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Convergence Rates in Periodic Homogenization
of Systems of Elasticity

Zhongwei Shen* Jinping Zhuge'

Abstract

This paper is concerned with homogenization of systems of linear elasticity with rapidly
oscillating periodic coefficients. We establish sharp convergence rates in L? for the mixed
boundary value problems with bounded measurable coefficients.

MSC2010: 35]57.

Keywords. Homogenization; Convergence Rates; Systems of Elasticity.

1 Introduction and main results

This paper is concerned with convergence rates in periodic homogenization of systems of linear
elasticity with mixed boundary conditions. More precisely, we consider the operator

L. = —div(A(z/e)V) = —81 {a%ﬁ <x> 825} ) e > 0. (1.1)

9

(The summation convention is used throughout this paper). We will assume that the coefficient

matrix A(y) = (afjﬁ (y)) with 1 < 4,j,c, 8 < d is real, bounded measurable, and satisfies the
elasticity condition,

il (y) = a?(y) = ali(y),
ral€+ €712 < afl (1)€rE] < malgP?,

for a.e. y € R% and matrix ¢ = (£%) € R4, where k1, ko > 0. We also assume that A satisfies
the 1-periodic condition:

Aly + 2) = A(y) forae. y € R?and z € Z%, (1.3)

(1.2)

We shall be interested in the mixed boundary value problems (or mixed problems) for the elliptic
system L (uz) = F in a bounded Lipschitz domain 2. Let D be a closed subset of 92 and N =
OQ\D. Denote by H}(€2; RY) the closure in H'(Q; R?) of the set C5°(R%\ D; RY) and Hp,' (Q; RY)
the dual of H}(Q;R?). Assume that F € Hp'(Q;R?), f € H'(;RY) and g € H~1/2(00; RY)
(the dual of H'/2(9%; R%)). We call u € H'(Q;R?) a weak solution of the mixed boundary value
problem

Le(ue)=F in €2,
Ue = f onD, (1.4)
n-A(x/e)Vu: =g on NV,

*Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, USA.
TDepartment of Mathematics, University of Kentucky, Lexington, Kentucky 40506, USA.
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ifue — f € Hh(;R?) and
/QAEVUs -V = (F, (p>H51(Q)><H%)(Q) + (g, ‘P>H71/2(ag)xgl/2(ag) (1.5)

holds for any ¢ € H}(€2;R?). Here and throughout this paper, we define h¥(x) = h(z/¢) for any
function h and use n to denote the outward unit normal to 0S.

The existence and uniqueness of the weak solution to the mixed problem follow readily
from the Lax-Milgram theorem, with the help of Korn’s inequalities. It can also be shown that under
the elasticity condition (I.2) and the periodicity condition (I.3), the weak solutions u. converge to
some function uy weakly in H'(£2; R%) and thus strongly in L2(2; R%), as ¢ — 0. Furthermore, the
function wug is the weak solution to the mixed problem:

,Cou() =F in Q,
ug = f on D, (1.6)
n- A\VUO =g on N,

where

- O (0 O
Lo = ~div(AV) = — {aifw} (1.7)
i J

is a system of linear elasticity with constant matrix A= (&q-ﬁ

ij
effective) matrix of A.

The primary purpose of this paper is to establish the optimal rate of convergence of u. to ug in
L?(9; R?). More precisely, we are interested in the estimate,

), known as the homogenized (or

lue — uollz2(0) < Celluollm2(q), (1.8)

for the mixed problem with nonsmooth coefficients, where C' depends at most on d, k1, K2, §2,
and D. The problem of convergence rates is central in quantitative homogenization and has been
studied extensively in various settings. We refer the reader to [[1},[7,[10] for references on earlier work
in this area. More recent work on the problem of convergence rates in periodic homogenization may
be found in [[17, 4} 15, (13 111 (8195 12} [15] [16} [14, 6] and their references. In particular, the estimate
(1.8) was proved by Griso in [4, I5] for scalar elliptic equations with either Dirichlet or Neumann
boundary conditions, using the method of periodic unfolding [2} 3]. In [15} [16] the results were
extended by Suslina to a broader class of elliptic systems in C2 domains, which includes the systems
of elasticity considered in this paper, with either Dirichlet or Neumann boundary conditions. We
mention that for systems of elasticity, the results were further extended by the first author in [14]],
where the estimate |[us — uo|zr() < C¢lluollg2(q), With p = d%dl, was proved in Lipschitz
domains for solutions with either Dirichlet or Neumann boundary conditions. As far as we know,
there are no results on the estimate (I.8) for the mixed problems, even for scalar elliptic equations.
The following is our main result.

Theorem 1.1. Let Q be a bounded C-' domain and D a closed subset of 02 with a nonempty

interior. Let u., ug be the weak solutions of mixed boundary value problems (1.4) and (I.6)), respec-
tively. Assume that ug € H?(Q; ]Rd). Then the estimate holds with constant C' depending at

most on d, k1, k9, D, and §Q.
Let x = (X?ﬁ ) denote the correctors for the operator £.. Let S. be a smoothing operator at
e-scale and g an extension of ug from H2(2;R?) to H?(R% R?). The key step in the proof of

2
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Theorem [I.1]is the following estimate,

/ AEV(uE — ug — 5X€SE(V60)> . Vd}’
Q (1.9)

< e IVl + &2V Ull (s ol e,

where ¢ € HL(R?) and Qo = {z € Q : dist(x,0Q) < 2¢} (see Lemma . We point
out that some analogous estimates were proved in [3]] by the method of periodic unfolding, which
is not used in this paper. Our approach to (1.9), which involves a standard smoothing operator at
the scale ¢, is much more direct and flexible and allows us to handle different boundary conditions
in a uniform fashion. We also mention that the use of smoothing operators as well as the duality
argument in our proof of Theorem is motivated by the work [5,[15,/16]]. However, in comparison
with [15} [16]], our proof does not rely on the sharp convergence estimates for the whole space R¢
and thus avoids the estimates of terms that are used to correct the boundary discrepancies. As a
result, this significantly simplifies the argument.

As a bi-product, we also obtain an O(c'/?) estimate in H'(£2) as well as an interior O(¢)
estimate in H'.

Theorem 1.2. Under the same conditions as in Theorem[I. 1) we have
[ue — wo — eX“S (Vo) || 1) < Ce?[|uol| (), (1.10)
where C' depends at most on d, k1, ko, D, and €.

Theorem 1.3. Under the same condition as Theorem we have
||5V(u€ —ug — sXESa(Vﬂo))HLZ(Q) < Ce H’U,OHHQ(Q), (1.11)
where §(x) = dist(x, ) and C depends at most on d, k1, k2, D, and ).

We should point out that unlike the Neumann and Dirichlet problems, solutions to the mixed
problems in general are not necessarily in H?({2), even if the domains and data are smooth. How-
ever, any function in H2((2) is a solution of the mixed problem with the Dirichlet and Neumann data
given by the function. We mention that our argument also yields the estimates in Theorems|[I.1] [T.2]
and 1.3 for the Neumann problem, where D = (), and thus provides a unified approach to the Neu-
mann, Dirichlet, and mixed problems. We further point out that the approach works equally well for
the strongly elliptic systems —div(A(x/c)Vu.) = F, where A(y) = (a?‘jﬁ(y)) withl <45 <d
and 1 < a, 8 < m is real, bounded measurable, 1-periodic, and satisfies the ellipticity condition
a%ﬁ(y)ffff > plé)? forae. y € R and € = (&) € R™*4,

2 Preliminaries

In this section we give a brief review of the solvability and the homogenization theory for the mixed
problem (I.4). We begin with a Korn inequality [10, Theorem 2.7].

Lemma 2.1. Let Q be a bounded Lipschitz domain in R® and D a closed subset of 02 with a
nonempty interior. Then for any vector field w € H b(Q; R%),

Jull i) < C[Vu+ (Vu)T || 12(q), @2.1)

where C' depends only on d, D, and €.

3
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Theorem 2.2. Let Q be a bounded Lipschitz domain in R and D a closed subset of 0Q with a
nonempty interior. For F € Hp'(Q;RY), f € HY(Q;R?) and g € H™Y/2(0Q;RY), there exists
a unique weak solution u. € H'(Q;R?) to the mixed problem . Moreover, the solution u.
satisfies

el @y < CLIF vy + 17 Lrscay + Nolar2/2g00 - 22)
where C depends only on d, k1, ks, §), and D.

Proof. By considering the bilinear form
/ AVY -V
Q
and the bounded linear functional

(Fs @) =1y ) T (9 ) r-1/2(00) < /2 (00) — /QAEVf -V

D

on H})(Q; R%), Theorem follows readily from the Lax-Milgram theorem, using the elasticity
condition (T.2)) and the Korn inequality in Lemma[2.1] O

Assume that A satisfies li and 1| Let y = (Xf ) = (X?‘B ) denote the correctors for L.,
where 1 < j < dand 1 < o, 8 < d. This means that Xf € HI%C(R‘I; Rd) is the 1-periodic function
such that |, 0 Xf = 0and

Li(x]+P)y=0 inR%, 2.3)
where Q = [-1/2,1/2]%, P/(y) = y;e’, and ¢’ = (0,---,1,---,0) € R? with 1 in the Sth
position. For the existence of correctors x, see e.g. [7,[10]. The homogenized operator Ly is given

Ean 04

by 1D where the homogenized matrix A = (a;; ) is defined by

n 0
A=+ A isely a*? = af oy 2By L 24
]é (I +Vx) or precisely a;; ]é{aw + ay, m (X] )} 2.4)

It is known that A satisfies the elasticity condition ll (with possible different x1, k2) [[7].

Theorem 2.3. Let Q be a bounded Lipschitz domain in R and D a closed subset of 0Q with a
nonempty interior. For e > 0, let u., ug be the weak solutions of the mixed boundary value problems
and , respectively, where F' € HBl(Q;Rd), f e H (R, and g € H-V?(9Q; RY).
Then

U — 1 weakly in H'(Q; RY), 25)
A*Vu, — ﬁVuo weakly in L2(Q;Rd><d), ‘

ase — 0.

Proof. The proof is the same as in the case of the Dirichlet problem [7]. By Theorem the
solutions w, are uniformly bounded in H'(Q; R?). Let {u./} be a subsequence such that

ue — w weakly in H'(Q;RY),
A¥'Vuy — G weakly in L*(Q; R&9).

4
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Since u. — f € HL(Q;RY), we have w — f € HL(Q; R?). Next we will show that G = AVw. To
this end we consider the identity

/QAE/(m')qu/'Vx<F)f(J}) x/e /Vu6 AT ( ( (x )—i—s’x?(m/e’))gb, (2.6)

where ¢ € C3°(€2) and we have used the symmetry condition af =

ij
(see e.g. [[7, p.4]), the LHS of (2.6) converges to

/Q G- (VPﬁ)gZ) / G, 2.7)

as € — 0, where G = (G¢'). Similarly, by the Div-Curl Lemma, the RHS of (2.6) converges to

ow® _,
[0 (f Amr )+ 7)) o - Qa%-%fvx @9

as e — 0. Since ¢ € C3°(Q) is arbitrary, we obtain

afﬁ. By the Div-Curl Lemma

GB . ﬁwo‘Aaﬁ Aﬁa 8'[1)
I Qxy Y @i Oz
ie. G = AVwin Q.
Finally, note that for any o € H3 (;R?),

/EVM'V@:/G'VLP_ lim [ A¥Vug -V
Q Q e’—=0 Jq

= (F, @HBI(Q)XHlD(Q) + (9, 90>H*1/2(8Q)><H1/2(8Q)'

This shows that w is a solution of the mixed problem (1.6) for the homogenized system. By the
uniqueness of it follows that the whole sequence u. converges weakly to ug in H'(€;R%).
The argument above also shows that the whole sequence A°Vu. converges weakly to EVuo in
L?(Q; RIxd), O

3 Convergence rates in H'(2)

In this section we give the proof of the estimate (1.9) and Theorem[I.2] Let S, be the operator on
L?(R%) given by
Seulw) = ur ou(w) = [ ule ~ y)o-w)y G.1)

R4

where ¢-(z) = e lp(e7tz), ¢ € CF°(B(0,1/2)), ¢ > 0, and [¢ = 1. We will call S: the
smoothing operator at e-scale. Note that

[Seull L2 ray < ||ull p2mey (3.2)
and D“S.u = S.D%u for u € H*(R?) and |a| < s.
Lemma 3.1. Let u € H'(R?). Then
[Seu — ull p2ray < Ce||Vull L2 (ray, (3.3)

forany € > 0.

5

This is a pre-publication version of this article, which may differ from the final published version. Copyright reétfictibns mayiapplyil.i



Proof. This is well known. See e.g. [[17] or [14] for a proof. O
Lemma 3.2. Let f € L (R%) be a 1-periodic function. Then for any u € L?(R%),
£ Seull p2may < C |l fll2@)llull L2 ®ay, (3.4)
where f¢(z) = f(z/e) and Q = [-1/2,1/2]%
Proof. See e.g. [17] or [14] for a proof. L]
Let Q. = {z € R?: dist(z,0Q) < €}.

Lemma 3.3. Let Q) be a bounded Lipschitz domain in RY. Then for any u € H'(R?),

/ﬁ [uf? < C e llull s ety 10l 2y (3.5)

where the constant C' depends only on d and ).

Proof. This is known. See e.g. [12]]. We provide a proof for the reader’s convenience. Note that
the desired estimate is invariant under Lipschitz homeomorphism. By covering OS2 with coordinate
patches, it suffices to prove a local estimate for the upper half-space with 0 < ¢ < 1.

Letd € C°(R) suchthat0 < 6 < 1,6(¢t) = 1fort < 1,and (t) = 0 for ¢t > 2. For any (2, )
with 2’ € R4 and —¢ < t < e < 1, we have

2
w? (2 t) = —/t % [9(s)u2(x', s)] ds
2
:_/t 868[9( )] (2 sds—Z/O (w',s)ds.

It follows that

2
(2',t) <C/ (2, s d8+2/ lu(z’, 8)||Vu(z', s)| ds. (3.6)
2

Let A be a surface ball in R~1. Then

&
//u2(ac',t)d:c'dt
—JA
2 2
SCE/ /u2($l,8)d$ld8+4€/ /]u(m’,s)HVu(:c',s)\dw’ds
—-2JA —2JA

< Cellull2axi-22) 1wl a1 (ax(—2,2))-
This completes the proof. O

Lemma 3.4. Let Q be a bounded Lipschitz domain in R® and f € L?
Then for any v € H'(R?),

(RY) a I-periodic function.

loc
/ﬁ FERISul? < C e £ gyl i e Il 2 gy (3.7)
where C' depends only on d and .

6
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Proof. This is known and similar estimates may be found in [17,[12]. Note that
Seu(z) = / u(z —ey)o(y) dy. (3.3)
B(0,1/2)
By Minkowski’s integral inequality and Fubini’s theorem,
[iF@Psapd<c [ [ Pl - )P dyds
Qe « /B(0,1/2))
<o i ey dedy
B(0,1/2) J Qe —ey
<o e )P dady
B(0,1/2)) JQoc

<[ ju@)?de sup / o+ ey) P dy
Qo zeRd JB(0,1/2)

<Ce HfH%Q(Q)HUHHl(Rd)HuHLQ(Rd)a
where we have used Lemma [3.3|for the last inequality. O

Let g be the solution of (1.6). Suppose that ug € H?(£2; R?). Since € is Lipschitz, there exists
a bounded extension operator F : H?(Q; R?) — H?(R%;RY) so that 7ig = Euy is an extension of
ug and ||170“H2(Rd) < CHUOHHQ(Q) Let

we = Uz — ug — XSV, 3.9
where u. € H'(€2;R?) is the solution of (1.4). Then w: satisfies
Lowe = F. = Loug — Leug — L(ex°S: V) in €,

we = he = —ex*S: Vg on D, (3.10)
n-A*Vw, =g. =n - fTVuO —n-A*Vuy —n- AV (ex*S:Vuy) on V.
Recall that (2o, = { x € Q: dist(z,00) < 26}. The following lemma plays a key role in this
paper.

Lemma 3.5. Let Q be a bounded Lipschitz domain in R? and D a closed subset of 9S). For any
Y € Hb (4 RY), we have

/QAelea : V¢‘ <C HU0||H2(Q){5 VYl 20 +€1/2HV¢||L2(925)}7

where w, is given by (3.9) and C depends only on d, k1, kg, D, and Q.

Proof. By a density argument we may assume 1) € C5°(R9\ D;R%). Using

/AEVug-Vq/J:///l\Vuo-Vw,
Q Q
we obtain

/ AV, - Vi) = / [ﬁvuo — A*Vug — e AV (x5 S-Viip) | - V. (3.11)
Q Q

7
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A direct calculation shows that
A\Vuo — A*Vug — e A°V (x°S: V)
— BS.Viip + [(KWO — AS.Viiy) — (AVug — ASS.Viig) — EAEXESEV2170]
= B*S.Vuy + 1,

where B(y) = A — A(y) — A(y)Vx(y). As aresult, we have

/AEng-Vw:/BESEV%-Vw—i—/TE-Vw
Q Q Q

(3.12)
=J; + Jo.

For J, it follows from Lemmas [3.1] and [3.2] that

1Tl 2 () < Celluoll g2(q)- (3.13)
Thus,
| Ja| < Celluollgz) VY2 ) (3.14)
To handle J;, we write
Jy = / B(1 - 6.)5.Viiy - w+/ B0.S.Vii - Vi)

Q Q (3.15)

= Ju1 + Jio,

where 6. € C$°(R?) is a smooth function such that 6. (z) = 1if z € Q., Oc(x) =0ifx ¢ Qs., and
|V0.| < Ce™!. Since B(y) is 1-periodic and locally square integrable, by Lemma we obtain

| < / B2 S.Viio - 0.V4)|
Qo (3.16)

< C'|luo|l 2 V¥l 12 (00 -

It remains to estimate J;;. To this end we let B = (b%ﬂ (y)). Note that b?jﬂ is 1-periodic and

baﬁ € L% (R%). Also, by and ,

9408 _ 0 and /b?ﬁ_o
dy; 4 o

It follows that there exist 1-periodic functions (bgi c H! (Rd), where 1 < o, 5,4, j,k < d, such

loc

that 9
B _ B _
blo; —aiyk g’b] and ¢k1.7 ¢Zk] (317)

(see [[7] or [8]). Using integration by parts, this allows us to write Jy; as

ou. oY«
aﬁs 0 .
J11—/ Oz ¢k“ (1= 06e)5 <8m]> Ox;

ou, 61[)0‘ 0% o™
_ affe Y% ) . oz,Bs .
- 8/ d)k” aazk e) Se (63:]-) ox; / ¢k” (8@;81‘3) ox;
8~ 82wo¢
_ 0‘55 .
6/ Phij (1 (3%) dz;0xy,’
8

This is a pre-publication version of this article, which may differ from the final published version. Copyright reétfictibns mayiapplyil.i



where qﬁzzﬂf(x) = ¢zf;(:): /€). Note that the last term vanishes in view of the second equation in

(3:17). Therefore, by Lemmas [3.2]and 3.4} we obtain
|| < 0/ |®°S. V|| V| + 05/ |D°S. V2| VY|
QZ& Q

< C 2 g2y |V sy + C ¢ o2y | V9 2o,

where & = (gbzg) Thus, in view of (3.16)), we have proved that

1] < C e P ol g2 VIl 2 (@) + O lluoll 2 | VI 2(0)- (3.18)
The lemma now follows by combining (3.12)), (3.14), and (3.18). O

We are ready to give the proof of Theorem[I.2}

Proof of Theorem 1.2l Let w. be defined by (3.9). Set 7. = £0-x°S:(Vug) and ¥ = w. + 7,
where 6. € C3°(R?) is the same as in the proof of Lemma Then

Ve = u: —ug — (1 — 0.)x°S-(Viig) € Hp(;RY).
It follows from Lemma [3.3] that

/QAevu;g-ng < C 2wl g2 () | Vel 22 () - (3.19)

This, together with the observation w. = . — - and
Irell ) < C?lluoll (@), (3.20)
gives

< CeY2||ug|| ) | Vel 2 () - 3.21)

| 49090
Q
By the Korn inequality (2.1)), the elasticity condition (T.2)), and (3.21]), we obtain

el ) < C 2 |[uoll r2(q)- (3.22)

Finally, by (3.20) and (3:22),
lwellar @) < 1Yellar) + lIrell ) < C€1/2HU0HH2(Q)~ (3.23)
This completes the proof. 0

Remark 3.6. If D = 0, Theorem |1.2| gives the O(c'/?) error estimate in H' for the Dirichlet
problem. In the case of the Neumann problem where D = (), Lemma as well as the estimate
(3-21)) continues to hold. We now use the second Korn inequality,

oy < C{IVu+ (F0 gz + 3 | [ -]}, (3.24
j=1
for any u € H'(Q;R?), where m = d(d + 1)/2, {¢; : j = 1,...,m} is an orthonormal basis

of R,and R = {u = Cax+ D : CT = —C € R™?and D € R?} denotes the space of rigid
displacements. This, together with (T.2)) and (3:21), gives

9l < Ofe 2ol + 32| [ ve-os]}-
j=1

Thus, if we require that u., ug L R in L2(2;RY), the estimate (3.23)) still holds.

9
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4 Convergence rates in L?((2)

In this section we give the proof of Theorem [I.1] We begin by considering the Neumann boundary
value problem

Lepe =G in €2,
4.1)
n-AVp. =h on 012,
where G € L2(Q;RY), h € L?(9;R?), and
/G-QH—/ h-¢=0 forany ¢ € R. 4.2)
Q 1)

Recall that a function p. € H'(Q;R?) is called a weak solution of (4.1)) if

/Asws-w:/G-m/ by “3)

for any 1 € H'(Q;R?). Under the elasticity condition (1.2), it is well known that the Neumann
problem (4.1)) has a unique solution p. € H'(Q;R?) such that pe L Rin L?(Q;RY).
The homogenized problem for (#.1)) is given by
{ Eo PO = G in Q,

~ (4.4)
n-AVpg=nh on 0f).

If Qis Cb, G € L2(Q;R?) and h € HY/2(9Q; R?), it is known that the unique weak solution of
4.4) in H'(9; R?) with the property po | R in L?(€; R?) satisfies

loollz) < C{I1G L2 + Ikl oy |- 45)

For the proof of Theorem [1.1]we will need to construct a function h € H'/2(99); R?) satisfying

#.2) and
h=0 onN=0Q\D, (4.6)

for each G € L?(2; R?). This is done in the following lemma.

Lemma 4.1. Let Q) be a bounded Lipschitz domain and D a closed subset of OS2 with a nonempty
interior. Let G € L*(Q;RY). Then there is h € H'/?(0Q; R?) such that h satisfies , (@), and

1”290y < C G2 @), (4.7)
where C' depends only on Q) and D.

Proof. By our assumption on D there exist xg € D and r¢ > 0 such that B(xzg,r9) N0 C D. We
fix a nonnegative function hg € C§°(B(z0,70)) satisfying ho > 1 in B(zg,r0/2). Let

h = (a1¢1 + azga + - + am®m)ho, (4.8)
where m = d(d + 1)/2 and {¢1, ¢2, ..., dm} is an orthonormal basis of R in L?(Q; RY). Clearly,
h =0on N 002\ D. We claim that it is possible to choose (a1, ag, ..., ) € R™ such that h
satisfies (4.2)) and (4.7 . To find (v, . . , we solve the m x m systern of linear equations

o [ o ¢gh0—/G 6. i=1L2. @9)
10
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which is uniquely solvable, provided

det </ o; - quho) #0. (4.10)
o0

It is easy to see that in this case, the function & in (4.8) with (aq, ..., a,,) € R™ given by (4.9)
satisfies condition (@.2) and estimate (@.7).

Finally, suppose that (4.10) is not true. Then there exists some (51, 52, ..., 0m) € R™\ {0}
such that

51'/ ¢i - ¢jho = 0, j=1,2,...,m.
09

Letu = B1¢1 + -+ Bindm. Then faQ |u|?hg = 0. Since hg > 1 on B(zg,7/2), it follows that
u = 0on B(zg,70/2)NOS. Using Vu+ (Vu)? = 0in R? and the Korn inequality (2.1), we obtain
u = 0 in €. This implies that 5; = B2 = - - - B, = 0 and gives us a contradiction. O

Suppose that Q2 is 1. By Lemmad.1]and (4.5), for each G € L?(Q; R%), we can construct /
so that the weak solution pg of (4.4) with the property po L. R in L?(Q; R?) satisfies

ool 20y < C |Gl L2()- 4.11)

Let pg = Epo be an extension of pg in H?(R%; RY) and set 1. = p. — pg — £X°S-V po. By Remark
3.6 we see that
7l 710y < 051/2HPOHH2(Q) < CSl/QHGHB(Q)- (4.12)

We are now in a position to give the proof of Theorem [I.1]

Proof of Theorem[I.1l Let v, w,, and 7. be the same functions as in the proof of Theorem
Note that ¢, = w, + r. = ue — up — (1 — 0.) xS V. Clearly, by Lemma

HE(l — Gs)ansv%HLz(Q) S Ce HUOHHQ(Q) (4.13)

Thus, to prove Theorem it suffices to show [|9bc[|2(q) < Ce||uol| gr2(qr)- This will be done by a
duality argument, using Lemma [3.5]

Fix G € L*(Q;R?) and let h € H'Y/?(99; R?) be the function given in Lemma Let pe, po
be the weak solutions of (4.1) and (4.4), respectively, such that pe, py L R in L*(Q;R%). Since
Y- € HH(QRY) and n - A°Vp. = h = 0on N, by (4.3),

/ Ve - G = / AV, - Vpe. (4.14)
Q Q

Write
/ AV, - Vp. = / A*Vw, - Vp: + / AVr. -Vp. = J3 + Ja. (4.15)
Q Q Q

We estimate J4 first. Note that,

Jy = / A*Vr. - Vne + / A*Vr. - Vpg +/ A*Vr. - V(ex®S:Vpo)
Q Q Q
= Jn + Jaz + Jus.
In view of (3.20) and (4.12)), we obtain

| Jaa| < ClIVrellp20) Vel L2 (@) < Celluollmz llpoll m20)- (4.16)
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For Jys, note that r. is supported in Qge. Hence,

[Ja2] < C Vel 2 I Veoll 2 9.
< Celluollgz@llpoll m2(0)s

where we have used Lemma [3.3|for the last inequality. Similarly,

[ Ja3] < C|[Vrell 2o IV (ex®S: Vo)l L2 (0.

“4.17)
< Celluollgzllpoll m2(0)s
where we have used Lemma[3.4] As a result, we have proved that
| Ja| < Celluol| g2yl poll m2() - (4.18)

It remains to estimate J3. Again, we write
Jz = / A*Vw:Vn. + / A*Vw:Vpo + / A*Vw:V(ex®S:Vpp)
Q Q Q
= J31 + J32 + Js3.

Note that J3; can be easily handled by the H 1 estimates of w, and 7Ne. Since the estimate of Jsg is
similar to that of J33, we will only give the estimate for J33. To this end, we write

/AEVwEV(zEXESgVﬁO)

Q 4.19)

:/AEVMEV(QQEEXESEVﬁQ)—i—/AEVU)EV((l—HQE)EXESEVﬁQ),
Q Q

where 02, € C$°(R?) is a smooth function such that 0. () = 1 if dist(z, 9Q) < 2¢, O.(x) = 0 if
dist(w, 0) > 4e, and | V.| < Ce~ L. It follows by Theoremand Lemmathat

<Ce stnHl(Q) ”92€XESEV,50||H1(Q)

/ A*VwV (02-eX°S-V o)
Q

(4.20)
< Celluollaz lleoll g2 (0)-

For the second term in the RHS of (4.19), note that (1 — 0.)ex*S-Vpy € HL(Q;R?). This allows
us to apply Lemma [3.5]and obtain

/ AEVwEV<(1 _ QQE)gXSSEWO)
Q

< O Jluoll 20 |V (1 = 62:)ex" SV o) 120 *20
+ C 2 |lug | g2y |V ((1 = 02¢)ex=S=V50) Il L2 (6250 -
Note that the second term vanishes, as 1 — 0. is supported in NG \ Qoc. Also,
IV((1 = 02)ex* 8=V 0) [l 20y < C lpollr2(e)- (4.22)
This, together with (4.20) and {#.21)), leads to
| J33] < Celuol| a2 llpoll 2(0)- (4.23)
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Combining this with the estimates of J31, J32, we obtain
|3 < Celluollazllpoll g2 (0)- (4.24)

Hence, in view of (.14), (4.13)), (4.18) and (@.24)), we have proved

] /Q v ]<ce||uoum(m||po||m < Ce uoll e Gl oo, (4.25)

where C' depends only on d, 1, k2, D, and 2. Therefore, by duality,

[Pell2() < Celluollm2o) (4.26)
which completes the proof of Theorem 0

Remark 4.2. If D = 0}, Theorem gives the sharp O(e) estimate in L? for the Dirichlet
problem. In the case of the Neumann problem, our proof also gives the estimate (1.§), if we further
require that ue,ug L R in L2(Q;R%). To see this, we consider the Neumann problem with
G € L*(;RY), G L R, and h = 0 on 0. The same argument as in the proof of Theorem
gives the estimate (#.25). By duality this implies that

-l < O ol + O | [ w0,
j=1

where m = d(d + 1)/2 and {¢; : j = 1,...,m} forms an orthonormal basis for R in L?(Q;R%).
Using ug,ug L R in L2(Q;RY), it follows that el r2(0) < Celluollp2(q), from which the esti-
mate (1.8) follows.

5 Interior H' estimates

In this section we study the interior H! convergence and give the proof of Theorem

Lemma 5.1. Let w. be defined by @) Let ( € Wh°°(Q) be a nonnegative function in Q such
that ( = 0 on ON). Then,

IVl 2@y < Clluollaraa) {e I<wroeq@) + /2N ey + =/ AICTEN2 0, b
where C' depends only on d, k1, ko, D, and ().

Proof. Since (w. € Hg (£ R%), it follows from the elasticity condition and the first Korn inequality
Vg < 2V ey + 20
<C [ AV(w) - ViCuw) + 2wl Ve sy
<C [ 4Vu. V() + Clludlaey I V<o

where we also used the identity

SV (Cw.) - V(Cw.) = A*Vw, - V(Cw,) + A5 (w:V¢) - (w: V).
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Note that by Lemma|[3.5]

/ AV, - V(Cw,)
Q
< Ce |luoll g2 IV (CPwe) || 20y + C € |luoll 2o |V (CPwe) || L2 (00 -

This, together with (5.1)), gives

(5.2)

1¢V w720y < Ce lluoll i) IV wel| 2@ 1€l ()
+ Celluoll g2y l|we | 2@ ICV < L (@)
+ C e |Juo| g2 () | C Ve |l 12 (20 1€ ] % (0202 (5.3)
+ C &2 ||uo] g2y lwell L2 () ICVE | e (90
+ C [Jwe |72 VE I 0 -

By the Cauchy inequality with an € > 0 we obtain

1¢Vwell720) < Ce®lluolli2 o€ ey + C e lluoll a2 lwell L2 1KV Lo

+ Cellugl|? ¢ 7o
[[uollgr2 (o) €00 (0200 (5.4)

+ C' 2 |Ju| 2oy 1w | 120y 1€V | o0 (9050
+ O lwel| 22 V<1 2o )

It then follows by the estimate ||we || 72(q) < Celluo|| g2 (q) that

1¢V w12y < C HUOH%IQ(Q){€2HCH12/I/L°°(Q) + e (1< 00 (0009 +53/2HCVCHLOO(QQE)}'
This completes the proof. O

Proof of Theorem[L3l Let ((z) = 6(z) = dist(x, d2). Note that ¢ = 0 on 9 and [|(][yy1,00 () <
C, where C depends only on (2. Theorem I.3]now follows readily from Lemma 5.1} O

As a corollary, we obtain the following interior estimate.

Corollary 5.2. Let Q' be an open subset of ) such that dist(QY, 0Q) > 0. Under the same conditions
as in Theorem/|l.1| we have

||u5 —up — EXaSEVYI0||H1(Q/) < Ce ||UOHH2(Q)> (55)
where C' depends only on d, k1, ko, D, Q' and Q.

Remark 5.3. The estimates in Lemma [5.1] and Theorem [[.3] as well as in Corollary [5.2] continue
to hold for the Neumann boundary value problems, if we further require u.,ug L R in L?(Q; R?).
The proof is exactly the same.
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