GSH-Sepharose. In 65 this manner milligram amounts of protein can be routinely obtained. 38 ### Example 16 Characterization of the Purified 65 kDa Domain and the Generation of Antibodies The purified bPARG $_{MNDV}$ was characterized by activity gel assays (69) by casting polyacrylamide gels with automodified PARP containing [32 P]ADP-ribose polymers. The results demonstrate that the 65 kDa domain expressed in E. coli contained enzymatic activity migrating with the same apparent molecular weight as the enzyme purified from bovine thymus. Likewise, a construction expressing bPARG $_{MNDV}$ domain in SF9 insect cells infected with recombinant baculovirus showed activity migrating with the same apparent molecular weight. The availability of PARG cDNA allows the development of new molecular tools to study this enzyme in its cellular context. Until this work, it was not possible to obtain PARG in sufficient quantities to produce antibodies against the protein. The antibody raised against bovine PARG is able to recognize PARG from other organisms and, thus, will be valuable in characterizing PARG in vivo under defined physiological conditions in many different organisms. Antibodies against bPARG_{MNDV} overexpressed in *E. coli* were raised in rabbits using the procedure described by Vaitukaitis (70). Specific high affinity antibodies are generated by administration of small doses of immunogens intradermally over a wide anatomic area of the animal. Rabbits were immunized by three injections of $10-50~\mu g$ of the Mr 65,000 protein band excised from a preparative SDS polyacrylamide gel. Titer and affinity of sera harvested weekly were followed by conventional methods. Peak affinity was attained in 8 to 10 weeks after primary immunization. For each animal, a preimmune serum was retained as a control. FIG. 17 shows a Western blot experiment demonstrating the specificity of the resulting PARG anti-serum against the purified bPARG from thymus (lane 1), SF9 protein extract expressing 65 kDa-bPARG_{MNDV} in recombinant baculovirus (lane 2), recombinant 65 kDa-PARG_{MNDV} purified by treatment with thrombin from GSH-Sepharose (lane 3), and an *E. coli* crude extract expressing the fusion protein GST-65 kDa-PARG_{MNDV} (lane 4). The pre-immune serum did not show reactivity against any of these fractions even at a low dilution (1/250). Antibodies directed against the 45 kDa -terminal have also been generated using the same strategy used to generate antibodies against the catalytic domain. This involved the overexpression of the 45 kDa protein domain in E. coli in a construct designed for easy purification, followed by injection of the purified protein into rabbits. The heterologous expression of PARG45 was conducted by cloning a part (1.1 kb) of the coding region of the cDNA, generated by PCR amplification of the region located between the ATG(267) codon and nucleotide 1400 in the bovine sequence, into the Eco RI site of the bacterial expression vector pGEX-2T (Pharmacia) in fusion with glutathione-S-transferase. E. coli NM522 cells transformed with this construct were induced by addition of IPTG, resulting in expression of a 72 kDa fusion protein. The fusion protein was purified using glutathione Sepharose and the PARG45 was released by treatment with thrombin, while the GST protein remained bound to the GSH Sepharose beads. In this manner milligram amounts of protein were obtained. Antibodies against PARG45 overexpressed in E. coli were raised in rabbits using the procedure described (71). Specific high affinity antibodies were generated by administration of small doses of immunogenic subcutaneously over a wide area of the 39 animal. Rabbits were immunized by three injections of 10– $50~\mu g$ of the 45 kDa protein band excised from a preparative SDS-polyacrylamide gel. Titer and affinity of sera harvested weekly were followed by conventional methods. Peak affinity was attained in 8 to 10 weeks after primary immunization. For each animal, a preimmune serum was retained as a control. #### Example 17 #### Conservation of PARG in Tissues and Organisms Tissue and cell extracts from different origins were homogenized in a cold hypotonic lysis buffer containing a cocktail of protease inhibitors and sonicated. SDS and β-mercaptoethanol were added to insure inactivation of any remaining active protease. Thirty μg of protein from each extract was analyzed by Western-blot using the anti-PARG antibody (FIG. 18). In all of the fractions from bovine tissues, PARG was observed as a major band at 65 kDa. However, less intense, discrete proteins of higher molecular weight were also detected. These proteins may correspond to different forms of PARG; the hand of highest molecular weight (about 115 kDa) found in thymus extract likely corresponds to the full-length of PARG (111 kDa) as deduced from the cDNA. Multiple species were detected in cell extracts from mouse fibroblasts, rat PC 12 cells, and SF9 insect cells. This result shows that the sequence of PARG is well conserved phylogenetically. Moreover, the conservation includes multiple molecular forms of the protein. #### Example 18 ### Regulation of the Expression of PARG In the metabolism of ADP-ribose polymers, the activities of PARP and PARG are closely related. Soon after polymer has been synthesized by PARP following DNA damage, it is extensively degraded by PARG. The net result is that the polymer has a very short half life. The close relationship between the two proteins suggests a possible mode of regulation in which PARG expression depends on the presence of PARP. In order to test if the presence or
the absence of PARP influences the expression of PARG, a Western Blot experiment was performed with cell extracts from mouse fibroblasts of different PARP genotypes (72). Cell extract (30 µg) from mouse cells with PARP+/+, PARP+/- and PARP-/-genotypes were separated by SDS-PAGE, transferred to a membrane and probed with the antibodies indicated. The results are shown in FIG. 19. In FIG. 19, purified PARG (50 ng) from bovine thymus (lane 50 1), 30 µg of protein of a total extract from PARG recombinant baculovirus infected SF9 cells (lane 2), 150 µg of purified recombinant PARG produced in the bacteria (lane 3) and 30 µg of protein of a crude extract from E. coli NM522 transformed with pGEX-2T-bPARG $_{MNDV}$ 2 h after induction 55 by IPTG (lane 4) were separated on a 0.1% SDS-12% polyacrylamide gel, then transferred on nitrocellulose, and incubated with a 1/5000 dilution of the rabbit polyclonal antiserum raised against the 65 kDa domain of bPARG. Proteins were revealed by immunofluorescence with the ECL detection kit (Amersham) and autoradiography. Panel A is a western blot of PARP in cells of varying PARP genotype showing the results of the analysis using anti-PARP antibodies. The amount of PARP expressed varies as expected dependant upon the genotype of the cell line with 65 the PARP-/-cell line producing no detectable amount of PARP. Panel B is western blot of PARG from various tissues 40 using an anti-PARG antibody. It shows that the level of PARP is variable. The amount of PARG present in the cell extracts was not dependent upon the PARG genotype of the cell. Further support for this view is provided by the results of the PARG activity assay presented in panel C. The specific activity of PARG detected in the extracts showed no significant difference among the three genotypes. #### Example 19 ## Preparation PARG Gene Ablation (Knockout) Animals One embodiment of the present invention is experimental animals with targeted mutations in the PARG gene. These animals may be constructed using standard techniques and the cDNA sequence of the PARG. In the following example, a mouse containing a targeted mutation in the PARG gene is constructed. Those skilled in the art will readily appreciate that other experimental animals, including but not limited to rats, guinea pigs, hamsters and the like, may be constructed using similar techniques. The construction of animals with disrupted genes may be accomplished using standard techniques such as those described by Moreadith (73). Further, cells lines, construction kits, and protocols for knockout mice are available from commercial suppliers such as Stratagene (Stratagene 1999 catalog, La Jolla, Calif.). Commercial services such as Lexicon Genetics (The Woodlands, Tex.) and Chrysalis DNX Transgenic Sciences (Princeton, N.J.) also offer complete ES cell knockout mice production services. A genomic clone of the murine PARG enzyme may be isolated from a genomic library by screening with a probe derived from the cDNA sequence of PARG. A mouse 129/SV genomic library (Stratagene) containing mouse genomic sequences in λ phage was screened using a 2.49 kb fragment of the mouse PARG cDNA as a probe. A partial restriction map of one positive clone thus isolated, R1, is provided in FIG. 20. The R1 clone contains the genomic sequence corresponding to the 5'-most end of the murine cDNA. The clone was subcloned into pBluescript as three fragments. The plasmid containing the 5'-end contained a 2.8 kb NotI-EcoRI fragment and was designated p2.8R. The fragment containing the central portion contained a 3.5 kb EcoRI fragment and was designated p3.5R. The plasmid containing the 3'-end of the gene contained a 7,0 kb EcoRI-NotI fragment and was designated 7.0R. Sequencing the resulting plasmids revealed that p2.8R contained no sequences corresponding to the cDNA, p3.5R contains a 1.5 kb promoter region and/or untranslated region and exon 1 coding for 72 amino acids including the initiation ATG codon and p7.0R contains at least 4 additional exons. Gene targeting vectors may be constructed using both p3.5R and p7.0R. A gene targeting vector may contain one or more selection genes flanked by genomic sequences. The targeting vector is introduced into the genome by homologous recombination resulting in the incorporation of the selection gene into the genome of the cell. The mouse PARG gene was targeted using a "conditional" inactivation procedure outlined in FIG. 21. This approach allows the production of viable animals even if the disrupted gene results in a lethal phenotype since the gene is not disrupted until a second "conditional" recombination event is induced. A lox-P sequence may be inserted into the first intron. A cassette expressing the neomycin resistance gene (neo) and the thymidine kinase gene (TK) flanked by two additional lox-P sites may be placed in intron 2. In the presence of Cre recombinase, recombination will occur between two lox-P sites thereby deleting the genomic sequences present between the sites. A MC1-DTA cassette is ligated at the 3'-end of the vector to reduce random integration of the 5 vector into the genome. The targeting vector may be introduced into embryonic stem cells by any method known to those skilled in the art such as transfection, lipofection or electroporation. In a preferred embodiment, the targeting vector will be introduced into embryonic stem cells by electroporation. After homologous recombination, cells containing the neo gene will be selected for using G418. Selected cells will then be analyzed by PCR and Southern blot. To generate mutant alleles of PARG, the positive embryonic stem cell clones identified will be transfected with a plasmid expressing Cre recombinase. The action of Cre recombinase will result in three different mutant alleles. Mutant allele I contains a deletion in exon 2 but still maintains the selection genes neo and TK. Mutant allele II contains the genomic sequence for exon 2 flanked by two 20 lox-P sites (exon 2 is said to be "floxed") and does not contain the selection genes. Mutant allele III has a deletion of the genomic sequences and does not contain the selection Mice containing each of the three mutant alleles may be 25 constructed by microinjecting embryonic stem cells containing the mutant allele into blastocytes resulting in the production of chimeric and mutant mice. Mice homozygous in mutant allele I or III will be null mutants in that they will be unable to express a functional PARG enzyme due to the loss of required genomic sequences. In the absence of Cre recombinase, mice containing mutant allele II will express a wild type protein. In the presence of the Cre recombinase, the PARG will lose exon 2, thus producing an inactive protein. To inactivate the gene, these mice will be bred to 35 27. Hatakeyama, K. et al. (1986) J. Biol. Chem. 261, mice expressing Cre recombinase under the control of a tissue specific promoter. This will result in mice expressing PARG in some tissues and not expressing PARG in others. Mice homozygous in mutant allele II, will be valuable for evaluating the role of PARG in specific tissues. Although the present invention has been described with reference to certain examples for purposes of clarification and illustration. It should be appreciated that certain obvious improvements and modifications can be practiced within the scope of the appended claims and their equivalents. Other 45 33. Mead, D. et al. (1986) Protein Eng. 1, 67-74. embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All U.S. Patents GenBank sequence listings, and other references noted herein for whatever reason are specifically incorpo- 50 rated by reference. The specification and examples should be considered exemplary only with the true scope and spirit of the invention indicated by the following claims. - 1. Miwa, M. et al. (1971) J. Biol. Chem. 246, 6362-6364; Ueda, K. et al. (1972) Biochem. Biophys. Res. 55 Commun.46, 516-523 - 2. Oka, J. et al. (1984) J. Biol. Chem. 259, 986-995. - 3. Gaal, J. et al. (1987) Trends in Biol. Sci., 12, 129. - 4. Nudka, N. et al. (1980) Eur. J. Biochem. 105, 525-530; Jacobson, E. et al. (1985) Carcinogenesis6, 715–718; K üpper, J. et al. (1990)J. Biol. Chem. 265,18721–18724; Ding, R. et al. (1992) J. Biol. Chem. 267, 12804-12812. - 5. Jacobson, E. et al. (1985) in ADP-ribosylation of Proteins (Althaus, F. R., Hilz, H., and Shall, S., eds) pp. 277-283, Springer-Verlag, Berlin; Lubet, R. et al. (1986) Carcino- 65 genesis 7, 71-75; Kasid, U. et al. (1986) Carcinogenesis 7, 327–330. 42 - 6. Berger, N. (1985) Radiat. Res. 101, 4-15. - 7. Kaufmann, S. et al. (1993) Cancer Res. 53,3976-3985; Lazebnik, Y. et al. (1994) Nature 371, 346-347. - 8. de Murcia, G. et al. (1994) Trends Biochem. Sci. 19, 172-76. - 9. BioWorld Today, Apr. 29, 1994, p. 3. - 10. Thomassin, H. et al. (1990) Nucleic Acids Res. 18, 4691-4694. - 11. Karlin, Samuel and Stephen F. Altschul (1993). Proc. Natl. Acad. Sci. USA 90:5873-7 - 12. Henikoff and Henikoff Proc. Natl. Acad. Sci. USA 89:10915-19, 1992 - 13. Altschul, Stephen F. (1991). J. Mol. Biol. 219:555-65. - 4. Cohen, J. S., 1989; Weintraub, H. M., 1990 - 15. N. Sarver et al., 1990 - 16. Orlandi, R. et al., (1989) Proc. Natl. Acad. Sci. 86, 3833–3837; Winter, G et al., (1991) Nature 349, 293–299 17. R. Sobol and K. Scanlon eds., available at www.appleton-lange.com. - 18. e.g., at least, but not limited to U.S. Pat. Nos. 5,797,870. 5,804,383, 5,670,161, 5,645,829, 5,741,486, 5,836,905, 5,843,069, 5,827,216, 5,871,464, 5,702,384, 5,810,888, 5,787,900, 5,752,515, 5,674,192, 5658955, 5,656,465, 5,547,932, 5,873,904, 5,792,651, 5,772,888, 5,641,750, 5,641,749, and 5,626,561 - 19. Kaltenbock, B. et al. (1998) Biotechniques, 24, 202–206. - 20. Moran, P. et al. (1998) Biotechniques, 24, 206-212. - 21. Orita, M. et al. (1989) PNAS USA, 86,
2766-2770. - 22. Liu, Q. et al. (1998) Biotechniques, 24, 140–147. - 23. Proceeding from the Sixth International Symposium on Human Identification 1995 (ISBN 1-882274-55-5). - 24. Kohler and Milstein, Nature, 256:495-497 (1975) - 25. Geysen, et al. (1984) Proc. Natl. Acad. Sci. USA 81:3998-4002. - 26. Ménard, et al. (1987) Biochem. Cell Biol. 65, 668-673. - 14902-14911. - 28. Thomassin, H. et al. (1990) Nucleic Acids Res. 18, 4691-4694. - 29. Ménard, L. et al. (1987) Biochem. Cell Biol. 65, 668-673. - 30. Bradford, M. (1976) Anal. Biochem. 72, 248-254. - 31. Laemmli, U. (1970) Nature 227, 680-685. - 32. Althaus, F. et al. (1987) Molecular Biology, Biochemistry and Biophysics, Vol.37, Springer-Verlag, Berlin. - 34. Shaw, et al. (1986) Cell 46, 659-667. - 35. Kozak (1987) Nucleic Acids Res. 15, 8125-8148. - 36. Wilson, et al. (1994) Nature (London) 368, 32-38. - 37. Brendel, et al. (1992) Proc. Natl. Acad. Sci. USA 89, 2002-2006. - 38. Robbins, et al. (1991) Cell 64, 615-623. - 39. Schreiber, et al. (1992) EMBO J. 11, 3263-3269. - 40. Uchida, K. et al. (1987) Biochem. Biophys. Res. Commun. 148,617-622; Cherney, B. et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8370-8374; Kurosaki, T. et cit. (1987) J. Biol. Chem. 262, 15990-15997. - 41. Huppi, K. et al. (1989) Nucleic Acids Res. 17, 3387-3401. - 42. Saito, I. et al. (1990) Gene (Amst.) 90, 249-254. - 43. Ittel, M.-E. et al. (1991) Gene (Amst.) 102, 157–164. - 44. Saulier-Le Drean, B. (1992) Poly(ADP-ribose) Polymerase in Xenopous lae-vis, Ph.D. thesis, Université De Rennes, France. - 45. Uchida, K. et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 3481–3485. - 46. Masutani, M. et al. (1994) Eur. J. Biochem. 220, 607-614. - 47. Schreiber, et al. (1992) EMBO J. 11, 3263-3269. - 48. Lazebnik, et al. (1994) Nature(London) 371, 346-347. - 49. Brochu, et al. (1994) Biochem. Biophys. Acta 1219, 342-350. - 50. Tanuma, et al. (1986) J. Biol. Chem. 261,965–969; 5 63. Sambrook, et al. (1992) MOLECULAR CLONING: A LABO-Uchida, et al. (1993) J. Biol. Chem. 268, 3194-3200. - 51. Maruta, et al. (1991) Biochemistry 30, 5907-5912. - 52. Ménard, L. et al. (1987) Biochem. Cell Biol. 65, 668-673. - 53. Ménard, L. et al. (1987) Biochem. Cell Biol. 65, 10 668-673. - 54. Slama, J. et al. (1995) J. Med. Chem. 38,389-393; Slama, J. et al. (1995) J. Med. Chem. 38, 4332-4336. - 55. Slama, J. et al. (1995) J. Med. Chem. 38,389–393; Slama, J. et al. (1995) J. Med. Chem. 38, 4332–4336. - 56. Ménard, L. et al. (1987) Biochem. Cell Biol. 65, 668-673. - 57. Althaus, F. et al. (1987) Molecular Biology, Biochemistry and Biophysics, Vol. 37, Springer-Verlag, Berlin. - 58. Brochu, G. et al. (1994) Anal. Biochem. 218, 265-272. 20 69. Brochu G. et al. (1994) Anal. Biochem. 218, 265-272. - 59. Brochu, G. et a. (1994) Anal. Biochem. 218, 265-272. - 60. Moreadith, et al. (1997) J. Mol. Med. 75, 208-216. - 61. Tanuma, et al. (1986) J. Biol. Chem. 261, 965-969 and Uchida, et al. (1993) J. Biol. Chem. 268, 3194-3200. ### 44 - 62. Hatakeyama, et al., (1986) J. Biol. Chem. 261, 14902-14911; Thomassin, et al. (1990) Nucleic Acids Res. 18, 4691-4694; and Maruta, et al. (1991) Biochemistry 30, 5907-5912. - RATORY MANUAL, Cold Spring Harbor Laboratory Cold Spring harbor, N.Y. - 64. Feinberg, et al. (1983) Anal. Biochem. 132, 6-13. - 65. Boguski, 1995 - 66. Sambrook, et al. (1992) MOLECULAR CLONING: A LABO-RATORY MANUAL, Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y. - 67. BDGP/HHMI Drosophila EST Project, University of California Berkeley, EST@fruitfly.berkley.edu - 68. Nematode Sequencing Project, Sanger Centre, Hinzton, Cambridge CB101RQ, England and Department of Genetics, Washington University, St. Louis, Mo. 63110, USA. E-mail: jes@sanger.ac.uk - 70. Vaitukaitis (1981) Methods in Enzymology 73, 46-52. - 71. Vaitukaitis (1981) Methods in Enzymology 73, 46-52. - 72. Wang, et al. (1995) Genes & Dev. 9, 509-520. - 73. Moreadith, et al. (1997) J. Mol. Med. 75, 208-216. #### SEQUENCE LISTING <160> NUMBER OF SEO ID NOS: 38 <210> SEO ID NO 1 <211> LENGTH: 4070 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 1 accggaaagt gaacgaagcc cgaatcagaa cggctcatcc tgaggctggt agggtgccgg 60 tgqaaqaqqq aaqqcaqqcq tctqqataqq qcctqqttcq qqaqqctqtc aqaqcaqqaq 120 180 ctgcagaagc agtcagcggc agagggggca tggtgccggg aggcaccgag gaggggggcgc agtccgtccc tcccagggtt agtgaatgag gctctacgcc cgggctggcc cggagactca 240 gtgctgcggg tcccagcatg agtgcgggcc ccggctgtga gccctgcacc aagcgacccc 300 gctgggacgc cgctgcaact tctccgccgg ccgcctcgga cgcccggagc ttccccggca 360 ggcagaggcg cgtcctcgat tccaaggacg ctccggtgca gttcagggtc ccgccgtcct 420 cgtcaggctg cgccctgggc cgggcgggac agcaccgagg cagcgccacc tctcttgttt 480 tcaaacagaa gactataacc agttggatgg acactaaagg aatcaagaca gttgaatcag 540 aaagtttgca tagtaaagaa aacaacaata caagagaaga atccatgatg agttctgtac 600 aaaaaqataa cttttatcaa cataacatgg aaaaattaga aaatgtttct cagctaggtt 660 ttgataagtc accagttgaa aaaggtacac agtatttgaa gcagcatcag actgcggcta 720 780 tgtgtaagtg gcagaatgaa gggccacact cagaacggct tttggaaagt gaacctccag cggtaactct ggtaccagag cagttcagta atgctaatgt cgatcagtcg tccccaaagg 840 atgatcacag tgacacaaat agtgaggaga gtagagataa tcagcagttt ttgacacatg 900 taaagcttgc gaatgcaaag cagacgatgg aagatgaaca gggcagagaa gccagaagcc 960 accagaagtg tggcaaggct tgccatcctg cagaagcctg tgcagggtgt cagcaggagg agacagacgt ggtgtccgag agccccttgt cggacactgg ctctgaggat gttggtactg 1080 | gactgaaaaa | tgccaacaga | ttgaatagac | aagaaagtag | tctaggaaat | tctcctccat | 1140 | |------------|------------|------------|------------|------------|------------|------| | ttgagaaaga | aagtgaacct | gagtcaccaa | tggatgtaga | taattccaaa | aatagttgtc | 1200 | | aggattcaga | agcagatgaa | gagacaagtc | caggttttga | tgaacaggaa | gatagcagtt | 1260 | | ctgctcaaac | agcaaataaa | ccttcaaggt | tccaaccaag | agaagctgac | actgagttga | 1320 | | ggaagcggtc | ctctgctaag | ggaggtgaga | ttcgattaca | tttccaattt | gaaggaggag | 1380 | | agagtcgagc | tggaatgaat | gatgtgaatg | ccaaacgacc | tggaagtact | tctagcctga | 1440 | | atgtagagtg | cagaaattct | aagcaacatg | ggagaaagga | ttctaaaatc | acagatcatt | 1500 | | tcatgagagt | gcccaaagca | gaggacaaaa | gaaaagaaca | atgtgaaatg | aaacatcaaa | 1560 | | gaacagaaag | gaagatccct | aaatacattc | cacctcacct | ttctccagat | aagaaatggc | 1620 | | ttggaactcc | tattgaggag | atgaggagaa | tgccaaggtg | tgggatccgg | ctgcctccct | 1680 | | tgagaccatc | tgccaatcac | acagtgacta | ttcgggtaga | tcttttgcga | ataggagaag | 1740 | | ttcctaaacc | tttcccaaca | cattttaaag | atttgtggga | caacaagcat | gttaagatgc | 1800 | | cttgttcaga | acaaaacttg | taccctgtgg | aagatgagaa | tggtgagcga | gctgcaggca | 1860 | | gccggtggga | actcattcag | actgcacttc | tcaacaggct | cactcggccc | cagaacctga | 1920 | | aggatgctat | tctgaagtac | aatgtggcat | attctaagaa | atgggacttt | acagctttga | 1980 | | ttgatttctg | ggataaggta | ctagaagaag | cagaagctca | acacttgtat | cagtccatct | 2040 | | tgcctgatat | ggtgaaaatt | gcactctgtc | tgccaaatat | ttgtacccag | ccaataccac | 2100 | | tcctgaaaca | gaagatgaat | cattccatca | caatgtcaca | ggaacagatt | gccagtcttt | 2160 | | tagctaatgc | tttcttctgc | acgtttccac | gacgcaatgc | caagatgaaa | tcagagtatt | 2220 | | ccagttatcc | agatattaac | ttcaatcggt | tgtttgaagg | acgttcatca | aggaaaccag | 2280 | | agaagcttaa | aacgctcttc | tgctacttta | gaagagtcac | agagaaaaaa | cccactgggt | 2340 | | tggtgacatt | cacaagacag | agtcttgaag | attttccaga | gtgggaaaga | tgtgaaaaac | 2400 | | tcctgactcg | actgcatgtc | acttacgaag | gtaccataga | aggaaacggc | cagggcatgc | 2460 | | tacaggtgga | ttttgcaaac | cgtttcgttg | gaggtggtgt | aaccagtgca | ggacttgtgc | 2520 | | aagaagaaat | ccgctttta | atcaaccctg | agttgattgt | ttcacggctc | ttcactgagg | 2580 | | tgctggatca | caatgaatgt | cttatcatca | caggtactga | gcagtacagt | gaatacacag | 2640 | | gctatgccga | aacataccgc | tgggcccgga | gccatgaaga | caggagcgaa | agggacgact | 2700 | | ggcagaggcg | cacgactgag | atcgtcgcca | tcgacgccct | ccacttcaga | cgctacctcg | 2760 | | accagtttgt | gcccgagaag | atcagacggg | agcttaacaa | ggcttactgt | ggatttcttc | 2820 | | gtcctggagt | ttcttcagag | aacctgtctg | cagtggctac | aggaaactgg | ggctgtggtg | 2880 | | cctttggggg | tgatgctaga | ctaaaagcct | taatacagat | cctggcagct | gctgtagctg | 2940 | | agcgagacgt | ggtttatttc | acctttgggg | actcagaact | gatgagagac | atttacagca | 3000 | | tgcatacatt | cctcactgag | aggaaactga | ctgttggaga | agtatataag | ctgctgctac | 3060 | | gatattacaa | tgaagaatgc | agaaactgct | ccacccccgg | accagacatc | aagctttatc | 3120 | | cattcatata | ccatgcagtt | gagtcctgta | cacagaccac | caaccagccg | ggacaaagga | 3180 | | cgggggcctg | aggagccaag | tgactagacg | ctccccactt | gtgtaacaag | aaggtgtgac | 3240 | | gtgtgaactg | acatgatatc | catgtgtata | taatccgcgt | ttgtaggcaa | ggatgcagtc | 3300 | | ccttccgccc | atgcagctgt | cagtacatct | gcgcctcctc | catcccgact | tacatagact | 3360 | | gagacatact | ttgtttcttt | ttttttctat | ttcagccctg | attcttttat | ttttctttct | 3420 | ### -continued | tttttgatg cctaaatata caaatcacct ctgcagctag cagatgccac ggaaggtggt 3540 ggaaccctag gagctgtaac tgagtctgct gcagatctcc ctctgagcct ctcaccccta 3600 ccctattatc attgtggtgg tggaggtttt ttgattttg aaataagagt tgggtttgtt 3660 aaataataca gatctcctag gttaagagtt ttatatttaa gaatactttt caaaaaggtta 3720 ttttgagata tcaccttat ttgtaatggt aatttgcctg tcccttttcc cctgatcaat 3780 ttgtattgac tgtttttgga aattgaccca aatgaaagga aatatgagaa taagagttc 3840 ccaaatggtg tttaaaaaca aacaggttca agacacgcga aggacctcgt ttcctgggat 3900 tttttttctt tttcttttt tgaattagga ttattgtttg ttccttggtg cttgagacat 3960 attcatataa ccaaaggtta ggaactggga acttcgtggt gatttgtaca tattgaagtt 4020 attcatataa ccaaaggtta ggaactggga acttcgtggt gatttgtaca tattgaagtt 4020 attcatataa ccaaaggtta ggaactggga acttcgtggt gatttgtaca tattgaagtt 4020 attcatataa ccaaaggtta ggaactggga acttcgtggt gatttgtaca tattgaagtt | | | | | | | | | | | _ | con | tin | uea | | |
---|-------------------------------|------------------------|----------------------|-------------------|------|-------|-------|-------|-------|------|------|------|-------|-------|--------|------| | ggaacctag gagetgtaac tgagtotget geagatetee etetgageet eteaceceta 3600 coctattate attgtggtgg tggaggttt ttgattttg aaataagagt tgggtttgtt 3660 aaataataca gateteetag gttaagagtt ttatattta gaatacttt caaaaagtta 3720 ttttgagata teacetttat ttgtaatggt aattgeetg teeetttee eetgateaat 3780 ttgtattgae tgtttttgga aattgaeca aatgaaagga aatatgagga taagagtte 3840 ceaaatggtg tttaaaaaaca aacaggttea agaceegega aggacetegt teeetgggat ttttttett tttetttttt tgaattagga ttattgttt ttoettgggt cttgagacat 3960 atteatataa ceaaagtta ggaactggg actteetggg gattgtaca tattgaagtt teetetggtae teaaaaggtta tgtagttaat aaattteat taacaaaaaa 4070 c10 seg ID No 2 c110 LENGTH: 977 c112 TYPE: PRT c11 of 15 see 200 seguence: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 of 15 see 200 seguence: 2 Met Ser Ala Ala Ala Thr Ser Pro Pro Ala Ala Ser Asp Ala Pro Val Glu 40 seguence 200 seguence: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 of 15 see 200 seguence: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 of 15 seguence: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 of 15 seguence: 2 Met Ser Ala Gly Pro Pro Pro Ala Ala Ser Asp Ala Pro Val Glu Arg Ser Phe 20 seguence: 2 Met Ser Ala Gly Pro Pro Ser Ser Gly Cys Ala Leu Gly Arg Ala Gly 60 seguence: 2 Met Ser Val Pro Pro Ser Ser Gly Cys Ala Leu Gly Arg Ala Gly 60 seguence: 2 Leu His Arg Gly Ser Ala Thr Ser Leu Val Phe Lys Glu Lys Leu Glu Ser 95 seguence: 2 Leu His Ser Lys Glu Asn Asn Asn Thr Arg Glu Glu Ser Met Met Ser 100 ser Val Glu Lys Leu Glu Ser 95 seguence: 2 Asn Val Ser Glu Leu Gly Phe Asp Lys Ser Pro Val Glu Lys Gly Thr 130 ser Val Glu Fis Glu Fis Glu Fis Glu Fis Glu Pro Pro Ala Val 135 seguence: 2 Asn Val Ser Glu Leu Gly Phe Asp Lys Ser Pro Val Glu Lys Gly Thr 130 seguence: 2 Asn Val Ser Glu Glu Glu Phe Ser Asp Asp Asn 195 seguence: 2 Clu Asp Asp Asp His Ser Asp Thr Asn Ser Glu Glu Ser Arg Asp Asn 195 seguence: 2 Glu Asp Glu Gln Gly Arg Glu Ala Arg Ser His Glu Lys Gly Lys | tttgccc | atc | agact | ttct | tg t | gaaa | tttca | a to | agag | ttg | tgc- | tcag | cct (| ggca | ggtgtc | 3480 | | coctattate attgtggtgg tggaggttt ttgattttg aaataagagt tgggtttgtt 3660 aaataataca gatctcctag gttaagagtt ttatatttaa gaatactttt caaaaagtta 3720 ttttgagata tcacctttat ttgtaatggt aattgcctg tcccttttcc cctgatcaat 3780 ttgtattgac tgtttttgga aattgacca aatgaaaga aatagagaa taagagttc 2840 ccaaatggtg tttaaaaaca aacaggttca agacacgga aggacctcgt ttcctgggat 3900 tttttttctt tttcttttt tgaattagg ttattgttg ttccttggtg cttgagacat 3960 attcatataa ccaaagtta ggaactgga acttcgtggt gatttgtaca tattgaagtt 4020 tctctggtac tcaaaggtta tgtagttaat aaatttcat taacaaaaaa 4070 c210 | ttttttg | atg (| ccta | aata | ta c | aaat | cacci | t ct | gcago | ctag | cag | atgc | cac o | ggaaq | ggtggt | 3540 | | asataataca gatotoctag gttaagagtt tatatttaa gaatacttt caaaaagtta 3720 ttttgagata toacotttat ttgtaatgg aattgoctg tocottttco cotgatoaat 3780 ttgtattgac tgtttttgg aattgacca aatgaaagg aatatgagaa taagagttc 3840 coaaatggtg tttaaaaaca aacaggttca agacacgga aggacotogt ttoctgggat 3900 tttttttott tttcttttt tgaattagga ttattgttg ttocttggtg cttgagacat 3960 attoctggtac tocaaaggtta ggaactggga acttcgtggt gattgtaca tattgaagtt 4020 tctctggtac toaaaggtta tgtagttaat aaatttcat taacaaaaaa 4070 sec 100 No 2 coll LENGTH: 977 coll ENGTH: 977 coll ENGTH: 977 coll ENGTH: 977 coll ENGTH: 978 coll Pro Cys Thr Lys Arg Pro Arg Trp 10 15 Asp Ala Ala Ala Thr Ser Pro Pro Ala Ala Ser Asp Ala Arg Ser Phe 20 No 2 SeQUENCE: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 15 Asp Ala Ala Ala Thr Ser Pro Pro Ala Ala Ser Asp Ala Pro Val Gln 45 Phe Arg Val Pro Pro Ser Ser Ser Gly Cys Ala Leu Gly Arg Ala Gly 50 60 Cln His Arg Gly Ser Ala Thr Ser Leu Val Phe Lys Gln Lys Thr Ile 70 70 75 80 For 100 100 105 105 105 105 105 105 105 105 | ggaaccc | tag (| gagc | tgta | ac t | gagt | ctgct | ge | agato | ctcc | ctc | tgag | cct (| ctcad | ccccta | 3600 | | ttttgagata tcacctttat ttgtaatgg aattgccg tccttttcc cctgatcaat 3780 ttgtattgac tgttttgga aattgacca aatgaaagga aatatgagaa taagagttcc 3840 ccaaatggtg tttaaaaaca aacaggttca agacacgga aggacctcgt ttcctgggat 3960 tttttttctt tttctttttt tgaattagga ttattgttg ttccttggtg cttgagacat 3960 attcatataa ccaaagtta ggaactggga acttcgtggt gattgtaca tattgaagtt 4020 tctctggtac tcaaaggta tgtagttaat aaatttcat taacaaaaaa 4070 <210 | ccctatt | atc | attg | tggt | gg t | ggag | gttti | t tt | gatt | ttg | aaa- | taag | agt - | tgggt | ttgtt | 3660 | | ttgtattgac tgtttttgga aattgaccca aatgaaagga aatatgagaa taagagttto 3846 ccaaatggtg tttaaaaaca aacaggttca agacccgga aggacctcgt ttcctgggat 3900 tttttttctt tttcttttt tgaattagga ttattgttg ttccttggtg cttgagacat 3960 attcatataa ccaaagttta ggaactggga acttcgtggt gattgtaca tattgaaggt 4020 tctctggtac tcaaaggtta tgtagttaat aaattttcat taacaaaaaa 4070 <210> SEQ ID NO 2 <211> LENGTH: 977 <212> TYPE: PRT 212> TYPE: PRT 212> ORGANISM: Bos taurus <220> FEATURE: 400> SEQUENCE: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 | aaataat | aca (| gatc | tcct | ag g | ttaa | gagti | t tta | atat | taa | gaa | tact | ttt (| caaaa | aagtta | 3720 | | ccaaatggtg tttaaaaaca aacaggttca agacacgcga aggacctcgt ttcctggggat tttttttctt tttcttttt tgaattagga ttattgttg ttccttggtg cttgagacat 3900 attcattaa ccaaagttta ggaactggga acttcgtggt gattgtaca tattgaaggt 4020 tctctggtac tcaaaggtta tgtagttaat aaattttcat taacaaaaaa 4070 <210> SEQ ID NO 2 <211> LENGTH: 977 <212> TYPE: PRT <213> ORGANISM: Bos taurus <220> FEATURE: 400> SEQUENCE: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 | ttttgag | ata · | tcac | cttt | at t | tgta | atggt | t aat | tttg | cctg | tcc | cttt | taa (| cctga | atcaat | 3780 | | tttttttett ttetttttt tgaattagga ttattgtttg tteettggtg ettgagacat atteatataa ceaaagttta ggaactggga acttegtggt gatttgtaca tattgaagtt 4020 tetettggtae teaaaggtta tgtagttaat aaattteat taacaaaaaa 4070 <210> SEQ ID NO 2 <211> LENGTH: 977 <212> TYPE: PRT <213> ORGANISM: Bos taurus <220> FEATURE: 400> SEQUENCE: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 | ttgtatt | gac · | tgtt | tttg | ga a | attga | accca | a aat | tgaaa | agga | aat | atga | gaa - | taaga | agtttc | 3840 | | attcatataa ccaaagtta ggaactggga acttcgtggt gatttgtaca tattgaagtt 4020 tctctggtac tcaaaggtta tgtagttaat aaatttcat taacaaaaaa 4070 <210> SEQ ID NO 2 <211> SEPG ID NO 2 <211> SEPG: IPB: PRT 2123> TVPB: PRT 2213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1 | ccaaatg | gtg · | tttaa | aaaa | ca a | acag | gttca | a aga | acac | gcga | agg | acct | cgt - | ttcct | tgggat | 3900 | | <pre>ctctctggtac tcaaaaggtta tgtagttaat aaattttcat taacaaaaaa </pre> <pre>c210> SEQ ID NO 2 c211> LENGTH: 977 c212> TTPE: PRT c213> ORGANISM: Bos taurus c220> FEATURE: </pre> <pre>c400> SEQUENCE: 2 Met Ser Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Arg Pro Arg Trp 1</pre> | tttttt | ctt · | tttc | tttt. | tt t | gaat | tagga | a tta | attg | ttg | ttc | cttg | gtg | cttga | agacat | 3960 | | C C SEQ ID NO C C C C C C C | attcata | taa (| ccaa | agtt [.] | ta g | gaac | tggga | a act | ttcg | ggt | gat | ttgt | aca - | tatt | gaagtt | 4020 | | Call | tctctgg | tac · | tcaaa | aggt [.] | ta t | gtag | ttaat | t aaa | attt | cat | taa | caaa | aaa | | | 4070 | | Asp Ala Ala Ala Ala Thr Ser Pro Pro Ala Ala Ser Asp Ala Ala Ala Thr Ser Pro Pro Ala Ala Ala Ala Ala Thr Ser Pro Pro Ala Ala Ala Ala Ala Thr Ser Pro Pro Ala Ala Ala Ser Asp Ala Arg Ser Phe 25 Asp Ala Ala Pro Val Gln Ala Ala Arg Val Leu Asp Ser Lys Asp Ala Pro Val Gln Ala Arg Ser Pro Sor Ser Ser Gly Cys Ala Leu Gly Arg Ala Gly 60 Thr Ber Trp Met Asp Thr Lys Gly Ile Lys Thr Val Glu Ser Glu Ser 95 Ser Val Rep No Ser Ser Ser Gly Cys Ala
Leu Gly Arg Ala Gly 70 Thr Ser Trp Met Asp Thr Lys Gly Ile Lys Thr Val Glu Ser Glu Ser 95 Ser Val Gln Lys Ber 100 Asp | <211> L
<212> T
<213> O | ENGTI
YPE :
RGAN | H: 97
PRT
ISM: | 77 | tauı | rus | | | | | | | | | | | | 10 | <400> S | EQUEI | NCE: | 2 | | | | | | | | | | | | | | 20 | | Ala | Gly | | Gly | Cys | Glu | Pro | _ | Thr | Lys | Arg | Pro | - | Trp | | | Solution | Asp Ala | Ala | | Thr | Ser | Pro | Pro | | Ala | Ser | Asp | Ala | _ | Ser | Phe | | | 50 | Pro Gly | | Gln | Arg | Arg | Val | | Asp | Ser | Lys | Asp | | Pro | Val | Gln | | | 65 70 75 80 Thr Ser Trp Met Asp St Thr Lys Gly Ile Lys Gly Thr Val Glu Ser Glu Ser 95 Ser Glu Ser 95 Leu His Ser Lys Glu Asn Asn Asn Asn Thr 105 Asn Glu Glu Glu Ser Met Met Ser 110 Ser Val Gln Lys Asp Asp Asn Phe 120 Gln His Asn Met Glu Lys Leu Glu Lys Leu Glu 125 Asn Val Ser Gln Leu Gly Phe Asp Lys Ser Pro Val Glu Lys Gly Thr 130 Gln Tyr Leu Lys Gln His Gln Thr Ala Ala Met Cys Lys Trp Gln Asn 160 Glu Gly Pro His Ser Glu Arg Leu Leu Glu Ry Leu Leu Glu Ry Pro Pro Ala Val 175 Asn 165 Thr Leu Val Pro Ry Glu Gln Phe Ser Asn 185 Asn Ala Asn Val Asp Gln Ser Ser 190 Pro Lys Asp Asp His Ser Asp 200 Asn Ser Glu Glu Gly Ser Asp Asn 200 Gln Gln Phe Leu Thr His Val Lys Leu Ala Asn Ala Lys Gln Lys Gln Thr Met 210 Glu Asp Glu Gln Gly Arg Glu Ala Arg Ser His Gln Lys Cys Gly Lys | | Val | Pro | Pro | Ser | | Ser | Gly | Сув | Ala | | Gly | Arg | Ala | Gly | | | Ser Leu His Ser Lys Glu Asn Asn Asn Thr Arg Glu Glu Ser Met Met Ser | | Arg | Gly | Ser | | Thr | Ser | Leu | Val | | Lys | Gln | Lys | Thr | | | | Ser Val Gln Lys Asp Asn Phe Tyr Gln His Asn Met Glu Lys Leu Glu 125 Asn Val Ser Gln Leu Gly Phe 135 | Thr Ser | Trp | Met | | Thr | Lys | Gly | Ile | | Thr | Val | Glu | Ser | | Ser | | | 115 | Leu His | Ser | | Glu | Asn | Asn | Asn | | Arg | Glu | Glu | Ser | | Met | Ser | | | 130 | Ser Val | | Lys | Asp | Asn | Phe | | Gln | His | Asn | Met | | Lys | Leu | Glu | | | 145 150 155 160 Glu Gly Pro His Ser Glu Arg Leu Leu Glu Ser Glu Pro Pro Ala Val 175 175 Thr Leu Val Pro Glu Gln Phe Ser Asn Ala Asn Val Asp Gln Ser Ser 180 185 200 800 800 800 800 800 800 800 800 800 | | | Gln | Leu | Gly | | Asp | Lys | Ser | Pro | | Glu | Lys | Gly | Thr | | | Thr Leu Val Pro Glu Gln Phe Ser Asn Ala Asn Val Asp Gln Ser Ser 180 Pro Lys Asp Asp His Ser Asp Thr Asn Ser Glu Glu Glu Ser Arg Asp Asn 205 Gln Gln Phe Leu Thr His Val Lys Leu Ala Asn Ala Lys Gln Thr Met 210 Glu Asp Glu Gln Gly Arg Glu Ala Arg Ser His Gln Lys Cys Gly Lys | | Leu | Lys | Gln | | Gln | Thr | Ala | Ala | | Cys | Lys | Trp | Gln | | | | Pro Lys Asp Asp His Ser Asp Thr Asn Ser Glu Glu Ser Arg Asp Asn 200 205 Gln Gln Phe Leu Thr His Val Lys Leu Ala Asn Ala Lys Gln Thr Met 210 Glu Asp Glu Gln Gly Arg Glu Ala Arg Ser His Gln Lys Cys Gly Lys | Glu Gly | Pro | His | | Glu | Arg | Leu | Leu | | Ser | Glu | Pro | Pro | | Val | | | 195 200 205 Gln Gln Phe Leu Thr His Val Lys Leu Ala Asn Ala Lys Gln Thr Met 210 215 Glu Asp Glu Gln Gly Arg Glu Ala Arg Ser His Gln Lys Cys Gly Lys | Thr Leu | Val | | Glu | Gln | Phe | Ser | | Ala | Asn | Val | Asp | | Ser | Ser | | | 210 215 220 Glu Asp Glu Gln Gly Arg Glu Ala Arg Ser His Gln Lys Cys Gly Lys | Pro Lys | _ | Asp | His | Ser | Asp | | Asn | Ser | Glu | Glu | | Arg | Asp | Asn | | | | | | Leu | Thr | His | | Lys | Leu | Ala | Asn | | Lys | Gln | Thr | Met | | | | | Glu | Gln | Gly | | Glu | Ala | Arg | Ser | | Gln | Lys | Cys | Gly | | | Ala Cys His Pro Ala Glu Ala Cys Ala Gly Cys Gln Gln Glu Glu Thr $245 \hspace{1cm} 250 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$ | Asp | Val | Val | Ser
260 | Glu | Ser | Pro | Leu | Ser
265 | Asp | Thr | Gly | Ser | Glu
270 | Asp | Val | |------------|------------|------------|---------------------|------------|------------|------------|---------------------|------------|------------|------------|------------|------------|---------------------|------------|-------------------| | Gly | Thr | Gly
275 | Leu | Lys | Asn | Ala | Asn
280 | Arg | Leu | Asn | Arg | Gln
285 | Glu | Ser | Ser | | Leu | Gly
290 | Asn | Ser | Pro | Pro | Phe
295 | Glu | Lys | Glu | Ser | Glu
300 | Pro | Glu | Ser | Pro | | Met
305 | Asp | Val | Asp | Asn | Ser
310 | Lys | Asn | Ser | Суѕ | Gln
315 | Asp | Ser | Glu | Ala | Asp
320 | | Glu | Glu | Thr | Ser | Pro
325 | Gly | Phe | Asp | Glu | Gln
330 | Glu | Asp | Ser | Ser | Ser
335 | Ala | | Gln | Thr | Ala | Asn
340 | Lys | Pro | Ser | Arg | Phe
345 | Gln | Pro | Arg | Glu | Ala
350 | Asp | Thr | | Glu | Leu | Arg
355 | Lys | Arg | Ser | Ser | Ala
360 | Lys | Gly | Gly | Glu | Ile
365 | Arg | Leu | His | | Phe | Gln
370 | Phe | Glu | Gly | Gly | Glu
375 | Ser | Arg | Ala | Gly | Met
380 | Asn | Asp | Val | Asn | | Ala
385 | Lys | Arg | Pro | Gly | Ser
390 | Thr | Ser | Ser | Leu | Asn
395 | Val | Glu | Суѕ | Arg | Asn
400 | | Ser | Lys | Gln | His | Gly
405 | Arg | Lys | Asp | Ser | Lys
410 | Ile | Thr | Asp | His | Phe
415 | Met | | Arg | Val | Pro | L y s
420 | Ala | Glu | Asp | Lys | Arg
425 | Lys | Glu | Gln | Сув | Glu
430 | Met | Lys | | His | Gln | Arg
435 | Thr | Glu | Arg | Lys | Ile
440 | Pro | Lys | Tyr | Ile | Pro
445 | Pro | His | Leu | | Ser | Pro
450 | Asp | Lys | Lys | Trp | Leu
455 | Gly | Thr | Pro | Ile | Glu
460 | Glu | Met | Arg | Arg | | Met
465 | Pro | Arg | Сув | Gly | Ile
470 | Arg | Leu | Pro | Pro | Leu
475 | Arg | Pro | Ser | Ala | Asn
480 | | His | Thr | Val | Thr | Ile
485 | Arg | Val | Asp | Leu | Leu
490 | Arg | Ile | Gly | Glu | Val
495 | Pro | | Lys | Pro | Phe | Pro
500 | Thr | His | Phe | Lys | Asp
505 | Leu | Trp | Asp | Asn | L y s
510 | His | Val | | Lys | Met | Pro
515 | Сув | Ser | Glu | Gln | Asn
520 | Leu | Tyr | Pro | Val | Glu
525 | Asp | Glu | Asn | | Gly | Glu
530 | Arg | Ala | Ala | Gly | Ser
535 | Arg | Trp | Glu | Leu | Ile
540 | Gln | Thr | Ala | Leu | | Leu
545 | | Arg | | Thr | | | Gln | | Leu | | | Ala | Ile | Leu | Lys
560 | | Tyr | Asn | Val | Ala | Tyr
565 | Ser | Lys | Lys | Trp | Asp
570 | Phe | Thr | Ala | Leu | Ile
575 | Asp | | Phe | Trp | Asp | L y s
580 | Val | Leu | Glu | Glu | Ala
585 | Glu | Ala | Gln | His | Leu
590 | Tyr | Gln | | Ser | Ile | Leu
595 | Pro | Asp | Met | Val | L y s
600 | Ile | Ala | Leu | Суѕ | Leu
605 | Pro | Asn | Ile | | Cys | Thr
610 | Gln | Pro | Ile | Pro | Leu
615 | Leu | Lys | Gln | Lys | Met
620 | Asn | His | Ser | Ile | | Thr
625 | Met | Ser | Gln | Glu | Gln
630 | Ile | Ala | Ser | Leu | Leu
635 | Ala | Asn | Ala | Phe | Phe
640 | | Сув | Thr | Phe | Pro | Arg
645 | Arg | Asn | Ala | Lys | Met
650 | Lys | Ser | Glu | Tyr | Ser
655 | Ser | | Tyr | Pro | Asp | Ile
660 | Asn | Phe | Asn | Arg | Leu
665 | Phe | Glu | Gly | Arg | Ser
670 | Ser | Arg | | Lys | Pro | Glu | Lys | Leu | Lys | Thr | Leu | Phe | Cys | Tyr | Phe | Arg | Arg | Val | Thr | | 675 680 685 | | |--|---| | Glu Lys Lys Pro Thr Gly Leu Val Thr Phe Thr Arg Gln Ser Leu Glu 690 695 700 | | | Asp Phe Pro Glu Trp Glu Arg Cys Glu Lys Leu Leu Thr Arg Leu His 705 710 715 720 | | | Val Thr Tyr Glu Gly Thr Ile Glu Gly Asn Gly Gln Gly Met Leu Gln 725 730 735 | | | Val Asp Phe Ala Asn Arg Phe Val Gly Gly Gly Val Thr Ser Ala Gly 740 745 750 | | | Leu Val Gln Glu Glu Ile Arg Phe Leu Ile Asn Pro Glu Leu Ile Val
755 760 765 | | | Ser Arg Leu Phe Thr Glu Val Leu Asp His Asn Glu Cys Leu Ile Ile
770 780 | | | Thr Gly Thr Glu Gln Tyr Ser Glu Tyr Thr Gly Tyr Ala Glu Thr Tyr 785 790 795 800 | | | Arg Trp Ala Arg Ser His Glu Asp Arg Ser Glu Arg Asp Asp Trp Gln 805 810 815 | | | Arg Arg Thr Thr Glu Ile Val Ala Ile Asp Ala Leu His Phe Arg Arg 820 825 830 | | | Tyr Leu Asp Gln Phe Val Pro Glu Lys Ile Arg Arg Glu Leu Asn Lys
835 840 845 | | | Ala Tyr Cys Gly Phe Leu Arg Pro Gly Val Ser Ser Glu Asn Leu Ser
850 855 860 | | | Ala Val Ala Thr Gly Asn Trp Gly Cys Gly Ala Phe Gly Gly Asp Ala
865 870 875 880 | | | Arg Leu Lys Ala Leu Ile Gln Ile Leu Ala Ala Ala Val Ala Glu Arg
885 890 895 | | | Asp Val Val Tyr Phe Thr Phe Gly Asp Ser Glu Leu Met Arg Asp Ile 900 905 910 | | | Tyr Ser Met His Thr Phe Leu Thr Glu Arg Lys Leu Thr Val Gly Glu 915 920 925 | | | Val Tyr Lys Leu Leu Arg Tyr Tyr Asn Glu Glu Cys Arg Asn Cys
930 935 940 | | | Ser Thr Pro Gly Pro Asp Ile Lys Leu Tyr Pro Phe Ile Tyr His Ala
945 950 955 960 | | | Val Glu Ser Cys Thr Gln Thr Thr Asn Gln Pro Gly Gln Arg Thr Gly 965 970 975 | | | Ala | | | <210> SEQ ID NO 3 <211> LENGTH: 4069 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: | | | <400> SEQUENCE: 3 | | | ggcgtctggg aagtgaggag cgtctctgcc tggcagaggc tgcaatctct gcactttggg 6 | 0 | | gggccaaggc aggcgctgag aaggacgcgc agtccatctc tctcaggtta gtgaaatgag 12 | 0 | | gctctccgcg gggccggccc ggggacagtg cgctgctggt cccagcatga atgcgggccc 18 | 0 | | cggctgtgaa ccctgcacca aagcgacccg ctggggcgcc gctacaactt cgccggctgc 24 | 0 | | ttcggacgcc cggagctttc cgagcaggca gaggcgcgtc ctcgacccca aggacgctca 30 | 0 | | cgtgcagttc agggtcccac cgtcctcgcc agcctgcgtc ccagggcagg cgggacagca 36 | 0 | | cagaggcagc | gccacctcgc | ttgttttcaa | acaaaagact | attaccagtt | ggatggacac | 420 | |------------|------------|------------|------------|------------|------------|------| | taaaggaatc | aagacagcgg | aatcagaaag | tttggatagt | aaagaaaaca | acaatacaag | 480 | | aatagaatcc | atgatgagtt | ctgtacaaaa | agataacttt | taccaacata | atgtagaaaa | 540 | | attagtaaat | gtttctcagc | taagtcttga | taagtcactc | actgaaaaaa | gtacacagta | 600 | | tttgaaccag | catcagactg | cagcaatgtg | taagtggcaa | aatgaaggga | aacacacgga | 660 | | gcagcttttg | gaaagtgaac | ctcaaacagt | aaccctggta | ccagagcagt | ttagtaatgc | 720 | | taacattgat | cggtcacctc | aaaatgatga | tcacagtgac | acagatagtg | aagagaatag | 780 | | agacaatcaa | cagtttctca |
caactgtaaa | gcttgcaaat | gcaaagcaga | ctacggaaga | 840 | | tgaacacgcc | agagaagcca | aaagccacca | gaagtgcagc | aagtcttgcc | atcctgggga | 900 | | agactgtgca | agttgtcagc | aagatgagat | agacgtggtg | ccaaagagtc | cattgtcaga | 960 | | tgttggctct | gaggatgttg | gtactgggtc | aaaaaatgac | aacaaattga | ttagacaaga | 1020 | | aagttgccta | ggaaattctc | ctccatttga | gaaggaaagt | gaacccgaat | caccgatgga | 1080 | | tgtggataat | tctaaaaata | gttgtcaaga | ctcagaagca | gatgaggaga | caagtccagg | 1140 | | ttttgatgaa | caagaagatg | gtagttcctc | ccaaacagca | aataaacctt | caaggttcca | 1200 | | agcaagagac | gctgacattg | aatttaggaa | acggtactct | actaagggcg | gtgaagttag | 1260 | | attacatttc | caatttgaag | gaggagagag | tcgcactgga | atgaatgatt | taaatgctaa | 1320 | | actacctgga | aatatttcta | gcctgaatgt | agaatgcaga | aattctaagc | aacatggaaa | 1380 | | aaaggattct | aaaatcacag | atcatttgat | gagactgccc | aaagcagagg | acagaagaaa | 1440 | | agaacagtgg | gaaaccaaac | atcaaagaac | agaaaggaag | atccctaaat | acgttccacc | 1500 | | tcacctttct | ccagataaga | agtggcttgg | aactcccatt | gaggagatga | gaagaatgcc | 1560 | | tcggtgtggg | atccggctgc | ctctcttgag | accatctgcc | aatcacacag | taactattcg | 1620 | | ggtagatctt | ttgcgagcag | gagaagttcc | taaacctttt | ccaacacatt | ataaagattt | 1680 | | gtgggataac | aagcatgtta | aaatgccttg | ttcagaacaa | aatttgtacc | cagtggaaga | 1740 | | tgagaatggt | gagcgaactg | cggggagccg | gtgggagctc | attcagactg | cacttctcaa | 1800 | | caaatttaca | cgaccccaaa | acttgaagga | tgctattctg | aaatacaatg | tggcatattc | 1860 | | taagaaatgg | gactttacag | ctttgatcga | tttctgggat | aaggtacttg | aagaagcaga | 1920 | | agctcaacat | ttatatcagt | ccatcttgcc | tgatatggtg | aaaattgcac | tctgtctgcc | 1980 | | aaatatttgc | acccagccaa | taccactcct | gaaacagaag | atgaatcatt | ccatcacaat | 2040 | | gtcgcaggaa | cagattgcca | gtcttttagc | taatgctttc | ttctgcacat | ttccacgacg | 2100 | | aaatgctaag | atgaaatcgg | agtattctag | ttacccagac | attaacttca | atcgattgtt | 2160 | | tgagggacgt | tcatcaagga | aaccggagaa | acttaaaacg | ctcttctgct | actttagaag | 2220 | | agtcacagag | aaaaaaccta | ctgggttggt | gacatttaca | agacagagtc | ttgaagattt | 2280 | | tccagaatgg | gaaagatgtg | aaaaaccctt | gacacgattg | catgtcactt | acgaaggtac | 2340 | | catagaagaa | aatggccaag | gcatgctaca | ggtggatttt | gcaaatcgtt | ttgttggagg | 2400 | | tggtgtaacc | agtgcaggac | ttgtgcaaga | agaaatccgc | tttttaatca | atcctgagtt | 2460 | | gattatttca | cggctcttca | ctgaggtgct | ggatcacaat | gaatgtctaa | ttatcacagg | 2520 | | tactgagcag | tacagtgaat | acacaggcta | tgctgagaca | tatcgttggt | cccggagcca | 2580 | | cgaagatggg | agtgaaaggg | acgactgcga | gcggcgctgc | actgagatcg | ttgccatcga | 2640 | | tgctcttcac | ttcagacgct | acctcgatca | gtttgtgcct | gagaaaatga | gacgcgagct | 2700 | | gaacaaggct | tactgtggat | ttctccgtcc | tggagtttct | tcagagaatc | tttctgcagt | 2760 | ### -continued | ggccacagga a | actggggct | gtggtgcctt | tgggggtgat | gccaggttaa | aagccttaat | 2820 | |---|----------------------------------|-------------|-------------|------------|------------|------| | acagatattg g | cagctgctg | cagctgagcg | agatgtggtt | tatttcacct | ttggggactc | 2880 | | agaattgatg a | gagacattt | acagcatgca | cattttcctt | actgaaagga | aactcactgt | 2940 | | tggagatgtg t | ataagctgt | tgctacgata | ctacaatgaa | gaatgcagaa | actgttccac | 3000 | | ccctggacca g | acatcaagc | tttatccatt | catataccat | gctgtcgagt | cctgtgcaga | 3060 | | gaccgctgac c | attcagggc | aaaggacagg | gacctgagga | gccgagcgaa | tagcatctcc | 3120 | | tcccacctcc c | accagagac | gtcctgtttg | agctgtcagg | tgtaatatat | gaattgactt | 3180 | | aagttaatat a | aatgtgtac | ataatccaca | tttgtagtca | aggacgcaat | ctcttccaca | 3240 | | catgtgcagt t | gtcagttgg | tacatctaaa | ctccctccat | cctgactcac | gtggacttag | 3300 | | atatgttttg t | ttctatttt | cttctatttc | agtttttcat | tctttgatgt | ttatttcttt | 3360 | | tgtccatcag a | tctcttgtg | aaatcccatg | gaaggttgtg | ctcagctgtc | gggtctcttt | 3420 | | cttcctgccc a | tatattata | ccagttgctt | ctgcagcccg | cagatgccca | gcgatgccca | 3480 | | ggaaacaagt t | gaaatccca | ggaatctctt | taactgattt | tgctaaaaat | ctccctgtga | 3540 | | gccttccact c | aactcttaa | tatgcttgca | ttgtttaagt | ttttaaattc | tgaaaattaa | 3600 | | taattagggt t | tttttcata | tgtgttgcat | aatgcaaacc | tcctaggtta | aaatagtttc | 3660 | | tttatttaag a | tagaataat | ttccagaaat | tgtacttttg | aggtatcatt | tttatctgta | 3720 | | atggtttgtc t | gtcttttt | cctctgatca | gtatttttt | ataccagttt | tggagactgc | 3780 | | ctgagatgaa a | ggaaatgtg | gaataaaagg | aggttttcct | gatgtggtgt | aaagaaaaca | 3840 | | gattccaaga g | aattgaaga | tttttttgt | ttccttggta | ctttttctt | tttaaattag | 3900 | | gactaatgtt t | cttttgtgg | tgcttgaggc | atattcatat | aaccaaagtt | tgagaactgg | 3960 | | gaacttcatg c | tgatttgta | catattgaag | tttctctggt | attcaaaggt | tatatagtga | 4020 | | atgaattttc a | ttaataaat | cactttgtca | gaaaaaaaaa | aaaaaaaaa | | 4069 | | <210> SEQ ID <211> LENGTH <212> TYPE: 1 <213> ORGANI3 <220> FEATURI <400> SEQUENC | : 976
PRT
SM: Homo s
E: | apiens | | | | | | Met Acn Ala | Gly Pro Cl | v Cvc Clu I | oro Cue Thr | Twe Alamba | Ara Trn | | Met Asn Ala Gly Pro Gly Cys Glu Pro Cys Thr Lys Ala Thr Arg Trp 1 $$ 5 $$ 10 $$ 15 Gly Ala Ala Thr Thr Ser Pro Ala Ala Ser Asp Ala Arg Ser Phe Pro $20 \\ 25 \\ 30$ Ser Arg Gln Arg Arg Val Leu Asp Pro Lys Asp Ala His Val Gln Phe $35 \ \ \, 40 \ \ \, 45$ Arg Val Pro Pro Ser Ser Pro Ala Cys Val Pro Gly Gln Ala Gly Gln 50 $\,$ His Arg Gly Ser Ala Thr Ser Leu Val Phe Lys Gln Lys Thr Ile Thr 65 70 75 80 Ser Trp Met Asp Thr Lys Gly Ile Lys Thr Ala Glu Ser Glu Ser Leu $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95 \hspace{0.5cm}$ Asp Ser Lys Glu Asn Asn Asn Thr Arg Ile Glu Ser Met Met Ser Ser 100 \$100\$ Val Gln Lys Asp Asn Phe Tyr Gln His Asn Val Glu Lys Leu Val Asn 115 \$120\$ 125 $\hbox{Val Ser Gln Leu Ser Leu Asp Lys Ser Leu Thr Glu Lys Ser Thr Gln } \\$ | | 130 | | | | | 135 | | | | | 140 | | | | | |---------------------|------------|---------------------|---------------------|--------------------|------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------|------------|------------|-------------------| | Tyr
145 | Leu | Asn | Gln | His | Gln
150 | Thr | Ala | Ala | Met | C y s
155 | Lys | Trp | Gln | Asn | Glu
160 | | Gly | Lys | His | Thr | Glu
165 | Gln | Leu | Leu | Glu | Ser
170 | Glu | Pro | Gln | Thr | Val
175 | Thr | | Leu | Val | Pro | Glu
180 | Gln | Phe | Ser | Asn | Ala
185 | Asn | Ile | Asp | Arg | Ser
190 | Pro | Gln | | Asn | Asp | Asp
195 | His | Ser | Asp | Thr | Asp
200 | Ser | Glu | Glu | Asn | Arg
205 | Asp | Asn | Gln | | Gln | Phe
210 | Leu | Thr | Thr | Val | L y s
215 | Leu | Ala | Asn | Ala | L y s
220 | Gln | Thr | Thr | Glu | | Asp
225 | Glu | His | Ala | Arg | Glu
230 | Ala | Lys | Ser | His | Gln
235 | Lys | Суѕ | Ser | Lys | Ser
240 | | Сув | His | Pro | Gly | Glu
245 | Asp | Сув | Ala | Ser | C y s
250 | Gln | Gln | Asp | Glu | Ile
255 | Asp | | Val | Val | Pro | L y s
260 | Ser | Pro | Leu | Ser | Asp
265 | Val | Gly | Ser | Glu | Asp
270 | Val | Gly | | Thr | Gly | Ser
275 | Lys | Asn | Asp | Asn | L y s
280 | Leu | Ile | Arg | Gln | Glu
285 | Ser | Сув | Leu | | Gly | Asn
290 | Ser | Pro | Pro | Phe | Glu
295 | Lys | Glu | Ser | Glu | Pro
300 | Glu | Ser | Pro | Met | | Asp
305 | Val | Asp | Asn | Ser | Lys
310 | Asn | Ser | Суѕ | Gln | Asp
315 | Ser | Glu | Ala | Asp | Glu
320 | | Glu | Thr | Ser | Pro | Gl y
325 | Phe | Asp | Glu | Gln | Glu
330 | Asp | Gly | Ser | Ser | Ser
335 | Gln | | Thr | Ala | Asn | Lys
340 | Pro | Ser | Arg | Phe | Gln
345 | Ala | Arg | Asp | Ala | Asp
350 | Ile | Glu | | Phe | Arg | L y s
355 | Arg | Tyr | Ser | Thr | L y s
360 | Gly | Gly | Glu | Val | Arg
365 | Leu | His | Phe | | Gln | Phe
370 | Glu | Gly | Gly | Glu | Ser
375 | Arg | Thr | Gly | Met | Asn
380 | Asp | Leu | Asn | Ala | | L y s
385 | Leu | Pro | Gly | Asn | Ile
390 | Ser | Ser | Leu | Asn | Val
395 | Glu | Cys | Arg | Asn | Ser
400 | | Lys | Gln | His | Gly | Lys
405 | Lys | Asp | Ser | Lys | Ile
410 | Thr | Asp | His | Leu | Met
415 | Arg | | Leu | Pro | Lys | Ala
420 | Glu | Asp | Arg | Arg | L y s
425 | Glu | Gln | Trp | Glu | Thr
430 | Lys | His | | Gln | Arg | Thr
435 | Glu | Arg | Lys | Ile | Pro
440 | Lys | Tyr | Val | Pro | Pro
445 | His | Leu | Ser | | Pro | Asp
450 | Lys | Lys | Trp | Leu | Gl y
455 | Thr | Pro | Ile | Glu | Glu
460 | Met | Arg | Arg | Met | | Pro
465 | Arg | Суѕ | Gly | Ile | Arg
470 | Leu | Pro | Leu | Leu | Arg
475 | Pro | Ser | Ala | Asn | His
480 | | Thr | Val | Thr | Ile | Arg
485 | Val | Asp | Leu | Leu | Arg
490 | Ala | Gly | Glu | Val | Pro
495 | Lys | | Pro | Phe | Pro | Thr
500 | His | Tyr | Lys | Asp | Leu
505 | Trp | Asp | Asn | Lys | His
510 | Val | Lys | | Met | Pro | C y s
515 | Ser | Glu | Gln | Asn | Leu
520 | Tyr | Pro | Val | Glu | Asp
525 | Glu | Asn | Gly | | Glu | Arg
530 | Thr | Ala | Gly | Ser | Arg
535 | Trp | Glu | Leu | Ile | Gln
540 | Thr | Ala | Leu | Leu | | Asn
545 | Lys | Phe | Thr | Arg | Pro
550 | Gln | Asn | Leu | Lys | Asp
555 | Ala | Ile | Leu | Lys | Tyr
560 | | | | | | | | | | | | | | | | | | | Asn | Val | Ala | Tyr | Ser
565 | Lys | Lys | Trp | Asp | Phe
570 | Thr | Ala | Leu | Ile | A sp
575 | Phe | |--------------------|---------------------|---------------------|------------|------------|------------|------------|---------------------|--------------------|--------------------|---------------------|---------------------|------------
---------------------|--------------------|------------| | Trp | Asp | Lys | Val
580 | Leu | Glu | Glu | Ala | Glu
585 | Ala | Gln | His | Leu | T y r
590 | Gln | Ser | | Ile | Leu | Pro
595 | Asp | Met | Val | Lys | Ile
600 | Ala | Leu | Сув | Leu | Pro
605 | Asn | Ile | Сув | | Thr | Gln
610 | Pro | Ile | Pro | Leu | Leu
615 | Lys | Gln | Lys | Met | Asn
620 | His | Ser | Ile | Thr | | Met
625 | Ser | Gln | Glu | Gln | Ile
630 | Ala | Ser | Leu | Leu | Ala
635 | Asn | Ala | Phe | Phe | Cys
640 | | Thr | Phe | Pro | Arg | Arg
645 | Asn | Ala | Lys | Met | Lys
650 | Ser | Glu | Tyr | Ser | Ser
655 | Tyr | | Pro | Asp | Ile | Asn
660 | Phe | Asn | Arg | Leu | Phe
665 | Glu | Gly | Arg | Ser | Ser
670 | Arg | Lys | | Pro | Glu | L y s
675 | Leu | Lys | Thr | Leu | Phe
680 | Сув | Tyr | Phe | Arg | Arg
685 | Val | Thr | Glu | | Lys | L y s
690 | Pro | Thr | Gly | Leu | Val
695 | Thr | Phe | Thr | Arg | Gln
700 | Ser | Leu | Glu | Asp | | Phe
705 | Pro | Glu | Trp | Glu | Arg
710 | Суѕ | Glu | Lys | Pro | Leu
715 | Thr | Arg | Leu | His | Val
720 | | Thr | Tyr | Glu | Gly | Thr
725 | Ile | Glu | Glu | Asn | Gl y
730 | Gln | Gly | Met | Leu | Gln
735 | Val | | Asp | Phe | Ala | Asn
740 | Arg | Phe | Val | Gly | Gl y
745 | Gly | Val | Thr | Ser | Ala
750 | Gly | Leu | | Val | Gln | Glu
755 | Glu | Ile | Arg | Phe | Leu
760 | Ile | Asn | Pro | Glu | Leu
765 | Ile | Ile | Ser | | Arg | Leu
770 | Phe | Thr | Glu | Val | Leu
775 | Asp | His | Asn | Glu | C y s
780 | Leu | Ile | Ile | Thr | | Gl y
785 | Thr | Glu | Gln | Tyr | Ser
790 | Glu | Tyr | Thr | Gly | T y r
795 | Ala | Glu | Thr | Tyr | Arg
800 | | Trp | Ser | Arg | Ser | His
805 | Glu | Asp | Gly | Ser | Glu
810 | Arg | Asp | Asp | Cys | Glu
815 | Arg | | Arg | Cys | Thr | Glu
820 | Ile | Val | Ala | Ile | A sp
825 | Ala | Leu | His | Phe | Arg
830 | Arg | Tyr | | Leu | Asp | Gln
835 | Phe | Val | Pro | Glu | L y s
840 | Met | Arg | Arg | Glu | Leu
845 | Asn | Lys | Ala | | Tyr | C y s
850 | Gly | Phe | Leu | | Pro
855 | | Val | Ser | Ser | Glu
860 | Asn | Leu | Ser | Ala | | Val
865 | Ala | Thr | Gly | Asn | Trp
870 | Gly | Cys | Gly | Ala | Phe
875 | Gly | Gly | Asp | Ala | Arg
880 | | Leu | Lys | Ala | Leu | Ile
885 | Gln | Ile | Leu | Ala | Ala
890 | Ala | Ala | Ala | Glu | Arg
895 | Asp | | Val | Val | Tyr | Phe
900 | Thr | Phe | Gly | Asp | Ser
905 | Glu | Leu | Met | Arg | Asp
910 | Ile | Tyr | | Ser | Met | His
915 | Ile | Phe | Leu | Thr | Glu
920 | Arg | Lys | Leu | Thr | Val
925 | Gly | Asp | Val | | Tyr | Lys | Leu | Leu | Leu | Arg | Tyr
935 | Tyr | Asn | Glu | Glu | C y s
940 | Arg | Asn | Cys | Ser | | | 930 | | | | | | | | | | | | | | | | Thr
945 | | Gly | Pro | Asp | Ile
950 | Lys | Leu | Tyr | Pro | Phe
955 | Ile | Tyr | His | Ala | Val
960 | <210> SEQ ID NO 5 <211> LENGTH: 3814 <212> TYPE: DNA <213> ORGANISM: Mus musculus <220> FEATURE: <400> SEQUENCE: 5 | gggggactgt | gtgctgcggg | tcccagcatg | agtgcgggcc | ccggctggga | gccctgcacg | 60 | |------------|------------|------------|------------|------------|------------|------| | aaagcgcgct | ggggcgccgc | tggaacttct | gcgccgactg | cctcggactc | ccggagcttc | 120 | | cctggcaggc | agaggcgtgt | tctcgacccc | aaggacgctc | ccgtccagtt | cagggtccct | 180 | | ccgtcctcgc | cagcctgcgt | ctcggggcgg | gcgggaccgc | acagaggcaa | cgccacctcg | 240 | | tttgttttca | aacaaaagac | tattactact | tggatggata | ctaaaggacc | caagacagct | 300 | | gaatcagaaa | gtaaagaaaa | caacaataca | agaattgact | ccatgatgag | ttctgtgcag | 360 | | aaagataact | tttacccaca | taaggtggaa | aaattggaaa | atgttcctca | gctaaatctt | 420 | | gataaatcac | ccacagaaaa | gagttcacag | tatttgaacc | aacagcagac | tgcgagtgtg | 480 | | tgcaagtggc | agaatgaagg | gaagcatgca | gaacagcttt | tggcaagtga | gcctcccgcg | 540 | | gggactccgc | taccaaagca | gcttagtaat | gctaacattg | gtcagtcacc | ccacactgat | 600 | | gaccacagtg | acacagatca | tgaagaagac | agagacaatc | agcagtttct | tacacctata | 660 | | aaacttgcaa | atacaaagcc | aacagtagga | gatgggcagg | ccagaagcaa | ctgtaagtgc | 720 | | agtggatctc | gccagtctgt | gaaagactgt | acaggctgtc | aacaggagga | ggtggatgtg | 780 | | ctaccagaga | gtcctttgtc | agatgttggt | gccgaggaca | ttggaactgg | accaaaaaat | 840 | | gacaacaaat | tgactggaca | agaaagcagc | ctaggtgatt | cgcctccatt | tgagaaagaa | 900 | | agtgagcctg | agtcaccaat | ggatgtagac | aactcgagaa | acagttgtca | agattcagaa | 960 | | gcagatgaag | aaacaagtcc | agtctttgat | gagcaagatg | atcgttcctc | ccaaacagca | 1020 | | aataaacttt | caagttgcca | agcaagagaa | gctgatggcg | atcttaggaa | acggtatttg | 1080 | | actaagggaa | gtgaagttag | attgcatttc | caatttgaag | gagaaaataa | tgctgggacc | 1140 | | agtgacttaa | atgccaagcc | atctggaaac | tcttctagcc | ttaatgtaga | gtgtagaagt | 1200 | | tccaagcagc | atggaaaaag | ggattctaaa | attacagatc | atttcatgag | aatttccaag | 1260 | | tcagaggaca | gaagaaaaga | acaatgtgaa | gtcagacatc | aaagaacaga | aaggaagatt | 1320 | | ccaaaataca | tcccacctaa | cctccctcca | gagaagaagt | ggctgggaac | tcctattgag | 1380 | | gaaatgagaa | aaatgcctcg | gtgtgggatc | catttgcctt | ccttaagacc | atctgcaagt | 1440 | | cacacagtga | ctgttcgggt | agaccttctg | agagcaggag | aggttccgaa | accttttcca | 1500 | | acacattaca | aagatttgtg | ggataacaaa | catgtgaaaa | tgccttgttc | ggaacaaaac | 1560 | | ttgtaccctg | tggaagatga | gaatggtgag | cgaactgcag | ggagtaggtg | ggagctcatt | 1620 | | cagactgcac | ttctcaacaa | attcacacga | ccccagaact | tgaaggatgc | gattctgaaa | 1680 | | tacaatgtgg | catattctaa | gaaatgggac | tttacagctt | tggttgattt | ctgggataag | 1740 | | gtacttgaag | aagcagaggc | ccaacattta | tatcagtcca | ttttacctga | catggtgaaa | 1800 | | attgcactct | gtctgccaaa | tatttgcacc | cagccaatac | cactcctgaa | acagaagatg | 1860 | | aatcattctg | tcacgatgtc | acaggaacag | atcgccagtc | ttttagctaa | tgctttcttc | 1920 | | tgcacatttc | cccgacggaa | tgccaagatg | aaatcggagt | attctagtta | cccagacatt | 1980 | | aacttcaatc | ggttgtttga | aggacgttca | tcaaggaaac | cagaaaaact | gaaaacactc | 2040 | | ttctgctact | ttcgaagagt | cacagagaaa | aaacctacag | gattggtgac | atttacaaga | 2100 | ### -continued | cagagtcttg | aagattttcc | agaatgggaa | aggtgtgaaa | agcctctgac | acgcttacac | 2160 | |------------|------------|------------|------------|------------|------------|------| | gtcacttacg | agggtaccat | agaaggcaac | ggccgaggca | tgctacaggt | ggattttgca | 2220 | | aatcgttttg | ttggaggtgg | tgtgactggt | gcgggacttg | tacaagaaga | aatcagattt | 2280 | | ttaatcaatc | ctgaattgat | tgtttcacgg | ctgttcactg | aggtgctgga | tcacaatgag | 2340 | | tgtcttatta | tcacaggtac | tgaacagtac | agtgaataca | caggctatgc | tgaaacttat | 2400 | | cgttgggccc | gaagccatga | agatgggagt | gaaaaggacg | attggcagcg | gcgctgcacg | 2460 | | gagatcgttg | ccattgacgc | acttcacttc | agacgctacc | tcgatcagtt | tgtgcctgag | 2520 | | aaagtgagac | gtgagcttaa | caaggcttac | tgcggattcc | tccgtcctgg | agttccttct | 2580 | | gaaaatcttt | ctgcagtggc | cacgggaaac | tggggctgtg | gtgcctttgg | gggtgacgct | 2640 | | agattaaaag | ccttaataca | gatcctggca | gctgctgcgg | ctgaacgtga | cgtggtttat | 2700 | | ttcacctttg | gggactcaga | gttgatgaga | gacatttaca | gcatgcacac | tttccttacc | 2760 | | gagaggaagc | tggatgttgg | aaaagtgtac | aagttattgc | ttagatacta | caatgaagaa | 2820 | | tgcagaaact | gttccacccc | tggaccagac | atcaagcttt | atccattcat | ataccatgct | 2880 | | gttgagtcaa | gtgcagagac | cactgacatg | ccaggacaga | aggcaggcac | ctgaggaaca | 2940 | | agtgactagg | acctcctctc | aaagagacat | cctatttgaa | atgtggggtg | tgatgtctga | 3000 | | attgactgaa | tctgatctaa | gtgtgtatat | aatccacatt | tgtaatcaag | gatgcagtct | 3060 | | cttctgcata | tgcagttgtt | tcttgttcat | cctggtggac | atgcctttag | acatggcttc | 3120 | | ttcaattttt | cttctccttc | agtctttatt | ctttgatttt | ttttttccaa | cttgatttct | 3180 | | tgggaaaact | caagaaaggt | tgcactcagc | ttctagatct | ttctcttcct | gtctgtgtgt | 3240 | | tgtccagact | gctttggtgg | ctagcagata | ccatcacact | tggaggaagt | tacaaatcca | 3300 | | gaaatctgag | tttgctgcag | atttacctgt | gagcttctca | ctcccaaccc | ttgttaggct | 3360 | | tgtgttgtct | acattttcaa | ttttggaagt | tgaagttttt | cttatgttac | ttaatgctag | 3420 | | tatcttttag | gctaaaacta | ttttctattt | aaggcagact | aatttccagt | ttctcttttg | 3480 | | aaacatcatc | cctataagta | acggttttt | tcgtcctttt | ttccccagcg | ctattttaga | 3540 | | agctggccaa | gaggaaagaa | aatgtagaat | aaaaggattt | tcctcggatg | ctataaagaa | 3600 | | gccaggttca | agagcgttgg | ggtttttgtt | ttttcaaga | cttgtttttc | ctttgcagct | 3660 | | agggtgagtg | cttgttctgt | ggtgctgagg | gcatagtcct | gtaaccaaag | gtctttgctg | 3720 | | gagacttgat | gctgatttgt | acatatggaa | gtttctctgg | caggaaatat | tagagttaat | 3780 | | aaatttcatt | aataaatcat | ttgtcagaaa | aaaa | | | 3814 | | | | | | | | | <400> SEQUENCE: 6 Ala Ala Gly Thr Ser Ala Pro Thr Ala Ser Asp Ser Arg Ser Phe Pro $20 \\ 25 \\ 30$ Gly Arg Gln Arg Arg Val Leu Asp Pro Lys Asp Ala Pro Val Gln Phe $35 \ \ \,$ 40 $\ \ \,$ 45 Arg Val Pro Pro Ser Ser Pro Ala Cys Val Ser Gly Arg Ala Gly Pro 50 <210> SEQ ID NO 6 <211> LENGTH: 968 <212> TYPE: PRT <213> ORGANISM: Mus musculus <220> FEATURE: | His
65 | Arg | Gly | Asn | Ala | Thr
70 | Ser | Phe | Val | Phe | Lys
75 | Gln | Lys | Thr | Ile | Thr
80 | |------------|---------------------|------------|------------|------------|---------------------|-------------------|------------|------------|------------|------------------|------------|------------|-------------------|------------|------------| | Thr | Trp | Met | Asp | Thr
85 | Lys | Gly | Pro | Lys | Thr
90 | Ala | Glu | Ser | Glu | Ser
95 | Lys | | Glu | Asn | Asn | Asn
100 | Thr | Arg | Ile | Asp | Ser
105 | Met | Met | Ser | Ser | Val
110 | Gln | Lys | | Asp | Asn | Phe
115 | Tyr | Pro | His | Lys | Val
120 | Glu | Lys | Leu | Glu | Asn
125 | Val | Pro |
Gln | | Leu | Asn
130 | Leu | Asp | Lys | Ser | Pro
135 | Thr | Glu | Lys | Ser | Ser
140 | Gln | Tyr | Leu | Asn | | Gln
145 | Gln | Gln | Thr | Ala | Ser
150 | Val | Cys | Lys | Trp | Gln
155 | Asn | Glu | Gly | Lys | His
160 | | Ala | Glu | Gln | Leu | Leu
165 | Ala | Ser | Glu | Pro | Pro
170 | Ala | Gly | Thr | Pro | Leu
175 | Pro | | Lys | Gln | Leu | Ser
180 | Asn | Ala | Asn | Ile | Gly
185 | Gln | Ser | Pro | His | Thr
190 | Asp | Asp | | His | Ser | Asp
195 | Thr | Asp | His | Glu | Glu
200 | Asp | Arg | Asp | Asn | Gln
205 | Gln | Phe | Leu | | Thr | Pro
210 | Ile | Lys | Leu | Ala | Asn
215 | Thr | Lys | Pro | Thr | Val
220 | Gly | Asp | Gly | Gln | | Ala
225 | Arg | Ser | Asn | Cys | L y s
230 | Cys | Ser | Gly | Ser | Arg
235 | Gln | Ser | Val | Lys | Asp
240 | | Cys | Thr | Gly | Cys | Gln
245 | Gln | Glu | Glu | Val | Asp
250 | Val | Leu | Pro | Glu | Ser
255 | Pro | | Leu | Ser | Asp | Val
260 | Gly | Ala | Glu | Asp | Ile
265 | Gly | Thr | Gly | Pro | Lys
270 | Asn | Asp | | Asn | Lys | Leu
275 | Thr | Gly | Gln | Glu | Ser
280 | Ser | Leu | Gly | Asp | Ser
285 | Pro | Pro | Phe | | Glu | L y s
290 | Glu | Ser | Glu | Pro | Glu
295 | Ser | Pro | Met | Asp | Val
300 | Asp | Asn | Ser | Arg | | Asn
305 | Ser | Cys | Gln | Asp | Ser
310 | Glu | Ala | Asp | Glu | Glu
315 | Thr | Ser | Pro | Val | Phe
320 | | Asp | Glu | Gln | Asp | Asp
325 | Arg | Ser | Ser | Gln | Thr
330 | Ala | Asn | Lys | Leu | Ser
335 | Ser | | Сув | Gln | Ala | Arg
340 | Glu | Ala | Asp | Gly | Asp
345 | Leu | Arg | Lys | Arg | Tyr
350 | Leu | Thr | | Lys | Gly | Ser
355 | Glu | Val | Arg | Leu | His
360 | Phe | Gln | Phe | Glu | Gly
365 | Glu | Asn | Asn | | Ala | Gly
370 | Thr | Ser | Asp | Leu | Asn
375 | Ala | Lys | Pro | Ser | Gly
380 | Asn | Ser | Ser | Ser | | Leu
385 | Asn | Val | Glu | Cys | Arg
390 | Ser | Ser | Lys | Gln | His
395 | Gly | Lys | Arg | Asp | Ser
400 | | Lys | Ile | Thr | Asp | His
405 | Phe | Met | Arg | Ile | Ser
410 | Lys | Ser | Glu | Asp | Arg
415 | Arg | | Lys | Glu | Gln | Cys
420 | Glu | Val | Arg | His | Gln
425 | Arg | Thr | Glu | Arg | Lys
430 | Ile | Pro | | Lys | Tyr | Ile
435 | Pro | Pro | Asn | Leu | Pro
440 | Pro | Glu | Lys | Lys | Trp
445 | Leu | Gly | Thr | | Pro | Ile
450 | Glu | Glu | Met | Arg | Lys
455 | Met | Pro | Arg | Сув | Gly
460 | Ile | His | Leu | Pro | | Ser
465 | Leu | Arg | Pro | Ser | Ala
470 | Ser | His | Thr | Val | Thr
475 | Val | Arg | Val | Asp | Leu
480 | | Leu | Arg | Ala | Gly | Glu | Val | Pro | Lys | Pro | Phe | Pro | Thr | His | Tyr | Lys | Asp | | | | | | 485 | | | | | 490 | | | | | 495 | | |---------------------|---------------------|------------|------------|------------|------------|------------|---------------------|------------|---------------------|------------|------------|--------------------|------------|------------|---------------------| | Leu | Trp | Asp | Asn
500 | Lys | His | Val | Lys | Met
505 | Pro | Cys | Ser | Glu | Gln
510 | Asn | Leu | | Tyr | Pro | Val
515 | Glu | Asp | Glu | Asn | Gly
520 | Glu | Arg | Thr | Ala | Gly
525 | Ser | Arg | Trp | | Glu | Leu
530 | Ile | Gln | Thr | Ala | Leu
535 | Leu | Asn | Lys | Phe | Thr
540 | Arg | Pro | Gln | Asn | | Leu
545 | Lys | Asp | Ala | Ile | Leu
550 | Lys | Tyr | Asn | Val | Ala
555 | Tyr | Ser | Lys | Lys | Trp
560 | | Asp | Phe | Thr | Ala | Leu
565 | Val | Asp | Phe | Trp | Asp
570 | Lys | Val | Leu | Glu | Glu
575 | Ala | | Glu | Ala | Gln | His
580 | Leu | Tyr | Gln | Ser | Ile
585 | Leu | Pro | Asp | Met | Val
590 | Lys | Ile | | Ala | Leu | Cys
595 | Leu | Pro | Asn | Ile | C y s
600 | Thr | Gln | Pro | Ile | Pro
605 | Leu | Leu | Lys | | Gln | L y s
610 | Met | Asn | His | Ser | Val
615 | Thr | Met | Ser | Gln | Glu
620 | Gln | Ile | Ala | Ser | | Leu
625 | Leu | Ala | Asn | Ala | Phe
630 | Phe | Сув | Thr | Phe | Pro
635 | Arg | Arg | Asn | Ala | L y s
640 | | Met | Lys | Ser | Glu | Tyr
645 | Ser | Ser | Tyr | Pro | Asp
650 | Ile | Asn | Phe | Asn | Arg
655 | Leu | | Phe | Glu | Gly | Arg
660 | Ser | Ser | Arg | Lys | Pro
665 | Glu | Lys | Leu | Lys | Thr
670 | Leu | Phe | | Cys | Tyr | Phe
675 | Arg | Arg | Val | Thr | Glu
680 | Lys | Lys | Pro | Thr | Gl y
685 | Leu | Val | Thr | | Phe | Thr
690 | Arg | Gln | Ser | Leu | Glu
695 | Asp | Phe | Pro | Glu | Trp
700 | Glu | Arg | Cys | Glu | | L y s
705 | Pro | Leu | Thr | Arg | Leu
710 | His | Val | Thr | Tyr | Glu
715 | Gly | Thr | Ile | Glu | Gl y
720 | | Asn | Gly | Arg | Gly | Met
725 | Leu | Gln | Val | Asp | Phe
730 | Ala | Asn | Arg | Phe | Val
735 | Gly | | Gly | Gly | Val | Thr
740 | Gly | Ala | Gly | Leu | Val
745 | Gln | Glu | Glu | Ile | Arg
750 | Phe | Leu | | Ile | Asn | Pro
755 | Glu | Leu | Ile | Val | Ser
760 | Arg | Leu | Phe | Thr | Glu
765 | Val | Leu | Asp | | His | Asn
770 | Glu | Cys | Leu | Ile | Ile
775 | Thr | Gly | Thr | Glu | Gln
780 | Tyr | Ser | Glu | Tyr | | Thr
785 | Gly | Tyr | Ala | Glu | Thr
790 | Tyr | Arg | Trp | Ala | Arg
795 | Ser | His | Glu | Asp | Gl y
800 | | Ser | Glu | Lys | qaA | Asp
805 | Trp | Gln | Arg | Arg | C y s
810 | Thr | Glu | Ile | Val | Ala
815 | Ile | | Asp | Ala | Leu | His
820 | Phe | Arg | Arg | Tyr | Leu
825 | Asp | Gln | Phe | Val | Pro
830 | Glu | Lys | | Val | Arg | Arg
835 | Glu | Leu | Asn | Lys | Ala
840 | Tyr | Cys | Gly | Phe | Leu
845 | Arg | Pro | Gly | | Val | Pro
850 | Ser | Glu | Asn | Leu | Ser
855 | Ala | Val | Ala | Thr | Gly
860 | Asn | Trp | Gly | Суѕ | | Gly
865 | Ala | Phe | Gly | Gly | Asp
870 | Ala | Arg | Leu | Lys | Ala
875 | Leu | Ile | Gln | Ile | Leu
880 | | Ala | Ala | Ala | Ala | Ala
885 | Glu | Arg | Asp | Val | Val
890 | Tyr | Phe | Thr | Phe | Gly
895 | Asp | | Ser | Glu | Leu | Met
900 | Arg | Asp | Ile | Tyr | Ser
905 | Met | His | Thr | Phe | Leu
910 | Thr | Glu | | | | | | | | | | | | | | | | | | Arg Lys Leu Asp Val Gly Lys Val Tyr Lys Leu Leu Leu Arg Tyr Tyr 915 920 925 Asn Glu Glu Cys Arg Asn Cys Ser Thr Pro Gly Pro Asp Ile Lys Leu 930 940 Tyr Pro Phe Ile Tyr His Ala Val Glu Ser Ser Ala Glu Thr Thr Asp 945 950 950 955 960 Met Pro Gly Gln Lys Ala Gly Thr <210> SEQ ID NO 7 <211> LENGTH: 2781 <212> TYPE: DNA <213> ORGANISM: Drosophila melanogaster <220> FEATURE: <400> SEQUENCE: 7 tcgaagtgtg tggtatttat aaagtgcgat attcatcaca gctatcgctc atccccaaaa 60 caccggtatg caagaattca ggtcacactt gatttttccg atattccaaa aggtttacca 120 atctacggca aatcgccgca gagcaagtgc atccgtgctg accaatcgac tcggcaaggc 240 tttgtgctta aactgcgcca ggatgtcgaa gtcgccggat ggcgggattt ccgaaataga aacggaggag gagccggaaa atctggcgaa ctccctagat gattcgtggc gtggagtttc 300 catggaggct atacatcgta atcggcagcc tttcgaattg gagaatttgc caccagtgac 360 tgccggcaat ctccaccggg ttatgtacca gctgccaatt cgtgaaacac cgccacgccc 420 ctacaaatca ccgggaaagt gggactccga gcatgtgcgt ctgccctgtg cgcccgagtc 480 qaaatatccq aqqqaqaatc cqqatqqcaq caccaccatc qattttcqct qqqaaatqat 540 cgaacgagcc cttctgcagc ccataaagac gtgtgaggaa ctgcaggcgg cgataatatc atataatacc acctataggg atcagtggca ctttcgtgcc cttcatcaac ttctcgacga 660 ggaactggac gagagcgaaa cacgggtttt cttcgaggat ctattgccgc gcattatccg 720 attggcattg cggctaccgg acttgattca atcgccagtt ccgctgctca agcaccacaa 780 quacqcctca ttqaqcctqa qccaacaqca qatctcctqc ctqttqqcca atqccttctt 840 gtgcacgttt ccccgaagaa acaccctcaa gaggaagtcc gagtacagca cttttccaga 900 catcaacttt aacaggcttt accaatcgac gggaccggca gttctggaga agcttaaatg 960 cattatgcac tattttcgtc gcgtgtgtcc cacagagcgg gatgccagca atgtgcccac 1020 cggtgtggta acctttgttc gtcggagcgg attgccggaa catctgatcg actggagcca 1080 aagtgcggcg ccgttgggtg atgtgccatt gcacgtggat gccgagggaa caatcgagga 1140 tgagggcatt ggactgctgc aagtagactt tgccaacaaa tatttgggtg gcggtgtctt 1200 gggacatggc tgcgttcagg aggagatacg ctttgttatc tgtccggagc tattggtggg 1260 taaactcttt acggagtgtc tgcgaccatt cgaggccctg gtgatgttgg gcgccgaaag 1320 qtataqtaac tatacqqqat atqccqqaaq cttcqaqtqq tccqqcaact ttqaqqattc 1380 aacgccaaga gatagctcag gtcgtcgaca aacggccatt gtggcaatcg atgccctaca ttttgcccag tcacatcatc aatatcgcga ggatctcatg gaaagggagc tgaacaaggc 1500 gtacattgga tttgttcact ggatggtgac gccgccaccg ggtgtggcaa ctggtaactg 1560 gggttgcggc gcattcggcg gtgactccta tctgaaagcc ctgctgcaac ttatggtctg 1620 cgcccagttg ggcagacctt tggcctacta tacctttgga aatgtggagt ttagggatga 1680 ttttcatgaa atgtggctgt tgtttcgaaa tgacgggact acggtgcagc agctttggag 1740 71 ### -continued | | ttaa | agg 1 | tcgta | acagt | a g | gatta | attaa | a gga | agaag | gagc | tcca | agga | igc (| cgcgt | gaç | gaa | 1800 | |--|---|---
--|--|----------------------------|---------------------------------------|---------------------------------------|------------------------------------|-----------------------------------|---------------------------------------|--------------------------------|--------------------------------|---|--------------------------------|--------------------------------|-------------|------| | taaq | ggcat | cc a | aaaa | agaaq | go ta | atato | gattt | tat | taaa | ıgag | gaac | ttaa | iga i | aggto | aga | aga | 1860 | | tgt | lacai | gga (| gagg | gagca | at co | gaaq | gaago | t t g | gaago | ctct | agag | gtago | tg (| gatta | iggo | cga | 1920 | | agga | aaat | ca q | gaaad | catca | ag co | gaaat | ccto | gc | cagaa | ctc | aaca | agca | ac (| caga | cga | acc | 1980 | | gcaa | aatca | acc a | ataad | cgcaa | ac aa | aagta | accga | tct | atto | jaca | gcgc | caatt | at (| cgcaa | ıgat | taa | 2040 | | ctct | aatt | ct t | tagga | aagat | c a | ggcc | cttct | ta: | gcto | ıtcg | gaco | gatga | igg (| aggco | aat | egc | 2100 | | cate | gatgo | gag (| gccg | ctagt | c to | ggag | gctaa | a aaq | gcago | gta | gaaa | ataaç | jca (| acago | ago | cac | 2160 | | aac | gtcca | aaa a | acgaç | gcagt | a ca | agcca | acgaa | a ato | caato | ggt | tcaç | gtgg | jcc (| gcca | jtte | gag | 2220 | | tct | gata | gag a | atgct | ggad | ca co | ccatt | tatga | a aaa | agggt | tcg | gcct | cgaa | ıga (| ggcca | ıcga | aaa | 2280 | | atca | accca | aac 1 | tgcaq | gcaaq | gg ct | gag | ggtto | ago | caaag | gagt | cgta | aagga | iga - | tcgat | gto | gac | 2340 | | cgad | caago | gac (| gaaaa | aggad | cg at | atte | gttga | a cta | aggto | jata | ttgo | cacta | aca (| ggatt | gtt | tac | 2400 | | tgc | cccc | aaa a | aatto | gaaga | ag gt | ataa | aaato | j tai | tgta | igat | aact | ttaa | igg (| acata | ttt | tag | 2460 | | ggca | atttt | aa a | agtaç | ggato | ca tt | gtaa | agtco | g aat | aaag | ıtga | aatt | tttt | tt · | ttttt | tta | aat | 2520 | | tata | actat | tc t | taato | ctgca | aa aq | gacaa | atttt | act | gtta | aat | ttgt | ataa | ica - | ttcga | att | taa | 2580 | | ttaa | atata | aat † | ttgtt | atat | c at | gcaa | aatct | ago | tttt | att | atgo | gaaa | att · | tgtag | jtta | aaa | 2640 | | gcca | agtaa | aag f | tttct | tttt | a tt | taad | ccgaa | a aco | tttt | gtt | tatt | ttat | tt (| gacca | caa | aca | 2700 | | agaa | acato | caa o | caaca | aacaa | ac ca | acgaa | aaaaa | a aaq | gcgaa | tat | atat | ttgt | tt (| gttc | jtat | tat | 2760 | | atat | atat | at o | ctaaq | gcaga | at c | | | | | | | | | | | | 2781 | | <210> SEQ ID NO 8 <211> LENGTH: 768 <212> TYPE: PRT <213> ORGANISM: Drosophila melanogaster <220> FEATURE: | | | | | | | | | | | | | | | | | | | <211
<212
<213 | l> LE
2> TY
3> OF | NGTH
PE:
RGANI | H: 76
PRT
[SM: | 8 | sophi | .la n | nelan | ogas | ster | | | | | | | | | | <211
<212
<213
<220 | l> LE
2> TY
3> OF
0> FE | ENGTH
PE:
RGANI
EATUR | H: 76
PRT
[SM: | 0ros | sophi | .la n | nelan | ogas | ster | | | | | | | | | | <211
<212
<213
<220
<400 | l> LE
2> TY
3> OF
0> FE
0> SE | ENGTH
PE:
RGANI
EATUR | H: 76 PRT ISM: RE: | Dros | | | | | | Pro | Ile | Phe | Gln | Lys
15 | Va] | l | | | <211
<212
<213
<220
<400
Met | l> LE
?> TY
3> OF
0> FE
0> SE
Gln | ENGTH
PE:
RGANI
EATUR
EQUEN | H: 76 PRT ISM: RE: NCE: | Dros
8
Arg
5 | Ser | His | Leu | Ile | Phe
10 | | | | | | | | | | <211
<212
<213
<220
<400
Met
1 | l> LE
2> TY
3> OF
0> FE
O> SE
Gln | ENGTH
PE:
RGANI
EATUR
EQUEN
Glu
Ser | PRT ISM: RE: NCE: Phe Thr | Dros
8
Arg
5
Ala | Ser
Asn | His
Arg | Leu
Arg | Ile
Arg
25 | Phe
10
Ala | Ser | Ala | Ser | Val
30 | 15 | Thr | c | | | <211
<212
<213
<220
<400
Met
1
Tyr | l> LE
2> TY
3> OF
0> FE
0> SE
Gln
Gln | ENGTH
PE:
RGANI
EATUR
EQUEN
Glu
Ser
Leu
35 | PRT ISM: ISM: ISM: ICE: Phe Thr 20 Gly | Dros
8
Arg
5
Ala | Ser
Asn
Ala | His
Arg
Leu | Leu
Arg
Cys
40 | Ile
Arg
25
Leu | Phe
10
Ala
Asn | Ser
Cys | Ala
Ala | Ser
Arg
45 | Val
30
Met | 15
Leu | Thr | 5 | | | <211 <212 <213 <220 <400 Met 1 Tyr Asn | L> LE
L> TY
L> TY
L> TY
L> OF
L> SE
Gln
Arg
Pro
50 | RGANI
RATUE
CQUEN
Glu
Ser
Leu
35
Asp | PRT ISM: RE: NCE: Phe Thr 20 Gly | Dros 8 Arg 5 Ala Lys Gly | Ser
Asn
Ala | His
Arg
Leu
Ser
55 | Leu
Arg
Cys
40
Glu | Ile Arg 25 Leu Ile | Phe
10
Ala
Asn
Glu | Ser
Cys
Thr | Ala
Ala
Glu
60 | Ser
Arg
45
Glu | Val
30
Met
Glu | 15
Leu
Ser | Thr
Lys | s
1 | | | <211 <212 <213 <220 <400 Met 1 Tyr Asn Ser Asn 65 | 2> LE | ENGTH
YPE:
RGANJ
EATUR
CQUEN
Glu
Ser
Leu
35
Asp | PRT ISM: RE: Phe Thr 20 Gly Gly Asn | Ser | Ser Asn Ala Ile Leu 70 | His
Arg
Leu
Ser
55
Asp | Leu
Arg
Cys
40
Glu
Asp | Ile Arg 25 Leu Ile Ser | Phe
10
Ala
Asn
Glu | Ser
Cys
Thr
Arg
75 | Ala
Ala
Glu
60
Gly | Ser
Arg
45
Glu
Val | Val
30
Met
Glu
Ser | 15
Leu
Ser
Pro | Thr
Lys
Glu
Glu
80 | 5
1 | | | <211 <212 <213 <220 <400 Met 1 Tyr Asn Ser Asn 65 Ala | > LE
> TY
> OF
>> FF
Gln
Gln
Arg
Pro
50
Leu | ENGTH
(PE:
(GAN)
EATUR
EQUEN
Glu
Ser
Leu
35
Asp
Ala | H: 76
PRT
ISM:
RE:
NCE:
Phe
Thr
20
Gly
Gly
Asn | Dros 8 Arg 5 Ala Lys Gly Ser Asn 85 | Ser Asn Ala Ile Leu 70 Arg | His Arg Leu Ser 55 Asp | Leu
Arg
Cys
40
Glu
Asp | Ile Arg 25 Leu Ile Ser | Phe 10 Ala Asn Glu Trp Glu 90 | Ser
Cys
Thr
Arg
75
Leu | Ala Ala Glu 60 Gly Glu | Ser
Arg
45
Glu
Val | Val
30
Met
Glu
Ser
Leu | 15
Leu
Ser
Pro
Met | Thr
Lys
Glu
Glu
80 | 5
1
1 | | | <211
<212
<213
<220
<400
Met
1
Tyr
Asn
Ser
Asn
65
Ala | L> LE
TY
3> OF
Gln
Gln
Arg
Pro
50
Leu
Ile | ENGTH
(PE: GGAN)
EATUH
CQUEN
Glu
Ser
Leu
35
Asp
Ala
His | PRT ISM: RE: | Dros R Arg Ala Lys Gly Ser Asn R5 Asn | Ser Asn Ala Ile Leu 70 Arg | His Arg Leu Ser 55 Asp Gln His | Leu Arg Cys 40 Glu Asp Pro | Ile Arg 25 Leu Ile Ser Phe Val 105 | Phe 10 Ala Asn Glu Trp Glu 90 Met | Ser
Cys
Thr
Arg
75
Leu | Ala Ala Glu 60 Gly Glu | Ser Arg 45 Glu Val Asn Leu | Val
30
Met
Glu
Ser
Leu
Pro
110 | 15
Leu
Ser
Pro
Met | Thr
Lys
Glu
80
Pro | | | Pro Asp Gly Ser Thr Thr Ile Asp Phe Arg Trp Glu Met Ile Glu Arg 145 150 155 160 Ala Leu Leu Gl
n Pro Ile Lys Thr Cys Glu Glu Leu Gl
n Ala Ala Ile 165 170175 | Ile | Ser | Tyr | Asn
180 | Thr | Thr | Tyr | Arg | Asp
185 | Gln | Trp | His | Phe | Arg
190 | Ala | Leu | |------------|------------|------------|---------------------|------------|------------|---------------------|------------|------------|---------------------|---------------------|------------|--------------------|---------------------|------------|------------| | His | Gln | Leu
195 | Leu | Asp | Glu | Glu | Leu
200 | Asp | Glu | Ser | Glu | Thr
205 | Arg | Val | Phe | | Phe | Glu
210 | Asp | Leu | Leu | Pro | Arg
215 | Ile | Ile | Arg | Leu | Ala
220 | Leu | Arg | Leu | Pro | | Asp
225 | Leu | Ile | Gln | Ser | Pro
230 | Val | Pro | Leu | Leu | L y s
235 | His | His | Lys | Asn | Ala
240 | | Ser | Leu | Ser | Leu | Ser
245 | Gln | Gln | Gln | Ile | Ser
250 | Суѕ | Leu | Leu | Ala |
Asn
255 | Ala | | Phe | Leu | Cys | Thr
260 | Phe | Pro | Arg | Arg | Asn
265 | Thr | Leu | Lys | Arg | Lys
270 | Ser | Glu | | Tyr | Ser | Thr
275 | Phe | Pro | Asp | Ile | Asn
280 | Phe | Asn | Arg | Leu | Ty r
285 | Gln | Ser | Thr | | Gly | Pro
290 | Ala | Val | Leu | Glu | L y s
295 | Leu | Lys | Суѕ | Ile | Met
300 | His | Tyr | Phe | Arg | | Arg
305 | Val | Суѕ | Pro | Thr | Glu
310 | Arg | Asp | Ala | Ser | Asn
315 | Val | Pro | Thr | Gly | Val
320 | | Val | Thr | Phe | Val | Arg
325 | Arg | Ser | Gly | Leu | Pro
330 | Glu | His | Leu | Ile | Asp
335 | Trp | | Ser | Gln | Ser | Ala
340 | Ala | Pro | Leu | Gly | Asp
345 | Val | Pro | Leu | His | Val
350 | Asp | Ala | | Glu | Gly | Thr
355 | Ile | Glu | Asp | Glu | Gly
360 | Ile | Gly | Leu | Leu | Gln
365 | Val | Asp | Phe | | Ala | Asn
370 | Lys | Tyr | Leu | Gly | Gly
375 | Gly | Val | Leu | Gly | His
380 | Gly | Cys | Val | Gln | | Glu
385 | Glu | Ile | Arg | Phe | Val
390 | Ile | Сув | Pro | Glu | Leu
395 | Leu | Val | Gly | Lys | Leu
400 | | Phe | Thr | Glu | Суѕ | Leu
405 | Arg | Pro | Phe | Glu | Ala
410 | Leu | Val | Met | Leu | Gly
415 | Ala | | Glu | Arg | Tyr | Ser
420 | Asn | Tyr | Thr | Gly | Tyr
425 | Ala | Gly | Ser | Phe | Glu
430 | Trp | Ser | | Gly | Asn | Phe
435 | Glu | Asp | Ser | Thr | Pro
440 | Arg | Asp | Ser | Ser | Gly
445 | Arg | Arg | Gln | | Thr | Ala
450 | Ile | Val | Ala | Ile | Asp
455 | Ala | Leu | His | Phe | Ala
460 | Gln | Ser | His | His | | Gln
465 | Tyr | Arg | Glu | Asp | Leu
470 | Met | Glu | Arg | Glu | Leu
475 | Asn | Lys | Ala | Tyr | Ile
480 | | Gly | Phe | Val | His | Trp
485 | Met | Val | Thr | Pro | Pro
490 | Pro | Gly | Val | Ala | Thr
495 | Gly | | Asn | Trp | Gly | C y s
500 | Gly | Ala | Phe | Gly | Gly
505 | Asp | Ser | Tyr | Leu | Lys
510 | Ala | Leu | | Leu | Gln | Leu
515 | Met | Val | Суѕ | Ala | Gln
520 | Leu | Gly | Arg | Pro | Leu
525 | Ala | Tyr | Tyr | | Thr | Phe
530 | Gly | Asn | Val | Glu | Phe
535 | Arg | Asp | Asp | Phe | His
540 | Glu | Met | Trp | Leu | | Leu
545 | Phe | Arg | Asn | Asp | Gly
550 | Thr | Thr | Val | Gln | Gln
555 | Leu | Trp | Ser | Ile | Leu
560 | | Arg | Ser | Tyr | Ser | Arg
565 | Leu | Ile | Lys | Glu | L y s
570 | Ser | Ser | Lys | Glu | Pro
575 | Arg | | Glu | Asn | Lys | Ala
580 | Ser | Lys | Lys | Lys | Leu
585 | Tyr | Asp | Phe | Ile | L y s
590 | Glu | Glu | | Leu | Lys | Lys | Val | Arg | Asp | Val | Pro | Gly | Glu | Gly | Ala | Ser | Ala | Glu | Ala | #### -continued | | | 595 | | | | | 600 | | | | | 605 | | | | |------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|---------------------|--------------------|---------------------|------------|------------| | Gly | Ser
610 | Ser | Arg | Val | Ala | Gly
615 | Leu | Gly | Glu | Gly | L y s
620 | Ser | Glu | Thr | Ser | | Ala
625 | Lys | Ser | Ser | Pro | Glu
630 | Leu | Asn | Lys | Gln | Pro
635 | Ala | Arg | Pro | Gln | Ile
640 | | Thr | Ile | Thr | Gln | Gln
645 | Ser | Thr | Asp | Leu | Leu
650 | Pro | Ala | Gln | Leu | Ser
655 | Gln | | Asp | Asn | Ser | Asn
660 | Ser | Ser | Glu | Asp | Gln
665 | Ala | Leu | Leu | Met | Leu
670 | Ser | Asp | | Asp | Glu | Glu
675 | Ala | Asn | Ala | Met | Met
680 | Glu | Ala | Ala | Ser | Leu
685 | Glu | Ala | Lys | | Ser | Ser
690 | Val | Glu | Ile | Ser | Asn
695 | Ser | Ser | Thr | Thr | Ser
700 | Lys | Thr | Ser | Ser | | Thr
705 | Ala | Thr | Lys | Ser | Met
710 | Gly | Ser | Gly | Gly | Arg
715 | Gln | Leu | Ser | Leu | Leu
720 | | Glu | Met | Leu | Asp | Thr
725 | His | Tyr | Glu | Lys | Gly
730 | Ser | Ala | Ser | Lys | Arg
735 | Pro | | Arg | Lys | Ser | Pro
740 | Asn | Cys | Ser | Lys | Ala
745 | Glu | Gly | Ser | Ala | L y s
750 | Ser | Arg | | Lys | Glu | Ile
755 | Asp | Val | Thr | Asp | Ly s
760 | Asp | Glu | Lys | Asp | A sp
765 | Ile | Val | Asp | | | | EQ II |) NO | | | | | | | | | | | | | <211> LENGTH: 2181 <212> TYPE: DNA ### <400> SEQUENCE: 9 atgagcaaga agtttatcga actgggtgat cctgtcactc aagacgagaa agactacgaa 60 gactatgtcg gagttggttt cgcgcatcaa gtcccgacaa tgaaaaggcg gaagttgaca 120 gaacatggaa atactacaga atcaaaagaa gatcctgaag agccaaaaag ccgtgacgta 180 tttgtctcct cgcagtcaag tgatgagagt caagaagatt cggctgaaaa tccggagatc 240 300 qctaaaqaaq tqtcaqaaaa ttqtqaaaat ctqacaqaaa ctctcaaaat ttctaatatt gagagtttgg acaatgttac tgaaagatct gaacacactc ttgataatca caaaagtact gaaccaatgg aagaagatgt aaacaacaag tccaatattg acgttgcgat taattctgac gaggatgatg aacttgttct ggaagagaat aataaagaaa tgagggatgg agaacaagta 480 caacagttgt cacaggattt attcgctgat gatcaagagc taattgaata tccaggaatt 540 600 atgaaagaca ctacaactca actggatata acagattctg aagtggagac tgctcaaaaa 660 atggaaatga ttgaagaaac tgaagcagat tcgacatttg taggcgagga ttcaaaagct acgaaaactg tgaggacatc cagttcaagt ttcctgtcaa ctgtttcaac atgcgaagcc 720 cctgcaaaag gacgagcaag aatgtatcaa aaagagttgg aaaagcatgt gattgcattt 780 actgagggaa atctcacact acaaccagat ttgaacaaag ttgatcccga cagaaactat cgatattgta caattccgaa ctttccagct tcccaaggaa aacttcgaga agataatcga 900 tatggcccaa aaatcgtttt gcctcaaaga tggcgagaat ttgattcgag gggccgtaga 960 agagactcat atttctattt caaacgtaag ctcgatggat atttgaaatg ctacaaaaca 1020 actggatatt ttatgtttgt tggacttttg cacaacatgt gggaatttga cccagacatc 1080 acatataaac tgccagcact ggaaatgtat tacaaagaga tgtcggaact tgttggtaga 1140 <213> ORGANISM: Caenorhabditis elegans <220> FEATURE: #### -continued | gaagaggttt tggaaaaat | t tgcacgagtt | gcccgcatcg | caaaaactgc | tgaagatatt | 1200 | |----------------------|--------------|------------|------------|------------|------| | ctgccagagc gaatttato | g tcttgttggt | gacgtcgaat | cagctacctt | gagccacaag | 1260 | | caatgtgctg cacttgtt | c gagaatgttt | tttgcccgac | cggacagtcc | tttcagtttc | 1320 | | tgccgaattc tctcgtctc | a taaatctatt | tgtgtggaga | aacttaaatt | cctgttcact | 1380 | | tatttcgaca aaatgtcaa | t ggatccaccg | gatggtgccg | tcagttttag | acttacaaaa | 1440 | | atggataaag atacgttca | a cgaagagtgg | aaagataaaa | aattacgttc | tcttcctgaa | 1500 | | gttgaattct ttgatgaaa | t gcttattgaa | gacacagete | tctgtacaca | agttgatttt | 1560 | | gcgaacgaac atcttggt | g cggagttta | aatcatgggt | ctgttcagga | ggagatccgt | 1620 | | ttcttgatgt gtccagaaa | t gatggttgga | atgttgttgt | gcgagaaaat | gaaacaactg | 1680 | | gaagcgattt caattgtt | g agcttacgtt | ttcagttctt | atactggtta | tggtcatact | 1740 | | ctaaaatggg cagaactto | a accaaatcat | tctcgtcaga | atacaaacga | atttcgagat | 1800 | | cgttttggac gtcttcgg | t agaaactatt | gcaatcgatg | caattctgtt | caaaggatca | 1860 | | aaattagatt gtcagacg | a gcagttaaac | aaagcaaata | tcattaggga | aatgaagaaa | 1920 | | gcatctatcg gattcatga | g ccagggaccg | aaattcacaa | atattccaat | tgttactgga | 1980 | | tggtggggat gtggagcat | t taatggggac | aagccactga | agttcataat | ccaagtaatt | 2040 | | gctgccggag tcgctgato | g tccacttcat | ttctgttcat | ttggagaacc | cgagcttgcc | 2100 | | gcaaagtgca agaaaatta | t agaacgaatg | aaacagaagg | acgtaacact | tggtaagtca | 2160 | | tgtttttcaa tcttcagtt | g a | | | | 2181 | ``` <210> SEQ ID NO 10 ``` <400> SEQUENCE: 10 Met Ser Lys Lys Phe Ile Glu Leu Gly Asp Pro Val Thr Gln Asp Glu 1 5 10 15 Thr Met Lys Arg Arg Lys Leu Thr Glu His Gly Asn Thr Thr Glu Ser 35 40 45 Lys Glu Asp Pro Glu Glu Pro Lys Ser Arg Asp Val Phe Val Ser Ser 50 Gln Ser Ser Asp Glu Ser Gln Glu Asp Ser Ala Glu Asn Pro Glu Ile 65 70 75 80 Ala Lys Glu Val Ser Glu Asn Cys Glu Asn Leu Thr Glu Thr Leu Lys \$85\$ 90 95 Thr Leu Asp Asn His Lys Ser Thr Glu Pro Met Glu Glu Asp Val Asn 115 \$120\$ Asn Lys Ser Asn Ile Asp Val Ala Ile Asn Ser Asp Glu Asp Asp Glu 130 \$135\$ Leu Val Leu Glu Glu Asn Asn Lys Glu Met Arg Asp Gly Glu Gln Val 145 150155155160 Gln Gln Leu Ser Gln Asp Leu Phe Ala Asp Asp Gln Glu Leu Ile Glu 165 \$170\$ Tyr Pro Gly Ile Met Lys Asp Thr Thr Thr Gln Leu Asp Ile Thr Asp <211> LENGTH: 726 <212> TYPE: PRT <213> ORGANISM: Caenorhabditis elegans <220> FEATURE: | | | | 180 | | | | | 185 | | | | | 190 | | | |------------|------------|---------------------|------------|------------|------------|------------|---------------------|--------------------|------------|---------------------|------------|------------|------------|---------------------|------------| | Ser | Glu | Val
195 | Glu | Thr | Ala | Gln | L y s
200 | Met | Glu | Met | Ile | Glu
205 | Glu | Thr | Glu | | Ala | Asp
210 | Ser | Thr | Phe | Val | Gly
215 | Glu | Asp | Ser | Lys | Ala
220 | Thr | Lys | Thr | Val | | Arg
225 | Thr | Ser | Ser | Ser | Ser
230 | Phe | Leu | Ser | Thr | Val
235 | Ser | Thr | Суѕ | Glu | Ala
240 | | Pro | Ala | Lys | Gly | Arg
245 | Ala | Arg | Met | Tyr | Gln
250 | Lys | Glu | Leu | Glu | L y s
255 | His | | Val | Ile | Ala | Phe
260 | Thr | Glu | Gly | Asn | Leu
265 | Thr | Leu | Gln | Pro | Asp
270 | Leu | Asn | | Lys | Val | Asp
275 | Pro | Asp | Arg | Asn | Tyr
280 | Arg | Tyr | Суѕ | Thr | Ile
285 | Pro | Asn | Phe | | Pro | Ala
290 | Ser | Gln | Gly | Lys | Leu
295 | Arg | Glu | Asp | Asn | Arg
300 | Tyr | Gly | Pro | Lys | | Ile
305 | Val | Leu | Pro | Gln | Arg
310 | Trp | Arg | Glu | Phe | Asp
315 | Ser | Arg | Gly | Arg | Arg
320 | | Arg | Asp | Ser | Tyr | Phe
325 | Tyr | Phe | Lys | Arg | Lys
330 | Leu | Asp | Gly | Tyr | Leu
335 | Lys | | Сув | Tyr | Lys | Thr
340 | Thr | Gly | Tyr | Phe | Met
345 | Phe | Val | Gly | Leu | Leu
350 | His | Asn | | Met | Trp | Glu
355 | Phe | Asp | Pro | Asp | Ile
360 | Thr | Tyr | Lys | Leu | Pro
365 | Ala | Leu | Glu | | Met | Tyr
370 | Tyr | Lys | Glu | Met | Ser
375 | Glu | Leu |
Val | Gly | Arg
380 | Glu | Glu | Val | Leu | | Glu
385 | Lys | Phe | Ala | Arg | Val
390 | Ala | Arg | Ile | Ala | L y s
395 | Thr | Ala | Glu | Asp | Ile
400 | | Leu | Pro | Glu | Arg | Ile
405 | Tyr | Arg | Leu | Val | Gly
410 | Asp | Val | Glu | Ser | Ala
415 | Thr | | Leu | Ser | His | Lys
420 | Gln | Cys | Ala | Ala | Leu
425 | Val | Ala | Arg | Met | Phe
430 | Phe | Ala | | Arg | Pro | Asp
435 | Ser | Pro | Phe | Ser | Phe
440 | Cys | Arg | Ile | Leu | Ser
445 | Ser | Asp | Lys | | Ser | Ile
450 | Cys | Val | Glu | Lys | Leu
455 | Lys | Phe | Leu | Phe | Thr
460 | Tyr | Phe | Asp | Lys | | Met
465 | Ser | Met | Asp | Pro | Pro
470 | Asp | Gly | Ala | Val | Ser
475 | Phe | Arg | Leu | Thr | Lys
480 | | Met | Asp | Lys | Asp | Thr
485 | Phe | Asn | Glu | Glu | Trp
490 | Lys | Asp | Lys | Lys | Leu
495 | Arg | | Ser | Leu | Pro | Glu
500 | Val | Glu | Phe | Phe | A sp
505 | Glu | Met | Leu | Ile | Glu
510 | Asp | Thr | | Ala | Leu | C y s
515 | Thr | Gln | Val | Asp | Phe
520 | Ala | Asn | Glu | His | Leu
525 | Gly | Gly | Gly | | Val | Leu
530 | Asn | His | Gly | Ser | Val
535 | Gln | Glu | Glu | Ile | Arg
540 | Phe | Leu | Met | Cys | | Pro
545 | Glu | Met | Met | Val | Gly
550 | Met | Leu | Leu | Сув | Glu
555 | Lys | Met | Lys | Gln | Leu
560 | | Glu | Ala | Ile | Ser | Ile
565 | Val | Gly | Ala | Tyr | Val
570 | Phe | Ser | Ser | Tyr | Thr
575 | Gly | | Tyr | Gly | His | Thr
580 | Leu | Lys | Trp | Ala | Glu
585 | Leu | Gln | Pro | Asn | His
590 | Ser | Arg | | Gln | Asn | Thr
595 | Asn | Glu | Phe | Arg | Asp
600 | Arg | Phe | Gly | Arg | Leu
605 | Arg | Val | Glu | ``` Thr Ile Ala Ile Asp Ala Ile Leu Phe Lys Gly Ser Lys Leu Asp Cys Gln Thr Glu Gln Leu Asn Lys Ala Asn Ile Ile Arg Glu Met Lys Lys 635 Ala Ser Ile Gly Phe Met Ser Gln Gly Pro Lys Phe Thr Asn Ile Pro 650 Ile Val Thr Gly Trp Trp Gly Cys Gly Ala Phe Asn Gly Asp Lys Pro Leu Lys Phe Ile Ile Gln Val Ile Ala Ala Gly Val Ala Asp Arg Pro Leu His Phe Cys Ser Phe Gly Glu Pro Glu Leu Ala Ala Lys Cys Lys Lys Ile Ile Glu Arg Met Lys Gln Lys Asp Val Thr Leu Gly Lys Ser Cys Phe Ser Ile Phe Ser <210> SEQ ID NO 11 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 11 Leu Phe Thr Glu Val Leu Asp His Asn Glu Cys Leu Ile Ile Thr Gly Thr Glu Gln Tyr Ser Glu Tyr Thr Gly Tyr Ala Glu Thr Tyr Arg <210> SEQ ID NO 12 <211> LENGTH: 29 <212> TYPE: PRT <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 12 Ala Tyr Cys Gly Phe Leu Arg Pro Gly Val Ser Ser Glu Asn Leu Ser Ala Val Ala Thr Gly Asn Xaa Gly Cys Gly Ala Phe Gly <210> SEQ ID NO 13 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 13 Phe Leu Ile Asn Pro Glu Leu Ile Val Ser Arg <210> SEQ ID NO 14 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEOUENCE: 14 Ile Ala Leu Xaa Leu Pro Asn Ile Xaa Thr Gln Pro Ile Pro Leu Leu ``` ``` <210> SEQ ID NO 15 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEOUENCE: 15 17 gaycayaayg artgyyt <210> SEQ ID NO 16 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 16 ckrtangtyt cngcrta 17 <210> SEQ ID NO 17 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 17 atcatcacag gtactgagca gtac 24 <210> SEQ ID NO 18 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 18 gcctgtgtat tcactgtact gctc 24 <210> SEQ ID NO 19 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 19 Glu Asp Lys Arg Lys Glu Gln Cys Glu Met Lys His Gln Arg Thr Glu Arg Lys Ile Pro Lys Tyr Ile Pro Pro His 20 <210> SEQ ID NO 20 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <400> SEQUENCE: 20 Glu Asp Arg Arg Lys Glu Gln Trp Glu Thr Lys His Gln Arg Thr Glu Arg Lys Ile Pro Lys Tyr Val Pro Pro His 20 <210> SEQ ID NO 21 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Mus Musculus ``` ``` <400> SEQUENCE: 21 Glu Asp Arg Arg Lys Glu Gln Cys Glu Val Arg His Gln Arg Thr Glu 10 Arg Lys Ile Pro Lys Tyr Ile Pro Pro Asn 20 <210> SEQ ID NO 22 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Caenorhabotitis elegans <220> FEATURE: <400> SEQUENCE: 22 His Gln Val Pro Thr Met Lys Arg Arg Lys Leu Thr Glu His Gly Asn Thr Thr Glu Ser Leu Leu Lys Glu Asp Pro Pro Glu Pro Lys Ser 20 25 <210> SEQ ID NO 23 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <400> SEQUENCE: 23 Glu Gly Lys Arg Lys Gly Asp Glu Val Asp Gly Val Asp Glu Val Ala Lys Lys Lys Ser Lys Lys Glu Lys Asp Lys <210> SEQ ID NO 24 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Mus musculus <220> FEATURE: <400> SEOUENCE: 24 Glu Gly Lys Arg Lys Gly Asp Glu Val Asp Gly Thr Asp Glu Val Ala Lys Lys Lys Ser Arg Lys Glu Thr Asp Lys <210> SEQ ID NO 25 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEOUENCE: 25 Glu Gly Lys Arg Lys Gly Asp Glu Val Asp Gly Ile Asp Glu Val Thr Lys Lys Lys Ser Lys Lys Glu Lys Asp Lys <210> SEQ ID NO 26 <211> LENGTH: 25 <212> TYPE: PRT <213> ORGANISM: Galus galus <220> FEATURE: <400> SEQUENCE: 26 Glu Gly Lys Arg Lys Gly Glu Glu Val Asp Gly Asn Val Val Ala Lys ``` ``` Lys Lys Ser Arg Lys Glu Lys Glu Lys 20 <210> SEQ ID NO 27 <211> LENGTH: 26 <212> TYPE: PRT <213> ORGANISM: Xenopus laevis <220> FEATURE: <400> SEQUENCE: 27 Glu Gly Lys Arg Lys Ala Asp Glu Val Asp Gly His Ser Ala Ala Thr Lys Lys Lys Ile Lys Lys Glu Lys Glu Lys 20 <210> SEQ ID NO 28 <211> LENGTH: 25 <212> TYPE: PRT <213> ORGANISM: Drosophila melanoguster <220> FEATURE: <400> SEQUENCE: 28 Glu Glu Leu Pro Asp Thr Lys Arg Ala Lys Met Glu Leu Ser Asp Thr 10 Asn Glu Glu Gly Glu Lys Lys Gln Arg 20 <210> SEQ ID NO 29 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Sarcophaga peregrina <400> SEQUENCE: 29 Glu Gly Val Ser Ser Ala Lys Lys Ala Lys Ile Glu Lys Ile Asp Glu Glu Asp Ala Ala Ser Ile Lys Glu Leu Thr Glu Lys Ile Lys Lys <210> SEQ ID NO 30 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 30 gctgcgggtc tcgacgatga gtgcgggc 28 <210> SEQ ID NO 31 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 31 gcgtctagaa ttcacttggc tcctcaggc 29 <210> SEQ ID NO 32 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: <400> SEQUENCE: 32 ``` | ccggaattcg ggttttttgt taatgaaaat ttattaac | 38 | |---|-----| | <210> SEQ ID NO 33 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: | | | <400> SEQUENCE: 33 | | | tcagagcaga tgaactcgag cagtccagg | 29 | | <210> SEQ ID NO 34 <211> LENGTH: 61 <212> TYPE: DNA <213> ORGANISM: Bos taurus <220> FEATURE: | | | <400> SEQUENCE: 34 | | | ccaatttgaa ggaggaattc ccgccgccac catgaatgat gtgaatgcca aacgacctgg | 60 | | a | 61 | | <210> SEQ ID NO 35 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: Kozak consensus sequence <223> OTHER INFORMATION: Synthesized by oligonucleotide synthesizer | | | <400> SEQUENCE: 35 | | | gaattcccgc cgccaccatg aa | 22 | | <210> SEQ ID NO 36 <211> LENGTH: 674 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: | | | <400> SEQUENCE: 36 | | | agaagaaaat ggccaaggca tgctacaggt ggattttgca aatcgttttg ttggaggtgg | 60 | | tgtaaccagt gcaggacttg tgcaagaaga aatccgcttt ttaatcaatc ctgagttgat | 120 | | tatttcacgg ctcttcactg aggtgctgga tcacaatgaa tgtctaatta tcacaggtac | 180 | | tgagcagtac agtgaataca caggctatgc tgagacatat cgttggtccc ggagccacga | 240 | | agatgggagt gaaagggacg actgcgagcg gcgctgcact gagatcgttg ccatcgatgc | 300 | | tetteaette agaegetaee tegateagtt tgtgeetgag aaaatgagae gegagetgaa | 360 | | caaggettae tgtggattte teegteetgg agtttettea gagaatettt etgeagtgge | 420 | | cacaggaaac tggggctgtg gtgcctttgg gggtgatgcc aggttaaaag ccttaataca | 480 | | gatattggca gctgctgcag ctgagcgaga tgtggtttat ttcacctttg gggactcaga | 540 | | attgatgaga gacatttaca gcatgcacat tttccttact gaaaggaaac tcactgttgg | 600 | | agatgtgtat aagctgttgc tacgatacta caatgaagaa tgcagaaact gttccacccc | 660 | | tggaccagac atca | 674 | | <210> SEQ ID NO 37 <211> LENGTH: 200 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FRATURE: | | | | 001102111404 | | |---|----------------------------------|------| | <400> SEQUENCE: 37 | | | | aaaaatagtt gtcaagactc agaagcagat | gaggagacaa gtccaggttt tgatgaacaa | 60 | | gaagatggta gttcctccca aacagcaaat | aaaccttcaa ggttccaagc aagagacgct | 120 | | gacattgaat ttaggaaacg gtactctact | aagggcggtg aagttagatt acatttccaa | 180 | | tttgaaggag gagagagtcg | | 200 | | <210> SEQ ID NO 38 <211> LENGTH: 29793 <212> TYPE: DNA <213> ORGANISM: Caenorhabaditis 6 <220> FEATURE: | elegans | | | <400> SEQUENCE: 38 | | | | gatctcgaag taaaaactca cgcagaaaga | gctcctcctc ctttagcatg agaatccaac | 60 | | tttgtaatga taacactggc aacatcaaca | gtttgagaga aagcacgtgc ttgggcttca | 120 | | caagettgte caatagaage atceateaca | aaaacaacat tatctggtgt aactgcgttg | 180 | | gaaacttgga gcatttcttc gaaaagtgaa | gcttcttgct tgtgacgacc tgatgtatca | 240 | | acaatgatga tttcgaaccc ttcttgctgc | aaaacaaata ttattaaacc atttttctgt | 300 | | gataaattac cgtgaatttt tctactcctt | cggcggcaat ttttacgggg tcaatttcag | 360 | | agtatgatcc atagaaggga atacgagctt | ttgtggcatt ttgctttaat tgatcaaaag | 420 | | ctccagcacg gaatgtatcg gcacagatca | gacatgtttt ccatcctttt ctttggtagt | 480 | | aatacgccat ctgaacttga aaagtgttga | aaagttgttg gaagtttact aattaaaaaa | 540 | | tataatgttt gatggtgtgt gagctttcta | ttgtaattca tggaacgaac cttggtacaa | 600 | | gtcgtagttt taccggaacc ttgaagacca | acaaacatga aaacgttgcg acgtcctttt | 660 | | gttggtgtga aaggagttac accaggatcc |
acaagcttca gcagttcatt gaatactgtc | 720 | | ttctgaatgt accgacgttt gtttgctcct | ccgacgatct cttcgaaatt aatcgctttt | 780 | | ctgaaaatat ttattaaatt taaatcttaa | atagogtaaa aatttactto acgttgtoot | 840 | | taagttgctt tacaagacga atatgaacat | cagattcaat aagagctgta cagacttctt | 900 | | tcagcatcaa atccagctcc ccctcattga | taacggtgct ctgaccgagc tttccgatcg | 960 | | cattteggat ttteegeece aaateggeea | aaaccatttt gaactgaaat ttgaaatgct | 1020 | | ttaatttgtt taagcataga attaaacgcg | ttttaaatcg agagcaccat aaaaacagtt | 1080 | | tggagaaaaa tcgataattc ttgtaggaga | ttcagtccct gtggttttct tcggcttcct | 1140 | | aatcattttt tgacgacata gtggtatttc | acaataggtt ttttcaagac acaacagatt | 1200 | | tttcacaaag agtagagaag aaatggaaaa | ctgtagattt cttctcgaag agccgagaaa | 1260 | | ggcaaggtat tggaagttta aaaaggtaat | gtttctttat tcttttttca aaacaataat | 1320 | | aaatggaaaa tatatatta tagataacaa | tttcagacag ttaaaatcac gtgaaaaatt | 1380 | | caaatttcaa cacaaaaatt gacgagtgga | accccgttgt tgcgccttga agagtaacgc | 1440 | | ttgcgcgttt gacgatttta ttgacgcgtt | tctggtgcat gcgggaaatt ttttatttc | 1500 | | aactttttc ctgtttgttt atccttttt | aattgaattc tcatgatttg aaagctttga | 1560 | | aaaatattat tttgctcaaa aacatgcgtt | ttgtaaaaca ttgattagat tcaaggcaat | 1620 | | taatggattt ttgcacgttc caaaaaaaag | gaaattcatt ttttgaaaat tttgataatt | 1680 | | taataatgaa aaatgttcca tagatttatt | caatgccatc cttctctata atctcgaact | 1740 | | tccgcatcct tcaactgtgg tagaggtatt | tgcaatacca tatagtcgta ataataaact | 1800 | | | | | | ttagtgaaca | aatccaagac | atcagctctt | gagtaaatga | atgatttata | aaaactgctg | 1860 | |------------|------------|------------|------------|------------|------------|------| | attttctcgt | aggaagaaag | agaatcagct | aataatccgt | cgttgtctat | tctgtcaggc | 1920 | | cgcttaaatg | ttaaaaaata | aaaacgtttt | aagctaattt | tgtatgtcta | gaaactctaa | 1980 | | ctcacaagca | tttctgcata | cgccggatta | gttggttttg | caaaaagcga | gtaatctaca | 2040 | | aaagtgaatt | tttgattcat | ctcttccatt | tcacaaaacc | aattttgtgg | tacgtatttc | 2100 | | atatgatctt | catccacttt | tttagttttt | gaatgtattt | gtgtgagttg | tgtccagatt | 2160 | | tgaataagat | aacatctcag | atccaacttg | caattgaagc | aagaacgatc | ttctctgaaa | 2220 | | ttttatatga | ccttaaactt | tatacttttg | tagtttcgtc | gatatctgat | cgttcagttg | 2280 | | tataggtatg | tacatctcta | ggtttatgtg | ctacacgaaa | atataatttg | ttttacctaa | 2340 | | cacacgcatc | cataaaatga | tctacaaatc | gttcaattgg | atcctgtctt | ggaaataata | 2400 | | atttccaatt | cgtaaagttt | gcattcaact | cattttctcg | tttcaaatcg | tcgatatccg | 2460 | | caaaatatgt | tagtgaatca | ctatcacaca | ctctgaaaag | cacaatattc | atatttcgta | 2520 | | gttaataatg | aacctcacga | ttcatcatta | aatttctctt | ggagcccgca | taatacttgc | 2580 | | tgcccaatta | aagtatcagt | ttcacagatt | gcagttctat | catttccgat | agcctcaaat | 2640 | | aagatttaat | cttaagcgag | tgttctgatc | aatttaaata | tttgatactc | accgcaagtt | 2700 | | tcttcgaaac | ttgttcgaaa | gctggaattt | tagaatatcc | ttcaaaactt | ttttcctcgc | 2760 | | cctcatcaag | ccataataag | ttttgatcag | caatatattc | gaataaatta | gtctctgata | 2820 | | aatctcgtat | cacaatcttt | ttttctactc | taaagaatac | aattttgata | agaatgataa | 2880 | | taattataat | tataatagtt | cgtcgctgag | ttgatgaaga | ccacataatt | agtttaatgg | 2940 | | caagctatgc | aacttgttga | atactaatag | gacttagcaa | atcttatctt | gaaccttttt | 3000 | | cattcgaaag | aaaaatgaga | tcgaatctcg | ttcaaactgt | ggagtagtca | gttaagaaac | 3060 | | ttgtttctag | tttgtgagga | gacactggag | aacgtgaaag | tattacccat | acgcaatatt | 3120 | | tttgcggcga | aaaatacggt | acccggtctc | gacacgacag | tttttaaaac | ttgtaaatag | 3180 | | gtatgtaaaa | gaaaacttta | attttaaacg | tgttgtttcg | gaattttcat | cgttttgtca | 3240 | | tagttattct | acaaataatt | atttatgaaa | aaaaaactaa | aatataacta | taataacacc | 3300 | | tgaatattaa | caaatcgatc | gaaaaaaaac | tatgaaaaaa | atggatgaaa | attccgcagc | 3360 | | aacgagagtt | tgaaatttca | gtattcttta | aaggcttacc | gatttcaata | aatagtgaca | 3420 | | ctgaaaattg | tagttttaaa | actagttggt | tagtatcatc | aaatattcaa | tccttcaaaa | 3480 | | attcctcaat | attaacgtat | tttctctaat | tgtcttcatt | atctaaaaaa | aagttgcaat | 3540 | | atattttcc | aggcagaaat | agactttcac | aaaacacatc | gacacttcga | atgagcaaga | 3600 | | agtttatcga | actgggtgat | cctgtcactc | aagacgttag | ttatagtttt | tattacttga | 3660 | | acattatcat | ctttttacag | gagaaagact | acgaagacta | tgtcggagtt | ggtttcgcgc | 3720 | | atcaagtccc | gacaatgaaa | aggcggaagt | tgacagaaca | tggaaatact | acagaatcaa | 3780 | | aagaagatcc | tgaagagcca | aaaagccgtg | acgtatttgt | ctcctcgcag | tcaagtgatg | 3840 | | agagtcaaga | agattcggct | gaaaatccgg | agatcgctaa | agaagtgtca | gaaaattgtg | 3900 | | aaaatctgac | agaaactctc | aaaatttcta | atattgagag | tttggacaat | gttactgaaa | 3960 | | gatctgaaca | cactcttgat | aatcacaaaa | gtactgaacc | aatggaagaa | gatgtaaaca | 4020 | | acaagtccaa | tattgacgtt | gcgattaatt | ctgacgagga | tgatgaactt | gttctggaag | 4080 | | agaataataa | agaaatgagg | gatggagaac | aagtacaaca | ggtcaggaaa | ttttacaagt | 4140 | | gaatgaaata | agttaatcac | caaaatgaat | aaggacattt | cccatcagaa | aggtcttctg | 4200 | | aattttaggt | gtaatgttaa | ttttttgctg | tagtttttcc | cattgtttga | aatttttgcc | 4260 | |------------|------------|------------|------------|------------|------------|------| | aaaattagtt | attgcatacc | cttcatgttt | ttgaagattg | tttaggaatg | agaaaacatt | 4320 | | ttggacgctt | ttattattag | gacaccaaac | actttttgtt | gaaaaaacag | ctcgtttaaa | 4380 | | aaaagctttt | tccaaaaaat | ctgacgcaag | gcttgtgaat | tttcgttttc | ccctgatttt | 4440 | | taaaatttct | cctaaagttt | tttgctaata | tttttcgcta | tcgcgtaatt | tactagtgaa | 4500 | | tcaacaaaaa | atttttttt | tttcatagat | tttttataag | tttttgaaaa | catagattta | 4560 | | aaacttaaac | ttaaattttg | acaaggcgag | aggaaaaaat | taaaaattgc | tgaacattca | 4620 | | gatgccggtt | accttatttt | tggttcaaaa | atcccaatat | tacgcgtctg | ggttatagtc | 4680 | | atttgccttt | attaaattaa | tggtgttcct | tggaaaagta | agttctgttt | tgttttcagc | 4740 | | ttatcacttc | atcaaacgga | aggaaaggtt | gattaaggaa | agtaaacata | ttttatgttg | 4800 | | ttcttgtcac | ttcctccatt | tcgcaataat | ataactcgag | aaatatagaa | ttttgttcga | 4860 | | agttttcttt | ttccttcaac | attttaaata | ttgttagtat | tacccagaaa | aatagaaaaa | 4920 | | atcgaagaaa | tttgcaaaaa | agcagacgta | gaggctacgt | acttcttaag | cacgcccctt | 4980 | | ttcttttaaa | tttgttcggt | cgtaccgaga | tccggtacct | tattttacaa | cgttttctgt | 5040 | | tccaaaaata | ataatgtact | gcagttgtca | caggatttat | tcgctgatga | tcaagagcta | 5100 | | attgaatatc | caggaattat | gaaagacact | acaactcaac | tggatataac | agattctgaa | 5160 | | gtggagactg | ctcaaaaaat | ggaaatgatt | gaagaaactg | aagcagattc | gacatttgta | 5220 | | ggcgaggatt | caaaagtgag | acaaaatcat | tctgacaagg | attcctgcga | gcactcagtc | 5280 | | aagagcgagt | cacggcaact | cggtccaaaa | ccatttctaa | ttagtaaact | ctcaaaaacc | 5340 | | acaactaaat | agcttaaaac | ctttgtaaat | tagcttattt | ttgctaatta | gcaatgattt | 5400 | | taagctaatt | agttgtggtt | tttgagagtt | tactaattag | aaatggtttt | ggaccgagtt | 5460 | | gccgtgactc | gctcttgact | gagcacaagc | aaacttttgt | ggatgttgag | aatcagcggc | 5520 | | aaagtggcac | tactagtgac | gaagttgacg | cagattctca | gattaatttg | gtaagacaaa | 5580 | | gaaaatataa | attttattac | ccagatgcat | attttcatga | ttctgatgca | aaaaatacgg | 5640 | | tacccgatct | ggatactaca | atttttgtaa | aatgcgaaaa | ggtttgcacc | tttaaaaaga | 5700 | | actgcaattt | caaacacttg | ttgctgtgga | ttgtttatcg | gtttttaata | ttttttggtg | 5760 | | agagtaaatg | agaaaagcga | gttcccgcat | tatctgtgtg | cgatttggaa | tacagtactt | 5820 | | ttcaaagacg | cacaccattt | tgcatataac | aaacatttgt | cgtgtcgaaa | ccgggtaccg | 5880 | | tgattttgca | ttaaaagttg | caaaatttca | catagttttt | ataatttagg | ctacgaaaac | 5940 | | tgtgaggaca | tccagttcaa | gtttcctgtc | aactgtttca | acatgcgaag | cccctgcaaa | 6000 | | aggacgagca | agaatgtatc | aaaaagagtt | ggaaaagcat | gtgattgcat | ttactgaggg | 6060 | | aaatctcaca | ctacaaccag | atttgaacaa | agttgatccc | gacagaaact | atcgatattg | 6120 | | tacaattccg | aactttccag | cttcccaagg | aagtacgttg | ttcaataaaa | catactaggt | 6180 | | atataattaa | ttatttcaga | acttcgagaa | gataatcgat | atggcccaaa | aatcgttttg | 6240 | | cctcaaagat | ggcgagaatt | tgattcggta | catttctatt | gaattaatta | tatactactt | 6300 | | actagaaaca | ccatggagaa | agaatgcaaa | aaattgaatt | ttaaaaacta | attttttaat | 6360 | | tttggctaaa | ttttcagttt | gaatttaatc | caaaatgaaa | actgcgacca | atcaatgact | 6420 | | tttcaaaatc | acttttcaac | caatcaaacg | gagtgtgctg | ggctcgaaga | cgctgattgg | 6480 | | ttcggaaatg | ggcgtggttt | ctcattttgg | agggaattca | aaaaaaggca | tttggtcaca | 6540 | | gttgaaaatc | atgttttcaa | aagatgcatt | ttttattcct | tctcgatttt | ttttgatttt | 6600 | |------------|------------|------------|------------|------------|------------|------| | cttttgtggt | atttctgaat | ttaaaggtgg | tgtagtcgaa | tttttttatt | gctttattag | 6660 | | actcaaaatt | ttctgaaaac | gccaaatttc | ataatgaaac | ttcttgaaaa | ctcttcagca | 6720 | | aaaagttatg | acggctcaaa | aaatggccta | aaattagtta | agattggaga | tttgaccgac | 6780 | | ttgtcaatgt | cgcagcggct | ggaaacaatt | ttttttgaaa | tcaccgtcaa | attttaagta | 6840 | | tacaacttga | ttattttgcg | ttttaaactt | tatttaggta | tttaaaagtc | gatggacggc | 6900 | | gagttttggc | tcaaaaaaat | taaaaatctc | gccgtccatc | gatttttaaa | taccttaatc | 6960 | | aagaataaaa | caaaaggtag | gcaacttgta | tattcaaaat | ttgacggtga | ttgcaacttt | 7020 | | taactaattt | caggccattt | tttgagccgt | cataactttt | ttctaaaaag | ttttcaagaa | 7080 | | gtttcattat | gaaattcggt | gttttcagac | aattttgagt | ctaataagga | aataaaaaaa | 7140 | | attcgagtac | accaccttta | agaaaatttt | ggatttccgc | tacgctaatc | cacctttaat | 7200 | | caaaaatatt | tgaagttatt | caaagttaaa | gaattatatt | ttcagagggg | ccgtagaaga | 7260 | | gactcatatt | tctatttcaa | acgtaagctc | gatggatatt | tgaaatgcta | caaaacaact | 7320 | | ggatattta | tgtttgttgt | aagtttttga | aatacaattc | gtttgaagat | ttactctatt | 7380 | | ttcagggact | tttgcacaac | atgtgggaat | ttgacccaga | catcacatat | aaactgccag | 7440 | | cactggaaat | gtattacaaa | gagatgtcgg | aacttgttgg | tagagaagag | gttttggaaa | 7500 | | aatttgcacg
 agttgcccgc | atcgcaaaaa | ctgctgaaga | tattctgcca | gaggtatgat | 7560 | | ttatgagata | tacagcattt | cctctaatag | tattgcatat | aaacatttca | ctttgaggtt | 7620 | | atatcttggt | ttattttaaa | aatatcaata | aatacaaaac | aatagaaaaa | tgataaaaaa | 7680 | | acattttgtc | agttgataat | ttgggtatag | tattcattca | taatttgatt | tttttagcga | 7740 | | atttatcgtc | ttgttggtga | cgtcgaatca | gctaccttga | gccacaagca | atgtgctgca | 7800 | | cttgttgcga | gaatgtttt | tgcccgaccg | gacagtcctt | tcagtttctg | ccggtgagta | 7860 | | atacaagaat | gctcatattt | ttagaatcaa | tatttgcaag | gaactttaat | cttacgtacg | 7920 | | tcttaagatg | agcattttcg | cacatatctt | acgcgcacga | gtctcgacac | gcgaacatcg | 7980 | | agcttctgta | actcgtatca | atttacaagc | cgttattaca | tcagttttta | atgaatttta | 8040 | | agaaaatcgt | gcaaaagtag | tgtcgagagc | cattcgcgta | agatatggtg | agatttatca | 8100 | | tttttagacg | tctagtggat | atctaacaaa | actttataca | ttttatttc | agaattctct | 8160 | | cgtctgataa | atctatttgt | gtggagaaac | ttaaattcct | gttcacttat | ttcgacaaaa | 8220 | | tgtcaatgga | tccaccggat | ggtgccgtca | gttttagact | tacaaaaatg | gataaagata | 8280 | | cgttcaacga | agagtggaaa | gataaaaaat | tacgttctct | tcctgaagtt | gaattctttg | 8340 | | atgaaatgct | tattgaagac | acagctctct | gtacacaagt | tgattttgcg | aacgaacatc | 8400 | | ttggtggcgg | agttttaaat | catgggtctg | ttcaggtagt | tatttaaagg | aatataagaa | 8460 | | tttgaagttt | tattttttt | atgcaggagg | agatccgttt | cttgatgtgt | ccagaaatga | 8520 | | tggttggaat | gttgttgtgc | gagaaaatga | aacaactgga | agcgatttca | attgttggag | 8580 | | cttacgtttt | cagttcttat | actggttatg | gtaagtctag | actttcaaaa | aaaactgttc | 8640 | | caatatgtca | atatattca | ggtcatactc | taaaatgggc | agaacttcaa | ccaaatcatt | 8700 | | ctcgtcagaa | tacaaacgaa | tttcgagatc | gttttggacg | tcttcgggta | gaaactattg | 8760 | | caatcgatgc | aattctgttc | aaaggatcaa | aattagattg | tcagacggag | cagttaaaca | 8820 | | aagcaaatat | cattagggaa | atgaagaaag | catctatcgg | attcatgagc | cagggaccga | 8880 | | aattcacaaa | tattccaatt | gttactggat | ggtggggatg | tggagcattt | aatggggaca | 8940 | | agccactgaa | gtgtatgtta | tttcattcgt | taaatattga | agatggagga | gagtgaatgg | 9000 | |------------|------------|------------|------------|------------|------------|-------| | ggattttgct | tcttttgcaa | aatggcctcc | ctatgtacct | gaaaaaaaaa | tgaaaaaatc | 9060 | | gagaaatatt | gaaaaccaaa | caacgaattt | ttcacaattt | tgcctaaatt | tttgaatttt | 9120 | | cgccaaaatc | ggaatcagcg | attcgctcca | cccattttc | cgccaatcat | ttataatgtg | 9180 | | cggagctcaa | aaacactgat | tggctagaaa | gtgggcgtag | cttcttattt | cggaggaaat | 9240 | | tcaaataggg | aagttaatct | aaattaaaac | aatctcgtta | aaaaatgttt | ctttttcaa | 9300 | | tcttccctat | ttgtttaaat | ttttctttt | aaagatcgtc | taaaagctac | cagtatctga | 9360 | | ttcaattatc | ggttttttc | agtcataatc | caagtaattg | ctgccggagt | cgctgatcgt | 9420 | | ccacttcatt | tctgttcatt | tggagaaccc | gagcttgccg | caaagtgcaa | gaaaattata | 9480 | | gaacgaatga | aacagaagga | cgtaacactt | ggtaagtcat | gtttttcaat | cttcagttga | 9540 | | tttgaaaaag | ttgtatcgag | ttggaaacag | cttttaatct | aaattctgct | aacttacagg | 9600 | | catgctattc | agtatgataa | acaacaccgg | cttgccacat | aagcactttg | aattctacgt | 9660 | | cttcgataga | atttctactt | atctcagtag | ttcggaagat | gttgagtctt | cgaaatcatc | 9720 | | accttcagta | tcccgagcat | aattcgaatc | gcccacacgg | ccataaagac | cggttccttt | 9780 | | cgattaaatt | ctgttaaata | tgcatgctcc | gtctttaaaa | aatcagtccc | cgtattttaa | 9840 | | acgttttgat | tttaatgttc | atattattat | ccgaaattag | tatactcgcc | gtcatgaaag | 9900 | | cccgagatat | ctagttcgca | agtcagaaat | ttttcggagc | atcgtcgtga | tatatgaata | 9960 | | aatacattcc | tgtttttcac | aagtgtagtg | tgaaaccaat | ccatgcagac | gtttatttct | 10020 | | gaattaattt | tgaaacagat | ttcagagaca | gtgaggttga | cattagatat | gggcaagtaa | 10080 | | caataacagc | agggcagtta | ttatgattat | ggatgctgat | ataggaaagt | cagaacagta | 10140 | | taatcgacga | gaataaaaag | agatgagaag | ataggcgaga | ataaagaacg | ttaacgaaaa | 10200 | | tcactgaaga | gctacatttc | caacagaata | agaaatgtag | ttggaaatcc | ctaatcaaac | 10260 | | agaaaagcga | gaaatcatga | ctttcgagat | aaagagattt | atctgcaaac | aattcttgaa | 10320 | | cataaaatta | aagcaccaca | gactgtccaa | attataaaat | cagtttctcg | ctacagtctg | 10380 | | ggggtactct | agttccattc | aaaaacttct | tgcaaacaaa | gagaaataaa | cagacttgta | 10440 | | cgggacacat | ataaaatcta | agcatgcttt | gaaaagcgga | gaacatacga | tctattcggg | 10500 | | gatatacata | tatatatata | tatttcatct | catctagagg | atcaccatcg | ttactcatca | 10560 | | aattggttgg | tgtggtggaa | gttatgaaaa | gagcaatttt | aaccgaaaat | caccaaaaca | 10620 | | gaaaccaaat | taatgtataa | tcgacgagaa | tcatgatgag | atgatgattt | gcttctagca | 10680 | | gaagtttaga | agcacatgct | atcattcatg | ctcacgatga | cgataggttc | gttatgcatt | 10740 | | cttgaagcca | atgacacttc | cattgctcct | tctcttgcgc | tcacacaatt | tccattctcg | 10800 | | tcgtaaatcg | ttcgactttc | gaatatccac | atcttaccgg | gcggcacttt | tggcctggtt | 10860 | | tggcagatct | gaaataaaat | cttttcataa | tttaaagtct | gatatcccga | gaaacaatag | 10920 | | ctgaattgaa | acagaagaat | aaatctcacc | tgaatatcca | cgtttgcaag | tgaagtttct | 10980 | | ttcacaaacg | gctgtgtttc | ctcatagaga | tcatctgaac | cgtaggagaa | tggacggagc | 11040 | | aagtcgttca | gcttcctcat | gtgctgttca | tttgccggtc | tcacgtgctt | ctttacggga | 11100 | | gcagtggcgg | cagcatacgc | tgatttagat | gctcgcatag | tgtcattcct | acgactttga | 11160 | | ggcttccttt | cattgttgta | atgcggttgc | atttggaacg | gtgcgttttg | aaatcctcgc | 11220 | | atgacttgag | acgattgatg | atgcgatggt | ggaggaatgt | ctgcaagatt | atagttatgt | 11280 | | attaaaaatc | aaaaatttgt | gtggttccca | ttttaaaata | aaaaaaaaat | atttttacgc | 11340 | |------------|------------|------------|------------|------------|------------|-------| | actttgctga | ggcaaccgat | aactatttcc | tcgctggcga | ctacttctct | tattgtgagc | 11400 | | attatagctc | atgttctcat | gattgagttg | acctgaacga | tcaaggttaa | aactaggcct | 11460 | | aaaactagtc | aaaattactg | agtttctcct | tccacgtcgt | ctgtcgagca | ggctccgagt | 11520 | | acatttttac | tggaaaacta | taataaatta | caaaaatcac | gccgaaaatg | gggaaaagaa | 11580 | | ttgaaaaatt | gaaggaacac | agaacatttt | ttcaatgcgt | ctctcacgtt | cgagactact | 11640 | | gtattcgtgg | tgagacccaa | ctccctcata | aaagcatgcg | cctttagttt | tttaatttaa | 11700 | | ttcatgttgc | caatattggc | caattaattt | caagagactc | tgattgaaag | tgttataatt | 11760 | | aaactacata | tatttaagct | ttcagcattt | ttttcaatgc | acttgagacg | caaattgaat | 11820 | | aatcaggcac | gtaatgtgtt | ttcgaggacg | actataaatt | gtacctttgc | tatccagtgg | 11880 | | gttctttaat | tttcccattc | caatcgattt | tttctcccac | tctggcagtt | tctttgtcat | 11940 | | cactggacga | gggcattgga | atgggagatg | attcatgtga | caatccacac | atcctgcaat | 12000 | | aatgacatta | ttttttaaaa | atgttaagat | gatatgctta | ccaggagtaa | atatcatatc | 12060 | | cttttcttta | ttagttggct | tagccttgcg | gccacgttta | ccatttgaca | ttatagttac | 12120 | | ctgaaaattc | aaaaaattag | atattcaaaa | aggtataaat | ataatataaa | tgcgatttgg | 12180 | | taaatacgga | tgtaatgggc | aacccattct | atacaggaaa | accaaaaaat | tcccgcaaaa | 12240 | | ttatttttt | ccgaataaaa | tgatctactt | tgttttatgg | tgccgctcta | tgtgttatga | 12300 | | cccttcgatt | agtagataga | aaagaaaaag | gaatgtacga | gaatatcgtt | tattatttat | 12360 | | tatttgaaaa | atcccagaga | cataaaaaat | cacacagaaa | agggaaacag | tatttctgac | 12420 | | aatgttcaaa | agtttggttt | caatcagcac | taataatgtg | aaaggtaacc | gtatcaatag | 12480 | | tgatattttc | ttattaaaaa | actgttcgag | actacaagaa | ggcctgaaaa | agcccgcaac | 12540 | | gacgactaaa | ttcgaaattt | cgaattaggt | tttaaagatc | agaagatcgg | cagaaaagta | 12600 | | tctgataaaa | atataagaaa | tcggaatagg | aatgcgatga | ggaggtagaa | atatggtgaa | 12660 | | gagatacaga | agaatgaggt | aagatcggat | gaacttgaag | cactttttga | gatttttgat | 12720 | | ggtgaagttg | gtggatgtag | acgtttcatg | gaacatctga | aaattaagat | ttttctaaaa | 12780 | | cacattttct | atagaatata | atagaatgcc | aaatagagaa | actagactta | cttgaatttc | 12840 | | tttcgatttc | tgtctttcaa | ccttctaact | gaaatcaact | ttcgacgtgt | tctcggtgtt | 12900 | | tcaacaacac | catcaacaga | acactcagca | ccaaattcag | catcggaatc | atcagaagaa | 12960 | | gactcatcgg | aatccaaata | gaaattggat | ttagtattca | tcaattcaaa | agaatccaat | 13020 | | gatactgtcg | attcagcaag | ttggactgaa | cttgatggtt | gactacgaac | ccattgaggg | 13080 | | cgtcgaggca | gaagtcgaga | gtatgaggat | gcaacgtgga | ttgatgatga | cgtcaacaat | 13140 | | ctttggtgtt | gagatgaaga | agtggctgat | gcagatgttg | acagacggaa | tggagatgag | 13200 | | tgaagagcaa | gaagacatct | gaaaatttga | aacgttgttt | atgtggacag | tactgtaaag | 13260 | | atcttacctt | ggatcataac | tacttgccct | ctgttttctc | ttctcttgac | ttctacttaa | 13320 | | aagcatttcc | gtctcgattc | tccggttact | tgaaaatcca | actccagaat | tttcagcaca | 13380 | | aagctgctct | cccgaaccgt | agactgttgc | accacgttga | ggggttgaca | aggatctgaa | 13440 | | atcagatgtt | taaagcatgg | caagtagagc | aacaatgtta | accaaaattt | ctgaaacttt | 13500 | | ttcgaatata | gtcaaaaatt | gacaataact | cagtttcacc | tatcatagtt | ttggaagtca | 13560 | | accaaaaatt | tttgaaattt | cataaaaatt | ccaaactttc | taaaaatttg | gaagattgat | 13620 | | atgattgata | tgaaagtatt | tatatatttt | ttaacctggc | agacgatact | tcaccattaa | 13680 | | | | | | | | | | agacacacat | gtggagaaga | attattttac | ttttagtaat | ccaacgtttg | cacttacctt | 13740 | |------------|------------|------------|------------|------------|------------|-------| | ggagcatgca | agcttttagt | cattaaagct | ggaattctag | atggagttct | tcttggtgtc | 13800 | | gacattgttg | aaataaacat | tcgtggttca | ttgattgatg | atgacgtcat | agaaccacgc | 13860 | | ccagatgaca | atggattacg | gtagtcatca | gaatcagtag | attcattcaa | ttttctagtc | 13920 | | atttcttctg | ttttctggaa | aattaaattt | taattaaaga | tctaacaaaa | atctggcact | 13980 | | tacattaata | agataatcaa | catattctaa | ctcattcatc | gtttcattat | tttctaattc | 14040 | | tggcttcttc | tcatcgaacc | gttcggtggc | attgtgtcgt | tgcgggcttg | accgttttt | 14100 | | gaatttctga | aatgttttc | atgcaatttt | tgttcttatt | tgtgtgtcat | atacagtgaa | 14160 | | aatcaaaaac |
tagtacaaac | taattccgtt | tagtaaataa | aaaatcgatg | taaaatctca | 14220 | | gcaaagccaa | gatcttggcg | ggtccttata | tccaagtttt | gttgccattt | tatttcagat | 14280 | | attcttttcg | aaagtcagaa | aatttgaatt | tagaatcgaa | tggacccatt | tcttgttttt | 14340 | | ttttgttgca | ttttttaact | gtacttttt | cgtcagcata | tattttcact | attaaaacag | 14400 | | aatattcatg | acaataattc | cacaaaaaaa | cgtactttaa | tatcatagtc | gattggttca | 14460 | | gaattggaac | gagaaccttc | gacgcgtcga | ttgtcagatt | ctcgattgat | ggacgacgtg | 14520 | | ctgactgaaa | atttctggat | tgaaaaaata | ttcaaatgaa | aaaataaatg | agaaactcaa | 14580 | | agtctaaaaa | atgaatgttg | ttaataacga | atatttctga | tgagaagagg | atagagaaaa | 14640 | | aaaacgagtc | taataaaatg | catgtgatat | cctgcataaa | aatcccttct | tttttcacta | 14700 | | atccttcgct | caattcattc | aaatagaact | ttgatttcta | ttagagttga | ggttgtttga | 14760 | | acaattttaa | taaattaaca | ataagccata | aaacctcgaa | acgtaccatc | atcattgagt | 14820 | | ttgaaaaagt | ggacggatcc | gagtcagtca | cctctggaac | aaatcgttcc | agagcactga | 14880 | | aaacgacaac | gttctcccca | cagaatcgga | ttgtctcctc | gggaattgtc | gcctcgacaa | 14940 | | acgatcctga | acctgaaaat | tttcgatttt | tgtaagctca | atggatttta | aactgaaaat | 15000 | | gtagtcaaga | agtcaagaaa | aactgatgga | gttctaaatt | cggtgttagg | ttttgaaaag | 15060 | | atcgtcaaac | aaacaaatgc | ataaaactag | gtagggaaca | aatagtgaaa | tagaaaaatg | 15120 | | aaaggcgaca | actgccggga | gcaagagtac | acacaaagaa | aaaaagttgc | ggaagagcac | 15180 | | agagagcgtc | agtccatcag | aactgcatag | ataaatagat | aaagagaaac | atgaaacata | 15240 | | aggccacccg | ggagagacga | caggccagtt | ttccggtgaa | gatgagagtg | cgagaattag | 15300 | | ataagaaaac | ggaaattgtg | atgaaacttt | ttcaatccaa | acttctagaa | ttataagaga | 15360 | | cacctaaagt | aattagataa | gtgttttaag | tgatatttta | gattcactgt | atcatgttta | 15420 | | aaaaagatat | ttcaaaaata | tatacctgat | ataggaggcc | tcctctgagc | accgaattgt | 15480 | | tctcgagctg | tttccacgag | catccgctca | cacattgaca | taggccgtcg | acagccagga | 15540 | | gttgccacct | gaataaataa | ttattcaatt | taaacctaat | ttagtaatgg | taactttgta | 15600 | | aatgatggtg | gatagctcat | ataaaatttg | aattggttct | aaagttatac | aaattttaat | 15660 | | ttcggtcaaa | cttatgaact | gtacttttga | gttatactat | tacaataata | ttacccaaat | 15720 | | tattgtattc | agatttttgt | aatcagtact | aacagatttt | aggcaacgtc | ctgccagaaa | 15780 | | catgggaata | tatttgagca | gtttttagta | agttgccaca | gcttgtataa | gggaattgta | 15840 | | tcaaaatgta | cttaatactt | tctaagcact | gacatagtga | actacaaaag | tcggtattat | 15900 | | acaatgccac | tacaaataaa | aatattcaga | attcgactga | aaaatgagaa | aaggaacaac | 15960 | | tgaattggac | acacgatgtc | gtgattttca | agaacacaaa | aaaaagaaaa | agaaatcgaa | 16020 | | aatgttgttt | gcctctttt | ctttttctat | atgagctaga | atctcgaatg | catgcctaat | 16080 | |------------|------------|------------|------------|------------|------------|-------| | ggagccactc | gctctcgttt | ctctaagtct | cttctcacca | gtcttttgtc | caaaaattgc | 16140 | | gatgtcgcag | gcgtcccgtt | teegeegete | acggagacac | cactatcggc | accagatgat | 16200 | | cgtgtaaaga | caccgtcttc | gttgacttca | attgctgaaa | taagaggaat | tagttttgaa | 16260 | | ttggaaatct | gattaaataa | aagtccccta | ttcaatctaa | ttaattttta | aacacaaaac | 16320 | | ttactattgt | ttaatggtgt | tgacgaatta | gaagaagttg | attgaaatgc | gttaacattc | 16380 | | cattcaaagc | tatcttcatt | ccattctgct | cgttctttta | tcctttcact | cacgtctcga | 16440 | | gggatgaagt | tttcaacaat | aagaagcctg | aaaacttata | ttattctatt | aaaaaaaatg | 16500 | | aacatcaaat | cctaacgaaa | gaaaattctt | ctggggggaa | aaggagagaa | ttgtgagaat | 16560 | | aaagaacctg | cgctgtcggt | atcaaattac | actatttgaa | ttcaaattag | aatacgaaag | 16620 | | aaagtgaaag | aaatgaaaat | gagtgagaat | ctattaaatt | gtaattgaga | tatcactgaa | 16680 | | cttacttcaa | cttcaattcc | ttgctcactt | ccgcaattgt | ctgatccaga | tcttgtcgtt | 16740 | | cgtcggaata | tgctccagac | acatcacgaa | tctcattgcg | agcctgaaac | attcacaaac | 16800 | | cttatcttga | cacctggtac | atctgaagtc | aaacctgtct | caactttatc | aacatcttct | 16860 | | ttaacttttt | tgtctttgcc | tccacctctg | tccttaaatc | cgaaaatgtt | tgtttcaaat | 16920 | | ccacagtatc | ctcttcctgc | cgttccaatg | cttcaaccat | ttctctttcc | cttcgttttt | 16980 | | gttcggcaag | ttctcttctc | ttcttttcca | gttgtgcatg | ttgttctttt | gtccttgatt | 17040 | | ctaaccttcc | atcttcttca | gatcctacga | taagtcgact | ttgaatgttt | gctattcttt | 17100 | | cagcaacccg | tgcttgttct | atccgttcct | tttctaacag | atcatgcttc | tcttgaattt | 17160 | | ctcttattaa | tcgatccttt | tcatgtttta | tcagtgaatc | atctttttga | attgcttcaa | 17220 | | tatcatcttc | aagttttgct | cgttcagcat | cataaaaact | ttgagttgct | ccatccctcg | 17280 | | atcttgtctt | tctctgcttc | agttgctcac | ggagcatttc | aatttcttct | tggaattctc | 17340 | | gcagtaaagc | atccttagga | tcttcattaa | ttttcggttg | attcttgatg | ttttagctc | 17400 | | gatttgcata | tcgtaatgta | ccaagtgtct | cctcaaaatt | gtaacttgca | ggtccaatac | 17460 | | aagcaaccat | aactgtcttt | gaatttccac | cgagagaatc | ttgaagaagt | cgagtcagtt | 17520 | | ttgaatctcg | ataaggaata | tgggcagatt | tcgcatccac | caatgcactg | attacatttc | 17580 | | caagagccga | taatgaaaga | ttgattttcg | tagcttcttt | aaatctttcg | ccagttgctc | 17640 | | ctgttttcga | ttgccgttct | gaaccagcta | aatctacaag | atttagtcga | ccaactgtaa | 17700 | | tatgactttc | tccgtcttca | ccaattcggg | aacattcaac | agtaatgata | aagatagcgt | 17760 | | gggaacgaga | cgaatgctca | ttcatgttgg | ttcgcctgaa | aattttagta | aaatcaaatc | 17820 | | caacggcgac | cacagaaata | acttacccta | cagaccgatg | cccatttcct | cgaatcatca | 17880 | | cttcgtgtat | ttcacctact | gtccttgtta | attttgactg | aaactttgaa | atttatagtc | 17940 | | gtcttctatt | tcagaaaact | atcacttacc | gttaaatctt | tcacataaac | tcctccatct | 18000 | | ggacgttctt | taatttctaa | tttcttattc | gattcggctt | ctaataaatc | tcgaagttcc | 18060 | | tcctaaagat | ttcatttttg | taaatcacac | atcctaacgc | cttacctgat | aaatttccaa | 18120 | | atagctagct | ctaactaaat | actcttgatt | atgtgatgct | gccatgtgct | caaaaatatg | 18180 | | gtcaatacac | ttatagatga | cacctcgttg | ttctggatcc | gatgattttc | cttccattgt | 18240 | | gtgagtcttt | ccagttccag | tttgaccata | tgcaaaaatc | gtggcattat | atccgtttag | 18300 | | aaccgaatca | actagatctc | gaaaggtttc | ttcatataga | tccgattgtg | tggaactata | 18360 | | aaatatatat | tttaaaaaa | gagaactcat | aaaatcataa | acataaaatt | gtggagaaat | 18420 | | aattttgaaa | aatactaata | tttctatagc | aggtgaaaaa | aaagtgatgt | actcctagaa | 18480 | |------------|------------|------------|------------|------------|------------|-------| | ataaataatc | ttacttttca | tcataaattg | catcgaatgt | aaaatccttc | gatggctcat | 18540 | | cttgctcttt | tggattttc | agctcaattt | gcccacgttg | tggtcgcata | tgtactattc | 18600 | | tgaaaatgat | cgaaatttca | aaatataaat | atttcaaact | ttacttactt | tgaataatta | 18660 | | tttgcaattt | cttgtgaaga | taacggtcga | catctcacaa | ttacctgtaa | acataaataa | 18720 | | atacatttat | ttgaatttgg | aaatgtataa | aactggatta | tgaaattttt | aagctggtgg | 18780 | | tttttgtatg | agaagtaacg | aaaaaaagta | caatttactt | agagtcttgt | gatttttctt | 18840 | | tcaaatgcaa | aactcaactg | aatcataaat | agtgatgctt | cgaaaagttt | ttagaggaaa | 18900 | | attgtatttt | tagtaaaaac | taatatacgt | tttggactta | aaaaaaaatt | atgttaaaac | 18960 | | ttgaaaaatt | acgtttatta | gtgcttatat | taaaatacgg | tttcaaatta | atttaaaatt | 19020 | | aaaataactc | accttttggt | caaaatcaga | cattttagaa | actagcatgt | actttattac | 19080 | | gttgaatata | acttatgttg | gaaaatggaa | aatttgaaga | caggtgaatt | ttagtttttt | 19140 | | ttctttttcg | tacttctaaa | aaatacttca | tttattttac | attttgagaa | ctaatttttg | 19200 | | aacatgtttc | gaacaaaaaa | aaagattttg | aaaaccccaa | aaaaacttac | tttgacagtc | 19260 | | tcctgttttg | aagattttt | cattatttcc | accattttt | gtcactaaat | atttggctat | 19320 | | caatgtaggt | gtcaaggaaa | attttggtgc | attcctgatt | tagtgagagt | ggtctggaac | 19380 | | ttaagaagat | tagtttaatg | tggaaaaata | atcatattgt | atcgagaaac | ggaattttga | 19440 | | agcaataacc | gctagagaaa | gtgactaaaa | accagaaatt | gtagtcgtgg | aatttcaata | 19500 | | tttttggttt | tatgtcacat | ctggacaatc | ggaaaaatat | gcatacattt | gaaatttta | 19560 | | gaaatatttt | gaattaactt | taaaggaaaa | aaatgcatta | aaaagattga | aaacatcatt | 19620 | | gacgttgaaa | aatggagaaa | atttctaatt | tctcatcaaa | atattaaaat | attaaagttc | 19680 | | ttcaataata | tgaaaatgtg | aataaaatgt | ctaaataagc | aaaaaaaca | gatcctattc | 19740 | | attataaaat | gttcacacaa | gtgttacatt | tcgtacaaag | aagtactaaa | acggatggac | 19800 | | taaagtaata | ttgtcactcc | cgaaaagacg | aggaagaagt | aatcggaaga | agatgtcgga | 19860 | | agatgagtga | tagtaaaaat | acgaagagac | gcagatagag | agtttgagag | aaggagactt | 19920 | | ctggaggaat | aaaaggtggt | ttcaagatgg | gggacagaga | gggagagggt | taaaagagca | 19980 | | caaaatgtgc | ataatatcga | tcctgcgcag | ttgagagacg | cagacaatgt | gaagaatgga | 20040 | | gcatatgttt | ctagtgaaca | ctcagaagta | gttgttcatg | tgtccgaaac | tttggaaaca | 20100 | | tatacatttt | aaacttgacg | tttttgaatt | ataaagggat | ggaggtgctt | caaaaagtaa | 20160 | | tcatagacat | gtgtagattt | taaattaaaa | cacaactaga | cataggatga | atcagaagct | 20220 | | taccataaca | ttgttgattt | atttaaaaat | gagaaaaagt | aaaattccgg | atagtcttct | 20280 | | ttgaaaaaat | tcacagagaa | gttataatgt | ttgatgatat | tcactgattt | gtaatacatt | 20340 | | attagtagca | tggcttctat | gtatatagac | tatttttata | tcacatacat | gaaaaagggt | 20400 | | taaggcatgc | gccagggcct | gaaaacgcat | ctacctacca | ggggagctct | agctcttagt | 20460 | | tattaattca | agagactttt | gaaacttgat | tttttgagat | tttattcaat | gattggttta | 20520 | | aaaaaaaaga | ttatttgcaa | aaattacaaa | tttaatgtc | tatactctga | catcggttta | 20580 | | gaacaatttt | agacaggctg | caatgaaagc | aatgaaataa | aatttccttg | aaattataat | 20640 | | agagaatcag | taaaatgttg | cagattattt | gaaaatgcat | gcaagaattc | gcagaaaatt | 20700 | | cagtgaagca | gaaaagtgcg | acaggagacc | gaagtctaaa | aaagtgaatt | atgaataaaa | 20760 | 108 110 | | tgactggata | | | | | 20820 | |------------|------------|------------|------------|------------|------------|-------| | | caggctctag | | | | | 20880 | | |
tctttgcact | | | | | 20940 | | aaaaagtaga | attttaaatt | ataattttaa | aatttaaata | ccaagcaaaa | aatcatatac | 21000 | | tcatcatatc | atgtgatcat | atcatataat | catatagggc | tcgttctttt | ttttttcaaa | 21060 | | aaattaaaaa | tttactagaa | ccaagcatat | gacaataaaa | tattttgaat | tcactttaat | 21120 | | gggaaaaaaa | caagaaaatt | tcattaacat | tattgaaaac | atcgttggca | ataggaatgt | 21180 | | agaaaatcaa | atcaaaatca | agtgagatta | ggaaagaatc | gaaattaggt | agaattggaa | 21240 | | aatctcgatt | ttttaagttg | gattcttaca | cgatttttc | gggatatttt | tcatttttat | 21300 | | tttgtagtat | ttcagcctag | acggctgaga | attcttttca | aaccttccaa | tttcaaagag | 21360 | | attcttccat | aatttaatat | aattttcatt | cgatattagc | atccattata | tacgtatgat | 21420 | | tcccctttta | aaatcgattc | tccttttcaa | ctgactcatc | acttaagaat | tgttgagtca | 21480 | | tcaactgata | gtgagcagac | accaacaacc | atctctttag | tttccgttcc | gtttatttta | 21540 | | ttttggaatc | taacatattc | aagaaaatta | acttgaaatt | agaataaatg | tttcttgcta | 21600 | | gattttttg | tcataagtat | ttcttatttg | gattataatt | ttcatctcga | aatcgtagag | 21660 | | agtttttcac | tattttttt | tgagttctaa | acacttcctt | cctcatcgat | gatgaagttt | 21720 | | ttgacaaatc | aactagtttt | ttactcatat | ctcacatcaa | tctatgattt | tattcaaaaa | 21780 | | cagttaaatt | tttttaacga | aattaaaatg | gtcatcggac | cgagcaaaag | ctttcagaat | 21840 | | caactgcttc | tttaaattct | ttaaaattca | atcaactttt | cgtgtccaaa | gtcacaaact | 21900 | | acacctttca | aaaaatattt | ctacattatt | tgcccacatc | ttggcacagt | tttcttgcca | 21960 | | ttcttcaata | ttttcttctc | tgcgtttccc | acactcttat | tttctgactg | ttgacttttc | 22020 | | cattgtatag | actcaatttt | actttcgttt | tttcaatttt | tttttctgcg | aagttcggtg | 22080 | | ttaaacctcc | attttgcaat | attaaaaatt | tcaatattgc | ccgttttggc | ttgaatctat | 22140 | | taaaattatg | ctgtttttt | ttcagaaagc | accaaaacat | gccagatgat | attccaaaat | 22200 | | tgccacgaca | cagaggaaag | aaaaatcagc | cgaaaggttt | gaaaaattta | gaaaaatctg | 22260 | | aagttacttt | tttaattctt | tagacacacc | ttggaaacaa | caaaaactgc | ctgctttacg | 22320 | | gcctcattat | aacataactt | cagcaattcc | agttactctg | ataacaggag | tagccacgtt | 22380 | | ggcaatggga | attgctcttt | atttcggaca | taatggatgt | gagtttttag | agtttattat | 22440 | | cccaaaaaca | aaaatatcaa | ttactctttc | ctggtaataa | gtaagaaaaa | gctaaagaaa | 22500 | | acaaatttct | tgtcaaaatt | ttacattgta | aaccgatagc | aacaaaaaac | aagtgtcata | 22560 | | | gaaaatcgat | | | | | 22620 | | | ttagtaccgg | | | | | 22680 | | | tgagcaattt | | | _ | | 22740 | | | attcgtgttc | | | | | 22800 | | | gatgtagtcc | | | | | 22860 | | | cggattgtgc | | | | | 22920 | | | atcaaacatt | | | | | 22980 | | | ttttaatttt | | | | | 23040 | | | | | | | | 23100 | | | ctggtcttag | | | | | | | yttggaagtg | agtgtatctg | ytaaaaacac | aattegaaaa | Latttaacca | aatatgtata | 23160 | | aagcctaggt | tgaacctgct | ctgcagttcc | taattttca | cattattttt | cttcaaaata | 23220 | |------------|------------|------------|------------|------------|------------|-------| | ttactatgat | atttcaaagc | ccggggtacc | atcttaaaat | catcatttgc | aagtatcaca | 23280 | | attaatgttc | aacattacag | ggcgaagtga | agttttatta | cggtctttcc | aagttctatc | 23340 | | aaaacaatcg | attatacttc | aactcacgaa | acgatcaaca | gctacgtgga | aaagttactg | 23400 | | aaactgacgg | atgtgatcca | ttagaatatg | tggatgttaa | tggaactaaa | gttcccattg | 23460 | | cgccgtgtgg | gaaagtggct | gattcaatgt | ttaacggtgc | atttcaattg | attgcttaat | 23520 | | ttcagtattg | caacatttt | catttttat | aatacatcta | acttcaaaat | ttgtttttt | 23580 | | ttcagatacc | ttcgaattat | tttatatcaa | tgataaagcc | tcaaacgcgg | taacacgggt | 23640 | | tccatggaca | actcgtggag | tactcggtgc | aactgaaatg | aaaagaaaat | tcagaaatcc | 23700 | | gattcgagcg | gaaaaccaga | cattatgtga | tgtgtttgcg | gttgaaatga | aataagaaaa | 23760 | | aaaataaatt | aaactccatc | ttttagggaa | caatgcctcc | gccatcatgg | agatatccga | 23820 | | tctgtcaatt | gggactaaac | agtattgatc | cagatgttgg | cattggtttc | gagaacattg | 23880 | | attttatggt | ttggatgaag | gttgcagctc | ttccaaaatt | cagaaaactg | tatagaatac | 23940 | | tgaatcgaca | agttgatatg | ttcagtaatg | gattacctaa | aggacaatat | cagttgacca | 24000 | | ttaattacag | tatgtttatg | ttaatgttga | atttatgtat | ttatgcaaaa | aatttactgc | 24060 | | aaaagttcac | aataattcca | cccaaacctg | cttaaatatg | gagatgcaag | ttttttgttt | 24120 | | cagataaaca | gtggctccaa | aaaaccaatc | tttgttataa | aacctcacaa | aaatttctcg | 24180 | | atatttcttt | attatggttc | aaacttttga | gaaaaaaggg | aaatttagaa | aattctttca | 24240 | | agcgaaattg | tcaaaatttt | tcaaaaccaa | atttgatttt | ccagatttat | tttttgtcga | 24300 | | cttgacaata | gtaaagaaaa | aacaagttga | atttttctat | atgaattctt | atagctgaac | 24360 | | atttttgatc | aatttgaaaa | taatcaatag | acaattttc | tccatactac | tgattttcag | 24420 | | actatccagt | ggatatgtat | tcgggcgaca | agtacttcgt | tatagccaat | gaaaactggg | 24480 | | ttggacccag | gaatctgttt | ctaccagtaa | tctatttggt | tgttggaaca | ttcttacttc | 24540 | | tcgttactat | tctcttcata | ttgatttggt | taaaacagag | actgtcgagg | gttcatccaa | 24600 | | catgaattgg | aaaaactaat | tgaaaataga | cggatgaact | tcaaatttgt | ttacaagagt | 24660 | | tgaagtctca | aaataagctg | gtagcatgta | ttgtacggga | acagatttgt | atactttgct | 24720 | | ttgtaaataa | aataaaatgt | tattatatta | gtctgtaatt | ttatgtatag | ttcaatttaa | 24780 | | ttgaaataca | taataccccc | ttcagtttat | caattaaagc | tccaactatc | attcgctggt | 24840 | | tgagattaat | tgtcgagtga | gggcatctga | aatgtaaatt | taaaattaca | aaataaataa | 24900 | | ttgtaagtgc | tatcagatat | aacaaatgat | catttaatta | aggaggaaaa | acaaaacatt | 24960 | | aatttaaaaa | atttatcaaa | aaacaaaaaa | aaacggtcaa | atatttttc | aaacaaacaa | 25020 | | agtaaagcta | atttctatta | aagttgatct | aaatactggt | tgtgtaggca | tactatagtt | 25080 | | gatttcaacg | ggaagaaggc | caaatcagca | agtgtacatt | gtgttctgaa | aaattgaaat | 25140 | | tcaacagttg | aatataagta | gaaactctac | ctattgctaa | catttattgc | aattcttctg | 25200 | | tgttttgaac | aatatcgaga | tcgctccatc | catcggataa | ttccgtatga | tttgatgaca | 25260 | | tctcatctac | agcttccaat | tctccaatta | tctgatcctt | cagtttcagc | ttaatatcaa | 25320 | | acgatttttg | aatttcctgg | atatttgctt | cataaactct | cgagatttca | gatttaactt | 25380 | | gttgaatctc | tttaaattgc | tctgaaatct | tcttctcaag | aactctttc | tgataatata | 25440 | | gctcagtgat | ttctcgagtt | ctttcttca | taatcatttc | agtattcatt | tgttcttctt | 25500 | | taacattttc | ttcaagtttt | tcaatctttc | gtacataatc | acagaaatga | tcaaccacct | 25560 | |------------|------------|------------|------------|------------|------------|-------| | gcaaccattg | cgggtcattt | cgcatagttt | tgagtcctcc | gggttgttca | agaattgcga | 25620 | | caagactttc | tgtctgttca | agtttcagtt | tttctaatgt | ttgctcaagt | gggaattctc | 25680 | | tgacctcctg | gtttgcctct | tcggaaggat | cagaaatttt | ttcagaatgg | aacgtcaaaa | 25740 | | tttcttgttc | caaatgggga | tatgttctac | tagtcccttg | actagaagtc | tcactagaga | 25800 | | ttttaagtgt | cagttctcga | acattacgct | ccaatttcgg | agaatttcca | gattcagtgc | 25860 | | tcacatgact | ctttaatttg | acaatctcat | cattcttatc | aaagatttga | ttttccagtg | 25920 | | cagagacctt | cacttgacaa | tcttttgtct | tccatgacaa | ttcatctgcc | aacatcttga | 25980 | | tcatgttctc | attcgaatca | atcgttttt | tcatatcttt | tatcatgtct | tcatcagttt | 26040 | | tgattgtaac | attttgcttt | gaaatttcac | gtttcacaga | attcaaagca | attttcaaag | 26100 | | aattgttgaa | attttcgagc | atcaaacttt | caacaccttc | ggatttatca | ttcttggcaa | 26160 | | cattccgatc | attatttagt | tcagttgata | tagaattggt | atcatcaact | gagaatactg | 26220 | | ttaaattctg | gtgttgaagt | tccaaaaatt | tctccatgac | tttttcaata | ctatccttct | 26280 | | gataaacatt | gaaggattct | tgaagcattt | taatctcttc | attcttttc | ttgagttcgg | 26340 | | aaaacagaat | attctttctt | ttttggaatt | ccactgtcac | taagagataa | tcatctttgt | 26400 | | tttccaaaga | tgtaaccagc | tgcgatggat | tcaaactttc | caagttttc | gtaagatagt | 26460 | | caacttcgtc | ttcaagtttt | tgaatgatct | gtttgttgtc | ttccatcttt | tttgttataa | 26520 | | gtataggatc | cttgaaataa | agagaaaacg | tgactatgat | cttgtcaata | gtttccagca | 26580 | | agtggaaaat | gtcataataa | tctccatcat | ttaatacttt | taatttgtcc | aaaagttgat | 26640 | | ccatcaactt | ctcttgtttc | ggtgtttcat | caccaattaa | tattccaccg | taaccgttaa | 26700 | | ccggatatgg | cgacaaatca | taaaattgtt | tttgaagatc | ctcatattta | gttttgagaa | 26760 | | ttgagaaatc | ttcatttctc | attatcaaca | acttcttcaa | tcttctagct | tctgtctctg | 26820 | | cttttatttg | gaaaatttcg | aattgcattt | cagctagtat | tatctcatct | tcttgttcat | 26880 | | cgattaattt | ctcaacttct | tcttttaatt | ttttgatatt | ttgatctttt | tctgccatag | 26940 | | cattttgaaa | atcttctagt | gttgcaaact | gatattcagt | ggatgtactc | gtggattctt | 27000 | | gagtcgaaat | ttcagtgttc | ttgtttattc | gttttacttc | ggagcttctg | actattttct | 27060 | | ctggagtcca | aaacttgtct | acttccaaaa | aatgtgtttt | tttgcttctg | aaaaacatat | 27120 | | attaagtaac | atctttaaga | tattcaggtg | cacttacatt | tttgaaatat | ttggtgacaa | 27180 | | actttgaatt | atcaatctga | attcttctgc | ggttccagtg | aagcaagcat | aattctgaaa | 27240 | | ataaaaatta | cagcttttga | aaccaatgaa | acgaaacaac | tattgtattt | aaaaaatgct | 27300 | | cacttcaact | ccattctctt | ccaccgctgc | ttctttttc | acacttttcc | agtttatcaa | 27360 | | ttaaaaattc | aagtttctgt | tgttcaggtg | aaggctgaga | tgctgtgaac | gacatagttc | 27420 | | tgaaaatagt | taatttaaat | gtagcagaaa | aatcttttct | agaaagtaaa | aaaaatcagt | 27480 | | aaaaacaagt | actaagagaa | attgaataaa | ccaatcacaa | taatgacttc | ttaacaagct | 27540 | | gaaaaataat | gcaatagcaa | agaaaaacga | gtagtttcgg | taactccata | gtacattatt | 27600 | | tcgttattgg | gatcatcata | tcatttattg | atgaggatat | tatgagttaa | ttctaataac | 27660 | | ccgagagtaa | aggcaaaaaa | tagcatggag | tgaaaaaacg | gatcaagcaa | agaaatcgtg | 27720 | | ttaactttta | taacatctag | ttgacactgt | cagaccaaaa | acttaataaa | attttcactt | 27780 | | gtacataaca | gctagctgaa | actgtaattt | aattttatat | tccctcggtc | aattctagct | 27840 | | aaattagcga | ttctgagcta | agccttcatt | tcaaaattaa | caaaaaaaat | gcaatgaaat | 27900 | | | | | | | | | #### -continued | tttcacttgt | acataacagc | tagctgaaac |
tgtaatttaa | ttttatattc | tctcggtcaa | 27960 | |------------|------------|------------|------------|------------|------------|-------| | ttctagctaa | attagcgatt | ctgagctaag | acttcatttc | aaaaataaca | aaaaaaatga | 28020 | | attgaaattt | tcacttgtac | ataacagcta | gctgaaactg | caatttaatt | ttatattcct | 28080 | | tcagtcaatt | tcagctaaat | tagcaatttt | gagctaagtg | ttgttgtttc | ttaaaacaat | 28140 | | gcaaattttg | atggttttc | gtgttcagtg | aacaaacaaa | caaacaaaaa | aattctggta | 28200 | | aataaccaca | agctgaaact | gtgagataat | tttttagtga | ccattgagtg | actgctcata | 28260 | | gacagtggct | tggaattaag | actagaatga | ttatctctca | tgataacata | ttatacagag | 28320 | | aagttgggaa | gaatgtaggt | cattgtaaag | cgacagacag | gtcgcattga | tcaaagagaa | 28380 | | tataagtcga | actctttcgt | ttggtaactt | gagggccaat | gttatttgct | attagggaaa | 28440 | | attaacattt | aaggagcaaa | ggattgcaaa | caaaatgcga | taagatatat | gattatagta | 28500 | | ttttatcttt | tgtaagtgtt | gccataattt | cagtaacgaa | aaaaataaca | aggcaatttt | 28560 | | agatgttagg | aaaatcgaat | ttgtctgact | agccaacgaa | tgttctcaat | tgaagttatt | 28620 | | gttcttttt | aagatgtttt | catacaaatt | agtcagtttt | cgaagcttca | gccacactta | 28680 | | tccgaattga | gcaatttcaa | aactatttt | tgtaaaataa | aatacatctc | cgaaaattta | 28740 | | catcgagttc | ccaacaatac | tgtatggata | gaaaatacct | accaatactg | cacatgaaac | 28800 | | gctctgaaaa | taatcggaaa | ggaaatgaga | accttttaaa | tataaaatga | gcacaataag | 28860 | | taatactaac | tttattgaga | aagaacataa | ttgttatgag | aatagttttt | aaatgaggtg | 28920 | | agaaacagaa | tatccctgag | aataagtgaa | gatacttgaa | aatttgtgaa | atagtaataa | 28980 | | gtaaaatgtt | ttcacattag | tataaacaat | gacagagtca | cgcaaaagta | cgggaaacat | 29040 | | atgaagttta | taatacagtg | cagtacagaa | aaggtacaaa | gtttacaaga | atacaattgt | 29100 | | tttttaaaaa | taatttttg | ttgaaggctt | aaggtaatac | gattaaagag | ctactttctt | 29160 | | ccaatacgaa | gttgaattta | aaatttaaaa | ggaaaaaagg | aaaaaaatta | aaaagcatat | 29220 | | gaaaaatcgg | ggcgcatttt | tagtgcaaaa | aattagatgg | catttattt | atcccatcca | 29280 | | tctgaatctt | cactgtgtgt | ggatttattg | tcgtcatctt | gatcgatcat | tgtatcatca | 29340 | | gcttctcctt | cttgattgat | aagaagacct | tgcagttttt | ccgaaagttc | cgaaatcttc | 29400 | | aaatccttct | ctctcaatgc | atcatgcatc | ttctgaattt | cagcggatcg | ttcgctattt | 29460 | | tgaataagtt | ccatcagaca | ctcaattttg | ctatctttt | ccatgatttc | tcttttatga | 29520 | | tttgcaatct | gttcttcttt | tgattcacat | tctctctttg | aattggctga | aataaaagaa | 29580 | | aatgcttaca | gatgtgtgta | aaacccctag | aaaactttca | caagcttacc | tgtcaatact | 29640 | | tcaaattgcc | ccaataagtt | gtgcttccac | tcttcagttc | gaagtttaag | atcttcaact | 29700 | | gatgtattaa | gcgtggcttt | ttcctgctga | gtgtttgcaa | gttgcatctc | taacgccatg | 29760 | | acggtcgagt | tatgttgatc | caaaatatga | ctg | | | 29793 | #### We claim: - 1. An isolated and purified protein which catalyzes release of ADP-ribose from an ADP ribose polymer, encoded by a nucleotide sequence that is at least 80% identical to the nucleotide sequence set forth as SEQ ID NO: 1, wherein the isolated protein has a molecular weight greater than 100 kilodaltons, as determined by SDS-PAGE. - 2. The isolated and purified protein of claim 1, wherein 65 greater than 100 kilodaltons, as determined by SDS-PAGE. said isolated protein has the amino acid sequence set forth in SEQ ID NO: 2, 4 or 6. - 3. The isolated and purified protein of claim 1, encoded by a nucleotide sequence having the nucleotide sequence set forth in SEQ ID NO: 1, 3 or 5. - 4. An isolated and purified protein which catalyzes release of ADP-ribose from an ADP-ribose polymer, wherein said protein comprises the amino acid sequences set forth in SEQ ID NO: 11, 12, 13 and 14, and has a molecular weight - 5. The isolated and purified protein of claim 4, encoded by a nucleic acid molecule, the complementary sequence of 116 which hybridizes, under stringent conditions to the nucleotide sequence set forth in SEQ ID NO: 1. 6. The isolated and purified protein of claim 4, encoded by a nucleic acid molecule comprising the nucleotide sequence set forth in SEQ ID NO: 1, 3 or 5. 118 7. The isolated and purified protein of claim 4, having the amino acid sequence set forth in SEQ ID NO: 2, 4 or 6. **8**. The isolated and purified protein of claim **4**, comprising amino acids 647–977 of SEQ ID NO: 4. * * * * *