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Convergence Rates in Periodic Homogenization
of Systems of Elasticity

Zhongwei Shen∗ Jinping Zhuge†

Abstract
This paper is concerned with homogenization of systems of linear elasticity with rapidly

oscillating periodic coefficients. We establish sharp convergence rates in L2 for the mixed
boundary value problems with bounded measurable coefficients.

MSC2010: 35J57.

Keywords. Homogenization; Convergence Rates; Systems of Elasticity.

1 Introduction and main results

This paper is concerned with convergence rates in periodic homogenization of systems of linear
elasticity with mixed boundary conditions. More precisely, we consider the operator

Lε = −div(A(x/ε)∇) = − ∂

∂xi

{
aαβij

(
x

ε

)
∂

∂xj

}
, ε > 0. (1.1)

(The summation convention is used throughout this paper). We will assume that the coefficient
matrix A(y) = (aαβij (y)) with 1 ≤ i, j, α, β ≤ d is real, bounded measurable, and satisfies the
elasticity condition,

aαβij (y) = aβαji (y) = aiβαj(y),

κ1|ξ + ξT |2 ≤ aαβij (y)ξαi ξ
β
j ≤ κ2|ξ|2,

(1.2)

for a.e. y ∈ Rd and matrix ξ = (ξαi ) ∈ Rd×d, where κ1, κ2 > 0. We also assume that A satisfies
the 1-periodic condition:

A(y + z) = A(y) for a.e. y ∈ Rd and z ∈ Zd. (1.3)

We shall be interested in the mixed boundary value problems (or mixed problems) for the elliptic
system Lε(uε) = F in a bounded Lipschitz domain Ω. Let D be a closed subset of ∂Ω and N =
∂Ω\D. Denote byH1

D(Ω;Rd) the closure inH1(Ω;Rd) of the setC∞0 (Rd\D;Rd) andH−1
D (Ω;Rd)

the dual of H1
D(Ω;Rd). Assume that F ∈ H−1

D (Ω;Rd), f ∈ H1(Ω;Rd) and g ∈ H−1/2(∂Ω;Rd)
(the dual of H1/2(∂Ω;Rd)). We call u ∈ H1(Ω;Rd) a weak solution of the mixed boundary value
problem 

Lε(uε) = F in Ω,

uε = f on D,

n ·A(x/ε)∇uε = g on N,

(1.4)

∗Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, USA.
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if uε − f ∈ H1
D(Ω;Rd) and
ˆ

Ω
Aε∇uε · ∇ϕ = 〈F,ϕ〉H−1

D (Ω)×H1
D(Ω) + 〈g, ϕ〉H−1/2(∂Ω)×H1/2(∂Ω) (1.5)

holds for any ϕ ∈ H1
D(Ω;Rd). Here and throughout this paper, we define hε(x) = h(x/ε) for any

function h and use n to denote the outward unit normal to ∂Ω.
The existence and uniqueness of the weak solution to the mixed problem (1.4) follow readily

from the Lax-Milgram theorem, with the help of Korn’s inequalities. It can also be shown that under
the elasticity condition (1.2) and the periodicity condition (1.3), the weak solutions uε converge to
some function u0 weakly in H1(Ω;Rd) and thus strongly in L2(Ω;Rd), as ε→ 0. Furthermore, the
function u0 is the weak solution to the mixed problem:

L0u0 = F in Ω,

u0 = f on D,

n · Â∇u0 = g on N,

(1.6)

where

L0 = −div(Â∇) = − ∂

∂xi

{
âαβij

∂

∂xj

}
(1.7)

is a system of linear elasticity with constant matrix Â = (âαβij ), known as the homogenized (or
effective) matrix of A.

The primary purpose of this paper is to establish the optimal rate of convergence of uε to u0 in
L2(Ω;Rd). More precisely, we are interested in the estimate,

‖uε − u0‖L2(Ω) ≤ C ε ‖u0‖H2(Ω), (1.8)

for the mixed problem (1.4) with nonsmooth coefficients, where C depends at most on d, κ1, κ2, Ω,
and D. The problem of convergence rates is central in quantitative homogenization and has been
studied extensively in various settings. We refer the reader to [1, 7, 10] for references on earlier work
in this area. More recent work on the problem of convergence rates in periodic homogenization may
be found in [17, 4, 5, 13, 11, 8, 9, 12, 15, 16, 14, 6] and their references. In particular, the estimate
(1.8) was proved by Griso in [4, 5] for scalar elliptic equations with either Dirichlet or Neumann
boundary conditions, using the method of periodic unfolding [2, 3]. In [15, 16] the results were
extended by Suslina to a broader class of elliptic systems inC2 domains, which includes the systems
of elasticity considered in this paper, with either Dirichlet or Neumann boundary conditions. We
mention that for systems of elasticity, the results were further extended by the first author in [14],
where the estimate ‖uε − u0‖Lp(Ω) ≤ C ε ‖u0‖H2(Ω), with p = 2d

d−1 , was proved in Lipschitz
domains for solutions with either Dirichlet or Neumann boundary conditions. As far as we know,
there are no results on the estimate (1.8) for the mixed problems, even for scalar elliptic equations.

The following is our main result.

Theorem 1.1. Let Ω be a bounded C1,1 domain and D a closed subset of ∂Ω with a nonempty
interior. Let uε, u0 be the weak solutions of mixed boundary value problems (1.4) and (1.6), respec-
tively. Assume that u0 ∈ H2(Ω;Rd). Then the estimate (1.8) holds with constant C depending at
most on d, κ1, κ2, D, and Ω.

Let χ = (χαβj ) denote the correctors for the operator Lε. Let Sε be a smoothing operator at
ε-scale and ũ0 an extension of u0 from H2(Ω;Rd) to H2(Rd;Rd). The key step in the proof of
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Theorem 1.1 is the following estimate,∣∣∣∣ˆ
Ω
Aε∇

(
uε − u0 − εχεSε(∇ũ0)

)
· ∇ψ

∣∣∣∣
≤ C

{
ε ‖∇ψ‖L2(Ω) + ε1/2‖∇ψ‖L2(Ω2ε)

}
‖u0‖H2(Ω),

(1.9)

where ψ ∈ H1
D(Ω;Rd) and Ω2ε = {x ∈ Ω : dist(x, ∂Ω) < 2ε} (see Lemma 3.5). We point

out that some analogous estimates were proved in [5] by the method of periodic unfolding, which
is not used in this paper. Our approach to (1.9), which involves a standard smoothing operator at
the scale ε, is much more direct and flexible and allows us to handle different boundary conditions
in a uniform fashion. We also mention that the use of smoothing operators as well as the duality
argument in our proof of Theorem 1.1 is motivated by the work [5, 15, 16]. However, in comparison
with [15, 16], our proof does not rely on the sharp convergence estimates for the whole space Rd
and thus avoids the estimates of terms that are used to correct the boundary discrepancies. As a
result, this significantly simplifies the argument.

As a bi-product, we also obtain an O(ε1/2) estimate in H1(Ω) as well as an interior O(ε)
estimate in H1.

Theorem 1.2. Under the same conditions as in Theorem 1.1, we have

‖uε − u0 − εχεSε(∇ũ0)‖H1(Ω) ≤ C ε1/2‖u0‖H2(Ω), (1.10)

where C depends at most on d, κ1, κ2, D, and Ω.

Theorem 1.3. Under the same condition as Theorem 1.1, we have

‖δ∇(uε − u0 − εχεSε(∇ũ0))‖L2(Ω) ≤ C ε ‖u0‖H2(Ω), (1.11)

where δ(x) = dist(x, ∂Ω) and C depends at most on d, κ1, κ2, D, and Ω.

We should point out that unlike the Neumann and Dirichlet problems, solutions to the mixed
problems in general are not necessarily in H2(Ω), even if the domains and data are smooth. How-
ever, any function inH2(Ω) is a solution of the mixed problem with the Dirichlet and Neumann data
given by the function. We mention that our argument also yields the estimates in Theorems 1.1, 1.2
and 1.3 for the Neumann problem, where D = ∅, and thus provides a unified approach to the Neu-
mann, Dirichlet, and mixed problems. We further point out that the approach works equally well for
the strongly elliptic systems −div(A(x/ε)∇uε) = F , where A(y) = (aαβij (y)) with 1 ≤ i, j ≤ d
and 1 ≤ α, β ≤ m is real, bounded measurable, 1-periodic, and satisfies the ellipticity condition
aαβij (y)ξαi ξ

β
j ≥ µ|ξ|2 for a.e. y ∈ Rd and ξ = (ξαi ) ∈ Rm×d.

2 Preliminaries

In this section we give a brief review of the solvability and the homogenization theory for the mixed
problem (1.4). We begin with a Korn inequality [10, Theorem 2.7].

Lemma 2.1. Let Ω be a bounded Lipschitz domain in Rd and D a closed subset of ∂Ω with a
nonempty interior. Then for any vector field u ∈ H1

D(Ω;Rd),

‖u‖H1(Ω) ≤ C ‖∇u+ (∇u)T ‖L2(Ω), (2.1)

where C depends only on d,D, and Ω.
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Theorem 2.2. Let Ω be a bounded Lipschitz domain in Rd and D a closed subset of ∂Ω with a
nonempty interior. For F ∈ H−1

D (Ω;Rd), f ∈ H1(Ω;Rd) and g ∈ H−1/2(∂Ω;Rd), there exists
a unique weak solution uε ∈ H1(Ω;Rd) to the mixed problem (1.4). Moreover, the solution uε
satisfies

‖uε‖H1(Ω) ≤ C
{
‖F‖H−1

D (Ω) + ‖f‖H1(Ω) + ‖g‖H−1/2(∂Ω)

}
, (2.2)

where C depends only on d, κ1, κ2, Ω, and D.

Proof. By considering the bilinear form
ˆ

Ω
Aε∇ψ · ∇ϕ

and the bounded linear functional

〈F,ϕ〉H−1
D (Ω)×H1

D(Ω) + 〈g, ϕ〉H−1/2(∂Ω)×H/2(∂Ω) −
ˆ

Ω
Aε∇f · ∇ϕ

on H1
D(Ω;Rd), Theorem 2.2 follows readily from the Lax-Milgram theorem, using the elasticity

condition (1.2) and the Korn inequality in Lemma 2.1.

Assume that A satisfies (1.2) and (1.3). Let χ = (χβj ) = (χαβj ) denote the correctors for Lε,
where 1 ≤ j ≤ d and 1 ≤ α, β ≤ d. This means that χβj ∈ H1

loc(Rd;Rd) is the 1-periodic function

such that
´
Q χ

β
j = 0 and

L1(χβj + P βj ) = 0 in Rd, (2.3)

where Q = [−1/2, 1/2]d, P βj (y) = yje
β , and eβ = (0, · · · , 1, · · · , 0) ∈ Rd with 1 in the βth

position. For the existence of correctors χ, see e.g. [7, 10]. The homogenized operator L0 is given
by (1.7), where the homogenized matrix Â = (âαβij ) is defined by

Â =

 
Q
A(I +∇χ) or precisely âαβij =

 
Q

{
aαβij + aαγik

∂

∂yk
(χγβj )

}
. (2.4)

It is known that Â satisfies the elasticity condition (1.2) (with possible different κ1, κ2) [7].

Theorem 2.3. Let Ω be a bounded Lipschitz domain in Rd and D a closed subset of ∂Ω with a
nonempty interior. For ε > 0, let uε, u0 be the weak solutions of the mixed boundary value problems
(1.4) and (1.6), respectively, where F ∈ H−1

D (Ω;Rd), f ∈ H1(Ω;Rd), and g ∈ H−1/2(∂Ω;Rd).
Then

uε ⇀ u0 weakly in H1(Ω;Rd),

Aε∇uε ⇀ Â∇u0 weakly in L2(Ω;Rd×d),
(2.5)

as ε→ 0.

Proof. The proof is the same as in the case of the Dirichlet problem [7]. By Theorem 2.2 the
solutions uε are uniformly bounded in H1(Ω;Rd). Let {uε′} be a subsequence such that

uε′ ⇀ w weakly in H1(Ω;Rd),

Aε
′∇uε′ ⇀ G weakly in L2(Ω;Rd×d).
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Since uε − f ∈ H1
D(Ω;Rd), we have w − f ∈ H1

D(Ω;Rd). Next we will show that G = Â∇w. To
this end we consider the identity
ˆ

Ω
Aε
′
(x)∇uε′ ·∇x

(
P βj (x)+ε′χβj (x/ε′)

)
φ =

ˆ
Ω
∇uε′ ·Aε

′
(x)∇x

(
P βj (x)+ε′χβj (x/ε′)

)
φ, (2.6)

where φ ∈ C∞0 (Ω) and we have used the symmetry condition aαβij = aβαji . By the Div-Curl Lemma
(see e.g. [7, p.4]), the LHS of (2.6) converges to

ˆ
Ω
G ·
(
∇P βj

)
φ =

ˆ
Ω
Gβj φ, (2.7)

as ε→ 0, where G = (Gαi ). Similarly, by the Div-Curl Lemma, the RHS of (2.6) converges to
ˆ

Ω
∇w ·

( 
Q
A
(
∇yP βj (y) +∇yχβj

))
φ =

ˆ
Ω

∂wα

∂xi
· âαβij φ, (2.8)

as ε→ 0. Since φ ∈ C∞0 (Ω) is arbitrary, we obtain

Gβj =
∂wα

∂xi
âαβij = âβαji

∂wα

∂xi
;

i.e. G = Â∇w in Ω.
Finally, note that for any ϕ ∈ H1

D(Ω;Rd),
ˆ

Ω
Â∇w · ∇ϕ =

ˆ
Ω
G · ∇ϕ = lim

ε′→0

ˆ
Ω
Aε
′∇uε′ · ∇ϕ

= 〈F,ϕ〉H−1
D (Ω)×H1

D(Ω) + 〈g, ϕ〉H−1/2(∂Ω)×H1/2(∂Ω).

This shows that w is a solution of the mixed problem (1.6) for the homogenized system. By the
uniqueness of (1.6) it follows that the whole sequence uε converges weakly to u0 in H1(Ω;Rd).
The argument above also shows that the whole sequence Aε∇uε converges weakly to Â∇u0 in
L2(Ω;Rd×d).

3 Convergence rates in H1(Ω)

In this section we give the proof of the estimate (1.9) and Theorem 1.2. Let Sε be the operator on
L2(Rd) given by

Sεu(x) = u ∗ φε(x) =

ˆ
Rd

u(x− y)φε(y)dy, (3.1)

where φε(x) = ε−dφ(ε−1x), φ ∈ C∞0 (B(0, 1/2)), φ ≥ 0, and
´
φ = 1. We will call Sε the

smoothing operator at ε-scale. Note that

‖Sεu‖L2(Rd) ≤ ‖u‖L2(Rd), (3.2)

and DαSεu = SεD
αu for u ∈ Hs(Rd) and |α| ≤ s.

Lemma 3.1. Let u ∈ H1(Rd). Then

‖Sεu− u‖L2(Rd) ≤ C ε ‖∇u‖L2(Rd), (3.3)

for any ε > 0.
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Proof. This is well known. See e.g. [17] or [14] for a proof.

Lemma 3.2. Let f ∈ L2
loc(Rd) be a 1-periodic function. Then for any u ∈ L2(Rd),

‖f εSεu‖L2(Rd) ≤ C ‖f‖L2(Q)‖u‖L2(Rd), (3.4)

where f ε(x) = f(x/ε) and Q = [−1/2, 1/2]d.

Proof. See e.g. [17] or [14] for a proof.

Let Ω̃ε =
{
x ∈ Rd : dist(x, ∂Ω) < ε

}
.

Lemma 3.3. Let Ω be a bounded Lipschitz domain in Rd. Then for any u ∈ H1(Rd),
ˆ

Ω̃ε

|u|2 ≤ C ε ‖u‖H1(Rd)‖u‖L2(Rd), (3.5)

where the constant C depends only on d and Ω.

Proof. This is known. See e.g. [12]. We provide a proof for the reader’s convenience. Note that
the desired estimate is invariant under Lipschitz homeomorphism. By covering ∂Ω with coordinate
patches, it suffices to prove a local estimate for the upper half-space with 0 < ε < 1.

Let θ ∈ C∞(R) such that 0 ≤ θ ≤ 1, θ(t) = 1 for t ≤ 1, and θ(t) = 0 for t ≥ 2. For any (x′, t)
with x′ ∈ Rd−1 and −ε < t < ε < 1, we have

u2(x′, t) = −
ˆ 2

t

∂

∂s

[
θ(s)u2(x′, s)

]
ds

= −
ˆ 2

t

∂

∂s

[
θ(s)

]
u2(x′, s) ds− 2

ˆ 2

t
θ(s)u(x′, s)

∂

∂s
u(x′, s) ds.

It follows that

u2(x′, t) ≤ C
ˆ 2

−2
u2(x′, s) ds+ 2

ˆ 2

−2
|u(x′, s)||∇u(x′, s)| ds. (3.6)

Let ∆ be a surface ball in Rd−1. Then
ˆ ε

−ε

ˆ
∆
u2(x′, t) dx′dt

≤ Cε
ˆ 2

−2

ˆ
∆
u2(x′, s) dx′ds+ 4ε

ˆ 2

−2

ˆ
∆
|u(x′, s)||∇u(x′, s)| dx′ds

≤ C ε ‖u‖L2(∆×[−2,2])‖u‖H1(∆×[−2,2]).

This completes the proof.

Lemma 3.4. Let Ω be a bounded Lipschitz domain in Rd and f ∈ L2
loc(Rd) a 1-periodic function.

Then for any u ∈ H1(Rd),
ˆ

Ω̃ε

|f ε|2|Sεu|2 ≤ C ε ‖f‖2L2(Q)‖u‖H1(Rd)‖u‖L2(Rd), (3.7)

where C depends only on d and Ω.
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Proof. This is known and similar estimates may be found in [17, 12]. Note that

Sεu(x) =

ˆ
B(0,1/2)

u(x− εy)φ(y) dy. (3.8)

By Minkowski’s integral inequality and Fubini’s theorem,
ˆ

Ω̃ε

|f ε(x)|2|Sεu(x)|2 dx ≤ C
ˆ

Ω̃ε

ˆ
B(0,1/2))

|f ε(x)|2|u(x− εy)|2 dydx

≤ C
ˆ
B(0,1/2)

ˆ
Ω̃ε−εy

|f ε(x+ εy)|2|u(x)|2 dxdy

≤ C
ˆ
B(0,1/2))

ˆ
Ω̃2ε

|f ε(x+ εy)|2|u(x)|2 dxdy

≤ C
ˆ

Ω̃2ε

|u(x)|2 dx sup
x∈Rd

ˆ
B(0,1/2)

|f ε(x+ εy)|2 dy

≤ C ε ‖f‖2L2(Q)‖u‖H1(Rd)‖u‖L2(Rd),

where we have used Lemma 3.3 for the last inequality.

Let u0 be the solution of (1.6). Suppose that u0 ∈ H2(Ω;Rd). Since Ω is Lipschitz, there exists
a bounded extension operator E : H2(Ω;Rd) → H2(Rd;Rd) so that ũ0 = Eu0 is an extension of
u0 and ‖ũ0‖H2(Rd) ≤ C‖u0‖H2(Ω). Let

wε = uε − u0 − εχεSε∇ũ0, (3.9)

where uε ∈ H1(Ω;Rd) is the solution of (1.4). Then wε satisfies
Lεwε = Fε = L0u0 − Lεu0 − Lε(εχεSε∇ũ0) in Ω,

wε = hε = −εχεSε∇ũ0 on D,

n ·Aε∇wε = gε = n · Â∇u0 − n ·Aε∇u0 − n ·Aε∇(εχεSε∇ũ0) on N.

(3.10)

Recall that Ω2ε =
{
x ∈ Ω : dist(x, ∂Ω) < 2ε

}
. The following lemma plays a key role in this

paper.

Lemma 3.5. Let Ω be a bounded Lipschitz domain in Rd and D a closed subset of ∂Ω. For any
ψ ∈ H1

D(Ω;Rd), we have∣∣∣∣ˆ
Ω
Aε∇wε · ∇ψ

∣∣∣∣ ≤ C ‖u0‖H2(Ω)

{
ε ‖∇ψ‖L2(Ω) + ε1/2‖∇ψ‖L2(Ω2ε)

}
,

where wε is given by (3.9) and C depends only on d, κ1, κ2, D, and Ω.

Proof. By a density argument we may assume ψ ∈ C∞0 (Rd \D;Rd). Using
ˆ

Ω
Aε∇uε · ∇ψ =

ˆ
Ω
Â∇u0 · ∇ψ,

we obtain ˆ
Ω
Aε∇wε · ∇ψ =

ˆ
Ω

[
Â∇u0 −Aε∇u0 − εAε∇(χεSε∇ũ0)

]
· ∇ψ. (3.11)
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A direct calculation shows that

Â∇u0 −Aε∇u0 − εAε∇(χεSε∇ũ0)

= BεSε∇ũ0 +
[
(Â∇u0 − ÂSε∇ũ0)− (Aε∇u0 −AεSε∇ũ0)− εAεχεSε∇2ũ0

]
= BεSε∇ũ0 + Tε,

where B(y) = Â−A(y)−A(y)∇χ(y). As a result, we haveˆ
Ω
Aε∇wε · ∇ψ =

ˆ
Ω
BεSε∇ũ0 · ∇ψ +

ˆ
Ω
Tε · ∇ψ

= J1 + J2.

(3.12)

For J2, it follows from Lemmas 3.1 and 3.2 that

‖Tε‖L2(Ω) ≤ C ε ‖u0‖H2(Ω). (3.13)

Thus,
|J2| ≤ C ε ‖u0‖H2(Ω)‖∇ψ‖L2(Ω). (3.14)

To handle J1, we write

J1 =

ˆ
Ω
Bε(1− θε)Sε∇ũ0 · ∇ψ +

ˆ
Ω
BεθεSε∇ũ0 · ∇ψ

= J11 + J12,

(3.15)

where θε ∈ C∞0 (Rd) is a smooth function such that θε(x) = 1 if x ∈ Ω̃ε, θε(x) = 0 if x /∈ Ω̃2ε, and
|∇θε| ≤ Cε−1. Since B(y) is 1-periodic and locally square integrable, by Lemma 3.4, we obtain

|J12| ≤
ˆ

Ω2ε

|BεSε∇ũ0 · θε∇ψ|

≤ Cε1/2‖u0‖H2(Ω)‖∇ψ‖L2(Ω2ε).

(3.16)

It remains to estimate J11. To this end we let B = (bαβij (y)). Note that bαβij is 1-periodic and

bαβij ∈ L2
loc(Rd). Also, by (2.3) and (2.4),

∂

∂yi
bαβij = 0 and

ˆ
Q
bαβij = 0.

It follows that there exist 1-periodic functions φαβkij ∈ H
1
loc(Rd), where 1 ≤ α, β, i, j, k ≤ d, such

that
bαβij =

∂

∂yk
φαβkij and φαβkij = −φαβikj . (3.17)

(see [7] or [8]). Using integration by parts, this allows us to write J11 as

J11 =

ˆ
Ω

∂

∂xk

(
εφαβεkij

)
(1− θε)Sε

(
∂ũβ0
∂xj

)
· ∂ψ

α

∂xi

= −ε
ˆ

Ω
φαβεkij

∂

∂xk
(1− θε)Sε

(
∂ũβ0
∂xj

)
· ∂ψ

α

∂xi
− ε

ˆ
Ω
φαβεkij (1− θε)Sε

(
∂2ũ0

∂xk∂xj

)
· ∂ψ

α

∂xi

− ε
ˆ

Ω
φαβεkij (1− θε)Sε

(
∂ũβ0
∂xj

)
· ∂

2ψα

∂xi∂xk
,
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where φαβεkij (x) = φαβkij(x/ε). Note that the last term vanishes in view of the second equation in
(3.17). Therefore, by Lemmas 3.2 and 3.4, we obtain

|J11| ≤ C
ˆ

Ω2ε

|ΦεSε∇ũ0||∇ψ|+ C ε

ˆ
Ω
|ΦεSε∇2ũ0||∇ψ|

≤ C ε1/2‖u0‖H2(Ω)‖∇ψ‖L2(Ω2ε) + C ε ‖u0‖H2(Ω)‖∇ψ‖L2(Ω),

where Φ = (φαβkij). Thus, in view of (3.16), we have proved that

|J1| ≤ C ε1/2‖u0‖H2(Ω)‖∇ψ‖L2(Ω2ε) + C ε ‖u0‖H2(Ω)‖∇ψ‖L2(Ω). (3.18)

The lemma now follows by combining (3.12), (3.14), and (3.18).

We are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let wε be defined by (3.9). Set rε = εθεχ
εSε(∇ũ0) and ψε = wε + rε,

where θε ∈ C∞0 (Rd) is the same as in the proof of Lemma 3.4. Then

ψε = uε − u0 − ε(1− θε)χεSε(∇ũ0) ∈ H1
D(Ω;Rd).

It follows from Lemma 3.5 that∣∣∣∣ˆ
Ω
Aε∇wε · ∇ψε

∣∣∣∣ ≤ C ε1/2‖u0‖H2(Ω)‖∇ψε‖L2(Ω). (3.19)

This, together with the observation wε = ψε − rε and

‖rε‖H1(Ω) ≤ C ε1/2‖u0‖H2(Ω), (3.20)

gives ∣∣∣∣ˆ
Ω
Aε∇ψε · ∇ψε

∣∣∣∣ ≤ Cε1/2‖u0‖H2(Ω)‖∇ψε‖L2(Ω). (3.21)

By the Korn inequality (2.1), the elasticity condition (1.2), and (3.21), we obtain

‖ψε‖H1(Ω) ≤ C ε1/2‖u0‖H2(Ω). (3.22)

Finally, by (3.20) and (3.22),

‖wε‖H1(Ω) ≤ ‖ψε‖H1(Ω) + ‖rε‖H1(Ω) ≤ C ε1/2‖u0‖H2(Ω). (3.23)

This completes the proof.

Remark 3.6. If D = ∂Ω, Theorem 1.2 gives the O(ε1/2) error estimate in H1 for the Dirichlet
problem. In the case of the Neumann problem where D = ∅, Lemma 3.5 as well as the estimate
(3.21) continues to hold. We now use the second Korn inequality,

‖u‖H1(Ω) ≤ C
{
‖∇u+ (∇u)T ‖L2(Ω) +

m∑
j=1

∣∣∣ˆ
Ω
u · φj

∣∣∣}, (3.24)

for any u ∈ H1(Ω;Rd), where m = d(d + 1)/2,
{
φj : j = 1, . . . ,m

}
is an orthonormal basis

of R, and R =
{
u = Cx + D : CT = −C ∈ Rd×d and D ∈ Rd

}
denotes the space of rigid

displacements. This, together with (1.2) and (3.21), gives

‖ψε‖H1(Ω) ≤ C
{
ε1/2‖u0‖H2(Ω) +

m∑
j=1

∣∣∣ˆ
Ω
ψε · φj

∣∣∣}.
Thus, if we require that uε, u0 ⊥ R in L2(Ω;Rd), the estimate (3.23) still holds.
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4 Convergence rates in L2(Ω)

In this section we give the proof of Theorem 1.1. We begin by considering the Neumann boundary
value problem {

Lερε = G in Ω,

n ·Aε∇ρε = h on ∂Ω,
(4.1)

where G ∈ L2(Ω;Rd), h ∈ L2(∂Ω;Rd), and
ˆ

Ω
G · φ+

ˆ
∂Ω
h · φ = 0 for any φ ∈ R. (4.2)

Recall that a function ρε ∈ H1(Ω;Rd) is called a weak solution of (4.1) if
ˆ

Ω
Aε∇ρε · ∇ψ =

ˆ
Ω
G · ψ +

ˆ
∂Ω
h · ψ (4.3)

for any ψ ∈ H1(Ω;Rd). Under the elasticity condition (1.2), it is well known that the Neumann
problem (4.1) has a unique solution ρε ∈ H1(Ω;Rd) such that ρε ⊥ R in L2(Ω;Rd).

The homogenized problem for (4.1) is given by{
L0ρ0 = G in Ω,

n · Â∇ρ0 = h on ∂Ω.
(4.4)

If Ω is C1,1, G ∈ L2(Ω;Rd) and h ∈ H1/2(∂Ω;Rd), it is known that the unique weak solution of
(4.4) in H1(Ω;Rd) with the property ρ0 ⊥ R in L2(Ω;Rd) satisfies

‖ρ0‖H2(Ω) ≤ C
{
‖G‖L2(Ω) + ‖h‖H1/2(∂Ω)

}
. (4.5)

For the proof of Theorem 1.1 we will need to construct a function h ∈ H1/2(∂Ω;Rd) satisfying
(4.2) and

h = 0 on N = ∂Ω \D, (4.6)

for each G ∈ L2(Ω;Rd). This is done in the following lemma.

Lemma 4.1. Let Ω be a bounded Lipschitz domain and D a closed subset of ∂Ω with a nonempty
interior. Let G ∈ L2(Ω;Rd). Then there is h ∈ H1/2(∂Ω;Rd) such that h satisfies (4.2), (4.6), and

‖h‖H1/2(∂Ω) ≤ C ‖G‖L2(Ω), (4.7)

where C depends only on Ω and D.

Proof. By our assumption on D there exist x0 ∈ D and r0 > 0 such that B(x0, r0)∩ ∂Ω ⊂ D. We
fix a nonnegative function h0 ∈ C∞0 (B(x0, r0)) satisfying h0 ≥ 1 in B(x0, r0/2). Let

h = (α1φ1 + α2φ2 + · · ·+ αmφm)h0, (4.8)

where m = d(d+ 1)/2 and {φ1, φ2, . . . , φm} is an orthonormal basis of R in L2(Ω;Rd). Clearly,
h = 0 on N = ∂Ω \D. We claim that it is possible to choose (α1, α2, . . . , αm) ∈ Rm such that h
satisfies (4.2) and (4.7). To find (α1, . . . , αm), we solve the m×m system of linear equations

αi

ˆ
∂Ω
φi · φjh0 =

ˆ
Ω
G · φj , j = 1, 2, . . . ,m, (4.9)
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which is uniquely solvable, provided

det
(ˆ

∂Ω
φi · φjh0

)
6= 0. (4.10)

It is easy to see that in this case, the function h in (4.8) with (α1, . . . , αm) ∈ Rm given by (4.9)
satisfies condition (4.2) and estimate (4.7).

Finally, suppose that (4.10) is not true. Then there exists some (β1, β2, . . . , βm) ∈ Rm \ {0}
such that

βi

ˆ
∂Ω
φi · φjh0 = 0, j = 1, 2, . . . ,m.

Let u = β1φ1 + · · ·βmφm. Then
´
∂Ω |u|

2h0 = 0. Since h0 ≥ 1 on B(x0, r0/2), it follows that
u = 0 onB(x0, r0/2)∩∂Ω. Using∇u+(∇u)T = 0 in Rd and the Korn inequality (2.1), we obtain
u = 0 in Ω. This implies that β1 = β2 = · · ·βm = 0 and gives us a contradiction.

Suppose that Ω is C1,1. By Lemma 4.1 and (4.5), for each G ∈ L2(Ω;Rd), we can construct h
so that the weak solution ρ0 of (4.4) with the property ρ0 ⊥ R in L2(Ω;Rd) satisfies

‖ρ0‖H2(Ω) ≤ C ‖G‖L2(Ω). (4.11)

Let ρ̃0 = Eρ0 be an extension of ρ0 in H2(Rd;Rd) and set ηε = ρε − ρ0 − εχεSε∇ρ̃0. By Remark
3.6 we see that

‖ηε‖H1(Ω) ≤ C ε1/2‖ρ0‖H2(Ω) ≤ C ε1/2‖G‖L2(Ω). (4.12)

We are now in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ψε, wε, and rε be the same functions as in the proof of Theorem 1.2.
Note that ψε = wε + rε = uε − u0 − ε(1− θε)χεSε∇ũ0. Clearly, by Lemma 3.2,

‖ε(1− θε)χεSε∇ũ0‖L2(Ω) ≤ C ε ‖u0‖H2(Ω). (4.13)

Thus, to prove Theorem 1.1, it suffices to show ‖ψε‖L2(Ω) ≤ Cε‖u0‖H2(Ω). This will be done by a
duality argument, using Lemma 3.5.

Fix G ∈ L2(Ω;Rd) and let h ∈ H1/2(∂Ω;Rd) be the function given in Lemma 4.1. Let ρε, ρ0

be the weak solutions of (4.1) and (4.4), respectively, such that ρε, ρ0 ⊥ R in L2(Ω;Rd). Since
ψε ∈ H1

D(Ω;Rd) and n ·Aε∇ρε = h = 0 on N , by (4.3),
ˆ

Ω
ψε ·G =

ˆ
Ω
Aε∇ψε · ∇ρε. (4.14)

Write ˆ
Ω
Aε∇ψε · ∇ρε =

ˆ
Ω
Aε∇wε · ∇ρε +

ˆ
Ω
Aε∇rε · ∇ρε = J3 + J4. (4.15)

We estimate J4 first. Note that,

J4 =

ˆ
Ω
Aε∇rε · ∇ηε +

ˆ
Ω
Aε∇rε · ∇ρ0 +

ˆ
Ω
Aε∇rε · ∇(εχεSε∇ρ̃0)

= J41 + J42 + J43.

In view of (3.20) and (4.12), we obtain

|J41| ≤ C‖∇rε‖L2Ω)‖∇ηε‖L2(Ω) ≤ C ε ‖u0‖H2(Ω)‖ρ0‖H2(Ω). (4.16)
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For J42, note that rε is supported in Ω̃2ε. Hence,

|J42| ≤ C ‖∇rε‖L2(Ω)‖∇ρ0‖L2(Ω2ε)

≤ C ε ‖u0‖H2(Ω)‖ρ0‖H2(Ω),

where we have used Lemma 3.3 for the last inequality. Similarly,

|J43| ≤ C ‖∇rε‖L2(Ω)‖∇(εχεSε∇ρ̃0)‖L2(Ω2ε)

≤ C ε ‖u0‖H2(Ω)‖ρ0‖H2(Ω),
(4.17)

where we have used Lemma 3.4. As a result, we have proved that

|J4| ≤ C ε ‖u0‖H2(Ω)‖ρ0‖H2(Ω). (4.18)

It remains to estimate J3. Again, we write

J3 =

ˆ
Ω
Aε∇wε∇ηε +

ˆ
Ω
Aε∇wε∇ρ0 +

ˆ
Ω
Aε∇wε∇(εχεSε∇ρ̃0)

= J31 + J32 + J33.

Note that J31 can be easily handled by the H1 estimates of wε and ηε. Since the estimate of J32 is
similar to that of J33, we will only give the estimate for J33. To this end, we write

ˆ
Ω
Aε∇wε∇(εχεSε∇ρ̃0)

=

ˆ
Ω
Aε∇wε∇(θ2εεχ

εSε∇ρ̃0) +

ˆ
Ω
Aε∇wε∇

(
(1− θ2ε)εχ

εSε∇ρ̃0

)
,

(4.19)

where θ2ε ∈ C∞0 (Rd) is a smooth function such that θ2ε(x) = 1 if dist(x, ∂Ω) ≤ 2ε, θ2ε(x) = 0 if
dist(x, ∂Ω) ≥ 4ε, and |∇θ2ε| ≤ Cε−1. It follows by Theorem 1.2 and Lemma 3.4 that∣∣∣∣ˆ

Ω
Aε∇wε∇(θ2εεχ

εSε∇ρ̃0)

∣∣∣∣ ≤ C ε ‖wε‖H1(Ω)‖θ2εχ
εSε∇ρ̃0‖H1(Ω)

≤ C ε ‖u0‖H2(Ω)‖ρ0‖H2(Ω).

(4.20)

For the second term in the RHS of (4.19), note that (1− θε)εχεSε∇ρ̃0 ∈ H1
D(Ω;Rd). This allows

us to apply Lemma 3.5 and obtain∣∣∣∣ˆ
Ω
Aε∇wε∇

(
(1− θ2ε)εχ

εSε∇ρ̃0

)∣∣∣∣
≤ C ε ‖u0‖H2(Ω)‖∇

(
(1− θ2ε)εχ

εSε∇ρ̃0

)
‖L2(Ω)

+ C ε1/2‖u0‖H2(Ω)‖∇
(
(1− θ2ε)εχ

εSε∇ρ̃0

)
‖L2(Ω2ε).

(4.21)

Note that the second term vanishes, as 1− θ2ε is supported in Rd \ Ω2ε. Also,

‖∇
(
(1− θ2ε)εχ

εSε∇ρ̃0

)
‖L2(Ω) ≤ C ‖ρ0‖H2(Ω). (4.22)

This, together with (4.20) and (4.21), leads to

|J33| ≤ C ε ‖u0‖H2(Ω)‖ρ0‖H2(Ω). (4.23)
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Combining this with the estimates of J31, J32, we obtain

|J3| ≤ C ε ‖u0‖H2(Ω)‖ρ0‖H2(Ω). (4.24)

Hence, in view of (4.14), (4.15), (4.18) and (4.24), we have proved∣∣∣∣ˆ
Ω
ψε ·G

∣∣∣∣ ≤ C ε ‖u0‖H2(Ω)‖ρ0‖H2(Ω) ≤ C ε ‖u0‖H2(Ω)‖G‖L2(Ω), (4.25)

where C depends only on d, κ1, κ2, D, and Ω. Therefore, by duality,

‖ψε‖L2(Ω) ≤ C ε ‖u0‖H2(Ω), (4.26)

which completes the proof of Theorem 1.1.

Remark 4.2. If D = ∂Ω, Theorem 1.1 gives the sharp O(ε) estimate in L2 for the Dirichlet
problem. In the case of the Neumann problem, our proof also gives the estimate (1.8), if we further
require that uε, u0 ⊥ R in L2(Ω;Rd). To see this, we consider the Neumann problem (4.1) with
G ∈ L2(Ω;Rd), G ⊥ R, and h = 0 on ∂Ω. The same argument as in the proof of Theorem 1.1
gives the estimate (4.25). By duality this implies that

‖ψε‖L2(Ω) ≤ C ε ‖u0‖H2(Ω) + C
m∑
j=1

∣∣∣ ˆ
Ω
ψε · φj

∣∣∣,
where m = d(d + 1)/2 and {φj : j = 1, . . . ,m} forms an orthonormal basis for R in L2(Ω;Rd).
Using uε, u0 ⊥ R in L2(Ω;Rd), it follows that ‖ψε‖L2(Ω) ≤ C ε‖u0‖L2(Ω), from which the esti-
mate (1.8) follows.

5 Interior H1 estimates

In this section we study the interior H1 convergence and give the proof of Theorem 1.3.

Lemma 5.1. Let wε be defined by (3.9). Let ζ ∈ W 1,∞(Ω) be a nonnegative function in Ω such
that ζ = 0 on ∂Ω. Then,

‖ζ∇wε‖L2(Ω) ≤ C‖u0‖H2(Ω)

{
ε ‖ζ‖W 1,∞(Ω) + ε1/2‖ζ‖L∞(Ω2ε) + ε3/4‖ζ∇ζ‖1/2L∞(Ω2ε)

}
,

where C depends only on d, κ1, κ2, D, and Ω.

Proof. Since ζwε ∈ H1
0 (Ω;Rd), it follows from the elasticity condition and the first Korn inequality

that
‖ζ∇wε‖2L2(Ω) ≤ 2‖∇(ζwε)‖2L2(Ω) + 2‖wε∇ζ‖2L2(Ω)

≤ C
ˆ

Ω
Aε∇(ζwε) · ∇(ζwε) + 2‖wε‖2L2(Ω)‖∇ζ‖

2
L∞(Ω)

≤ C
ˆ

Ω
Aε∇wε · ∇(ζ2wε) + C‖wε‖2L2(Ω)‖∇ζ‖

2
L∞(Ω),

(5.1)

where we also used the identity

Aε∇(ζwε) · ∇(ζwε) = Aε∇wε · ∇(ζ2wε) +Aε(wε∇ζ) · (wε∇ζ).
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Note that by Lemma 3.5,
ˆ

Ω
Aε∇wε · ∇(ζ2wε)

≤ C ε ‖u0‖H2(Ω)‖∇(ζ2wε)‖L2(Ω) + C ε1/2‖u0‖H2(Ω)‖∇(ζ2wε)‖L2(Ω2ε).

(5.2)

This, together with (5.1), gives

‖ζ∇wε‖2L2(Ω) ≤ C ε ‖u0‖H2(Ω)‖ζ∇wε‖L2(Ω)‖ζ‖L∞(Ω)

+ C ε ‖u0‖H2(Ω)‖wε‖L2(Ω)‖ζ∇ζ‖L∞(Ω)

+ C ε1/2‖u0‖H2(Ω)‖ζ∇wε‖L2(Ω2ε)‖ζ‖L∞(Ω2ε)

+ C ε1/2‖u0‖H2(Ω)‖wε‖L2(Ω)‖ζ∇ζ‖L∞(Ω2ε)

+ C ‖wε‖2L2(Ω)‖∇ζ‖
2
L∞(Ω).

(5.3)

By the Cauchy inequality with an ε > 0 we obtain

‖ζ∇wε‖2L2(Ω) ≤ C ε
2‖u0‖2H2(Ω)‖ζ‖

2
L∞(Ω) + C ε ‖u0‖H2(Ω)‖wε‖L2(Ω)‖ζ∇ζ‖L∞(Ω)

+ C ε ‖u0‖2H2(Ω)‖ζ‖
2
L∞(Ω2ε)

+ Cε1/2‖u0‖H2(Ω)‖wε‖L2(Ω)‖ζ∇ζ‖L∞(Ω2ε)

+ C ‖wε‖2L2(Ω)‖∇ζ‖
2
L∞(Ω).

(5.4)

It then follows by the estimate ‖wε‖L2(Ω) ≤ Cε‖u0‖H2(Ω) that

‖ζ∇wε‖2L2(Ω) ≤ C ‖u0‖2H2(Ω)

{
ε2‖ζ‖2W 1,∞(Ω) + ε ‖ζ‖2L∞(Ω2ε) + ε3/2‖ζ∇ζ‖L∞(Ω2ε)

}
.

This completes the proof.

Proof of Theorem 1.3. Let ζ(x) = δ(x) = dist(x, ∂Ω). Note that ζ = 0 on ∂Ω and ‖ζ‖W 1,∞(Ω) ≤
C, where C depends only on Ω. Theorem 1.3 now follows readily from Lemma 5.1.

As a corollary, we obtain the following interior estimate.

Corollary 5.2. Let Ω′ be an open subset of Ω such that dist(Ω′, ∂Ω) > 0. Under the same conditions
as in Theorem 1.1, we have

‖uε − u0 − εχεSε∇ũ0‖H1(Ω′) ≤ C ε ‖u0‖H2(Ω), (5.5)

where C depends only on d, κ1, κ2, D, Ω′ and Ω.

Remark 5.3. The estimates in Lemma 5.1 and Theorem 1.3 as well as in Corollary 5.2 continue
to hold for the Neumann boundary value problems, if we further require uε, u0 ⊥ R in L2(Ω;Rd).
The proof is exactly the same.
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